

Sergiu Nedevschi, Tiberiu Marița,
Radu Dănescu, Florin Oniga,
Raluca Brehar, Ion Giosan, Silviu Bota,
Anca Ciurte, Andrei Vatavu

Image Processing

Laboratory Guide

UTPRESS

Cluj-Napoca, 2016
ISBN 978-606-737-137-6

 Editura U.T.PRESS
 Str.Observatorului nr. 34
 C.P.42, O.P. 2, 400775 Cluj-Napoca
 Tel.:0264-401.999 / Fax: 0264 - 430.408
 e-mail: utpress@biblio.utcluj.ro
 www.utcluj.ro/editura

 Director: Ing. Călin D. Câmpean

 Recenzia: Prof.dr.ing. Ioan Salomie
 Prof.dr.ing. Gheorghe Sebestyen-Pal

Copyright © 2016 Editura U.T.PRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este posibilă numai cu
acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-137-6
Bun de tipar: 07.01.2016

Contents

Preface .. 6

1 Getting started with the DIBLook framework ... 8

 Introduction .. 8

 Overview of the DIBLook framework ... 8

 Adding a processing function to the DIBLook application 9

 A sample image processing function .. 11

 Practical work ... 16

 References .. 16

2 The RGB color model. Grayscale and black&white conversions 17

 Introduction .. 17

 The RGB color model ... 17

 Conversion of a color image into a grayscale one .. 18

 Accessing the LUT’s contents in bitmap header .. 20

 Guide to display information in a dialog box ... 20

 Conversion of a grayscale image in a binary (black & white) image 25

 Practical work ... 27

 References .. 27

3 Camera Calibration and Image Undistortion ... 28

 Introduction .. 28

 Perspective Projection .. 28

 Lens Distortions .. 29

 Camera calibration .. 30

 Image Undistortion ... 32

 Practical work ... 34

 References .. 35

4 The histogram of image intensity levels .. 36

 Introduction .. 36

 The histogram of intensity levels .. 36

 Application: Multilevel thresholding .. 37

 Implementation details: histogram display in a dialog box 39

 Practical work ... 44

 References .. 44

5 Geometrical features of binary objects .. 45

 Introduction .. 45

 Theoretical considerations .. 45

 Implementation details ... 47

 Practical work ... 50

 References .. 51

6 Binary objects labeling .. 52

 Introduction .. 52

 Theoretical considerations .. 52

 Labeling examples .. 55

 Implementation hints .. 56

 Practical Work .. 57

 References .. 57

7 Border Tracing Algorithm ... 58

 Objectives: .. 58

 Theoretical Background ... 58

 Practical Work .. 61

 Refernces .. 62

8 Morphological operations on binary images .. 63

 Introduction .. 63

 Theoretical considerations .. 63

 Implementation hints .. 69

 Practical work ... 71

 References .. 72

9 Statistical properties of grayscale images .. 73

 Introduction .. 73

 The mean value of intensity levels ... 73

 The standard deviation of the intensity levels .. 74

 Threshold selection by optimal image approximation 74

 Histogram analytical transformation functions .. 76

 Histogram equalization ... 77

 Practical work: .. 78

 References .. 79

10 Image filtering in the spatial and frequency domains .. 80

 Introduction ... 80

 The convolution process in the spatial domain ... 80

 Image filtering in the frequency domain ... 82

 Implementation details .. 86

 Practical work ... 89

 References ... 90

11 Noise modeling and digital image filtering ... 91

 Introduction ... 91

 Noise modeling ... 91

 Noise removal using spatial filters .. 92

 Practical work ... 95

 References ... 95

12 Edge detection .. 96

 Introduction ... 96

 Computing the image gradient .. 96

 Practical work ... 98

 References ... 98

13 The Canny edge detection method ... 99

 Introduction ... 99

 The steps of the Canny edge detection method: ... 99

 Adaptive thresholding ... 100

 Edge extension through hysteresis .. 101

 Practical work ... 102

 References ... 102

14 Color image processing .. 103

 Introduction ... 103

 HSI Colorspace ... 103

 Color image processing ... 105

 Practical work ... 108

 References ... 108

Appendix I. Image processing in MATLAB .. 109

Appendix II. Image processing using the OpenCV library .. 114

Preface

This guide targets the students in the 3rd year of bachelor degree at Computer Science

Department of Technical University of Cluj-Napoca, but not only. This guide can be usefull to
anyone who is interested in learning image processing.

The structure of the guide was didacticaly designed, each chapter featuring a practical
aspect. The reader is advised to go through the chapters in the order of presentation, as each
chapter may contain aspects that have been studied in previous chapters.

The current edition of this guide is the result of collective research work of Image
Processing and Pattern Recognition Group (IPPRG), Computer Science Department. Based on
the group experience in the field, the selected topics to be addressed in this guide are those that
allow an easy approach while covering the fundamental image processing aspects.

The students of the Technical University of Cluj-Napoca will use this guide to pursuit
the laboratory activities. Each chapter begins with a brief overview of theoretical concepts
followed by the practical aspects required to accomplish the implementation. The practical
activities are stated at the end of each chapter. Students are advised to read the entire chapter
before attending the laboratory, to familiarize themselves with the current theme.

The team of authors wishes you a pleasant reading !

1. Getting started with the DIBLook framework

8

1 Getting started with the DIBLook framework

 Introduction

The purpose of this first laboratory is to acquaint the students with the framework application
which will be used in the practical works related to the Image Processing lecture.

The background knowledge necessary to successfully complete the image processing
laboratory are:

 Compulsory: C, Computer Programming, Data Structures and Algorithms.
 Optional (recommended): C++, Visual C++ 12.0 (Visual Studio 2013), Object

Oriented Methods, Fundamental Algorithms, Programming Techniques, Linear
Algebra and Geometry, Discrete Mathematics, Numerical Calculus, Special
Mathematics

 Overview of the DIBLook framework

The framework which will be used for the implementation and testing of the learned image
processing algorithms is based on the DIBLook sample application available in MSDN. A
modified version of this application (for easier usage) is available on the Image Processing
Laboratory’s web page.

DIBLook is a MDI (Multiple Document Interface) application [1] complying the Document-
View Architecture [2], [3] (Fig. 1.1) of the MFC (Microsoft Foundation Class Library) [4].

Fig. 1.1. The Document View architecture [3]

The original DIBLook allows the user to open, view, and save bitmap images (*.bmp, *.dib)
(Fig. 1.2). Each image is opened in a different window and has associated its own View-Object
(instantiated from the CDibView class) and Document Object (instantiated from the CDibDoc
class) (Fig. 1.6). The View Object is used to interact with the data associated to the bitmap
which is stored in the Document Object.

1. Getting started with the DIBLook framework

9

Fig. 1.2. Each opened image is displayed in a different frame/window and as its own View Object and

Document Object.

 Adding a processing function to the DIBLook application

In order to perform any sort of processing to an opened image the following steps should are
required:

1. Switch on the Resource View tab (if it doesn’t appear open it from the menu View -> [Other
Windows->] Resource View) and open the IDR_DIBTYPE menu (Fig. 1.3):

Fig. 1.3. Application resource window

1. Getting started with the DIBLook framework

10

2. Add a new menu entry by typing the name below the existing entry (Fig.1.4):

Fig. 1.4. Adding the NewProcessing entry to the menu

3. Associate a function to be executed when the menu is clicked using Add Event Handler…
(right click on the menu):

Fig. 1.5. Adding the function associated to the mouse click event on the NewProcessing entry

Important things to notice:
a. The new function should be a member of CDibView Class !
b. The function should be called by the COMMAND massage (generated by the ‘click’ on the
menu).

4. Add and access the code for the new function through the Add and Edit button.

void CDibView::OnProcessingNewprocessing()
{
 // TODO: Add your command handler code here
}

1. Getting started with the DIBLook framework

11

 A sample image processing function

A sample of a simple image processing function is given in the provided DIBLook application
source code. The function OnProcessingParcurgereSimpla is a member of the CDibView Class
(compulsory) and was created following the steps presented in the previous chapter (1.3). It
shows how to access the pixels of an 8 bits/pixel source bitmap image, performs some simple
operations (equals the entries from the LUT (grayscale) and the negatives each pixel of the
image) and shows the results in a new/destination window (associated with its corresponding
new/destination Document and View objects).

Fig. 1.6. The Class-View window and the CDibView class methods

void CDibView::OnProcessingParcurgereSimpla()
{
 BEGIN_PROCESSING();

 // Makes a grayscale image by equalizing the R, G, B components from the LUT
 for (int k=0; k < iColors ; k++)

bmiColorsDst[k].rgbRed=bmiColorsDst[k].rgbGreen=bmiColorsDst[k].rgbBlue=k;

 // Goes through the bitmap pixels and performs their negative
 for (int i=0;i<dwHeight;i++)
 for (int j=0;j<dwWidth;j++)

 lpDst[i*w+j]= 255 - lpSrc[i*w+j]; //makes image negative

 END_PROCESSING("Operation name");
}

1. Getting started with the DIBLook framework

12

1.4.1 The macro definition: BEGIN_PROCESSING()

It provides all the necessary initializations definitions and allocations. It is defined at the
beginning of dibview.cpp file (is not provided with the original DIBLook sample from the
MSDN. Be aware if you want to edit it (each line should be ended by ‘\’ + <ENTER>, comments
are not allowed etc.).

#define BEGIN_PROCESSING() \
 CDibDoc* pDocSrc=GetDocument(); \
 CDocTemplate* pDocTemplate=pDocSrc->GetDocTemplate(); \
 CDibDoc* pDocDest=(CDibDoc*) pDocTemplate->CreateNewDocument(); \
 BeginWaitCursor(); \
 HDIB hBmpSrc=pDocSrc->GetHDIB(); \
 HDIB hBmpDest = (HDIB)::CopyHandle((HGLOBAL)hBmpSrc); \
 if (hBmpDest==0) { \
 pDocTemplate->RemoveDocument(pDocDest); \
 return; \
 } \
 BYTE* lpD = (BYTE*)::GlobalLock((HGLOBAL)hBmpDest); \
 BYTE* lpS = (BYTE*)::GlobalLock((HGLOBAL)hBmpSrc); \
 int iColors = DIBNumColors((char *)&(((LPBITMAPINFO)lpD)->bmiHeader)); \
 RGBQUAD *bmiColorsDst = ((LPBITMAPINFO)lpD)->bmiColors; \

RGBQUAD *bmiColorsSrc = ((LPBITMAPINFO)lpS)->bmiColors; \
 BYTE * lpDst = (BYTE*)::FindDIBBits((LPSTR)lpD); \
 BYTE * lpSrc = (BYTE*)::FindDIBBits((LPSTR)lpS); \
 DWORD dwWidth = ::DIBWidth((LPSTR)lpS); \
 DWORD dwHeight = ::DIBHeight((LPSTR)lpS); \
 DWORD w= WIDTHBYTES(dwWidth*((LPBITMAPINFOHEADER)lpS)->biBitCount); \

Comments:
//Access to the document object of the current view (associated to the image opened in the
active window/frame
CDibDoc* pDocSrc=GetDocument();

//Access to its template
CDibDoc* pDocDest=(CDibDoc*) pDocTemplate->CreateNewDocument();

//Creates the destination object with the same template as the source document
CDibDoc* pDocDest=(CDibDoc*) pDocTemplate->CreateNewDocument();

//Gets the handle to the Source Image
HDIB hBmpSrc=pDocSrc->GetHDIB();

//Creates a copy of the source image handle in the destination one
HDIB hBmpDest = (HDIB)::CopyHandle((HGLOBAL)hBmpSrc);

//Gets the pointer to the beginning of the Destination and Source images in the memory BYTE*
lpD = (BYTE*)::GlobalLock((HGLOBAL)hBmpDest);
BYTE* lpS = (BYTE*)::GlobalLock((HGLOBAL)hBmpSrc);

//Gets the number of entries from the LUT (for an indexed image): iColors = 2n-1
// n = 1, 4 or 8 (no. of bits/pixel)
// For a RGB image (n = 16, 24 or 32 bits/pixel): iColors = 0
int iColors = DIBNumColors((char *)&(((LPBITMAPINFO)lpD)->bmiHeader));

//Gets the pointer to the beginning of the LUT

1. Getting started with the DIBLook framework

13

RGBQUAD *bmiColorsDst = ((LPBITMAPINFO)lpD)->bmiColors;
RGBQUAD *bmiColorsSrc = ((LPBITMAPINFO)lpS)->bmiColors;

//Gets the pointers to the beginning of the bitmap data (pixels) of the destination/source images
BYTE * lpDst = (BYTE*)::FindDIBBits((LPSTR)lpD);
BYTE * lpSrc = (BYTE*)::FindDIBBits((LPSTR)lpS);

// Gets the width and the height and the bitmap (image data) [pixels]
DWORD dwWidth = ::DIBWidth((LPSTR)lpS);
DWORD dwHeight = ::DIBHeight((LPSTR)lpS);

//Gets the width of an image line from the memory in number of double-words for a bitmap
(1 double word = 4 bytes = 32 bits = memory alignment in a 32 bit Windows OS); biBitCount
represents the number of bits/pixel
DWORD w=WIDTHBYTES(dwWidth*((LPBITMAPINFOHEADER)lpS)->biBitCount);

Fig. 1.7. Structure of a bitmap (with LUT – 1, 4 or 8 bits / pixel) in the memory (source image and destination

image).

1.4.2 The macro definition: END_PROCESSING("Operation name");

#define END_PROCESSING(Title) \
 ::GlobalUnlock((HGLOBAL)hBmpDest); \
 ::GlobalUnlock((HGLOBAL)hBmpSrc); \

EndWaitCursor(); \
 pDocDest->SetHDIB(hBmpDest); \
 pDocDest->InitDIBData(); \
 pDocDest->SetTitle((LPCSTR)Titlu); \
 CFrameWnd* pFrame=pDocTemplate->CreateNewFrame(pDocDest,NULL); \

Bitmap Header
(LPBITMAPINFO)

LUT (LookUp Table)

RGBQUAD (4 bytes):
 R G B

Bitmap data
(pixels)

 pixel

dwWidth

dwHeight

lpS

lpSrc

Bitmap Header
(LPBITMAPI

NFO)

LookUp Table

RGBQUAD (4 bytes):
 R G B

Bitmap data
(pixels)

 pixel

dwWidth

dwHeight

lpD

bmiColor

lpDst

iColors = 2n-1
n = 1, 4 or 8
(n – no. bits/pixel)

iColors

bmiColorsSrcSrc

1. Getting started with the DIBLook framework

14

pDocTemplate->InitialUpdateFrame(pFrame,pDocDest);

Comments:
//Releasing the handles of the bitmaps
::GlobalUnlock((HGLOBAL)hBmpDest);
::GlobalUnlock((HGLOBAL)hBmpSrc);

//Setting the handle of the destination image and initializing other data in the associated
Document object
pDocDest->SetHDIB(hBmpDest);
pDocDest->InitDIBData();
pDocDest->SetTitle((LPCSTR)Titlu);

//Creating a frame for the destination image (results) and updating its content with the processed
image
CFrameWnd* pFrame=pDocTemplate->CreateNewFrame(pDocDest,NULL);
pDocTemplate->InitialUpdateFrame(pFrame,pDocDest);

1.4.3 Accessing the LUT

The LookUp Table (the colors palette) can be accessed through the bmiColorsSrc/
bmiColorsDst pointer. It is a table of 4 bytes entries (RGBQUAD structure) containing a byte
for each color (R,G,B) and a reserved one.

In the given example the LUT entries of the destination image are equalized with their index,
obtaining a grayscale image.

// Makes a grayscale image by equalizing the R, G, B components from the LUT
for (int k=0; k < iColors ; k++)
 bmiColorsDst[k].rgbRed=bmiColorsDst[k].rgbGreen=
 bmiColorsDst[k].rgbBlue=k;

1.4.4 Accessing the image pixels from the bitmap data for an indexed image (with

LUT)

The pixels of an 8 bits/pixel bitmap image can be accessed as in the example bellow:

 // Goes through the bitmap pixels and performs their negative
 for (int i=0;i<dwHeight;i++)
 for (int j=0;j<dwWidth;j++)

 {
 lpDst[i*w+j]= 255 - lpSrc[i*w+j]; //makes image negative

 }

The location of the current pixel (i,j) of the bitmap is at address i*w+j relative to the beginning
of the bitmap data. w is the width of a line in number of double words (1 double word = 4 bytes
= 32 bits = memory alignment in a 32 bit Windows OS):

1. Getting started with the DIBLook framework

15

Fig. 1.8. Example of how a line of 97 pixels is stored in the memory.

1.4.5 Accessing the image pixels from the bitmap data for an RGB image

Images with 16, 24, or 32 bits/pixel don’t have a LUT. Instead, each pixel from the bitmap data
contains the color information (the values of the 3 components R, G, B) in the bitmap data. In
the following example the most common RGB image will be considered: 24 bits/pixel image
(also called RGB24). In Fig. 1.9 the structure of such an image in the memory is shown:

Fig. 1.9. Structure of a 24 bits/pixel (RGB24) bitmap image (without LUT) in the memory.

The pixels (the color components) of a RGB24 bitmap image can be accessed as in the example
bellow:

BEGIN_PROCESSING();
BYTE red, green, blue;

for (int i=0;i<dwHeight;i++)

for (int j=0;j<dwWidth;j++)
{

red = lpSrc[i*w+3*j+2];
green = lpSrc[i*w+3*j+1];
blue = lpSrc[i*w+3*j];

}
 ...

Bitmap Header
(LPBITMAPINFO)

Bitmap data (pixels)

dwWidth

dwHeight

lpS

lpSrc

pixel row i

column j

3 bytes

1. Getting started with the DIBLook framework

16

 Practical work

1. Make a copy of the DIBLook application in your local (working) folder.
2. Open the diblook.sln (the solution file) in Visual C++ 10.0.
3. Build and run the application.
4. Test the provided sample function: Processing->Parcurgere simpla
5. Add a new menu and associated processing function (using the hints from chapter 1.3 and

the example from chapter 1.4).
6. Apply some simple arithmetic operations on the pixels of the input image

(adding/subtracting/multiplying with a constant) and put the results in the corresponding
pixels of the destination image. Add some supplementary conditions in order to normalize
the results (the values of the output/destination pixels) in the BYTE range
(0 … 255).

7. Close the project (Visual Studio environment) and then execute the file clean.bat, located
in the project’s folder, in order to clean it from the files resulted at the build time.

8. Implement the above operations using OpenCV.
9. Save your work. Use the same application in the next laboratories. At the end of the

image processing laboratory you should present your own application with the
implemented algorithms!!!

 References
[1] http://msdn2.microsoft.com/en-us/library/ms632591(VS.85).aspx
[2] http://www.functionx.com/visualc/Lesson05.htm
[3] http://msdn2.microsoft.com/en-us/library/4x1xy43a(VS.80).aspx
[4] http://msdn2.microsoft.com/en-us/library/d06h2x6e(VS.71).aspx

2. The RGB color model

17

2 The RGB color model. Grayscale and black&white conversions

 Introduction

The purpose of this second laboratory is to learn the basic color handling procedures related to
the digital bitmap images.

 The RGB color model

The color of each pixel (both for the acquisition device (camera) and for displays (TV, CRT,
LCD)) is obtained through the combination of the tree elementary colors: Red, Green and Blue
(additive color model – fig. 2.1 and 2.2).

Fig. 2.1. A representation of additive color mixing. Projection of primary color lights on a screen shows
secondary colors where two overlap; the combination of all three of red, green, and blue in appropriate

intensities makes white [1].

Fig. 2.2. The color of an image is obtained by combining the tree elementary colors for each pixel

(three elementary color images).

Therefore, each pixel of a bitmap image will be characterized by a value for each of the tree
primary colors. Its color is a point from the 3D space of the RGB color model (fig. 2.3). In this
color cube, the origin of the R, G and B axes corresponds to the black color (0,0,0). The opposite
vertex of the cube corresponds to the white color (255,255,255). The diagonal between the
black and the white colors corresponds to the grayscale values (R=G=B). Three vertexes
correspond to the primary colors Red, Green and Blue. The other 3 vertexes are corresponding
to the complementary colors: Cyan, Magenta and Yellow. If the origin of the color model is
translated into the ‘white’ point and the tree axes of the coordinate system are considered the
C, M and Y axes, the complementary CMY color model is obtained (which is used in the color
printing devices).

2. The RGB color model

18

Fig. 2.3. The RGB color model mapped to a cube. In this example (RGB24 bitmap image) each color is

represented on 8 bits (256 colors). The total number of colors is 28x28x28 = 234 = 16.777.216.

For an RGB24 (24 bits/pixels) image the whole color space can be represented (true color
image). In an indexed image (with LUT) only a subspace of the color space from Fig. 2.3 can
be represented. In this context the number of bits/pixel (the number of bits used to encode each
color) is called ‘color depth’ (table 2.1):

Table 2.1. Color depths vs. image type

Color Depth No. of. Colors Color Mode Palette
(LUT)

1 bit color 2 Indexed Color Yes

4 bit color 16 Indexed Color Yes

8 bit color 256 Indexed Color Yes

16 bit color 65536 True Color No

24 bit color 16.777.216 True Color No

32 bit color 16.777.216 True Color No

There are also other color models [2] used to represent the color but they will not be discussed
here.

 Conversion of a color image into a grayscale one

In order to convert a color image into a grayscale one, the 3 color components of each pixel
must be equalized. A common procedure is to make the average of the three color components:

3
SrcSrcSrc

DstDstDst

BGR
BGR


 (2.1)

2. The RGB color model

19

2.3.1 The case of the RGB24 (24 bits/pixel) images

In this case the formula from (2.1) can be applied by accessing the tree color components of
each pixel from the source/destination image as shown in Laboratory 1.

2.3.2 The case of the indexed images (with LUT).

In this case the entries of the destination’s image LUT should be iterated (see example from
Laboratory 1) and the color components of each entry should be converted using (2.1).After
this simple operation, a common situation which can occur is the following: the entries of the
LUT are not any more ordered in ascending direction upon their grayscale values (Fig. 2.4):

Old index R G B X
0 100 100 100 -
1 20 20 20 -
2 32 32 32 -
.
.
.

255 78 78 78 -
Fig. 2.4. Un-sorted LUT after color-to-grayscale conversion of an 8 bits/pixel indexed image.

Some further processing on the grayscale image would require a sorted LUT. Therefore this
operation should be done after the conversion.

A simple method to sort the LUT:

1. Create a BYTE vector of size 256:

ex: BYTE g[256];

2. Go through the LUT and initialize the values of g with one of the color components of the
entry k. of the unsorted LUT (Fig. 2.4) followed by the “sorting” of the LUT by assigning the
value of the index ‘k’ to each of the tree color components from the entry ‘k’ (in this order):

for (k = 0 … iColors) {
 // initialize vector g
 g[k] = palette[k].rgbRed;
 // „sort” the LUT
 palette[k].rgbRed = palette[k].rgbGreen = palette[k].rgbBlue = k;

}

New Index R G B X g
0 0 0 0 - 5
1 1 1 1 - 23
2 2 2 2 - 14
.
.
.

255 255 255 255 - 243
Fig. 2.5. Sorted LUT after step 2.

2. The RGB color model

20

3. Finally the ‘Bitmap data’ (image pixels) should be iterated and the old values (indexes) of
each pixel should be replaced with the new ones, according to the established correspondence:
k  g(k) (Fig. 2.5):

k = lpDst[i*w+j];
lpDst[i*w+j] = g[k];

 Accessing the LUT’s contents in bitmap header

The following example shows how the information from the bitmap header can be accessed:
//Gets the pointer to the beginning of the Bitmap Header in memory in a
//as BITMAPINFO STRUCTURE pointer
LPBITMAPINFO pBitmapInfoSrc = (LPBITMAPINFO)lpS;

or
BITMAPINFO *pBitmapInfoSrc = (BITMAPINFO*) lpS;

// gets the size of the bitmap
pBitmapInfoSrc->bmiHeader.biSize;
//gets the number of bits/pixel
pBitmapInfoSrc->bmiHeader.biBitCount; //the number of bits/pixel (1, 4, 8,
//16, 24, 32)

………

where the BITMAPINFO and BITMAPINFOHEADER structures [3] are defined as bellow:

typedef struct tagBITMAPINFO {
 BITMAPINFOHEADER bmiHeader;
 RGBQUAD bmiColors[1];
} BITMAPINFO, *LPBITMAPINFO;

typedef struct tagBITMAPINFOHEADER{
 DWORD biSize;
 LONG biWidth;
 LONG biHeight;
 WORD biPlanes;
 WORD biBitCount;
 DWORD biCompression;
 DWORD biSizeImage;
 LONG biXPelsPerMeter;
 LONG biYPelsPerMeter;
 DWORD biClrUsed;
 DWORD biClrImportant;
} BITMAPINFOHEADER, *LPBITMAPINFOHEADER;

The way in which the LUT entries can be accessed was presented in Laboratory 1!

 Guide to display information in a dialog box

2.5.1 Creating a new Dialog Box resource

1. Switch in the Workspace Window on the Resource View tab, expand the Dialog element,
right-click on it and then left-click on Insert Dialog (Fig. 2.6.a).

2. Right-click on the newly created dialog resource. In the right part of the VC environment
Properties window associated to the dialog will be activated(Fig. 2.6.b) you can change the
name (recommended), the style, the resource ID (not recommended) and so on.

2. The RGB color model

21

3. Right-click on the newly created dialog resource and select the Add class’ option (Fig. 2.7).
The „MFC Class Wizard” dialog will be opened (Fig.2.8).

a. b.

Fig. 2.6.

Fig. 2.7.

2. The RGB color model

22

4. Give a relevant name for the class associated to the dialog (example CBitmapInfoDlg. The
wizard automatically creates the appropriate *.h and *.cpp files for the class (the name of the
file is usually similar with the name of the dialog – you don’t have to change it). The new class
can be easily accessed through the ClassView tab of the Workspace window (where is added
automatically – Fig. 2.10.d).

Fig. 2.8.

5. Include the header of the new dialog class in the #include section of the dibview.cpp file:

#include "BitmapInfoDlg.h"

6. Create an instance (object) of the new class and display the dialog in your processing
function. The code below only displays the new dialog resource in modal way (the code
following the DoModal() call will be executed only after the dialog is closed). There are also
ways to display a dialog in a non-modal way (homework if you want).

void CDibView::OnProcessingAfisarebmpheader()
{

// You can use the call to the macro bellow when
// you don’t need to display a destination image
BEGIN_SOURCE_PROCESSING;

//creates an instance (object) of the dialog class
CBitmapInfoDlg dlgBmpHeader;

// TODO: Add here the code for reading the bitmap header content and for
// writing it in the dialog

//displays dialog in 'modal' mode
dlgBmpHeader.DoModal();

// You can use the call to the macro bellow when
// you don’t need to display a destination image
END_SOURCE_PROCESSING;

}

2. The RGB color model

23

Fig. 2.9.

2.5.2 Designing the dialog box

In order to show or to get some data from the dialog box, Controls should be added to the
already created dialog resource. The most common controls are the Static Text (for output) and
the Edit Control (for output/input). In the current case only output is required. In order to add a
control to the dialog, select the Toolbox window (open it from menu View->Toolbox) and
within select a control and the click in the dialog to drop the control in the desired location.

Individual fields (as the bitmap height, width etc.) can be easily shown in Static Text controls.
In order to write something in a static text, an individual ID should be given explicitly to each
static text control (the default/generic ID is ID_STATIC for all static text controls).

Tables (as the content of the LUT) can be shown in an Edit Control. Edit Controls have
allocated an individual ID by default (there is no need to change it). For the Edit Controls the
styles can be edited for the desired appearance (Fig. 2.10.a).

Once the controls are added to the dialog, a set of variables should be associated with them.
This can be done using the Add Member Variable Wizard dialog ((right-click on the control
resource and select the Add Variable option – Fig.2.10.b).

In the Add Member Variable Wizard dialog (Fig. 2.10.c) to each control (identified by each ID)
a member variable should be added (specified by name, type (use CString), category (select
Value) etc.). The member variables associated to the controls using the Add Member Variable
Wizard are added automatically to the dialog class (Fig. 2.10.d).

2. The RGB color model

24

a. b.

c.

d

Fig. 2.10.

2. The RGB color model

25

2.5.3 Writing into the dialog box

In order to write the desired data in a dialog box, the data should be written into the variables
associated with the controls of the dialog. This should be done in the processing function (before
calling the DoModal() method which shows the dialog):

void CDibView::OnProcessingAfisarebmpheader()
{

BEGIN_SOURCE_PROCESSING;

 //creates an instance (object) of the dialog class
 CBitmapInfoDlg dlgBmpHeader;

 LPBITMAPINFO pBitmapInfoSrc = (LPBITMAPINFO)lpS;

 dlgBmpHeader.m_Width.Format(_TEXT("Image width [pixels]: %d"),

pBitmapInfoSrc->bmiHeader.biWidth);
 // and the other info

 // Stores the entries of the LUT in the CString variable m_LUT
 // (associated to the edit control for displaying the LUT)
 CString buffer;
 for (int i=0;i<iColors;i++)
 {
 buffer.Format(_TEXT("%3d.\t%3d\t%3d\t%3d\r\n"),i,

bmiColorsSrc[i].rgbRed,
bmiColorsSrc[i].rgbGreen,
bmiColorsSrc[i].rgbBlue);

 dlgBmpHeader.m_LUT+=buffer;
 }

 //displays the dialog in 'modal' mode
 dlgBmpHeader.DoModal();

 END_SOURCE_PROCESSING;
}

 Conversion of a grayscale image in a binary (black & white) image

A binary (black & white image) is an image which contains only 2 colors: black and white. A
Binary image can be obtained from a grayscale image through a simple operation called
thresholding. Thresholding is the most trivial image segmentation technique which allows
separation of objects from the background (Fig. 2.11).

Fig. 2.11.

2. The RGB color model

26

In this laboratory the thresholding with a fixed (arbitrary chosen) threshold value of an indexed
(8 bits/pixel) grayscale image will be discussed. The thresholding can be performed by scanning
the values of each pixel from the input image and replacing the corresponding pixel in the
destination image using the following condition:










thresholdjwilpSrcifwhite

thresholdjwilpSrcifblack
jwilpDst

]*[,)(255

]*[,)(0
]*[(2.2)

The value of the threshold can be established inline the code (not recommended) or through a
dialog box (recommended). The way in which a dialog resource and an Edit Control is created
and used to get a value is similar as presented in section 2.5. The Edit Control should allow
editing its content (not to be read-only (default), as shown in Fig. 2.12. The type of the variable
used to get/store the value typed in the Edit Control can be a numerical one (BYTE) (Fig. 2.12).

Fig. 2.12.

Sample code for getting the threshold value from the dialog:

void CDibView::OnProcessingBinarizarecupragarbitrar()
{

 BYTE threshold;
 //creates an instance (object) of the dialog class
 CThresholdDlg dlgThresh;

 if (dlgThresh.DoModal() == IDOK) {
 threshold=dlgThresh.m_thresh;
 BEGIN_PROCESSING();
 // Go through the bitmap pixels and performs thresholding
 // ...
 CString buf;
 buf.Format(_TEXT("Threshold = %d"), threshold);
 END_PROCESSING (buf);
 }

}

2. The RGB color model

27

 Practical work

10. Add to the DIBLook framework a function for displaying (in a dialog box) the information
from the bitmap header and the content of the LUT.

11. Add to the DIBLook framework a processing function for the color  grayscale
conversion of a RGB24 images (24 bits/pixel), using (2.1).

12. Add to the DIBLook framework a processing function for the color  grayscale
conversion of an indexed images (8 bits/pixel), using (2.1).

13. Add to the DIBLook framework a processing function which sorts the LUT of an indexed
image, as described in section 2.3.2.

14. Compare the content of an unsorted LUT with a sorted one (using the grayscale image
obtained from Kids.bmp color image).

15. Integrate functions from points 3 and 4 in a single one.
16. Add to the DIBLook framework a processing function for the grayscale  black&white

conversion for indexed images (8 bits/pixel), using (2.2). Read the value of the threshold
from an edit control of a dialog box. Test the thresholding operation with several/different
threshold values on various grayscale images.

17. Save your work. Use the same application in the next laboratories. At the end of the
image processing laboratory you should present your own application with the
implemented algorithms!!!

 References
[1] http://en.wikipedia.org/wiki/RGB_color_model
[2] http://en.wikipedia.org/wiki/Color_models
[3] http://msdn2.microsoft.com/en-us/library/ms779712(VS.85).aspx

3. Camera Calibration and Image Undistortion

28

3 Camera Calibration and Image Undistortion

 Introduction

The purpose of this laboratory is to learn about the camera lens distortions, how to find the
distortion parameters through the camera calibration process and as well as how to use these
parameters to undistort images.

 Perspective Projection

By using a pinhole camera model, a 3D point from the scene is projected into the image plane
according to the following perspective transformation:





































































1

/

/

100

0

0

11

Parameters Intrinsic

ZY

ZX

cf

cf

Y

X

Av

u

yy

xx

N

N



 (3.1)

Where:

 (u, v) are the coordinates of the point in the image plane.
 A is the camera matrix with the intrinsic parameters:

o (fx, fy) – the focal distances along x and y axes,
o (cx, cy) – the optical centers.

 (X, Y, Z) are the coordinates of a 3D point in the scene.

 (XN, YN) are the normalized coordinates:
Z

Y
Y

Z

X
X NN  , .

Fig. 3.1 The projection of a 3D point (X,Y,Z) onto the image plane at position (u,v).

For the sake of the simplicity the projection model will not include the matrix of extrinsic
parameters (rotation and translation components that are used to bring the 3D points form the
world coordinate system to the camera coordinate system). Therefore, we consider that all
points from the scene are in the camera coordinate systems and there is no need for an extra
rotation and translation of 3D points from the world coordinate system to the camera coordinate
system (see lecture notes).

3. Camera Calibration and Image Undistortion

29

 Lens Distortions
In reality, the camera lenses suffer from non-linear lens distortions, so that the captured points
are slightly distorted. In other words, the projections of the rectilinear lines from the scene do
not remain rectilinear in the image plane.

Fig. 3.2 Left: the radial distortion (barrel distortion). Right: a combination of a radial (pincushion distortion) and

a tangential distortion [1].

The lens distortions can be divided into two main types:

- Radial distortions: In the case of the radial distortion, straight lines form the scene will
appear curved in the image. This “bending” effect increases at once with the distance from
the image center. Usually, the radial distortions can be classified as barrel or pincushion
distortions (see Fig. 3.2). Having the coordinates of the normalized real points (XN,YN),
the radially distorted pixels (xd, yd) can be described by the following equations:

...)1(

...)1(
4

2
2

1

4
2

2
1





rkrkYy

rkrkXx

Nd

Nd (3.2)

where:
222

NN YXr  (3.3)

k1, k2, … are the radial distortion coefficients. In practice, we can consider only the first
two coefficients (k1 and k2).

- Tangential distortions: In the tangential distortion some points appear closer while other
points may look farther than expected. This deviation is caused by the fact that the image
plane is not perfectly parallel to the lens. The tangential distortion will deviate a point (XN
,YN) from its true position according to the following equations:

NNNNd

NNNNd

YXpYrpYy

XrpYXpXx





2
22

1

22
21

2)2(

)2(2
 (3.4)

where p1 and p2 are the tangential distortion coefficients.

After including both types of lens distortions, a point from the scene will be affected
according to:

NNNNNd

NNNNd

YXpYrpYrkrkYy

XrpYXprkrkXx





2
22

1
4

2
2

1

22
21

4
2

2
1

2)2()1(

)2(2)1(
 (3.5)

The distorted point),(dd yx from the scene will be projected onto the image as:



















































1100

0

0

1

d

d

yy

xx

d

d

z

x

cf

cf

v

u

 (3.6)

3. Camera Calibration and Image Undistortion

30

The four distortion parameters and the camera matrix are calculated through the calibration
process.

 Camera calibration
The aim of the calibration step here is to find the four distortion coefficients (k1, k2, p1, p2), and
the four intrinsic parameters fx, fy, cx, cy that describe the camera matrix. It must be noted that,
the extrinsic parameters can also be estimated through the camera calibration process. The most
common calibration method is to use some objects with a known geometry, such as a
chessboard pattern. The algorithm finds a set of specific points on the pattern and their
projection on the image. The camera matrix and the distortion parameters are estimated by using
these two correspondent point sets. In order to get a higher precision several snapshots with the
pattern in different positions and orientations should be taken (see Fig. 3.3).

Fig. 3.3 The calibration process. Using several snapshots with a calibration chessboard with known geometry.

In order to simplify the process of getting the distortion parameters and the intrinsic
parameters, we will use the OpenCV library and a modified version of an existing calibration
code from the sample examples.

For integrating the calibration process, the following steps should be applied:

1. Download the Visual studio and OpenCV starter project OpenCVApplication-
VS2013.zip (or use an existing one if you have one with the already integrated
OpenCV libraries). Another solution would be to manually integrate the OpenCV libs
and headers and to change the corresponding settings in the visual studio in order to get
it to work properly.

2. Extract the .zip archive of the project into a local folder.
3. Download the calib.zip, extract it and copy its content directly into the project root

folder. Therefore the project will be extended with the following files:
a. Images/CameraCalibration/ folder including 14 images, left01.jpg –

left14.jpg, as in the Fig. 3.3.
b. calib_settings.xml – the settings loaded by the calibration module such as

the type of pattern used in the calibration images, the number of corners to be
extracted, the path to the sequence.xml file containing the list of the calibration
images, the square size (in our case we use a chessboard) etc.

c. sequence.xml – an xml file enumerating the path to all the images to be used
in the calibration.

d. camera_calibration.cpp and .h files – the calibration code.
4. Add the new .cpp and .h files into the project: right click the project in the workspace

window. Choose AddExisting Item and select the camera_calib.cpp and
camera_calib.h files.

3. Camera Calibration and Image Undistortion

31

5. Include the "camera_calibration.h" in the #include section in the
OpenCVApplication.cpp.

6. In the file OpenCVApplication.cpp, main() function, create a new menu entry and a
subsequent switch clause calling the new calibration and undistort function, similar to
the following example:

int main(){

...
printf(" 8 - Image Calibration and Undistort\n");
...

switch (op){
...

case 8:
 testCalibUndistort();
 break;

 }
 ...
}

The starting implementation for the testCalibUndistort()function is:

void testCalibUndistort(){

 Mat cameraMatrix, distCoeffs; //The camera and distortion matrices –
 //to be estimated by the calib() function
 Settings s;
 bool isCalibrated = calib(cameraMatrix, distCoeffs, s); //Estimate the

//camera matrix and the distortion parameters

 const char ESC_KEY = 27;
 if (s.inputType == Settings::IMAGE_LIST && s.showUndistorsed)
 {
 Mat src, dst, rview, map1, map2;
 src = imread(s.imageList[0], 1);
 Size imageSize = src.size();

 for (int i = 0; i < (int)s.imageList.size(); i++)
 {
 src = imread(s.imageList[i], 1);
 if (src.empty())
 continue;

 dst = src.clone();

// -----------------------TO DO - Your Code Here----------
 // ---------Implement the undistort algorithm-------------
 //my_undistort(src, dst, cameraMatrix, distCoeffs);

//- your function
 // ---

 imshow("Image View", dst);
 char c = (char)waitKey();
 if (c == ESC_KEY || c == 'q' || c == 'Q')
 break;
 }
 }
}

One of the key instructions above is the calib(cameraMatrix, distCoeffs, s); function
which performs the calibration with the specified settings in the xml files and returns a
vector of distortion coefficients distCoeffs and the camera matrix cameraMatrix with the

3. Camera Calibration and Image Undistortion

32

intrinsic parameters. These two structures will be used later in the Undistortion
algorithm.

7. Compile. If there are compiling errors at this point, then it is more likely that the new

cpp files were not added properly into the project or the header file
"camera_calibration.h" was not included.

8. After running the application, the result with the detected corners should be similar to
the one from the Fig. 3.4.

Fig. 3.4 The detected corners by the calibration step.

9. Once we obtained the camera matrix cameraMatrix and the distortion parameters

distCoeffs then we can proceed with the next step – image undistortion

 Image Undistortion
The undistortion process aims to correct the distorted image according to the obtained radial
and tangential lens distortion parameters.

3.5.1 The Inverse Mapping Algorithm
Instead of finding the corrected position (u,v) of a given distorted point (ud,vd), an inverse
mapping is used. Thus, for each destination point (from the undistorted image) the
corresponding position (ud,vd), in the distorted image is calculated with the model described by
the equation (3.5). The intensity value in the (ud,vd) is copied into the (u,v) position.

3. Camera Calibration and Image Undistortion

33

Fig. 3.5 Inverse mapping approach: Obtaining the intensity in the undistorted image (destination) by selecting

the corresponding value from the distorted image (source).

The algorithm can be summarized into the following main steps:

For each pixel (u,v) from the allocated undistorted image space (which is going to be
determined):

1. Compute the corresponding normalized coordinates (XN,YN) in the camera coordinate

system:

yyN

xxN

fcuY

fcuX

/)(

/)(




 (3.7)

2. Compute the distorted coordinates),(dd yx :

NNNNNd

NNNNd

YXpYrpYrkrkYy

XrpYXprkrkXx





2
22

1
4

2
2

1

22
21

4
2

2
1

2)2()1(

)2(2)1(
 (3.8)

3. Project the obtained values into the distorted image space:

yydyd

xxdxd

cfyvumapv

cfxvumapu





),(

),(
 (3.9)

4. Copy the obtained intensity from the),(dd vu position in the distorted image to the

corresponding undistorted location),(vu .

Implement the above steps as a function:
void my_undistort(Mat& src, Mat& dst, Mat& cameraMatrix, Mat& distCoeffs) and call this
function from the indicated row, in the testCalibUndistort().

The four distortion coefficients and the intrinsic parameters may be recovered as in the
following example:
const double* coef = distCoeffs.ptr<double>();

double k1 = coef[0];
double k2 = coef[1];
double p1 = coef[2];
double p2 = coef[3];

double cx = cameraMatrix.at<double>(0, 2);
double cy = cameraMatrix.at<double>(1, 2);
double fx = cameraMatrix.at<double>(0, 0);
double fy = cameraMatrix.at<double>(1, 1);

3. Camera Calibration and Image Undistortion

34

3.5.2 Bilinear Interpolation
Because usually the mapped distorted values are floating-points, a pixel intensity value at a
fractional position needs be computed. A direct method would be to round the coordinates to
the nearest integer values and to use the intensity from that location (nearest-neighbor
interpolation). A better solution is to use a bilinear interpolation. Therefore the interpolated
value can be estimated as:

)()(),(

)(),()(),(

)(),()(),(

1

1

)int(

)int(

0110

0111101

0101000

01

01

0

0

vvIvvIvuD

uuvuSuuvuSI

uuvuSuuvuSI

vv

uu

vv

uu

dd

dd

dd

d

d















 (3.10)

where),(vuS represent the intensity in the original (distorted) image, while the),(vuD is the

interpolated value copied in the undistorted image.

An example of the image undistortion is presented in Fig. 3.6

Fig. 3.6 Left: the image affected by lens distortions. Right: the undistorted result.

After testing the implemented image correction and interpolation methods described above, we
can compare the obtained result with the existing undistortion algorithm provided by the
OpenCV library using the cv:undistort() function:

cv::undistort(src, dst, cameraMatrix, distCoeffs);

 Practical work

1. Integrate the OpenCV starter application and the provided sourse code files.
2. Follow the steps from section 3.4 to perform the camera callibration for finding the four

distortion coefficients (k1, k2, p1, p2), and the four intrinsic parameters fx, fy, cx, cy.
3. Use the estimated parameters to implement the image undistortion algoritm, as decribed

in section 3.5.1.
4. Implement the bilinear interpolation (section 3.5.2).

3. Camera Calibration and Image Undistortion

35

5. Save your work. Use the same application in the next laboratories. At the end of the
image processing laboratory you should present your own application with the
implemented algorithms!!!

 References

[1] B. Sajadi, and M. Aditim Markerless view-independent registration of multiple distorted
projectors on extruded surfaces using an uncalibrated camera, in IEEE Transactions on
Visualization and Computer Graphics, Vol. 15, no. 6, pp. 1307-1316, 2009.
[2] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002.
[3] OpenCV Documentation, Camera Calibration and 3D Reconstruction – calib3d module.
http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
[4] OpenCV source code on GITHUB: https://github.com/Itseez/opencv/find/master

4. The histogram of image intensity levels

36

4 The histogram of image intensity levels

 Introduction

This laboratory work presents the concept of image histogram together with an algorithm for
dividing the image histogram into multiple bins and reducing the image gray levels (gray levels
quantization).

 The histogram of intensity levels

Being given a grayscale image with the highest intensity value L (for an image with 8
bits/pixel L=255), the intensity (gray) level histogram is defined by a function h(g) that has as
value, for each intensity level g  [0 … L], the number of pixels in the image or in the region
of interest that have intensity equal to g.

 gN=h(g) (4.1)

Ng – the number of pixels in the image or in the region of interest that have the intensity equal
to g.

Fig. 4.1 Example: the histogram of a grayscale image

The function obtained by normalizing the histogram with the number of pixels in the image (in
the ROI) is called the probability density function (PDF) of the intensity levels.

M

gh
gp

)(
)( (4.2)

where:
M = image_height × image_width.

PDF has the following properties:

0

() 0

()
() 1, 1

L

g

p g

h g M
p g dg

M M









  



 (4.3)

4. The histogram of image intensity levels

37

 Application: Multilevel thresholding

This algorithm determines multiple thresholds for reducing the number of image intensity
(gray) levels. Its first step is to determine the histogram maxima. Then, each gray level is
assigned to the closest maximum.

The following steps must be performed in order to determine the histogram maxima:
1. Normalize the histogram (transform it into a PDF)
2. Choose a window width 2*WH+1 (a good value for WH is 5)
3. Choose a threshold TH (a good value is 0.0003)
4. For each position (middle of the window) k from 0+WH to 255-WH

- Compute the average v of normalized histogram values in the interval
[k-WH, k+WH]. Remark: the value v is the average of 2*WH+1 values

- If PDF[k]>v+TH and PDF[k] is greater or equal than all PDF values in the
interval [k-WH, k+WH] then k corresponds to a histogram maximum. Store it
and then continue from the next position.

5. Insert 0 at the beginning of the maxima position list and 255 at the end (this allows
the colors black and white to be represented exactly).

The second step is thresholding. Thresholds are located at equal distances between the maxima.
Therefore the algorithm for thresholding is simply: assign to each pixel the color value of the
nearest histogram maximum.

 a) c)

 b) d) e)

Fig. 4.2 a) The initial image; b) The histogram of the intitial image; c) The obtained multilevel thresholded
image; d) The histogram of the multilevel thresholded image; e) The histogram maxima computation algorithm

4. The histogram of image intensity levels

38

As seen in the Fig. 4.3 b, the results are visually unacceptable when the number of gray levels
is small. To obtain more visually acceptable a dithering algorithm can be applied. Such an
algorithm spreads the quantization error to multiple pixels. An example of a dithering algorithm
is the Floyd-Steinberg algorithm:

 for each y from bottom to top
 for each x from left to right
 oldpixel := pixel(x,y)
 newpixel := find_closest_histogram_maximum(oldpixel)
 pixel(x,y) := newpixel
 error := oldpixel - newpixel
 pixel(x+1,y) := pixel(x+1,y) + 7*error /16
 pixel(x-1,y+1) := pixel(x-1,y+1) + 3*error/16
 pixel(x,y+1) := pixel(x,y+1) + 5*error/16
 pixel(x+1,y+1) := pixel(x+1,y+1) + error/16

This algorithm computes the quantization error and spreads it to the neighboring pixels
according to the following fractions matrix (X = current pixel’s location):

3/16 3/16 3/16

0 X 7/16

0 0 0

 a) b)

 c)

Fig. 4.3 a) The initial image; b) The obtained multilevel thresholded image; c) Dithering on the initial image
using the Floyd-Steinberg algorithm

4. The histogram of image intensity levels

39

 Implementation details: histogram display in a dialog box

4.4.1 Option 1: Displaying the histogram in a Picture control

The histogram will be displayed using a dialog window (Dialog Box). It is used a control of
type Picture inside the dialog box for displaying the histogram.
The control of type Picture will have a rectangular shape and implicitly a certain width and
height. Its width must be at least L+1 pixels, where L equals the highest intensity value in the
image for which the histogram is computed (L=255 for an 8 bits/pixel grayscale image). The
components of the histogram will be depicted in the form of vertical bars of height equal to the
number of pixels corresponding to each intensity value. The vertical bars corresponding to the
levels of intensity 0...L will be displayed in order, from left to right.

Remark: in some cases the number of pixels having certain intensity in the histogram may be
greater than the height of the Picture control component. For avoiding those cases, the displayed
histogram will be scaled with a value (each value in the histogram array will be divided by the
maximum value in the histogram and then it will be multiplied with the height of the Picture
control component). The scaling step will be performed only if the maximum value in the
histogram array is greater than the height of the display control.

1. Insert a new dialog box (check the laboratory work 2!).
2. In the dialog box, add a control of type Picture in which the histogram will be

displayed. Modify the properties of the Picture type control (right click and Properties)
Fig. 4.4):

a. Modify its ID to IDC_HISTOGRAM
b. In the Properties section, for appearance, set “True” the values for Client Edge

and Modal Frame.

Fig. 4.4 The design of the dialog box for displaying the histogram

3. Create a new class for the previously created Dialog Box (right click and Add Class…).
Name the class CDlgHistogram and then close the Wizard and the created dialog
window.

4. Create a new class for managing the control in which the histogram is displayed. This
is done by accessing the main menu and following the steps bellow (Fig. 4.5):

a. Project -> Add class…
b. Choose the Visual C++ -> MFC category and then the MFC Class template
c. Name the class CHistogram and choose its base class to be CStatic.

4. The histogram of image intensity levels

40

Fig. 4.5 The creation of the class CHistogram for the control used to display the histogram

5. For IDC_HISTOGRAM attach the variable m_Histogram of category Control and type

CHistogram (Pay attention: the file CDlgHistogram.h must include the header
Histogram.h) (Fig. 4.6)

Fig.4.6 Adding a member variable m_Histogram for the control in which the histogram will be displayed

4. The histogram of image intensity levels

41

6. Attach a handler for displaying the histogram:
a. In the tabulator Class View perform a right click on the class CHistogram and

then Properties…
b. In the Properties window choose Messages section
c. On the message WM_PAINT add the method OnPaint (<Add> OnPaint) using

the combo-box

Fig.4.7 Adding the method OnPaint attached to the message WM_PAINT for the class CHistogram

7. In the header file Histogram.h at the public section define the integer array values[256]

that represents the histogram to be displayed (possibly scaled before being displayed)

class CHistogram : public CStatic
{
// Construction
public:
CHistogram();

// Attributes
public:

int values[256];

// There are no changes in the following lines
.
.
.
}

8. In the source file Histogram.cpp, rewrite the OnPaint() method for displaying (and

possibly scaling) the histogram defined by the input array values[256]:

void CHistogram::OnPaint()

4. The histogram of image intensity levels

42

{
CPaintDC dc(this); // device context for display
CPen pen(PS_SOLID, 1, RGB(255,0,0)); // define the display pen-

 for red color
CPen *pTempPen=dc.SelectObject(&pen); // select the display pen
CRect rect;
GetClientRect(rect); // get the available display rectangular area
int height=rect.Height(); // height of the display area
int width=rect.Width(); // width of the display area

// find the maximum in the array values[256]
int i;
int maxValue=0;
for (i=0;i<256;i++)
 if (values[i]>maxValue)

 maxValue=values[i];

// check if scaling is necessary
double scaleFactor=1.0;
if (maxValue>=height)
{

// scaling is necessary
scaleFactor=(double)height/maxValue;

}

// display the histogram in the form of vertical bars
for (i=0;i<256;i++)
{

// find the length of the line
int lengthLine=(int)(scaleFactor*values[i]);
//display the line
dc.MoveTo(i,height);
dc.LineTo(i,height-lengthLine);

}

dc.SelectObject(pTempPen); // restore the display pen
}

9. Display the computed histogram in the created Dialog-Box:
a. Add a new processing menu for computing the histogram and add a method

associated to it : OnDisplayHistogram()
b. Include the file DlgHistogram.h in the file DibView.cpp
c. The method OnDisplayHistogram() attached to the click event on the processing

menu will be defined as follows:

void CDibView::OnDisplayHistogram()
{
 BEGIN_SOURCE_PROCESSING;

 int histValues[256];
 float FDPValues[256];

// write the code for computing the histogram and store it in the array
of int, histValues[256]
// write the code for computing the PDF and store it in the array of
double FDPValues[256]

// instantiate a dialog box for display and associate the histogram
CDlgHistogram dlg;
memcpy(dlg.m_Histogram.values,histValues,sizeof(histValues));
// display the dialog box
dlg.DoModal();

END_SOURCE_PROCESSING;
 }

4. The histogram of image intensity levels

43

4.4.2 Option 2: Displaying the histogram directly in the user area of a dialog box

Create a new dialog box and attach it the class CDlgGrayStatistics. Displaying the histogram
directly in the user area of a dialog box as in Fif. 4.8 can be done by defining an OnPaint
function corresponding to the WM_PAINT message associated to the dialog box/window (Fig.
4.9) as in the example bellow:

#define LEFT 10
#define HEIGHT 100
#define BOTTOM 200

void CDlgGrayStatistics::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 POINT pct;
 for (int g=0; g<256; g++) {
 pct.x=LEFT + g;
 int N=(float)(m_hist[g]*HEIGHT)/(float)m_maxhist;
 for (int n=0; n <N ; n++) {
 pct.y=BOTTOM-n;
 dc.SetPixel(pct,RGB(0,0,0));
 }
 }
}

Where: int *m_hist; int m_maxhist; are public members of the dialog class and are
initialized in your CDibView:: processing function …

Fig. 4.8 Example of displaying the histogram directly in the user area of a dialog box

Fig. 4.9 Associating the OnPaint function to the WM_PAINT message of the dialog box

4. The histogram of image intensity levels

44

 Practical work

1. Compute the histogram for a given grayscale image with 8 bits/pixel (in an array of
integers having dimension 256) and the PDF (in a vector of float of dimension 256).
Display the computed histogram by choosing a method presented in the section 4.4.

 2. Implement the multilevel thresholding algorithm.
 3. Enhance the multilevel thresholding algorithm using the Floyd-Steinberg dithering.

4. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with the
implemented algorithms.

 References

[1]. R.C.Gonzales, R.E.Woods, Digital Image Processing. 2-nd Edition, Prentice Hall, 2002.
[2]. Floyd-Steinberg algorithm, http://en.wikipedia.org/wiki/Floyd-Steinberg_dithering

5. Geometrical features of binary objects

45

5 Geometrical features of binary objects

 Introduction

This lab work presents some important geometric properties of binary images and the
algorithms used for computing them. The properties described are: the area, the center of mass,
the elongation axis, the perimeter, the thinness ratio, the aspect ratio and the projections of the
binary image.

 Theoretical considerations

After applying segmentation and labeling algorithms to images we obtain a new image in which
each object can be referenced separately.
An object ‘i’ is described in the image by the function:

The geometric properties of objects can be classified into two categories:
 position and orientation properties: the center of mass, the area, the perimeter, the

elongation axis
 shape properties: aspect ratio, thinness ratio, Euler’s number, the projections, the Feret

diameters of the objects

5.2.1 Area
1 1

0 0

(,)
H W

i i
r c

A I r c
 

 

  (5.1)

The area Ai is measured in pixels and it indicates the relative size of the object.

5.2.2 The center of mass

1 1

0 0

1
(,)

H W

i i
r ci

r rI r c
A

 

 

  (5.2)

1 1

0 0

1
(,)

H W

i i
r ci

c cI r c
A

 

 

  (5.3)

The equations above correspond to the row and column where the center of mass is located.
This attribute helps us locate the object in a bi-dimensional image.

1, if (,) object labeled 'i'
(,)

0 otherwise

where [0... 1]and [0... 1]

i

I r c
I r c

r Height c Width


 



   

5. Geometrical features of binary objects

46

5.2.3 The axis of elongation (the axis of least second order moment)

1 1

0 0
1 1 1 1

2 2

0 0 0 0

2 ()() (,)

tan(2)

() (,) () (,)

H W

i i i
r c

i H W H W

i i i i
r c r c

r r c c I r c

c c I r c r r I r c



 

 
   

   

 



  



 
 (5.4)

If both the nominator and the denominator of the above equation are equal to zero, than the
object has a circular symmetry, and any line that passes through the center of mass is a
symmetry axis.

For finding the direction of the line (the angle) one must apply the arctangent function. The
arctangent is defined on the interval (-∞, +∞) and it takes values in the interval
(-π/2, π/2). The evaluation of the arctangent becomes unstable when the denominator of the
fraction tends to zero.

The signs of the numerator and of the denominator are important for determining the right
quadrant in which the result lays. The arctangent function does not make the difference between
directions that are opposed. For this reason the usage of the function “atan2” is suggested. The
“atan2” function has as arguments the numerator and the denominator of such fraction, and it
returns a result in the interval (-π, π).

The axis of elongation gives information about how the object is positioned in the field of view,
that is its orientation. The axis corresponds to the direction in which the object (seen as a plane
surface of constant width) can rotate most easily (has a minimum kinetic moment).

5.2.4 The perimeter

The perimeter of the object helps us determine the position of the object in space and it also
gives information about the shape of the object. The perimeter can be computed by counting
the number of pixels on the contour (pixels of value 1 and having at least one neighbor pixel of
value 0).

A first approach to contour detection is the scanning of the image, line by line and counting the
number of pixels in the object that satisfy the condition mentioned above. A main disadvantage
of this method is that we cannot distinguish the exterior contour from the interior contours (if
they exist they are generated by the holes in the object). As the pixels of digital images represent
distributions on a rectangular raster, the length of curves and oblique lines in the image cannot
be correctly estimated by counting the pixels. A first correction is given by the multiplication
by π/4 of the perimeter that resulted in the previous algorithm. There are other methods for
length correction. These methods take into account the type of neighborhood used (4 neighbors,
8 neighbors etc).

Another method for detecting the contour of an object involves the usage of an existing
algorithm for edge detection, the thinning of the edges until they become 1 pixel thick and in
the end the counting of the resulted edge pixels.

Methods of type “chain-codes” represent complex methods for contour detection and offer a
high accuracy.

5. Geometrical features of binary objects

47

5.2.5 The thinness ratio (circularity)

2
4

A
T

P


 
  

 
 (5.5)

The function above has the maximum value equal to 1, and for this value we obtain a circle.
The thinness ratio is used for determining how “round” an object is. If the value of T is close
to 1, the object tends to be round.
The value of the thinness ratio also offers information on how regular an object is. The objects
that have a regular contour have a greater value of T than the objects of irregular contours. The
value 1/T is called irregularity factor of the object (or compactness factor).

5.2.6 The aspect ratio

This property is found by scanning the image and keeping the minimum and maximum values
of the lines and columns that form the rectangle circumscribed to the object.

max min

max min

1

1

c c
R

r r

 


 
 (5.6)

5.2.7 The projections of the binary object

The projections give information about the shape of the object. The horizontal projection equals
the sum of pixels computed on each line of the image, and the vertical projection is given by
the sum of the pixels on the columns.

1

0

() (,)
W

i i
c

h r I r c




  (5.7)

1

0

() (,)
H

i i
r

v c I r c




  (5.8)

The projections are used in applications of text recognition in which the interest object can be
normalized.

 Implementation details

In order to distinguish between the various objects present in an image, we will suppose that
each one of them is painted using a different color. These colors may be the result of a previous
labeling step, or may be generated manually (see Fig. 5.1).

There are various approaches for implementing the geometrical properties extractors. A simple
approach is to compute them for all objects in an image at once. There are at most 255 objects
plus background in the image format described above, each one having a different color index.

5. Geometrical features of binary objects

48

The second approach is to use the mouse to select an object. The user should position the mouse
pointer over a pixel belonging to the desired object and double-click on it. In response to this
action, you should display a message box containing the values of the desired features.

Fig. 5.1 Example of a labeled image on which the algorithms described here could be tested

In order to add a handler for the double click event you must follow these steps (see
Fig. 5.2):

1. On the workspace window select the Class View tab;
2. Right click on the CDibView class and choose Properties…;
3. In the Properties window choose the Messages section;
4. On the WM_LBUTTONDBLCLK add the method OnLButtonDblClk (<Add>

OnLButtonDblClk) by using the combo-box. The wizard will generate a message
handler method, receiving as a parameter the coordinates of the mouse pointer, relative
to the view’s at the time when the double-click occurred.

Fig. 5.2 Adding a new message handler for the double-click using the left mouse button in CDibView

class

5. Geometrical features of binary objects

49

The following code presents a stub mouse event handler that computes the coordinates of the
mouse click in the image, and displays a message box with the coordinates and the color
index of the pixel over which the click occurred.

void CDibView::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 BEGIN_SOURCE_PROCESSING;

 //obtain the scroll position (because of scroll bars' positions
 //the coordinates may be shifted) and adjust the position
 CPoint pos = GetScrollPosition()+point;

//point contains the window's client area coordinates
//the y axis is inverted because of the way bitmaps
//are represented in memory
int x = pos.x;
int y = dwHeight-pos.y-1;

//test if the position is inside the image
if (x>0 && x<dwWidth && y>0 && y<dwHeight)
{

//prepare a CString for formating the output message
 CString info;
 info.Format(_TEXT("x=%d, y=%d, color=%d"), x, y, lpSrc[y*w+x]);
 AfxMessageBox(info);
}

END_SOURCE_PROCESSING;

//call the superclass' method
CScrollView::OnLButtonDblClk(nFlags, point);

}

A third approach is to either select an individual object or compute the features for all objects
and display the results directly on the destination image. An easy way to display text and
graphics on an image is to use the Windows GDI (Graphics Device Interface) functions.

Each graphical operation in Windows must be accomplished through a DC (Device Context)
object. This object holds such data as the device driver that performs the drawing (the driver
for the graphics card, printer, memory device), the surface on which the drawing is performed
(the main display surface, a back surface, a surface located in main memory), the current
drawing pen (color, line width) the current brush (for filling surfaces) and so on.

In order to draw on a bitmap, the bitmap must be “selected” in the DC, so that all subsequent
drawing will be done over the image. The device independent bitmaps (DIBs) used in DIBView
cannot be selected directly in a DC. In order to cope with this problem, a device dependent
bitmap (DDB) must be created, and the data from the source image copied to it. Next, the DDB
is selected in a memory DC and drawing is performed. Finally, the pixels in the DDB are copied
back to the destination DIB. The following code performs all the above steps. It also displays a
line and a text at the coordinates where a mouse double click occurred.

void CDibView::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 BEGIN_PROCESSING();

5. Geometrical features of binary objects

50

CDC dc; //memory DC
dc.CreateCompatibleDC(0); //create it compatible with the screen

CBitmap ddBitmap;//to hold a device dependent bitmap compatible with

 //the screen

//create a DDB, compatible with the screen
//and initialize it with the data from the source DIB
HBITMAP hDDBitmap =
CreateDIBitmap(::GetDC(0), &((LPBITMAPINFO)lpS)->bmiHeader, CBM_INIT,
lpSrc, (LPBITMAPINFO)lpS, DIB_RGB_COLORS);

//attach the handle to the CBitmap object
ddBitmap.Attach(hDDBitmap);

//select the DDB into the memory DC
//so that all drawing will be performed on the DDB
CBitmap* pTempBmp = dc.SelectObject(&ddBitmap);

//from this point onward, all drawing done using the DC object
//will be made on the DDB
//obtain the scroll position (because of scroll bars' positions
//the coordinates may be shifted) and adjust the position
CPoint pos = GetScrollPosition()+point;

//create a green pen for drawing
CPen pen(PS_SOLID, 1, RGB(0,255,0));

//select the pen on the device context
CPen *pTempPen = dc.SelectObject(&pen);

 //draw a text
dc.TextOut(pos.x,pos.y, "test");
//and a line
dc.MoveTo(pos.x,pos.y);
dc.LineTo(pos.x, pos.y-20);

//select back the old pen
dc.SelectObject(pTempPen);
//and the old bitmap
dc.SelectObject(pTempBmp);

//copy the pixel data from the device dependent bitmap
//to the destination DIB
GetDIBits(dc.m_hDC, ddBitmap, 0, dwHeight, lpDst, (LPBITMAPINFO)lpD,
DIB_RGB_COLORS);

END_PROCESSING("line");

}

 Practical work

1. For each individual object in a labeled image compute the object’s area, center of mass,
axis of elongation, perimeter, thinness ratio and aspect ratio. For displaying the results,
you can chose among the following two options (presented in section 5.3):

a. display the geometrical features of all objects in a dialog box;
b. display the geometrical features of each object in a MessageBox when the area

of the object is double-clicked.

5. Geometrical features of binary objects

51

2. Display objects’ axes of elongation on the destination image using the GDI drawing
functions.

3. Compute and display the objects’ projections.
4. Display objects’ mass centers and areas on the destination image using the GDI drawing

functions.
5. Save your work. Use the same application in the next laboratories. At the end of

the image processing laboratory you should present your own application with the
implemented algorithms!!!

 References

[1]. Umbaugh Scot E, Computer Vision and Image Processing, Prentice Hall, NJ, 1998, ISBN
0-13-264599-8

6. Binary objects labeling

52

6 Binary objects labeling

 Introduction

In this laboratory an object labeling algorithm which allows you to label distinct objects from
a binary (black&white) image is presented. This algorithm is useful for the separation of distinct
objects for further analyses/measurements applied on each individual object.

 Theoretical considerations

In order to extract specific features of the objects from a digital image, it is necessary to perform
a segmentation process to the original image. As a result of the segmentation operation, the
obtained image will contain well-differentiated objects. The purpose of the labeling process is
to assign to each distinct object a unique label (integer number). In the following, a fast labeling
algorithm (which scans the image pixels of a binary image only once) will be presented.

Algorithm steps

1. Labeling the pixels from the source image, using a single image scan, and establishing
the equivalent label pairs.

2. Establishing equivalence labeling classes.
3. Updating operation needed to replace each pixel’s label with the label of its equivalence

class.

Step 1. Labeling the pixels from the source image and establishing the equivalent label pairs.

The labeling process needs first to define the type of connectivity used. Then the image is
scanned (line by line, in top-down and left-right order) and connected pixels are labeled with
the same label. The presented algorithm uses a 5-conectivity (Fig. 6.1), in which the current
pixel is denoted with ‘X’:

Fig. 6.1 The 5-conectivity used.

The algorithm for the general case is presented in Fig. 6.2. We consider pixels having a value
different from “0” belonging to the background (in 8 bits/pixels bitmap images, object points
are black – intensity value =0). In Fig. 6.2 the following notations are used:

- X_Label, A_Label, B_Label, C_Label, D_Label are the labels assigned to pixels X, A,
B, C and D respectively (see Fig. 6.1);

- NewPair(Label1,Label2) is a function which appends pair (Label1,Label2) in the list of
the equivalent label pairs.

- NewLabel is a function used to generate a new label by incrementing the last assigned
label with 1 (the first generated new label is 1).

Observation: The pixels labels of the source image are kept in an integer matrix having the
same dimensions as the source image. In the labels’ matrix, the background pixels are labeled
with “0”.

6. Binary objects labeling

53

Fig. 6.2 Block diagram of the labeling algorithm

The labeling algorithm is applied for each individual pixel by scanning the pixels in a top-down
left-right manner. Observation: in order to use the 5 pixel connectivity (Fig. 6.1) the image
scanning must start on the second line from the top and second column from the left and will
finish on the last line and the column before the last one. This is because the four neighbors of
the labeled pixel W, NW, N, NE (pixels A, B, C, D, Fig. 6.1) must be located inside the image;
otherwise the memory buffer in which the image is located may be exceeded.

The pixel labeling and equivalent label generation algorithm is described next for the following
cases:

a) If the current pixel belongs to the background then we skip to the next pixel;
b) If the current pixel belongs to an object, then it must be labeled, and the following cases

may occur:
- If the neighbors from NW and NE are object pixels and the neighbor from the N

direction is not an object pixel, then the label of the current pixel will be the same as
NW neighbor’s label and an equivalent pair will be added for the NW and NE directions
(branch 1, Fig. 6.2);

6. Binary objects labeling

54

- If the neighbor from NW is an object pixel and either the neighbor from the N is an
object pixel or the neighbor from NE is not an object pixel, then the label of the current
pixel will be the same as the label of the pixel from NW (branch 2, Fig. 6.2);

- If the neighbor from NW is not a pixel object and the neighbors from W and N are object
pixels then the label of the pixel will be the same as the label of the W pixel and the
equivalent pair will be added for the W and N neighbors (branch 3, Fig. 6.2);

- If the neighbors from the NW and N are not object pixels and the neighbors from W and
NE are object pixels, then the label of the pixel will be made the same as the label of
the W pixel and an equivalent pair is added for the W and NE pixel labels (branch 4,
Fig. 6.2);

- If the neighbor from the W direction is an object pixel and the neighbors from NW, N
and NE are not object pixels, then the label of the current pixel will be equal to the label
of the pixel from the W direction (branch 5, Fig. 6.2);

- If the neighbors from the NW and W directions are not object pixels and the neighbor
from the N direction is an object pixel, then the label of the current pixel will be the
same as the label of the N pixel (branch 6, Fig. 6.2);

- If the neighbors from NW, W and N are not object pixels and the neighbor from the NE
direction is an object pixel, then the label of the current pixel will be the same as the
label of the NE pixel (branch 7, Fig. 6.2);

- If none of the pixel’s neighbors (NW, W, N and NE) are object pixels, then a new label
will be generated for the current pixel (branch 8, fig. Fig. 6.2).

Multiple labeling of an object appears in the case of sequential scanning, in the case of “J”
shape objects, as you can see in Fig. 6.3. The labeling process begins to label two “different”
objects with labels “1” and “2”, until the pixel “X” is reached, where we found that object 1
and 2 are connected. At this stage the two labels are considered equivalent and are appended to
the list of equivalent pairs (NewPair(1,2)).

Fig. 6.3 The case of multiple labeled objects

Step 2. Establishing the labeling equivalence classes.

After all the pixels were labeled and the equivalence pairs were established, the equivalence
classes must be found. The equivalence pairs are binary relations stored in the list. To find the
equivalence classes a graph can be used in which the nodes are the labels, and the arches are
the equivalence binary relations. The problem of finding the equivalence classes is to find the
connected sub graphs (the transitive closure of the equivalence relationships).

To find a connected sub-graph a breadth first search can be used, starting from any graph node.
All the neighbors of the starting node are put in a queue and are marked as visited (in order to

6. Binary objects labeling

55

track the nodes that were already considered as part of the current connected sub-graph); when
a node is extracted from the queue, its neighbors are added (if they were not previously visited)
and are marked as visited. The process is repeated for each node in the queue, until the queue
becomes empty. All the nodes that went through the queue will bear the same label which will
be associated to the equivalence class. Next, an unvisited node is found and its equivalence
class is built. This process continues until all the graph’s nodes have been visited. An isolated
node represents an equivalent class containing a single element.

For relabeling, an integer array may be used. The new label for the old label i will be located at
index i. All array’s elements are initialized with 0. This array may also be used for keeping
track of the labels that were not previously visited: a 0 value marks that the label (graph node)
was not previously visited.

One must go through the equivalent pair list in order to search for one node’s neighbors (the
node is the first element of the equivalence pair and the neighbor is the other). This adjacency
list graph representation has the disadvantage of long search times. An adjacency matrix can be
used, but it would require a lot of memory. A sparse matrix representation can be used instead.

Step 3. Re-labeling all the labels with the values corresponding to the equivalence classes.

The label image is scanned, and each label is replaced by the new label corresponding to its
equivalence class. This operation can be accomplished by using the array described above.

 Labeling examples

Fig. 6.4 Labeling examples

6. Binary objects labeling

56

 Implementation hints

For labeling, the source image must be scanned in a top-down, left-right manner. Because of
the five pixels connectivity used (Fig. 6.1), the scanning will start from the second line and
second column from the top and will end at the last line and the column before the last one (see
Step 1, section 6.2).

for (int i=dwHeight-2;i>=0;i--)

for (int j=1;j<dwWidth-1;j++)
 if (lpSrc[i*w+j]==0)
 {

// if the current pixel is black
// the labeling algorithm is applied
// the value is stored in the label image
// the equivalence pairs are also stored

 }

Observations:
1. The bitmap image is vertically flipped in memory (line 0 from the memory corresponds to

the bottom line of the image).
2. For the labels image (matrix) an int array having the same size as the image will be

allocated.

After the object pixels were labeled, the equivalence classes are determined based on the pairs
from the set of equivalent labels stored previously (see Step 2, section 6.2).

The last step is to re-label the pixels with the label of the equivalence class to which its old label
belongs. Displaying the labeled objects is made with different colors (highly contrasting colors)
and can be done by modifying the 1…254 LUT entries (the 0 and 255 are not modified because
the 0 value is a marker of an inexistent equivalence class and the value 255 is reserved for the
white background). This works if the resulting equivalence classes have labels from 1 to 254.

// modifying the LUT for displaying with different colors
for (int k=1;k<=254;k++)
{

// generate a random color for index k, 1≤k≤254
bmiColorsDst[k].rgbRed = randomValueRed;
bmiColorsDst[k].rgbGreen = randomValueGreen;

 bmiColorsDst[k].rgbBlue = randomValueBlue;
}

Observations:
1. The binary image used for labeling must be an 8 bits/pixel image with a sorted LUT which

contains only black pixels (index 0 – for objects) and white pixels (value
255 – for background)

2. Using the previously presented coloring method with different colors for all labeled objects
allows only 254 different colors for displaying the labeled objects.

6. Binary objects labeling

57

 Practical Work

1. Implement the steps for the binary objects labeling algorithm.
2. Add a processing function to the DIBLook framework for executing this algorithm. Display

the labeled objects using different colors.
3. Save your work. Use the same application in the next laboratories. At the end of the

image processing laboratory you should present your own application with the
implemented algorithms!!!

 References

[1]. Umbaugh Scot E, Computer Vision and Image Processing, Prentice Hall, NJ, 1998, ISBN
0-13-264599-8
[2]. Robert M. Haralick, Linda G. Shapiro, Computer and Robot Vision, Addison-Wesley
Publishing Company, 1993.

7. Border Tracing Algorithm

58

7 Border Tracing Algorithm

 Objectives:
The purposes of this laboratory session are:

 to extract the objects’ contours using a border tracing algorithm;
 to represent efficiently each extracted contour using chain codes;
 to take advantage of using chain codes in representing the objects’ contours (border

reconstruction, matching, merging etc.).

 Theoretical Background

7.2.1 Border Tracing Algorithm

The border tracing algorithm is used to extract the contours of the objects (regions) from an
image. When applying this algorithm it is assumed that the image with regions is either binary
or those regions have been previously labeled.

Algorithm’s steps:
1. Search the image from top left until a pixel of a new region is found; this pixel P0 is

the starting pixel of the region border. Define a variable dir which stores the
direction of the previous move along the border from the previous border element
to the current border element. Assign
(a) dir = 0 if the border is detected in 4-connectivity (Fig. 7.1 a)
(b) dir = 7 if the border is detected in 8-connectivity (Fig. 7.1 b)

2. Search the 3x3 neighborhood of the current pixel in an anti-clockwise direction,
beginning the neighborhood search at the pixel positioned in the direction
(a) (dir + 3) mod 4 (Fig. 7.1 c)
(b) (dir + 7) mod 8 if dir is even (Fig. 7.1 d)

(dir + 6) mod 8 if dir is odd (Fig. 7.1 e)
The first pixel found with the same value as the current pixel is a new boundary
element Pn. Update the dir value.

3. If the current boundary element Pn is equal to the second border element P1 and if
the previous border element Pn-1 is equal to P0, stop. Otherwise repeat step (2).

4. The detected border is represented by pixels P0 … Pn-2.

Fig.7.1 (a) Direction notation, 4-connectivity, (b) 8-connectivity, (c) pixel neighborhood search sequence is 4-

connectivity, (d),(e) search sequence in 8-connectivity, (f) boundary tracing in 8-connectivity (dashed lines show
pixels tested during the border tracing).

7. Border Tracing Algorithm

59

Remarks:

 The above algorithm works for all regions larger than one pixel.
 Looking for the border of a single-pixel region is a trivial problem.
 This algorithm is able to find region borders but does not find borders of region holes.
 To search for the object’s holes’ borders as well, the border must be traced starting in

each region or hole border element if this element has never been a member of any
border previously traced.

 Note that if objects are of unit width, more conditions must be added.

7.2.2 Chain Codes Extraction
The chain code provides a storage-efficient representation for the boundary of an object in a
binary image. The chain code representation incorporates such pertinent information as the
length of the boundary of the encoded object, its area, and moments. Chain codes lend to
efficient calculation of certain curve parameters. Additionally, chain codes are invertible in that
an object can be reconstructed from its chain code representation.

The basic idea behind the chain code is that each boundary pixel of an object has an adjacent
boundary pixel neighbor whose direction from the given boundary pixel can be specified by a
unique number between 0 and 7 (8-connectivity neighborhood). Chain codes could also be
defined using a 4-connectivity neighborhood. A 4-connecivity neighborhood chain codes
example it is presented in Fig. 7.2.

In the following we discussion we use the 8-connectivity neighborhood. Given a pixel, consider
its eight neighboring pixels. Each 8-neighbor can be assigned a number from 0 to 7 representing
one of eight possible directions from the given pixel (see Fig. 7.2). This is done with the same
orientation throughout the entire image.

Fig.7.2 The 8-neighborhood and the associated eight directions

The chain code for the boundary of a binary image is a sequence of integers
c={c0, c1, … , cn-1}, having each ci from the set {0,1, … ,7} for i=0, 1, … , n-1. The number of
elements in the sequence c is called the length of the chain code. The elements c0 and cn-1 are
called the initial and terminal point of the code, respectively. Starting at a given base point, the
boundary of an object in a binary image can be traced out using the head-to-tail directions that
the chain code provides.

Fig. 7.3 illustrates the process of tracing out the boundary of an airplane by following direction
vectors. The information in Fig. 7.3 is then “flattened” to derive the chain code for its boundary.
Suppose we choose the topmost left feature pixel in Fig. 7.3 as the base point for the boundary
encoding. The chain code for the boundary of the airplane is the sequence:
7, 6, 7, 7, 0, … , 1, 1, 1.

7. Border Tracing Algorithm

60

Given the base point and the chain code, the boundary of the airplane can be completely
reconstructed. The chain code is an efficient way of storing boundary information because it
requires only three bits (23 = 8) to determine any one of the eight directions.

Fig.7.3 Chain code directions with associated direction numbers

Chain codes may be made position-independent by ignoring the “start point”. If they represent
closed boundaries they may be “start point normalized” by choosing the start point so that the
resulting sequence of direction codes forms an integer of minimum magnitude.

The “derivative” of the chain code is useful because it is invariant under boundary rotation. The
derivative (really a first difference mod 4 or 8) is simply another sequence of numbers
indicating the relative direction of chain code segments; the number of left hand turns of π/2
or π/4 needed to achieve the direction of the next chain segment. A mod 4 or
mod 8 difference is called a chain code derivative (see Fig. 7.4).

Fig.7.4 Chain code in 4-connectivity and its derivative.

7. Border Tracing Algorithm

61

Code: 3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2
Derivative: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1

Chain codes properties:

1. Chain codes describe an object by a sequence of unit-size (4-connectivity) line segments
with a given orientation.

2. The first element of such a sequence must bear information about its position to allow
reconstruction of the region.

3. Even codes {0, 2, 4, 6} correspond to horizontal and vertical directions; odd codes
{1, 3, 5, 7} correspond to the diagonal directions.

4. Each code can be considered as the angular direction, in multiples of 45 degrees that we
must move to go from one contour pixel to the next.

5. The absolute coordinates of the first contour pixel (e.g. top, leftmost) together with the
chain code of the contour represent a complete description of the discrete region
contour.

6. When there is a change between two consecutive chain codes, then the contour has
changed direction. This point is defined as a corner.

 Practical Work

Using the Diblook framework and the laboratory’s additional images and files:

1. Implement the border tracing algorithm and draw the object contour on an image having a
single object.

2. Starting from the border tracing algorithm write the algorithm that builds the chain code
and derivative chain code for an object. Compute and display both codes (chain code and
derivative chain code) for an image with a single object.

3. Implement a function that reconstructs (draws) the border of an object over an image having
as inputs the start point coordinates and the chain code in 8-neighborhood (reconstruct.txt).
Load the image gray_background.bmp and apply the function that reconstructs the border.
You should obtain the contour of the word “EXCELLENT” (having all the letters
connected).

4. Save your work. Use the same application in the next laboratories. At the end of the
image processing laboratory you should present your own application with the
implemented algorithms!!!

Additional info:

The test images with a single object have:
 8 bits/pixel
 index 0 for object’s pixels (black pixels)
 other index value for background pixels (white pixels)

The file reconstruct.txt is a text file having:

 on the first line the start point coordinates (row column) separated with a
space;

 on the second line the number of chain codes;
 on the third line the chain codes (sequence of directions in 8-connectivity)

separated with a space.

7. Border Tracing Algorithm

62

 Refernces

[1] Border Tracing – Digital Image Processing lectures, The University of Iowa,
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation2.html#tracing
[2] Contour Representations – Quantitative Imaging Group, Delft University
http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip-Contour.html#Heading27
[3] G.X. Ritter, J.N. Wilson – Handbook of Computer Vision Algorithms in Image Algebra
Second Edition – Chapter 10.4 Chain Code Extraction and Correlation, CRC Press, New York
2001
[4] Chain Codes – Digital Image Processing lectures, The University of Iowa
http://www.icaen.uiowa.edu/~dip/LECTURE/Shape2.html#chaincodes
[5] Representation of Two-Dimensional Geometric Structures,
http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/LIB/bandb8_12.pdf

8. Morphological operations on binary images

63

8 Morphological operations on binary images

 Introduction

Morphological operations are affecting the form, structure or shape of an object. Applied on
binary images (black & white images – Images with only 2 colors: black and white). They are
used in pre or post processing (filtering, thinning, and pruning) or for getting a representation
or description of the shape of objects/regions (boundaries, skeletons convex hulls).

 Theoretical considerations

The two principal morphological operations are dilation and erosion [1]. Dilation allows objects
to expand, thus potentially filling in small holes and connecting disjoint objects. Erosion shrinks
objects by etching away (eroding) their boundaries. These operations can be customized for an
application by the proper selection of the structuring element, which determines exactly how
the objects will be dilated or eroded.

Notations:

black pixel: in grayscale values for a 8 bits/pixel indexed image its value will be 0
white pixel: in grayscale values for a 8 bits/pixel indexed image its value will be 255

8.2.1 The dilation

The dilation process is performed by laying the structuring element B on the image A and
sliding it across the image in a manner similar to convolution (will be presented in a next
laboratory). The difference is in the operation performed. It is best described in a sequence of
steps:

1. If the origin of the structuring element coincides with a 'white' pixel in the image, there is
no change; move to the next pixel.
2. If the origin of the structuring element coincides with a 'black' in the image, make black all
pixels from the image covered by the structuring element.

Notation:

AB

The structuring element can have any shape. Typical shapes are presented below:

Fig. 8.1 Typical shapes of the structuring elements (B)

8. Morphological operations on binary images

64

An example is shown in Fig. 8.2. Note that with a dilation operation, all the 'black' pixels in the
original image will be retained, any boundaries will be expanded, and small holes will be filled.

Fig. 8.2 Illustration of the dilatation process

a. b.

Fig. 8.3 Example of the dilation: a. Original image A; b. The result image: AB.

8.2.2 The erosion

The erosion process is similar to dilation, but we turn pixels to 'white', not 'black'. As before,
slide the structuring element across the image and then follow these steps:
 1. If the origin of the structuring element coincides with a 'white' pixel in the image, there is

no change; move to the next pixel.
 2. If the origin of the structuring element coincides with a 'black' pixel in the image, and any

of the 'black' pixels in the structuring element extend beyond the object (with 'black' pixels)
in the image, then change the 'black' pixel in the image to a 'white' pixel.

Notation:

A B

In Fig. 8.4, the only remaining pixels are those that coincide to the origin of the structuring
element where the entire structuring element was contained in the existing object. Because the
structuring element is 3 pixels wide, the 2-pixel-wide right leg of the image object was eroded
away, but the 3-pixel-wide left leg retained some of its center pixels.

8. Morphological operations on binary images

65

Fig. 8.4 Illustration of the erosion process

a. b.

Fig. 8.5 Example of the erosion: a. Original image A; b. The result image: A B.

8.2.3 Opening and closing

These two basic operations, dilation and erosion, can be combined into more complex
sequences. The most useful of these for morphological filtering are called opening and closing
[1]. Opening consists of an erosion followed by a dilation and can be used to eliminate all pixels
in regions that are too small to contain the structuring element. In this case the structuring
element is often called a probe, because it is probing the image looking for small objects to
filter out of the image. See Fig. 8.6 for the illustration of the opening process.

Notation:

A◦B = (AΘB)B

Closing consists of a dilation followed by erosion and can be used to fill in holes and small
gaps. In Fig. 8.7 we see that the closing operation has the effect of filling in holes and closing
gaps. Comparing the left and right images from Fig. 8.8, we see that the order of operation is
important. Closing and opening will generate different results even though both consist of
erosion and dilation.

Notation:

A●B = (AB)ΘB

8. Morphological operations on binary images

66

Fig. 8.6 Illustration of the opening process

Fig. 8.7 Illustration of the closing process

a. b.

Fig. 8.8 Results of the opening (a) and closing (b) operations applied on the original image from Fig. 8.5a.

8. Morphological operations on binary images

67

8.2.4 Some basic morphological algorithms [2]

8.2.4.1 Boundary extraction

The boundary of a set A, denoted by β(A), can be obtained by first eroding A by B and then
performing the set differences between A and its erosion. That is,

 β(A)=A – (AΘB)

where
B is a suitable structuring element.
‘–‘ is the difference operation on sets (illustrated in Fig. 8.10)

Fig. 8.9 Illustration of the boundary extraction algorithm

A B A and B = A  B

A or B = A  B not (A) = AC not(A) and B = B-A

Fig. 8.10 Illustration of the main operations on sets

8. Morphological operations on binary images

68

8.2.4.2 Region filling

Next we develop a simple algorithm for region filling based on set dilations, complementation,
and intersections.

Beginning with a point p inside the boundary, the objective is to fill the entire region with
‘black’. If we adopt the convention that all non-boundary (background) points are labeled
‘white’, then we assign a value of ‘black’ to p to begin. The following procedure then fills the
region with ‘black’:

Xk = (Xk-1 B)  AC k=1,2,3,…

where
X0=p,
B is the symmetric structuring element
 - is the intersection operator (see Fig. 8.10)
AC – is the complement of set A (see Fig. 8.10)

The algorithm terminates at iteration step k if Xk=Xk-1. The set union of Xk and A contains the
filled set and its boundary.

Fig. 8.11 Illustration of the region filling algorithm

8. Morphological operations on binary images

69

 Implementation hints

8.3.1 Using a supplementary image buffer for chain processing

The results of the basic morphological operations (dilation and erosion) should be applied in
the following manner:

Destination image = Source image (operator) Structuring element
The source image shouldn’t be affected in any way!

For the implementation of the combined morphological operations (opening and closing) or of
the repeated operations (for example: n consecutive erosions) in a single processing function a
supplementary image buffer should be created used. This can be done as follows (the code
exemplifies how to perform two dilations, using an auxiliary temporary buffer):

//allocate a temporary buffer.
//its dimensions should be w and dwHeight (same as
//the pixel array in the source and destination bitmap
unsigned char *lpTemp = new unsigned char [w*dwHeight];
//perform 1st dilation, and write the result
//in the temporary buffer
//perform 2nd dilation, and write the result
//in the destination image
//free the buffer! C++ doesn't have garbage collection
//use the delete[] operator, not delete!!
delete[] lpTemp;

8.3.2 Additional hints for designing an input dialog box

If you want select the type of the morphological operation which you want to apply and the
number of its repetitions, you can use a dialog box as input. Creating a dialog box and using
edit controls as inputs was presented in Laboratory 2.

The following example illustrates the implementation of a single selection from multiple
options (for example the type the morphological operation, dilation, erosion, opening, closing,
contour extraction, region filling) using radio buttons. A radio button is similar to a check box,
with the difference that, in a group of radio buttons, only a single radio button may be selected
at any time. In order to create a group of radio buttons, allow user interaction with it and obtain
the selected button you must perform the following steps (see Fig. 8.12):

1. The first step is to create a new Dialog box and to add the corresponding class

CDlgSelectMorphologicalOperation as explained in Laboratory 2.
2. In order to visually group the various radio buttons add a Group Box control on the dialog.

Give the group box a suggestive name, such as “Operation Type”
3. Add the first radio button on the group box. Give it suggestive ID, such as

IDC_OPERATION_TYPE. Make sure you select the “Group” option!! Also, for this and
all subsequent radio buttons, make sure that the option “Auto” in the “Appearance” section
is selected!!

4. Add the other radio buttons. It is not necessary to change their IDs. Make sure that their
Group checkbox is NOT selected!!

5. Associate an integer member variable with the first control (the one with the group box
selected.

6. The associated member variable holds the index of the selected control. The index is
0-based, i.e. if the first button is selected then the index is 0, if the second radio button is
selected then the index is 1 and so on.

8. Morphological operations on binary images

70

Fig. 8.12 Adding a group box, radio buttons, and associating the first radio button

control with an index integer member variable

8. Morphological operations on binary images

71

A clean way to obtain the desired operation selection from a group of radio buttons is:

1. Define an enumeration in your dialog class (CDlgSelectMorphologicalOperation in

this example) holding the desired options. You should add this in the public section
of your class, in the corresponding header file (DlgSelectMorphologicalOperation.h
in this example):

class CDlgSelectMorphologicalOperation : public CDialog {
public:
 //enumeration holding the operation type
 //(enumerations are by default zero based)
 enum EOperationType {
 Dilation,
 Erosion,
 Opening,
 Closing,
 ContourExtraction,
 AreaFilling,

};
………

};

2. In your processing method (in dibview.cpp) add the following code to instantiate the

dialog and obtain the selected operation:
 //instantiate the dialog
 CDlgSelectMorphologicalOperation dlgSelect;
 //set the default selection to the first operation
 dlgSelect.m_OperationType = 0;
 //show the dialog in modal mode
 dlgSelect.DoModal();
 //obtain the selection
 switch(dlgSelect.m_OperationType) {

 case CDlgSelectMorphologicalOperation::Dilation:
 …… //code for dilation
 break; //do not forget to put break after each

case
 case CDlgSelectMorphologicalOperation::Erosion:
 …… //code for erosion
 break;
 case CDlgSelectMorphologicalOperation::Opening:
 …… //code for opening
 break;
 case CDlgSelectMorphologicalOperation::Closing:
 …… //code for closing
 break;
 case CDlgSelectMorphologicalOperation::ContourExtraction:
 …… //code for contour extraction
 break;
 case CDlgSelectMorphologicalOperation::AreaFilling:
 …… //code for region filling
 break;

 }

 Practical work

1. Add to the DIBLook framework processing functions which implement the basic
morphological operations.

2. Add the facility to apply the morphological operations repeatedly (n times). For that
purpose use a dialog box to input the number of repetitions n (through an Edit control)
and to select the type of the morphological operation (through radio buttons).

3. Implement the boundary extraction algorithm.
4. Implement the region filling algorithm.

8. Morphological operations on binary images

72

5. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with the
implemented algorithms!!!

 References

[1]. Umbaugh Scot E, Computer Vision and Image Processing, Prentice Hall, NJ, 1998, ISBN
0-13-264599-8
[2] R.C.Gonzales, R.E.Woods, Digital Image Processing. 2-nd Edition, Prentice Hall, 2002.

9. Statistical properties of grayscale images

73

9 Statistical properties of grayscale images

 Introduction

This laboratory work presents the main statistic features that characterize the distribution of
intensity levels in a grayscale image or in an area / region of interest (ROI) of the image. These
statistic features can be applied similarly to color images, on each color component.

The following notation will be used throughout this lab:

 L=255 highest intensity level
 h(g) histogram function, counts the number of pixels with gray level g
 M=H*W, number of pixels in the image
 p(g)=h(g)/M gray level probability distribution function (PDF).

 The mean value of intensity levels

The mean value of intensity levels is a measure of the mean intensity of the given image or of
the region of interest. A dark image has a low mean value (Fig. 9.1 a), and a bright image has
a high mean value (Fig. 9.1 b).

Fig. 9.1 The position of the histogram and the mean value of the intensity levels for

a dark image (a) and a bright image (b)

The mean intensity value is computed as follows:

0 0

1
() () ()

L L

g g

g g p g dg g p g g h g
M




 

        (9.1)

1 1

0 0

1
(,)

H W

i j

g I i j
M


 

 

   (9.2)

9. Statistical properties of grayscale images

74

 The standard deviation of the intensity levels

The standard deviation of the intensity levels represents a measure of the contrast of an image
(region of interest). It characterizes the dispersion (spreading) of the intensity levels with
respect to the mean value. An image having a high contrast will have a large standard deviation
(Fig. 9.2 a – the histogram is spread on the entire range of intensity levels), and an image having
a low contrast will be characterized by a small standard deviation (Fig. 9.2 b – the histogram is
restricted to some intensity levels located around the mean value).

Fig. 9.2 The position of the histogram and of the standard deviation (2) of the intensity levels for
an image of high contrast (a) and an image of low contrast (b).

The standard deviation of the intensity levels is given by:





L

g

gpg
0

2)()( (9.3)

 









1

0

1

0

2
),(

1 H

i

W

j

jiI
M



 (9.4)

 Threshold selection by optimal image approximation

This algorithm determines an optimal threshold, in the sense that the approximation error
between the original image and the resulting binary image is minimal. The error can either be

9. Statistical properties of grayscale images

75

computed as the sum of absolute differences (P1, city block or Manhattan norm) or as the
squared sum of differences (the square of a P2 or Euclidean norm). A further improvement is
to determine two gray level values for the approximating the image, instead of using black and
white.

9.4.1 Minimizing the city block distance

The threshold that minimizes this distance is (see course notes):

t t

argmax () argmax ()
L

g t

T t h g tA t


  (9.5)

The function A(t) can be computed incrementally by using the recurrence:

0

(1) () (),

(0) ()
L

g

A t A t h t

A h g M


  

 
 (9.6)

9.4.2 Minimizing the Euclidean distance

The threshold that minimizes this distance is (see course notes):

t t

argmax (2) () argmax ()
L

g t

T t g t h g tW t


   (9.7)

The function W(t) can be computed incrementally by observing that:

1

(1) (2 1) ()

(2 1) () (2 1) ()

(2) () () (1) ()

() () (1) ()

L

g t

L

g t

L L

g t g t

W t g t h g

g t h g t t h t

g t h g h g t h t

W t A t t h t

 



 

    

      

     

   





 

 (9.8)

where A(t) is computed according to (9.6). We also have that:

0

(0) 2 () 2
L

g

W gh g M


  (9.9)

9.4.3 Improving the image approximation by using two non-black&white levels

The optimal threshold T is obtained by maximizing:

   

 

2 2
1

2 2

0

1

0

1

0

() ()
() ()

argmax argmax ,
() ()

() ()

1 and () 0 and () 0 () 0 and () 0

t L

g g t high high

t L
t t

g g t

t L

g g t

gh g gh g
M M t M t

T
M A t A t

h g h g

t h g h g M A t A t





 



 



 

    
                     
 
 

     

 

 

 

 (9.10)

9. Statistical properties of grayscale images

76

where A was computed in (9.6), and

0

(1) () (),

(0) ()

high high

L

high
g

M t M t th t

M gh g M


  

 
 (9.11)

Using the determined threshold T, the gray level values that minimize the approximation error
are the two medians:

1

0

1

0

()

()

()

g T

g

low g T

g

gh g

g T

h g

 



 







 and

()

()

()

g L

g T

high g L

g T

gh g

g T

h g













 (9.12)

 Histogram analytical transformation functions

In Fig. 9.3 are shown some typical transformation functions of the intensity values, which can
be expressed in an analytical form:

Fig. 9.3 Typical gray levels transformation functions

9.5.1 Identity function (no effect):

inout gg  (9.13)

9.5.2 Image negative:

ininout ggLg  255 (9.14)

9.5.3 Histogram stretching / shrinking:

MIN
in

MAX
in

MIN
out

MAX
outMIN

inin
MIN
outout

gg

gg
gggg




)((9.15)

9. Statistical properties of grayscale images

77

where:














shrink

stretch

gg

gg
MIN
in

MAX
in

MIN
out

MAX
out

1

1
 (9.16)

9.5.4 Gamma correction:

in
out

g
g L

L


 

  
 

 (9.17)

Where:
 is a positive coefficient: < 1 (gamma encoding/compression) or > 1 (gamma decoding

/ decompression)

Attention: always check that: 0 <= gout <=255. If outside the domain, values should be
saturated!!!

Fig. 9.4 Results of gamma correction operations

9.5.5 Brightness changing (histogram slide)

offsetgg inout  (9.18)

Attention: always the following checking will be done: 0 <= gout <=255. If an overflow beyond
these limits appears, output values will be truncated or scaled!!!

 Histogram equalization

Histogram equalization is a transform which allows us to obtain an output image with a quasi-
uniform histogram/PDF, regardless the shape of the histogram/PDF of the input image. For that
purpose, the following transform will be used (see lecture notes for more details):

9. Statistical properties of grayscale images

78

Lk
n

n
rprTs

k

j

j
k

j
jrkk ...0,)()(

00

 
 (9.19)

where:

kr – normalized intensity level of the input image corresponding to the (un-normalized)

intensity level k: k

k
r

L
 , (0 1kr  and 0 k L )

ks – corresponding normalized intensity level of the output image;

()C kp r – cumulative probability density function (CPDF) of the input image

0 0

()
() ()

k k
r

C k r j
j g

h g
p r p r

M 

   (9.20)

jr – normalized intensity level of the input image corresponding to the (un-normalized)

intensity level j: j

j
r

L
 .

9.6.1 Histogram equalization algorithm

1. Compute the histogram or the PDF of the input image (as a 256 elements vector)
2. Compute the CPDF of the input image (9.20), as a vector of 256 elements.
3. Compute the transformation for the histogram equalization according to (9.20). Because

the ks values obtained from (9.19) are normalized intensity values, it is necessary to

transform the normalized intensity values ks back to un-normalized ones by

multiplication with L (the highest intensity value: 255 for 8 bits/pixel images):

0

() ,
ing

out k in
g

L
g Ls h g k g

M 

   (9.21)

This transformation function can be written as an equivalence table (vector):

() 255 ()out in C ing tab g p g   (9.22)

4. The intensity values of the output (equalized) image are computed using the

equivalence table:

    * *lpDst i w j tab lpSrc i w j     (9.23)

 Practical work:

1. Compute and display the mean and standard deviation of image intensity levels.
2. Implement the three functions for automatic threshold computation (section 9.4) and

threshold the images according to these values.
3. Implement the histogram transformation functions (section 9.5) for image negative,

histogram stretching/shrinking, gamma correction, histogram slide. Input the limits

,MIN MAX
out outg g , the gamma coefficient and the brightness increase value from a dialog box.

4. Implement the histogram equalization algorithm (section 9.6).

9. Statistical properties of grayscale images

79

5. Save your work. Use the same application in the next laboratories. At the end of the
image processing laboratory you should present your own application with the
implemented algorithms.

 References

[1]. R.C.Gonzales, R.E.Woods, Digital Image Processing. 2-nd Edition, Prentice Hall, 2002.

10. Image filtering in the spatial and frequency domains

80

10 Image filtering in the spatial and frequency domains

 Introduction

In this laboratory the convolution operator will be presented. This operator is used in the linear
image filtering process applied in the spatial domain (in the image plane by directly
manipulating the pixels) or in the frequency domain (applying a Fourier transform, filtering and
then applying the inverse Fourier transform. Examples of such filters are: low pass filters (for
smoothing) and high pass filters (for edge enhancement).

 The convolution process in the spatial domain

The convolution process implies the usage of a convolution mask/kernel H (usually with
symmetric shape and size w*w, with w=2k+1) which is applied on the source image according
to (10.2).

SD IHI  (10.1)

 (,) (,) (,) , 0... 1, 0... 1
k k

D S
i k j k

I x y H i j I x i y j x Height y Width
 

         (10.2)

This implies the scanning of the source image IS, pixel by pixel, ignoring the first and last k
rows and columns (Fig. 10.1) and the computation of the intensity value in the current position
(x, y) of the destination image ID using (9.2). The convolution mask is positioned spatially with
its central element over the current position (x, y).

Fig. 10.1 Illustration of the convolution process.

The convolution kernels can have also non-symmetrical shapes (the central/reference element
is not positioned in the center of symmetry). Convolution with such kernels is applied in a
similar way, but such examples will not be presented in the current laboratory.

10.2.1 Low-pass filters

Low-pass filters are used for image smoothing and noise reduction (see the lecture material).
Their effect is an averaging of the current pixel with the values of its neighbors, observable as
a “blurring” of the output image (they allow to pass only the low frequencies of the image).

10. Image filtering in the spatial and frequency domains

81

All elements of the kernels used for low-pass filtering have positive values. Therefore, a
common practice used to scale the result in the intensity domain of the output image is to divide
the result of the convolution with the sum of the elements of the kernel:

 
 


k

ki

k

kj
SD jyixIjiH

c
yxI),(),(

1
),((10.3)

where:


 


k

ki

k

kj

jiHc),((10.4)

Examples:

Mean filter (3x3):

















111

111

111

9

1
 (10.5)

Gaussian filter (3x3):

















121

242

121

16

1
 (10.6)

a. b. c.

Fig. 10.2 a. Original image; b. Result obtained by applying a 3x3 mean filter. c. Result obtained by applying a
5x5 mean filter.

10.2.2 High-pass filters

These filters will highlight regions with step intensity variations, such as edges (will allow to
pass the high frequencies).

The kernels used for edge detection have the sum of their elements equal to 0:

Laplace filters (edge detection) (3x3):

 (10.7)























010

141

010

10. Image filtering in the spatial and frequency domains

82

or

 (10.8)

High-pass filters (3x3):

 (10.9)

or

 (10.10)

a. b. c.

Fig. 10.3 a. The result of applying the Laplace edge detection filter (9.8) on the original image (Fig. 10.2 a); b.
The result of applying the Laplace edge detection filter (9.8) on the blurred image from Fig. 10.2 b (previously
filtered with the 3x3 mean filter); c. The result obtained by filtering the original image with the high-pass filter

(9.10)

 Image filtering in the frequency domain

The 1D discrete Fourier transform (DFT) of an array of N real or complex numbers is an array
of N complex numbers, given by:

21

0

, 0... 1
jknN

N
k n

n

X x e k N
 



   (10.11)

The inverse discrete Fourier transform (IDFT) is given by:

21

0

1
, 0... 1

jknN
N

n k
k

x X e n N
N





   (10.12)

The 2D DFT is performed by applying the 1D DFT on each row of the input image and then on
each column of the previous result. The 2D IDTF is performed by applying the 1D IDFT on
each column of the DFT “image” and then on each row of the previous result. The set of























111

181

111























010

151

010























111

191

111

10. Image filtering in the spatial and frequency domains

83

complex numbers which are the result of the DFT may also be represented in polar coordinates
(magnitude, phase). The set of (real) magnitudes represent the frequency power spectrum of the
original array.

The DFT and its inverse are usually performed using the Fast Fourier Transform recursive
approach, which reduces the computation time from 2()O n to (ln)O n n , which represents a

significant speed increase, especially in the case of 2D image processing, where a 2 2()O n m

complexity would be intractable for large images as opposed to the almost linear in number of
pixels (ln())O nm nm complexity.

10.3.1 Aliasing

The aliasing phenomenon is a consequence of the Nyquist frequency limit (a sampled

signal cannot represent frequencies higher than half the sampling frequency). This means that
the higher half of the frequency domain representation is redundant. This fact can also be seen
from the identity:

 *
k N kX X  (10.13)

(where the asterisk denotes complex conjugation) which is true if the input numbers kx are real.

Therefore, the typical 1D Fourier spectrum will contain the low frequency components in both
the lower and upper part, with high frequency located symmetrically about the middle. In 2D,
the low frequency components will be located near the image corners and the high frequency

a)

c)

e)

b)

d)

f)

Fig.10.4 a) and b) original images; c) and d) logarithm of magnitude spectra; e) and f) centered logarithm of
magnitude spectra

10. Image filtering in the spatial and frequency domains

84

components in the middle (see Fig. 10.4c, d). This makes the spectrum hard to read and
interpret. In order to center the low frequency components spectrum about the middle of the
spectrum, one should first perform the transformation on the input data:

 (1)k
k kx x  (10.14)

In 2D the centering transformation becomes:

 (1)u v
uv uvx x  (10.15)

After applying this centering transform, in 1D the spectrum will contain the low frequency
components in the center, and the high frequency components will be located symmetrically
toward the left and right ends of the spectrum. In 2D, the low frequency components will be
located in the middle of the image, while various high frequency components will be located
toward the edges.

The magnitudes located on any line passing through the DFT image center represent the 1D
frequency spectrum components of the original image, along the direction of the line. Every
such line is therefore symmetrical about its middle (the image center).

a)

b)

c)

d)

Fig. 10.5 Fourier transforms of sine image waves a) and c). The center point in b) and d) represent the DC
component, the other two symmetrical points are due to the sine wave frequency.

10.3.2 Ideal low-pass and high-pass filters in frequency domain

The convolution in spatial domain is equivalent to scalar multiplication in frequency domain.
Therefore, especially for large convolution kernels, it is computationally convenient to perform
convolution in the frequency domain.

The algorithm for filtering in the frequency domain is:

a) Perform the image centering transform on the original image (9.15)
b) Perform the DFT transform
c) Alter the Fourier coefficients according to the required filtering
d) Perform the IDFT transform
e) Perform the image centering transform again (this undoes the first centering transform).

An ideal low pass filter will alter all the Fourier coefficients that are further away from the
image center (W/2, H/2) than a given distance R, by turning them to zero (W is the image width
and H is the image height):

10. Image filtering in the spatial and frequency domains

85

2 2

2

'

2 2

2

 ,
2 2

0 ,
2 2

uv

uv

H W
X u v R

X
H W

u v R

    
       

    
 

   
          

 (10.16)

An ideal high-pass filter will alter all Fourier coefficients that are at a distance less than R from
the image center (W/2, H/2), by turning them to 0.

2 2

2

'

2 2

2

 ,
2 2

0 ,
2 2

uv

uv

H W
X u v R

X
H W

u v R

    
       

    
 

   
          

 (10.17)

The results of filtering with ideal low- and high-pass filtering are presented in Fig. 10.6 b) and
c). Unfortunately, the corresponding spatial filters Fig. 10.6 e) and d) are not FIR (they have an
infinite support) and keep oscillating away from their centers. Because of this, the low-pass and
high-pass filtered images have a disturbing ringing wavy aspect. In order to correct this, the
cutoff in the frequency domain must be smoother, as presented in the next section.

a)

b)

c)

d) e) f) g)
Fig.10.6 a) original image; b) result of ideal low-pass filtering; c) result of ideal high-pass filtering;
d) ideal low-pass filter in the frequency domain; e) corresponding ideal low-pass filter in the spatial

domain; f) ideal high-pass filter in the frequency domain; g) corresponding ideal high-pass filter
in the spatial domain

10.3.3 Gaussian low-pass and high-pass filtering in the frequency domain

In the case of Gaussian filtering, the frequency coefficients are not cut abruptly, but smoother
cutoff process is used instead. This also takes advantage of the fact that the DFT of a Gaussian
function is also a Gaussian function (Fig. 10.7 d -g).

10. Image filtering in the spatial and frequency domains

86

The Gaussian low-pass filter attenuates frequency components that are further away from the

image center (W/2, H/2).
1

~A


 where  is the standard deviation of the equivalent spatial

domain Gaussian filter.

2 2

2

2 2
'

H W
u v

A
uv uvX X e

   
     

   

 (10.18)

The Gaussian high-pass filter attenuates frequency components that are near to the image center
(W/2, H/2):

2 2

2

2 2
' 1

H W
u v

A
uv uvX X e

   
     

   

 
 

  
  
 

 (10.19)

Fig. 10.7Error! Reference source not found. shows the results of Gaussian filter. Notice that
the ringing (wavy) effect visible in Fig. 10.6 disappeared.

a)

b)

c)

d) e) f) g)
Fig.10.7 a) original image; b) result of Gaussian low-pass filtering; c) result of Gaussian high-pass

Filtering; d) Gaussian low-pass filter in the frequency domain; e) corresponding Gaussian low-pass filter in
the spatial domain; f) Gaussian high-pass filter in the frequency domain; g) corresponding Gaussian high-

pass filter in the spatial domain

 Implementation details

10.4.1 Spatial domain filters

Low-pass filters will always have positive coefficients, and therefore, the resulting filtered
image will have positive values. You must ensure that the resulting image fits in the desired

10. Image filtering in the spatial and frequency domains

87

range (0-255 in our case). In order to ensure this, you must ensure that the coefficients of a low-
pass filter sum to 1. If you are using integer operations pay attention to the order of operations!
Usually, the division should be the last operation performed in order to minimize the rounding
errors!

High-pass filters will have both positive and negative coefficients. You must ensure that the
final result is an integer between 0 and 255! There are three possibilities to ensure that the
resulting image fits the destination range. The first one is to compute:

0 0

, S ,

1

2max{ , }

(,) (*)(,)
2

k k

k k
F F

D S

S F F

S
S S

L
I u v S F I u v

 
 

 

  



 
    

 

 (10.20)

In the formula above S represents the sum of positive filter coefficients and S the sum of

negative filter coefficients magnitudes. This result of applying the high-pass filter always lies
in the interval [,]LS LS  where L is the maximum image gray level (255). The result of this

transform will place scale the result to [-L/2, L/2] and then move the 0 level to L/2.

Another approach is to perform all operations using signed integers determine the minimum
and maximum and then linearly transform the resulting values according to:

(min)

max min

L S
D





 (10.21)

The third approach is to compute the magnitude of the result and saturate everything that
exceeds the maximum level L.

10.4.2 Frequency domain filters

A library and a header file is supplied for performing the fast Fourier transform. The library is
called “dibfft.lib” and the header file is called “dibfft.h”. In order to use the library file you
should first copy the “dibfft.lib” and “dibfft.h” files to the “Diblook” folder.

Then right click on the “Diblook” project entry in the workspace window, select
“Add > Existing Item…”. It will automatically open the window “Add Existing Item -
DibLook”. You should select and add the file “dibfft.h” to the project.

Then the library “dibfft.lib” should be included in the project linker section. Perform right click
on the “DibLook” project in the workspace window and select “Properties”. It will
automatically open the window “DibLook Property Pages”. In the “Configuration” section
choose “All Configurations” and then add the library “dibfft.lib” in the “Linker” section
(see Fig. 10.8).

Finally you should add the header include “dibfft.h” in the “#include” section in the
“dibview.cpp” file.

10. Image filtering in the spatial and frequency domains

88

Fig. 10.8 Adding a library file to the project

The library provides the following functions:
/*The first two parameters are the image width & height
These functions only work correctly for width, height powers of 2 and >=4.
Parameters 3 and 4 are the input real and imaginary parts arrays
of width*height values. Acceptable value types are unsigned char (BYTE),
float and double. The imaginary part is optional (T*)0 can be provided instead,
and the input will be assumed as consisting of values of 0.
Parameters 5 and 6 are the output real and imaginary parts. Acceptable value types
are unsigned char (BYTE), float and double. The imaginary part is optional (T*)0 can
be provided instead. The imaginary part of the output will be discarded in this
case.*/

/*perform FFT on image rows*/
template<class T> void fftrows(int width, int height, const T *ix, const T *iy, double
*ox, double *oy);

/*perform IFFT on image rows*/
template<class T> void ifftrows(int width, int height, const double *ix, const double
*iy, T *ox, T *oy);

/*perform FFT on image cols*/
template<class T> void fftcols(int width, int height, const T *ix, const T *iy, double
*ox, double *oy);

/*perform IFFT on image cols*/
template<class T> void ifftcols(int width, int height, const double *ix, const double
*iy, T *ox, T *oy);

/*perform FFT on image*/
template<class T> void fftimage(int width, int height, const T *inpx, const T* inpy,
double *ox, double *oy);

10. Image filtering in the spatial and frequency domains

89

/*perform IFFT on image*/
template<class T> void ifftimage(int width, int height, const double *ix, const double
*iy, T *outpx, T *outpy);

The functions provided are template based and work for BYTE, float and double inputs/outputs.
Imaginary parts are optional for both input and output. Use NULL pointers to specify missing
inputs/outputs.

The following code gives an example of FFT followed by an IFFT. The original image should
be recovered:

 BEGIN_PROCESSING();
 double *real= new double[dwWidth*dwHeight];
 double *imag= new double[dwWidth*dwHeight];
 fftimage(dwWidth, dwHeight, lpSrc, (BYTE*)0, real, imag);
 ifftimage(dwWidth, dwHeight, real, imag, lpDst, (BYTE*)0);
 END_PROCESSING("FFT");

A few important aspects of working with frequency domain values:
1. Always use for FFT only grayscale images having both width and height powers of two

(example: image “cameraman.bmp” having width=height=256=28 pixels)

2. Always perform the centering transform (9.15) before performing the FFT and after
performing the IFFT:

for(int i=0; i<dwHeight; i++)

 for(int j=0; j<dwWidth; j++)
 D[i*w+j] = ((i+j)&1)?-S[i*w+j]:S[i*w+j];

3. The DC (0,0) Fourier coefficient highly dominates the other ones. When displaying the
magnitude of Fourier coefficients it is better to use the logarithm of the module+1! You
should determine the maximum value of the logarithm and scale the remaining values
to fit the range (0-255).

4. The Fourier transform of an image is a complex array of floating point values! Store
both real and imaginary values as floating points! When converting back to the spatial
domain the imaginary values may be discarded (for usual filters they should be 0
anyway).

 Practical work

1. Implement the convolutions with the kernels from equations (10.5) (10.10).
2. Implement a customized convolution operator of size 3x3 using values specified by the

user in a dialog box. The scaling coefficient should be computed automatically as either
the reciprocal of filter coefficient sum for low pass filters or according to equation for
high-pass filters.

3. Import the dibfft library into Diblook. Add a processing function that performs the FFT
transform of an input image and the transforms the result back to the spatial domain
using IFFT. Check if the destination is the same as the source!

4. Add a processing function that computes and displays the logarithm of the magnitude
of the Fourier transform of an input image.

10. Image filtering in the spatial and frequency domains

90

5. Add processing functions that perform low- and high-pass filtering in the frequency
domain using the ideal and Gaussian filters from equations (10.16) ... (10.19).

6. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with the
implemented algorithms.

 References

[1]. Umbaugh Scot E, Computer Vision and Image Processing, Prentice Hall, NJ, 1998, ISBN
0-13-264599-8
[2] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002

11. Noise modeling and digital image filtering

91

11 Noise modeling and digital image filtering

 Introduction

Noise represents unwanted information which deteriorates image quality. Noise is defined as a
process (n) which affects the acquired image (f) and is not part of the scene (initial signal – s).
Using the additive noise model, this process can be written as:

f(i,j) = s(i,j) + n(i,j) (11.1)

Digital image noise may come from various sources. The acquisition process for digital images
converts optical signals into electrical signals and then into digital signals and is one processes
by which the noise is introduced in digital images. Each step in the conversion process
experiences fluctuations, caused by natural phenomena, and each of these steps adds a random
value to the resulting intensity of a given pixel.

 Noise modeling

Noise (n) may be modeled either by a histogram or a probability density function which is
superimposed on the probability density function of the original image (s). In the following, the
models for the most common types of noise will be presented: salt and pepper noise and
Gaussian noise. Other types of noise, such as negative exponential model, gamma/Erlang
model, Rayleigh model are also presented in the literature (see the course notes!).

11.2.1 The salt & pepper noise

In the salt & pepper noise model only two possible values are possible, a and b, and the
probability of obtaining each of them is less than 0.1 (otherwise, the noise would vastly
dominate the image). For an 8 bit/pixel image, the typical intensity value for pepper noise is
close to 0 and for salt noise is close to 255.

Fig. 111.1 Probability density function for the salt & pepper noise model.

&

(" ")

(" ")
Salt pepper

A for g a pepper
PDF

B for g b salt


 


 (11.2)

The salt & pepper noise is generally caused by malfunctioning of camera’s sensor cells, by
memory cell failure or by synchronization errors in the image digitizing or transmission.

11. Noise modeling and digital image filtering

92

11.2.2 Gaussian noise

The Gaussian noise has a normal (Gaussian) probability density function:

Fig. 111.2 Probability density function for the Gaussian noise model

2

2

()

2
1

2

g

GaussianPDF e









 (11.3)

where:
 g = gray level;
  = mean;
  = standard deviation;

Approximately 70% of the values are contained between  ±  and 90% of the values are
contained between  ± 2. Although, theoretically speaking, the PDF is non-zero everywhere
between - and +, it is customary to consider the function 0 beyond  ± 3.

Gaussian noise is useful for modeling natural processes which introduce noise (e.g. noise
caused by the discrete nature of radiation and the conversion of the optical signal into an
electrical one – detector/shot noise, the electrical noise during acquisition – sensor electrical
signal amplification, etc.).

 Noise removal using spatial filters

11.3.1 Ordered filters (non-linear)

Ordered filters are based on a specific image statistic, called ordered statistic. They are called
non-linear, because they cannot be applied as a linear operator (such as a convolution kernel).
These filters operate on small windows, and replace the value of the central pixel (similarly to
convolution). The ordered statistic is a technique which arranges all the pixels in sequential
order, based on their gray-level value. The position of an element in this ordered set can be
characterized by its rank. Given a NxN window W, the pixel values can be sorted in ascending
order:

2321 N
IIII   (11.4)

where:

 2,,,, 321 N
IIII  represent the intensity values of the pixels located within the NxN

window W.

11. Noise modeling and digital image filtering

93

For example: given a 3x3 window:

110 110 114

100 106 104

95 88 85

 
 
 
  

The result of applying the ordered statistic will be:

 {85, 88, 95, 100, 104, 106, 110, 110, 114}

The median filter: selects the middle value from the ordered statistic and replaces the
destination pixel with it. In the example above, the selected value would be 104. The median
filter allows the elimination of salt & pepper noise.

Fig. 111.3 Applying the median filter

The maximum filter: selects the largest value amongst the ordered values of pixels from the
window. In the above example, the value selected is 114. This filter can be used to eliminate
the pepper noise, but it amplifies the salt noise if applied to a salt & pepper noise image.

The minimum filter: selects the smallest value amongst the ordered values of pixels from the
window. In the above example, the value selected is 85. This filter can be used to eliminate the
salt noise, but it amplifies the pepper noise if applied to a salt & pepper noise image.

11.3.2 Linear filters

These filters are applied by convolution (a linear operation) with a low-pass filter convolution
kernel. In the following, the computation of the elements of a convolution kernel for Gaussian
noise elimination will be presented.

11.3.3 Designing a variable size Gaussian convolution kernel

Gaussian noise removal must be performed using a filter with adequate shape and size,

correlated to the amount of the Gaussian noise that corrupts the image (see Fig. 111.2). The

filter size w of such a filter is usually 6 (for example, for a Gaussian noise with w
= 4.8  5).

Constructing the elements of such a kernel/Gaussian filter G will be performed using the
following equations:

11. Noise modeling and digital image filtering

94

2 2
0 0

2

() ()

2
2

1
(,)

2

x x y y

G x y e 



  


 (11.5)

where:
(x0,y0) – are the coordinates of the central row and column of the kernel (see Fig. 111.4).

Fig. 111.4 Design example of a Gaussian kernel/filter G having a 5x5 size.

11.3.4 Image filtering/restoration

It is accomplished by the convolution of the source image with a Gaussian kernel/filter
computed previously:

D SI G I  (11.6)

When the filter size w is large, the convolution may be time consuming
(w x w multiplications for each pixel). In this case, the Gaussian decomposition may be used:

(,) () ()G x y G x G y (11.7)

and replacing the convolution of a 2D nucleus G with two convolutions of a 1D nucleus
Gx and Gy:

   D x y S x y SI G G I G G I     (11.8)

where:
Gx and Gy are the central line and column vectors of the 2D nucleus (Fig. 111.5):

2

0
2

()

2
1

()
2

x x

G x e 






 (11.9)

2

0
2

()

2
1

()
2

y y

G y e 







 (11.10)

11. Noise modeling and digital image filtering

95

Fig. 111.5 The two vectors Gx and Gy into which a 2D Gaussian kernel may be separated

In this case, the number of multiplications needed for each pixel is w for each of the two
convolutions.

 Practical work

1. Implement a median filter with a variable dimension (w = 3, 5 or 7) specified by the user.
2. Implement the filtering operation with a 2D Gaussian filter, with standard deviation  and

variable size with w (w = 3, 5 or 7), specified by the user. The values of the kernel’s
components will be automatically computed as a function of , as in equation (11.5).

3. Implement Gaussian filtering by using a Gaussian kernel separated into 2 vector components
Gx and Gy having a standard deviation of  and a variable size w
(w = 3, 5 or 7), specified by the user. The vector components values Gx and Gy will be
computed automatically as a function of , as in equations (11.9) and (11.10).

4. Save your work. Use the same application in the next laboratories. At the end of the
image processing laboratory you should present your own application with the
implemented algorithms.

 References

[1]. R.C.Gonzales, R.E.Woods, Digital Image Processing. 2-nd Edition, Prentice Hall, 2002.

12. Edge detection

96

12 Edge detection

 Introduction

This laboratory presents the edge detection problem in digital images. Edge points are found
where the image intensity encounters a steep variation along a specific direction ‘x’ (Fig.12.1).
This intensity variation can be detected and quantified by finding the local maxima of the first
order derivative of the image intensity (the gradient: f=f’) or by finding the zero crossings of
the second order derivative of the image intensity
(the laplacian: 2f=f”).

Fig.12.1 Detection methods of the edge points (points were the image intensity suffers a steep variation).

Further on only the gradient based methods will be approached.

 Computing the image gradient

The gradient in an image point is a vector heading the direction of the intensity variation around
this point (Fig. 12.2). Its module is proportional with the speed of this variation (12.1). If the
edge points are part of a contour (as in Fig. 12.2) the gradient will be perpendicular on the
tangent to the contour at that point.

Fig. 12.2 Left: illustration of the image gradient (in an edge point) on the image of the gradient module.

The gradient of a two variables continuous function f is defined as:







































































y

yxfyyxf
x

yxfyxxf

y

f
x

f

f

f
yxf

y

x

y

x

),(),(
lim

),(),(
lim

),(

0

0
 (12.1)

For digital images, the gradient can be approximated by making x and y equal to 1 in (12.1):

12. Edge detection

97




























],[],[

],[],[
),(

yxf1yxf

yxfy1xf

f

f
yxf

y

x
 (12.2)

Other approximations of the two components of the gradient can be computed through the
convolution of the image with the following kernels:

Prewitt:













































111

000

111

),(

101

101

101

),(

yxff

yxff

y

x

 (12.3)

Sobel:













































121

000

121

),(

101

202

101

),(

yxff

yxff

y

x

 (12.4)

Roberts (cross):








 














01

10
),(

10

01
),(

yxff

yxff

y

x

 (12.5)

As a vector, the gradient can be quantified by a magnitude (12.6) and a direction (12.7):

   22
),(),(),(yxfyxfyxf yx  (12.6)















),(

),(
),(

yxf

yxf
arctgyx

x

y (12.7)

12. Edge detection

98

 Practical work

1. The horizontalfx and verticalfy components of the gradient through convolution with
the kernels given in (12.3) ... (12.5) will be computed and the results will be shown in
the destination image (the convolution operation was already implemented in
Laboratory 9).

2. The gradient magnitude (12.6) and direction (12.7) will be computed using the three
operators (Sobel, Prewitt and Roberts) and the results of the gradient magnitude will
be shown in the destination image.

3. The thresholding with an arbitrary and fixed threshold of the results obtained at point
2 will be shown in the destination image.

4. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with
the implemented algorithms.

 References

[1] E.Trucco, A.Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall, 2001
[2] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002

13. The Canny edge detection method

99

13 The Canny edge detection method

 Introduction
The edge detection method proposed by Canny is based on the image gradient computation but
in addition tries to:

 maximize the signal-to-noise ratio for a proper detection;
 find a good localization of the edge points;
 minimize the number of positive responses around a single edge (suppression of the

gradient module non-maxima)

 The steps of the Canny edge detection method:
1. Noise filtering through a Gaussian kernel
2. Computing the gradient’s module and direction
3. Non-maxima suppression of the gradient’s module
4. Edge linking through adaptive hysteresis thresholding.

13.2.1 Noise filtering through a Gaussian kernel
The noise in the image is high frequency information which overlaps the original image signal.
This introduces false edge points. The noise intrinsic to the image acquisition process can be
modeled by a Gaussian distribution and can be suppressed by a Gaussian filter
(see Laboratory 10).

13.2.2 Computing the gradient’s magnitude and direction
Computing the gradient’s module and direction requires the allocation of two temporary image
buffers (with the same size as the image) and the initialization of their elements according to
equations (12.6) and (12.7) respectively, where the horizontalfx(x,y) and the vertical fy(x,y)
components of the image gradient can be computed using the Prewitt operator (12.3) or the
Sobel operator (12.4).

13.2.3 Non-maxima suppression of the gradient’s module
Its purpose is the thinning of the edges by retaining only the edge points with the highest
gradient module along the direction of the image intensity variation (along the direction of the
gradient vector).

The first step consists in the quantization of the gradient directions, computed using (12.7), in
4 regions shown in Fig. 13.1:

Fig. 13.1 Quantization of the gradient directions in the non-maxima suppression step

Supposing that, for example, the direction of the gradient in an image point is “1”

(Fig. 13.2), the module of the gradient in point P is a local maximum if: 6IP  and

13. The Canny edge detection method

100

2IP  . If these conditions are fulfilled, the point P is retained as an edge point, otherwise

is rejected.

Fig. 13.2 Example for the non-maxima suppression.

13.2.4 Edge linking through adaptive hysteresis thresholding

After computing the image gradient and performing the non-maxima suppression procedure, an
“image” is obtained in which the pixel values are equal with the gradient’s modules in that
pixel. Moreover, the thickness of the edge pixels (with non-zero module) has an ideal value of
one pixel. In the following, the steps required to obtain the final edges are described:

 Adaptive thresholding

Adaptive thresholding tries to extract a quite constant number edge points for a given image
size. In this way, lighting and contrast variations are compensated (fixed threshold would
extract either too much or too few edge points).

The parameter which is given to the threshold detection procedure is the ratio between the
number of edge points and the number of points with non-zero gradient module:

������������ = � ∗ (�������� − ������������������������) (13.1)

Parameter p has usually values between 0.01 and 0.1.

The algorithm is the following:

1. The histogram of the gradient’s magnitude image (values obtained after non-maxima
suppression) is computed. These values will be scaled to fit within [0..255] range (by division

with 4 2 if the gradient was computed using the Sobel operator). The result is a histogram
Hist[0..255]:

Hist[i] = No of pixels having the scaled gradient magnitude value i (13.2)

2. The number of pixels with non-zero values which would not be edge points is computed:

 NoNonEdge = (1-p) * (Height*Width – Hist[0]) (13.3)

3. Starting with position 1 the values of the histogram are summed. When the sum exceeds the
value NoNonEdge, then the index i reached in the counting process is the searched threshold.

13. The Canny edge detection method

101

This technique, intuitively, will find the gradient magnitude value (AdaptiveThresholding)
bellow which NoNonEdge pixels are found.

Pay attention to the pixels located at the image margins (where the image gradient was not
computed)! Their values should be zero or should not be taken into account, because they can
modify the value of the threshold.

 Edge extension through hysteresis

Adaptive thresholding does not guarantees the completeness of the edges (shadowed parts of
the objects or presence of noise can affect the edge detection process). The result will be an
image with many fragmented edges.

Therefore an edge extension technique is needed. The edges obtained by adaptive thresholding
are considered STRONG EDGES and we try to extend them with weaker edge points, which
have not passed the thresholding with the initial value, but could be detected with a lower
threshold.

Formally, two thresholds are defined:

Threshold_high = AdaptiveThresholding (13.4)
Threshold_low = k * Threshold_high (13.5)

where k<1 (for example, k = 0.4).

The image of the gradient module is scanned pixel by pixel. In the destination image the pixels
with the gradient magnitude higher then Threshold_high are labeled as STRONG_EDGES (e.g.
with the value 255). The pixels with the gradient magnitude between Threshold_low and
Threshold_high are labeled as WEAK_EDGES (e.g. with the value 128).

The pixels with the gradient magnitude bellow Threshold_low are considered
NON-EDGES and are rejected. The inverted result (negative) of this labeling is shown in
Fig. 13.3-left.

Fig. 13.3 Left: the image of the labeled strong and weak edges; Right: the result of the extension of the strong

edges with connected WEAK edges.

Next step consists in the extension of the STRONG_EDGE points with neighboring
WEAK_EDGE points, if they are parts of a connected component (see laboratory and lecture
related to “Labeling”) – as in Fig. 13.3. If a STRONG_EDGE point has WEAK_EDGE

13. The Canny edge detection method

102

neighbor, the WEAK_EDGE neighbor is labeled as a STRONG_EDGE point. This
STRONG_EDGE becomes a new source of edge extension. The process is repeated until the
STRONG_EDGE points cannot be extended further by joining them with WEAK_EDGE
points.

An efficient implementation of this step uses a queue to perform a breadth first search through
WEAK_EDGE points connected to STRONG_EDGE points and mark them as
STRONG_EDGE points. The algorithm would look like this:

1. Scan the image, top left to bottom right, pick the first STRONG_EDGE point
encountered and push its coordinates in the queue.

2. While (queue is not empty)
a) Extracts the first point from the queue
b) Find all the WEAK_EDGE neighbors of the current point
c) Label in the image all these neighbors as STRONG_EDGE points
d) Push the image coordinates of these neighbors into the queue
e) Continue to the next STRONG_EDGE point

3. Go to step 1 considering the next STRONG_EDGE point.
4. Eliminate the remaining WEAK_EDGE points from the image by turning them to

NON_EDGE (0)

Final consideration: regarding the definition of the neighborhood used in the above algorithm,
the common 4-type or 8-type neighborhood can be used, or a tolerance of 1 to 2 pixels can be
considered. The reason is that, due to noise, the edges may be interrupted by small gaps.

 Practical work

1. The steps 1 – 3 of the Canny edge detection algorithm will be implemented
a. step 1 – was already implemented in laboratory 10;
b. step 2 – is the implementation from point 2 using the Sobel filters;
c. step 3 – implement the non-maxima suppression operation.
The results obtained after step 3 will be shown in the destination image. The results
will be compared with the one obtained at point 2 after the simple use of the Sobel
operator.

2. Edge linking through adaptive hysteresis thresholding algorithm (step 4 of the Canny
method) will be implemented. The intermediate results of the STRONG_EDGE and
WEAK_EDGE points (after the hysteresis thresholding and before the edge extension
step) and the final results (with the final edges) will be shown in the destination image.
The implementation will be experimented for different values of the parameters p, k and
neighborhood types.

3. The final results of the implemented Canny edge detection method will be
tested/experimented on different image types.

4. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with the
implemented algorithms.

 References

[1] E.Trucco, A.Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall, 2001
[2] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002

14. Color image processing

103

14 Color image processing

 Introduction

This laboratory makes an introduction to color image processing and presents some basic
processing in RGB and HSI color spaces. First, the RGB to HSI and HSI to RGB transforms
are defined. Then, the following color image processing are presented:

- contrast enhancement,
- edge detection,
- and color segmentation.

 HSI Colorspace

The HSI color space (see Fig. 14.1) separates the color information from the intensity
component in a color image, being an ideal image representation for color based processing
that are intuitive to human eyes. HSI color space describes a color object in terms of hue (H),
saturation (S) and brightness or intensity (I):

- Hue is a color attribute that describes a pure color (and not a combination of 3 colors
like in RGB color space)

- Saturation is a measure of the degree to which a pure color is diluted by white light
- Brightness is a subjective descriptor for color sensation that is hard to measure. The

most suitable and easiest solution is to define it as the gray level intensity since is a
useful descriptor and easily interpretable.

Fig.14.1. HSI Colorspace [2]

14.2.1 RGB to HSI Transform

Given an RGB image (with �, �, � ∈ [�, … , �]), the H, S and I components are computed as
follows:

� = �
�,

360− �,

�� � ≤ �
�� � > �

, where � = acos�
�

�
[(���)� (���)]

[(���)�� (���)(���)]�/�� (14.1)

� = 1 −
�

(�� �� �)
[min(�, �, �)] (14.2)

� =
�

�
(� + � + �) (14.3)

14. Color image processing

104

The domain values are:
- � ∈ [�, ��)
- � ∈ [�, �)
- � ∈ [�, �)

Observation: Hue component might present singularities when all components have small
values R=G=B0, case when H is undefined. Consequently, computing H in areas with low
intensity will lead to numerical errors. The solution is to ignore those areas and set them to 0.
Ex: If (R<3 && G<3 && B<3) then H=0

a) Red b) Green c) Blue

d) Hue b) Saturation c) Intensity

Fig. 14.2. RGB to HSI: [left] Original image. [right] RGB channels in the first row and HSI
channels in the second row

Observation: The H, S, I values need to be normalized to [0, 255] in order to display the results.

14.2.2 HSI to RGB Transform

The reverse transform from HSI to RGB if performed as follows.
Given an image in HSI color space (with � ∈ [0, 2�) and �, � ∈ [0,1]), the R,G and B
components are defined as follows:

If �� ≤ � < ���� ∗ ���/� (RG sector):

� = �(1 − �) (14.4)

� = � �1 +
� ����

��� (�����)
� (14.5)

� = 3� − (� + �) (14.6)

If ���� ∗ ���/� ≤ � < ���� ∗ ���/� (GB sector):
If H is in this sector, we first have to perform: � = � − 120�

14. Color image processing

105

� = �(1 − �) (14.7)

� = � �1 +
� ����

��� (�����)
� (14.8)

� = 3� − (� + �) (14.9)

If ���� ∗ ���/� ≤ � < �� (BR sector):
If H is in this sector, we first have to perform: � = � − 240�

� = �(1 − �) (14.10)

� = � �1 +
� ����

��� (�����)
� (14.11)

� = 3� − (� + �) (14.12)

 Color image processing

14.3.1 Modifying Contrast in color images

As presented in chapter 9, some approaches for contrast modification are: histogram stretching/
shrinking and histogram equalization. In color images, these operations imply the modification
in image brightness and contrast, without influencing the hue and saturation. Since only the
intensity component should be affected, the HSI color space seem the right choice in changing
contrast in color images.

Therefore, in order to modify the contrast in color image, the following steps need to be
performed:
- Convert the source image from RGB to HSI
- Compute histogram stretching/ shrinking or histogram equalization operation on the I

channel,
- Convert the image from HSI (with the modified I channel) to RGB

We recall the formulation for contrast modification based on histogram processing. See
Laboratory 8 for more details.

 Histogram stretching / shrinking:

MIN
in

MAX
in

MIN
out

MAX
outMIN

inin
MIN
outout

gg

gg
gggg




)(, (14.13)

where:













shrink

stretch

gg

gg
MIN
in

MAX
in

MIN
out

MAX
out

1

1

14. Color image processing

106

 Histogram equalization

���� = 255 ��(���), (14.14)
where

���, ���� – are the gray values in the input and output respectively images (in this
 case, they correspond to the input/output values of I channel).
�� – is the cumulative histogram

Fig. 14.3 show the visual result for contrast modification using histogram shrinking (middle
image) and histogram equalization (right image). The corresponding histograms of I channel
are also shown in the second row of the figure.

Fig. 14.3. Modifying contrast in color images: a) Original image; b) The result of histogram shrinking

(����
��� = 100, ����

��� = 200); c) The result of histogram equalization.

14.3.2 Color edge detection

Generally, in color images the gradients are computed as a composite gradient image that lead
to a more complete edge detail than the gradients computed in single RGB channels.

The direction and magnitude of the composite gradient in RGB images is computed as follows:

� =
��

��
 � +

��

��
� +

��

��
�

� =
��

��
� +

��

��
� +

��

��
�

��� = � ∙� = �
��

��
�

�

+ �
��

��
�

�

+ �
��

��
�

�

��� = � ∙� = �
��

��
�

�

+ �
��

��
�

�

+ �
��

��
�

�

��� = � ∙� = �
��

��
��

��

��
�+ �

��

��
��

��

��
�+ �

��

��
��

��

��
�

14. Color image processing

107

Direction: � =
�

�
tan�� �

����

(��� ����)
� (14.15)

Magnitude: �(�) = �
�

�
����� + ��� �+ ���� − ��� �cos2� + 2��� ���2���

�

�
 (14.16)

Implementation details:
- Compute the derivatives on x and y axes for each R,G,B channel by filtering the image

with the following convolution kernels:

�� = [−1 0 1] and �� = �
1
0

−1
�

- Use function atan2 ∈ [−�, �] to compute tan��.

The edge detection result is shown in Fig. 14.4.

Fig. 14.4. Edge detection in color images: a) Original image; b) Magnitude �(�)

14.3.3 Color segmentation

Segmentation is an important topic in color image processing. The HSI color space is more
suitable for color segmentation than RGB due to the fact that color separated in one channel
(hue).

Assuming that the target object have a specific color that can be modeled and learned a priori
(e.g. road signs), a fast segmentation method is as follows.

Considering a Gaussian model for the target color with parameters �� and ��, the segmentation
is performed by classifying each pixel in the image in two categories: object and non-object
by verifying the condition:
- if � ∈ [�� − � ∙��, �� + � ∙��] then the pixel is classified as object (R=G=B=0), else

the pixel is classified as non-object (R=G=B=255).
Choose values for k in the interval [2,…,3].

Fig. 14.5 show the visual representation of the segmentation result.

14. Color image processing

108

Fig. 14.5. The segmentation result for a given model of parameters: �� = 4.2 ∗

��

���
 and �� = 1.3 ∗

��

���
,

and � = 3

 Practical work

1. Convert an RGB image to HSI color space. Display each channel in different processing
function.

2. Add a processing function for contrast modification (ex. Histogram stretching/
shrinking or histogram equalization) in HSI color space.

3. Add a processing function for color edge detection in RGB color space.
4. Implement the color segmentation method presented in section 14.3.3 for the following

color model �� = 4.2 ∗
��

���
 and �� = 1.3 ∗

��

���
 .

5. Save your work. Use the same application in the next laboratories. At the end of
the image processing laboratory you should present your own application with the
implemented algorithms.

 References

[1] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002.
[2]. Microsoft – Developer Technologies: https://msdn.microsoft.com/en-
us/library/windows/desktop/dn742482.aspx

Appendix I. Image processing in MATLAB

109

Appendix I. Image processing in MATLAB

1. Introduction

MATLAB environment offers an easy way to prototype applications that are based on complex
mathematical computations. This annex presents some basic image processing operations that
can run in MATLAB. MATLAB has the great advantage that is a matrix oriented environment.
All variables in MATLAB are actually arrays. Scalar values are 1x1 matrices. Common
operations on matrices include addition, subtraction, logical operations, multiplication,
division, matrix transpose, determinant, inverse matrix, eigenvalues and eigenvectors, etc. A
very important and powerful aspect in MATLAB is that most operations can be performed
either element by element or directly on the whole matrix. For example, multiplication can be
applied in the mathematical sense of matrix multiplication (a non-commutative operation) and
also in the sense of scalar multiplication, where the multiplication is performed element by
element. The latter option is particularly useful in the image processing field where most
operations are performed at pixel or pixel neighbor’s level.

A very important aspect is that, unlike C language, indexing starts at value 1 and matrix
elements are organized on lines and then on columns. The element (i, j) of the matrix A, the
element located at row i and column j.

2. Read an image

Imread MATLAB function reads images in different formats, the result being a matrix. The
function call can be performed as following:

I = imread (‘nume.bmp’);

or

I = imread (‘nume.jpg’,’jpg’);

The first string can contain also the image path.

3. Display an image

Imshow function displays an image into a graphic handler. Function call:

imshow (I);

In case when an image is already displayed, then, by calling the imshow function, the image
will be displayed in the opened figure. In case the user wants to display in a new figure, the
function call must be preceded by the call of figure function:

figure, imshow (I);

To close all the opened figures, user must call function the close all function:

close all

Appendix I. Image processing in MATLAB

110

4. Conversion from RGB to Grayscale

Most common image processing operations require to reduce the quantity of information in
image. The representation that preserve the relevant image information while reducing the
complexity is a grayscale representation, having values between 0 and 255. A color image will
be converted to grayscale by calling the rgb2gray function:

Ig = rgb2gray (I);

5. Thresholding

Thresholding process is used to convert a greyscale image into a black and white image (also
referred as binary image), where the pixels intensities are reduced to only two values: 0 and 1.
The thresholding process require the definition of a threshold P with value between 0 and 255.
Then each pixels is compared with the threshold and the one that are greater will be assigned
to 1, while the lowest ones will be assigned to 0.

P = 100;
IB = (Ig > P);

An easy way to define the threshold (but not always the optimal way) is to choose the P value
to be equal to the mean intensity value of the image.

P = mean (Ig(:));
IB = (Ig>P);

6. Morphologic Operations

The basic morphological operation are erosion and dilation. Both operations have as parameters
the original image and a structuring element. The structuring element indicate the neighbors
that will be duplicated or eliminated after applying morphological operations.

Dilation has an effect of object „thickening”.

ID = imdilate (IB, S);

S is the structuring element. It is a binary matrix that can be defined by the user, or they can be
generated by calling strel function and create structuring elements with predefined shapes such
as: disk, square, rectangle, diamond etc.

S = strel (‘disk’, 5);

The call of this particular function will generate a circular structuring element with radius 5.

Erosion has the opposite effect of dilation, reducing the dimension of the objects.

IE = imerode (IB, S);

Based on the basic morphological operations, other derivate operations can be defined, as for
example opening and closing. Opening operation is defined as a dilation followed by an erosion.

Appendix I. Image processing in MATLAB

111

Its role is to eliminate small objects (or noise) remained as a result of thresholding operation.
The closing, on the other hand, has the role of eliminating small holes in the objects. Both
operations will keep the real dimensions of the objects.

IO = imopen (IB, S);
IC = imclose (IB, S);

7. Image labeling

Labeling process is performed on binary images and assigns a unique label to each individual
object, by exploring the neighborhood relations between object pixels. Each pixel in the output
image will have a value that corresponds to the object to which it belongs. MATLAB dispose
of the predefined bwlabel function that performs the image labeling. An example of bwlabel
function call is:

[L N] = bwlabel (IO, 8);

The first parameter corresponds to the binary image, and the second one to the neighborhood
type (4 – for 4 neighborhood and 8 – for 8 neighborhood).

The output L is the image containing the labeled objects, along with the number of distinct
objects N.

Display the labeling results:
Image L contains unique labels for each detected object. Though, the display of the result by
just calling the imshow function is not relevant, since visually the labels are not properly
differentiate. For a better visualization, MATLAB dispose of the label2rgb function that
emphasize the color of each label:

IRGB = label2rgb (L, @jet, ‘k’, ‘shuffle’);
imshow (IRGB);

The first parameter is the labeled image L, the second one is a predefined color palette ’@jet’,
the third one is the background color ’k’ (- black), and the last one ’shuffle’ indicates the
random choice of colors. The output of this call is a color image contains objects with different
random colors.

8. Labeling applications

Having as input a labeled image, it can be generated a binary image having non-zero pixels
only in the position corresponding to an object. For example, we can create the binary image
corresponding to the object having the label 1:

O1 = (L==1);

In this image, we can extract the pixel coordinates contained in the current object using the
function find.

[row column] = find (O1);

Appendix I. Image processing in MATLAB

112

The mass center of object one can be computed as the mean value of the row and column
coordinates.

r_centermass = mean (row);
c_centermass = mean (column);

The min and max coordinates of the object can be found as follows:

r_minim = min (row);
r_maxim = max (row);
c_minim = min (column);
c_maxim = max (column);

The object area, or the number of object pixels is directly computed as:

mass = sum (O1(:));

9. Brightness and contrast adjustment

The MATLAB function imadjust automatically computes the optimal mean contrast and
brightness for an image that is specified as a parameter.

IA = imadjust(Ig)

The image brightness can be changed by simply adding a constant value to all pixels in the
image.

IBright = IG + 50; // brighter
IDark = IG – 50; // darker

10. Saving image on disk

To write an image on disk, Matlab use the function imwrite:

imwrite (I, ‘file_name’, ‘type’);

The parameters of this function are:
I – the image to be saved;
file_name – the name of the image including the path on disk where the user wants to save the
image and the image extension;
type – specifies the type of the image (e.g. ’bmp’, ’jpg’, etc.).

If I is the result of thresholding, it will contain only the values 0 and 1. In this case, the image
should be multiplied with 255 before saving it, so the 1 value to correspond to white. Also, the
type of output images provided by several processing is double, and sometimes it is required a
conversion to byte before saving.

imwrite (255*uint8(IB), ‘binary.bmp’, ‘bmp’);
imwrite (uint8(L), ‘labels.bmp’, ‘bmp’);

Appendix I. Image processing in MATLAB

113

11. Practical work

1. Read and display an image.
2. Read the rgb image ‘stars.jpg’. Convert it to grayscale and display the result. Save the

resulted image on disk in a ‘.bmp’ image format.
3. Read the image ‘eight.bmp’ and convert it to binary image. Post process the output

image with morphological operations in order to eliminate the imperfections.
4. Starting from the resulted image resulted at point 3., apply the labeling operation. Save

the output image. Display the number of labeled objects, their area and mass center.
5. Read the images ‘hawkes_bay_nz.bmp’ and ‘wheel.bmp’. Apply some operations to

adjust the brightness and the contrast in the image. Display and save the results.
6. Write MATLAB function that performs the tasks 1-5, having as parameter either the

name of the image, or directly the matrix of pixels.

Appendix II. Image processing using OpenCV library

114

Appendix II. Image processing using the OpenCV library

1. Introduction

OpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source BSD-
licensed library that includes several hundreds of computer vision algorithms of image
processing at pixel level to complex methods such as camera calibration, object detection,
optical flow, stereovision etc. It also includes tools for data storage and manipulation and
graphical user interface functions. The OpenCV library package is freely available and can be
downloaded (http://opencv.org/). The online documentation for the various editions of the
library is available here: http://docs.opencv.org/ [1].

A framework based on the OpenCV library, called OpenCVApplication is available (you can
download it from the personal web pages of the teaching staff). The framework is personalized
for several versions of the Visual Studio (C++) development environments and several editions
of the OpenCV library. The application includes some basic examples for opening and
processing images and video streams. It can be used independently (without installing the
OpenCV kit).

In the following, some basic data structures and image processing functions of the library are
presented, as described in the 2.4.x API documentation (2.x API is essentially a C++ API).

In the OpenCV API, all the classes and functions are placed into the cv namespace. To access
them from your code, use the cv:: specifier or using namespace cv; directive:

...
cv::Mat src_gray, dst;
cv::equalizeHist(src_gray, dst);
...

or
using namespace cv;
...
Mat src_gray, dst;
equalizeHist(src_gray, dst);
...

Some of the current or future OpenCV external names may conflict with STL or other libraries.
In this case, use explicit namespace specifiers to resolve the name conflicts:

2. Basic data structures in OpenCV

The Point_ class

Point_ is a template class that specifies a 2D point by coordinates x and y. You can perform
most of the unary and binary operations between Point type operators:

pt1 = pt2 + pt3;
pt1 = pt2 - pt3;
pt1 = pt2 * a;
pt1 = a * pt2;
pt1 += pt2;
pt1 -= pt2;

Appendix II. Image processing using OpenCV library

115

pt1 *= a;
double value = norm(pt); // L2 norm
pt1 == pt2;
pt1 != pt2;

You can use specific types for the coordinates and there is a cast operator to convert point
coordinates to the specified type. The following type aliases are defined:

typedef Point_<int> Point2i;
typedef Point2i Point;
typedef Point_<float> Point2f;
typedef Point_<double> Point2d;

The Point3_ class

Point3_ is a template class that specifies a 3D point by coordinates x, y and z. It supports all
the vector arithmetic and comparison operations (same as for the Point_ class). You can use
specific types for the coordinates and there is a cast operator to convert point coordinates to the
specified type. The following type aliases are defined:

typedef Point3_<int> Point3i;
typedef Point3_<float> Point3f;
typedef Point3_<double> Point3d;

The Size_ class

Size_ is a template class that specifies the size of an image or rectangle. The class includes two
members called width and height. The same arithmetic and comparison operations as for
Point_ class are available.

The Rect_ class

 Rect_ is the template class for 2D rectangles, described by the following parameters:

 Coordinates of the top-left corner: Rect_::x and Rect_::y

 Rectangle width (Rect_::width) and height (Rect_::height).

The following type allias is defined:

typedef Rect_<int> Rect;

The following operations on rectangles are implemented:

 shift: rect = rect ± point

 expand/shrink: rect = rect ± size

 augmenting operations: rect += pont, rect -= pont, rect += size, rect -=
size

 intersection: rect = rect1 & rect2, rect &= rect1

 minimum area rectangle containing 2 rectangles: rect = rect1 | rect2, rect |=
rect1

 rectangle comparission: rect == rect1, rect != rect1

Appendix II. Image processing using OpenCV library

116

The Vec class

The Vec class is commonly used to describe pixel types of multi-channel arrays. For example
to describe a RGB 24 image pixel the following type can be used:

typedef Vec<uchar, 3> Vec3b;

The following vector operations are implemented:

v1 = v2 + v3
v1 = v2 - v3
v1 = v2 * scale
v1 = scale * v2
v1 = -v2

v1 += v2 and other augmenting operations
v1 == v2, v1 != v2

norm(v1) (Euclidean norm)

The Scalar_ class

Scalar_ is a template class for a 4-element vector derived from Vec.

The Mat class

The Mat class represents an n-dimensional single-channel or multi-channel array. It can be used
to store real or complex vectors and matrices, grayscale or color images, histograms etc. 2-
dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane,
and so on.

class CV_EXPORTS Mat
{
public:
 // ... a lot of methods ...
 ...
 //! the array dimensionality, >= 2
 int dims;
 //! the number of rows and columns or
 // (-1, -1) when the array has more than 2 dimensions
 int rows, cols;
 //! pointer to the data
 uchar* data;
 // other members
 ...
};

The most common ways to create a Mat object are
create(nrows, ncols, type) or
using one of the constructors: Mat(nrows, ncols, type[, fillValue])

Examples:

Mat m1,m2;
// create a 100x100 3 channel byte matrix
m1.create(100,100,CV_8UC(3));
// create a 5x5 complex matrix filled with (1-2j)
Mat m2(5,5,CV_32FC2,Scalar(1,-2));

Appendix II. Image processing using OpenCV library

117

// create a 640x480 1 channel byte matrix filled with 0
Mat src(480,640,CV_8UC1, 0);

Accessing the elements of a matrix can be done in several ways. Supposing that src is a gray-
scale image with 480 rows and 640 columns (initialized by opening an image from the disk),
the examples below are presenting how a simple processing like the image negative can be
implemented:

 int height = src.rows;
 int width = src.cols;
 Mat dst = src.(clone);

 // the “easy/slow” approach
 for (int i=0; i<height; i++)
 {
 for (int j=0; j<width; j++)
 {
 uchar val = src.at<uchar>(i,j);
 uchar neg = 255-val;
 dst.at<uchar>(i,j) = neg;
 }
 }

or

 // the fast approach
 for (int i = 0; i < height; i++)
 {
 // get the pointer to row i
 const uchar* SrcRowi = src.ptr<uchar>(i);
 uchar* DstRowi = dst.ptr<uchar>(i);
 //iterate through each row
 for (int j = 0; j < width; j++)
 {
 uchar val = SrcRowi[j];
 uchar neg = 255 - val;
 DstRowi[j] = neg;
 }
 }

 or

// the fastest approach using the “diblook style”
 uchar *lpSrc = src.data;
 uchar *lpDst = dst.data;
 int w = src.step; // no DWORD alignment is done !!!
 for (int i = 0; i<height; i++)
 for (int j = 0; j < width; j++)

{
 uchar val = lpSrc[i*w + j];
 lpDst[i*w + j] = 255 - val;
 }

The operations implemented on matrices that can be combined in arbitrary complex
expressions. Few examples are presented bellow (see the documentation for more examples).
In the expressions bellow A, B stand for matrices (Mat), s for a scalar (Scalar), alpha for a
scalar (double)).

 Addition, subtraction, negation: A+B, A-B, A+s, A-s, s+A, s-A, -A

 Scaling: A*alpha

Appendix II. Image processing using OpenCV library

118

 Matrix multiplication: A*B

 Transposition: A.t() (means AT)

 Matrix inversion and pseudo-inversion, solving linear systems and least-squares

problems: A.inv([method]) (~ A-1) , A.inv([method])*B (~ X: AX=B)

 Comparison: A cmpop B, A cmpop alpha, alpha cmpop A, where cmpop is one

of: >, >=, ==, !=, <=, <. The result of comparison is an 8-bit single channel mask
whose elements are set to 255 (if the particular element or pair of elements satisfy the
condition) or 0.

 Bitwise logical operations: A logicop B, A logicop s, s logicop A, ~A, where

logicop is one of : &, |, ^.

 Element-wise minimum and maximum: min(A, B), min(A, alpha), max(A, B),
max(A, alpha)

 Element-wise absolute value: abs(A)

 Cross-product, dot-product: A.cross(B) A.dot(B)

 Matrix initializers: Mat::eye(), Mat::zeros(), Mat::ones()

In order to get a region of interest (ROI) from a matrix defined by a Rect Structure use the
following statements:

Mat image;
Rect ROI_rect;
Mat roi=image(ROI_rect);

3. Reading, writing and displaying images and videos

To open an image file stored on the disk the imread function can be used. It can handle/decode
the most common image formats (bmp, jpg, gif, png etc.):

Mat imread(const string& filename, int flags=1)

The input parameters are the filename and an optional flags parameter specifying the color
type of a loaded image:

 CV_LOAD_IMAGE_ANYDEPTH - returns a 16-bit/32-bit image when the input has
the corresponding depth, otherwise converts it to 8-bit.

 CV_LOAD_IMAGE_COLOR - always convert the image to a color one.

 CV_LOAD_IMAGE_GRAYSCALE - always converts the image to a grayscale one

 >0 - returns a 3-channel color image.

 =0 - returns a grayscale image.

 <0 - returns the loaded image as is (with alpha channel).

Appendix II. Image processing using OpenCV library

119

The output is a Mat object containing the image for successful completion of the operation.
Otherwise the function returns an empty matrix (Mat::data==NULL).

To display an image in a specified window, the imshow function can be used:

void imshow(const string& winname, InputArray mat)

In order to control the size and position of the display window the following functions can be
used:

void namedWindow(const string& winname, int flags=WINDOW_AUTOSIZE)
void moveWindow(const string& winname, int x, int y)

To save the image on to the disk the imwrite function can be used. The image format is chosen
based on the filename extension.

bool imwrite(const string& filename, InputArray img,
const vector<int>& params=vector<int>())

The input parameter params contains format-specific save parameters encoded as pairs
paramId_1, paramValue_1, paramId_2, paramValue_2, The following parameters
are currently supported:

 For JPEG, it can be a quality (CV_IMWRITE_JPEG_QUALITY) from 0 to 100 (the higher
is the better). Default value is 95.

 For PNG, it can be the compression level (CV_IMWRITE_PNG_COMPRESSION) from 0 to
9. A higher value means a smaller size and longer compression time. Default value is 3.

 For PPM, PGM, or PBM, it can be a binary format flag (CV_IMWRITE_PXM_BINARY), 0
or 1. Default value is 1.

The following example illustrates the above mentioned image handling functions by opening a
color image, converting it to grayscale and saving it to the disk and displaying the source image
and the destination/result image in a separate windows:

void testImageOpenAndSave()
{
 Mat src, dst;
 src = imread("Images/Lena_24bits.bmp", CV_LOAD_IMAGE_COLOR); //Read the image

 if (!src.data) //Check for invalid input
 {
 printf("Could not open or find the image\n");
 return;
 }

 //Get the image resolution
 Size src_size = Size(src.cols, src.rows);

 //Display window
 const char* WIN_SRC = "Src"; //window for the source image
 namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE);
 cvMoveWindow(WIN_SRC, 0, 0);

 const char* WIN_DST = "Dst"; //window for the destination (processed) image
 namedWindow(WIN_DST, CV_WINDOW_AUTOSIZE);

Appendix II. Image processing using OpenCV library

120

 cvMoveWindow(WIN_DST, src_size.width + 10, 0);

 cvtColor(src, dst, CV_BGR2GRAY); //converts the source image to grayscale
 imwrite("Images/Lena_24bits_gray.bmp", dst); //writes the destination to file

 imshow(WIN_SRC, src);
 imshow(WIN_DST, dst);

 printf("Press any key to continue ...\n");
 waitKey(0);
}

The VideoCapture class provides the C++ API for capturing video from cameras or for reading
video files. In the following example is shown how you can use it (i.e. performing canny edge
detection on every frame and displaying the result in a destination window; the example also
shows how you can compute the processing time).

void testVideoSequence()
{
 VideoCapture cap("Videos/rubic.avi"); // open a video file from disk
 //VideoCapture cap(0); // open the default camera (i.e. the built in web cam)
 if (!cap.isOpened()) // opening the video device failed
 {
 printf("Cannot open video capture device\n");
 return;
 }

 Mat frame, grayFrame, dst;

 // video resolution
 Size capS = Size((int)cap.get(CV_CAP_PROP_FRAME_WIDTH),
 (int)cap.get(CV_CAP_PROP_FRAME_HEIGHT));

 // Init. display windows
 const char* WIN_SRC = "Src"; //window for the source frame
 namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE);
 cvMoveWindow(WIN_SRC, 0, 0);

 const char* WIN_DST = "Dst"; //window for the destination (processed) frame
 namedWindow(WIN_DST, CV_WINDOW_AUTOSIZE);
 cvMoveWindow(WIN_DST, capS.width + 10, 0);

 char c;
 int frameNum = -1;

 for (;;)
 {
 cap >> frame; // get a new frame from camera
 if (frame.empty())
 {
 printf("End of the video file\n");
 break;
 }

 ++frameNum;

 double t = (double)getTickCount(); // Get the current time [s]

 // Insert your processing here
 cvtColor(frame, grayFrame, CV_BGR2GRAY);

// Performs canny edge detection on the current frame
 Canny(grayFrame, dst, 40, 100, 3);
 //
 // End of processing

 // Get the current time again and compute the time difference [s]

Appendix II. Image processing using OpenCV library

121

 t = ((double)getTickCount() - t) / getTickFrequency();

 // Print (in the console window) the processing time in [ms]
 printf("Time = %.3f [ms]\n", t * 1000);

 // output written in the WIN_SRC window (upper left corner)
 char msg[100];
 sprintf(msg, "%.2f[ms]", t * 1000);

putText(frame, msg, Point(5, 20), FONT_HERSHEY_SIMPLEX,
0.5, CV_RGB(255, 0, 0), 1, 8);

 imshow(WIN_SRC, frame);
 imshow(WIN_DST, dst);

 c = cvWaitKey(0); // waits a key press to advance to the next frame
 if (c == 27) {
 // press ESC to exit
 printf("ESC pressed - capture finished");
 break; //ESC pressed
 }
 }
}

4. Basic operations applied on images

The operations are generic for array type objects (i.e. Mat) and if the array is initialized with an
image, the result is a pixel level operation. In the case of multi-channel arrays, each channel is
processed independently. Some functions allow the specification of an optional mask used to
select a sub-array.

 void add(InputArray src1, InputArray src2, OutputArray dst, InputArray

mask=noArray(), int dtype=-1) - Calculates the per-element sum of two arrays or an
array and a scalar: src1 is added to src2 and the result is stored in dst. The function can

be replaced with matrix expressions: dst = src1 + src2;

 void addWeighted(InputArray src1, double alpha, InputArray src2, double beta,

double gamma, OutputArray dst, int dtype=-1) – performs the weighted sum of two

arrays, and is equivalent with the following matrix expression: dst = src1*alpha +
src2*beta + gamma;

 void absdiff(InputArray src1, InputArray src2, OutputArray dst) - performs the

per-element absolute difference between two arrays or between an array and a scalar.

 void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray

mask=noArray() – computes the per-element bit-wise conjunction of two arrays (src1
and src2) or an array and a scalar.

 oid divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1,

int dtype=-1) – performs the division operation between the elements of two arrays;
the result is multiplied with the scaling parameter.

 Scalar mean(InputArray src, InputArray mask=noArray()) – calculates the mean
value of the array elements, independently for each channel of the array.

 void max(InputArray src1, InputArray src2, OutputArray dst)) – computes the per-
element maximum of two arrays: src1 and src2.

Appendix II. Image processing using OpenCV library

122

void min(InputArray src1, InputArray src2, OutputArray dst) – computes the per-
element minimum of two arrays: src1 and src2.

 void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point*

minLoc=0, Point* maxLoc=0, InputArray mask=noArray()) – returns the minimum and
maximum value in the src array and also their coordinates (the function does not work
with multi-channel arrays.).

 void multiply(InputArray src1, InputArray src2, OutputArray dst, double

scale=1, int dtype=-1) - performs the per-element scaled product of two arrays.

5. Morphological operations

In OpenCV the morphological operations work on both binary and grayscale images. Each
morphological operation requires a structuring element. This can be created using
getStructuringElement function:

Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1)

his function creates a structuring element of given shape and dimension. The shape parameter
controls its shape and can take the following constant values:

 CV_SHAPE_RECT

 CV_SHAPE_CROSS

 CV_SHAPE_ELLIPSE

The anchor parameter specifies the anchor position within the element. The default value (-1,
-1) means that the anchor is at the center. Note that only the shape of a cross-shaped element
depends on the anchor position. In other cases the anchor just regulates how much the result of
the morphological operation is shifted.

Morphological dilation can be performed using the dilate function:

void dilate (InputArray src, OutputArray dst, InputArray kernel, Point
anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const
Scalar& borderValue=morphologyDefaultBorderValue())

Morphological erosion can be performed using the erode function:

void erode(InputArray src, OutputArray dst, InputArray kernel, Point
anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const

Scalar& borderValue=morphologyDefaultBorderValue())

An example that performs a 2 iterations erosion followed by a 2 iterations dilation using a 3x3
cross-shape structuring element is presented below:

//structuring element for morpho operations
 Mat element = getStructuringElement(MORPH_CROSS, Size(3, 3));
 erode(src, temp, element, Point(-1, -1), 2);

Appendix II. Image processing using OpenCV library

123

 dilate(temp, dst, element, Point(-1, -1), 2);

unction morphologyEx can be used to perform more complex morphological operations:

void morphologyEx(InputArray src, OutputArray dst, int op, InputArray kernel, Point
anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar&
borderValue=morphologyDefaultBorderValue())

The op parameter specifies the type of the operation which is performed:

 MORPH_OPEN - an opening operation

 MORPH_CLOSE - a closing operation

 MORPH_GRADIENT - a morphological gradient

 MORPH_TOPHAT - “top hat”

 MORPH_BLACKHAT - “black hat”

6. Thresholding

The thresholding operation in OpenCV are performed with threshold function:

double threshold(InputArray src, OutputArray dst, double thresh,
double maxval, int type)

The operation is applied on the src image and the resulted binary image is stored in dst array.
The threshold value is specified by thresh parameter and the thresholding method is specified
by type parameter. The type parameter can take one of the following constant values:

 THRESH_BINARY ���(�, �) = �
������, �� ���(�, �) > ��

0, ��ℎ������

 THRESH_BINARY_INV ���(�, �) = �
0, �� ���(�, �) > ��
������, ��ℎ������

 THRESH_TRUNC ���(�, �) = �
��, �� ���(�, �) > ��
���(�, �), ��ℎ������

 THRESH_TOZERO ���(�, �) = �
���(�, �), �� ���(�, �) > ��

0, ��ℎ������

 THRESH_TOZERO_INV ���(�, �) = �
0, �� ���(�, �) > ��
���(�, �), ��ℎ������

The above values can be combined with THRESH_OTSU. In this case, the function computes the
optimal threshold value using the Otsu’s algorithm (the implementation works only for 8-bit
images) which is used instead of the specified thresh parameter. The function returns the
computed optimal threshold value.

Appendix II. Image processing using OpenCV library

124

7. Filters

In OpenCV there are some optimized function designed to perform the filtering operations.
These optimizations depend however on the hardware and software architecture of the system.

Some example of functions that perform filtering operations are as follows:

void medianBlur(InputArray src, OutputArray dst, int ksize) – implements the median
filter

void blur(InputArray src, OutputArray dst, Size ksize, Point anchor=Point(-1,-1), int

borderType=BORDER_DEFAULT) – implements the normalized box filter (mean filter).

void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double
sigmaY=0, int borderType=BORDER_DEFAULT)- implements the gaussian filter.

oid Laplacian(InputArray src, OutputArray dst, int ddepth, int ksize=1, double

scale=1, double delta=0, int borderType=BORDER_DEFAULT) - performs the filtering with a
Laplacian filter using the specified aperture size if ksize >1. If ksize ==1 the 3x3 Laplacian
filter have the following elements is applied:

�
0 1 0
1 −4 1
0 1 0

�

void Sobel(InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=3,

double scale=1, double delta=0, int borderType=BORDER_DEFAULT)- computes the first,
second, third, or mixed image derivatives (dx and dy parameters) using an extended Sobel
operator. Most often, the function is called with (xorder = 1, yorder = 0, ksize = 3) or (xorder
= 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative F (see chapter 12 for
more details).

void filter2D(InputArray src, OutputArray dst, int ddepth, InputArray kernel, Point

anchor=Point(-1,-1), double delta=0, int borderType=BORDER_DEFAULT)- this is a
generalized function designed to apply the filtering operation with a custom convolution kernel.
The kernel elements are defined in kernel parameter as a matrix. Default value (-1,-1) for the
anchor parameter means that the anchor is at the kernel center.

8. References

[1] OpenCV on-line documentation, http://docs.opencv.org/ , cited Dec. 2015.

	Image ProcessingLaboratory Guide
	Contents
	Preface
	1 Getting started with the DIBLook framework
	2 The RGB color model. Grayscale and black&white conversions
	3 Camera Calibration and Image Undistortion
	4 The histogram of image intensity levels
	5 Geometrical features of binary objects
	6 Binary objects labeling
	7 Border Tracing Algorithm
	8 Morphological operations on binary images
	9 Statistical properties of grayscale images
	10 Image filtering in the spatial and frequency domains
	11 Noise modeling and digital image filtering
	12 Edge detection
	13 The Canny edge detection method
	14 Color image processing
	Appendix I. Image processing in MATLAB
	Appendix II. Image processing using the OpenCV library

