
Victor Ioan BÂCU
Teodor Traian ȘTEFĂNUȚ

Dănuț Vasile MIHON
Dorian GORGAN

ELEMENTS OF COMPUTER
ASSISTED GRAPHICS

Laboratory works

UTPRESS
Cluj-Napoca, 2015

ISBN 978-606-737-058-4

Victor Ioan BÂCU

Teodor Traian ȘTEFĂNUȚ

Dănuț Vasile MIHON

Dorian GORGAN

Elements of Computer Assisted

Graphics

Laboratory works

U.T. PRESS
Cluj-Napoca, 2015

ISBN 978-606-737-058-4

 Editura U.T.PRESS
 Str.Observatorului nr. 34
 C.P.42, O.P. 2, 400775 Cluj-Napoca
 Tel.:0264-401.999 / Fax: 0264 - 430.408
 e-mail: utpress@biblio.utcluj.ro
 www.utcluj.ro/editura

 Director: Prof.dr.ing. Daniela Manea
 Consilier editorial: Ing. Călin D. Câmpean

Copyright © 2015 Editura U.T.PRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este posibilă
numai cu acordul prealabil scris al editurii U.T.PRESS.
Multiplicareaă executat la Editura U.T.PRESS.

ISBN 978-606-737-058-4
Bun de tipar: 04.06.2015

3

Preface

This book contains 11 laboratory works related to the computer graphics domain.

Its main focus are the students from the second year of Computer Science

department from the Computer Science and Automation faculty, Technical

University of Cluj-Napoca, but it can be used by any engineer interested in this

domain.

The content follows the structure of the Elements of Computer Assisted Graphics

course taught at Technical University of Cluj-Napoca.

Each laboratory work is structured into four main sections. The first section

presents the objectives and what is supposed to be learnt by students, the second

section offers an overview of the theoretical background supporting the

presented material. The last two sections present some practical examples and

some assignments.

Cluj-Napoca, Authors

10.04.2015

4

5

Table of content

Laboratory work 1: Win32 applications .. 9

1 Objectives .. 9

2 Theoretical background ... 9

3 Tutorial .. 13

4 Assignment .. 16

Laboratory work 2: Mouse inputs .. 17

1 Objectives .. 17

2 Theoretical background ... 17

3 Tutorial .. 20

4 Assignment .. 22

Laboratory work 3: Menus and dialog windows ... 23

1 Objectives .. 23

2 Theoretical background ... 23

3 Tutorial .. 28

4 Assignment .. 34

Laboratory work 4: Bitmaps, timers and mouse cursors 35

1 Objectives .. 35

2 Theoretical background ... 35

3 Tutorial .. 40

4 Assignment .. 44

Laboratory work 5: Keyboard inputs .. 45

1 Objectives .. 45

2 Theoretical background ... 45

3 Tutorial .. 48

6

4 Assignment .. 54

Laboratory work 6: Bresenham algorithm .. 55

1 Objectives .. 55

2 Theoretical background ... 55

3 Assignment .. 62

Laboratory work 7: 2D transformations ... 63

1 Objectives .. 63

2 Theoretical background ... 63

3 Assignment .. 68

Laboratory work 8: 3D transformations ... 69

1 Objectives .. 69

2 Theoretical background ... 69

3 Tutorial... 78

4 Assignment .. 79

Laboratory work 9: Line clipping algorithm .. 81

1 Objectives .. 81

2 Theoretical background ... 81

3 Cohen-Sutherland algorithm implementation ... 83

4 Assignment .. 84

Laboratory work 10: Polygon clipping algorithms ... 85

1 Objectives .. 85

2 Theoretical background ... 85

3 Sutherland-Hodgman clipping algorithm ... 85

4 Weiler-Atherton clipping algorithm ... 88

5 Assignment .. 92

Laboratory work 11: Bezier curves ... 93

1 Objectives .. 93

2 Theoretical background ... 93

7

3 Assignment .. 94

Quiz .. 95

References .. 99

8

9

Laboratory work 1: Win32
applications

1 Objectives
The objective of this laboratory is to describe very briefly the code structure of a

Win32 application and to exemplify the theoretical notions presented through a

sample paint application.

2 Theoretical background
Windows provides an API called the Graphics Device Interface, or GDI. Whenever

an action occurs, the Windows sends to the application different messages. All the

messages are processed in the WndProc function. The WM_PAINT represents the

message that is sent to the application when the repaint of the window is

necessary. This message has low priority and is the last message that will be

processed.

A Device Context (DC) is used to define the attributes of text and images that are

output to the screen or printer. The actual context is maintained by GDI. A handle

to the Device Context (HDC) is obtained before the output is written and then

released after elements have been written. The HDC (Handle to Device Context)

represents a handle to something you can draw on. A HDC can represent the

entire screen, an entire window, the client area of a window, a bitmap stored in

memory, or a printer.

When you create a new Win32 project the following basic WndProc function is

generated.

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM

wParam, LPARAM lParam)

{

 int wmId, wmEvent;

 PAINTSTRUCT ps;

 HDC hdc;

 switch (message)

 {

10

 case WM_COMMAND:

 wmId = LOWORD(wParam);

 wmEvent = HIWORD(wParam);

 // Parse the menu selections:

 switch (wmId)

 {

 case IDM_ABOUT:

 DialogBox(hInst,

 MAKEINTRESOURCE(IDD_ABOUTBOX),

 hWnd, About);

 break;

 case IDM_EXIT:

 DestroyWindow(hWnd);

 break;

 default:

 return DefWindowProc(hWnd, message, wParam,

 lParam);

 }

 break;

 case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 // TODO: Add any drawing code here...

 EndPaint(hWnd, &ps);

 break;

 case WM_DESTROY:

 PostQuitMessage(0);

 break;

 default:

 return DefWindowProc(hWnd, message, wParam, lParam);

 }

 return 0;

}

The messages that are processed in this function are the following:

 WM_COMMAND – is sent whenever a user selects a menu item;

 WM_PAINT – is sent when is necessary to repaint the window, the

message could be sent by the system or by another application;

 WM_DESTROY – is sent when the window will be destroyed.

Depending on the application requirements, you can manage other messages. The

messages that you will be using in this laboratory are the following:

11

 WM_LBUTTONDOWN – is sent when the left mouse button is pressed

and the mouse cursor is in the client area of a window;

 WM_RBUTTONDOWN - is sent when the right mouse button is pressed

and the mouse cursor is in the client area of a window.

You can retrieve the mouse coordinates in two ways:

x = LOWORD(lParam);

y = HIWORD(lParam);

x = GET_X_LPARAM(lParam)

y = GET_Y_LPARAM(lParam)

For the GET_X_LPARAM and GET_Y_LPARAM macros you have to include the

WindowsX.h header.

You can force the repaint of the window using the InvalidateRect function that

will send a WM_PAINT message. If the last parameter is TRUE then the old

window content is erased, otherwise the invalidated region is accumulated. If the

second parameter is NULL then the entire window region is invalidated, otherwise

you can specify the region that will be invalidated.

2.1 Specify colors
To define colors you need to define a variable of type COLORREF. The color values

can be specified by using the RGB macros (you have to specify the values for the

red, green and blue components). The values are in the 0-255 interval. To extract

the individual values for the red, green, and blue components you can use the

GetRValue, GetGValue, and GetBValue macros.

2.2 Define a pen
When you define a new pen you need to specify the style, width, and color.

HPEN hPen;

hPen = CreatePen(PS_DASH, 1, colorPen);

After you have created a new pen you need to specify to what device context you

will use it.

SelectObject(hdc, hPen);

You should delete the pen after you have used it.

12

DeleteObject(hPen);

2.3 Define a brush
When you define a new brush you need to specify the color of the brush.

COLORREF colorBrush;

colorBrush = RGB(rand() % 255, rand() % 255, rand() % 255);

HBRUSH hBrush;

hBrush = CreateSolidBrush(colorBrush);

SelectObject(hdc, hBrush);

You should delete the brush after you have used it.

DeleteObject(hBrush);

2.4 Define a hatch brush
When you define a new hatch brush you need to specify the color of the brush

and in addition the hatch pattern.

HBRUSH myHatchBrush;

myHatchBrush = CreateHatchBrush(HS_CROSS, RGB(255, 255, 0));

SelectObject(hdc, myHatchBrush);

2.5 Drawing graphical primitives

2.5.1 Line

In order to display a line you have to specify the line coordinates. The MoveToEx

function updates the current position to the specified point. The LineTo function

draws a line from the current position up to the specified point.

MoveToEx(hdc, x, y, NULL);

LineTo(hdc, x + rand() % 200, y + rand() % 200);

In the Visual Studio 2010 before you draw a line you have to draw a pixel using

the following function:

SetPixel(hdc, 0, 0, RGB(255, 255, 255));

2.5.2 Rectangle

The rectangle function draws a rectangle specified by the corner coordinates.

13

Rectangle(hdc, x, y, x + rand() % 200, y + rand() % 200);

2.5.3 Ellipse

The ellipse function draws an ellipse specified by the corner coordinates.

Ellipse(hdc, x, y, x + rand() % 200, y + rand() % 200);

2.6 Polyline
The Polyline function draws a series of line segments by connecting the points in

the specified array.

#define verticesNr 8

POINT vertices[verticesNr];

…

//generate polyline vertices

for(int i = 0; i < verticesNr; i++)

{

 vertices [i].x = rand() % 1000;

 vertices [i].y = rand() % 1000;

}

…

Polyline(hdc, vertices, verticesNr);

2.6.1 Display text

To display a text message you can use one of the following two methods:

LPCSTR text1 = "Display a sample message";

…

//first method

TextOut(hdc,100,200,TEXT("Text"),strlen("Text"));

//second method

TextOutA(hdc,100,300,(LPCSTR)(text1),strlen(text1));

3 Tutorial

3.1 Create a new Win32 project
From the main menu, select File->New->Project. Specify the name and the

location of the project. In the New Project window, select Visual C++->Win32-

>Win32 Project.

14

Figure 1.1: Create a new Win32 project

Figure 1.2: Establish application settings

15

3.2 Draw a rectangle onto the window
Add the following lines in the WM_PAINT message:

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

Rectangle(hdc, 100, 100, 400, 400);

EndPaint(hWnd, &ps);

break;

Compile and run the application to see the effect.

3.3 Define the pen style
Define a new variable, called myPen.

HPEN myPen;

Add the following lines in the WM_PAINT message:

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

myPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));

SelectObject(hdc, myPen);

Rectangle(hdc, 100, 100, 400, 400);

DeleteObject(myPen);

EndPaint(hWnd, &ps);

break;

Compile and run the application to see the effect.

3.4 Define the brush style
Define a new variable, called myBrush.

HBRUSH myBrush;

Add the following lines in the WM_PAINT message:

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

myPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));

SelectObject(hdc, myPen);

myBrush = CreateSolidBrush(RGB(255, 255, 0));

SelectObject(hdc, myBrush);

Rectangle(hdc, 100, 100, 400, 400);

DeleteObject(myPen);

DeleteObject(myBrush);

EndPaint(hWnd, &ps);

break;

16

Compile and run the application to see the effect.

3.5 Add mouse interaction
Define two global variables, x1 and y1, which will be used to store mouse

coordinates.

static int x1, y1;

Modify the following lines in the WM_PAINT message:

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

myPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));

SelectObject(hdc, myPen);

myBrush = CreateSolidBrush(RGB(255, 255, 0));

SelectObject(hdc, myBrush);

Rectangle(hdc, x1, y1, x1 + 200, y1 + 200);

EndPaint(hWnd, &ps);

break;

Add the WM_LBUTTONDOWN message:

case WM_LBUTTONDOWN:

x1 = LOWORD(lParam);

y1 = HIWORD(lParam);

InvalidateRect(hWnd, NULL, FALSE);

break;

Compile and run the application to see the effect.

4 Assignment
Extend the application with the following functionality:

 Using the right mouse button click select the type of figure you will draw

on the screen (line, polyline, rectangle and ellipse)

 Display in the upper-right corner your name

 Display the graphical figures (line, polyline, rectangle and ellipse) with

random colors and random line styles (solid, dash, dot, etc.)

17

Laboratory work 2: Mouse inputs

1 Objectives
This laboratory work will present methods of using WM_MOUSEMOVE message

by teaching you to draw basic geometrical figures (ex. rectangles) through drag-

and-drop interaction. For a better display performance, the double buffering

technique will also be shortly described.

2 Theoretical background
As already presented in Laboratory Work 1, the mouse input from the user is sent

by the Windows operating system to a Win23 application in the form of messages.

Drag-and-drop user interaction technique is implemented through the

combination of three mouse messages:

 WM_LBUTTONDOWN – signals the start of drag-and-drop process

 WM_MOUSEMOVE – triggered by the system during the mouse move

action

 WM_LBUTTONUP – represents the end of the drag-and-drop operation

These messages can be processed in the WndProc function, as presented below

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM

 wParam, LPARAM lParam)

{

int wmId, wmEvent;

PAINTSTRUCT ps;

HDC hdc;

switch (message)

{

 case WM_LBUTTONDOWN:

 // Start drag-and-drop action

 break;

 case WM_MOUSEMOVE:

 // Process mouse move message by updating the display

 accordingly

 break;

18

 case WM_LBUTTONUP:

 // End of drag-and-drop action

 break;

 case WM_CREATE:

 // Operations to be done only once, when the

 application is launched

 break;

 default:

 return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

As you remember from Laboratory Work 1, the mouse coordinates can be

retrieved in two ways:

x = LOWORD(lParam)

y = HIWORD(lParam)

x = GET_X_LPARAM(lParam)

y = GET_Y_LPARAM(lParam)

For the GET_X_LPARAM and GET_Y_LPARAM macros you have to include the

WindowsX.h header.

When creating user interactions that require continuous display (like drag-and-

drop), the update of the screen must be performed in real time, at the best

possible refresh rate. Due to the limitations of the graphical hardware, when

drawing directly on the screen some flicker may appear, affecting the clarity of

the display. In order to solve these issues, the most common solution is to use the

technique called Double Buffering.

2.1 Double Buffering concept
The purpose of Double Buffering is to keep the user from seeing the progress of

the display process, until it is finalized. Instead of drawing directly to video

memory, the application draws everything to a second buffer that is not visible.

When finished, everything from the second buffer is copied to video memory all

at once. At that point the application clears the double buffer (if necessary) and

the process starts over.

19

2.2 Create the second buffer
The creation of a second buffer is a two steps process. First, is necessary to create

a compatible Drawing Context:

HDC hdcBack;

hdcBack = CreateCompatibleDC(hdc);

After you have created the Compatible DC, it is necessary to create and assign to

it a bitmap that will store all graphical elements you will draw. The bitmap should

have the dimensions of the application window. Therefore, we will define a RECT

structure to store this information:

RECT windowRect;

Then we can create and assign the second buffer:

HBITMAP backBuffer;

GetClientRect(hWnd, &windowRect);

backBuffer = CreateCompatibleBitmap(hdc, windowRect.right,

 windowRect.bottom);

SelectObject(hdcBack, backBuffer);

2.3 Draw on the second buffer
When created, the bitmap associated with the second hdc (hdcBack) is black. As

our application uses a white background for drawing, we will have to adjust the

color:

FloodFill(hdcBack, 0, 0, RGB(255, 255, 255));

All the drawings that would normally take place directly on the video memory will

now be redirected to the second buffer. For example, drawing a rectangle with a

specific brush:

COLORREF color;

color = RGB(rand() % 255, rand() % 255, rand() % 255);

HBRUSH hBrush;

hBrush = CreateSolidBrush(color);

SelectObject(hdcBack, hBrush);

Rectangle(hdcBack, x1, y1, x2, y2);

20

2.4 Display the content of the second buffer
When all the drawing operations are finalized, in the second buffer should be

available the final version of the graphical display that will be shown to the user.

Nevertheless, it is still not visible until it is loaded into the video memory.

BitBlt(hdc, 0, 0, windowRect.right, windowRect.bottom,

 hdcBack, 0, 0, SRCCOPY);

If the second buffer’s content is not required for the following operations (most of

the time the drawing will start from the beginning), the memory should be freed

up:

DeleteDC(hdcBack);

DeleteObject(backBuffer);

3 Tutorial
In order to exemplify the notions presented in this paper, we will create a basic

Paint like application that will allow the user to draw basic geometrical shapes

using drag-and-drop user interaction. To improve the display quality, a basic

implementation of the double buffering technique will be described.

3.1 Create a new Win32 project
Please refer to the Laboratory Work 1 for instructions on how to create a new

Win32 project.

3.2 Detect the left mouse button down event, to start the

action
Add the following lines in the WM_LBUTTONDOWN message:

case WM_LBUTTONDOWN:

x1 = LOWORD(lParam);

y1 = HIWORD(lParam);

break;

At this point, we save the mouse coordinates as being one corner of the rectangle

enclosing the shape (top left / bottom right).

3.3 Detect mouse move event, to draw the shape
Add the following lines in the WM_MOUSEMOVE message:

21

if(wParam & MK_LBUTTON)

{

x2 = LOWORD(lParam);

y2 = HIWORD(lParam);

InvalidateRect(hWnd, NULL, TRUE);

}

As the mouse moves, we have to read the pointer coordinates only if the left

mouse button is pressed, as this will indicate that we are in the process of

drawing a new geometrical shape. The point with the coordinates (x2, y2)

represents the opposite corner of the rectangle enclosing the shape, relative to

(x1, y1).

Although the WM_LBUTTONUP message is not explicitly processed, the drawing

operation will stop automatically when the left mouse button is released.

3.4 Draw the shape using mouse coordinates
The mouse coordinates gathered using WM_LBUTTONDOWN and

WM_MOUSEMOVE messages can be utilized in WM_PAINT section to draw the

graphical shape. For example, drawing a rectangle:

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

color = RGB(rand() % 255, rand() % 255, rand() % 255);

hBrush = CreateSolidBrush(color);

SelectObject (hdc, hBrush);

Rectangle (hdc, x1, y1, x2, y2);

DeleteObject(hBrush);

EndPaint(hWnd, &ps);

break;

Compile and run the application to see the effect.

3.5 Improve display quality by adding a second buffer

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

hdcBack = CreateCompatibleDC(hdc);

GetClientRect(hWnd, &windowRect);

backBuffer = CreateCompatibleBitmap(hdc, windowRect.right,

 windowRect.bottom);

22

SelectObject(hdcBack, backBuffer);

FloodFill(hdcBack, 0, 0, RGB(255, 255, 255));

color = RGB(rand() % 255, rand() % 255, rand() % 255);

hBrush = CreateSolidBrush(color);

SelectObject (hdcBack, hBrush);

Rectangle (hdcBack, x1, y1, x2, y2);

BitBlt(hdc, 0, 0, windowRect.right, windowRect.bottom,

 hdcBack, 0, 0, SRCCOPY);

DeleteObject(hBrush);

DeleteDC(hdcBack);

DeleteObject(backBuffer);

EndPaint(hWnd, &ps);

break;

In order to have a correct behavior for the application, it is necessary to change

also the InvalidateRect instruction from the WM_MOUSEMOVE message

processing section:

InvalidateRect(hWnd, NULL, FALSE);

Compile and run the application to see the effect.

4 Assignment
 Modify the application to allow the user to draw a rectangle by indicating

the two corners (top left / bottom right) using two separate left mouse

button clicks.

 Switch between the two drawing methods (drag-and-drop / two clicks) by

pressing right mouse button.

23

Laboratory work 3: Menus and
dialog windows

1 Objectives
The main goal of this laboratory is the usage of Win32 menu features. A menu

could be defined as one of the most important components in a Graphical User

Interface application containing a list of services that facilitates the user

interaction with the system.

2 Theoretical background
In order to create custom menus inside Win32 projects, the resource file (.rc)

should be used. This file is located in the Resource Files directory, listed in the

Visual Studio Solution Explorer, among Header Files and Source Files.

The user interactivity with the menu items generates a WM_COMMAND message

that is sent by the Windows operating system to a Win32 application. Each menu

item has a unique identifier (called IDM) that could be retrieved by using the

lower half value of the wParam.

When creating a new Win32 project, a default menu is automatically generated,

that contains the File and Help options. New added menu items could be

processed inside the same switch block as the default ones:

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM

wParam, LPARAM lParam)

{

 int wmId, wmEvent;

 PAINTSTRUCT ps;

 HDC hdc;

 switch (message)

 {

 case WM_COMMAND:

 wmId = LOWORD(wParam);

 wmEvent = HIWORD(wParam);

 // Parse the menu selections:

 switch (wmId)

24

 {

 //What to do when using the About menu item

 case IDM_ABOUT:

 DialogBox(hInst,

 MAKEINTRESOURCE(IDD_ABOUTBOX),

 hWnd, About);

 break;

 //What to do when using the Exit menu item

 case IDM_EXIT:

 DestroyWindow(hWnd);

 break;

 default:

 return DefWindowProc(hWnd, message, wParam,

 lParam);

 }

 break;

 }

}

2.1 Add new menu items
In Visual Studio 2010 you can create a menu by using the built-in menu editor. In

this case, the menu labels would be automatically added to the .rc file.

Figure 3.1: Example of project files structure

25

On an already created Win32 project (see Laboratory Work 1) open the Resource

Files folder from the Solution Explorer. An .rc file with the same name as the

Win32 project should be located in this folder (see Figure 3.1). This example uses

the Menu_example Win32 project.

 Double clicking the .rc file displays the available resources for this project (see

Figure 3.2Figure).

Figure 3.2: Resources available in the project

Any other resources of the project can also be customized by the user, such as

Icons, mouse cursor or dialog boxes. If no Menu folder is present, right click on

the Menu_example.rc and select “Add resource…” option (see Figure 3.3) and

then add a menu resource type (see Figure 3.4).

The entire project menu has a unique identifier generated on the basis of the

following rule:

IDC_<project name>

 In this example the menu could be programmatically referenced as

IDC_MENU_EXAMPLE.

Double clicking on the IDC_MENU_EXAMPLE (see Figure 3.2) opens a new window

where we could add or remove menu items using a built-in editor. For example

we can create a menu that allows the selection of a geometrical figure to be

drawn on the active HDC, as showcased in Figure 3.5.

26

Figure 3.3: Add a new resource to the project

Figure 3.4: Create a new menu resource

 It is very important to maintain the uniqueness of the menu items. Each option

inside the menu generates its ID based on the following rule:

ID_<top menu option>_< menu option>

For example the Filled item has ID_RECTANGLE_FILLED as a unique identifier and

the Ellipse item has the value ID_FIGURES_ELLIPSE for the ID field. The ID of each

menu item is placed in the Properties window of the project (see Figure

27

3.5Figure). In order to display this window, just right click one of the menu

options and then select the Properties option.

Figure 3.5: An example of a menu that allows the selection of a geometrical
figure

One of the window class attributes is the menu ID related to this object, stored in

the lpszMenuName variable.

wcex.lpszMenuName = MAKEINTRESOURCE(IDC_MENU_EXAMPLE);

If the menu is defined through an integer identifier, the window class menu is

specified using the MAKEINTRESOURCE macro. This macro is used to convert an

integer value to a string, representing the menu identifier.

wcex.lpszMenuName = MAKEINTRESOURCE(100);

2.2 Display a popup menu
You could display a popup menu using the following functions:

HMENU Popup;

POINT pt;

...

Popup = LoadMenu(hInst, MAKEINTRESOURCE(MENU_ID));

28

Popup = GetSubMenu(Popup, 2);

GetCursorPos(&pt);

TrackPopupMenuEx(Popup, TPM_LEFTALIGN | TPM_RIGHTBUTTON,

 pt.x, pt.y, hWnd, NULL);

3 Tutorial
The example described in section 3 (Add new menu items) is generally applicable

to any kind of application that requires a simple menu. But there are cases where

the menu should represent more than a few lines of text. That is why in the

following we are trying to create a more complex menu, involving more

interactivity on the user side. In order to illustrate the menu concepts, presented

above, we propose to draw a rectangle on mouse click event that will be filled

with different colors chosen from the interactive menu.

3.1 Create a new Win32 project
Please refer to the Laboratory Work 1 for instructions on how to create a new

Win32 project.

3.2 Add a new menu item
Add a new menu item, among the default ones, called Paint, as presented in

Figure 3.6. Make sure that the identifier for the Brush color option is

ID_PAINT_BRUSHCOLOR. We want to display a new dialog window, as in Figure

3.7, when the Brush color option is used. In order to do this, expand the Dialog

folder and add a new dialog resource, by right clicking on the Dialog option and

then selecting the Insert dialog. Rename this resource to IDD_SELECT_COLOR.

Figure 3.6: Menu item for displaying a new dialog window

29

Figure 3.7: Dialog window to select the color of the pen

In order to build a new menu window, like the one presented in Figure 3.7, double

click on the IDD_SELECT_COLOR, located in the Dialog folder. This will open a

blank window that has to be populated with visual components from the project

toolbox, located on the left hand side of the screen (see Figure 3.8Figure).

Figure 3.8: Toolbox example

Select from the toolbox the radio button component and with a drag and drop

action place it on the blank window. Repeat this operation two more times.

Rename the components to Red, Green and Blue. In order to rename a

component, make sure that the component is selected, and then go to Properties

panel and in the Appearance section change the Caption attribute to your own

value.

30

Because we want to activate only one of these three radio buttons at a specific

moment, we must create a radio button group first. In order to do this, select the

Red visual component and open the Properties panel. In here go to Misc section

and set the Group attribute to true. For the other two radio buttons, set this

attribute to false. Also, make sure that the Red, Green and Blue identifiers are as

follows: IDC_RADIO1, IDC_RADIO2 and IDC_RADIO3.

Now the menu component is done, and the only thing left is to add the backhand

functionality for the menu items. We can now close the Resource View panel and

return to the Solution Explorer panel (Figure 3.9). In here open the .cpp file

located in the Source Files directory.

Figure 3.9: Switch between different views of the project

3.3 Write the functionality for the added menu item
Add the following code lines to the WndProc function:

switch (wmId)

{

 case IDM_ABOUT:

 DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd,

 About);

 break;

 case IDM_EXIT:

 DestroyWindow(hWnd);

 break;

31

 //Open a dialog box similar to the one presented in

 Figure

 case ID_PAINT_BRUSHCOLOR:

 DialogBox(hInst, MAKEINTRESOURCE(IDD_SELECT_COLOR),

 hWnd, SelectColorDialogBox);

 break;

 default:

 return DefWindowProc(hWnd, message, wParam, lParam);

}

The DialogBox function allows us to display a pop up window, inside a parent

window, specified by the parent window handler (hWnd in this case). The basic

functionality of the pop up is assured by the SelectColorDialogBox function.

At the end of the program add the SelectColorDialogBox function, just after the

About function:

INT_PTR CALLBACK SelectColorDialogBox(HWND hDlg,

 UINT message,

 WPARAM wParam,

 LPARAM lParam)

{

 UNREFERENCED_PARAMETER(lParam);

 switch (message)

 {

 case WM_INITDIALOG:

 int selection;

 for(selection = IDC_RADIO1; selection < IDC_RADIO3;

 selection++)

 {

 CheckDlgButton(hDlg, selection, BST_UNCHECKED);

 }

 CheckDlgButton(hDlg, currentCheckBoxSelection,

 BST_CHECKED);

 return (INT_PTR)TRUE;

 break;

 case WM_COMMAND:

 //OK button clicked

 if (LOWORD(wParam) == IDOK)

 {

 EndDialog(hDlg, LOWORD(wParam));

 //Red color selected

32

 if(IsDlgButtonChecked(hDlg, IDC_RADIO1) ==

 BST_CHECKED)

 {

 brushColor = RGB(255, 0, 0);

 currentCheckBoxSelection = IDC_RADIO1;

 }

 //Green color selected

 if(IsDlgButtonChecked(hDlg, IDC_RADIO2) ==

 BST_CHECKED)

 {

 brushColor = RGB(0, 255, 0);

 currentCheckBoxSelection = IDC_RADIO2;

 }

 //Blue color selected

 if(IsDlgButtonChecked(hDlg, IDC_RADIO3) ==

 BST_CHECKED)

 {

 brushColor = RGB(0, 0, 255);

 currentCheckBoxSelection = IDC_RADIO3;

 }

 return (INT_PTR)TRUE;

 }

 //Cancel button clicked

 else if(LOWORD(wParam) == IDCANCEL)

 {

 EndDialog(hDlg, LOWORD(wParam));

 }

 break;

 }

 return (INT_PTR)FALSE;

}

3.4 Define global variables
Some global variables must be declared:

COLORREF brushColor = RGB(255, 0, 0);

//At the beginning the Red radio button is selected

int currentCheckBoxSelection = IDC_RADIO1;

int x1, y1;

HPEN myPen;

HBRUSH myBrush;

33

Also add the following line at the beginning of the project, bellow the global

variables declaration section:

ATOM MyRegisterClass(HINSTANCE hInstance);

BOOL InitInstance(HINSTANCE, int);

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

INT_PTR CALLBACK About(HWND, UINT, WPARAM, LPARAM);

INT_PTR CALLBACK SelectColorDialogBox(HWND hDlg,

 UINT message,

 WPARAM wParam,

 LPARAM lParam);

3.5 Get the mouse coordinates
In order to draw the rectangle at the mouse cursor position, first the mouse

coordinates must be identifed. This is done by retrieving the lower and upper half

value of the lParam:

case WM_LBUTTONDOWN:

x1 = GET_X_LPARAM(lParam);

y1 = GET_Y_LPARAM(lParam);

InvalidateRect(hWnd, NULL, FALSE);

break;

3.6 Draw the rectangle using the WM_PAINT message

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

myPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));

SelectObject(hdc, myPen);

myBrush = CreateSolidBrush(brushColor);

SelectObject(hdc, myBrush);

Rectangle(hdc, x1, y1, x1 + 200, y1 + 200);

EndPaint(hWnd, &ps);

break;

Compile and run the application to see the effect.

34

4 Assignment
 Based on the example described in the Example application section, add

a check box that sets the last parameter of the InvalidateRect function.

For example a selected check box is equivalent to the

InvalidateRect(hWnd, NULL, TRUE) call.

 Based on the example described in the Example application section, add

another menu item, called Figures that allow switching between

geometrical figures, like: Line, Rectangle, Circle, Polyline.

35

Laboratory work 4: Bitmaps,
timers and mouse cursors

1 Objectives
This laboratory presents some introductory notions on bitmap loading and

displaying in a Win32 application. Other subjects that will be presented are the

specification of mouse cursors (how you create and display them) and the way in

which you can define timers to schedule some events at regular time intervals.

2 Theoretical background
In order to display mouse cursors and to define timers some new messages must

be processed: WM_SETCURSOR and WM_TIMER.

LRESULT CALLBACK WndProc(HWND hWnd, UINT message,

 WPARAM wParam, LPARAM lParam)

{

 int wmId, wmEvent;

 PAINTSTRUCT ps;

 HDC hdc;

 switch (message)

 {

 ...

 case WM_SETCURSOR:

 //display the cursor

 break;

 case WM_TIMER:

 //process

 break;

 ...

 }

}

2.1 Loading bitmaps
The LoadImage function can be used to load bitmaps from BMP files. Beside

loading bitmaps this function can be used to load icons, cursors or animated

36

cursors. In this laboratory we are focusing only on loading bitmaps using this

function.

The syntax of the LoadImage function:

HANDLE WINAPI LoadImage(

 __in_opt HINSTANCE hinst,

 __in LPCTSTR lpszName,

 __in UINT uType,

 __in int cxDesired,

 __in int cyDesired,

 __in UINT fuLoad

);

You can load a bitmap file in the following way:

HBITMAP hBitmap;

...

hBitmap = (HBITMAP)LoadImage(0, TEXT("images/img.bmp"),

 IMAGE_BITMAP, 0, 0,

 LR_LOADFROMFILE);

If you load a bitmap from a file then the first parameter is NULL. The second

parameter specifies the file path. The file path can be specified relative to the

project location (like in the example) or as an absolute path.

After you have used the bitmap you should delete it using the DeleteObject

function.

DeleteObject(hBitmap);

In order to display the bitmap you must create an additional HDC from where you

will copy the bitmap to the main window.

static BITMAP bm;

...

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &window);

 hdcDB = CreateCompatibleDC(hdc);

 SelectObject(hdcDB, hBitmap);

 GetObject(hBitmap, sizeof(BITMAP), &bm);

 BitBlt(hdc, bitmapStartX, 0, bm.bmWidth, bm.bmHeight,

 hdcDB, 0, 0, SRCCOPY);

37

 DeleteDC(hdcDB);

 EndPaint(hWnd, &ps);

break;

The BITMAP structure defines the type, width, height, color format, and bit values

of a bitmap.

2.2 The BitBlt function
The BitBlt function is used to copy the color data corresponding to a rectangle of

pixels from the specified source device context into a destination device context

(from a memory buffer to the window).

BOOL BitBlt(

 __in HDC hdcDest,

 __in int nXDest,

 __in int nYDest,

 __in int nWidth,

 __in int nHeight,

 __in HDC hdcSrc,

 __in int nXSrc,

 __in int nYSrc,

 __in DWORD dwRop

);

 An example of usage of the BitBlt function:

BitBlt(hdc, bitmapStartX, 0, bm.bmWidth, bm.bmHeight, hdcDB,

 0, 0, SRCCOPY);

2.3 StretchBlt function
The StretchBlt function copies a bitmap from a source rectangle into a destination

rectangle, stretching or compressing the bitmap to fit the dimensions of the

destination rectangle, if necessary.

BOOL StretchBlt(

 __in HDC hdcDest,

 __in int nXOriginDest,

 __in int nYOriginDest,

 __in int nWidthDest,

 __in int nHeightDest,

 __in HDC hdcSrc,

 __in int nXOriginSrc,

 __in int nYOriginSrc,

 __in int nWidthSrc,

 __in int nHeightSrc,

 __in DWORD dwRop

38

);

An example of usage of the StretchBlt function:

StretchBlt(hdc, 10, 300, 512, 512, hdcDB, 0, 0, 256, 256,

 SRCCOPY);

2.4 Cursors
The current position of the mouse is represented through a cursor. You can

choose from a set of predefined cursors or you could create new cursors. The

process of creating a new cursor is exemplified in the tutorial section. Each cursor

has a special area, called hot spot, where the mouse behavior is attached.

The LoadCursor function loads the specified cursor, a predefined one or a custom

cursor.

2.4.1 Load a custom cursor

In this case the first parameter of the LoadCursor function is the handle to an

instance that contains the cursor to be loaded. The second parameter is the name

of the cursor resource to be loaded.

HCURSOR hCursor;

hCursor = LoadCursor(hInst, MAKEINTRESOURCE(IDC_CURSOR1));

SetCursor(hCursor);

2.4.2 Load a predifined cursor

In this case the first parameter of the LoadCursor function is NULL. The second

parameter is the name of the cursor resource to be loaded.

SetCursor(LoadCursor(NULL, IDC_ARROW));

2.5 Timers
The system can send messages at predefined moments, regularly, using timers. In

this way you can schedule an event for a window after a specified time has

elapsed.

2.5.1 Define a new timer

The first step is to define an identifier for the timer. The identifier value should be

unique.

#define TIMER_1 1001

39

2.5.2 Set the timer

The SetTimer function creates the timer. The first parameter represents the

handle to the window that will be associated with the timer. The second

parameter is the timer identifier and the third parameter is the time-out value,

defined in milliseconds. The last parameter can be used to specify the callback

function used to process the timer event. If this parameter is NULL then the

system sends a WM_TIMER message to the window attached to the timer.

SetTimer(hWnd, TIMER_1, 30, NULL);

2.5.3 Process timer messages

After the timer interval expires the system sends this WM_TIMER message. The

wParam contains the timer identifier.

case WM_TIMER:

 switch(wParam)

 {

 case TIMER_1:

 //do something

 break;

 }

break;

2.5.4 Destroy the timer

The KillTimer function destroys the specified timer. The first parameter is the

handle to the window that has attached the timer and the second parameter is

the timer identifier.

case WM_DESTROY:

 KillTimer(hWnd, TIMER_1);

 PostQuitMessage(0);

break;

2.6 Check if a point is inside a rectangular region
You can check if a point is inside a rectangular region in a very simple way. First,

you have to define a region (which can be rectangle, polygon, or ellipse). You

create a rectangular region using the CreateRectRgn function. The parameters for

this function are the coordinates (X and Y) of the upper-left corner and lower-right

corner. The PtInRegion function determines whether the specified point is inside

the specified region.

40

static HRGN imgRgn;

imgRgn = CreateRectRgn(0, 0, 512, 512);

PtInRegion(imgRgn, cursorPosX, cursorPosY);

3 Tutorial

3.1 Load a bitmap file
The loading of the bitmap file is done in this example in the WM_CREATE

message. In this way, you load the bitmap from the file only once, when the

window is initialized.

static HBITMAP hBitmap;

static BITMAP bm;

...

case WM_CREATE:

 hBitmap = (HBITMAP)LoadImage(0, TEXT("images/img.bmp"),

 IMAGE_BITMAP, 0, 0,

 LR_LOADFROMFILE);

 GetObject(hBitmap, sizeof(BITMAP), &bm);

break;

3.2 Destroy the bitmap object
In the WM_DESTROY message you should delete the bitmap object. Modify the

source in the following way:

case WM_DESTROY:

 DeleteObject(hBitmap);

 PostQuitMessage(0);

break;

3.3 Display the bitmap object
A bitmap object cannot be displayed directly onto the screen. We have to define a

new HDC and use it for Bitmap representation. From this HDC we will copy on the

screen the content of the Bitmap.

Modify the WM_PAINT message in the following way:

static RECT window;

HDC hdcDB;

...

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &window);

41

 hdcDB = CreateCompatibleDC(hdc);

 SelectObject(hdcDB, hBitmap);

 BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, hdcDB, 0, 0,

 SRCCOPY);

 DeleteDC(hdcDB);

 EndPaint(hWnd, &ps);

break;

3.4 Create a new mouse cursor
The cursors are added as resources. From the “Add Resource” dialog box choose

”cursor”.

Figure 4.1: Adding a new resource to the project

Figure 4.2: Select resource type to be added

42

You can draw the cursor using the tools that are available in the top part of the

screen.

Figure 4.3: Create custom cursor shapes

3.5 Define a rectangular region

static HRGN imgRgn;

static int cursorPosX, cursorPosY;

HCURSOR hCursor;

...

case WM_CREATE:

43

 hBitmap = (HBITMAP)LoadImage(0, TEXT("images/img.bmp"),

 IMAGE_BITMAP, 0, 0,

 LR_LOADFROMFILE);

 GetObject(hBitmap, sizeof(BITMAP), &bm);

 imgRgn = CreateRectRgn(0, 0, bm.bmWidth, bm.bmHeight);

break;

3.6 Create a timer and display the new mouse cursor when

the mouse is over the bitmap region

#define TIMER_1 1001

…

case WM_CREATE:

 hBitmap = (HBITMAP)LoadImage(0, TEXT("images/img.bmp"),

 IMAGE_BITMAP, 0, 0,

 LR_LOADFROMFILE);

 GetObject(hBitmap, sizeof(BITMAP), &bm);

 imgRgn = CreateRectRgn(0, 0, bm.bmWidth, bm.bmHeight);

 SetTimer(hWnd, TIMER_1, 30, NULL);

break;

case WM_MOUSEMOVE:

 cursorPosX = LOWORD(lParam);

 cursorPosY = HIWORD(lParam);

break;

case WM_SETCURSOR:

 hCursor = LoadCursor(hInst, MAKEINTRESOURCE(IDC_CURSOR1));

 if(PtInRegion(imgRgn, cursorPosX, cursorPosY))

 SetCursor(hCursor);

 else

 SetCursor(LoadCursor(NULL, IDC_ARROW));

break;

case WM_TIMER:

 switch(wParam)

 {

 case TIMER_1:

 if(bitmapStartX < window.right)

 bitmapStartX += 1;

 else

 bitmapStartX = 0;

 imgRgn = CreateRectRgn(bitmapStartX, 0,

 bitmapStartX + bm.bmWidth,

 bm.bmHeight);

 InvalidateRect(hWnd, NULL, FALSE);

 break;

 }

44

break;

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &window);

 hdcDB = CreateCompatibleDC(hdc);

 SelectObject(hdcDB, hBitmap);

 BitBlt(hdc, bitmapStartX, 0, bm.bmWidth, bm.bmHeight,

 hdcDB, 0, 0, SRCCOPY);

 DeleteDC(hdcDB);

 EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

 DeleteObject(hBitmap);

 KillTimer(hWnd, TIMER_1);

 PostQuitMessage(0);

break;

4 Assignment
 Display 3 different bitmaps on the screen at random positions. Define a

timer for each bitmap and after the timer attached to that bitmap expires

change the bitmap position (randomly).

 Create a game where the user must click on different bitmaps that are

changing regularly the position. Count and display the number of

successful hits.

45

Laboratory work 5: Keyboard
inputs

1 Objectives
This laboratory presents the methods required to work with keyboard in a Win32

application. You will learn how to detect usual and special characters and how to

apply different actions to each of them. There will be also presented different

ways of displaying text into a Win23 application, using different fonts, sizes and

colors.

2 Theoretical background
In Win32 applications, the keyboard events are handled as messages. The most

common message identifiers that can be used to catch keyboard related messages

are: WM_KEYUP, WM_SYSKEYUP, WM_KEYDOWN, WM_SYSKEYDOWN,

WM_CHAR. These are sent whenever a keyboard key is pressed or released. All

the information, about what key has been pressed and how, is contained in

wParam and lParam parameters of the WndProc function.

LRESULT CALLBACK WndProc(HWND hWnd, UINT message,

 WPARAM wParam, LPARAM lParam)

{

 int wmId, wmEvent;

 PAINTSTRUCT ps;

 HDC hdc;

 switch (message)

 {

 ...

 case WM_KEYDOWN:

 //when any key is pressed

 break;

 case WM_SYSKEYDOWN:

 //when a system key (F10, ALT) is pressed

 break;

 case WM_CHAR:

46

 //when a regular key is pressed, called after

 WM_KEYDOWN

 break;

 case WM_KEYUP:

 //when any key is released

 break;

 case WM_SYSKEYUP:

 //when a system key (F10, ALT) is released

 break;

 ...

 }

}

wParam contains the “virtual-key codes” of the pressed keyboard key. This is a

code halfway translated to ASCII that is sufficient for the keyboard control of

many applications. For example all the letter keys have a virtual-key code that is

just the ASCII code for the capital letters. Also, the number keys above the letters

have a virtual-key code that represents the ASCII codes for these digits. But the

numeric keypad numbers, for example, have different virtual-key codes (96-105)

to distinguish them from the other keys.

lParam contains supplemental information about the repeat count, scan code,

extended-key flag, context code, previous key-state flag, and transition-state flag.

All these pieces of information can be used to deal with keys pressed for a longer

period of time, with extended keyboards or specific OEM encodings of the

hardware.

2.1 Display text on the screen
As already mentioned in Laboratory 1, in order to display a text message you can

use the TextOut function:

BOOL TextOut(

 __in HDC hdc,

 __in int nXStart,

 __in int nYStart,

 __in LPCTSTR lpString,

 __in int cchString

);

An example of usage of the TextOut function:

LPCSTR text1 = "Display a sample message";

47

…

TextOut(hdc,100,200,TEXT("Text"),strlen("Text"));

//in order to display ANSI encoded chars, you can use:

TextOutA(hdc,100,300,(LPCSTR)(text1),strlen(text1));

 Through these functions, the text can be displayed with different font, size and

color settings.

2.2 Change font settings
In order to set the font settings for a specific text display action, you should use

the function CreateFont, which creates a logical font with the specified

characteristics.

HFONT CreateFont(

 __in int nHeight,

 __in int nWidth,

 __in int nEscapement,

 __in int nOrientation,

 __in int fnWeight,

 __in DWORD fdwItalic,

 __in DWORD fdwUnderline,

 __in DWORD fdwStrikeOut,

 __in DWORD fdwCharSet,

 __in DWORD fdwOutputPrecision,

 __in DWORD fdwClipPrecision,

 __in DWORD fdwQuality,

 __in DWORD fdwPitchAndFamily,

 __in LPCTSTR lpszFace

);

An example of usage of the CreateFont function:

HFONT hFont;

....

hFont = CreateFont(36, 20, 0, 0, FW_DONTCARE, FALSE, TRUE,

 FALSE, DEFAULT_CHARSET,

 OUT_OUTLINE_PRECIS, CLIP_DEFAULT_PRECIS,

 CLEARTYPE_QUALITY, VARIABLE_PITCH,

 TEXT("Times New Roman"))

Through the CreateFont function you can set most of the text display

characteristics: the height and width of the characters, font weight, font

decoration (italic, underlined, strikeout) etc.

48

2.3 Change text color
The color of the text cannot be changed through the CreateFont function, as it is

not a font attribute. In order to modify the color of the displayed text, you need to

use the SetTextColor function:

COLORREF SetTextColor(

 __in HDC hdc,

 __in COLORREF crColor

);

 If the function succeeds, the return value is a color reference for the previous text

color.

An example of usage of the SetTextColor function:

SetTextColor(hdc, textColor);

2.4 Window focus management messages
In order to be able to process the keyboard messages, your application needs to

have the focus (to be the one receiving the keyboard messages). You can check

the status of the focus through the WM_SETFOCUS and WM_KILLFOCUS

messages.

case WM_SETFOCUS:

 //do what is needed on focus gain (ex. show the carret)

break;

case WM_KILLFOCUS:

 //do what is needed on focus out (ex. hide the carret)

break;

3 Tutorial
Through this tutorial you will learn how to display characters on the screen using

different fonts, colors, sizes and text-decoration settings. As some of the

characters are “invisible” we will display for them a specific text message at each

key press.

3.1 Catch the keyboard related messages
We will use WM_CHAR message to catch regular key presses and WM_KEYDOWN

to catch keys like left-arrow, right-arrow, etc.

49

LRESULT CALLBACK WndProc(HWND hWnd, UINT message,

 WPARAM wParam, LPARAM lParam)

{

 int wmId, wmEvent;

 HDC hdc;

 switch (message)

 {

 ...

 case WM_KEYDOWN:

 //when any key is pressed

 break;

 case WM_CHAR:

 //when a regular key is pressed, called after

 WM_KEYDOWN

 break;

 ...

 }

}

3.2 Display messages for left and right arrows press
We will display messages corresponding to left and right arrows key presses, at

random positions.

static LPCSTR specialBuffer[100];

static int specialNr = 0;

int i, posX, posY;

...

case WM_KEYDOWN:

 switch (wParam)

 {

 case VK_LEFT:

 specialBuffer[specialNr] = "left arrow";

 specialNr++;

 break;

 case VK_RIGHT:

 specialBuffer[specialNr] = "right arrow";

 specialNr++;

 break;

 }

 InvalidateRect(hWnd, NULL, TRUE);

break;

50

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 for(i = 0; i < specialNr; i++)

 {

 posX = rand() % 500 + 20;

 posY = rand() % 300 + 20;

 TextOutA(hdc, posX, posY, (LPCSTR)(specialBuffer[i]),

 strlen(specialBuffer[i]));

 }

 EndPaint(hWnd, &ps);

break;

3.3 Display regular characters pressed

static TCHAR charsBuffer[100];

static int charsNr = 0;

...

case WM_CHAR:

 charsBuffer[charsNr] = wParam;

 charsNr++;

 InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 for(i = 0; i < specialNr; i++)

 {

 posX = rand() % 500 + 20;

 posY = rand() % 300 + 20;

 TextOutA(hdc, posX, posY, (LPCSTR)(specialBuffer[i]),

 strlen(specialBuffer[i]));

 }

 for(i = 0; i < charsNr; i++)

 {

 posX = rand() % 500 + 20;

 posY = rand() % 300 + 20;

 TextOutA(hdc, posX, posY,

 (LPCSTR)(&charsBuffer[i]), 1);

 }

 EndPaint(hWnd, &ps);

break;

51

3.4 Display messages for SPACE, ENTER, TAB key presses

case WM_CHAR:

 switch(wParam)

 {

 case 0x09:

 specialBuffer[specialNr] = "tab";

 specialNr++;

 break;

 case 0x0D:

 specialBuffer[specialNr] = "enter";

 specialNr++;

 break;

 case 0x20:

 specialBuffer[specialNr] = "space";

 specialNr++;

 break;

 default:

 charsBuffer[charsNr] = wParam;

 charsNr++;

 break;

 }

 InvalidateRect(hWnd, NULL, TRUE);

break;

3.5 Create multiple fonts to display the text

static HFONT hFont[2];

static HFONT defaultFont;

...

case WM_CREATE:

 hFont[0] = CreateFont(36, 20, 0, 0, FW_DONTCARE, FALSE,

 TRUE, FALSE, DEFAULT_CHARSET,

 OUT_OUTLINE_PRECIS,

 CLIP_DEFAULT_PRECIS,

 CLEARTYPE_QUALITY, VARIABLE_PITCH,

 TEXT("Times New Roman"));

 hFont[1] = CreateFont(36, 10, 0, 0, FW_DONTCARE, FALSE,

 FALSE, TRUE, DEFAULT_CHARSET,

 OUT_OUTLINE_PRECIS,

 CLIP_DEFAULT_PRECIS,

 CLEARTYPE_QUALITY, VARIABLE_PITCH,

 TEXT("Arial"));

52

 defaultFont = CreateFont(12, 12, 0, 0, FW_DONTCARE, FALSE,

 FALSE, FALSE, DEFAULT_CHARSET,

 OUT_OUTLINE_PRECIS,

 CLIP_DEFAULT_PRECIS,

 CLEARTYPE_QUALITY,

 VARIABLE_PITCH, TEXT("Arial"));

break;

case WM_DESTROY:

 DeleteObject(hFont[0]);

 DeleteObject(hFont[1]);

 DeleteObject(defaultFont);

 PostQuitMessage(0);

break;

3.6 Display text with random fonts and colors

COLORREF textColor;

...

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 for(i = 0; i < specialNr; i++)

 {

 posX = rand() % 500 + 20;

 posY = rand() % 300 + 20;

 textColor = RGB(rand() % 255, rand() % 255,

 rand() % 255);

 SetTextColor(hdc, textColor);

 fontIndex = rand() % 2;

 SelectObject(hdc,hFont[fontIndex]);

 TextOutA(hdc, posX, posY, (LPCSTR)(specialBuffer[i]),

 strlen(specialBuffer[i]));

 }

 for(i=0; i<charsNr; i++)

 {

 posX = rand() % 500 + 20;

 posY = rand() % 300 + 20;

 textColor = RGB(rand() % 255, rand() % 255,

 rand() % 255);

 SetTextColor(hdc, textColor);

 fontIndex = rand() % 2;

 SelectObject(hdc,hFont[fontIndex]);

53

 TextOutA(hdc,posX,posY,(LPCSTR)(&charsBuffer[i]),1);

 }

 EndPaint(hWnd, &ps);

break;

3.7 Detect and display information about Window focus

static bool hasFocus = false;

...

case WM_SETFOCUS:

 hasFocus = true;

 InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_KILLFOCUS:

 hasFocus = false;

 InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 for(i = 0; i < specialNr; i++)

 {

 posX = rand() % 500 + 20;

 posY = rand() % 300 + 20;

 textColor = RGB(rand() % 255, rand() % 255,

 rand() % 255);

 SetTextColor(hdc, textColor);

 fontIndex = rand() % 2;

 SelectObject(hdc,hFont[fontIndex]);

 TextOutA(hdc, posX, posY, (LPCSTR)(specialBuffer[i]),

 strlen(specialBuffer[i]));

 }

 for(i=0; i<charsNr; i++)

 {

 posX = rand() % 500 + 20;

 posY = rand() % 300 + 20;

 textColor = RGB(rand() % 255, rand() % 255,

 rand() % 255);

 SetTextColor(hdc, textColor);

 fontIndex = rand() % 2;

54

 SelectObject(hdc,hFont[fontIndex]);

 TextOutA(hdc,posX,posY,(LPCSTR)(&charsBuffer[i]),1);

 }

 textColor = RGB(0, 0, 0);

 SetTextColor(hdc, textColor);

 SelectObject(hdc, defaultFont);

 if(hasFocus)

 {

 TextOutA(hdc, 0, 0, (LPCSTR)("Window has focus"),

 strlen("Window has focus"));

 }

 else

 {

 TextOutA(hdc, 0, 0,

 (LPCSTR)("Window doesn't have focus"),

 strlen("Window doesn't have focus"));

 }

 EndPaint(hWnd, &ps);

break;

4 Assignment
 On lose focus, delete the information displayed on the window and leave

the window blank. Only the focus status message remains visible. On gain

focus, display again all the information.

 When backspace is pressed, delete the information corresponding to the

last key press stored into the buffers. This behavior should apply to both

regular and special characters buffer.

55

Laboratory work 6: Bresenham
algorithm

1 Objectives
This laboratory highlights the Bresenham algorithm usage when rendering some

of the graphical primitives on the computer display. It begins by presenting some

generic information about the algorithm and then exemplifies them for the line

and circle raterization.

2 Theoretical background
The Bresenham algorithm for drawing lines onto a bi-dimensional space (like a

computer display) is the fundamental method used in computer graphics

discipline. The algorithm efficiency makes it one of the most required methods for

drawing continuous lines, circles or other graphical primitives. This process is

called rasterization.

Each line, circle or other graphical primitives could be plotted pixel by pixel. Each

pixel is described by a fixed position in the bi-dimensional XOY space. The

algorithm approximates the real value of a line by computing each line’s pixel

positions. Since the pixels are the smallest addressable screen elements in a

display device, the algorithm approximation is good enough to "trick" the human

eyes and to get the illusion of a real line. Figure 6.1 shows the real line and the

approximated line drawn over the pixel grid.

Figure 6.1: Exemplification of line representation in a pixel grid

56

Before moving on, it is worth to mention that both the line (1) and circle (2) could

be mathematically described using the following equations:

 cxmy  (1)

12

12

xx

yy
m






 222)()(Rbyax  (2)

where:

- m is the line slope;

-),(),,(2121 yyxx are the two endpoints of the line segment;

-),(ba represents the center coordinates of the circle;

2.1 Bresenham’s algorithm for line
For simplicity, we will take into account a line segment with the slope from 0 to 1.

Let set the two endpoints of the line to be),(11 yxA and),(22 yxB . At this point

we have to choose an initial point to start the algorithm. We can choose this point

(),(ii yxP) to be either A or B. Based on the starting position, we have eight

possible choices to draw the next pixel of the line. This is due to the fact that each

pixel is surrounded by 8 adjacent pixels.

Our example will consider only the case where we have two choice alternatives

for the next pixel position (in other words this example will work only for the first

half of the clockwise circle). For example, for the current point P we have the

following drawing possibilities:),(1 ii yxT 
or),(11  ii yxS .

The decision criterion (Figure 6.2) for the Bresenham algorithm is based on the

distance between the current point, P, and the real line segment. So the closest

point (T or S) to the line segment will be chosen.

57

Figure 6.2: Illustration on the decision making in Bresenham algorithm

 The following paragraphs will describe the general steps of the Bresenham’s

algorithm in natural language rather than a programmatically one, because it is

easier to understand.

a. Let us assume that we have to draw a line segment with the endpoints

represented by),(11 yxA and),(22 yxB . We translate the line segment with

),(11 yx  to place it on the XOY system origin.

b. Let 12 xxdx  , 12 yydy  . The line that needs to be drawn could be

described as x
dy

dx
y  .

c. In this step we intend to compute the next line pixel, using the criterion

mentioned above. From Figure 6.2, we can deduce that the closest point to the

real line value is),(1 ii yxT 
. Based on this observation we could say that

),(11
dx

dy
xxM ii  (3).

58

In other words








 mi

im

yys

yyt

1

 122  im yyst (4).

Taking into account (3) and (4) we obtain dxydxxdystdx ii   22)(1
.

If the x coordinates of the line segment endpoints are in 21 xx  relationship,

then the st sign will coincide with the sign of the)(stdx  .

d. We could obtain the following recurrence relationship:

)(22 11   iiii yydxdydd if we consider that
1)( idstdx .

The initial value of dxdydi 2 is obtained for the 00 x and 00 y . We

can conclude that:

- if 0id 0)( st and the closest point to the real line segment is

),(11  ii yxS . Based on this observations we find that
id value could be

computed as)(21 dxdydd ii 
 .

- if 0id 0)( st and the closest point to the real line segment is

),(1 ii yxT 
 . Then the recurrence formula to compute

id is dydd ii 21 
 .

The pseudo code for the Bresenham algorithm is described in the following

paragraph, and it is based on the mathematical observations mentioned above.

Algorithm draw_line ()

{

 //Initialize the variables

 dx = abs(x2-x1);

 dy = abs(y2-y1);

 d = 2*dy-dx;

 inc1 = 2*dy;

 inc2 = 2*(dy-dx);

 //Set the starting point

 if (x1 > x2) then

 {

 x = x2;

 y = y2;

 xc = x1;

 }

 else{

59

 x = x1;

 y = y1;

 xc = x2;

 }

 //Draw each pixel of the line

 while (x < xc) {

 //Draw the current pixel of the line

 DrawPixel(x, y);

 x = x+1;

 if (d < 0) then {

 d = d+inc1;

 }

 else {

 y = y+1;

 d = d+inc2;

 }

 }

}

2.2 Bresenham’s algorithm for circle

Let us say we want to scan-convert a circle centered at)0,0(with an integer

radius R (Figure 6.3). We'll see that the ideas we previously used for line scan-

conversion can also be used for this task. First of all, notice that the interior of the

circle is characterized by the inequality 0:),(222  RyxyxD . We'll use

),(yxD to derive our decision variable.

Figure 6.3: Scan conversion of a circle with integer radius R

60

Following the same approach as for the line segment representation, we’ll first

present the Bresenham’s algorithm for the circle in natural language, describing

for each step the general ideas behind it.

a. First, let's think how to plot pixels close to the 1/8 of the circle marked red

in Figure 6.3. The range of the coordinate for such pixels is from 0 to

2R . We'll go over vertical scanlines through the centers of the pixels

and, for each such scanline, compute the pixel on that line which is the

closest to the scanline-circle intersection point (black dots in Figure 6.4).

All such pixels will be plotted by our procedure.

Figure 6.4: Circle representation on a pixel grid

b. Notice that each time we move to the next scanline, the y-coordinate of

the plotted point either stays the same or decreases by 1 (the slope of the

circle is between -1 and 0). To decide what needs to be done, we'll use

the decision variable, which will be the value of),(yxD evaluated at the

blue square (e.g. the midpoint between the plotted pixel and the pixel

immediately below).

c. The first pixel plotted is),0(R and therefore the initial value of the

decision variable should be

RRRRD  25.0)5.0()5.0,0(22

The y variable, holding the second coordinates of the plotted pixels, will

be initialized to R. Let's now think what happens after a point),(yx is

61

plotted. First, we'll pretend that we need to move the plotted point to the

right (no change in y) and check if this keeps the decision variable

negative (we don't want any blue squares outside the circle). If),(yx

is

the last plotted point, the decision variable is)5.0,(yxD . After we

move to the right, it becomes)5.0,1( yxD . Simple arithmetic shows

that it increases by)5.0,1( yxD -)5.0,(yxD = 12 x . If this

increase makes it positive, we'd better move down by 1 pixel. This puts

the blue square at)5.1,1( yx and means that we need to increase the

decision value by the previous 12 x plus

yyxDyxD 22)5.0,1()5.1,1( .

d. Clearly, to make the decision variable integer, we need to scale it by a

factor of 4. Eight-way symmetry is used to go from 1/8-the of the circle to

the full circle.

The pseudo code for the Bresenham’s algoritm for circle is described below, based

on the earlier made observations.

Algorithm draw_circle ()

{

 y = R;

 d = 1/4 − R;

 for x=0 to ceil(R/sqrt(2)) do {

 plot_points(x,y);

 d = d + 2x + 1;

 if (d>0) then

 {

 d = d + 2 − 2y;

 y = y - 1;

 }

 }

}

You can find the plot_points function definition below:

Function plot_points (x, y)

{

DrawPixel(x,y);

DrawPixel (x,−y);

DrawPixel (−x,y);

DrawPixel (−x,−y);

62

DrawPixel (y,x);

DrawPixel (−y,x);

DrawPixel (y,−x);

DrawPixel (−y,−x);

}

3 Assignment
 Modify the Bresenham’s algorithm for line to work on all quadrants of the

clockwise circle. This document describes only the first half of the first

quadrant.

 Draw a line made rectangle using the Bresenham’s algorithm. Set a

random color to each pixel before drawing it on the computer display.

63

Laboratory work 7: 2D
transformations

1 Objectives
This laboratory presents the key notions on 2D transformations (translation, scale,

rotation). These transformations can be used to modify the parameters of 2D

objects.

2 Theoretical background

2.1 Defining 2D points

A 2D point is defined in a homogenous coordinate system by (x*w, y*w, w). For
simplicity in bi-dimensional systems the w parameter is set to 1. Therefore, the
point definition is (x, y, 1). Another representation for the point is the following:

𝑃 = [𝑥 𝑦 1]

2.2 Translation

The translation transformation is used to move an object (point) by a given
amount.

Figure 7.1: Illustration of translation transformation

Ty

Tx

y

x

64

The matrix for the translation operation is the following:

𝑇 = [
1 0 0
0 1 0

𝑇𝑥 𝑇𝑦 1
]

where Tx and Ty represent the translation factors on x and y axes. If we apply the
transformation to the 2D point, 𝑃′ = 𝑃 ∗ 𝑇, we obtain the new coordinates for
that point:

𝑥′ = 𝑥 + 𝑇𝑥

𝑦′ = 𝑦 + 𝑇𝑦
The matrix for the inverse transformation is the following:

𝑇 = [
1 0 0
0 1 0

−𝑇𝑥 −𝑇𝑦 1
]

2.3 Scale

The scale transformation enlarges or reduces an object. The transformation is
relative to the origin.

Figure 7.2: Illustration of scale transformation

y

x

65

The matrix for the scale operation is the following:

𝑆 = [
𝑆𝑥 0 0
0 𝑆𝑦 0
0 0 1

]

where Sx and Sy represent the scale factors on x and y axes. If the Sx and Sy
factors are equals then the scaling transformation is uniform. If the Sx and Sy
factors are not equals then the scaling transformation is non-uniform. If we apply
the transformation to the 2D point, P′ = P ∗ S, we obtain the new coordinates for
that point:

𝑥′ = 𝑥 ∗ 𝑆𝑥, 𝑦′ = 𝑦 ∗ 𝑆𝑦

If you set the scaling factors to +/- 1 then you can reflect the original shape.

The matrix for the inverse transformation is the following:

𝑆 = [
1/𝑆𝑥 0 0

0 1/𝑆𝑦 0
0 0 1

]

2.4 Rotation

This transformation rotates an object with a given angle. This transformation is
also relative to the origin.

Figure 7.3: Illustration of rotation transformation

angle

y

x

66

The matrix for the rotation operation is the following:

𝑅 = [
cos ∝ sin ∝ 0

− sin ∝ cos ∝ 0
0 0 1

]

where ∝ represent the rotation angle. If we apply the transformation to the 2D
point, P′ = P ∗ R, we obtain the new coordinates for that point:

𝑥′ = 𝑥 ∗ cos ∝ − 𝑦 ∗ sin ∝

𝑦′ = 𝑥 ∗ sin ∝ + 𝑦 ∗ cos ∝

The matrix for the inverse transformation is the following:

𝑅 = [
cos ∝ −sin ∝ 0
sin ∝ cos ∝ 0

0 0 1
]

2.5 Rotation around an arbitrary point

To rotate a point around an arbitrary point (xc, yc) with an angle ∝ we perform the
following steps:

1. Change the origin of the coordinates system so that the point (xc, yc) is the

new origin

2. Rotate the point with ∝ angle

3. Change back the origin of the coordinates system.

2.6 Shear

The shear transformation distorts the shape of an object.

Figure 7.4: Illustration of shear transformation

y

x

67

The matrix for the shear operation is the following:

𝑆ℎ = [
1 ℎ 0
𝑔 1 0
0 0 1

]

where Tx and Ty represent the translation factors on x and y axes. If we apply the
transformation to the 2D point, P′ = P ∗ Sh, we obtain the new coordinates for
that point:

𝑥′ = 𝑥 + 𝑔 ∗ 𝑦

𝑦′ = 𝑦 + ℎ ∗ 𝑥

2.7 Reflections

Another transformation that can be applied to object is the reflection
transformation.

The matrix for the transformation around the x axis is the following:

𝑅𝑦 = [
1 0 0
0 −1 0
0 0 1

]

Figure 7.5: Illustration of reflection transformation over X axes

The matrix for the transformation around y axis is the following:

y

x

68

𝑅𝑦 = [
−1 0 0
0 1 0
0 0 1

]

Figure 7.6: Illustration of reflection transformation over Y axes

3 Assignment
 Create an application to exemplify the 2D transformations. Define the

parameters for each transformation using keyboard inputs.

y

x

69

Laboratory work 8: 3D
transformations

1 Objectives
This laboratory presents the key notions on 3D transformations (translation, scale,

rotation) using homogenous coordinates. Another topic is related to the

projection transformation.

2 Theoretical background

2.1 Translate, scale and rotate 3D geometrical figures
The following mathematical methods could be used to describe 3D objects and

display them onto bi dimensional surfaces (computer monitor). This action

requires some visualization transformations, called projections.

First we will extend the 2D translation, scaling and rotation formulas to fit the

corresponding 3D transformations. Using homogenous coordinates we obtain the

following translation matrix for a 3D point.























1

0100

0010

0001

zyx TTT

T

For scaling a 3D point we could use:























0000

000

000

000

z

y

x

S

S

S

S

If we choose to make a rotation of a 3D point),,(zyxP around X, Y and Z axis the

following formulas should be used:

70






















1000

0)cos()sin(0

0)sin()cos(0

0001

aa

aa
Rx

















 



1000

0)cos()sin(

0010

0)sin(0)cos(

aa

aa

Ry






















1000

0100

00)cos()sin(

00)sin()cos(

aa

aa

Rz

where a is the rotation angle.

2.2 3D rotation around an arbitrary line
In order to make such a rotation three steps must be taken into account:

a. Translate the system origin to a point from the rotation line;

b. Rotate the object around X, Y and Z axes;

c. Change the system origin to its initial position.

This operation could also be described using arithmetical methods. First of all let

us denote the segment line this way:















1

1

1

zCuz

yBuy

xAux

where u is a real parameter.

Using this notation we could specify a segment point),,(111 zyx , and the

segment line direction as),,(CBA .

71

To change the system origin to an),,(111 zyx point we must first translate all the

system points by),,(111 zyx  :























1

0100

0010

0001

111 zyx

T

The second step in rotating a 3D geometrical figure around an arbitrary line is the

rotation transformation itself. Let us exemplify this procedure by describing the

mathematical model used for rotating the object around the X axis. It is important

to maintain the rotation process until the segment line is entirely inside XOZ

plane. To determine the rotation angle for this operation, we will place the

direction vector in the new established system origin and we’ll consider its

projection in the YOZ plane. The projection length could be computed as

22 CBV  .

Because
V

B
I )sin(and

V

C
I )cos(, the object rotation around the X axis could

be modeled as:





























1000

00

00

0001

V

C

V

B

V

B

V

C

Rx ,





























1000

00

00

0001

1

V

C

V

B

V

B

V

C

Rx .

We can consider that the rotation axis is in XOZ plane. The segment length is

unmodified by the rotation transformation 222 CBAL  . The z coordinate

has 2222 CBALV  . The following step will rotate the object around

the Y axis in order to overlap the Z axis over the initial rotation axis. Because

L

A
J )sin(and

L

V
J )cos(the rotation matrix could be defined as:

72





























1000

00

0010

00

L

V

L

A

L

A

L

V

R y
,




























1000

00

0010

00

1

L

V

L

A

L

A

L

V

R y

When a 3D points rotates around the Z axis the following transformation matrix

should be used:






















1000

0100

00)cos()sin(

00)sin()cos(

aa

aa

Rz

The rotation matrix around an arbitrary axis is computed using the following

formula:

111   TRRRRRTR xyzyxo

2.3 Geometrical projections
The following sections of this laboratory detail the most used projections types

used in computer graphics. Using different projections techniques an N-

dimensional points array is transformed into an M-dimensional one, where M < N.

In this case N = 3 (3D points array) and M = 2 (2D points array). Because the

computer monitor doesn’t support 3D representations the parallel and

perspective projections should be used.

2.3.1 Parallel projection

Based on the projection direction onto the projection plane there are two parallel

projection types, orthogonal parallel projection and oblique parallel projection.

73

1. Orthogonal parallel projection:

Are very common in the technical design, where the projection plane is

perpendicular to one of the reference system axes that contain the object. This

type of projection keeps the object shapes, dimensions and angles undistorted.

Figure 8.1: Projection plane is parallel with the OZ axis

When the projection plane is parallel with the OZ axis (Figure 8.1) the),(' wqM

point is computed based on the),,(zyxM , using the following coordinates

relationship:















*zz

yw

xq

where *z is the projection plane height.

74

The same relationship could be translated into homogenous coordinates:































































11000

000

0010

0001

1

*' z

y

x

zz

w

q

2. Oblique parallel projection

Figure 8.2 defines an oblique projection through the point 'M , obtained by

)1,0,0(M point projection.

Figure 8.2: Oblique projection through the point M’

The mathematical relationship between M and 'M points coordinates could be

described as:

75















0

)sin(

)cos(

z

ary

arx

Giving the point),,(zyxP its projection is the),,('''' zyxP point:

































































11000

000

0)sin(10

0)cos(01

1

*'

'

'

z

y

x

z

ar

ar

z

y

x

Three cases can be distinguished based on the r value:

a. 0r : orthogonal projection;

b. 5.0r : cabinet projection. Offers the most photorealistic images from

all of the three cases;

c. 1r : cavalier projection.

2.3.2 Perspective projection

This type of projection creates images similar to the ones obtained when using

the photographic technique (Figure 8.3). Perspective projection gives a more

realistic image representation than the ones obtained through the parallel

projection. The main disadvantage is that it deforms the objects by distorting their

angles and dimensions.

76

Figure 8.3: Perspective projection

Perspective projection accumulates the parallel and unparallel into a “vanishing

point”. If the visual receptor is fixed than it can see all the objects inside the

“frustum”. In the graphics applications the frustum is replaced by a “pyramid of

view”. We can imagine that the observer looks to the world through a rectangular

window from an opaque plan located at a distance d from the observer.

Let the point),,(zyxM be in the landmark observation. The projection’s

coordinates),,('' zwqM from the projection plan will be:

x
z

d
q 




0z

y
z

d
w 




0z

 z’ = z0 – d

For reducing the parameters number taken into account, usually d=z0, the

transformation written in homogenous coordinate becomes:

77



















































1000

000

00

000

1

'
*

0

0

0

0

z

zz

z
w

zz

z

z

w

q

If we consider the fraction
z0

0

z

z

 where we add and subtract z to the counter,

we will obtain:















z

z
txq

0z
1'















z

z
tyw

0z
1'

where z0

0

z

z

 it’s called elongation factor with distance and t will be optical

deflection factor (or correction).

There will be the next cases:

a. 0t : orthogonal parallel projection;

b. 1r : perspective projection;

c. 1t : the perspective effect is exaggerated, obtaining distortion and

deformations of the image like the “fish-eye” large angular aperture

objectives.

78

3 Tutorial

3.1 Matrix multiplication function
The following pseudo code implements the matrix multiplication function. The

function takes three parameters that represent the two multiplicative matrixes

and the result. The following example handles only square matrixes with four lines

and four columns.

double matrix[4][4];

Algorithm matrix_mltiplication (matrix m1, matrix m2, matrix

res)

{

 int i, j, k;

 matrix restmp;

 //Initialize the result matrix

 for(i = 0; i < 4; i++)

 for(j = 0; j < 4; j++)

 restmp[i][j] = 0;

 for(i = 0; i < 4; i++)

 for(j = 0; j < 4; j++)

 for(k = 0; k < 4; k++)

 restmp[i][j] += m1[i][k]*m2[k][j];

 for(i = 0; i < 4; i++)

 for(j = 0; j < 4; j++)

 res[i][j] = restmp[i][j];

}

3.2 Perspective and oblique projection implementation

function
The following two functions could be used to implement the perspective or

oblique projection when applying a 3D transformation for a geometrical figure.

typedef struct pct{

 int x,y,z;

} Pct;

Algoritm pr_oblica(Pct* p, int r, int a)

// a must be defined in degrees

{

 float u;

 u=(3.141592*a)/180; //transform a angle in radians

79

 p->x = p->x + p->z * r * cos(u);

 p->y = p->y + p->z * r * sin(u);

 p->z = 0;

}

typedef struct pct{

 int x,y,z;

} Pct;

Algoritm pr_persp(Pct* p, int zo)

{

 float zz;

 zz = (float)zo / (float)(zo - p->z);

 p->x = p->x * zz ;

 p->y = p->y * zz ;

 p->z = 0 ;

}

4 Assignment
 Using the formulas contained in this laboratory translate, scale and rotate

a cube. Rotate the cube around X, Y, Z and arbitrary axes. The perspective

projection should be used.

 Highlight different projections features using the two pseudo code

algorithms for the perspective and oblique projection.

80

81

Laboratory work 9: Line clipping
algorithm

1 Objectives
The study and implementation of clipping algorithms for graphical primitives: line

and point. This paper presents the Cohen-Sutherland and Bisection Method

algorithms.

2 Theoretical background
When computing for display a large image that exceeds the boundaries of the

display area, some parts of it will be invisible for the user. In order to speed up the

displaying process these parts have to be removed from the computation using

2D-clipping algorithms.

2.1 Determine if a point P(x,y) is visible
Considering P1(xmin, ymin), and P2(xmax, Ymax) the defining points of the visible area

rectangle, the point P(x,y) is visible only if the following conditions are met:

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

2.2 Determine if a segment is visible
In order to determine if a line segment is visible, we need slightly more complex

algorithms. One idea would be to test the visibility of each point of the segment,

before displaying it on the screen. But this method will require a lot of time and

very many computations. The method can be easily improved by testing first the

heads of the segment. If both these points are in the visible area, the entire

segment will be visible. This case is called “simple acceptance”. On the same logic,

if both points are outside and on the same side of the visible area, no part of the

segment will be visible. This case is called “simple rejection”. In all the other cases

we must use other algorithms to establish which part of the segment (if any) is

visible.

82

2.3 Cohen-Sutherland clipping algorithm
One of the most efficient algorithms that can be used in these cases is Cohen-

Sutherland (CS clipping). If a line segment cannot be included either in “simple

acceptance” or “simple rejection” cases, then we have to compute its intersection

points with the following lines:

y = ymax, x = xmax, y = ymin, x = xmin

and to eliminate the segments that are placed outside the visible area. As a result,

we will obtain a new line segment. The algorithm is repeated until the resulted

segment can be included in one of the “simple acceptance” or “simple rejection”

cases.

The Cohen-Sutherland algorithm uses a four digits code to describe each head of

the segment. The code has the following structure:

 the first digit is 1 if the point is above the visible area; otherwise is 0

 second digit is 1 if the point is under the visible area; otherwise is 0

 third digit is 1 if the point is on the right of the visible area; otherwise is 0

 fourth digit is 1 if the point is on the left side of the visible area; otherwise

is 0

Figure 9.1: Illustration of Cohen-Sutherland algorithm code

83

3 Cohen-Sutherland algorithm implementation

read x1, y1, x2, y2, xmin, ymin, xmax, ymax

define the Boolean variables: REJECTED, DISPLAY, FINISHED and

make them all FALSE

repeat until FINISHED = TRUE

{

 //compute the 4 digits code for P(x1, y1)

 COD1 = computeCScode(x1, y1)

 // compute the 4 digits code for P(x2, y2)

 COD2 = computeCScode(x2, y2)

 //test for simple rejection case

 RESPINS = SimpleRejection(COD1, COD2)

 if RESPINS = TRUE

 FINISHED = TRUE

 else

 {

 //test for simple acceptance case

 DISPLAY = SimpleAcceptance(COD1, COD2)

 if DISPLAY = TRUE

 FINISHED = true

 else

 {

 //if P(x1, y1) is inside the display area,

 //invert P(x1, y1) and P(x2, y2) together with

 //their 4 digits CS codes

 invert(x1,y1,x2,y2,COD1,COD2)

 //eliminate the segment above the display area

 if(COD1[1] = 1) and (y2 <> y1)

 {

 x1 = x1+(x2-x1)*(Ymax-y1)/(y2-y1)

 y1 = Ymax

 }

 //eliminate the segment under the display area

 elseif(COD1[2] = 1) and (y2 <> y1)

 {

 x1 = x1+(x2-x1)*(Ymin-y1)/(y2-y1)

 y1 = Ymin

 }

 //eliminate the segment on the right

 //of the display area

 elseif(COD1[3] = 1) and (x2 <> x1)

 {

 y1 = y1+(y2-y1)*(Xmax-x1)/(x2-x1)

 x1 = Xmax

 }

 //eliminate the segment on the left

 //of the display area

84

 elseif(COD1[4] = 1) and (x2 <> x1)

 {

 y1 = y1+(y2-y1)*(Xmin-x1)/(x2-x1)

 x1 = Xmin

 }

 }

 }

}

if DISPLAY = TRUE

{

 round(x1)

 round(x2)

 round(y1)

 round(y2)

 DrawLine(x1, y1, x2, y2)

}

4 Assignment
 Define a display area and mark it with a rectangle. Display a segment that

can be included in “simple acceptance” case, one for “simple rejection”

case and other 5 segments for more complex cases. Display with thicker

line the removed parts as a result of Cohen-Sutherland algorithm.

 Extend the above request by allowing the user to define the display area

using the mouse.

85

Laboratory work 10: Polygon
clipping algorithms

1 Objectives
Study, implement and evaluate the Sutherland-Hodgman and Weiler-Atherton

clipping algorithms for polygons, in 2D object coordinate system.

2 Theoretical background
There are two main types of clipping algorithms against the margins of a display

window, according to the coordinate space where we compute the operations:

a. Raster algorithms, which operate in video memory. With these algorithms

the clipping is computed for each pixel. Even if the algorithms themselves

are pretty simple their implementation requires a large number of

accesses to the video memory.

b. Vectorial algorithms, which operate with the nodes describing the

polygon. These clipping algorithms work directly with the data structure

describing the polygons and will result in one or more new polygons

described through a list of nodes.

The second types of algorithms involve more complex computations which are

executed in the main system memory but their results is compatible with any

graphical system as is described generally through a list of points. Two of the

vectorial algorithms are very often used: Sutherland-Hodgman and Weiler-

Atherton.

3 Sutherland-Hodgman clipping algorithm
Sutherland-Hodgman algorithm considers that the initial polygon is defined

through a list of nodes inv[] = {v1, v2, …, vn}. A conventional direction of nodes

inspection is determined, for example: v1v2, v2v3, …, vnv1. The clipping of the

polygon is finalized in four steps. At each step, all the edges of the polygon are

clipped against one side of the working area. In the end, we will obtain a list of

points outv[]={v1’, v2’ ,…, vp’} that describe the clipped polygon.

86

Figure 10.1: Relationships between the margins of the display area and any edge
of a polygon

We can identify four different relationships between the margins of the display

area and any edge of a polygon (see Figure 10.1). We will consider s to be the

initial node and p the final node of the edge. The four cases are:

a. Both nodes s and p are inside the display area. Node p will be added to

the list of clipped nodes: outv[] <- p.

b. Node s is inside the display area while p is outside. We have to compute

the intersection point i between the margin of the display area and the

edge described by s and p. Node i will be added to the list of clipped

nodes: outv[] <- i.

c. Both nodes s and p are outside the display area. Nothing will be added to

the list of clipped nodes.

d. Node s is outside the display area while p is inside. We have to compute

the intersection point between the margin of the display area and the

edge described by s and p. We will add both p and i to the list of clipped

nodes: outv[] <- p, outv[] <- i.

3.1 Sutherland-Hodgman algorithm pseudo-code

description

Clipping SH(nodesList: inv, outv;

 displayAreaMargins: margine_dec[4])

{

 for j=0,4

 {

 ClipMarginSH(inv, outv, margine_dec[j]);

 //update the current nodes list

87

 inv = outv;

 }

}

ClipMarginSH(nodesList: inv, outv;

 displayAreaMargin: margine_dec)

{

 node i, p, s;

 s = last node from inv;

 for p=each node in inv

 {

 //cases A and D

 if(InDisplayArea(p, margine_dec))

 {

 //case A

 if(InDisplayArea(s, margine_dec))

 {

 add p to outv

 }

 //case D

 else

 {

 i = IntersectionPoint(s, p, margine_dec);

 add i to outv

 add p to outv

 }

 }

 //case B

 else if(InDisplayArea(s, margine_dec))

 {

 i = IntersectionPoint(s, p, margine_dec);

 add i to outv

 }

 //we do nothing for case C

 //update the starting point

 s = p;

 }

}

As you can see, the algorithm eliminates from the display list the parts of the

polygons that are placed into the exterior half-plane determined by the display

area margin.

88

Figure 10.2: Representation of the display area and coordinates of the half
planes

The function InDisplayArea(node: p; displayAreaMargin: margine_dec) returns

true if point p is in the same half-plane with the display area related to the line

described by margine_dec. For simplicity we will consider a conventional direction

for testing margins of the display area. Let this be the trigonometric direction.

While we keep the same order into the display area margins list we can check the

position of p according to Figure 10.2. This way, the function can be described:

InDisplayArea(node: p; displayAreaMargin: margine_dec)

{

 switch(margine_dec)

 {

 case right_margin:

 if(xp < xmargine_dec) return true; break;

 case top_margin:

 if(yp < ymargine_dec) return true; break;

 case left_margin:

 if(xp > xmargine_dec) return true; break;

 case bottom_margin:

 if(yp > ymargine_dec) return true; break;

 }

}

4 Weiler-Atherton clipping algorithm
Weiler-Atherton algorithm considers that the initial polygon is defined through a

list of nodes inv[] = {v1, v2, …, vn}. After the clipping algorithm is applied we will

89

obtain zero, one or more polygons, each defined through a list of nodes outvk[] =

{vk1’, vk2’, …, vkp’}.

If the initial polygon intersects the margins of the display area, the result polygon

will contain at least a portion of an edge of the initial polygon and portions from

the display area margins. If the polygon is entirely outside of the display area, the

result will be empty.

4.1 General description of the algorithm
The algorithm starts from one node of the polygon. Let us consider the polygon

from Figure 10.3 and v1 as the starting node. We will use i to count the resulting

polygons. For the beginning, i = 1.

Figure 10.3: Representation of all the nodes and intersection points

1. We go through all the polygon’s nodes in a conventional order, for

example v1v2, v2v3…. As v1 in inside the display area we add it to the

results nodes list for the first polygon outv[1][] <- v1.

2. We continue to check all the nodes of the initial polygon, in the previously

established conventional order, until we get out of the display area. We

add all these nodes to the outv[1][] list.

3. If we consider M1 to be the exit point on the v1v2 edge, we add M1 to

outv[1][].

4. We will continue to check the margin of the display area which is inside

the polygon, until we meet the first intersection with the initial polygon.

90

We add this intersection point (M4 in Figure 10.3Figure) to the outv[1][]

list, as it represents the entry point of the polygon into the display area.

5. We then continue to check the nodes of the initial polygon which are

inside the display area until we get back again to v1 or we get out again, in

which case we go back to step 3 of the algorithm.

6. If v1 has been reached, we will obtain the first result polygon. For our

example: outv[1][] = v1, M1, M4 (,v1).

7. We can go further to the next polygon: i = i + 1. Our new starting point will

be M1.

8. We go through all the polygon nodes, in the conventional order, until we

discover the first entry point (M2 in our example).

9. Starting with M2 we begin to construct a new polygon outv[2][]. In our

example outv[2][] = M2, v4, M3, F1 (, M2).

4.2 Weiler-Atherton algorithm implementation example
One possible implementation of the Weiler-Atherton algorithm could be:

1. Create a list (Ipp) with the nodes of the initial polygon.

2. Create another list (Ipf) that contains the corners of the display area.

3. Compute the intersection point of each polygon edge with the margins of

the display area and add the resulting nodes to the Ipp and Ipf lists.

4. Add to the Ipf the nodes of the polygon which reside on the margins of

the display area.

5. Create the list of polygon’s edges (ILp) which will keep for each edge a

reference to two consecutive nodes of the polygon.

6. We check each edge from ILp to determine if it is:

a. Inside the display area

b. Outside the display area

c. On one of the margins of the display area

7. For each point in Ipp we determine if it is placed:

a. Inside the display area

b. Outside the display area

c. On one of the margins of the display area

8. For each point in Ipf we determine if it is placed:

a. Inside the polygon

b. Outside the polygon

c. On one of the edges of the polygon

91

9. We determine the computation order of the points in Ipf list, keeping the

result in var sens.

a. sens = LEFT, the next element is ->urm

b. sens = RIGHT, the next element is -> pred

c. sens = NEDEF

10. if sens = NEDEF then

//q0 is the list of result polygons

if(polygon inside the window)

 //each polygon is represented by a list of edges

q0 = ILp

else

 q0 = null

 else

 for(each element of ILp) do

 Atherton(current_element of ILp);

 current_element = current_element -> urm;

11. Stop.

Atherton (latura: elem)

{

 if (elem is outside the window)

 {

 if(newp = true) secventa();

 }

 else if(elem is inside the window)

 {

 if(newp = false)

 {

 newp = true;

 //q0 is the list of result polygons

 add elem to q0;

 }

 else

 {

 add elem to q0;

 if(elem->urm is inside the window) secventa();

 }

 }

 //the point is on one margin of the display area

 else

 {

92

 if(newp = true) secventa();

 }

}

The function secventa() should:

1. Locate in Ipf the node that represents the beginning of the segment that

is being analyzed.

2. Go through Ipf in the conventional chosen direction until identifies a

common point with Ipp, adding to q0 each new edge from two

consecutive points from Ipf

3. if(the last point is the same with the starting point in q0)

//newp is true while we are building on the same polygon

then newp = false;

5 Assignment
 Define a display area and mark it with a rectangle. Display a polygon and

clip it against the display area previously defined using:

o Sutherland-Hodgman algorithm

o Weiler-Atherton algorithm

 Extend the above request by allowing the user to define the display area

using the mouse.

93

Laboratory work 11: Bezier curves

1 Objectives
This laboratory presents the key notions on Bezier curves.

2 Theoretical background

2.1 Bezier curves
A Bezier curve is a parametric curve, used in computer graphics and other related

fields, used to model smooth curves that can be scaled indefinitely. Another

applicability of the Bezier curves is in animations where an object movement can

be defined by using a Bezier curve, modifying in this way the velocity of the

object.

2.2 Cubic Bezier curves
In order to define a cubic Bezier curve we need 4 points. The curve will pass

through P0 and P3, which are the starting point and the ending point of the curve.

The curve will not pass through P1 and P3 which are control points and are used

to provide directional information.

𝑩(𝑡) = (1 − 𝑡)3𝑷0 + 3(1 − 𝑡)2𝑡𝑷1 + 3(1 − 𝑡)𝑡2𝑷2 + 𝑡3𝑷3 , 𝑡 ∈ [0,1]

Figure 11.1: Bezier curve with four points

94

2.3 Generalization

The Bezier curve of degree n can be generalized in this way:

𝐵(𝑡) = ∑ (
𝑛

𝑖
) (1 − 𝑡)𝑛−𝑖𝑡𝑖𝑃𝑖

𝑛

𝑖=0

For example, for n = 5:

𝐵(𝑡) = (1 − 𝑡)5𝑃0 + 5𝑡(1 − 𝑡)4𝑃1 + 10𝑡2(1 − 𝑡)3𝑃2 + 10𝑡3(1 − 𝑡)2𝑃3

+ 5𝑡4(1 − 𝑡)𝑃4 + 𝑡5𝑃5 ,

𝑡 ∈ [0,1]

Recursively the formula can be expressed as follows:

𝐵(𝑡) = 𝐵𝑃0𝑃1…𝑃𝑛(𝑡) = (1 − 𝑡)𝐵𝑃0𝑃1…𝑃𝑛−1(𝑡) + 𝑡𝐵𝑃1𝑃2…𝑃𝑛(𝑡)

2.4 Bezier curves in Win32 GDI API

The PolyBezier function draws one or more cubic Bezier curves.

BOOL PolyBezier(

 __in HDC hdc,

 __in const POINT *lppt,

 __in DWORD cPoints

);

The first Bezier curve is drawn from the first point to the fourth point. The second
and the third points are control points.

3 Assignment

 Create an application to exemplify the Bezier curves.

http://msdn.microsoft.com/en-us/library/dd162811.aspx

95

Quiz

1. Which of the following differences between the functions TextOut and

TextOutA are real:

A. TextOutA is a new and better implementation of the TextOut function

B. TextOutA enables the customization of more attributes than TextOut (for

example font size, font type, text italic/bold etc.)

C. TextOut displays the text at the current position while TextOutA requires

to specify X and Y coordinates

D. TextOut displays UNICODE strings while TextOutA displays ANSI encoded

strings

2. Is it possible to use the Rectangle function with 3D points (ex.: P(X, Y, Z))

without applying the Perspective/Orthogonal projection first?

A. True

B. False

3. What is the default color of pixels belonging to a bitmap created using the

CreateCompatibleBitmap function:

A. RGB(255, 255, 255);

B. RGB(0, 0, 0);

C. The color of each pixel is undefined until the first call to the FloodFill

function;

D. The color of each pixel depends on the values previously stored in the

memory region that will be assigned to the bitmap;

4. The LoadImage function can be used to:

A. load icons

B. load bitmaps from JPG files

C. draw mouse cursors

D. load animated mouse cursors

96

5. Having the following code:

SendMessage(comboBoxHWND, CB_RESETCONTENT, 0, 0);

SendMessage(comboBoxHWND, CB_ADDSTRING, 0,

(LPARAM)TEXT("Polyline"));

SendMessage(comboBoxHWND, CB_ADDSTRING, 0,

(LPARAM)TEXT("Circle"));

SendMessage(comboBoxHWND, CB_ADDSTRING, 0,

(LPARAM)TEXT("Rectangle"));

SendMessage(comboBoxHWND, CB_ADDSTRING, 0,

(LPARAM)TEXT("Line"));

and the Sort attribute of comboBoxHWND is false, which of the following

statements will select Rectangle:

A. SendMessage(comboBoxHWND, CB_SELECTED, 2, 0);

B. SendMessage(comboBoxHWND, CB_SELECTED, 3, 0);

C. SendMessage(comboBoxHWND, CB_SETCURSEL, 2, 0);

D. SendMessage(comboBoxHWND, CB_SETCURSEL, 3, 0);

6. Choose the correct answers related to the Bresenham's algorithm for line

drawing:

A. At step K, the algorithm searches for the pixel that is closest to the current

drawn point

B. The algorithm takes into account the octant position of the line end points

C. This algorithm is not used for line drawing

D. It uses the LineTo() function to draw the line

E. The line is drawn pixel by pixel

7. What is the border color of the rectangle and ellipse after executing this piece

of code:

HPEN hPen;

case WM_PAINT:

 hdc = BeginPaint(hWnd, &ps);

 myPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));

 SelectObject(hdc, myPen);

 Rectangle(hdc, 100, 100, 200, 200);

 myPen = CreatePen(PS_SOLID, 1, RGB(0, 255, 0));

 SelectObject(hdc, myPen);

 Ellipse(hdc, 300, 300, 500, 500);

 EndPaint(hWnd, &ps);

break;

97

A. Black color for rectangle and ellipse

B. The "myPen" object is not used for specifying the border color of the

primitives. There are other objects that are used for this purpose.

C. Green color - for rectangle, Red color - for ellipse

D. Red color - for rectangle, Green color - for ellipse

E. Red color - for rectangle, Red color - for ellipse

8. The Cohen-Sutherland algorithm is useful for clipping a polygon shape against a

rectangular window (input: polygon edges, output: edges of the clipped polygon).

A. True

B. False

9. Given two points, P1 and P2 with their codes computed according to the

Cohen-Sutherland algorithm (code1 and code2), which of the following conditions

would trigger the acceptance of the line defined by P1 and P2 ?

A. The two codes must differ by at least one digit.

B. All digits of all codes are '0'.

C. Each code should have at least one '1' digit.

D. One of the codes has the form "0000".

E. The two codes are equal.

10. Which of the following is true?

A. Sutherland-Hodgman is a vectorial clipping algorithm.

B. Raster algorithms generally require more complex computations than

vectorial algorithms.

C. Weiler-Atherton is a raster clipping algorithm.

98

99

References

1. Windows GDI - https://msdn.microsoft.com/en-

us/library/windows/desktop/dd145203%28v=vs.85%29.aspx

2. Hughes J.F., van Dam A., McGuire M., Sklar D.F., Foley J.D., Feiner, S.K.,

Akeley K., ”Computer Graphics. Principles and Practice". 3rd Edition,

Addison-Wesley Pub. Comp., 2013.

3. Shirley P., Ashikhmin M., Marschner S., “Fundamentals of Computer

Graphics”, A K Peters/CRC Press, 2009.

4. Foley J.D., van Dam A., Feiner S.K., Hughes J.F., “Computer Graphics:

Principles and Practice in C”, 2nd Edition, Addison-Wesley Professional,

1995.

5. Angel E., “Interactive computer graphics: A top-down approach with

opengl”, Addison-Wesley, 2002.

6. Blinn J., “Jim Blinn’s Corner”, Morgan Kaufmann, 1996.

7. Watt A., “3D Computer Graphics”, Addison-Wesley, 1993.

8. Bresenham J.E., “Algorithm for computer control of a digital plotter”, IBM

Syst. J., 4(1):25–30, 1965.

9. Sutherland I.E., Hodgman G.W., “Reentrant polygon clipping”, Commun.

ACM, 17(1):32–42, 1974.

10. Weiler K., Atherton P. “Hidden surface removal using polygon area

sorting”, SIGGRAPH Comput. Graph., 11:214–222, 977.

11. Akenine-Möller T., Haines E., Hoffman N., “Real-Time Rendering”, A K

Peters, 2008.

	Elements of Computer Assisted Graphics
	Preface
	Table of content
	Laboratory work 1: Win 32 applications
	Laboratory work 2: Mouse inputs
	Laboratory work 3: Menus and dialog windows
	Laboratory work 4: Bitmaps, timers and mouse cursors
	Laboratory work 5: Keyboard inputs
	Laboratory work 6: Bresenham algorithm
	Laboratory work 7: 2D transformations
	Laboratory work 8: 3D transformations
	Laboratory work 9: Line clipping algorithm
	Laboratory work 10: Polygon clipping algorithms
	Laboratory work 11: Bezier curves
	References

