
Anca MĂRGINEAN

NOTES FOR INTRODUCTION TO
ARTIFICIAL INTELLIGENCE

U.T.PRESS
Cluj-Napoca, 2015

ISBN 978-606-737-077-5

Anca MĂRGINEAN

NOTES FOR INTRODUCTION TO

ARTIFICIAL INTELLIGENCE

U.T. PRESS
Cluj-Napoca, 2015

ISBN 978-606-737-077-5

Editura U.T.PRESS
Str.Observatorului nr. 34
C.P.42, O.P. 2, 400775 Cluj-Napoca
Tel.:0264-401.999 / Fax: 0264 - 430.408
e-mail: utpress@biblio.utcluj.ro
www.utcluj.ro/editura

Director: Prof.dr.ing. Daniela Manea
Consilier editorial: Ing. Călin D. Câmpean

Copyright © 2015 Editura U.T.PRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această
carte este posibilă numai cu acordul prealabil scris al editurii U.T.PRESS.
Multiplicareaă executat la Editura U.T.PRESS.

ISBN 978-606-737-077-5
Bun de tipar: 22.06.2015

Preface

This book contains laboratory works related to artificial intelligence domain and
it is aimed as an introduction to AI through examples. Its main focus are the
students from the third year of Computer Science Department from the Faculty
of Automation and Computer Science, Technical University of Cluj-Napoca.

Each laboratory work, except the first one, includes a brief theoretical de-
scription of the algorithms, followed by a section of problems, either theoretical
or practical. For the theoretical problems, one or more steps of the studied algo-
rithms must be applied. Proper justifications are also required. For the practical
ones, two environments are proposed: Aima3e-Java and Pac-Man projects.

AIMA3e-Java is a Java implementation of the algorithms from Norvig and
Russell’s Artificial Intelligence - A Modern Approach 3rd Edition. It is available
online at https://github.com/aima-java/aima-java. Pac-Man projects are
educational Python projects aimed for teaching foundational AI concepts, such
as search, probabilistic inference, and reinforcement projects. They are available
at http://ai.berkeley.edu/project_overview.html

Acknowledgements:
This book makes extensive use of educational projects: the sources of Aima3e-
java project, and the sources and most of the practical problems for Pac-Man
projects are not the property of this book’s author. We thank to the authors of
these projects.

Contents

1 Working Environment 5
1.1 AIMA3e-Java project . 5
1.2 Pac-Man projects . 6
1.3 Evaluation of your activity . 7

2 Simple agents 8
2.1 Problems . 9

2.1.1 Theoretical problems . 9
2.1.2 Practical problems . 9

3 Search problems. Uninformed search 11
3.1 Boat crossing puzzle . 11
3.2 Tree search . 13

3.2.1 Uninformed search . 13
3.3 Problems . 14

3.3.1 Theoretical problems . 14
3.3.2 Practical problems . 16

4 Informed search 19
4.1 Heuristic based search . 19
4.2 Local search . 19
4.3 Problems . 21

4.3.1 Theoretical problems . 21
4.3.2 Practical problems . 23

5 Adversarial search 27
5.1 MiniMax search . 27
5.2 Alpha-beta pruning . 28
5.3 Cut-off test . 29
5.4 Games that include an element of chance 30
5.5 Problems . 31

5.5.1 Theoretical problems . 31
5.5.2 Practical problems . 32

6 Constraint satisfaction problems 35
6.1 Backtracking search and improvements 36

6.1.1 Backtracking search . 36
6.1.2 Minimum remaining values 37

1

6.1.3 Least constraining value 37
6.1.4 Forward checking . 37
6.1.5 Arc consistency . 38

6.2 Local search: minimum number of conflicts 39
6.3 Use of CSPs . 39
6.4 Problems . 40

6.4.1 Theoretical problems . 40
6.4.2 Practical problems . 43

7 Propositional Logic 46
7.1 Propositional Logic . 46

7.1.1 Wumpus world . 47
7.2 Resolution . 47

7.2.1 Resolution inference rule 47
7.2.2 Conversion to CNF . 48
7.2.3 The resolution algorithm 49

7.3 Forward chaining algorithm . 49
7.4 Problems . 50

7.4.1 Theoretical problems . 50
7.4.2 Practical problems . 51

8 Test your AI knowledge with AI games 53
8.1 Warlight AI Challenge . 53

8.1.1 Warlight AI Challenge 2 54
8.2 Texas Hold’em . 54
8.3 CODECUP 2015 . 55
8.4 Battlecode . 56

2

List of Figures

1.1 Aima3e GUI . 6
1.2 Pac-Man game . 7

2.1 Simple-Reflex Agent and Reflex-Vacuum Cleaner 8
2.2 Model-based reflex agent . 9

3.1 Search tree for boat crossing puzzle 12
3.2 The world state includes every detail of the environment 15
3.3 State-space search in graph G1 15
3.4 State-space search in graph G2 16
3.5 Partially expanded search tree . 16
3.6 State-space search in graph G3 16

4.1 Relaxed problems for heuristic identification 19
4.2 Two succesive states with A∗ search 20
4.3 Two succesive states with Hill Climbing (local search) 20
4.4 Which search is used? . 22
4.5 The graph G4 with costs and heuristic values 22
4.6 Aima3e-java: running n queens 24
4.7 Aima3e-java: running route finding with A∗ 25
4.8 An interesting position of food dots 25

5.1 An example of game tree . 28
5.2 Steps of Alpha-Beta pruning . 29
5.3 Two non-terminal states in chess that are to be evaluated with

EVAL . 30
5.4 A game with the expected value v=1/2 * 8+ 1/3 * 24 + 1/6 * -12 31
5.5 Game tree with chance nodes . 31
5.6 Another game tree with chance nodes 32
5.7 TicTacToe almost final configuration 33

6.1 Australia: map coloring . 35
6.2 Planning graph for the spare tire problem [RN02] 40
6.3 Which is the good constraint graph? 41
6.4 Node coloring: the node in the middle is colored green 41
6.5 Aima3e-java: application for CSP 44
6.6 Cryptarithmetic problem and its constraint graph 44

7.1 Perceptions in wumpus world after the agent does 5 steps 48
7.2 Aima3e-java: demo for Resolution on Propositional Logic 49

3

7.3 Perceptions in wumpus world after the agent does 7 steps 50
7.4 Wumpus world . 51

8.1 Warlight competition . 53
8.2 TexasHold’em competition . 55
8.3 Ayu game from Codecup 2015 . 55
8.4 Battlecode game . 56

4

Laboratory work 1

Working Environment

These Notes are meant to help you understand and practice the algorithms for
search problems and logical agents studied in Introduction in Artificial Intelli-
gence course.

The course support is Artificial Intelligence - A Modern Approach 2rd Edi-
tion, Stuart Russell and Peter Norvig, 2002 [RN02].

The code for all the used projects is available in $HOME/LAB WORKS.

1.1 AIMA3e-Java project

AIMA3e-Java [aim] is a Java implementation of the algorithms from Norvig and
Russell’s Artificial Intelligence - A Modern Approach 3rd Edition, Prentice Hall,
and it is available at https://github.com/aima-java/aima-java.

We recommend working with Eclipse IDE. The main steps for importing
AIMA3e-Java projects in your workspace are:

1. Select the menu item File → Import...

2. In the Import Select dialog, select General→Existing Projects into Workspace

5

3. Press the Next button.

4. In the Import Projects dialog select the Select archive file: radio button
and Browse... to the .zip release file. Select aima-core, aima-gui, aimax-
osm in case they are not already selected.

5. Press Finish.

The aima-core project is the baseline project that contains all the current
implementations for the algorithms. The aima-gui project depends on aima-
core and contains example GUI and command line demonstrations of the al-
gorithms defined in aima-core. The aimax-osm project is an extension project
that demonstrates how the core algorithms can be used to create Navigation
Applications using map data provided by the Open Street Maps project [aim].

For more detailed information about setting your workspace, please consult
https://github.com/aima-java/aima-java

And now let’s have fun with some games. The main GUI (figure 1.1) of the
Aima3e project should easily be accessible, and you can play with the available
applications. Did you observe the number of expanded nodes for the game
Connect four in a row in figure 1.1?

Figure 1.1: Aima3e GUI

1.2 Pac-Man projects

Pac-Man projects are education projects from Berkley University, available at
http://ai.berkeley.edu/project_overview.html. In the game, Pac-Man
moves around in a maze and tries to eat as many food pellets as possible, while
avoiding the ghosts. In figure 1.2, Pac-Man is the yellow circle, food pellets are
the small white dots, and the ghosts are the other two agents with eyes in the
above figure. If Pac-Man eats all the food in a maze, it wins. The big white
dots at the top-left and bottom-right corner are capsules, which give Pac-Man
power to eat ghosts in a limited time window [pac].

For testing search strategies, Pac-Man will be used without ghosts. Pac-Man
with ghosts is interesting for adversarial search.

• Play a game of classic Pac-Man (see figure 1.2):

python pacman.py

6

Figure 1.2: Pac-Man game

Add - -frameTime -1 to the command line to run in ”demo mode” where
the game pauses after every frame.

• Play multiple games in a row with -n. Turn off graphics with -q to run
lots of games quickly.

For more details about the rest of the files, please go to http://ai.berkeley.

edu/search.html.

1.3 Evaluation of your activity

You have to solve all the assigned homeworks. For extra points, choose one item
from the following list:

• Propose a search problem and a game that clearly emphasizes the advan-
tages and disadvantages of a search algorithm, adversarial or not.

• Propose a CSP with more than 100 variables and solve it with the stud-
ied algorithms. Analyze it with different algorithm and strategies and
compare the results.

• Propose 5 mazes on which your final Pac-Man code will be tested. The
overall results will be an average of the obtained points on 5 runs on all
mazes gathered from all your colleagues.

• Propose “smart” ghosts.

7

Laboratory work 2

Simple agents

agent = architecture + program

A rational agent selects the actions that maximize the expected utility.

Simple reflex agent selects actions on the basis of the current percept, ig-
noring the rest of the recent history (figure 2.1).

function SIMPLE-REFLEX-AGENT(percept) returns an

action

static: rules, a set of condition-action rules

state <- INTEREPRET-INPUT(percept)

rule<- RULE-MATCH(state, rules)

action<-RULE-ACTION[rule]

return action

Simple-reflex Agent

function REFLEX-VACUUM-AGENT ([location, status])

returns an action

if status=Dirty then return Suck

else if location=A the return Right

else if location=B then return Left

Reflex Vacuum Cleaner

Figure 2.1: Simple-Reflex Agent and Reflex-Vacuum Cleaner

Model-based reflex agent uses a model of (a) how the world evolves inde-
pendently of the agent and (b) how the agent’s own action affects the
world (2.2).

internal state=keeping track of the part of the world it can’t see now

8

function REFLEX-AGENT-WITH-STATE(percept) returns an

action

static: state, a description of the current world

state

rules, a set of condition-action rules

action, the most recent action, initialy none

state <- UPDATE-STATE(state, action, percept)

rule<- RULE-MATCH(state, rules)

action<-RULE-ACTION[rule]

return action

Figure 2.2: Model-based reflex agent

Goal-based agent For this agent, goal-based action selection can involve: (a)
single action that results in a state that satisfies the goal; (b) long sequence
which can be obtained through planning or search

Utility-based agent uses utility function that maps a state onto a real number
which describes the associated degree of happiness [RN02].

2.1 Problems

2.1.1 Theoretical problems

1. Explain why the model-based reflex agent is better than simple reflex agent
for a traffic agent. Please analyze the following two situations: (1) the car
in front is braking and (2) the driver intends to change lane.

2. Indicate some situations from traffic world where utility-based agent is
better suited than goal-based agent.

2.1.2 Practical problems

Java

1. Analize the following classes and pay attention to the type of the imple-
mented agent:

Agent aima.core.agent.Agent.java
package aima.core.environment.vacuum

Table-Driven-Vacuum-Agent TableDrivenVacuumAgent
Table-Driven-Agent TableDrivenAgentProgram

Reflex-Vacuum-Agent ReflexVacuumAgent
Simple-Reflex-Agent SimpleReflexAgentProgram

Model-Based-Reflex-Agent ModelBasedReflexAgentProgram

2. Implement a model-based reflex agent for a vacuum cleaner in case there
are two types of dirt, the robot has a sensor for detecting the type of the
dirt from the current square, and there are two suck actions.

9

Python

1. Analize the function LeftTurnAgent from pacmanAgents.py and identify
the type of the implemented agent.

python pacman.py - -pacman LeftTurnAgent -k 0
python pacman.py -l testMaze -p LeftTurnAgent -k 0

- -pacman (or -p) running option allows you to mention the agent that
describes the behavior of the player, -k 0 means 0 ghosts.

2. Create similar functions for the other types of agents. Example: a simple
reflex agent that goes two steps ahead then turns left.

3. Run and explain the provided ReflexAgent in submission.py :

python pacman.py -p ReflexAgent -k 0

How well does the agent behave on simple layouts?

python pacman.py -p ReflexAgent -l testClassic

Run and observe the agent behavior with two ghosts.

python pacman.py -p ReflexAgent -k 2

Observation: Default ghosts are random; if you want to use directional
ghost, please add -g DirectionalGhost [pac].

10

Laboratory work 3

Search problems.
Uninformed search

Problem-solving agents decide what to do by finding sequences of actions that
lead to desirable states [RN02].

3.1 Boat crossing puzzle

A farmer wants to get his cabbage, goat, wolf across a river. He has a boat
that only holds two. He cannot leave cabbage and goat alone or the goat and
wolf alone. How many river crossings does he need? How can be identified the
sequence of needed actions?

Farmer Cabbage Goat Wolf

There are eight possible actions, which are denoted by a concise set of symbols.
For example, the action FG. means that the farmer will take the goat across to
the right bank; F/ means that the farmer is coming back to the left bank alone.

Search: An agent with several immediate options of unknown value can de-
cide what to do by first examining different possible sequences of actions that
lead to states of known value, and then choosing the best sequence.

The elements of the search problem for the boat crossing puzzle are:

• States, with sstart as starting state: the boat, the farmer, the cabbage,
the goat and the wolf are on the left side. Which are the rest of the states?

• Actions(s): possible actions F., F/, FC., FC/, FG., FG/, FW., FW/

• Cost(s,a): action cost - Each action of type safe river crossing costs 1 unit
of time. The actions that result in an eating event cost ∞

• Succ(s,a): successor function - the positions of the farmer, boat, cabbage,
wolf and goat after doing a crossing

• IsGoal(s): found solutions? Are all on the right side?

11

FCGW‖

CG‖FWCW‖FG

FCW‖G

C‖FGW

FCG‖W

G‖FCW

FG‖CW

‖FCGW

FG.:1

F/:1

FC.:1

FC‖GW

F/ :∞ FG/:1

W‖FCG

FGW‖C

G‖FCW

FG‖CW

‖FCGW

FG.:1

F/:1

FW.:1

FW‖CG

F/ :∞ FG/:1

FC.:1 FW.:1

F/:1

GW‖FC

FC. :∞ FG.:1 FW. :∞

Figure 3.1: Search tree for boat crossing puzzle

12

3.2 Tree search

The Search tree is generated by the initial state and the successor function
that together define the state space. For the boat crossing puzzle, the tree
is presented in figure 3.1. The root of the tree is the start state sstart, and
the leaves are the goal states (IsGoal(s) is true). Each edge leaving a node s
corresponds to a possible action a ∈ Actions(s) that could be performed in state
s. The edge is labeled with the action and its cost, written a ∈ Cost(s, a). The
action leads deterministically to the successor state Succ(s, a), represented by
the child node.

Each root to leaf path represents a possible action sequence, and the sum of
the costs of the edges is the cost of that path. The goal is to find the root to
leaf path that has the minimum cost.

Note that in code, we usually do not build the search tree as a concrete
data structure. The search tree is used merely to visualize the computation of
the search algorithms and study the structure of the search problem.

function TREE-SEARCH(problem, fringe) returns a

solution, or failure

fringe<- INSERT(MAKE-NODE(Initial-State[problem]),

fringe)

loop do

if fringe is empty then return failure

node<- REMOVE-FRONT(fringe)

if GOAL-TEST[problem] applied to STATE(node)

succeeds

return node

fringe<- INSERTALL(EXPAND(node,problem), fringe)

end

Tree search algorithm

The common element to all the search strategies is the fringe. The fringe is
the collection of nodes that have been generated but not yet expanded. Each
element of the fringe is a leaf node.

3.2.1 Uninformed search

Breadth-first search = TREE-Search with an empty fringe that is a FIFO
queue. It is a simple strategy in which the root node is expanded first,
then all the successors of the root node are expanded next, then their
successors, and so on.

BreadthFirstSearch=TREE-Search(problem, FIFO-queue)

Uniform-cost search expands the node n with the lowest path cost (not the
shallowest unexpanded node). The algorithm expands nodes in order of
increasing path cost

UniformCostSearch=TREE-Search(problem, queue ordered ascending

by path cost)

13

Depth-first search

DepthFirstSearch=TREE-Search(problem, LIFO-queue)

pub l i c c l a s s DepthFirstSearch implements Search {
.
pub l i c L i s t<Action> search (Problem p) {

r e turn search . search (p , new LIFOQueue<Node>()) ;
}

.
}

pub l i c c l a s s BreadthFirs tSearch implements Search {
. . . .
pub l i c L i s t<Action> search (Problem p) {

r e turn search . search (p , new FIFOQueue<Node>()) ;
}

. . . .
}
pub l i c c l a s s UniformCostSearch extends P r i o r i t ySe a r ch {

pub l i c UniformCostSearch (QueueSearch search) {
super (search , createPathCostComparator ()) ;

}
p r i v a t e s t a t i c Comparator<Node> createPathCostComparator () {

r e turn new Comparator<Node>() {
pub l i c i n t compare (Node node1 , Node node2) {

r e turn (new Double (node1 . getPathCost ()) . compareTo (new
Double (node2

. getPathCost ()))) ;
} } ;

}
}

Listing 3.1: Snippet from aima3e-java

Observation You can see from the above snippet that the classes Depth-
FirstSearch and BreadthFirstSearch from Aima3e-Java are quite similar.
The most important difference is the type of the used queue. In case
of UniformCostSearch, the search uses a priority queue which involves a
comparator on path costs.

Depth-limited search is depth-first search with a predetermined depth limit
l. That is, nodes at depth l are treated as if they have no successors.

Iterative deepening depth-first search = Depth-Limited Search with depth
increasing from 0 to ∞

Example. Test different search strategies for the problem of Travelling from
Arad to Bucharest with the application RouteFindingAgent from Aima3e.

3.3 Problems

3.3.1 Theoretical problems

1. Consider Pac-Man game (figure 3.2). In case the goal is to reach a position
(x, y), mention which are the states, actions, successor function and goal
test? What about if the goal is to eat all the dots?

14

Figure 3.2: The world state includes every detail of the environment

Hint: In the first case, states are (x, y) location. In the second case, the
goal test is all dots are false, where a dot is considered true if the food dot
was not eaten.

2. Which is the solution identified with breadth-first search for state space
graph G1? In case of equality, the nodes are chosen alphabetically: S →
X → A is expanded before S → X → B.

Figure 3.3: State-space search in graph G1

• S → A→ B → G

• S → A→ B → C → G

• S → D → G

3. Which is the solution for depth-first search for the state space graph G1

in figure 3.3? In case both A and B are good choices for expanding X,
S → X → A is expanded before S → X → B.

• S → A→ B → G

• S → A→ B → C → G

• S → D → G

4. Which is the solution for uniform cost search for the state space graph in
figure 3.4? (S → X → A is expanded before S → X → B).

• S → A→ B → G

• S → A→ B → C → G

• S → D → G

5. Which is the next expanded node during the building of the search tree
from figure 3.5? Consider all studied search algorithms.

15

Figure 3.4: State-space search in graph G2

Figure 3.5: Partially expanded search tree

6. Which are the solution of the search with depth and breadth-first search
strategies for the state space graph G3 in figure 3.6?

Figure 3.6: State-space search in graph G3

3.3.2 Practical problems

Java

1. Run Route Finding Agent with different strategies. Go to aima-gui/src/
main/java/aima/gui/applications/.

2. Study the following classes in order to be able to implement your own
search problems.

16

Simple-Problem-Solving-Agent aima.core.search.framework.
SimpleProblemSolvingAgent

Romania aima.core.environment.map.
SimplifiedRoadMapOfPartOfRomania

Tree-Search aima.core.search.framework.TreeSearch
Graph-Search aima.core.search.framework.GraphSearch

Node aima.core.search.framework.Node
Queue aima.core.search.framework.Queue

Breadth-First-Search aima.core.search.uninformed.BreadthFirstSearch
Uniform-Cost-Search aima.core.search.uninformed.UniformCostSearch

Depth-first Search aima.core.search.uninformed.DepthFirstSearch
Depth-Limited-Search aima.core.search.uninformed.DepthLimitedSearch
Iterative-Deepening aima.core.search.uninformed.

-Search IterativeDeepeningSearch
Bidirectional search aima.core.search.uninformed.BidirectionalSearch

3. Change the map of Romania, by adding at least Cluj-Napoca, Turda,
Gherla, TgMures, and Alba-Iulia and test different search strategies on
the new search problem.

4. Implement the search problem for the graph in figure 3.4. Solve it with
different strategies.

5. Implement the search problem for solving the Boat crossing puzzle.

Python

1. In the folder search from pacman, there is a version without ghosts. The
Pacman agent has to reach a particular location and to collect food effi-
ciently [pac].

The files that are to be modified:
search.py The search algorithm will be here.

searchAgents.py The search-based agents are implemented here.
Useful files:

pacman.py The Pacman GameState type is defined here. It
is the main file for running the game

game.py AgentState, Agent, Direction, Grid types are de-
fined here. It describes the logic behind how the
Pacman world works.

util.py Data structure that can be used for implementing
search algorithms.

Test GoWestAgent on two different scenario:

python pacman.py - -layout testMaze - -pacman GoWestAgent
a trivial reflex agent on a linear maze

python pacman.py - -layout tinyMaze - -pacman GoWestAgent
the same agent on a maze that requires turning

python pacman.py -h

2. Find a fixed food dot using depth first search. In searchAgents.py, there is
a fully implemented SearchAgent. It plans out a path through Pacman’s
world and then executes that path step-by-step. Before implementing your
own tree search and depth first search, please check tinyMazeSearch. This
is a search algorithm implemented in search.py.

17

python pacman.py -l -p SearchAgent -a fn=tinyMazeSearch

• On the existing code, if you run python pacman.py -l tinyMaze -p
SearchAgent you wil get Method not implemented: depthFirstSearch
at line 90 of $pacmanHome$/berkley pacman/search/search.py

• Test your resulting code for three mazes:

python pacman.py -l tinyMaze -p SearchAgent
python pacman.py -l mediumMaze -p SearchAgent
python pacman.py -l bigMaze -z .5 -p SearchAgent

• Pacman board will show an overlay of the explored states, and the
order in which they were explored. Brighter red means earlier explo-
ration. Analyze the exploration order and whether Pacman actually
goes to all explored nodes.

3. Implement breadth first search for the same problem python pacman.py
-l mediumMaze -p SearchAgent -a fn=bfs.

Test it on eight puzzle problem: python eightpuzzle.py

4. Implement Uniform Cost graph search in search.py. In searchAgents.py
there are described three agents with different cost functions: SearchA-
gent, StayEastSearchAgent and StayWestSearchAgent. Test them and
your uniform cost graph search on the medium and mediumScaryMaze.

python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs
python pacman.py -l mediumDottedMaze -p StayEastSearchAgent

18

Laboratory work 4

Informed search

Problem definition is extended with problem specific knowledge as desirability
degree of a node [RN02].

4.1 Heuristic based search

Heuristic h(n) gives an estimation of the distance from the node n to the goal.

GreedyBestFirstSearch is Tree-Search/Graph-Search(Problem, priority queue
according to f(n), where f(n) = h(n)) - Forward cost

Reminder: Uniform Cost Search uses a priority queue according to g(n) -
Backward cost.

A∗ is Tree-Search/Graph-Search(Problem, priority queue according to f(n),
where f(n) = h(n) + g(n))

Heuristics must be admissible. In order to identify them, the problem can be
relaxed, as in can be observed in figure 4.1.

Figure 4.1: Relaxed problems for heuristic identification

4.2 Local search

In case the path is not important, but the final goal state is, Local search is
appropriate. It uses heuristics in order to choose the next configuration.

19

Figure 4.2: Two succesive states with A∗ search

Figure 4.3: Two succesive states with Hill Climbing (local search)

The state space is a set of complete configurations. In figures 4.2 and 4.3
you can observe the differences between incremental state (as used in previous
chapter) and complete state ([RN02]).
Hill-climbing

function HILL-CLIMBING(problem) returns {a state that

is a local maximum}

inputs: problem

local variables:current - a node

neighbor - a node

current<-MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor <- a highest-valued successor of current

if VALUE[neighbor] ≤ VALUE[current] then return

STATE[current]

current<-neighbor

end

Note: For n-queens problem, in local search:

• each state = 8 queens on the table (different to tree-search, where the
number of queens increases from 0 to 8) - complete-state formulation

• succesor function = all the states which can be obtained by changing the
position of only one queen. If we consider to be known that on each
column we need for sure a queen, but the row is variable, then there are
8 x 7 = 56 succesors

20

• heuristic function h= number of pair of queens that are attacking each
other.

Simulated-annealing

function SIMULATED-ANNEALING(problem, schedule)

returns a solution state

inputs: problem - a problem

schedule - a mapping from time to "

temperature"

local variables: current - a node

next - a node

T - a "temperature" controlling prob

. of downward steps

current←MAKE-NODE(INITIAL-STATE[problem])

for t←1 to ∞ do

T←schedule[t]

if T = 0 then return current

next←a randomly selected successor of current

∆E ← VALUE[next] - VALUE[current]

if ∆E>0 then current←next

else current← next only with probability e∆E/T
end

We mentione here some examples of the use of informed search in planning,
and specially hill-climbing:

• Planning as heuristic search [BG01] (HSP): the heuristics are automat-
ically extracted from Strips description of the planning domains, where
Strips is a formal language which allows description of actions in terms of
preconditions and effects. An example of a STRIPS description of the Fly
action is:

Action(FlySTRIPS(p, from, to),

PRECOND : At(p, from) ∧ Plane(p) ∧Airport(from) ∧Airport(to)
EFFECT : ¬At(p, from) ∧At(p, tp)

• Fast Forward [Hof01] (FF): similar to HSP, in FF the planning problems
are treated as search problem in state space, with a heuristic function.
This heuristic function is also extracted automatically from the domain
description, after relaxing the planning problem. The relaxed planning
problem is obtained by ignoring parts of the actions’ specification.

4.3 Problems

4.3.1 Theoretical problems

1. Pacman: The three figures from 4.4 are the results of three searches ap-
plied on the problem of getting to a certain food dot. Identify which search
is done in each figure? (Brigter red means early exploration).

21

Figure 4.4: Which search is used?

Figure 4.5: The graph G4 with costs and heuristic values

2. • Which is the path found with Greedy Best First search for the graph
in figure 4.5?

– S → A→ G

– S → A→ B → C → G

– S → D → B → C → G

– S → D → B → E → G

– S → D → E → G

• Is the heuristic admisible? Which is the path identified with A∗

search?

3. Which are the paths identified with GreedyBestF irst, UniformCost and
A∗ for the following state space graph ?

S a

bc

d G

e

1

1

1

3 2
1

8

h=6 h=5

h=6h=7

h=2 h=0

h=1

22

4. Consider the Pac-Man game, with the goal of eating all the food dots.
Consider that each action has a cost of 1. Choose the heuristics that are
admisible:

• total number of remain food dots

• the distance to the closest dot

• the distance to the farthest food dot

• distance between the closest dot plus distance to the farthest dot

4.3.2 Practical problems

Java

1. Analyse the implementations for the studied search strategies:

package aima.core.search.informed
Best-First search BestF irstSearch.java
Greedy best-First search GreedyBestF irstSearch.java
A* Search AStarSearch.java
Hill-Climbing HillClimbingSearch.java
Simulated-Annealing SimulatedAnnealingSearch.java

2. Eight puzzle Game.

• Run aima.gui.demo.search.EightPuzzleDemo and analyze the paths
identified with Greedy Best First Search, A∗ and Simulated Anneasling
Search.

The starting and goal configurations are:

1 2 5
3 4
6 7 8

1 4 2
7 5 8
3 6

Notice the difference between the solutions in case MisplacedTile-
Heuristic and ManhattanHeuristic are used.

• Go to the methods: eightPuzzleGreedyBestFirstDemo(), eightPuzzle-
GreedyBestFirstManhattanDemo(), eightPuzzleAStarDemo(), eight-
PuzzleAStarManhattanDemo(), eightPuzzleSimulatedAnnealingDemo()
from EightPuzzleDemo class and change the goal configuration to

8 7
6 5 4
3 2 1

Run the search on the new problem and compare the results with the
runs from the previous point.

3. Run aima.gui.demo.search.NQueensDemo (figure 4.6) and compare the
solutions

Optional: change from n queens to n rooks and n knives.

23

Figure 4.6: Aima3e-java: running n queens

4. Analyse on Route Finding Agent application (aima.gui.applications.search.
map.RouteFindingAgentApp) different informed and uninformed search.
Make a comparative analysis on the number of expanded nodes and the
path cost of the solution.

Observation: from Arad to Bucharest through Sibiu, the travel distance
is 450, while through RimnicuValcea is 418 (see figure 4.7).

5. Games: Nqueens, EightPuzzleApp. Run aima.gui.applications.search.games.
NQueensApp and EightPuzzleApp and compare the results of all the stud-
ied search strategies.

Note: On medium configuration of EightPuzzleApp, observe the difference
between the number of expandedNodes and maxQueueSize:

• in case of A∗ with MispacedTileHeuristic: 25, respectively 21,

• in case of Breadth FirstSearch(GraphSearch): 288, respectively 199.

Python

1. Implement A∗ search. Test it on the problem of Pacman getting to a
certain food dot. Use Manhattan distance heuristic which is implemented
as manhattanHeuristic in searchAgents.py [pac].

In the end, you should be able to run

python pacman.py -l bigMaze -z .5 -p SearchAgent

-a fn=astar,heuristic=manhattanHeuristic

24

Figure 4.7: Aima3e-java: running route finding with A∗

• Compare the number of explored states and the solutions between
Depth-first Search, Breadth-first Search and A∗.

• Identify mazes where one method behaves much better than the oth-
ers and explain why.

2. Consider the problem of eating all dots (in the absence of ghosts and
power food). Implement one or more heuristics and test it on different
scenarios.

Observation: A* with a null heuristic is equivalent to uniform-cost search.
By running python pacman.py -l testSearch -p AStarFoodSearchAgent,
before implementing an heuristic, the result should be an optimal solution
with a total cost of 7.

AStarFoodSearchAgent is equivalent to using -p SearchAgent -a fn=astar,
prob=FoodSearchProblem,heuristic=foodHeuristic. FoodSearchProblem is
implemented in searchAgents.py.

Therefore, you have to fill in foodHeuristic in searchAgents.py.

Please consider for testing the maze in figure 4.8.

python pacman.py -l trickySearch -p AStarFoodSearchAgent

Figure 4.8: An interesting position of food dots

3. In the original Pacman problem, it is possible to have food that gived
power to escape from ghosts for a limited time. Consider that the special

25

food dost are placed in the corners and the goal is to eat all four special
food placed in corners (the ghosts are still not present).

You have to formulate a new problem CornersProblem in searchAgent.py.
Choose a state representation which encodes information proper for the
new goal. Maybe you also need a new heuristic.

In the end, you should be able to test it with

python pacman.py -l mediumCorners -p SearchAgent

-a fn=bfs,prob=CornersProblem

26

Laboratory work 5

Adversarial search

Adversarial search problems (games) are specific for competitive environments,
in which the agents’ goals are in conflict.

Zero-sum games of perfect information = deterministic, fully observ-
able environment in which there are two agents whose actions must alternate
and in which the utility values at the end of the game are always equal or
opposite.

Game tree = tree formed from the initial state and the legal moves for
each side.

Utility function = objective function, or payoff function, gives a numeric
value for the terminal states.

example: in chess, win is +1, loss is -1, draw is 0.
Solution of an adversarial search problem is an optimal strategy. This

leads to outcomes at least as good as any other strategy when one is playing an
infallible opponent [RN02].

5.1 MiniMax search

MINIMAX-VALUE(n)=

=


UTILITY (n) if n is terminal state

maxs∈Succesor(n)MINIMAX − V ALUE(s) if n is nod MAX

mins∈Succesor(n)MINIMAX − V ALUE(s) if n is nod MIN

function MINIMAX-DECISION(state) returns an action

inputs: state, current state in game

v← MAX-VALUE(state)

return the action in SUCCESORS(state) with value v

--

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← −∞
for s in SUCCESORS(state) do

v← MAX(v, MIN-VALUE(v))

27

Figure 5.1: An example of game tree

return v

--

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ←∞
for s in SUCCESORS(state) do

v← MIN(v, MAX-VALUE(v))

return v

MINIMAX-DECISION

Figure 5.1 gives an example of MinimaxSearch game tree.

5.2 Alpha-beta pruning

Optimizes Minimax search tree, by pruning nodes that do not affect the values
of the parent nodes.

Figure 5.2 shows how the pruning is done on Minimax search.

function ALPHA-BETA-DECISION(state) returns an action

return the a in ACTIONS(state) maximizing MIN-VALUE(

RESULT(a, state), −∞,∞)

function MAX-VALUE(state, α, β) returns an utility

value

inputs: state, current state in game

α the value of the best alternative for MAX along

the path to state

β the value of the best alternative for MIN along

the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

v← −∞
for a, s in SUCCESORS(state) do

v← MAX(v, MIN-VALUE(s, α,β))
if v ≥ β then return v

α← MAX(α, v)

return v

28

Figure 5.2: Steps of Alpha-Beta pruning

function MIN-VALUE(state,α,β returns a utility value

same as MAX-VALUE but with roles of α, β reversed

}

5.3 Cut-off test

• For limited resources, the search can be done with the use of CUTOFF-
TEST instead of TERMINAL-TEST, and

• replace UTILITY function with EVAL. EVAL estimates the desirability
of a state and it must:

– order the terminal states in the same way with utility function,

– its computation time must be reduced,

– for non-terminal state, EVAL must be correlated with the chances of
winning from this state.

EVAL could be a weighted linear function of some characteristics: Eval(s) =
w1f1(s) + w2f2(s) + ...+ wnfn(s)

Example For chess, for the two non-terminal states from figure 5.3, how good
is an EVAL function as a weighted combination of available pieces, where the
associated values are: pawn=1, knight and knave=3, rook=5, queen=9?

29

Figure 5.3: Two non-terminal states in chess that are to be evaluated with
EVAL

5.4 Games that include an element of chance

Games mirror the unpredictability by including a random element, such as dice.
For games that include chance, the game tree includes also chance nodes:

The algorithm changes to:

EXPECTIMINIMAX = MINIMAX + chance nodes

EXPECTIMINIMAX-VALUE=
Σ P(S)*EXPECTIMINIMAX-VALUE(SUCCESORS(STATE))

if state is a MAX node then

return the highest EXPECTIMINIMAX-VALUE of

SUCCESORS(state)

if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESORS

(state)

if state is a MAX node then

return the average of EXPECTIMINIMAX-VALUE of

SUCCESORS(state)

Question: Which is the best move in the tree game from 5.5, if all the
branches from each chance node have the same probability? Answer: The right
move. Explain why.

30

Figure 5.4: A game with the expected value v=1/2 * 8+ 1/3 * 24 + 1/6 * -12

Figure 5.5: Game tree with chance nodes

5.5 Problems

5.5.1 Theoretical problems

1. Which branch is pruned in the following game tree?

Answer: f

2. Which branch is pruned in the following game tree?

31

3. Apply ExpectiMinimax on the game tree from figure 5.6. The branches
of the chance nodes have the same probability.

Figure 5.6: Another game tree with chance nodes

• Which is the value of the game?

• Which is the optimal action for MAX?

5.5.2 Practical problems

Java

1. Analyze the implementation of MiniMax Search from aima.core.search.
adversarial.MinimaxSearch.java.

Run aima.gui.demo.search.TicTacToeDemo which uses this search. Build
on paper the first four layers of the tree built during the run.

Do the same thing for Alpha-beta Search.

2. Play TicTacToe against an agent that implements MiniMax, AlphaBeta,
IncrementalAlphaBeta. For this, run the class aima.gui.applications.search.
games.TicTacToeApp.

• Starting from the following configuration (figure 5.7), draw the trees
that are built with MiniMax and AlphaBeta. Make a comparison
between these two algorithms in terms of expanded nodes.

32

Figure 5.7: TicTacToe almost final configuration

• Run ConnectFourApp from the package aima.gui.applications.search.
games. Look carefully at the reported number of expanded nodes.
How can you justify its large range?

Python
Different to the previous chapter, now we consider also the ghosts as agents. A
brief description of the files in package is:

multiAgents.py It is where all of the pac-man algorithms will reside,
so here you have to do your changes.

pacman.py he main file that runs Pac-Man games. This file also
describes a Pac-Man GameState type.

game.py The logic behind how the Pac-Man world works.
This file describes several supporting types like
AgentState, Agent, Direction, and Grid.

util.py Useful data structures for implementing search algo-
rithms.

Not so important files:
graphicsDisplay.py Graphics for Pac-Man
graphicsUtils.py Support for Pac-Man graphics
textDisplay.py ASCII graphics for Pac-Man
ghostAgents.py Agents to control ghosts
keyboardAgents.py Keyboard interfaces to control Pac-Man
layout.py Code for reading layout files and storing their con-

tents

1. Reminder Reflex Agent. Improve the function evaluationFunction of
ReflexAgent in multiAgents.py. This function evaluates actions. The pro-
vided reflex agent code has some helpful examples of methods that query
the GameState for information. A capable reflex agent will have to con-
sider both food locations and ghost locations to perform well [pac]. Your
agent should easily and reliably clear the testClassic layout:

pacman.py -p ReflexAgent -l testClassic -n 10 -q.

Test your agent on openClassic layout.

2. Write an adversarial search agent in the provided MinimaxAgent class stub
in multiAgents.py. Your minimax agent should work with any number of
ghosts, so you’ll have to write an algorithm that is slightly more general
than what appears in the textbook. In particular, your minimax tree will
have multiple min layers (one for each ghost) for every max layer.

Your code should also expand the game tree to an arbitrary depth -
a depth=4. Score the leaves of your minimax tree with the supplied

33

self.evaluationFunction, which defaults to scoreEvaluationFunction. Mini-
maxAgent extends MultiAgentAgent, which gives access to self.depth and
self.evaluationFunction. Make sure your minimax code makes reference to
these two variables where appropriate as these variables are populated in
response to command line options [pac].

python pacman.py -p MinimaxAgent -l minimaxClassic -a depth=4

3. Make a new agent that uses alpha-beta pruning to more efficiently explore
the minimax tree, in AlphaBetaAgent. Compare running at depth 3 with
minimax at depth 2.

python pacman.py -p AlphaBetaAgent -a depth=3 -l smallClassic.

4. Consider the ghosts as chance nodes. Assume you will only be running
against RandomGhost ghosts, which choose amongst their getLegalAc-
tions uniformly at random. The expected behavior is: if Pac-Man per-
ceives that he could be trapped but might escape to grab a few more
pieces of food, he’ll at least try [pac].

python pacman.py -p AlphaBetaAgent -l trappedClassic -a depth=3 -q -n 10
python pacman.py -p ExpectimaxAgent -l trappedClassic -a depth=3 -q -n 10

34

Laboratory work 6

Constraint satisfaction
problems

This laboratory work will be studied in two consecutive weeks: in the first week,
the backtracking search will be studied, and in the second, the local search with
minimum-conflict heuristic.

Different to problems analyzed in the previous chapters, CSPs introduces
states and goal test which conform to a standard, structured, and very simple
representation.

Variables - a set of variables Xi; each Xi has a nonempty domain Di.

Constraints - each constraint Ci involves some subset of variables and specifies
the allowable combinations of values for that subset

A state of the problem is defined by an assignment of values to some or all of
the variables.

Consistent or legal assignment = an assignment that does not violate any con-
straints.
Solution = a complete assignment (in which each variable has a value) and
which satisfies all the constraints

Example: map coloring (figure 6.1)
Variables: WA, NT , Q, NSW , V , SA, T
Domains: Di = {red, green, blue}

Constraints: adjacent regions must have different colors

Figure 6.1: Australia: map coloring

35

CSPs with Binary constraints can be represented in constraints graph:

6.1 Backtracking search and improvements

6.1.1 Backtracking search

DFS + variable ordering + fails in violation

function BACKTRACKING-SEARCH(csp) returns solution/

failure

return RECURSIVE-BACKTRACKING ({} ,csp)

function RECURSIVE-BACKTRACKING(assignment, csp)

returns soln/failure

if assignment is complete then return assignment

var<-SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],

assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var,

assignment, csp) do

if value is consistent with assignment given

CONSTRAINTS[csp] then

add {var = value } to assignment

result<- RECURSIVE-BACKTRACKING(assignment, csp)

if result <>failure then return result

remove {var = value} from assignment

return failure

Example. Apply backtracking search on the following constraint graph. Con-
sider that the nodes are selected from left to right and each node can take one
value from a domain with 3 values. Two adjacent nodes can not have the same
value. How many times will the algorithm go back? 0 times, since no failure is
reached.

Improvements. General purpose improvements of the algorithm are possible,
considering the following questions:

• which variable must be assigned first?

36

• in which order must the values be tried?

• can the inevitably failure be detected sooner?

6.1.2 Minimum remaining values

Selection of the variable with the fewest ”legal” values is called the minimum
remaining values (MRV) heuristic ([BR75]). It also has been called the most
constrained variable or fail-first heuristic, the latter because it picks a variable
that is most likely to cause a failure soon, thereby pruning the search tree.

If there is a variable X with zero legal values remaining, the MRV heuristic
will select X and failure will be detected immediately. In this way, it is avoided
the pointless searches through other variables which always will fail when X is
finally selected [RN02].

In case of equality between variables according to MRV, Degree heuristic
[Bré79] tries to reduce the branching factor on future choices by selecting the
variable that is involved in the largest number of constraints on other unassigned
variables.

6.1.3 Least constraining value

It prefers the value that rules out the fewest choices for the neighboring variables
in the constraint graph.
Example. Suppose WA = red and NT = green, and that the choice is done for
the variable Q. Blue would be a bad choice, because it eliminates the last legal
value left for Q’s neighbor, SA. The least-constraining value heuristic therefore
prefers red to blue.

6.1.4 Forward checking

Whenever a variable X is assigned, the forward checking process looks at each
unassigned variable Y that is connected to X by a constraint and deletes from
Y’s domain any value that is inconsistent with the value chosen for X.
Example. Forward checking does the following steps after the assignment WA =
red:

1.

2.

37

3.

4.
Observation: NT and SA have the same color from step 3, but the forward

checking misses this. Solution: constraint propagation.

6.1.5 Arc consistency

Is the most simple constraint propagation. Arc refers to a directed arc in the
constraint graph: e.g. the arc from SA to NSW . Given the current domains
of SA and NSW , the arc is consistent if, for every value x of SA, there is some
value y of NSW that is consistent with x.

1.

2.

3.

4.
Arc consistency checking can be applied either as a preprocessing step be-

38

fore the beginning of the search process, or as a propagation step (like forward
checking) after every assignment during search.

AC-3, uses a queue to keep track of the arcs that need to be checked for
inconsistency. Each arc (Xi, Xj) in turn is removed from the queue and checked;
if any values need to be deleted from the domain of Xi, then every arc (Xk, Xi)
pointing to Xi must be reinserted on the queue for checking [RN02].

function AC-3(csp) returns {CSP, posibil cu domenii

reduse}

inputs: csp - o problema CSP binara cu variabilele

X1, X2, ..., Xn

local variables: queue, o coada de arce, initial

toate arcele din csp

while queue is not empty do

(Xi, Xj)<-REMOVE-FIRST(queue)

if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

for each Xk in NEIGHBORS[Xi] do

add (Xk, Xi) to queue

--

function REMOVE-INCONSISTENT-VALUES(Xi,Xj) returns

true iff succeeds

removed<-false

for each x in DOMAIN[Xi] do

if no value y in DOMAIN[Xj] allows (x,y) to

satisfy the constraint Xi -> Xj

then delete x from DOMAIN[Xi];

removed<-true

return removed

6.2 Local search: minimum number of conflicts

The initial state may be chosen randomly or by a greedy assignment process
that chooses a minimal-conflict value for each variable in turn. In choosing a
new value for a variable, the most obvious heuristic is to select the value that
results in the minimum number of conflicts with other variables given the rest
of the current assignment.

Observation On the n-queens problem, if you don’t count the initial place-
ment of queens, the runtime of min-conflicts is roughly independent of problem
size. It solves even the million-queens problem in an average of 50 steps (after
the initial assignment).

6.3 Use of CSPs

• Planning through CSP is a solution described in [DK01]. The planning
graph of the Graphplan algorithm is converted into a CSP and solved
using standard CSP solvers.

39

For the problem of changing the tire, the planning graph, together with
the mutex relations, is described in 6.2.

S0 A1 S2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

A0 S1

Figure 6.2: Planning graph for the spare tire problem [RN02]

Mutex relations between actions are explained by:

– inconsistent effects: Remove(Spare, Trunk) is mutex with LeaveOvernight
since they haveAt(Spare,Ground), respectively ¬At(Spare,Ground)
as effects

– interferenceRemove(Flat, Axle) is mutex with LeaveOvernight since
one of its precondition, At(Flat, Axle), is the negation of the effect
of LeaveOvernight

– competing needs: PutOn(Spare,Axle) is mutex withRemove(Flat, Axle)
because At(Flat, Axle) is the precondition of one action, while its
negation of the other one

Mutex relations between literals at the same level is named inconsistent
support. There are two cases for inconsistent support:

– one literal is the negation of the other

– each possible pair of actions that could achieve the two literals is
mutually exclusive.

At(Spare,Axle) is mutex with At(Flat, Axle) in S2 since the only way
to obtain At(Spare,Axle) is by doing PutOn(Spare,Axle) which at his
turn is mutex with the persistence action on At(Flat, Axle)

• Crosswords puzzles [Gin11], Timetable creation [ZL05]

• Constraint programming - CLPFD constraint solver library from YAP and
SWI-Prolog, Gurobi.

6.4 Problems

6.4.1 Theoretical problems

1. Which graph from figure 6.3 is the correct constraint graph for the fol-
lowing problem: There are 6 presenters for an event: A, B, C, D, E, F .

40

A B

C
DE

F

A B

C
DE

F

Figure 6.3: Which is the good constraint graph?

The events for A and B are scheduled at moment 1, for C and D at 2
and for E and F at 3. The number of available rooms is 2. The following
conditions must also be true:

• the presenters scheduled at the same time, can not be assigned in the
same room

• A and C can not be assigned in the same room

• B and F can not be assigned in the same room

• B and D can not be assigned in the same room

2. Suppose the configuration 6.4 was reached with backtracking search with
forward checking. The color for the node in the middle is assigned now.
What is the configuration reached after forward checking? Explain why?

Figure 6.4: Node coloring: the node in the middle is colored green

1. 2. 3.

Answer: 2.

3. Consider AC-3 run on a CSP with 4 variables: A, B, C, D. Consider that
the following arcs are in the queue:

(a) A→ B

(b) A→ C

(c) B → A

41

(d) B → D

(e) C → D

(f) D → C

When checking the consistency of the arc A→ B some values are removed.
Which arcs will be added into the queue as a consequence?

(a) A→ D

(b) B → D

(c) C → A

(d) C → D

(e) D → A

(f) D → B

(g) none

4. Consider the partial assignment from figure 6.4. After the assignment of
the variable in the middle and application of AC-3, which is the resulted
assignment?

1. 2. 3. 4.

5. Apply Arc Consistency on the map coloring problem, with the following
initial assignment: WA=red, V=blue. Does the solution exists?

6. You must arrange three statues in an exhibit hall: an ice carving of a
swan (i), a gold lion (g), and a marble abstract piece (m). There are three
tables, 1, 2, and 3, arranged in a row, with 1 closest to the door and 3
farthest into the exhibit hall. It is a hot day and so the ice carving cannot
be nearest the door. Your manager also informs you that it will look bad
to have to animal sculptures on adjacent tables. Reality tells you that
each table must have a different sculpture. If we formulate this problem
as a binary CSP with variables X1, X2 , and X3 , each with domain i, g,
m:

(a) What are the unary constraint(s) (list them explicitly)

Answer: X1 = i

(b) What are the binary constraint(s) (list them explicitly)

Answer:
(X1 , X2) {(i, m), (m, i), (g, m), (m, g)}
(X2 , X3) ∈ {(i, m), (m, i), (g, m), (m, g)}
(X1 , X3) ∈ {(i, m), (m, i), (g, m), (m, g), (i, g), (g, i)}

Assume we enforce the unary constraint(s) in pre-processing for the
remaining parts:

42

(c) Which variable will be assigned first by the MRV heuristic?

Answer: X1 - explain why

(d) If we assign X3 = i, show the domains of the remaining variables
after forward checking.

(e) If no variables are assigned, show the initial domains after running
arc consistency.

(f) If its a cool day, and we drop the requirement that the ice swan cannot
be nearest the door, what are the initial domains after running arc
consistency?

7. Suppose you have a set of n actions, with a partial order � between them,
i.e. if ai � aj then ai must be executed after aj . Find sequences that
respect this partial order.

8. Consider the schedule of movies at TIFF movies festival from Cluj. Iden-
tify three types of constraints that a person could have, propose a way to
model it, and give a solution for a particular day from the festival.

6.4.2 Practical problems

Java:

1. Study the classes

CSP aima.core.search.csp.CSP
Map CSP aima.core.search.csp.MapCSP

AC-3 aima.core.search.csp.AC3Strategy
Backtracking-Search aima.core.search.csp.BacktrackingStrategy

Min-Conflicts aima.core.search.csp.MinConflictsStrategy

• Run the Map coloring application demo on Australia’s map with
aima.gui.demo.search.MapColoringCSPDemo. Change the CSP to
another scenario, similar to MapCSP class.

• Run aima.gui.applications.search.csp.MapColoringApp and analyse
different algorithms on different starting configurations (figure 6.5).
Compare the performances of the simple version of the algorithm
backtracking with the improved versions with MRV , LCV , Forward
checking, AC-3.

2. Solve the cryptarithmetic problem from figure 6.6. You can use java classes
from aima3e-java

3. Solve Einstein puzzle:

(a) There are 5 houses (along the street) in 5 different colors: blue, green,
red, white and yellow.

(b) In each house lives a person of a different nationality: Brit, Dane,
German, Norwegian and Swede.

(c) These 5 owners drink a certain beverage: beer, coffee, milk, tea and
water, smoke a certain brand of cigar: Blue Master, Dunhill, Pall
Mall, Prince and blend, and keep a certain pet: cat, bird, dog, fish
and horse.

43

Figure 6.5: Aima3e-java: application for CSP

Figure 6.6: Cryptarithmetic problem and its constraint graph

(d) No owners have the same pet, smoke the same brand of cigar, or
drink the same beverage.

(e) Hints:

i. The Brit lives in a red house.

ii. The Swede keeps dogs as pets.

iii. The Dane drinks tea.

iv. The green house is on the left of the white house (next to it).

v. The green house owner drinks coffee.

vi. The person who smokes Pall Mall rears birds.

vii. The owner of the yellow house smokes Dunhill.

viii. The man living in the house right in the center drinks milk.

ix. The Norwegian lives in the first house.

x. The man who smokes blend lives next to the one who keeps cats.

xi. The man who keeps horses lives next to the man who smokes
Dunhill.

xii. The owner who smokes Blue Master drinks beer.

xiii. The German smokes Prince.

xiv. The Norwegian lives next to the blue house.

xv. The man who smokes blend has a neighbor who drinks water.

Python
Use the package from the folder $LAB WORKS/ch6 or https://labix.

org/python-constraint. Short usage manual:

44

>> from constraint import *
>> problem = Problem()
>> problem.addVariable(”a”, [1,2,3])
>> problem.addVariable(”b”, [4,5,6])
>> problem.getSolutions()
[{’a’: 3, ’b’: 6}, {’a’: 3, ’b’: 5}, {’a’: 3, ’b’: 4},
{’a’: 2, ’b’: 6}, {’a’: 2, ’b’: 5}, {’a’: 2, ’b’: 4},
{’a’: 1, ’b’: 6}, {’a’: 1, ’b’: 5}, {’a’: 1, ’b’: 4}]
>> problem.addConstraint(lambda a, b: a*2 == b, (”a”, ”b”))
>> problem.getSolutions() [{’a’: 3, ’b’: 6}, {’a’: 2, ’b’: 4}]
>> problem = Problem()
>> problem.addVariables([”a”, ”b”], [1, 2, 3])
>> problem.addConstraint(AllDifferentConstraint())
>> problem.getSolutions()
[{’a’: 3, ’b’: 2}, {’a’: 3, ’b’: 1}, {’a’: 2, ’b’: 3},
{’a’: 2, ’b’: 1}, {’a’: 1, ’b’: 2}, {’a’: 1, ’b’: 3}]

1. Use this package in order to solve n-queens problem.

2. Use this package in order to solve magic square problem.

3. Use this package in order to solve sudoku.

4. Use this package in order to solve Battleship Puzzle, with or without Hints
obtained during the game.

45

Laboratory work 7

Propositional Logic

Knowledge base is a set of sentences in a formal language
Inference is the procedure which derive new sentences from old ones
Logical entailment is a relation between sentences that satisfy the following
condition: a sentence follows 1ogically from another sentence or set of sentences:
KB |= α.

Logics are formal languages used to represent knowledge in order to extract
new conclusions. A logic must define:

• Syntax of the language - all the sentences that are well formed

• Semantics of the language - the truth of each sentence with respect to each
possible world [RN02].

7.1 Propositional Logic

Is the most simple logic. The rules to describe sentences well-formed (syntax)
in Propositional Logic are:

• Atomic sentences P1, P2 - single proposition symbols

• If S is a sentence, ¬S is also a sentence: (negation ¬)

• If S1 and S2 are sentences, S1 ∧ S2 is also a sentence (conjunction ∧)

• If S1 and S2 are sentences, S1 ∨ S2 is also a sentence (disjunction ∨)

• If S1 and S2 are sentences, S1 =⇒ S2 is also a sentence (implication ⇒)

• If S1 and S2 are sentences, S1 ⇔ S2 is also a sentence (biconditional ⇔)

46

The semantics is:
¬S is true iff S is false

S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true
S1 ⇒ S2 is true iff S1 is false or S2 is true

and is false iff S1 is true and S2 is false
S1 ⇔ S2 is true iff S1 =⇒ S2 is true and S2 =⇒ S1 is true

and the truth tables for the connectives is:
P Q ¬ P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

7.1.1 Wumpus world

Read the complete description of the Wumpus world from the chapter Proposi-
tional Logic from the book [RN02]. Here there are some examples of sentences
in propositional Logic:

Pi,j is true if there is a pit in [i, j].
Bi,j is true if there is a breeze in [i, j]

Knowledge base after the agent visits two squares:
¬P1,1

¬B1,1

B2,1

B1,1 ⇔ (P1,2 ∨ P2,1)
B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

Question: From the current Knowledge base, is it
sure that P2,2 is safe? What about P1,2?

In the next two sections, two inference algorithms for answering to this
question are described. Try to apply both of them on the described knowledge
base from the Wumpus World.

7.2 Resolution

7.2.1 Resolution inference rule

Resolution inference rule has as input two clauses which contain two complemen-
tary literals and as output a new clause. The new clause contains all the literals
of the two original clauses except the two complementary literals. It applies
only to disjunctions of literals, therefore before its application, the knowledge
base must be converted to Conjunctive Normal Form (CNF).

47

`1 ∨ · · · ∨ `k, m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

, where `i si mj are complementary literals.

Figure 7.1: Perceptions in wumpus
world after the agent does 5 steps

Resolution inference rule in action
for figure 7.1:

P1,3 ∨ P2,2, ¬P2,2

P1,3

What is the explanation in plain
English?

7.2.2 Conversion to CNF

Please follow the conversion to CNF of the following sentence:

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Remove ⇔, replacing α⇔ β with (α =⇒ β) ∧ (β =⇒ α).

(B1,1 =⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) =⇒ B1,1)

2. Remove ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Introduce ¬ inside the brackets with the use of de Morgan rules and double
negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1)

4. Apply the rules of distributivity of connectives (∨ and ∧):

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1)

48

7.2.3 The resolution algorithm

It uses the principle of proof by contradiction. It proves KB |= α by provid-
ing a contradiction for KB ∧¬α, or in other terms it proves the unsatisfiability
of the knowledge base extended with the negation of the target sentence.

f unc t i on PL−RESOLUTION(KB,α) r e tu rn s t rue or f a l s e
inputs : KB, the knowldge ba s e , a sentence in p r o p o s i t i o n a l l o g i c

α , the query , a sentence in p r o p o s i t i o n a l l o g i c

c l au s e s←the s e t o f c l au s e s in the CNF r e p r e s e n t a t i o n o f KB ∧ ∼ α
new← {}
loop do

f o r each Ci, Cj in c l au s e s do
r e s o l v e n t s←PL−RESOLVE(Ci, Cj)
i f r e s o l v e n t s conta in s the empty c l a u s e then return t rue
new ← new ∪ r e s o l v e n t s

i f new ⊆ c l au s e s then return f l a s e
c l au s e s ← c l au s e s ∪ new

Question: Identify the resolution step for the knowledge base from aima.gui.
demo.logicPLResolutionDemo from aima3e-java. The output can be observed
in figure 7.2.
Observe the main steps of a Knowledge-based agent as they are implemented in
aime3e-java demo:

p r i v a t e s t a t i c PLResolution p l r = new PLResolution ()
.
{

KnowledgeBase kb = new KnowledgeBase () ;
S t r ing f a c t = ” (B11 => ∼P11) & B11) ” ;
kb . t e l l (f a c t) ;
d i s p l a y R e s o l u t i o n R e s u l t s (kb , ”∼B11”) ;
}

.
p r i v a t e s t a t i c void d i s p l a y R e s o l u t i o n R e s u l t s (KnowledgeBase kb ,

S t r ing query) {
PLParser par s e r = new PLParser () ;
. . . p l r . p lRe so lu t i on (kb , pa r s e r . parse (query)) ;

}

Figure 7.2: Aima3e-java: demo for Resolution on Propositional Logic

7.3 Forward chaining algorithm

It applies only on Horn-clauses. A Horn clause is a disjunction of literals of
which at most one is positive. The Horn clause can be written as implications:
the premise is a conjunction of positive literals and the conclusion is a single
positive literal.

49

Definite clauses are Horn clauses with exactly one positive literal. This literal
is the head and the negative literals form the body of the clause ([RN02]).

f unc t i on PL−FC−ENTAILS?(KB, q) r e tu rn s t rue or f a l s e
inputs : KB − the knowledge ba s e , a s e t o f p r o p o s i t i o n a l Horn

c l a u s e s
q − the query , a p r o p o s i t i o n symbol

l o c a l v a r i a b l e s :
count − a t a b l e , indexed by c l a u s e , i n i t i a l l y the number o f

premises
i n f e r r e d − a t a b l e , indexed by symbol , each entry i n i t i a l l y

f a l s e
agenda − a l i s t o f symbols , i n i t i a l l y the symbols known in KB

whi le agenda i s not empty do
p ← POP(agenda)
u n l e s s i n f e r r e d [p] do

i n f e r r e d [p] ← t rue
f o r each Horn c l a u s e c in whose premise p appears do

decrement count [c]
i f count [c]=0 then do

i f HEAD[c]=q then return t rue
PUSH(HEAD[c] , agenda)

r e turn f a l s e

7.4 Problems

7.4.1 Theoretical problems

1. Show the steps of the Forward-chaining algorithm for the following knowl-
edge base. The question is KB |= Q P =⇒ Q
L ∧M =⇒ P
B ∧ L =⇒ M
A ∧ P =⇒ L
A ∧B =⇒ L
A
B

2. Consider the agent from wumpus world did 7 steps and it had the per-
ceptions described in figure 7.3. Write the corresponding knowledge base
and prove that S1,3 is false, where Si,j is true if the square (i, j) is safe.

Figure 7.3: Perceptions in wumpus world after the agent does 7 steps

50

3. Consider the Einstein puzzle. Is it possible to represent it in propositional
logic? if the answer is yes, please give a knowledge base in propositional
logic.

7.4.2 Practical problems

Java

1. Study the following files from aima3e-java:

KBAgent aima.core.logic.propositional.agent.KBAgent
ConvertToCNF aima.core.logic.propositional.visitors.ConvertToCNF

Resolution aima.core.logic.propositional.inference.PLResolution
ForwardChaining aima.core.logic.propositional.inference.PLFCEntails

2. Implement an agent that finds pits in wumpus world (figure 7.4). Use the
demo of Resolution algorithm from aima.gui.demo.logicPLResolutionDemo.
Identify the situations where Forward Chaining is not applicable.

Figure 7.4: Wumpus world

3. Create a knowledge base for the following puzzle (the puzzle was presented
by Raymond Smully in [Smu87]) and try to prove that A is a knave with
one of the two inference algorithms from this lab.

The Island of Knights and Knaves has two types of inhabitants:
knights, who always tell the truth, and knaves, who always lie.
One day, three inhabitants (A, B, and C) of the island met a for-
eign tourist and gave the following information about themselves:

1. A said that B and C are both knights.
2. B said that A is a knave and C is a knight.
What types are A, B, and C?

4. Another puzzle from the same book [Smu87] is about Ork and Bog. Try
to solve it by yourselves and then check if propositional logic is expressive
enough to describe it. It case it is, implement it for the same demo from
aima3e-java.

51

On Ganymede – a satellite of Jupiter – there is a club known as
the Martian-Venusian Club. All members are either from Mars or
from Venus, although visitors are sometimes allowed. An earth-
ling is unable to distinguish Martians from Venetians by their
appearance. Also, earthlings cannot distinguish either Martian or
Venusian males from females, since they dress alike. Logicians,
however, have an advantage, since the Venusian women always
tell the truth and the Venusian men always lie. The Martians
are the opposite; the Martian men tell the truth and the Martian
women always lie.
One day a visitor met two Club members, Ork and Bog, who made
the following statements:
1. Ork: Bog is from Venus.
2. Bog: Ork is from Mars.
3. Ork: Bog is male.
4. Bog: Ork is female.
Where are Ork and Bog from, and are they male or female?

52

Laboratory work 8

Test your AI knowledge
with AI games

8.1 Warlight AI Challenge

Formerly known as Conquest, Warlight http://theaigames.com/competitions/
warlight-ai-challenge is a competition of bots playing a Risk-like game.

You are given a starting package and you have to create a bot for the game.
The support bots are written in C, C#, C++, Clojure, Go, Haskell, Java,
JavaScript, Perl, PHP, Prolog, Python, Ruby, Scala and Tcl.

Figure 8.1: Warlight competition

An example of a bot that tries to place 1 army on each region of the map and
then try to attack/transfer 1 army from each region to the next neighbouring
region is given in the following lines:

import java . u t i l . Scanner ;

pub l i c c l a s s MyBot {
p r i v a t e Scanner scan = new Scanner (System . in) ;
pub l i c void run ()
{

whi le (scan . hasNextLine ()) {
St r ing l i n e = scan . nextLine () ;

53

i f (l i n e . l ength () == 0) {
cont inue ;

}
St r ing [] par t s = l i n e . s p l i t (” ”) ;
i f (par t s [0] . equa l s (” p i c k s t a r t i n g r e g i o n s ”)) {

System . out . p r i n t l n (” g ive me randomly”) ;
}
e l s e i f (par t s . l ength == 3 && part s [0] . equa l s (”go”)) {

St r ing output = ”” ;
i f (par t s [1] . equa l s (” p l a c e a rmi e s ”)) {

f o r (i n t i =1; i <=42; i++) {
output . concat (”myBot p l a c e a rmi e s ” + i + ”

1 , ”) ;
}

}
e l s e i f (par t s [1] . equa l s (” attack / t r a n s f e r ”)) {

f o r (i n t i =1; i <=41; i++) {
output . concat (”myBot attack / t r a n s f e r ” + i

+ ” ” + i+1 + ” 1 , ”) ;
}

}
System . out . p r i n t l n (output) ;

}
}

}

pub l i c s t a t i c void main (S t r ing [] a rgs) {
(new MyBot ()) . run () ;

}
}

8.1.1 Warlight AI Challenge 2

Is the successor to Warlight AI Challenge http://pub.theaigames.com/competitions/
warlight-ai-challenge-2. The most important doiffernce is that the map are
randomly generated.

8.2 Texas Hold’em

Is a poker variant, and the challenge is hosted on theaigames.com/competitions/.
The supported languages are C, C#, C++, Clojure, Go, Haskell, Java, JavaScript,
PHP, Perl, Prolog, Python, Ruby, Scala and Tcl, from which, at the ongoing
challenge, the following languages are used Java, Python, C#, C++, JavaScript,
Go, Scala.

54

Figure 8.2: TexasHold’em competition

8.3 CODECUP 2015

The game for the 2015 edition is Ayu 8.3. The bot can be also tested on local
competitions supported by Caia, not only on the official site www.codecup.nl/.
Programming languages are Pascal, C, C++, Java, Python, Python3, Haskell,
Javascript.

Figure 8.3: Ayu game from Codecup 2015

55

8.4 Battlecode

It is MIT’s competition, http://www.battlecode.org/, real-time strategy game.
Two teams of robots manage resources and attack each other with different kinds
of weapons. Each robot functions autonomously; under the hood it runs a Java
virtual machine loaded up with its team’s player program. The required knowl-
edge for this game exceeds the studied algorithms, since the robots in the game
must communicate and work together to accomplish their goals.

Figure 8.4: Battlecode game

Example of structure of simple Robot player is given bellow:

import ba t t l e code . common . ∗ ;
import java . u t i l . ∗ ;

pub l i c c l a s s RobotPlayer {
s t a t i c RobotContro l l e r rc ;
s t a t i c Team myTeam;
s t a t i c Team enemyTeam ;
s t a t i c i n t myRange ;
s t a t i c Random rand ;
s t a t i c D i r e c t i on [] d i r e c t i o n s = {Dir e c t i on .NORTH, Di r e c t i on

.NORTH EAST, D i r e c t i on .EAST, D i r e c t i on .SOUTH EAST,
D i r e c t i on .SOUTH, Di r e c t i on .SOUTH WEST, D i r e c t i on .WEST,
D i r e c t i on .NORTH WEST} ;

pub l i c s t a t i c void run (RobotContro l l e r tomato ju ice) {
rc = tomato ju ice ;
rand = new Random(rc . getID ()) ;

myRange = rc . getType () . attackRadiusSquared ;
MapLocation enemyLoc = rc . senseEnemyHQLocation () ;
D i r e c t i on l a s t D i r e c t i o n = n u l l ;
myTeam = rc . getTeam () ;
enemyTeam = myTeam. opponent () ;
RobotInfo [] myRobots ;

whi l e (t rue) {
t ry {

rc . s e t I n d i c a t o r S t r i n g (0 , ” This i s
an i n d i c a t o r s t r i n g . ”) ;

r c . s e t I n d i c a t o r S t r i n g (1 , ” I am a ”
+ rc . getType ()) ;

} catch (Exception e) {

56

System . out . p r i n t l n (”Unexpected
except ion ”) ;

e . pr intStackTrace () ;
}

i f (r c . getType () == RobotType .HQ) {
t ry {

i n t f a t e = rand . next Int
(10000) ;

myRobots = rc .
senseNearbyRobots
(999999 , myTeam) ;

i n t numSoldiers = 0 ;
i n t numBashers = 0 ;
i n t numBeavers = 0 ;
i n t numBarracks = 0 ;

. . . .
}

// This method w i l l a t t a c k an enemy in s i gh t , i f t he re i s
one

s t a t i c void attackSomething () throws GameActionException {
RobotInfo [] enemies = rc . senseNearbyRobots (myRange ,

enemyTeam) ;
i f (enemies . l ength > 0) {

rc . a t tackLocat ion (enemies [0] . l o c a t i o n) ;
}

}

// This method w i l l at tempt to move in Direc t ion d (or as
c l o s e to i t as p o s s i b l e)

s t a t i c void tryMove (D i r e c t i on d) throws GameActionException
{

.
}

// This method w i l l at tempt to spawn in the g iven d i r e c t i on
(or as c l o s e to i t as p o s s i b l e)

s t a t i c void trySpawn (Di r e c t i on d , RobotType type) throws
GameActionException {

.

}

// This method w i l l at tempt to b u i l d in the g iven d i r e c t i on
(or as c l o s e to i t as p o s s i b l e)

s t a t i c void t ryBui ld (D i r e c t i on d , RobotType type) throws
GameActionException {

.
}

}

57

Bibliography

[aim] Aima3e-java https://github.com/aima-java/aima-java.

[BG01] Blai Bonet and Hctor Geffner. Planning as heuristic search. Artificial
Intelligence, 129(12):5 – 33, 2001.

[BR75] James R Bitner and Edward M Reingold. Backtrack programming
techniques. Communications of the ACM, 18(11):651–656, 1975.

[Bré79] Daniel Brélaz. New methods to color the vertices of a graph. Commun.
ACM, 22(4):251–256, April 1979.

[DK01] Minh Binh Do and Subbarao Kambhampati. Planning as constraint
satisfaction: Solving the planning graph by compiling it into {CSP}.
Artificial Intelligence, 132(2):151 – 182, 2001.

[Gin11] Matthew L Ginsberg. DR. FILL: crosswords and an implemented
solver for singly weighted CSPs. Journal of Artificial Intelligence Re-
search, pages 851–886, 2011.

[Hof01] Jrg Hoffmann. Ff: The fast-forward planning system. AI magazine,
22:57–62, 2001.

[pac] Pac-man projects http://ai.berkeley.edu/project_overview.

html.

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (2nd Edition). Prentice Hall, December 2002.

[Smu87] Raymond M. Smullyan. Forever Undecided: A Puzzle Guide to Gdel.
Oxford University Press, 1987.

[ZL05] Lixi Zhang and SimKim Lau. Constructing university timetable using
constraint satisfaction programming approach. In Proceedings of the
International Conference on Computational Intelligence for Modelling,
Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce Vol-2 (CIMCA-
IAWTIC’06) - Volume 02, CIMCA ’05, pages 55–60, Washington, DC,
USA, 2005. IEEE Computer Society.

58

	NOTES FOR INTRODUCTION TOARTIFICIAL INTELLIGENCE
	Preface
	Contents
	List of Figures
	Laboratory work 1 Working Environment
	1.1 AIMA3e-Java project
	1.2 Pac-Man projects
	1.3 Evaluation of your activity

	Laboratory work 2 Simple agents
	2.1 Problems
	2.1.1 Theoretical problems
	2.1.2 Practical problems

	Laboratory work 3 Search problems.Uninformed search
	3.1 Boat crossing puzzle
	3.2 Tree search
	3.2.1 Uninformed search

	3.3 Problems
	3.3.1 Theoretical problems
	3.3.2 Practical problems

	Laboratory work 4 Informed search
	4.1 Heuristic based search
	4.2 Local search
	4.3 Problems
	4.3.1 Theoretical problems
	4.3.2 Practical problems

	Laboratory work 5 Adversarial search
	5.1 MiniMax search
	5.2 Alpha-beta pruning
	5.3 Cut-o� test
	5.4 Games that include an element of chance
	5.5 Problems
	5.5.1 Theoretical problems
	5.5.2 Practical problems

	Laboratory work 6 Constraint satisfactionproblems
	6.1 Backtracking search and improvements
	6.1.1 Backtracking search
	6.1.2 Minimum remaining values
	6.1.3 Least constraining value
	6.1.4 Forward checking
	6.1.5 Arc consistency

	6.2 Local search: minimum number of conicts
	6.3 Use of CSPs
	6.4 Problems
	6.4.1 Theoretical problems
	6.4.2 Practical problems

	Laboratory work 7 Propositional Logic
	7.1 Propositional Logic
	7.1.1 Wumpus world

	7.2 Resolution
	7.2.1 Resolution inference rule
	7.2.2 Conversion to CNF
	7.2.3 The resolution algorithm

	7.3 Forward chaining algorithm
	7.4 Problems
	7.4.1 Theoretical problems
	7.4.2 Practical problems

	Laboratory work 8 Test your AI knowledgewith AI games
	8.1 Warlight AI Challenge
	8.1.1 Warlight AI Challenge 2

	8.2 Texas Hold'em
	8.3 CODECUP 2015
	8.4 Battlecode

	Bibliography

