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COMPUTER ARCHITECTURE                                                                          LABORATORY GUIDE 

 
 

Preface   
 
 
 This laboratory guide is intended for the 2nd year undergraduate students of the 
Automation and Computer Science Faculty, but can also be used by anyone who 
wants to grasp the basics of Computer Architecture. This laboratory guide is structured 
in 12 laboratory tutorials and 7 appendices. Each laboratory covers a part of the MIPS 
processor design process and the appendices provide more details and 
implementation examples for different hardware architectures. The reader is 
encouraged to go through the laboratories in the presented order, because each 
laboratory contains elements studied, designed and implemented in the previous 
ones.  
 

This is the first printed edition of the Computer Architecture Laboratory Guide 
and consists in the resulting efforts of the authors over the past years. Special thanks 
goes to Professor Gheorghe Farkas who was our mentor in the field of Computer 
Architecture and had a great contribution in the teaching of this subject for more than 
10 years.  

 
The students from the Technical University of Cluj-Napoca, Computer Science 

field of study, will use this laboratory guide for fulfilling their knowledge about 
Computer Architecture. The laboratory guide is very tightly connected to the Computer 
Architecture lectures, so the attendance at the lectures is highly encouraged for a 
better understanding of the treated subjects. Each chapter of this laboratory guide 
starts with a short presentation of the necessary theoretical concepts, followed by 
practical design and implementation approaches. The laboratory assignments that a 
student must do are found at the end of each laboratory. The students are encouraged 
to carefully read all the laboratory material before attending the laboratory class, in 
order to be familiar with the tasks that must be designed and implemented throughout 
the laboratory. The first laboratories are meant for introducing the students to the 
VHDL programming language and the FPGA boards used for development and 
testing. Then, the difficulty of the laboratories increases gradually until the students 
design and implement a complete single-cycle MIPS processor and then transform 
this processor into a pipeline one. In the last laboratory works, the students are 
required to add input / output functionalities to the processor by means of a serial 
communication interface.  
 
 

The authors wish you a pleasant reading!  
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CA Laboratory general objectives 
 
 
 
 The laboratory exercises and homework are mandatory components of the 
Computer Architecture course. The main objective of the laboratory exercises is the 
developing of synthesizable VHDL models of simple MIPS CPUs using the Xilinx ISE 
tools and Digilent Development Boards (DDB).  
 
The main laboratory themes are: 

• Design with Xilinx ISE tools and Digilent Development Boards.  
• Design synthesizable VHDL hardware components implemented and tested on 

the Digilent Development Boards. 
• Understand the architecture of a single-cycle / multi-cycle / pipeline MIPS 

processor. 
• VHDL design of MIPS single-cycle / multi-cycle / pipeline CPUs implemented 

and tested on Digilent Development Boards. 
• Input / output serial communication for the single-cycle / multi-cycle / pipeline 

processors. 
  
 The associated homework helps to prepare the laboratory exercises and 
improve the specific problem solving ability of the students. 

Some extracts of the recommended reading assignments are included in the 
laboratory materials, the original documents and VHDL examples are available on the 
web site. 
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Laboratory 1 
 

1. Introduction to the Software/Hardware development 
environment for VHDL based designs. 

 
 

1.1 Objectives 
 
Familiarize the students with  

• Xilinx ISE WebPack CAD tools – ISE Quick Start Tutorial 
• Xilinx® Synthesis Technology (XST) XST User Guide  
• Xilinx Spartan 3E FPGA family 
• Digilent Development Boards (DDB) 
 Digilent Basys Board – Reference Manual 
 Digilent Basys 2 Board – Reference Manual 

 
1.2 Necessary resources (the kits are available and installed 

on the workstations from the laboratory) 
 
Digilent Adept Software: download page   

 
Digilent Basys Board:  

• Reference Manual  
• Schematic 

Xilinx ISE WebPACK is a part of the Xilinx Design Suite, ISE Design Suite – 14.7 
Full Product Installation 
 
Xilinx ISE Software manual:  

• XST User Guide  

 

Online Help for VHDL programming  

http://vhdl.renerta.com/  
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1.3 Basic Components  
 
 

1.3.1. Logic Gates 
 

      
NOT AND OR NAND NOR XOR 

Figure 1.1: Logic Gates Diagrams 
 

A NOT 
0 1 
1 0 

 
A B AND OR NAND NOR XOR 
0 0 0 0 1 1 0 
0 1 0 1 1 0 1 
1 0 0 1 1 0 1 
1 1 1 1 0 0 0 

Table 1.1: Logic Gates Truth Tables 
 
 

1.3.2. Latches 
 
A latch is an electronic circuit which has two stable states and thereby can store one 
bit of information. XST can recognize latches with asynchronous set/reset control 
signals. Latches can be described in VHDL by using: processes or concurrent 
statement assignment. XST does not support wait statements (VHDL) for latch 
descriptions.  

 
Figure 1.2: Latch with Positive Gate 

 
IO Pins Description 
D Data Input 
G Positive Gate 
Q Data Output 

Table 1.2: Latch with Positive Gate Pin Description 
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1.3.3. Flip-Flops 
 
A flip-flop is an electronic circuit that has two stable states and is capable of serving 
as one bit of memory. A flip-flop is usually controlled by one or two control signals 
and/or a gate or clock signal. XST recognizes flip-flops with the following control 
signals: asynchronous Set/Reset, synchronous Set/Reset or clock enable.  
 

 
Figure 1.3: Flip-flop with Positive Edge Clock  

 
IO Pins Description 
D Data Input 
CLK Positive Edge Clock 
Q Data Output 

Table 1.3: Flip-Flop with Positive-Edge Clock Pin Descriptions 
 
When using VHDL for a positive-edge clock, instead of using: 
 if (C'event and C='1') then 
you can also use: 
 if rising_edge(C) then 
 

1.3.4. Multiplexers 
 
A multiplexer or mux is a device that performs multiplexing; it selects one of many 
analog or digital input signals and outputs that into a single line. A multiplexer of 2n 
inputs has n select bits, which are used to select which input line to send to the output. 
XST supports different description styles for multiplexers (MUXs), such as If-Then-
Else or Case. 

 
Figure 1.4: 4-to-1 1-Bit MUX  
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IO Pins Description 
A, B, C, D Data Inputs 
S Mux Selector 
O Data Output 

Table 1.4: 4-to-1 1-Bit MUX Pin Descriptions 
 

1.3.5. Decoders 
 
In digital electronics a decoder is a multiple-input, multiple-output logic circuit that 
converts coded inputs into coded outputs, where the input and output codes are 
different. E.g.: n-to-2n decoders, BCD decoders. 
 

 
Figure 1.5: 3-to-8 Decoder  

 
IO Pins Description 
S Selector 
RES Data Output 

Table 1.5: 3-of-8 Decoder Pin Descriptions 
 

1.3.6. Counters 
 
In digital logic and computing, a counter is a device which counts the number of times 
a particular event or process has occurred, often in relationship to a clock signal. XST 
recognizes counters with the following control signals: asynchronous Set/Reset, 
synchronous Set/Reset, asynchronous/synchronous Load (signal or constant or both), 
clock enable, modes (up, down, up/down) or a mixture of all.  
 

 
Figure 1.6: 4-Bit Up Counter with Asynchronous Reset  
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IO Pins Description 
CLK Positive Edge Clock 
CLR Asynchronous Reset (Active High) 
Q Data Output 

Table 1.6: 4-Bit Up Counter with Asynchronous Reset Pin Descriptions 
 
 

1.4 Laboratory Assignments  
 
Note: If necessary, you can consult the online help for VHDL indicated in the previous 
section. 
 

1.4.1. Implement a simple VHDL design using Xilinx’s ISE 14.7 and the DDB 
by carefully and completely covering the tutorial described in Appendix 1. You are also 
encouraged to read Appendix 2, which covers the description of basic digital 
components.  
 

1.4.2. Add an 8-bit up-counter to your “test_env” design, by describing (in one 
process) the behavior of the counter in the “test_env” architecture. Try to control the 
counting process from a digital button present on the board. 

 
Start by declaring an 8-bit signal (STD_LOGIC_VECTOR) in the architecture, before 
the begin statement.  
 
If necessary (until you regain your full capacity in the VHDL programming language), 
use the Language Templates (Appendix 1) for extracting the behavioral description of 
the counter. 
 
Use one of the buttons from the entity’s ports in order to control the counting process, 
as an enable or count-up signal.    
 
Display the counter values on the 8 LEDs available on the board.  
 
Follow the steps in Appendix 1 in order to generate the bit file and re-program the 
Basys board. Control the counter from the button.  
 
…Is there any problem? 
 

1.4.3. Synchronized (1 clock period) mono pulse generator (MPG) 
 
At this point, you have to work in the same “test_env” project. 
 
In the future, you will need step-by-step control of sequential circuits, to trace and test 
the required data and control flow of your designs. 
The necessary circuit that generates an ENABLE signal once per button push is given 
in the next figure. 
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Figure 1.7: Synchronized (1 clock period) mono pulse generator 

 
The role of the first register together with the 16-bit counter is to provide a delay 
necessary to de-bounce the buttons (physically worn out and / or low quality buttons). 
According to the “degradation” state of the button, you may have to increase the size 
of this 16-bit counter in order to increase the sampling interval for the button signal.  
 
The mono pulse generator (MPG) will be implemented in a new entity / new file (menu 
Project\New Source) and will be used in the “test_env” by declaring as a component 
in the section for declaring signals and by instantiating this component with port map 
in the architecture body after begin. 
 
The hardware components that implement the MPG (counter, registers, and logic 
gates) will be implemented using the behavioral description: by declaring the 
necessary signals and by describing the functionality using processes and concurrent 
assignments in the MPG architecture.  
 
Work to do 

a. Draw a timing diagram for the above circuit (paper and pencil / blackboard). 
b. The BTN input is a signal from one of the DDB buttons (BTN0), CLK is the clock 

signal of the DDB (50 MHz, you can verify on the board that the jumper is not 
set for 25 MHz or 100 MHz).  

c. Write and check the VHDL code for this circuit. 
d. Include the MPG component in the test_env. 
e. Use the ENABLE signal as count up for the previously implemented 8-bit 

counter, from section 3.2. You need to add the condition that ENABLE equals 
‘1’ where you test the count up condition for the 8-bit counter.  
 

Synthesize your design and do not forget about View RTL Schematic… 
 
Load your new design on the Basys board.  
 

1.4.4. Create a new project, for example test_new, using the same ports as for 
the first project. You have to go again over the steps described in Appendix 1, without 
adding anything to the architecture test_new. Now implement the following circuit in 
the test_new architecture.  
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Figure 1.8: Problem 4.4 Schematic 

 
You need to add the MPG source file to the new project (menu Project\Add Copy of 
Source). Import the MPG with component / port map in the test_new architecture and 
write the code (only processes) for the rest of the digital components, without any 
additional entities. Add a 3-bit counter and a 3-to-8 decoder, using only signals 
declared in the test_new architecture and concurrent processes / signal assignments.  
 
Do not forget about View RTL Schematic… 
 
Load the design on the Basys board. 
 

1.4.5. Redesign the mono pulse generator in order to create a MPG for all the 
4 buttons on the DDB. 
 
Show all your designs to the TA 
 
 
Homework 

a. Finish all the laboratory assignments. 
b. Re-read the Laboratory regulations, the tutorial from Appendix 1 – starting with 

laboratory 2 these concepts are considered learned. Be attentive about the 
aspects presented in the tutorial that were not, yet, relevant for this first 
designs. They will be important in the future 

c. (this homework is considered implicit for the next labs) Read the material for 
the next laboratory (it is available on the web site). 

 
 

1.5 References 
 
[1] ISE Quick Start Tutorial (www.xilinx.com) 
[2] Xilinx® Synthesis Technology (XST) User Guide 
[3] Digilent Basys Board – Reference Manual 
[4] Digilent Basys 2 Board – Reference Manual 
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Laboratory 2 
 

2. Extending your design: Seven Segment display 
 
 

2.1 Objectives 
 
Design, implement and test  

• The Seven Segment Display  
• A simple Arithmetic Logic Unit (ALU)  

 
Deeper Knowledge of:  

• Xilinx® ISE Webpack CAD tools 
• Xilinx® Synthesis Technology (XST) XST User Guide 

 Chapter 2: XST HDL Coding Techniques 
 Chapter 6: XST VHDL Language Support 

• Digilent Development Boards (DDB) 
 Digilent Basys Board – Reference Manual 

 
2.2 4-Digit Seven Segment Display 

 
The Basys board comes equipped with a 4-digit Seven Segment Display (SSD). This 
interface uses seven LEDs for each digit; each digit is enabled by an anode signal. All 
the connections (7 common cathode and 4 distinct anode signals) to the SSD interface 
are active low. The cathode signals control the LEDs of the digit to be displayed, which 
is selected by the active anode signal.  

 
Figure 2.1: SSD Timing Diagram [3], [4] 

 
In order to display 4 different digits on the SSD, you have to implement a circuit that 
sends the digits to the cathode signals of the SSD according to the timing diagram 
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presented in Figure 2.1. The refresh period is chosen in order to accommodate the 
human eye (at least 60 Hz refresh rate) with the cycling display of the digits (actually, 
only one digit is displayed at one time). Read the section about seven segment display 
methodology in the Basys boards Reference Manual [3], [4]. 
 
The figure below describes a possible implementation of the seven-segment display 
circuit. The inputs are 4 4-bit signals and the clock signal; the outputs are represented 
by the anode (an) and cathode (cat) signals (active low). 
 

 
Figure 2.2: Schematic of the SSD circuit 

 
 

2.3 General laboratory design for the Basys boards 
 
Once you will complete assignment 2.5.1, all your future designs for this laboratory 
will resemble the next figure. This design will provide the necessary interfaces with 
the Basys boards. All of your circuit descriptions (behavioral or component 
instantiation) will be placed inside the “cloud”.  
 

 
Figure 2.3: Laboratory Design 
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2.4 Simple ALU operations 
 
 
Each of the following simple ALU operations can be implemented in VHDL in 
one line of code.  You can also use processes for your implementations. 
 

2.4.1 Adders 
 
An adder is a digital circuit that performs addition of numbers. In modern computers, 
adders reside in the arithmetic logic unit (ALU) where other operations are performed. 
The equations for 1-bit full adder are given below:  
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥 𝐵𝐵 𝑥𝑥𝑥𝑥𝑥𝑥 𝐶𝐶𝐶𝐶𝐶𝐶 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵)𝑜𝑜𝑜𝑜 (𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶) 𝑜𝑜𝑜𝑜 (𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶) 
 

 
Figure 2.4: 8-Bit Adder with Carry in and Carry out 

 
IO Pins Description 
A, B Add Operands 
CI Carry In 
CO Carry Out 
SUM Add Result  

Table 2.1: 8-Bit Adder with Carry In and Carry Out Pin Descriptions 
 

Implementation in VHDL – Use simple assignment:  
 

SUM <= A + B; 
 

If the input signals are extended by at least one bit, the Xilinx Synthesizer takes care 
of the carry input and output signals. 
 

2.4.2 Subtractors 
 
A subtractor is a digital circuit that performs subtraction. In 2’s complement subtraction 
is the same as adding the negative of the number and setting the Carry in to 1.  
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𝐴𝐴 − 𝐵𝐵 = 𝐴𝐴 +  𝐵𝐵 + 1 
 
Implementation in VHDL – Use simple assignment: 

 
DIFF <= A – B; 

2.4.3 Shifters 
 
A shifter is a digital circuit that can shift a word of data by a specified number of bits. 
There are two kinds of shifters: 

• logical shifters – value shifted in is always 0 
• arithmetic shifters – on right shifts sign extend 

 
Logical shifter Arithmetic shifter 

 
 

Figure 2.5: Logical and Arithmetic Shift Operations 
 
Xilinx defines a shifter as a combinatorial circuit with two inputs and one output.  
 

 
Figure 2.6: Shifter  

 
IO Pins Description 
DI Data Input 
SEL Shift Distance Selector 
DO Data Output 

Table 2.2: Shifter Pin Description 
 
Implementation in VHDL – For simple shifters when the shift amount is fixed use signal 
concatenation. Example << 2:   

 
DO(7 downto 0) <= DI(5 downto 0) & “00”; 

 
A possible implementation for a combinational shifter with a variable shift amount 
(SEL) is presented in appendix 2. 
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2.4.4 Zero Detector 

 
The n-bit zero detector is an n-bit input, 1-bit output NOR circuit, used in 
Arithmetic/Logic units especially for condition detection for Branch on Equal 
instructions. 
 
Implementation in VHDL: use a simple line of code (mux 2:1 type): 

 
Zero <= ‘1’ when DI=0 else ‘0’; 

 
2.4.5 Sign/Zero Extender 

 
The Sign and Zero extender for MIPS CPU are used in arithmetical/logical operations 
in which the 16-bit immediate value is implied. The extension is necessary because 
the ALU works on 32-bit operands, and the other involved operand has 32 bits.  
 
Example: ADDI (ADD Immediate) instruction, memory access, branch address 
computation, logical operations with immediate, etc. 
 
Implementation in VHDL: Use concatenation with zeros for the Zero Extension circuit 
and with the Sign Bit for the Sign Extension circuit. 
 

2.4.6 Comparators 
 
A comparator is a digital circuit that compares two numbers in binary form and 
generates a one or a zero at its output depending on whether they are the same or 
not. A comparator can be simulated by subtracting the two values (A & B) in question 
and checking if the result is zero. 
 

 
Figure 2.7: Unsigned 8-Bit Equal Comparator 

 
IO Pins Description 
A, B Comparison Operands 
CMP Comparison Result 

Table 2.3: Unsigned 8-Bit Greater or Equal Comparator Pin Description 
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Implementation in VHDL – ALU performs subtraction between the two operands and 
the Zero Detection circuit is used over the ALU result. Another approach is to use 
the implementation provided in the Zero Detector: 
 

CMP <= ‘1’ when A = B else ’0’; 
 
 

2.5 Laboratory Assignments  
 

2.5.1 4-Digit Seven Segment Display 
 
You have to work in the previous design from laboratory 1 (test_env project). Design 
and implement a new component (a separate entity) for the 4-digit seven-segment 
display interface (see Figure 2.2 for details). Use only processes to implement the 
counter and the two multiplexers, and use the Language Templates to 
implement the “HEX TO 7 SEG DCD” (the component that transforms a 4-bit 
hexadecimal digit to its corresponding seven-segment LEDs representation).  

 
Declare the component in the test_env project and instantiate it in the test_env 
architecture. Connect a 16-bit counter to the 4 input data signals of the seven-segment 
display. The counter is incremented when a button is pressed (use the MPG 
component to validate the increment of the counter). Your final design must resemble 
Figure 2.3.  
 

2.5.2 Simple Arithmetic Logic Unit Circuit  
 
Using the previous design (containing the MPG and the SSD), implement a simple 
ALU circuit with the following functions: ADD, SUB, SHIFT LEFT 2, and SHIFT RIGHT 
2.  
 
The results (16-bit) of the ALU operations are displayed on the SSD interface 
(Digit3...Digit0). Use a 2-bit counter (controlled by the MPG) to select the desired ALU 
operation.  
 
The input operands for the ALU are the switches of the Basys board. The ALU design 
is presented in the figure below (describe it in the architecture of the test_env entity, 
no other components are required, use only internal signals, processes, and 
concurrent assignments). 
 

16 
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Figure 2.8: Simple ALU design. 

 
2.5.3 Homework: Combinational Shifter with Variable Shift Amount 

 
Read appendix 2 at the end of this laboratory guide. Draw (paper and pencil) the 
diagram of this shifter (described in the example from the appendix). Implement the 
circuit on the Basys board.  
 
 

2.6 References 
 
[1] XST User Guide, Chapter 2: XST HDL Coding Techniques 
[2] XST User Guide, Chapter 6: XST VHDL Language Support 
[3] Digilent Basys Board – Reference Manual 
[4] Digilent Basys 2 Board – Reference Manual 
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Laboratory 3  
 

3. Memory Components 
 
 

3.1 Objectives 
 
Design, implement and test  

• Register File 
• Read only Memories – ROMs 
• Random Access Memories – RAMs 

Familiarize the students with  
• Xilinx® ISE Webpack  
• Xilinx® Synthesis Technology (XST) XST User Guide 

 Chapter 2: XST HDL Coding Techniques 
 Chapter 6: XST VHDL Language Support 

• Digilent Development Boards (DDB) 
 Digilent Basys Board – Reference Manual 
 Digilent Basys 2 Board – Reference Manual 

 
 

3.2 Theoretical Background 
 

3.2.1. Register File 
 
The Register file is the central storage of a Microprocessor. 
 

 
Figure 3.1: A Register File with 2 read ports and 1 write port 
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Most CPU operations involve using or modifying data stored in the register file. Since 
the register file runs at the full speed of the processor, it must be small and fast. The 
real register file is usually implemented as a small, fast SRAM memory with multiple 
accesses. 
 
A register file (specific for MIPS) has two read addresses and one write address. The 
registers corresponding to the locations indicated by the two read addresses (Read 
Address 1 & Read Address 2) are delivered at the two output ports (Read Data 1 & 
Read Data 2). The data provided at the write data input port is written in the register 
indicated by the write address (Write Address, when the Write control signal 
(RegWrite) is asserted. The read operations are asynchronous, while the write 
operation is synchronous. Therefore, the register file supports 2 reads and one write 
in each clock cycle.  
 
Appendix 3 presents a possible register file VHDL implementation. 
 

3.2.2. ROMs and RAMs 
 
Read-only memory (ROM) is a class of storage media used in computers and other 
electronic devices; they allow only read operations in usual operation mode. Random-
access memories (RAM) are a form of computer data storage implemented as 
integrated circuits and allows the stored data to be accessed in any order; both read 
and write operations are permitted. These two memory types are essential for any 
microprocessor.  
 
An FPGA device comes equipped with a certain amount of BRAM (Block RAM). The 
BRAM can be configured as either a ROM or a RAM. Depending on how you write the 
VHDL code, XST either can infer your RAM design as a distributed memory or directly 
mapped onto a Block RAM block. Distributed memories are built with registers, while 
Block RAM memories are mapped to available BRAM cell. Distributed RAMs occupy 
more space inside the FPGA and usually decrease the clock cycle rate, while BRAMs 
provide more space for auxiliary logic inside the FPGA. The type of inferred RAM 
depends on its description: 

• RAM descriptions with an asynchronous read generate a distributed RAM 
macro.  

• RAM descriptions with a synchronous read generate a block RAM macro. See 
appendix 4 for an implementation example. 

 
XST covers the following RAM characteristics:  

• Synchronous write 
• Write enable 
• RAM enable 
• Asynchronous or synchronous read 
• Reset of the data output latches 
• Data output reset 
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• Single, dual or multiple-port read 
• Single-port/Dual-port write 
• Parity bits 
• Block RAM with Byte-Wide Write Enable 
• Simple dual-port BRAM 

There are three possible modes of implementing a synchronous RAM [1], [2]: write-
first, read-first and no change. These modes are reflected in the behavioral description 
of the RAM (VHDL code) regarding the read/write priority or order of operation. A 
possible “no change” implementation is presented in appendix 4.  
 
To Do 
 

• Use the language templates: VHDL  Synthesis Constructs  Coding 
Examples  RAM and see the differences in behavioral description between a 
distributed RAM and a Block RAM. 

• Use the language templates: VHDL  Synthesis Constructs  Coding 
Examples  RAM  Block RAM  Single port in order to compare the read-
first and write-first implementations. 

 
3.2.3. Declaring an array in VHDL 

 
An example of declaration and initialization for an array used in ROMs, RAMs and 
Register Files is presented below. First, we describe an array type having N locations 
of M bits each: 
 
type <arr_type> is array (0 to N-1) of std_logic_vector(M-1 downto 0); 
 
Next, we declare a signal of the same type as the previously declared one: 
 
signal r_name: <arr_type>; 
 
If one implements a ROM then the signal must be initialized. Initializations for the 
RAMs and Register File are also possible. 
 
signal r_name: <arr_type> := ( 
“00…0”, -- M bits, use hexadecimal representation when possible 
“00…1”, -- 
others => “00…0” 
); 
 

3.3 Laboratory Assignments  
 
At this time, it is mandatory to have a functional “test_env” project that resembles with 
the description from the previous laboratory (laboratory 2: section 3  figure 3). Your 
design must contain the 4-bit Mono Pulse Generator (MPG) and 4-digit Seven 
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Segment Display (SSD) components instantiated in the top-level entity of your 
“test_env” project; here you will write the code for this laboratory.  
 

Use View RTL Schematic after each successful synthesis of your project. You 
can also view the implemented components in the Design Summary (see 
laboratory 1).  

 
3.3.1. ROM Implementation 

 
Include a 256 x 16 bits ROM memory in the test_env project (do not declare a new 
entity). Initialize the ROM with some arbitrarily chosen values (see 2.3). Use an 8-bit 
counter to generate the addresses for the ROM. The counter is controlled by the MPG 
component. The contents of the ROM is displayed on the Seven Segment Display. 
The behavior of the ROM is asynchronous – use only one line of code. The design is 
depicted in the figure below: 
 

 
Figure 3.2: Simple ROM design 

 
Test on the Basys board! 
 
 

3.3.2. Register File Implementation 
 
Do not delete the previously written code! Use comments if necessary! 
 
Design and implement a 16x16-bit Register File on the Basys board (use a new 
component for the register file, in the “test_env” project). Initialize the Register File 
with some values. The design is presented in Figure 3.3.  
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Figure 3.3: Simple Register File Design 
Use a counter to generate the read and write address of the Register File. The counter 
is controlled by a MPG component. The outputs of the Register File are added 
together; the result of addition is displayed on the Seven Segment Display and written 
back to the Register File. You have to use another output of the MPG component to 
enable the write signal of the Register File (RegWr). The design should resemble a 
multiply by 2 circuit (a + a = 2a). 
 
Add a synchronous reset mechanism for the counter that generates the Register File’s 
address such that after going through a few of the Register File’s locations you can 
reset the address counter (return to address 0) and check that the written results in 
Register File are correct. 
 
Test on the Basys board! 
 
Add some auxiliary components/elements to the design in order to use only one button 
for the counter increment and RegWr signal. The new circuit should work in the same 
manner (the results should be the same as in the previous case) and you must see 
the correct results of addition on the seven-segment display.  
 
You can add the necessary circuit in order to display all the intermediate signal values 
on the SSD (Hint: use switches). 
 
Test on the Basys board! 
 
 

3.3.3. RAM Design 
 
Replace the Register File previously designed with a RAM memory. Use a shift left 2 
operation instead of the addition (Figure 3.3, shift is implemented with concatenation). 
Use only one address for the RAM. Use a write-first mode of implementation.  
 
 

3.4 References 
 
[1] XST User Guide, Chapter 2: XST HDL Coding Techniques 
[2] XST User Guide, Chapter 6: XST VHDL Language Support 
[3] XAPP463 (v2.0) March 1, 2005 Using Block RAM in Spartan-3 Generation FPGAs 
[4] Digilent Basys Board – Reference Manual 
[5] Digilent Basys 2 Board – Reference Manual 
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Laboratory 4 
 

4. Single-Cycle MIPS CPU Design: 16-bits 
version – One clock cycle per instruction 

 
 

4.1 Objectives 
 
Study, design, implement and test  

• Single-Cycle MIPS CPU 
 

Familiarize the students with  
• Single-Cycle CPU design: Defining the instructions / writing the test program 

(MIPS assembly language, machine code) 
• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

4.2 Reduced Size MIPS Processor Description 
 
(!) Read Lectures 3 and 4 in order to understand the works needed in this laboratory.  
 

In this laboratory, you will design and start the implementation of your own 
single cycle MIPS processor – MIPS 16.  
 

The microprocessor will be a simpler version of the MIPS 32 microarchitecture 
described during the lectures. What does simpler mean? The instruction set will be 
smaller (fewer instructions to implement); the width of the instructions and data fields 
will be of 16-bits. Implicitly, the number of registers used in the register file will be 
smaller; the instruction and data memories will be smaller. The rest of the principles 
described during the lectures are the same (data-path and control).  
 

The principal motive for implementing MIPS 16 is the reduced methodologies 
for data display (8 LEDs and 4-digit Seven Segment Display). In this manner, one 
avoids using other multiplexing mechanisms for signal display purposes (32 bits); and 
the on-chip debugging process is simplified (testing your program on the FPGA 
board). 
 

The dimension/width of both instructions and data will be of 16-bits. The 3 
instruction formats are given below. Compare this format with the 32-bit instruction 
format from the lectures. Observe the differences/limitations. 
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Figure 4.1: R-type Instruction format 

 
Figure 4.2: I-type Instruction format 

 
Figure 4.3: J-type Instruction format 

 
These instruction formats obey the formats presented in the MIPS32 ISA, except the 
width of each field. 
 
The opcode is encoded on 3-bits. For I-type and J-type instructions, the opcode 
uniquely encodes the instruction to be executed. In the case of R-type instructions, in 
accordance to the MIPS standard, the opcode is 0 and the function field identifies the 
ALU operation for each instruction. The function field is encoded on 3-bits. This means 
that your processor can implement at most 15 instructions:  

• 8 R-type Instructions  
• 7 I-type Instructions and J-type instructions.  

 
The table below presents the minimum number of instructions, of each type, that will 
be implemented on the MIPS 16 processor. On the doted positions, you will choose 
or define new instructions for your MIPS processor (depending on the program that 
you will implement).  
 

R-type Instructions 

Addition  add 
Subtraction  sub 
Shift Left Logical (with shift amount – sa)  sll 
Shift Right Logical (with shift amount – sa) srl 
Logical AND and 
Logical OR or 
…. … 
…. … 

I-type Instructions 

Add Immediate addi 
Load Word lw 
Store Word sw 
Branch on Equal beq 
…. … 
…. … 

J-type Instruction Jump  j 

Table 4.1: Instructions for MIPS16 
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The description of each MIPS 16 data-path component characteristics is given below. 
(!) These characteristics are not only valid for this laboratory, but also for the future 
laboratory works.  
 
Program Counter characteristics: 

• 16-bit edge triggered D flip-flop 
 
Instruction Memory (ROM) characteristics: 

• One input bus: Instruction Address 
• One output bus: Instruction Data 
• Memory word is 16-bit (selected by instruction address) 
• No control signals 

 
Register File characteristics: 

• Two read addresses and one write address 
• Eight 16-bit registers (rs, rt, rd encoded on 3-bits) 
• Two 16-bit data outputs: Read data 1 and Read data 2 
• One 16-bit data input: Write Data 
• Multiple accesses: 2 asynchronous reads and 1 synchronous (edge triggered) 

write. During read operation, the register file behaves as a combinational logic 
block. 

• One control signal RegWrite. When RegWrite is asserted the value on the 
Write Data line is written in the register indicated by the write address line 

 
Data Memory (RAM) characteristics: 

• One 16-bit input address bus: Address 
• One 16-bit input data bus: Write Data 
• One 16-bit output data bus: Read Data 
• One control Signal: MemWrite 

 
Extension Unit characteristics: 

• ExtOp = 1  Sign Extension 
• ExtOp = 0  Zero Extension 

 
ALU characteristics: 

• ALU performs arithmetical / logical operations 
• (!) You need to identify all the operations that the ALU needs to perform after 

completing the definition of the instructions from Table 4.1. You are encouraged 
to choose two more R-type instructions and two more I-type Instructions.  

• You need to identify how many control bits are necessary to encode the ALU 
operations (ALUCtrl). 
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4.3 Laboratory Assignments  
 
Read carefully and completely each activity before you begin! 
 

4.3.1. Define the instructions for MIPS 16 – Paper and Pencil  
 
Starting from the instruction formats presented in the previous section write (Paper 
and Pencil) the instruction format (on bits, including the opcode and function fields) 
for each of the instructions presented in Table 4.1. 
 
Add two more R-type instructions and 2 more I-type instructions in order to complete 
the whole number of instructions that your processor is capable of performing.  
 
Besides the lecture materials, you can also use Appendix 5 – MIPS Instruction Reference 
for a reference on MIPS instructions.  
 
You need to specify the encoding (on bits) in all of the fields from the instruction.  
 
Write the RTL abstract for all the 15 instructions from your MIPS 16 instruction set.  
Draw the processing diagram for all the instructions (add, and, sll, lw, beq, j – in the 
laboratory, the rest as homework).  
 
For your MIPS 16 processor you will ignore the overflow exceptions that can appear 
during ALU operations (example: add instruction) 
 
Give an example for each instruction including the bit encoding off all fields (including 
the instruction operands). Example: add $2, $4, $3  “… the 16 bits…”. 
 
Attention: in order to increase the encoding readability of each instruction use the “_” 
symbol between the instruction fields (opcode, rs, etc.). This is also supported by 
VHDL and has no effect on the bit string. For VHDL it is mandatory to specify the 
binary encoding B before the string of bits (or X, O for hexadecimal and octal encoding 
respectively). 

 
B"001_010_011_100_1_111" is equivalent to "0010100111001111" 

 
 

4.3.2. MIPS 16 test program  
 
Write a short program with the instructions that you have defined for your MISP 16 
processor (paper and pencil). Describe the program in assembly language, then each 
instruction in machine code (16-bit encoding for each instruction, use “_” between the 
fields of the instructions).  
 
Using assignment 3.1 from laboratory 3 (ROM memory whose addresses are 
generated by a Mono Pulse Generator controlled counter), introduce your program in 
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the ROM memory and trace it on the Basys board.  When writing your program in the 
ROM memory you have to write a comment for each instruction, i.e. the assembly 
language description for each instruction. Your program should be visible in parallel 
to the machine code.  
 
Optionally, you are invited to write a more complex program for your MIPS processor.  
 
 

4.3.3. Data-Path for MIPS 16  
 
Draw the Data-Path of your single-cycle MIPS 16 processor. Be sure to include all the 
necessary components on the data-path, such that all the 15 instructions execute 
correctly.  
 
Starting from the RTL abstract description, identify the values of the control signals for 
each instruction. Draw a table with the control signals and their values (see lecture 4 
for details).  
 
 

4.4 References 
 
[1] Computer Architecture Lectures 3 & 4 slides. 
[2] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32® 
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012 
[3] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set 
Manual, Revision 6.02 
[4] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
 Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® 

Architecture. 
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Laboratory 5 
 

5. Single-Cycle MIPS CPU Design (2): 16-bits 
version – One clock cycle per instruction 

 
 

5.1. Objectives 
 
Study, design, implement and test  

• Instruction Fetch Unit for the 16-bit Single-Cycle MIPS CPU 
 

Familiarize the students with  
• Single-Cycle CPU design: Defining the instructions / writing the test program 

(MIPS assembly language, machine code) 
• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

5.2. Reduced Size MIPS Processor Description 
 
(!) Read Lectures 3 and 4 in order to understand the works needed in this laboratory.  
 
Remember that an instruction execution cycle (lecture 4) has the following phases:  
 

• IF   –  Instruction Fetch 
• ID/OF   –  Instruction Decode / Operand Fetch 
• EX   –  Execute  
• MEM   –  Memory  
• WB   –  Write Back 

 

Your own Single-Cycle MIPS 16 processor implementation (that you will start in this 
laboratory and finish in the next ones) will be partitioned in 5 (five) components (new 
entities). These components will be declared and instantiated in the “test_env” project. 

The utility of this implementation will be understood in the future laboratories, when 
you will implement the pipeline version of your 16-bit MIPS processor! 
 
In this laboratory you will design, VHDL description, implement and test the Instruction 
Fetch Unit of your own single cycle MIPS processor – MIPS 16. 
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The data-path of the processor (32-bit version), including the control unit and the 
necessary control signals, is presented in the next figure. In order to reduce the 
complexity of the data-path, the control signals were not explicitly connected, but 
rather they can be easily identified by their names.  
 

 
Figure 5.1: MIPS 32 Single-Cycle Data-Path + Control 

 
As a reminder, the instruction formats for your MIPS 16 processor are presented 
below:  

 
Figure 5.2: R-type Instruction format 

 
Figure 5.3: I-type Instruction format 

 
Figure 5.4: J-type Instruction format 

 
The IF (Instruction Fetch) unit consists in the following components (you will not 
declare new entities):  

• Program Counter 
• Instruction Memory (ROM) 
• Adder 
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In addition, there exist two multiplexers for selecting the next instruction address. 
Please refer to the previous laboratory for the characteristics of these components for 
your Single-Cycle MIPS 16 processor. The data-path of the Instruction Fetch Unit is 
presented in Figure 5.5.  
 

 
Figure 5.5: Instruction Fetch Data-Path for MIPS 32 

 
Usually the IF unit provides, as output, the instruction to be executed as well as the 
next sequential instruction address. In the case of jump or branch instructions, the IF 
unit must also receive, as inputs, the branch target address and the jump address, 
together with the control signals that will select the next instruction address.  
 
The inputs of the IF unit are: 

• The clock signal (for the PC) 
• The branch target address 
• The jump address 
• Jump Control signal  
• PCSrc Control signal (for branch) 

 
The outputs of the IF unit are: 

• The instruction to be executed by the MIPS processor 
• The next sequential instruction address (PC + 4) 

 
The meaning of the control signals: 

• Jump = 1     PC  jump address 
• Jump = 0  

 If PcSrc = 0   PC  + 4 
 If PcSrc = 1   PC  branch target address  
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5.3. Laboratory Assignments  
 
Read carefully and completely each activity before you begin! 
 
Prerequisites: 

• You need to have all the assignments from the previous lab completed 
• 15 instructions for your own Single-Cycle MIPS 16 defined (Laboratory 4 

Assignment 4.3.1) 
• RTL abstract / instruction formats written on paper for all the 15 instructions 
• Data-Path for MIPS 16 – paper and pencil (Laboratory 4 Assignment 4.3.3; use 

Error! Reference source not found. from this laboratory as reference, or 
lecture 4 for more details) 

• Xilinx project with test_env including at least the ROM with the test program 
written in machine code (Instruction Memory) (Laboratory 4 Assignment 4.3.2) 

 
Attention: If the homework from the previous laboratory is not completed, you will 
receive a 1 for this and all future laboratories until the homework is done without the 
possibility of any corrections to the mark!  
 
 

5.3.1. Instruction Fetch design  
 
Taking into account the instruction fetch data-path from Figure 5.5 design a new 
component (new entity) in the “test_env” project for your own single-cycle MIPS 16. 
All the data fields are 16-bits wide.  
 
The IF entity will contain the hardware components described in Figure 5.5, that will 
not be implemented with other components (use behavioral VHDL description). 
 
The instruction memory will be the ROM memory from the previous laboratory with 
the program written in machine code. Do not increase the memory size to 216 
locations, but rather use a subset of the program counter to address the ROM memory 
(least significant 8 bits).   
 
The adder will be implemented with + 1 in the VHDL description (not + 4 – MIPS32 
case).  
 
The program counter register will be a rising edge triggered D Flip-Flop with all the 
necessary input addresses (sequential operation (PC + 1), branch target address and 
jump address). 
 
Attention! The new PC value will only be written in the PC register when a button 
from the Basys board is pressed (use one enable signal from the MPG as input to the 
IF Unit in order to activate the write of the PC register). Additionally use another button 
(MPG enable signal) to reset the PC register (another input for the IF Unit).  
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5.3.2. Testing of the Instruction Fetch Unit 

 
In the “test_env” entity declare and instantiate your Instruction Fetch Unit. Connect 
the IF Unit together with the MPG and SSD components previously designed. Use two 
enable signals from the MPG to reset and to validate the writing in the PC register. 
For connecting to the SSD use, both outputs of the instruction fetch unit (instruction 
and PC+1).  
 
Use sw(7) to control the display on the SSD (use a multiplexor): 

• sw(7) = 0  display the instruction on the SSD 
• sw(7) = 1  display the next sequential PC (PC + 1 output) on the SSD 

 
For implementing and testing conditional and unconditional jumps, you will map the 
two control signals to two switches: 

• Use sw(0) for Jump control signal. 
• Use sw(1) for the PCSrc control signal. 

 
Use “hard-coded” values for the branch target address and jump address inputs of the 
instruction fetch unit:  

• You can use x”0000” for jump as an alternative reset mechanism for the PC 
register (jump to the first instruction in the ROM) 

• Use an intermediate address for the branch target address. This address must 
be an address of an instruction in your program (within the range of your 
previously implemented program in the ROM – machine code) 

 
 

5.4. References 
 
[1] Computer Architecture Lectures 3 & 4 slides. 
[2] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32® 
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012 
[3] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set 
Manual, Revision 6.02 
[4] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
 Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® 

Architecture. 
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Laboratory 6 
 

6. Single-Cycle MIPS CPU Design (3): 16-bits 
version – One clock cycle per instruction 

 
 

6.1. Objectives 
 
Study, design, implement and test  

• Instruction Decode Unit for the 16-bit Single-Cycle MIPS CPU 
• Main control Unit for the 16-bit Single-Cycle MIPS CPU 

 
Familiarize the students with  

• Single-Cycle CPU design: Defining the instructions / writing the test program 
(MIPS assembly language, machine code) 

• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

6.2. Reduced Size MIPS Processor Description 
 
(!) Read Lectures 3 and 4 in order to understand the works needed in this laboratory.  
 
Remember that an instruction execution cycle (lecture 4) has the following phases:  
 

• IF   –  Instruction Fetch 
• ID/OF   –  Instruction Decode / Operand Fetch 
• EX   –  Execute  
• MEM   –  Memory  
• WB   –  Write Back 

 

Your own Single-Cycle MIPS 16 processor implementation (that you will continue in 
this laboratory and finish in the next ones) will be partitioned in 5 (five) components 
(new entities). These components will be declared and instantiated in the “test_env” 
project. 

The utility of this implementation will be understood in the future laboratories, when 
you will implement the pipeline version of your 16-bit MIPS processor! 
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In this laboratory you will design, VHDL description, implement and test the Instruction 
Decode Unit of your own single cycle MIPS processor together with the main control 
unit for your processor. 
 
The data-path of the processor (32-bit version), including the control unit and the 
necessary control signals, is presented in the next figure. In order to reduce the 
complexity of the data-path, the control signals were not explicitly connected, but 
rather they can be easily identified by their names.  
 

 
Figure 6.1: MIPS 32 Single-Cycle Data-Path + Control 

 
 
As a reminder, the instruction formats for your MIPS 16 processor are presented 
below:  

 
Figure 6.2: R-type Instruction format 

 
Figure 6.3: I-type Instruction format 

 
Figure 6.4: J-type Instruction format 
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The ID (Instruction decode) unit consists in the following components:  
• Register File 
• Multiplexer 
• Sign/Zero Extender 

 
Please refer to laboratory 4 for the characteristics of these components for your 
Single-Cycle MIPS 16 processor. Remember (laboratory 3) that the Register File read 
operations are asynchronous, only the Register File Writes are synchronous. 
 
The data-path of the Instruction Decode Unit is presented in Figure 6.5.  
 

 
Figure 6.5: Instruction Decode Data-Path for MIPS 32 

 
The ID unit provides, as output, the data fields (Read Data 1, Read Data 2 and 
Extended Immediate) used by the processor in the next execution phases. In addition, 
the function field is also provided to the ALU Control Unit and the shift amount is used 
as an additional input to the ALU for shift operations.  
 
The inputs of the ID unit are: 

• The clock signal (for the Register File Writes) 
• The 32-bit instruction  
• The 32-bit Write Data for the Register File 
• Control Signals: 

o RegWrite  – Write Enable signal for the Register File 
o RegDst  – Selects the write address for the Register File 
o ExtOp  – selects between Sign and Zero extension of the 

immediate field 
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The outputs of the ID unit are: 
• Register from rs address: 32-bit Read Data 1  
• Register from rt address: 32-bit Read Data 2 
• 32-bit Extended Immediate 
• 6-bit function field of the instruction 
• 5-bit shift amount for R-type shift instructions 

 
The meaning of the control signals: 

• RegDst = 1    the Write Address for the Register File is the rd 
field of the instruction (Instr[15:11]) 

• RegDst = 0    the Write Address for the Register File is the rt 
field of the instruction (Instr[20:16]) 
 

• RegWrite = 1    write the value provided by the Write Data 
Signal into the Write Address Register in the Register File.  
 

• ExtOp = 0    perform Zero Extension of the 16-bit immediate 
• ExtOp = 1    perform Sign Extension of the 16-bit immediate 

 
 
The control signals of the Main Control Unit are presented in Figure 6.6. Please refer 
to Lecture 04 for the full description of the control signals for the MIPS processor. 
 

 
Figure 6.6: MIPS 32 Single Cycle Main Control Unit 

 
The input of the Main Control Unit consists in the 6-bit opcode field of the instruction 
while the outputs are represented by the main data-path control signals (except for 
the ALUCtrl signal). There are 8 x 1-bit control signals and ALUOp which can be 2 or 
more bits wide depending on the 15 instructions that you have chosen. As it can be 
seen in the figure above the ALUOp line is thicker, meaning that it has more than 1-
bit. 
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6.3. Laboratory Assignments  

 
Read carefully and completely each activity before you begin! 
 
Prerequisites: 

• All the assignments from the laboratories 3 and 4 completed 
• The instruction fetch unit implemented and tested on the Digilent Development 

Board.  
• Xilinx project with “test_env” including the IF unit (Laboratory 5 Assignment 

5.3.2) 
 
Attention: If the homework from the previous laboratories is not completed, you will 
receive a 1 for this and all future laboratories until the homework is done without the 
possibility of any corrections to the mark!  
 
 

6.3.1. Instruction Decode design  
 
Taking into account the instruction decode data-path from Figure 6.5 design a new 
component (new entity) in the “test_env” project for your own single-cycle MIPS 16. 
All the data fields are 16-bits wide.  
 
The ID entity will contain the hardware components described in Figure 6.5, that will 
not be implemented with other components (use behavioral VHDL description), except 
for the Register File (see laboratory 3). 
 
Use one line of code for the extension unit (sign / zero extension), as in laboratory 2.  
 
Attention! Be careful when transforming the data fields from Figure 6.5 (MIPS 32) 
into your own single-cycle MIPS 16 implementation. 
 
 

6.3.2. Main Control Unit Design 
 

The first part of this assignment is to identify the control signals for all your 15 
instructions. See the table completed at assignment 4.3.3 from laboratory 4. In case 
you have not completed this table yet, see lecture 4 for reference (control signals 
table: add, lw, sw, beq, etc.) draw a table with all the control signals for each of the 15 
instructions. In order to test the implementation on the Digilent Development board it 
is not mandatory to finish the whole control unit during the laboratory hours: 4-6 
instructions are enough for testing, the rest is considered homework). 
 
You can implement the Main Control Unit either as a new entity in the “test_env” 
project or as a simple decoder process in the “test_env” architecture. A supplementary 

37 



COMPUTER ARCHITECTURE                                                                                   LABORATORY 6 

suggestion here is to declare the control signals individually, for a better reading of the 
VHDL code.  
 
 

6.3.3. Testing of the Instruction Decode Unit and Main Control Unit 
 
In the “test_env” entity declare and instantiate your Instruction Decode Unit (and also 
the Main Control Unit if you have implemented it as a separate entity). 
 
Connect the Instruction Decode Unit together with your previously implemented 
Instruction Fetch Unit. The output of the IF unit – i.e. the 16-bit instruction will be the 
input to the ID unit.  
 
Connect the necessary control signals generated by the Main Control Unit to the IF 
and ID units. 
 
The next data-path components will be implemented in the next laboratories. For this 
reason, in order to test the writing in the Register File in this laboratory, use the adder 
from laboratory 3 to connect the outputs of the Instruction Decode Unit, RD1 (Read 
Data 1) and RD2 (Read Data 2) signals and generate the WD (Write Data) signal for 
the Register File (input to the ID unit).  
 
Attention! At this point, RegWrite is asserted by the Main Control Unit, so the writing 
in the Register File is done only for those instructions in your program that require a 
writing of a result in the Register File.  
 
Attention! For writing in the Register File it is necessary to control the writing 
mechanism from one of the buttons available on the board in the same manner as it 
was controlled for the PC register. The RegWrite Control Signal must be validated 
(use an AND logic gate) with one of the MPG outputs, i.e. use the same enable signal 
as for write validation in the PC register (from the IF Unit). Do not forget about the 
other MPG output that resets the PC register. 
 
You are required to have both the IF and ID units together in the “test_env” project 
and the process/component instantiation for the Main Control Unit. 
 
For connecting to the SSD use, all the signals present on the data-path, i.e. the outputs 
of the IF unit and the inputs and outputs of the ID unit:  
 
Use switches in order to control the display on the SSD (multiplexor): 

• sw(7:5) = 000  display the instruction on the SSD 
• sw(7:5) = 001  display the next sequential PC (PC + 1 output) on the SSD 
• sw(7:5) = 010  display the RD1 signal on the SSD 
• sw(7:5) = 011  display the RD2 signal on the SSD 
• sw(7:5) = 100  display the WD signal on the SSD 
• … 
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On the LEDs, you will display the control signals from the Main Control Unit. You have 
8 x 1-bit control signals and ALUOp. Use another switch to control the display on the 
LEDs: 

• sw(0) = 0  Display the 1-bit control signals on the LEDs. The order of the 
control signals is your own choice.  

• sw(0) = 1  Display the n-bit ALUOp signal on the LEDs (the rest of LEDs 
will have the value ‘0’ for now) 

 
As in the previous laboratory, use two outputs of the MPG, one to reset the PC register 
and the other one to control the writing in the PC register and the RF. You will simulate 
the normal, sequential execution of the instructions.  
 
Use “hard-coded” values for the branch target address and jump address inputs of the 
instruction fetch unit (as in the previous laboratory):  

• You can use x”0000” for jump as an alternative reset mechanism for the PC 
register (jump to the first instruction in the ROM) 

• Use an intermediate address for the branch target address. This address must 
be an address of an instruction in your program (within the range of your 
previously implemented program in the ROM – machine code) 

 
 

6.4. References 
 
[1] Computer Architecture Lectures 3 & 4 slides. 
[2] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32® 
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012 
[3] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set 
Manual, Revision 6.02 
[4] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
 Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® 

Architecture. 
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Laboratory 7 
 

7. Single-Cycle MIPS CPU Design (4): 16-bits 
version – One clock cycle per instruction 

 
 

7.1. Objectives 
 
Study, design, implement and test  

• Instruction Execute Unit for the 16-bit Single-Cycle MIPS CPU 
• Testing of the Arithmetical-Logical Instructions 

 
Familiarize the students with  

• Single-Cycle CPU design: Defining the instructions / writing the test program 
(MIPS assembly language, machine code) 

• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

7.2. Reduced Size MIPS Processor Description 
 
(!) Read Lectures 3 and 4 in order to understand the works needed in this laboratory.  
 
Remember that an instruction execution cycle (lecture 4) has the following phases:  
 

• IF   –  Instruction Fetch 
• ID/OF   –  Instruction Decode / Operand Fetch 
• EX   –  Execute  
• MEM   –  Memory  
• WB   –  Write Back 

 

Your own Single-Cycle MIPS 16 processor implementation (that you will continue and 
hopefully finish in this laboratory) will be partitioned in 5 (five) components (new 
entities). These components will be declared and instantiated in the “test_env” project. 

The utility of this implementation will be understood in the future laboratories, when 
you will implement the pipeline version of your 16-bit MIPS processor! 
 
In this laboratory you will design, VHDL description, implement and test the Instruction 
Execute Unit of your own single cycle MIPS 16 processor. 
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The data-path of the processor (32-bit version), including the control unit and the 
necessary control signals, is presented in the next figure. In order to reduce the 
complexity of the data-path, the control signals were not explicitly connected, but 
rather they can be easily identified by their names.  
 

 
Figure 7.1: MIPS 32 Single-Cycle Data-Path + Control 

 
 
As a reminder, the instruction formats for your MIPS 16 processor are presented 
below:  

 
Figure 7.2: R-type Instruction format 

 
Figure 7.3: I-type Instruction format 

 
Figure 7.4: J-type Instruction format 
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The Execute Unit (Ex) consists in the following components:  
• Arithmetic Logic Unit (ALU) 
• ALU Control 
• Multiplexer 
• Shift Left 2 and adder for branch target address computation 

 
Please refer to laboratories 2 and 4 for the characteristics of these components for 
your Single-Cycle MIPS 16 processor.  
 
The data-path of the Instruction Execute Unit is presented in Figure 7.5.  
 

 

Figure 7.5: Instruction Execute Data-Path for MIPS 32 
 
The EX unit provides, as output, the ALU Result used for writing the result of 
arithmetical/ logical instructions in the Register File or used as the address for the 
Data Memory in the case of lw and sw instructions. In addition the ALU provides 
another output, the Zero Signal, which indicates whether the result of the ALU is equal 
to zero or not (if the result is equal to zero the signal will have as value 1, otherwise 
0). For simplicity of your future, first version, pipeline implementation, the EX unit also 
includes the branch target address computation. 
 
The inputs of the Ex unit are: 

• Next Sequential Instruction Address (PC+4) 
• 32-bit Read Data 1 (RD1) 
• 32-bit Read Data 2 (RD2) 
• 32-bit Extended Immediate (Ext_Imm) 
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• 6-bit function field (func) 
• 5-bit shift amount (sa) 
• Control Signals: 

o ALUSrc  – selects between Read Data 2 and Extended Immediate 
as input to the second port of the ALU 

o ALUOp  – ALU operation code provided by the Main Control Unit 
 
The outputs of the Ex unit are: 

• 32-bit Branch target address 
• 32-bit ALU result (ALURes) 
• 1-bit Zero signal 

 
The meaning of the control signals: 

• ALUSrc = 0   the Read Data 2 signal is the second input for the ALU 
• ALUSrc = 1   the Extended Immediate signal is the second input for 

the ALU 
• ALUOp    is defined by the Main Control Unit according to the 

operations implemented in the ALU.  
 
The branch target address is computed with the following formula: 
Branch Address  PC + 4 + S_Ext(Imm) << 2; 
 
The Zero signal together with the Branch Control Signal is used in order to select 
between the normal sequential execution of the program (PC + 4) or the branch target 
address. 
 
ALU Control Unit defines the ALU operations encoded in the ALUCtrl control signal. 
For I-type instructions, the encoding of the ALUCtrl is simply defined by the ALUOp 
signal. For R-type instructions, the value of ALUCtrl is defined by the fixed value 
ALUOp and the function field.  
 
 

7.3. Laboratory Assignments  
 
Read carefully and completely each activity before you begin! 
 
Prerequisites: 

• All the assignments from the laboratories 4, 5, 6 completed 
• The instruction fetch unit implemented and tested on the Digilent Development 

Board.  
• The instruction decode unit implemented and tested on the Digilent 

Development Board. 
• Xilinx project with “test_env” including the IF and ID units (Laboratory 6 

Assignment 6.3.3) 
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Attention: If the homework from the previous laboratories is not completed, you will 
receive a 1 for this and all future laboratories until the homework is done without the 
possibility of any corrections to the mark!  
 
 

7.3.1. Instruction Execute Unit design  
 

Taking into account the instruction execution data-path from Figure 7.5 design a 
new component (new entity) in the “test_env” project for your own single-cycle MIPS 
16. All the data fields are 16-bits wide.  
 

The Ex entity will contain the hardware components described in Figure 7.5 that 
will not be implemented with other components (use behavioral VHDL description) 
 

Use one line of code for the branch target address computation (no shift required 
only addition).  
 

Use a process (with a case statement) for the ALU implementation as in laboratory 
2. The 1-bit shift amount is used only for the logical and / or arithmetic shift operations.  
 

Use a process (with a case statement) for the implementation of the ALU Control. 
The encoding of the ALUCtrl control signal is dependent on your own 15 instructions 
and defines the arithmetic-logical operations implemented by the ALU.  
 

Attention! Be careful when transforming the data fields from Figure 7.5 (MIPS 32) 
into your own single-cycle MIPS 16 implementation. 
 
 

7.3.2. Testing of the Instruction Execute Unit  
 
Instantiate the Execution Unit in the “test_env” project. At this moment, you will 
connect the output of the Execution Unit (AluRes) to the Write Data port of the ID Unit 
(WD input)  
 
You have to test all your arithmetical / logical instructions on the Digilent Development 
Board: Add, Sub, Shift left, Shift Right, And, Or, Addi, etc. Make sure that all the 
instructions perform correctly.  
 
All the signals present on the data-path must be connecting to the SSD, i.e. the outputs 
of the IF, ID and EX units. Use switches in order to control the display on the SSD 
(multiplexor): 

• sw(7:5) = 000  display the instruction on the SSD 
• sw(7:5) = 001  display the next sequential PC (PC + 1 output) on the SSD 
• sw(7:5) = 010  display the RD1 signal on the SSD 
• sw(7:5) = 011  display the RD2 signal on the SSD 
• sw(7:5) = 100  display the Ext_Imm signal on the SSD 
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• sw(7:5) = 101  display the ALURes signal on the SSD 
• sw(7:5) = 111  display the WD signal on the SSD 

 
On the LEDs, you will display the control signals from the Main Control Unit. You have 
8 x 1-bit control signals and ALUOp. Use another switch to control the display on the 
LEDs: 

• sw(0) = 0  Display the 1-bit control signals on the LEDs. The order of the 
control signals is your own choice.  

• sw(0) = 1  Display the n-bit ALUOp signal on the LEDs (the rest of LEDs 
will have the value ‘0’ for now) 

 
Trace your program (without any memory operation or conditional /unconditional 
jump) on the Digilent Development Board instruction by instruction. Be sure that all 
the control signals / data fields are correct.  
 
 

7.4. References 
 
[1] Computer Architecture Lectures 3 & 4 slides. 
[2] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32® 
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012 
[3] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set 
Manual, Revision 6.02 
[4] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
 Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® 

Architecture. 
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Laboratory 8 
 

8. Single-Cycle MIPS CPU Design (5): 16-bits 
version – One clock cycle per instruction 

 
 

8.1. Objectives 
 
Study, design, implement and test  

• Memory Unit for the 16-bit Single-Cycle MIPS CPU 
• Write Back Unit for the 16-bit Single-Cycle MIPS CPU 
• Other necessary connections for branch / jump address computation 
• Test the Single-Cycle MIPS CPU 

 
Familiarize the students with  

• Single-Cycle CPU design: Defining the instructions / writing the test program 
(MIPS assembly language, machine code) 

• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 Digilent Basys 2 Board – Reference Manual 

 
 

8.2. Reduced Size MIPS Processor Description 
 
(!) Read Lectures 3 and 4 in order to understand the works needed in this laboratory.  
 
Remember that an instruction execution cycle (lecture 4) has the following phases:  
 

• IF   –  Instruction Fetch 
• ID/OF   –  Instruction Decode / Operand Fetch 
• EX   –  Execute  
• MEM   –  Memory  
• WB   –  Write Back 

 

Your own Single-Cycle MIPS 16 processor implementation (that you will continue and 
hopefully finish in this laboratory) will be partitioned in 5 (five) components (new 
entities). These components will be declared and instantiated in the “test_env” project. 

The utility of this implementation will be understood in the future laboratories, when 
you will implement the pipeline version of your 16-bit MIPS processor! 
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In this laboratory you will design, VHDL description, implement and test the Memory 
Unit, Write Back Unit and the rest of the connections of your own single cycle MIPS 
16 processor. 
 
The data-path of the processor (32-bit version), including the control unit and the 
necessary control signals, is presented in the next figure. In order to reduce the 
complexity of the data-path, the control signals were not explicitly connected, but 
rather they can be easily identified by their names.  
 

 
Figure 8.1: MIPS 32 Single-Cycle Data-Path + Control 

 
 
As a reminder, the instruction formats for your MIPS 16 processor are presented 
below:  

 
Figure 8.2: R-type Instruction format 

 
Figure 8.3: I-type Instruction format 

 
Figure 8.4: J-type Instruction format 

 
  

47 



COMPUTER ARCHITECTURE                                                                                   LABORATORY 8 

The Memory Unit consist in the following component 
• Data Memory 

 
The data-path of the Memory Unit is presented in Figure 8.5.  
 

 
Figure 8.5: Memory Unit Data-Path for MIPS 32 

 
The Data Memory is a RAM with asynchronous read and synchronous write 
operations. A similar RAM implementation (with synchronous read) was done in 
laboratory 3. 
 
The inputs of the Memory Unit: 

• The clock signal (for the Data Memory Writes) 
• 32-bit ALURes signal – consists in the address for the Data Memory 
• 32-bit RD2 signal – the second output of the Register File (used only for store 

word instructions) is the Write Data field for the Data Memory 
• MemWrite control signal 

 
The outputs of the Memory Unit: 

• 32-bit MemData, the Read Data from the Data Memory (used only for load word 
instructions). 

• 32-bit ALURes, this signal is also the result of the arithmetic-logical instructions 
that must be stored in Register File, so it is also fed as output for the Memory 
Unit and input to the Write Back Unit.  

 
The only control signal present in this stage is the MemWrite Control Signal. 

• MemWrite = 0  Nothing is written in the Data Memory. 
• MemWrite = 1  The RD2 signal is written in the Data Memory at the 

address indicated by the ALURes signal. 
 
The Write Back unit is simply the last multiplexor from Figure 8.1. The rest of the 
components are the AND gate for generating the PCSrc control signal, the jump 
address computation.  
 
The control signal for the Write Back multiplexor is MemtoReg and identifies what 
value is fed to the Write Data port of the Register File in the ID state: 

48 



COMPUTER ARCHITECTURE                                                                                   LABORATORY 8 

• MemtoReg = 0  the ALURes signal is the input to the Write Data port of 
the Register File.  

• MemtoReg = 1  the MemData is the input to the Write Data port of the 
Register File. 

 
The PCSrc signal identifies if the current instruction is a Branch instruction and if the 
content of the rs and rt registers are the same; i.e. RF[rs] == RF[rt]. 
  
PCSrc <= Branch and Zero; 
 
 

8.3. Laboratory Assignments 
 
Read carefully and completely each activity before you begin! 
 
Prerequisites: 

• All the assignments from the laboratories 4, 5, 6, 7 completed 
• The instruction fetch unit implemented and tested on the Digilent Development 

Board.  
• The instruction decode unit implemented and tested on the Digilent 

Development Board. 
• The instruction execute unit implemented and tested on the Digilent 

Development Board 
• The memory unit implemented and tested on the Digilent Development Board 
• Xilinx project with “test_env” including the IF, ID, EX, MEM units (Laboratory 7 

Assignment 7.3.3) 
 
Attention: If the homework from the previous laboratories is not completed, you will 
receive a 1 for this and all future laboratories until the homework is done without the 
possibility of any corrections to the mark!  
 

8.3.1. Memory Unit Design 
 
Describe a new component (new entity) for the Memory Unit. Use the RAM 
implementation from laboratory 3 and change the read operation to an asynchronous 
one. Write only with processes inside the Memory Unit.  
 
Instantiate the Memory Unit in the “test_env” project. Connect all the signals from the 
Memory Unit in the data-path. The MemWrite signal should be validated with an output 
of the MPG component as it was previously implemented for the writing in the Register 
File (RegWrite signal).  
 

8.3.2. Adding the Write Back Unit and the jump address computation 
 
Add the write back multiplexor for your own MIPS processor. Use only one line of code 
to implement this multiplexor.  
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Complete your own MIPS processor implementation with the jump address 
computation and the PCSrc signal computation. Complete all the necessary 
connections for the data-path as in Figure 8.1 (jump address, branch target address, 
write back in the register file, etc.).  
 
Test the LW, SW, BEQ and Jump Instructions for your MIPS processor. 
 

8.3.3. Testing it ALL: You own Single-Cycle MIPS 16 processor 
 
At this moment, you should have all the components form the data-path implemented 
in the “test_env” project. 
 
All the signals present on the data-path must be connecting to the SSD, i.e. the outputs 
of the IF, ID, EX, M and WB units. Use switches in order to control the display on the 
SSD (multiplexor): 

• sw(7:5) = 000  display the instruction on the SSD 
• sw(7:5) = 001  display the next sequential PC (PC + 1 output) on the SSD 
• sw(7:5) = 010  display the RD1 signal on the SSD 
• sw(7:5) = 011  display the RD2 signal on the SSD 
• sw(7:5) = 100  display the Ext_Imm signal on the SSD 
• sw(7:5) = 101  display the ALURes signal on the SSD 
• sw(7:5) = 110  display the MemData signal on the SSD 
• sw(7:5) = 111  display the WD signal on the SSD 

 
On the LEDs, you will display the control signals from the Main Control Unit. You have 
8 x 1-bit control signals and ALUOp. Use another switch to control the display on the 
LEDs: 

• sw(0) = 0  Display the 1-bit control signals on the LEDs. The order of the 
control signals is your own choice.  

• sw(0) = 1  Display the n-bit ALUOp signal on the LEDs (the rest of LEDs 
will have the value ‘0’ for now) 

 
If needed for debugging the processor on the Digilent Development Board you can 
additionally display other signals on the SSD / LEDs: branch target address, jump 
address, ALUCtrl, etc.  
 
Now trace your program on the Digilent Development Board instruction by instruction. 
Be sure that all the control signals / data fields are correct. 
 
Present your Single-Cycle MIPS implementation to your TA. 
 
 

8.4. References 
 
[1] Computer Architecture Lectures 3 & 4 slides. 
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[2] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32® 
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012 
[3] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set 
Manual, Revision 6.02 
[4] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® 
Architecture. 
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Laboratory 9 
 

9. Pipeline MIPS CPU Design: 16-bits version 
 
 

9.1. Objectives 
 
Study, design, implement and test  

• MIPS 16 CPU, pipeline version 
 

Familiarize the students with  
• Pipeline CPU design  
• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

9.2. Transforming the MIPS 16 Single-Cycle CPU to a Pipeline CPU 
 
! You must attend/read lecture 8 in order to fully understand the Pipeline CPU 
 
Remember that an instruction execution cycle (lecture 4) has the following phases:  
 

• IF   –  Instruction Fetch 
• ID/OF   –  Instruction Decode / Operand Fetch 
• EX   –  Execute  
• MEM   –  Memory  
• WB   –  Write Back 

 
The data-path of the single-cycle processor (32-bit version), including the control unit 
and the necessary control signals, is presented in the next figure. In order to reduce 
the complexity of the data-path the control signals were not explicitly connected, but 
rather they can be easily identified by their names.  
 

52 



COMPUTER ARCHITECTURE                                                                                   LABORATORY 9 

 
Figure 9.1: MIPS 32 Single-Cycle Data-Path + Control 

 
As a reminder, the instruction formats for your MIPS 16 processor are presented 
below:  

 
Figure 9.2: R-type Instruction format 

 
Figure 9.3: I-type Instruction format 

 
Figure 9.4: J-type Instruction format 

 
The main issue with the single-cycle MIPS CPU is the length of the critical path, for 
the load word instruction (see lecture 04). The necessary time for transmitting the data 
along the critical path must be covered by the clock cycle time. This results in a long 
cycle time (slow clock).  
 
In order to reduce the clock cycle time, the solution is to partition the data-path along 
the critical path with rising edge triggered registers (D flip-flops). These registers are 
inserted between the MIPS 32 functional units that coincide with the instruction 
execution phases: IF, ID, EX, MEM, WB. In this manner, one can simultaneously 
execute at most 5 instructions, each of them executing one of the five execution 
phases. The pipeline execution units are also referred to as stages. 
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The data-path together with the control unit for the pipelined MIPS 32 CPU is 
presented in Figure 9.5. 
 

 

Figure 9.5: MIPS 32 Pipeline Data-Path + Control, obtained from the partitioning of 
the Single-Cycle Data-Path 

 
Each intermediate register will be referred depending on its position between the 
pipeline stages. The register between the IF stage and the ID stage is IF/ID, the one 
between ID and EX is ID/EX, etc.  
 
The role of these intermediate registers is to hold the intermediate results of the 
instruction execution in order to provide these results to the next stage, in the next 
clock cycle. 
 
Furthermore, the execution on the data-path depends on the control signals values, 
which are specific for each instruction. So, through the intermediate registers (starting 
with the ID/EX register) the control signals will also be provided for the next stages. 
The control signals are symbolically grouped after the stage name where they belong. 
 
The control signals are transmitted together with the intermediate results until the 
stages where they are needed.  
 
Lecture 8 explains in more detail the design of the pipeline CPU; the details presented 
so far represent the necessary knowledge for transforming your own MIPS 16 single-
cycle CPU into a pipeline one. 
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One notable difference between the two data-paths is that the multiplexer used for 
selecting the write address for the Register File is placed in EX, not in ID as in the 
single-cycle CPU case. There are 2 possible solutions:  
 

a) Leave it in the ID stage. In this case, the RegDst signal will not be transmitted 
through ID/EX and will be connected directly from the control unit.  

b) Move it to the EX stage, modifying the input / output ports of the ID and EX 
units, and transmit the RegDst signal according to the presented pipeline data-
path.  

 
Observation: The MemRead signal will be ignored, as in the single-cycle case.  
 
 

9.3. Laboratory Assignments  
 
Read carefully and completely each activity before you begin! 
 
Prerequisites: 

• Xilinx project with “test_env” including the complete and correct implementation 
of the single-cycle MIPS 16 CPU.  

 
 

9.3.1. Verify the MIPS 16 CPU design 
 
Before you begin transforming your single-cycle processor into a pipeline one, 
generate the *.bit file and investigate the clock frequency of your processor: 
Processes  Design Summary/Reports. Open Detailed Reports  Synthesis 
Report. In the synthesis report, locate the section about the clock frequency, similarly 
with the following text:   
 
TIMING REPORT 
... 
Timing Summary: 
… 
   Minimum period: 13.284ns (Maximum Frequency: 75.280MHz) 
… 
 
Write down the frequency of your single-cycle processor, so that you can compare it 
with the frequency of the pipeline version.  
 
If you have not completed the testing of the single-cycle processor, you must complete 
it now, before you begin the pipeline implementation.  
 
The pipeline implementation must start from a fully functional single-cycle MIPS 16 
version.  
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9.3.2. Design of the intermediate registers (paper and pencil) 
 

For each intermediate register identify the fields that it must store, taking into account 
your own MIPS 16 implementation.  
 
Use the data-path from Figure 9.5 (!) but keep in mind your MIPS 16 processor’s 
features: 16 bits, not 32; based on your own chosen instructions the data-path may 
contain additional elements.  
 
For example, for the first intermediate register, IF/ID, one must memorize the following 
two fields (generic name according to the stage they belong):  

- IF.PC+1 – 16 bits 
- IF.Instruction – 16 bits 

 
It results that the IF/ID register should contain 32-bits.  
 
Similarly describe the ID/EX, EX/MEM, MEM/WB registers.  
 
When describing the fields of the next intermediate registers, take a look at the 
associated functional units (the inputs unit and the destination unit respectively: 
example for IF/ID the IF and ID units respectively) in the laboratories 5, 6, 7 and 8. 
Identify the fields from the input/output ports of the functional units. This step will be 
used in the next assignment.  
 
 

9.3.3. Describe the intermediate registers in VHDL  
 
For this assignment, you will work in the “test_env” entity (where the components of 
the processor are instantiated and connected together).  
 
Attention: When introducing the new pipeline registers, some small modifications in 
your functional units may appear. You will easily identify these modifications by 
carefully studying Figure 9.5 and the particular data-paths for each functional unit of 
the MIPS 16 processor – laboratories 5, 6, 7, 8. For example, the ID unit needs an 
additional input port for the write address of the Register File, address that will come 
from the last pipeline register MEM/WB.  
 
You will not declare new entities for the pipeline registers. For each register, you have 
to declare a signal of appropriate length (according to the previous assignment) and 
the behavior of the pipeline register will be described with one process (synchronous 
data transfer on the rising edge of the clock signal). In order to ease the testing of the 
processor each register will be controlled with an enable signal (the same MPG output 
used for validating the writing in the PC register). 
 
You will realize the partitioning of the single-cycle data-path with the pipeline registers 
and make the necessary correct connections in the mapping of the functional units. 
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For example, the value of the RegWrite control signal will be transmitted through the 
MEM/WB register and will be mapped at the input of the ID Unit.  
 
Pipeline register example (one can also use concatenation): for IF/ID you must declare 
a 32-bit signal RegIF_ID and describe the behavior of the register in one process: 
 

On rising edge of the clock  
   RegIF_ID(31..16) <= PC+1; 
   RegIF_ID(15..0)   <= Instruction; 
Where PC+1 and Instruction are the outputs of the IF unit.  
 
Alternatively, you can declare new signals and concatenate the stage name to the 
signal name like: 
 On rising edge of the clock  

PC_ID <= PC + 1; 
Instruction_ID <= Instruction; 

 
 

9.3.4. Homework – Paper and Pencil 
 
Draw your own MIPS 16 pipeline CPU data-path together with the control unit and 
control signals.  
 
 

9.4. References 
 
[1] Computer Architecture Lectures 3 & 4 slides. 
[2] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32® 
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012 
[3] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set 
Manual, Revision 6.02 
[4] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® 
Architecture. 
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Laboratory 10 
 

10. Pipeline MIPS CPU Design (2): 16-bits version 
 
 

10.1. Objectives 
 
Study, design, implement and test  

• MIPS 16 CPU, pipeline version with the modified program without hazards 
 

Familiarize the students with  
• Pipeline CPU design  
• Xilinx® ISE Webpack  
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 
 

10.2. Transforming the MIPS 16 Single-Cycle CPU to a Pipeline CPU 
 
! You must attend/read lecture 8 in order to fully understand the Pipeline CPU 
 
Remember that an instruction execution cycle (lecture 4) has the following phases:  
 

• IF   –  Instruction Fetch 
• ID/OF   –  Instruction Decode / Operand Fetch 
• EX   –  Execute  
• MEM   –  Memory  
• WB   –  Write Back 

 
The data-path of the single-cycle processor (32-bit version), including the control unit 
and the necessary control signals, is presented in the next figure. In order to reduce 
the complexity of the data-path the control signals were not explicitly connected, but 
rather they can be easily identified by their names.  
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Figure 10.1: MIPS 32 Single-Cycle Data-Path + Control 

 
 
The main issue with the single-cycle MIPS CPU is the length of the critical path, for 
the load word instruction (see lecture 04). The necessary time for transmitting the data 
along the critical path must be covered by the clock cycle time. This results in a long 
cycle time (slow clock).  
 
In order to reduce the clock cycle time, the solution is to partition the data-path along 
the critical path with rising edge triggered registers (D flip-flops). These registers are 
inserted between the MIPS 32 functional units that coincide with the instruction 
execution phases: IF, ID, EX, MEM, WB. In this manner, one can simultaneously 
execute at most 5 instructions, each of them executing one of the five execution 
phases. The pipeline execution units are also referred to as stages. 
 
The data-path together with the control unit for the pipelined MIPS 32 CPU is 
presented in Figure 10.2. 
 
Each intermediate register will be referred depending on its position between the 
pipeline stages. The register between the IF stage and the ID stage is IF/ID, the one 
between ID and EX is ID/EX, etc.  
 
The role of these intermediate registers is to hold the intermediate results of the 
instruction execution in order to provide these results to the next stage, in the next 
clock cycle. 
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Furthermore, the execution on the data-path depends on the control signals values, 
which are specific for each instruction. So, through the intermediate registers (starting 
with the ID/EX register) the control signals will also be provided for the next stages. 
The control signals are symbolically grouped after the stage name where they belong. 
 
The control signals are transmitted together with the intermediate results until the 
stages where they are needed. 
 

 
Figure 10.2: MIPS 32 Pipeline Data-Path + Control, obtained from the partitioning of 

the Single-Cycle Data-Path 
 
Lecture 8 explains in more detail the design of the pipeline CPU; the details presented 
so far represent the necessary knowledge for transforming your own MIPS 16 single-
cycle CPU into a pipeline one. 
One notable difference between the two data-paths is that the multiplexer used for 
selecting the write address for the Register File is placed in EX, not in ID as in the 
single-cycle CPU case. There are 2 possible solutions:  
 

c) Leave it in the ID stage. In this case, the RegDst signal will not be transmitted 
through ID/EX and will be connected directly from the control unit.  

d) Move it to the EX stage, modifying the input / output ports of the ID and EX 
units, and transmit the RegDst signal according to the presented pipeline data-
path.  

 
Observation: The MemRead signal will be ignored, as in the single-cycle case.  
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10.3. Hazards in MIPS 
 
Hazards are situations in which an instruction cannot be executed in the next clock 
period. The hazard can be classified as:  

1. Structural Hazards (resource dependency) 
o 2 instructions try to use the same resource simultaneously for different 

purposes  resource constraints  
2. Data Hazards (data dependency) 

o Attempt to use data before it is ready (available) 
o For an instruction in the ID phase, the operands might still be processed in 

other pipeline stages 
3. Control Hazards (condition and control dependency) 

o The branch decision and branch target address are not known until the MEM 
stage. The jump address is computed in the ID stage.  

o Pipelining of jumps, branches and other instructions that modify the sequential 
flow of the program  

These hazards have been thoroughly presented during lecture 8 (you are encouraged 
to read them!). Optimal solutions (in hardware) are relying on forwarding and stalling 
the pipeline (see the lecture notes for reference). For your MIPS 16 pipeline 
implementation, you should implement the software solution, modifying your program 
such that the data and control hazards are avoided.  

The basic change in your program should be the following: introduce NoOp (No 
Operation) instructions between the instructions where the hazard exists. 

NoOp instruction should not change anything in your processor (ex. sll $0, $0, 0; add 
$0, $0, $0, etc.) 
 
 

10.3.1. Structural Hazards 
 
Structural hazards occur when instructions from two different pipeline stages are trying 
to use the same resource in the same cycle. 
 
Special attention should be given to the structural hazard that can occur when two 
instructions at distance of 3 are using the same register (from the RF). In the following 
example, we presume that instr1 and instr2 do not have hazard with other instructions. 
 

Structural hazard at RF 
add $1, $1, $2 
instr1 
instr2 
add $3, $1, $4 

 

61 



COMPUTER ARCHITECTURE                                                                                 LABORATORY 10 

Pipeline diagram (in each clock cycle we present the pipeline stage for each 
instruction): 
 
Instr\Clk CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 … 
add $1, $1, $2 IF ID EX MEM WB     
instr1  IF ID EX MEM WB    
instr2   IF ID EX MEM WB   
add $3, $1, $4    IF ID EX MEM WB  

 
During clock cycle CC5, the new value of $1, generated by the first instruction, is in 
WB stage, being unwritten yet in RF. Therefore, in ID stage, the 4th instruction will 
read the old value of $1, in cycle CC6 EX receiving the incorrect value. 
 
There are 2 possible solutions: 
 

1. Recommended: Modify RF block such that the writing is done in the middle of 
the clock cycle (test the falling edge – clk = 0 & clk’event). In this case, the RF 
read (being asynchronous), in the second part of CC5 the correct value of $1 
occurs and it is propagated forward to EX at CC5-CC6 transition.  

2. Introduce a NoOp instruction 
 

Without Hazard 
add $1, $1, $2 
instr1 
instr2 
NoOp 
add $3, $1, $4 

 
Attention! In the following, it is assumed that you have chosen the 1st option. 
Otherwise, introduce an extra NoOp where necessary. 
 
 

10.3.2. Data Hazards 
 

Data hazards (Read After Write or Load Data Hazard) occur when the current 
instruction use as source(s) the register that will be written by other instructions that 
are still executing in the pipeline.  
 
(!) In order to establish where these hazards occur you need to draw the pipeline 
diagram and to understand how pipelining is done (when operands are read). 
 
The following example contains most of the data hazards that might occur in your 
pipelined MIPS. 
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Instr. Nb. Program 
1 add $1, $2, $3 
2 add $3, $1, $2 
3 add $4, $1, $2 
4 add $5, $3, $2 
5 lw    $3, 5($5) 
6 add $4, $5, $3 
7 sw   $3, 6($5) 
8 beq $3, $4, -6 

 
Hazard identification process is solved with NoOp insertions, starting from first 
instruction to the last one. Example: 
 
Instr\Clk CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 
add $1, $2, $3 IF ID EX MEM WB($1)     
add $3, $1, $2  IF ID($1) EX MEM WB($3)    
add $4, $1, $2   IF ID($1) EX MEM WB   
add $5, $3, $2    IF ID($3) EX MEM WB($5)  
lw    $3, 5($5)     IF ID($5) EX MEM WB($3) 

 
Instr\Clk CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 … 
add $5, $3, $2 IF ID($3) EX MEM WB($5)     
lw    $3, 5($5)  IF ID($5) EX MEM WB($3)    
add $4, $5, $3   IF ID($3, $5) EX MEM WB($4)   
sw   $3, 6($5)    IF ID($3) EX MEM WB  
beq $3, $4, -6     IF ID($4) EX MEM WB 

 
Hazards are solved iteratively, starting from the first occurrence. Solving a hazard 
between 2 successive instructions implicitly solves the hazards between the first 
instruction and the instruction at distance +2. Example: between instruction 1 and 2, 
and 1 and 3, there is a RAW hazard (after $1). Hazard between 1 and 2 is solved first, 
delaying instruction 2 with 2 cycles (it should have ID on cycle CC5) => 2 NoOp. 
Therefore, all following instructions will be delayed with 2 cycles, so the hazard 
between 1 and 3 is also resolved. 
 
There is a RAW hazard between the 2nd and 4th instructions, after $3, which can be 
solved by delaying with 1 cycle, inserting a NoOp after 2 or before 4. 
 
All other hazards are being solved, resulting the following program: 
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Instr. Nb. Program 
1 add $1, $2, $3 
2 NoOp 
3 NoOp 
4 add $3, $1, $2 
5 NoOp 
6 add $4, $1, $2 
7 add $5, $3, $2 
8 NoOp 
9 NoOp 

10 lw    $3, 5($5) 
11 NoOp 
12 NoOp 
13 add $4, $5, $3 
14 NoOp 
15 sw   $3, 6($5) 
16 beq $3, $4, -6 

 
 

10.3.3. Control Hazards 
 
Control hazards occur at instructions that alter the sequential flow of the program, 
when the next sequential instructions that follow (3 for BEQ and 1 for J) are implicitly 
executed. 
 
For conditional jump instructions (beq, bne, etc.), the next 3 instructions will implicitly 
be executed, being already in the pipeline. Therefore, a simple (but not efficient) 
solution is to insert 3 NoOp’s.  
 
For unconditional jumps (j, jal, etc.), based on the data-path from Figure 5.5, these 
instructions are computing the jump address (and writing it in the PC register) in the 
ID stage. It means that only next instruction starts the execution, so one NoOp needs 
to be inserted after the j instruction. A better solution would be to insert the instruction 
that is after j before it, with condition that this instruction is not also a jump instruction 
(j, beq, etc.) 
 
 

10.4. Laboratory Assignments  
 
 
Read carefully and completely each activity before you begin! 
 
Prerequisites: 

• Xilinx project with “test_env” including the complete and correct implementation 
of the pipeline MIPS 16 CPU.  
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10.4.1. Verify the MIPS 16 Pipeline CPU design 
 
You can evaluate the critical path by checking the clock frequency: Go to Processes 
 Design Summary/Reports. Open Detailed Reports  Synthesis Report and 
watch the section related to clock signal. 
 
You should notice an increase in frequency (of 30-50%) caused by the pipelining of 
your MIPS (compared to the one observed in laboratory 9). One can observe that the 
increase in speed is not proportional to the number of pipeline stages. There is a 
multitude of reasons for that: stages are not balanced, the resulting circuit depends 
on the board’s technology, the memories are implemented as distributed RAMs, etc. 
   
 

10.4.2. Program analysis and hazard removal (paper and pencil) 
 

Based on the example in section 3, identify the hazards in your program. Insert NoOp 
instructions where such an instruction is needed. Draw the pipeline diagram for at 
least 5 successive instructions in your program (for all, if there are not any hazards). 
 
Note: By introducing the NoOp’s you will need to adjust the addresses for the jump 
instructions in your program. 
 
Modify the (assembly) program in the instruction memory  
 
 

10.4.3. Test and evaluate the MIPS 16 pipeline  
 
Test your design on the FPGA board. You have 2 options: 
 

a. If your pipeline implementation was correct, without any mapping mistakes etc., 
then watching your final results is enough (results should be identical with your 
single cycle implementation). 

b. If the results are different, then you should trace your program step-by-step.  
 
Use the same display procedure as the one used for your single-cycle MIPS (with the 
multiplexor on switches for selecting different data to be displayed on the SSD). It is 
important to understand that now your outputs (for your switches configuration) will 
not be the same as in the single-cycle implementation. You have 5 instructions in the 
pipeline; some of them will be NoOp.  
 
You can display the control signals on the LEDs. Use the delayed control signals, i.e. 
the control signals delayed to the stage where they are used. 
 
If necessary, display other signals/change the displayed signals, from different stages, 
on the SSD. 
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10.4.4. Hardware optimizations for the MIPS Pipeline CPU (optional).  
 
If you have finished and tested your MIPS pipeline CPU, you can modify your solution 
in order to implement the following components of the complete pipeline processor:  
 

a. Hazard detection unit 
b. Forwarding unit 
c. Move the branch in the ID stage 
d. Hardware stalls for the LW (RAW hazard), BEQ and J instructions. 

 
In the end, you should have a complete pipeline implementation, as it is presented in 
the lecture material.  
 
 

10.5. References 
 
[1] Computer Architecture Lectures 3 & 4 slides. 
[2] MIPS® Architecture for Programmers, Volume I-A: Introduction to the MIPS32® 
Architecture, Document Number: MD00082, Revision 5.01, December 15, 2012 
[3] MIPS® Architecture for Programmers Volume II-A: The MIPS32® Instruction Set 
Manual, Revision 6.02 
[4] MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32™ Architecture, Revision 2.62. 
Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® 
Architecture. 
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Laboratory 11 
 

11. Finite State Machines and Serial Communication 
 
 

11.1. Objectives 
 
Study, design, implement and test  

• Finite State Machines 
• Serial Communication 

 
Familiarize the students with  

• Xilinx® ISE Webpack 
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 Digilent Basys 2 Board – Reference Manual 

 
 

11.2. Theoretical Background 
 

11.2.1. Finite State Machines 
 

A finite state machine or FSM is a model of behavior composed of a finite number 
of states, transitions between those states, and actions. A finite state machine is used 
to describe an abstract model of a control unit. XST proposes a large set of templates 
to describe FSMs. By default, XST tries to distinguish FSMs from VHDL or Verilog 
code, and apply several state encoding techniques to obtain better performance or 
less area.  
 
XST supports the following state encoding techniques: 
 

• Auto – the best suited encoding algorithm for each FSM. 
• One-hot – associate one code bit and one flip-flop per state. At a given clock 

cycle during operation, one and only one bit of the state variable is asserted. 
Only two bits toggle during a transition between two states. One-hot encoding 
is appropriate with most FPGA targets where a large number of flip-flops are 
available. It is also a good alternative when trying to optimize speed or to 
reduce power dissipation. 

• Gray – guarantees that only one bit switches between two consecutive states. 
It is appropriate for controllers exhibiting long paths without branching. In 
addition, this coding technique minimizes hazards and glitches. Very good 
results can be obtained when implementing the state register with T flip-flops. 
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• Compact – consists of minimizing the number of bits in the state variables and 
flip-flops. Compact encoding is appropriate when trying to optimize area. 

• Johnson – like Gray, it shows benefits with state machines containing long 
paths with no branching. 

• Sequential – consists of identifying long paths and applying successive radix 
two codes to the states on these paths. Next state equations are minimized. 

• Speed1 – oriented for speed optimization. The number of bits for a state 
register depends on the particular FSM, but generally, it is greater than the 
number of FSM states. 

• User – original encoding specified in the HDL file. 
 

 
Figure 11.1: FSM Representation Incorporating Mealy and Moore Machines 

 
When describing a finite state machine in VHDL you may have several processes 

(1, 2 or 3) depending upon how you consider and decompose the different parts of the 
preceding model. Appendix 6 (adapted from [1]) describes the VHDL finite state 
machine implementations.  
 

11.2.2. Serial Communication – UART  
 
Serial communication is the transmission or reception of data one bit at a time. Today's 
computers generally address data in bytes or some multiple thereof. A serial port is 
used to convert each byte to a stream of ones and zeroes as well as to convert 
streams of ones and zeroes to bytes. The serial port contains an electronic chip called 
a Universal Asynchronous Receiver/Transmitter (UART) that actually does the 
conversion. Serial transmission of digital information (bits) through a single wire or 
other medium is much more cost effective than parallel transmission through multiple 
wires.  
 
When transmitting a byte, the UART first sends a START BIT followed by the data 
(generally 8 bits, but could be 5, 6, 7, or 8 bits), followed by STOP BITs. The sequence 
is repeated for each byte sent. 

 
Figure 11.2: Serial Transmission Timing Diagram 
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Serial transmission does not involve a clock signal. The information is included in the 
baud rate (number of bits per second). Common baud rates are 2400, 4800, 9600 
and 19200. This means that a bit transmitted through the serial line is valid for a given 
time period (the inverse of the baud rate).  
 
The start bit is always 0, the data bits are transmitted with the LSB (least significant 
bit) first and MSB (most significant bit) last and the stop bit is always 1. In serial 
communication, the stop bit duration can have multiple values: 1, 1.5 or 2 bit periods 
in length. Besides the synchronization provided by the use of start and stop bits, an 
additional bit called a parity bit may optionally be transmitted along with the data. A 
parity bit affords a small amount of error checking, to help detect data corruption that 
might occur during transmission. One can choose even parity, odd parity, mark parity, 
space parity or none at all. When even or odd parity is being used, the number of 
marks (logical 1 bits) in each data byte is counted, and a single bit is transmitted 
following the data bits, to indicate whether the number of 1 bits just sent is even or 
odd. 
 
The data sent through serial communication is encoded using ASCII codes (Appendix 
7). Assume we want to send the letter 'A' over the serial communication channel. The 
binary representation of the letter 'A' is 01000001 (0x41hex). Remembering that bits 
are transmitted from least significant bit (LSB) to most significant bit (MSB), the bit 
stream transmitted would be as follows for the line characteristics 8 bits, no parity, 1 
stop bit, 9600 baud: LSB (0 1 0 0 0 0 0 1 0 1) MSB. This represents (Start Bit) (Data 
Bits) (Stop Bit). For a binary two-level signal, a data rate of one bit per second is 
equivalent to one Baud. To calculate the actual byte transfer rate simply divide the 
baud rate by the number of bits that must be transferred for each byte of data. In the 
case of the above example, each character requires 10 bits to be transmitted for each 
character. As such, at 9600 baud, up to 960 bytes can be transferred in one second. 

 
Figure 11.3: Serial Transmission Example (8 data bits, no parity) 
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For accurate serial communication, on the receiving end, an oversampling scheme is 
commonly used to locate the middle position of the transmitted bits, i.e., where the 
actual sample is taken. The most common oversampling rate is 16 times the baud 
rate. Therefore, each serial bit is sampled 16 times but only one sample is saved.  
 
Each UART contains a shift register which is the fundamental method of conversion 
between serial and parallel forms. 
 
 

11.3. Laboratory Assignments  
 

11.3.1. Pmod USB-UART 
 
Read the Pmod USB-UART reference manual. The figure below shows the connection 
of the USB-UART peripheral module to the FPGA board.  
 

 
Figure 11.4: Pmod USB-UART connection to the FPGA board 

 
Use the USB-Mini USB cable to power the board and the USB-Micro USB cable for serial data 
communication. 
 
Download and open the HTERM terminal program. Alternatively, you can use the 
hyper-terminal software available in windows or download any other terminal software 
known to you / available on the web.  
 
You need to define the RX (input) and TX (output) ports into your “test_env” project 
and in the UCF file. Use your board’s reference manual to locate the correct pin 
numbers. Attention: The TX of the FPGA board is the RX of the Pmod USB-UART 
module and the RX of the FPGA board is the TX of the Pmod USB-UART module.  
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11.3.2. Serial Transmit FSM 
 
Design a baud rate generator that would ensure a 9600 baud rate (9600 bits per 
second) communication over the serial cable. Use a counter to generate the 
BAUD_ENable signal (generate a ‘1’ every bit time interval).  
 
Baud rate generation: 

• For 25 MHz, clock period ~40 ns, input clock must be divided by 2604. 
• For 50 MHz, clock period ~20 ns, input clock must be divided by 5208. 
• For 100 MHz, clock period ~10 ns, input clock must be divided by 10416. 

 
Define a new entity for the transmission FSM. The next figure presents the ports of 
this entity.  
 

 
Figure 11.5: TX_FSM Entity Description 

 
The detailed FSM implementation is presented in the figure below. A state transition 
is triggered only in the clock cycle when BAUD_ENable is ‘1’. This ensures that a bit 
will be valid for the baud rate period. The BIT_CNT is a signal with the functionality of 
a counter inside the FSM; it holds the current transmitting bit value. It should be 
incremented in the bit state and should be reset after each serial transfer (you can do 
that in the idle state, or in all states except the bit state).   

 
Figure 11.6: TX_FSM Implementation 
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Write the VHDL code and implement in the “test_env” project the TX_FSM state 
machine. Use a FSM with 2 or 3 processes (see appendix 6). Test the communication 
between the FPGA board and the PC. The parameters of the serial communication 
are: 1 start bit, 8 data bits, 1 stop bit, no parity bit, 9600 baud rate. Make sure that 
these settings are also configured in the HTERM / hyper-terminal application.  
 
In order to test the serial transmission from the FPGA board to the PC, connect the 
TX_DATA input to the switches, the TX_EN signal to a MPG enable, RST to ‘0’ or 
another MPG enable. Make sure that the switches show a valid ASCII code.  
 
Define the correct methodology of asserting the TX_EN signal in order to initiate a 
single serial data transfer (use a D flip-flop with a set and a reset). 
 

11.3.3. I/O from the MIPS CPU 
 
Connect the TX_FSM into your own MIPS processor implementation. At this point, 
you are allowed to use your finished and complete processor (single-cycle or pipeline).  
 
You have to send 16-bits of data from your MIPS processor to the PC. Depending on 
the result of your program, define what field you will send (register with the final result, 
memory location, etc.). 
 
Example:  
When your program has finished execution the result is in R7 and the PC is 0x0020. 
Add a new instruction to your program: addi R7, R7, 0. Define a 16-bit register whose 
value will be written from the RD1/ALURes signal, write it in this register (write enable 
with the value of the PC) and initiate the serial transfer.  
 
Remember that when sending over the serial line the 8-bits represent an ASCII 
character, hence you are required to make 4 transfers in order to send the 
alphanumerical encoding of the 4 x 4-bit hexadecimal value (use a decoder/ROM to 
generate the 8-bit ASCII representation for a hexadecimal value). 
 
Define the methodology to send the 16-bit data over the serial line. Use the TX_RDY 
signal to control the 4 serial transfers.  
 
 

11.4. References 
 
[1] XST User Guide 
[2] Digilent Basys Board – Reference Manual 
[3] Digilent Basys 2 Board – Reference Manual 
[4] Digilent Pmod USB-UART – Reference Manual  
[5] http://www.asciitable.com/  
[6] http://www.der-hammer.info/terminal/  
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Laboratory 12 
 

12. Finite State Machines and Serial Communication (2) 
 
 

12.1. Objectives 
 
Study, design, implement and test  

• Finite State Machines 
• Serial Communication 

 
Familiarize the students with  

• Xilinx® ISE Webpack 
• Digilent Development Boards (DDB) 

 Digilent Basys Board – Reference Manual 
 Digilent Basys 2 Board – Reference Manual 
  

 
 

12.2. Theoretical Background 
 
 

Oversampling mechanism for UART Receive 
 
 
When transmitting a byte, the UART first sends a START BIT followed by the data 
(general 8 bits, but could be 5, 6, 7, or 8 bits), followed by STOP BITs. The sequence 
is repeated for each byte sent.  
 

 
Figure 12.1: Timing Diagram for serial transmission (8-bit Data Example). The red 

arrows indicate when the bits of data should be read at the receiver. 
 
Serial transmission does not involve a clock signal. The information is included in the 
baud rate (number of bits per second). Common baud rates are 2400, 4800, 9600 
and 19200. This means that a bit transmitted through the serial line is valid for a given 
time period (the inverse of the baud rate). More details on the transmission over the 
serial line can be found in the previous laboratory. 
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When receiving a UART packet, one must read (sample) the input signal and extract 
the data bits sent over the serial line bit by bit. At a first glance, the sample rate for the 
receiver should coincide with the sample rate (baud rate) of the transmitter; i.e. the 
rate at which the data was sent. However this is WRONG and can yield in bad 
transfers at the receiver end, due to imperfect synchronizations (the receiver and the 
transmitter are in two different clock domains, the baud rate is generated independent 
at the receiver and the transmitter, asynchronous communication – no common clock 
signal) between the receiver and the transmitter (double reading the same bit, missing 
the start bit, not reading the first bit and reading the sign bit, etc.). The frequency at 
which such events can occur depends on the difference between the sampling rates 
of the transmitter and receiver. Even if the differences would be very small at a 
significant number of samplings for successive bits, the error in communication can 
occur. For example, a difference of 0.1% between the two sampling rates, when 
transmitting 1000 bits the error appears once. When we perform the serial transfer 
with 10-bits per character (1 start bit, 8 data bits and 1 stop bit) it results that one 
character from 100 will be falsely received.  
 
This problem is tackled using oversampling: the input receive signal is read (sampled) 
at a higher rate than the one used at the transmitter. This permits the detection of the 
middle of the start bit interval, thus allowing the data bits to be read approximately in 
the middle of the bit interval, thus eliminating the risk of gaps and receiving false data. 
For each new character, the middle of the start bit will be determined so this is the 
only synchronization mechanism used between the receiver and the transmitter.  
 
Oversampling rates are multiple of the transmitter baud-rate: 2, 4, 8, etc. The most 
usual oversampling rate is 16 times the baud rate of the sender. Each bit that is 
received over the serial line is sampled (read) 16 times, but only one of the samples 
is saved (the middle one). The maximum delay for detecting the start bit is 1/16 from 
the bit interval.   
 
Any UART circuit contains a shift register that is used for converting the received serial 
data into its parallel form.  
 
 

12.3. Laboratory Assignments  
 
 

12.3.1. Serial Receive FSM 
 
Design a baud rate generator that would ensure a 9600 baud rate (9600 bits per 
second) communication over the serial cable. Use a counter to generate the 
BAUD_ENable signal (generate a ‘1’ every bit time interval). For the serial receive 
communication you need to implement an oversampling mechanism of 16.  
 
Baud rate generation for oversampling of 16: 

• For 25 MHz, clock period ~ 40 ns, input clock must be divided by ~ 163. 
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• For 50 MHz, clock period ~ 20 ns, input clock must be divided by ~ 326. 
• For 100 MHz, clock period ~ 10 ns, input clock must be divided by ~ 651. 

Define a new entity for the receive FSM. The next figure presents the ports of this 
entity.  
 

 
Figure 12.2: RX_FSM Entity Description 

 
The detailed FSM implementation is presented in the figure below. A state transition 
is triggered only in the clock cycle when BAUD_ENable is ‘1’. This ensures that a bit 
will be valid for the baud rate period.  
 
For the RX_FSM you have to use two auxiliary counters: BAUD_CNT and BIT_CNT.  
 
The BIT_CNT is similar to the one in the TX_FSM, i.e. a signal with the functionality 
of a counter inside the RX_FSM; it holds the current transmitting bit number. It should 
be incremented in the bit state and should be reset after each serial transfer (you can 
do that in the idle state, or in all states except the bit state).   
 
The BAUD_CNT is a signal is a signal with the functionality of a counter inside the 
RX_FSM; it counts the number of BAUD_ENables in order to ensure a correct 
oversampling mechanism. Remember that you use an oversampling factor of 16.  
 

 
Figure 12.3: RX_FSM Implementation 
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Write the VHDL code and implement in the “test_env” project the RX_FSM state 
machine. Use a FSM with 2 or 3 processes (see appendix 6, laboratory 11). You also 
have to implement a shift register in order to receive the correct data from the serial 
input line. The RX signal will be shifted in this shift register only once per bit interval; 
i.e. in the middle of the transmitting interval. Test the communication between the 
FPGA board and the PC. The parameters of the serial communication are: 1 start bit, 
8 data bits, 1 stop bit, no parity bit, 9600 baud rate. Make sure that these settings are 
also configured in the HTERM / hyper-terminal application. You have to identify the 
serial port where the module is connected – exactly like in the previous lab.  
 
In order to test the serial transmission from the computer to the FPGA board, connect 
the RX_DATA output to the SSD (2 digits), RST to ‘0’ or a MPG enable signal. On the 
SSD, you will see the 8-bit ASCII code representation of the characters that you are 
sending from the PC.   
 
 

12.3.2. I/O from the MIPS CPU – optional  
 
Connect the RX_FSM into your own MIPS processor implementation. At this point, 
you are allowed to use your finished and complete processor (single-cycle or pipeline).  
 
You have to receive 16-bits of valid data from the computer and feed this data into 
your MIPS processor. Depending on your program you can define what fields will be 
written with the data coming from the computer (register from the Register File, Data 
Memory location or even the Instructions from the Instruction Memory). 
 
Remember that when receiving data from the serial RX line the 8-bits from a data 
transfer represent an ASCII character, hence you are required to make 4 transfers in 
order to receive the alphanumerical encoding of the 4 x 4-bit hexadecimal value (use 
a decoder/ROM to generate the 4-bit hexadecimal data and then concatenate 4 
receive transfers in order to obtain the correct 16-bit data that will be fed to your 
processor).   
 
Define the methodology to receive the 16-bit data over the serial RX line. Use the 
RX_RDY signal to control the writing of the data into your processor.  
 
 

12.4. References 
 
[1] XST User Guide 
[2] Digilent Basys Board – Reference Manual 
[3] Digilent Basys 2 Board – Reference Manual 
[4] Digilent Pmod USB-UART – Reference Manual  
[5] http://www.asciitable.com/  
[6] http://www.der-hammer.info/terminal/ 
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A. Appendix 1 – ISE Quick Start Tutorial 

 
ISE Quick Start Tutorial, adapted to ISE 14.7 
 
Starting the ISE Software 
 
Double click the desktop icon, or go to StartPrograms Xilinx Design Tools  
ISE Design Suite 14.7  ISE Design Tools  Project Navigator 
 
Attention (!) Be careful to use the latest version of ISE not the 9.2i version that may 
be installed on the computers from the lab.  
 
Accessing Help 
 
At any time during the tutorial, you can access online help for additional information 
about the ISE software and related tools. 
To open Help, do either of the following: 
• Press F1 to view Help for the specific tool or function that you have selected or 
highlighted.  
• Launch the ISE Help Contents from the Help menu. It contains information about 
creating and maintaining your complete design flow in ISE. 
 

 
Figure A.1: ISE Help Topics 

 
Create a New Project 
 
Create a new ISE project, which will target the FPGA device on the Basys 
development board, Spartan 3E. 
To create a new project: 

1. Select File  New Project... The New Project Wizard appears. 
2. Type test_env in the Entity Name field. 
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3. Enter or browse to a location (directory path) for the new project (remember the 
laboratory rules). A test_env subdirectory is created automatically. 

4. Verify that HDL is selected from the Top-Level Source Type list. 
5. Click Next to move to the device properties page. 
6. Fill in the properties in the table as shown below: 

 Product Category: All 
 Family: Spartan 3E   
 Device: XC3S100E   
 Package: TQ144 (for Basys) / CP132 (for Basys 2) 
 Speed Grade: -4 
 Top-Level Module Type: HDL 
 Synthesis Tool: XST (VHDL/Verilog) 
 Simulator: ISim (VHDL/Verilog) 
 Preferred language: VHDL 
 Leave the default values in the remaining fields. 

 
Creating a VHDL Source 
 
Create a VHDL source file for the project as follows: 

1. Click the menu Project/New Source. 
2. Select VHDL Module as the source type. 
3. Type in the file name that you want to create. For example “test_env”. 
4. Verify that the Add to project checkbox is selected. 
5. Click Next. 
6. Declare the ports for your design by filling in the port information as in the 

following figure. These ports are particularly defined for the Basys board, 
being enough for the majority of the laboratory designs for this semester.    
 

 
Figure A.2 Port definition through the Xilinx Interface 
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7. Click Next (re-verify the summary of the port declarations), and then Finish to 

complete the new source file template. 
The source file containing the entity test_env and its architecture is displayed in the 
ISE environment, and in the Hierarchy tab appears as Top Module for the current 
design. 
 
Remember, in projects containing multiple source files, if one accidentally changes 
the top module entity, you can reset it as a top module by right click on a source in 
Hierarchy, and select Set as Top Module.  
 
Attention the parent of the test_env entity in the hierarchy is formed by the properties 
of the FPGA target device. For Basys, one must see xc3s100e-4tq144. If it does not 
coincide, this means that you have probably skipped step 6 from Creating a VHDL 
Source. Double click on the parent and enter the target device properties.   
 

 
Figure A.3: The new ISE Project 

 
Make shore that the following libraries are included in the source file header: 
 

use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 
If they are missing from any VHDL file, include them! 
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Using Language Templates (VHDL) – optional (You will probably have to use 
this in the future…) 
 
Language Templates includes VHDL synthesizable examples that you can use in your 
designs. The “Light Bulb” takes you directly to Language Templates tab” or you can 
do the following” 

1. Place the cursor under the begin statement of your architecture. 
2. Open Language Templates by selecting the menu Edit  Language 

Templates… 
3. Navigate in the hierarchy “+”, to the coding examples:  

VHDL  Synthesis Constructs  Coding Examples  … 
4. Select the desired component in the hierarchy, then right click  Use in File. 

This step will copy the model code to your source file at the place of your cursor.  
5. Close the Language Templates. 
6. Change the signal names so that they will match the signals in your entity. 

 
Editing the VHDL Source Code  

 
1. Add component and/or signal declarations between the architecture and the 

begin statements. 
2. Add the rest of the code (component instantiation, behavioral description, etc.) 

after the begin statement and before the end statement. 
3. For the first example add the following statements after begin. 

 
 led <= sw; 
 an  <= btn; 
 cat <= (others=>'0'); 
 dp  <= '0'; 
 

4. Save the file by selecting File  Save or Ctrl + S. 
5. Select the top-level entity in the Hierarchy tab: test_env.  
6. Verify that your VHDL syntax is correct: in the Processes zone: Synthesize – 

XST   Check Syntax  Run 
7. Correct the errors if they appear in the bottom part of the ISE environment. 

Start from the top with the first error.  
8. Synthesize your design: double click Synthesize – XST 
9. View the resulting circuit: double click Synthesize – XST  View RTL 

Schematic. In the next dialog be sure to select the second variant (Start with 
a schematic of the top-level block), press OK. The top-level entity will appear. 
Double click to view its internal organization. You should recognize at least 
a part of the declared entity. This is a first method to verify that your code is 
correct and implements the desired circuits.  

  
You have now created the VHDL source for the “test_env” project with no errors.  
Note: You can also create a UCF file for your project by selecting Project  Create 
New Source. 
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Assigning Pin Location Constraints 
 
Specify the pin locations for the ports of the design so that they are connected correctly 
on the DDB. You can Edit the User Constraints File (*.ucf) manually (Users 
Constraints  Edit Constraints (Text)). You can find the user constraints file for the 
Basys Board here and for the Basys 2 Board here. Download the file and add it to 
your design. Open the constraints file and see the syntax for every port (net).  
 
For the future, you can add new ports to the constraints file.  
 
Implement Design and Verify Constraints 
 
Implement the design and verify that it meets all constraints. 

1. Double-click the Implement Design process in the Processes tab. 
2. Notice that after Implementation is complete, the Implementation processes 

have a green check mark next to them indicating that they completed 
successfully without Errors or Warnings. If there are errors or warnings, you 
can correct them.  

3. Open Design Summary/Reports. Analyze the reports of your design 
(Summary, Timing Constraints, etc.). In the next designs, these reports will be 
relevant.  

 
Generate Programming File 
 

1. Before generating the programming file, you must set the start-up clock option 
to JTAG clock: Generate Programming File  Properties  Startup 
Options  FPGA Start-Up Clock  JTAG Clock.  

2. Generate the programming file: double click Generate Programming File. The 
bit file for the DDB configuration is created.  

 
If you notice that one or more processes have an orange question mark next to them, 
it indicates that they are out-of-date with one or more of the design files. You will have 
to re-run these processes.  
 
If there are no errors at this time the file “test_env.bit” should be in the project folder.  
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Figure A.4: Digilent Adept tool 

 
Download Design to the Spartan™-3E Demo Board  Basys 
 
If you encounter problems during the programming of the board please go to the end 
of this tutorial (after the following figure). 

1. Connect the Basys board to the USB port. 
2. Start the Adept Tool from Adept programming software: Start  Programs  

Digilent  Adept (Figure A.4). 
3. Press the Initialize Chain button 
4. Browse for the project’s bit file.  
5. Program the FPGA device. 

 
Possible problems when connecting the board and solutions: 
 
Problem: The Basys board is not recognized. 
Solutions (Start in order and restart Adept after every fail, ask the TA to assist you): 

a) Try a different USB port (front or rear of the computer). If a driver install process 
initiates, call your TA. You will need administrative 
privileges.  

b) Verify that the board does not require external power.  
• If it does not require external power (no “E” sign 

– see the figure below position 1), make shore 
that the switch (Position 3 in the image) is in the 
VUSB position 

• If it requires external power, do the following 
 Use a 3.3 V power supply in the external 

power socket (position 2 in the image) 
 Move the switch (position 3 in the image) 

to the VEXT position 

82 



COMPUTER ARCHITECTURE                                                                                         APPENDIX 1 

c) Try a new programming cable 
d) Try a new board (report this to your TA) 
e) Change the workstation 
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B. Appendix 2 – Combinational Shifter Implementation  

 
A shifter can also be implemented as a sequence of multiplexers. In such an 
implementation, the output of one MUX is connected to the input of the next MUX in 
a way that depends on the shift distance. The number of multiplexers required for an 
n-bit word is 𝑛𝑛 ∗ log2 𝑛𝑛.  
 

 
Figure B.1: Multi-level (logarithmic) 8-bit right shifter 

 
Example:  
 

• sw(4 downto 0) is a 5-bit signal that can be shifted left or right arithmetic  
• sw(6:5) is the shift amount: 0, 1, 2 or 3 positions 
• sw(7) is the shift direction 

• sw(7) = 0 – shift left 
• sw(7) = 1 – shift right arithmetic 

• the result is displayed on the LEDs from the Basys board 
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The code in VHDL implemented with two processes:  
 
    process(sw) 
    begin                           
        if sw(5) = '1' then    -- shift with 1 position 
           if sw(7) = '0' then  
               shift1 <= sw(3 downto 0) & '0';       -- shift left 
           else  
               shift1 <= sw(4) & sw(4 downto 1);     -- shift right arithmetic 
           end if; 
        else                                            
            shift1 <= sw(4 downto 0); 
        end if; 
    end process; 
     
    process(sw, shift1) 
    begin                           
        if sw(6) = '1' then    -- shift with 2 position 
           if sw(7) = '0' then  
               shift2 <= shift1(2 downto 0) & "00";                      -- shift left 
           else  
               shift2 <= shift1(4) & shift1(4) & shift1(4 downto 2); -- shift right arithmetic 
           end if; 
        else                                            
            shift2 <= shift1; 
        end if; 
    end process; 
     
    led <= shift2; 
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C. Appendix 3 – Register File Implementation  

 
 
entity reg_file is 

port ( 
clk : in std_logic; 
ra1 : in std_logic_vector (2 downto 0); 
ra2 : in std_logic_vector (2 downto 0); 
wa : in std_logic_vector (2 downto 0); 
wd : in std_logic_vector (7 downto 0); 
wen : in std_logic; 
rd1 : out std_logic_vector (7 downto 0); 
rd2 : out std_logic_vector (7 downto 0) 

); 
end reg_file; 
 
architecture Behavioral of reg_file is 
 

type reg_array is array (0 to 7) of std_logic_vector(7 downto 0); 
signal reg_file : reg_array; 

 
begin 

process(clk) 
begin 

if rising_edge(clk) then 
if wen = '1' then 

reg_file(conv_integer(wa)) <= wd; 
end if; 

end if; 
end process; 

 
rd1 <= reg_file(conv_integer(ra1)); 
rd2 <= reg_file(conv_integer(ra2)); 

 
end Behavioral; 
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D. Appendix 4 – RAM Implementation 

 
The following example is a RAM with “no change” policy  
 
entity rams_no_change is 
 port ( clk : in std_logic; 
  we : in std_logic; 
  en : in std_logic; 
  addr : in std_logic_vector(7 downto 0); 
  di : in std_logic_vector(15 downto 0); 
  do : out std_logic_vector(15 downto 0)); 
end rams_no_change; 
 
architecture syn of rams_no_change is 
 
 type ram_type is array (0 to 255) of std_logic_vector (15 downto 0); 
 signal RAM: ram_type; 
begin 
 
 process (clk) 
 begin 
  if clk'event and clk = '1' then 
   if en = '1' then 
    if we = '1' then 
     RAM(conv_integer(addr)) <= di; 
    else 
     do <= RAM( conv_integer(addr)); 
    end if; 
   end if; 
  end if; 
 end process; 
end syn; 
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E. Appendix 5 – MIPS Instruction Reference 

 
Note: ALL immediate values should be sign extended. 
Exception: For logical operations immediate values should be zero extended.  
After extensions, you treat them as signed or unsigned 32-bit numbers.  
 
For the non-immediate instructions, the only difference between signed and unsigned 
instructions (ex ADD vs. ADDU) is that signed instructions can generate an overflow.  
 
The instruction formats are given, you can figure out the binary instruction codes. The 
instruction descriptions are given below. Additional details can be found here: “MIPS 
Single Cycle Processor”, John Alexander, Barret Schloerke, Daniel Sedam, Iowa 
State University 
 
ADD – Add 
Description: Adds two registers and stores the result in a register  
Operation:  $d  $s + $t; advance_pc (4);  
Syntax:  add $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 0000  

 
ADDI – Add immediate 

Description: Adds a register and a signed immediate value and stores the result in 
a register  

Operation:  $t  $s + imm; advance_pc (4);  
Syntax:  addi $t, $s, imm  
Encoding:  0010 00ss ssst tttt iiii iiii iiii iiii  

 
ADDIU – Add immediate unsigned 

Description: Adds a register and an unsigned immediate value and stores the 
result in a register  

Operation:  $t  $s + imm; advance_pc (4);  
Syntax:  addiu $t, $s, imm  
Encoding:  0010 01ss ssst tttt iiii iiii iiii iiii  

 
ADDU – Add unsigned 
Description: Adds two registers and stores the result in a register  
Operation:  $d  $s + $t; advance_pc (4);  
Syntax:  addu $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 0001  
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AND – Bitwise and 
Description: Bitwise ands two registers and stores the result in a register  
Operation:  $d  $s & $t; advance_pc (4);  
Syntax:  and $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 0100  

 
ANDI – Bitwise and immediate 

Description: Bitwise ands a register and an immediate value and stores the 
result in a register  

Operation:  $t  $s & imm; advance_pc (4);  
Syntax:  andi $t, $s, imm  
Encoding:  0011 00ss ssst tttt iiii iiii iiii iiii  

 
BEQ – Branch on equal 
Description: Branches if the two registers are equal  
Operation:  if $s == $t advance_pc (offset << 2); else advance_pc (4);  
Syntax:  beq $s, $t, offset  
Encoding:  0001 00ss ssst tttt iiii iiii iiii iiii  

 
BGEZ – Branch on greater than or equal to zero 
Description: Branches if the register is greater than or equal to zero  
Operation:  if $s >= 0 advance_pc (offset << 2); else advance_pc (4);  
Syntax:  bgez $s, offset  
Encoding:  0000 01ss sss0 0001 iiii iiii iiii iiii  

 
BGEZAL – Branch on greater than or equal to zero and link 

Description: Branches if the register is greater than or equal to zero and saves 
the return address in $31  

Operation:  if $s >= 0 $31 = PC + 8 (or nPC + 4); advance_pc (offset << 2); else 
advance_pc (4);  

Syntax:  bgezal $s, offset  
Encoding:  0000 01ss sss1 0001 iiii iiii iiii iiii  

 
BGTZ – Branch on greater than zero 
Description: Branches if the register is greater than zero  
Operation:  if $s > 0 advance_pc (offset << 2); else advance_pc (4);  
Syntax:  bgtz $s, offset  
Encoding:  0001 11ss sss0 0000 iiii iiii iiii iiii  

 
BLEZ – Branch on less than or equal to zero 
Description: Branches if the register is less than or equal to zero  
Operation:  if $s <= 0 advance_pc (offset << 2)); else advance_pc (4);  
Syntax:  blez $s, offset  
Encoding:  0001 10ss sss0 0000 iiii iiii iiii iiii  
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BLTZ – Branch on less than zero 
Description: Branches if the register is less than zero  
Operation:  if $s < 0 advance_pc (offset << 2)); else advance_pc (4);  
Syntax:  bltz $s, offset  
Encoding:  0000 01ss sss0 0000 iiii iiii iiii iiii  

 
BLTZAL – Branch on less than zero and link 

Description: Branches if the register is less than zero and saves the return 
address in $31  

Operation:  if $s < 0 $31 = PC + 8 (or nPC + 4); advance_pc (offset << 2)); else 
advance_pc (4);  

Syntax:  bltzal $s, offset  
Encoding:  0000 01ss sss1 0000 iiii iiii iiii iiii  

 
BNE – Branch on not equal 
Description: Branches if the two registers are not equal  
Operation:  if $s != $t advance_pc (offset << 2)); else advance_pc (4);  
Syntax:  bne $s, $t, offset  
Encoding:  0001 01ss ssst tttt iiii iiii iiii iiii  

 
DIV – Divide 

Description: Divides $s by $t and stores the quotient in $LO and the remainder 
in $HI  

Operation:  $LO  $s / $t; $HI  $s % $t; advance_pc (4);  
Syntax:  div $s, $t  
Encoding:  0000 00ss ssst tttt 0000 0000 0001 1010  

 
DIVU – Divide unsigned 

Description: Divides $s by $t and stores the quotient in $LO and the remainder 
in $HI  

Operation:  $LO  $s / $t; $HI  $s % $t; advance_pc (4);  
Syntax:  divu $s, $t  
Encoding:  0000 00ss ssst tttt 0000 0000 0001 1011  

 
J – Jump 
Description: Jumps to the calculated address  
Operation:  PC  nPC; nPC = (PC & 0xf0000000) | (target << 2);  
Syntax:  j target  
Encoding:  0000 10ii iiii iiii iiii iiii iiii iiii  
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JAL – Jump and link 

Description: Jumps to the calculated address and stores the return address in 
$31  

Operation:  $31  PC + 8 (or nPC + 4); PC = nPC; nPC = (PC & 0xf0000000) | 
(target << 2);  

Syntax:  jal target  
Encoding:  0000 11ii iiii iiii iiii iiii iiii iiii  

 
JR – Jump register 
Description: Jump to the address contained in register $s  
Operation:  PC  nPC; nPC = $s;  
Syntax:  jr $s  
Encoding:  0000 00ss sss0 0000 0000 0000 0000 1000  

 
LB – Load byte 
Description: A byte is loaded into a register from the specified address.  
Operation:  $t  MEM[$s + offset]; advance_pc (4);  
Syntax:  lb $t, offset($s)  
Encoding:  1000 00ss ssst tttt iiii iiii iiii iiii  

 
LUI – Load upper immediate 

Description: The immediate value is shifted left 16 bits and stored in the register. 
The lower 16 bits are zeroes.  

Operation:  $t  (imm << 16); advance_pc (4);  
Syntax:  lui $t, imm  
Encoding:  0011 11-- ---t tttt iiii iiii iiii iiii  

 
LW – Load word 
Description: A word is loaded into a register from the specified address.  
Operation:  $t  MEM[$s + offset]; advance_pc (4);  
Syntax:  lw $t, offset($s)  
Encoding:  1000 11ss ssst tttt iiii iiii iiii iiii  

 
MFHI – Move from HI 
Description: The contents of register HI are moved to the specified register.  
Operation:  $d  $HI; advance_pc (4);  
Syntax:  mfhi $d  
Encoding:  0000 0000 0000 0000 dddd d000 0001 0000  

 
MFLO – Move from LO 
Description: The contents of register LO are moved to the specified register.  
Operation:  $d  $LO; advance_pc (4);  
Syntax:  mflo $d  
Encoding:  0000 0000 0000 0000 dddd d000 0001 0010  
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MULT – Multiply 
Description: Multiplies $s by $t and stores the result in $Hi and $LO.  
Operation:  $Hi, $LO  $s * $t; advance_pc (4);  
Syntax:  mult $s, $t  
Encoding:  0000 00ss ssst tttt 0000 0000 0001 1000  

 
MULTU – Multiply unsigned 
Description: Multiplies $s by $t and stores the result in $Hi and $LO.  
Operation:  $Hi, $LO  $s * $t; advance_pc (4);  
Syntax:  multu $s, $t  
Encoding:  0000 00ss ssst tttt 0000 0000 0001 1001  

 
NOOP – no operation 
Description: Performs no operation.  
Operation:  advance_pc (4);  
Syntax:  noop  
Encoding:  0000 0000 0000 0000 0000 0000 0000 0000  

Note: The encoding for a NOOP represents the instruction SLL $0, $0, 0 which has 
no side effects. In fact, nearly every instruction that has $0 as its destination register 
will have no side effect and can thus be considered a NoOP instruction. 
 
OR – Bitwise or 
Description: Bitwise logical ors two registers and stores the result in a register  
Operation:  $d  $s | $t; advance_pc (4);  
Syntax:  or $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 0101  

 
ORI – Bitwise or immediate 

Description: Bitwise ors a register and an immediate value and stores the result 
in a register  

Operation:  $t  $s | imm; advance_pc (4);  
Syntax:  ori $t, $s, imm  
Encoding:  0011 01ss ssst tttt iiii iiii iiii iiii  

 
SB – Store byte 
Description: The least significant byte of $t is stored at the specified address.  
Operation:  MEM[$s + offset]  (0xff & $t); advance_pc (4);  
Syntax:  sb $t, offset($s)  
Encoding:  1010 00ss ssst tttt iiii iiii iiii iiii  
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SLL – Shift left logical  

Description: 
Shifts a register value left by the shift amount listed in the 
instruction and places the result in a third register. Zeroes are 
shifted in.  

Operation:  $d  $t << h; advance_pc (4);  
Syntax:  sll $d, $t, h  
Encoding:  0000 00ss ssst tttt dddd dhhh hh00 0000  

 
SLLV – Shift left logical variable 

Description: Shifts a register value left by the value in a second register and 
places the result in a third register. Zeroes are shifted in.  

Operation:  $d  $t << $s; advance_pc (4);  
Syntax:  sllv $d, $t, $s  
Encoding:  0000 00ss ssst tttt dddd d--- --00 0100  

 
SLT – Set on less than (signed) 
Description: If $s is less than $t, $d is set to one. It gets zero otherwise.  
Operation:  if $s < $t $d  1; advance_pc (4); else $d  0; advance_pc (4);  
Syntax:  slt $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 1010  

 
SLTI – Set on less than immediate (signed) 
Description: If $s is less than immediate, $t is set to one. It gets zero otherwise.  
Operation:  if $s < imm $t  1; advance_pc (4); else $t  0; advance_pc (4);  
Syntax:  slti $t, $s, imm  
Encoding:  0010 10ss ssst tttt iiii iiii iiii iiii  

 
SLTIU – Set on less than immediate unsigned 

Description: If $s is less than the unsigned immediate, $t is set to one. It gets 
zero otherwise.  

Operation:  if $s < imm $t  1; advance_pc (4); else $t  0; advance_pc (4);  
Syntax:  sltiu $t, $s, imm  
Encoding:  0010 11ss ssst tttt iiii iiii iiii iiii  

 
SLTU – Set on less than unsigned 
Description: If $s is less than $t, $d is set to one. It gets zero otherwise.  
Operation:  if $s < $t $d  1; advance_pc (4); else $d  0; advance_pc (4);  
Syntax:  sltu $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 1011  
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SRA – Shift right arithmetic 

Description: Shifts a register value right by the shift amount (shamt) and places 
the value in the destination register. The sign bit is shifted in.  

Operation:  $d  $t >> h; advance_pc (4);  
Syntax:  sra $d, $t, h  
Encoding:  0000 00-- ---t tttt dddd dhhh hh00 0011  

 
SRL – Shift right logical 

Description: Shifts a register value right by the shift amount (shamt) and places 
the value in the destination register. Zeroes are shifted in.  

Operation:  $d  $t >> h; advance_pc (4);  
Syntax:  srl $d, $t, h  
Encoding:  0000 00-- ---t tttt dddd dhhh hh00 0010  

 
SRLV – Shift right logical variable 

Description: Shifts a register value right by the amount specified in $s and 
places the value in the destination register. Zeroes are shifted in.  

Operation:  $d  $t >> $s; advance_pc (4);  
Syntax:  srlv $d, $t, $s  
Encoding:  0000 00ss ssst tttt dddd d000 0000 0110  

 
SUB – Subtract 
Description: Subtracts two registers and stores the result in a register  
Operation:  $d  $s - $t; advance_pc (4);  
Syntax:  sub $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 0010  

 
SUBU – Subtract unsigned 
Description: Subtracts two registers and stores the result in a register  
Operation:  $d  $s - $t; advance_pc (4);  
Syntax:  subu $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d000 0010 0011  

 
SW – Store word 
Description: The contents of $t is stored at the specified address.  
Operation:  MEM[$s + offset]  $t; advance_pc (4);  
Syntax:  sw $t, offset($s)  
Encoding:  1010 11ss ssst tttt iiii iiii iiii iiii  

 
SYSCALL – System call 
Description: Generates a software interrupt.  
Operation:  advance_pc (4);  
Syntax:  syscall  
Encoding:  0000 00-- ---- ---- ---- ---- --00 1100  
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XOR – Bitwise exclusive or 
Description: Exclusive ors two registers and stores the result in a register  
Operation:  $d  $s ^ $t; advance_pc (4);  
Syntax:  xor $d, $s, $t  
Encoding:  0000 00ss ssst tttt dddd d--- --10 0110  

 
XORI – Bitwise exclusive or immediate 

Description: Bitwise exclusive ors a register and an immediate value and stores 
the result in a register  

Operation:  $t  $s ^ imm; advance_pc (4);  
Syntax:  xori $t, $s, imm  
Encoding:  0011 10ss ssst tttt iiii iiii iiii iiii  
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F. Appendix 6 – Finite State Machine Implementations 

 
 

 
Figure F.1: Finite State Machine Example (XST User Guide) 

 
IO Pins Description 
clk Positive Edge Clock 
Rst Asynchronous Reset (Active High) 
X, Y FSM Inputs 
O1, O2, O3 FSM Outputs 

Table F.1: FSM Pin Descriptions 
 
 

The Xilinx Synthesis technology recognizes Finite State Machines written in VHDL 
with 1, 2 or 3 processes. A coding example for the Finite State Machine presented in Figure 
F.1, for each kind of implementation, is given on the next pages. You have to adapt the Finite 
State Machine implementation to your own FSM description.  
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VHDL Coding Example: FSM with One Process  
 
entity fsm_1 is 

port ( 
clk, rst, x, y : IN std_logic; 
o1, o2, o3 : OUT std_logic 

); 
end entity; 
 
architecture beh1 of fsm_1 is 

type state_type is (s1, s2, s3, s4, s5); 
signal state : state_type ; 

begin 
 

process (clk, rst, x, y) 
begin 

if (rst ='1') then 
state <=s1; 
o1<='0'; o2<='0'; o3<='0'; 

elsif (clk='1' and clk'event) then 
case state is 

when s1 =>  state <= s2;  
o1<='1'; o2<='0'; o3<='0'; 

when s2 =>  if x = '1' then 
state <= s3; 
o1<='1'; o2<='1'; o3<='0'; 

      else  
       state <= s4; 

   o1<='0'; o2<='0'; o3<='1'; 
end if; 

when s3 =>  state <= s4; 
o1<='0'; o2<='0'; o3<='1'; 

when s4 =>  state <= s5; 
o1<='1'; o2<='0'; o3<='1'; 

    when s5 =>  if y = ‘1’ then 
       state <= s1; 

o1<='0'; o2<='0'; o3<='0'; 
      else 
       state <= s5; 

o1<='1'; o2<='0'; o3<='1'; 
      end if; 

end case; 
end if; 

end process; 
 

end beh1; 
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VHDL Coding Example: FSM with Two Processes  
 
entity fsm_2 is 

port ( 
clk, rst, x, y : IN std_logic; 
o1, o2, o3 : OUT std_logic 

); 
end entity; 
 
architecture beh1 of fsm_2 is 

type state_type is (s1, s2, s3, s4, s5); 
signal state : state_type ; 

begin 
 

process1: process (clk, rst, x, y) 
begin 

if (rst ='1') then  
state <=s1; 

elsif (clk='1' and clk'Event) then 
case state is 

when s1 =>  state <= s2; 
when s2 =>  if x = '1' then 

state <= s3; 
else 

state <= s4; 
end if; 

when s3 =>  state <= s4; 
when s4 =>  state <= s5; 
when s5 =>  if y = ‘1’ then 
   state <= s1; 
  else 
   state <= s5; 
  end if; 

end case; 
end if; 

end process process1; 
 
 

process2: process (state) 
begin 

case state is 
when s1 => o1<='0'; o2<='0'; o3<='0'; 
when s2 => o1<='1'; o2<='0'; o3<='0'; 
when s3 => o1<='1'; o2<='1'; o3<='0'; 
when s4 => o1<='1'; o2<='0'; o3<='0'; 
when s5 => o1<='1'; o2<='0'; o3<='1’; 
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end case; 
end process process2; 

end beh1; 
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VHDL Coding Example: FSM with Three Processes  
 
entity fsm_3 is 

port ( 
clk, rst, x, y : IN std_logic; 
o1, o2, o3 : OUT std_logic 

); 
end entity; 
 
architecture beh1 of fsm_3 is 

type state_type is (s1, s2, s3, s4, s5); 
signal state, next_state : state_type ; 

begin 
process1: process (clk, rst) 
begin 

if (reset ='1') then 
state <=s1; 

elsif (clk='1' and clk'Event) then 
state <= next_state; 

end if; 
end process process1; 
 
 
process2 : process (state, x, y) 
begin 

case state is 
when s1 => next_state <= s2; 
when s2 => if x = '1' then 

next_state <= s3; 
else 

next_state <= s4; 
end if;  

when s3 => next_state <= s4; 
when s4 => next_state <= s5; 

 when s5 => if y = ‘1’ then 
    next_state <= s1; 
   else 
    next_state <= s5; 
   end if; 
end case; 

end process process2; 
 
 
process3 : process (state) 
begin 

case state is 
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when s1 => o1<='0'; o2<='0'; o3<='0'; 
when s2 => o1<='1'; o2<='0'; o3<='0'; 
when s3 => o1<='1'; o2<='1'; o3<='0'; 
when s4 => o1<='1'; o2<='0'; o3<='0'; 
when s5 => o1<='1'; o2<='0'; o3<='1’; 

end case; 
end process process3; 

end beh1; 
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G. Appendix 7 – ASCII Codes Table 

 
 

 
Figure G.1: ASCII Codes (http://www.asciitable.com/ ) 
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