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Preface

The course Special Mathematics, including the chapters Combinatorics
(counting methods), Discrete Probability Theory and Graph Theory is in-
cluded in the Computer Science curricula of the first semester of the first
year. The above mentioned chapters are parts of the so-called discrete math-
ematics, also called finite mathematics, which study the mathematical struc-
tures that are fundamentally discrete, in the sense of not requiring the notion
of continuity. Most of the objects studied in finite mathematics are finite or
countable sets, such as integers or finite graphs.

Discrete mathematics has become popular in recent decades due to its
applications to computer science. Concepts from discrete mathematics are
useful to study or describe objects or problems in computer algorithms and
programming languages.

Besides the topics included in this book, discrete mathematics include:
Markov chains, Algorithmics (a study of methods of calculation), Com-
putability and Complexity Theories (dealing with theoretical and practical
limitations of algorithms), Logic (a study of reasoning), Set Theory, Discrete
and Computational Geometry, Coding Theory and Cryptology, Discrete op-
timization, Linear Algebra, and so on.

This book is accessible to any person with the usual mathematical knowl-
edge obtained in highschool.

Cluj-Napoca, October 2016 Daniela Roşca
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Chapter 1

Counting Methods

In many problems in probabilities or computer science we need to count
the number of outcome events, of objects or of the operations needed in an
algorithm. This chapter presents some basic methods of dealing with the
commonest counting problems.

1.1 Counting as a bijection. The pigeonhole

principle

How can we count a finite set? In practice, we usually point to the objects in
turn and say the numbers one, two, three and so on, stopping when we reach
the last one. This “point-and-say” method actually means to construct a
function from the set we want to count to the set Nn = {1, 2, . . . , n}. What
is important is that the function must be a bijection: each object is counted
once. So the first definition will be:

Definition 1.1 Let m ∈ N∗. The set A has m members if there exists a
bijection from A to Nm.

In order to prove that by counting we cannot obtain different answers, we
need the so-called “pigeonhole principle”.

Theorem 1.1 (The pigeonhole principle) Let m ∈ N. Then for every
n ∈ N the following statement is true:

If there is an injection from Nn to Nm, then n ≤ m.

An equivalent formulation is the following: If n > m, then there is no injec-
tion from Nn to Nm. This means that, if n > m and n letters are put into m
pigeonholes, then (at least) one pigeonhole will receive more than one letter.

Using the pigeonhole principle, the following definition determines a unique
value for m.

Definition 1.2 If there is a bijection between A and Nm, then we say that
A has size or cardinality m and we write

|A| = m.

In the sequel we refer to set A with n members as an n-set and to a
subset Y with k members as a k-subset of A.

7
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Some applications of the pigeonhole principle

Example 1.1 In any set of 13 or more persons, there are at least two whose
birthdays fall in the same month.

The “pigeonholes” here are the 12 months and the “letters” are the people.

Example 1.2 At a party, whenever two persons are introduced, they shake
hands with each other. Explain why there must be (at least) two persons at
the party who shake the same number of hands.

Solution. Let us denote by A the set of persons at the party, m = |A|, and
denote

f(x) = the number of persons inA with which x shakes hands.

The possible values of f(x) are 0, 1, . . . ,m− 1, so we can define the function
f : A → B, with B = {0, 1, · · · ,m − 1}. We cannot apply the pigeonhole
principle, because |A| = |B|. But, if there is a person x∗ who shakes hands
with m− 1 people, then everyone shakes hands with x∗, and therefore there
is nobody who doesn’t shake hands. Therefore, the numbers 0 and m − 1
cannot be both values of f, so |B| ≤ m − 1. From the pigeonhole principle
we conclude that f is not injective, whence there exist two people x1, x2 such
that f(x1) = f(x2). So x1 and x2 shake the same number of hands.

This problem can also be formulated as follows: Show that in any set A
of people there are two members of A who have the same number of friends
in A. We suppose that |A| ≥ 2 and that, if x is a friend of x′, then x′ is a
friend of x.

Of course the “point-and-say” method is not sufficient to count more
sophisticated sets, therefore we need to develop other methods.

1.2 First principles

The first principle is very simple and can be formulated mathematically as
follows :

Principle 1 (the addition principle) If A and B are nonempty finite
disjoint sets, then

|A ∪B| = |A|+ |B|.

Obviously, the result can be extended to the union of any number of disjoint
sets A1, A2, · · · , An in the obvious way, that is

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An|. (1.1)

Remark 1.1 (counting interpretation) The addition principle
states that, when there are n cases such that the i-th case has ki options, for
i = 1, 2, . . . , n, and no two of the cases have any options in common, the
total number of options is

k1 + k2 + . . .+ kn.

A simple application of formula (1.1) is a more general form of the pigeonhole
principle than the one given in Theorem 1.1. Suppose that some objects
are distributed into n boxes and Ai represents the set of objects in box i,
1 ≤ i ≤ n. Since the sets Ai are disjoint, the total number of objects is
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|A1| + |A2| + · · · + |An|. If we assume that no box contains more than k
objects, the total number of objects is at most

k + k + · · ·+ k = nk.

Expressing the reverse of the above statement, we get the generalized
pigeonhole principle:

Theorem 1.2 If m objects are distributed into n boxes and m > nk, then at
least one box contains at least k + 1 objects.

Example 1.3 In a competition where the teams have five members, the rule
is that the members of each team must have birthdays in the same month.
How many persons are needed in order to guarantee that they can build a
team.

Solution. Applying the generalized pigeon principle, the number of persons
is greater than 4 · 12, so the minimum number is 49.

�
In the case when the sets Ai are not necessarily disjoint, we have the

following result.
Principle 2 (The sieve principle, or inclusion-exclusion princi-

ple) If A1, A2, . . . , An are finite sets, then

|A1 ∪ A2 ∪ . . . ∪ An| = α1 − α2 + α3 − · · · (−1)n−1αn, (1.2)

where αi is the sum of the cardinalities of the intersections of i sets:

α1 =
n∑

i=1

|Ai|,

α2 =
∑

1≤i<j≤n

|Ai ∩ Aj|,

· · ·

αn =

∣∣∣∣∣
n∩

i=1

Ai

∣∣∣∣∣ .
The proof of the sieve principle can be made by induction on n.

An immediate consequence is the following result.

Corollary 1.3 If A1, A2, . . . , An are subsets of a given set X of size N , then
the number of members which are not in any of these subsets is

|X \ (A1 ∪ . . . ∪ An)| = |X| − |A1 ∪ · · · ∪ An|
= N − α1 + α2 − . . .+ (−1)nαn. (1.3)

An application of this principle is the derangement problem (see Section 1.9,
p. 29).

1.3 Counting sets of pairs

In practice we need sometimes to count things which can be described nat-
urally as pairs of objects. For example, we want to calculate the teaching
load for the last year of the first cycle. In order to do this we make a table,
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where each row corresponds to a student and each column corresponds to a
subject. If a student x takes the course y then we mark the corresponding
(x, y) position in the table. The total number of marks is the teaching load.

student \ course C1 C2 C3 · · · Cn row total
S1 X X ·
S2 X X ·
S3 X X X rx(S)
...

...
Sm X X ·

column total · · cy(S) · · · · |S|

Our problem will be to count a subset S of the cartesian product X × Y,
where X is the set of students and Y is the set of courses.

The first method is to count the marks on the row x and find the row
total rx(S), for each x ∈ X. The size of S can be obtained by adding all row
totals,

|S| =
∑
x∈X

rx(S). (1.4)

The second method is to count the marks in the column y and find the column
total cy(S), for each y ∈ Y . In this case |S| can be obtained by adding the
column totals,

|S| =
∑
y∈Y

cy(S). (1.5)

Obviously the two sums must coincide and these two expressions for |S| are
often used in practice to verify results or in theory to derive some properties
of the cardinalities of X and Y.

Example 1.4 In a class, 24 of the students are girls. Each girl knows 7 of
the boys in the class and each boy knows 8 of the girls in the class. How
many boys are in the class?

Solution. Let us denote by n the number of boys. We make a table where
we place the boys on columns and the girls on rows. Each time the boy x
knows the girl y, we put a mark on the entry (x, y). By equating the total
row and total column we get 8n = 7 · 24, so there are n = 21 boys.

Example 1.5 Is it possible to find a collection of subsets of N7 with the
property that each one has 5 elements and each element of N7 belongs to
exactly 4 of the subsets?

Solution. We make a table with entries 1, 2, . . . , 7 on rows and the required
subsets A1, . . . , Ak of N7 (k unknown at this stage) on columns. Whenever
i ∈ Ak, we mark the position (k, i). The total row is 4 ·7 = 28, while the total
column is 5 · k. Since, 5 is not a divisor of 28, the problem has a negative
answer.

A simple consequence of the equalities (1.4) and (1.5) is the second basic
principle:

Principle 3 (The multiplication principle) Given the sets X and Y ,
the size of X × Y is given by

|X × Y | = |X| · |Y |.
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Obviously, the result can be extended to the product of any number of sets:

|X1 ×X2 × . . .×Xn| = |X1| · |X2| · . . . · |Xn|.

Remark 1.2 (counting interpretation) The multiplication principle states
that when a procedure can be broken down into n steps, such that there
are k1 options for step 1, and such that after the completion of step i − 1
(i = 1, 2, . . . , n) there are ki options for step i, the number of ways perform-
ing the procedure is

k1 · k2 · . . . · kn.

1.4 Functions, words and selections

In most of the counting problems we have a number, say n, of objects or
things which are distributed into k classes or groups. The number of ways in
which this distribution can be made depends on whether

1. the objects can be distinguished or not;
2. the classes can be distinguished or not;
3. the order of objects in a class is relevant or not;
4. the order of classes is relevant or not;
5. the objects can be used more than once or not at all;
6. empty classes are allowed or not.

Exercise 1.4 Find a practical example for each of the cases enumerated
above.

1.4.1 Ordered selections with repetitions (words)

For a given set Y ̸= ∅, consider the set {f, f : Nm → Y }. The values taken
by the function f determine the m-tuple

(f(1), f(2), . . . , f(m)) ∈ Y × . . .× Y := Y m.

Conversely, each element of Y m is anm-tuple (y1, y2, . . . , ym) and corresponds
to a function f : Nm → Y defined by

f(1) = y1, f(2) = y2, . . . , f(m) = ym.

In conclusion, defining a function f : Nm → Y is equivalent to choosing an
element of Y m. If we think of the members of Y as the letters of an alphabet,
then the sequence f(1), f(2), . . . f(m) can be regarded as the m letters of a
word. For example, if Y = {a, b, c, d}, the words “bad” and “cab” correspond,
respectively to the functions f, g : N3 → Y given by

f(1) = b, f(2) = a, f(3) = d,

g(1) = c, g(2) = a, g(3) = b.

Definition 1.3 A word of length m in the alphabet Y is a function f :
Nm → Y.
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Theorem 1.5 Let X, Y be finite nonempty sets and let

F = {f, f : X → Y }.

If |X| = m and |Y | = n, then

|F| = nm.

Proof. Any f ∈ F is determined by the m-tuple of its values

(f(x1), f(x2), . . . , f(xm)) ∈ Y m.

Therefore |F| = |Y m| = nm �
An equivalent formulation of this theorem is: The number of words of

length m in an alphabet Y of n symbols is nm.

Example 1.6 In an alphabet with 26 letters, there are 263 words with 3
letters, assuming that there are no restrictions on spelling. An intuitive il-
lustration of this number is the following:

|_______| |_______| |_______|

↑ ↑ ↑
26 ways 26 26

Here the three boxes represent the three “positions” of the letters of the word,
each of which being “filled” independently in 26 ways.

So, there is another way of interpreting a function f : Nm → Y (or, equiv-
alently, a word of length m in the alphabet Y ): To setup the word “bad”,
we first select the letter b from the stock, then a, then d. We suppose we
have an unlimited stock of letters. Thus, each word represent an ordered
selection of the letters of the alphabet Y = {a, b, . . . , z}, with repetitions
allowed. In conclusion, we can state the following theorem.

Theorem 1.6 The number of ordered selections with repetitions of m objects
from the n-set Y is nm.

Example 1.7 If X is an m-set, then the total number of subsets of X is 2m.

Solution. Suppose X = {x1, x2, . . . , xm} and let Y be the alphabet {0, 1}.
Any subset S of X corresponds to a word of length n in Y , defined by the
function

f(i) =

{
1, if xi ∈ S,
0, if xi /∈ S.

For example, if m = 7 and S = {x2, x4, x5}, the word is 0101100. In conclu-
sion, the number of distinct subsets of X is the same as the number of words
of length m in the alphabet {0, 1}, which is 2m.

1.4.2 Injections as ordered selections without repeti-
tions

In some situations, we are allowed to have only one object of each kind. For
instance, if we select a team, no player can be selected more than once.



CHAPTER 1. COUNTING METHODS 13

To perform an ordered selection means to define a function
f : Nm → Y, with f(i) being the i-th selected object. To allow repetitions
means that it is possible to have f(j) = f(k) for j ̸= k. Not allowing repe-
titions means to impose that f is injective. We are interested to determine
the number of injections. This number is given in the following theorem.

Theorem 1.7 The number of ordered selections without repetitions, of m
objects from a set Y of size n is the same as the number of injections f :
Nm → Y and is given by

n(n− 1)(n− 2) . . . (n−m+ 1) =
n!

(n−m)!
. (1.6)

Proof. The value f(1) can be chosen in n ways. If no repetitions is allowed,
the value f(2) can be chosen in n− 1 ways, and finally, the value f(m) can
be chosen in n−m+ 1 ways. The product rule yields formula (1.6). �

Remark 1.3 The numbers n(n− 1) . . . (n−m+ 1) appear so frequently in
counting problems, that they have acquired their own names:

nm := n(n− 1)(n− 2) . . . (n−m+ 1)

are called falling factorials (of n of length m). Analogously, we set

nm := n(n+ 1)(n− 2) . . . (n+m− 1)

and call nm rising factorials.

Remark 1.4 The number nm is in fact the number of words of length m all
of whose entries, elements of the n- set Y , are different. For this reason,
these words are also called m- permutations of Y . For example, 1234 and
6512 are two 4- permutations of Y = {1, 2, . . . , 6}.

Example 1.8 How many four-letter words can be made from an alphabet of
9 symbols if there are no restrictions on spelling, except that no letter can be
used more than once?

Answer. 94 = 9 · 8 · 7 · 6 = 3024.

Example 1.9 For a class of 30 students, in how many ways can one give
prizes at the end of the year, knowing that there is one “first prize”, one
“second prize” and one “third prize”?

Answer. 303 = 30 · 29 · 28 = 24360.

1.4.3 Permutations

Suppose a number of objects are placed randomly in a row. Mathematically
this means defining a function from the set of “positions” occupied by the
objects, to the set of objects.

Definition 1.4 A permutation of a finite set X ̸= ∅ is a bijection σ : X →
X.
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To simplify the writing, one frequently takes instead of an arbitrary n-
set X, the set Nn. The set of all permutations of Nn will be denoted by Πn.
As an immediate consequence of Theorem 1.7, we have

Theorem 1.8 The number of permutation of Nn is

|Πn| = n(n− 1) · . . . · 2 · 1 = n ! (1.7)

A permutation π ∈ Πn will be denoted by

(π(1), π(2), . . . , π(n)) .

Example 1.10 Four persons can form a queue in 4! = 24 ways.

Definition 1.5 A permutation π ∈ Πn is called a derangement if π(i) ̸= i
for all i ∈ Nn.

Thus (3, 2, 1) is not a derangement of N3, but (2, 3, 1) is a derangement. The
number of derangements is calculated in Section 1.9, p. 29.

1.4.4 Unordered selections without repetitions

Suppose we have a set X with n objects and we select k of them. The result
of the selection is a subset Y of size k. In this model, it is the result of
the selection which is important, rather the process of the selection. Also,
there is no possibility of repetitions (each member of X is either in Y or
not, and no member can be selected twice). For example, from a class of 30
students, we want to select 3 students for a free excursion around the world.
Of course nobody will be interested in the order of selection, but only in the
final selection.

The number of unordered selections without repetitions of k objects from
a set X, of size n, is the number of k- subsets of an n- set X. In general, this
number is denoted by

(
n
k

)
(to be read “n choose k”) and is called binomial

number1.

Theorem 1.9 The binomial number
(
n
k

)
has the expression(

n

k

)
=

n(n− 1) . . . (n− k + 1)

k!
=

nk

k!
=

n!

k!(n− k)!
. (1.8)

Proof. The k elements of the k-subset can be selected in n(n−1) · · · (n−k+1)
ways, as we did for the ordered selections without repetitions. These k object
can be permuted between themselves in k! ways. Since the order does not
matter, we choose only one of the k! ways, so finally the number of k-subsets
of an n-set will be

n(n− 1) . . . (n− k + 1)

k!
.

�
An immediate property is

(
n
k

)
=
(

n
n−k

)
.

1Most of the Romanian books use the notation Ck
n for the binomial number

(
n
k

)
.
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Remark 1.5 The binomial number can be defined in a more general case as(
x

k

)
=

x(x− 1) . . . (x− k + 1)

k!
, (1.9)

for x ∈ R, k ∈ N ∪ {0}.

Example 1.11 One can we select a team of 7 students, out of a group of 30
students, to make a trip, in

(
30
7

)
= 2035800 ways.

Example 1.12 (Counting bit strings with exactly k zeros) What is
the number of bit strings of length n with exactly k zeros?

Solution. Each bit string is determined by choosing a k-subset of the
n-set of “positions”. Thus, 0 s are placed in these k positions and 1 s in the
remaining n − k positions, as we did in Example 1.7, p. 12. In conclusion,
the required number is

(
n
k

)
.

1.4.5 Unordered selections with repetitions

We are interested now in the case of unordered selections with repetitions.

Example 1.13 List the unordered selections of four objects of the set {a, b, c},
with repetitions allowed.

Solution. There are 15 such selections, as follows:

aaaa aaab aaac aabb aabc
aacc abbb abbc abcc accc
bbbb bbbc bbcc bccc cccc

How can we count them in general? The idea is to represent such selections
as words in the alphabet {0, 1}. For example, the word associated to the
selection abcc will be 101011. The zeroes are markers which separate the
kinds of objects and the ones tell us how many of each object there are. If
there is no object of a kind, we do not put anything. Thus, in our example,
this association will be

a b c c
1 0 1 0 1 1

The problem is reduced to the problem of counting the number of bit strings
of length six, which contain exactly two zeros. This number is

(
6
2

)
= 15 (see

Example 1.12, p. 15).
In general, we can state the following theorem.

Theorem 1.10 The number of unordered selections, with repetitions, of k
objects from a set of n objects is

(
n+k−1

k

)
.

Proof. Since the selections are unordered, we may arrange objects so that,
within each selection, all the objects of a given kind come first, followed by
the objects of another kind, and so on. When this has been done, we can
assign to each selection a word of length n + (k − 1) in the alphabet {0, 1},
as we explained in the example above. Suppose we have ni objects of the
i-th kind. The first n1 letters of the word will be 1, followed by a single
0, the next n2 letters will be again 1, followed by a single 0, and so on. If
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for a certain i we have ni = 0, then we will have two consecutive markers.
For instance, for the selections accc and cccc the words will be 100111 and
000111, respectively. The association defined by this rule is a bijection from
the set of selections to the set of words of length n + k − 1 which contain
exactly n− 1 zeroes. In conclusion, the number of words is(

n+ k − 1

n− 1

)
=

(
n+ k − 1

k

)
. (1.10)

�
Remark 1.6 One can conclude that defining an unordered selection with
repetitions of k objects from a set of n objects is equivalent to placing k
identical balls in n distinct boxes. Indeed, the construction of the bit-string
can be done by using a 1 for each ball and 0 as a marker which separates the
boxes.

Example 1.14 We have six kinds of cookies. How many different plates
containing ten cookies can we make? (supposing we have at least 10 cookies
of each kind).

Answer.
(
15
5

)
= 3003.

Example 1.15 Show that, if three indistinguishable dice are rolled, there are
56 possible outcomes. How many outcomes do we have when n such dice are
rolled?

Answer. This number is
(
n+5
5

)
, in particular

(
8
5

)
= 56.

Example 1.16 Suppose that the expression (x1 + x2 + x3)
n is expanded and

the terms are collected, according to the usual rule of algebra. What is the
number of terms in the resulting formula?

Answer. We have n ones (objects, corresponding to the monomials xi), and
2 markers, separating x1 from x2 and respectively x2 from x3. Therefore, the
number of bit strings of length n+ 2 containing 2 zeroes and n ones will be(
n+2
n

)
.

1.5 Designs

A manufacturer has developed a new product and wishes to evaluate n vari-
eties of it by asking some consumer to test them. It may be impracticable for
each consumer to test all the varieties, so it would be reasonable to impose
the following conditions:

(i) Each consumer should test the same number k of varieties,
(ii) Each variety should be tested by the same number r of consumers.
For example, if n = 8, k = 4, r = 3, a possible scheme would be to ask

6 people to test the varieties, as follows:

1234 5678 1357 2468 1247 3658,

where the numbers 1, 2, . . . , 8 represent the varieties.
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Definition 1.6 Let X be an n-set. A set B of k-subsets of X is a design
with parameters (n, k, r) if each member of X belongs to exactly r of the
subsets of B.

An element B ∈ B is called a block of the design.

As we have already seen in Example 1.5, p. 10, there is no design with
parameters (7, 5, 4), so it is necessary to find conditions on the parameters
(n, k, r) for the existence of a design with these parameters.

So, let us consider an n-set X and let C be a set of k-subsets of X, not
necessary a design. As in Section 1.3, we make a table (for the particular
case n = 6, k = 3. A mark at the position (x,Ci) means x ∈ Ci. For each
x ∈ X, let r(x) be the number of times x occurs as a member of a subset Ci.

x \ C C1 C2 C3 C4 r(x)
1 X X X 3
2 X X 2
3 X 1
4 X X X 3
5 X 1
6 X X 2

3 3 3 3

If we suppose that each Ci is a k-subset of X, then on each column the total
will be k. Equating the row-total and the column-total we get∑

x∈X

r(X) = | C| · k. (1.11)

Suppose now we have a design B with parameters (n, k, r). In this case in
the equality (1.11) we replace r(x) = r, obtaining

n · r = k · b, (1.12)

where b = |B| is the number of blocks.
Furthermore, the total number of k-subsets of X is

(
n
k

)
, so the number b

of blocks should be smaller that this number. In conclusion

b =
nr

k
≤
(
n

k

)
. (1.13)

It can be proven that conditions (1.12) and (1.13) are also sufficient for the
existence of a design. More precisely, the following theorem is true. For the
proof of the reverse implication and other properties of designs, see [2].

Theorem 1.11 There exists a design with parameters (n, k, r) if and only if

k | nr and r ≤
(
n− 1

k − 1

)
.

1.6 Partitions and distributions

In this section we will deal with partitions of a set into subsets (set partition),
integer partitions, and distributions of a set of objects into a set of boxes.
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1.6.1 Partitions of a set into subsets (set partitions)

Definition 1.7 Let I ̸= ∅ be a set of indices, finite or infinite. A partition
of a set X is a family H = {Xi, i ∈ I} of nonempty subsets of X, such that

1. X =
∪
i∈I

Xi,

2. Xi are pairwise disjoint.

This means that every element x ∈ X must belong to one and only one subset
Xi. The subsets Xi are also called the classes or parts of the partition H.

Remark 1.7 Defining a partition of an n−set X into k parts is equivalent
to placing n distinct balls in k identical boxes such that no box remains empty
(surjective placement).

Example 1.17 The family H = {X1, X2, X3, X4}, where

X1 = {1, 2, 9}, X2 = {3, 5, 7, 10}, X3 = {4}, X4 = {6, 8}

is a partition of N10.

Other example of partition is given in Appendix A , p. 134, where we
also showed how an equivalence relation determines a partition.

We are interested to calculate the number of partitions. A first result
regarding this number is the following.

Theorem 1.12 Let S(n, k) denote the number of partitions of an n-set X
into k parts (also called k-partitions), 1 ≤ k ≤ n. Then

1. S(n, 1) = 1,

2. S(n, n) = 1,

3. S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), for 2 ≤ k ≤ n− 1.

Proof. First, S(n, 1) = 1 since there is only one partition of X into one part,
namely H = {X}. Then S(n, n) = 1, since there is again only one partition
of X into n classes, namely H = {{x}, x ∈ X}.

It remains to prove 3. For this, let us fix z ∈ X. With z fixed, we
distinguish the following types of partitions:

Type 1: partitions in which the set {z} is a part,
Type 2: partitions in which the part containing z has other members.
Let us calculate the number of partitions of type 1. If the set {z} is

removed from the partition, we obtain a partition of the (n− 1)-set X \ {z}
into k − 1 parts, and there are S(n − 1, k − 1) such partitions. Conversely,
given such a partition, we can restore the part {z}.

We calculate now the number of partitions of type 2. Suppose H is a
partition of type 2 with parts X1, X2, . . . , Xk. We can define a pair of objects
(i,H0) with i taken such that z ∈ Xi and with H0 taken as a partition of
the (n− 1)-set X \ {z} into the k parts X1, . . . , Xi−1, Xi \ {z}, Xi+1, . . . , Xk.
There are k possible values of i and S(n− 1, k) possible partitions H0, so we
have kS(n − 1, k) such pairs. Conversely, given such a pair (i,H0), we can
restore z to the part Xi and recover H.

Since for a fixed z a partition can be either of type 1 or of type 2, we add
these numbers and obtain the conclusion 3. �
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Remark 1.8 The numbers S(n, k) are known as the Stirling2 numbers of
second kind. Unfortunately there is no simple formula for these numbers,
but using the recursion 3 one can construct the following table:

n\k 1 2 3 4 5 6 7 8 · · ·
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
· · ·

Example 1.18 The set N5 has the following 2-partitions, where we replaced
∪ with + and we omitted the braces and commas for simplicity:

12345 = 1234 + 5, 1235 + 4, 1245 + 3, 1345 + 2, 2345 + 1,

124 + 35, 125 + 34, 134 + 25, 135 + 24, 145 + 23,

234 + 15, 235 + 14, 245 + 13, 345 + 12.

Indeed, we have obtained S(5, 2) = 15 partitions.

1.6.2 Distributions, surjections and multinomial num-
bers

We have seen that a partition is equivalent to the surjective placement of
distinct balls in identical (unordered) boxes. If the boxes are ordered, the
partition will be called distribution. Thus, defining a distribution means
to place distinct objects in distinct boxes, such that no box remains empty,
or, equivalent, to define a surjection from the set of balls to the set of boxes.

In Example 1.17, p. 18 we have

box 1: 1, 2, 9; box 2: 3, 5, 7, 10; box 3: 4; box 4: 6, 8.

that is the surjection D : X → N4 is given by

x 1 2 3 4 5 6 7 8 9 10
D(x) 1 1 2 3 2 4 2 4 1 2

.

In conclusion, the problem of counting distributions is equivalent to the
problem of counting surjections. At this stage we can prove the following
result.

Theorem 1.13 Let S denote the set of surjections from an n-set X to a
k-set Y . Then

|S| = k! · S(n, k). (1.14)

Proof. Each surjection D : X → Y induces a partition of X into k parts.
If such a partition is given, there are k! surjections which induce it, since
the k parts can be assigned to the k elements of Y in any bijective way. In
conclusion, formula (1.14) holds true. �

2James Stirling (1692-1770), Scottish mathematician.
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Example 1.19 Count the number of ways of dealing cards for a game of
Bridge.
Re-formulation. There are 52 objects (cards) and four boxes (the players),
and we have to distribute 13 cards to each player. In this game it matters
which player gets which cards. Thus, we do not require the number of parti-
tions of a 52-set X into four 13-subsets, but the number of surjections from
a 52-set X to the 4-set Y = {N,E, S,W} with the property that each “box”
of Y receives 13 members of X.

More generally, we may ask for the number of surjections from an n-set
to a k-set of boxes {y1, y2, . . . , yk} with the property that

n1 objects go into the first box y1,
n2 objects go into the second box y2,
· · ·
nk objects go into the k-th box yk.

This number is denoted by (
n

n1, n2, . . . , nk

)
(1.15)

and is called multinomial number. In the following we give a formula for
this number.

Theorem 1.14 Given the positive integers n, n1, n2, . . . , nk satisfying n1 +
n2 + . . .+ nk = n, we have(

n

n1, n2, . . . , nk

)
=

n!

n1! · n2! · . . . · nk!
. (1.16)

Proof. First we “arrange” the objects in X = {x1, x2, . . . , xn} as

xπ(1), xπ(2), . . . , xπ(n),

where π is a permutation of Nn. Then we define a surjection from X onto
Y by “introducing” the first n1 objects of the list into the first box (y1), the
next n2 objects into the second box (y2), ..., the last nk objects into the last
box (yk). We obtain the same surjection if we rearrange the first n1 objects
among themselves in any way. This can be done in n1! ways. Thus, from the
n! permutations π, there are n1! ·n2! · . . . ·nk! which induce a given surjection.
In conclusion, the number of surjections with the specified property is indeed
the one given in (1.16). �

Remark 1.9 The multinomial number (1.15) is also referred as the number

of permutations with repetitions, of n =
k∑

i=1

ni symbols of k distinct

types, where ni are of type i, i = 1, 2, . . . , k.

Remark 1.10 Theorem 1.14 remains true in the case when one or more of
the numbers ni is zero. In this case, the symbol in (1.15) is defined as the
number of functions from an n-set to a set of k “boxes”, with the property
that ni objects go into the box i, for i = 1, . . . , k. In this case the functions
are not necessarily surjections, since we allow some of the numbers ni to be
zero. With the convention 0! = 1, formula (1.16) remains true.
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Example 1.20 How many 11-letter words can be made from the letters of
the word MISSISSIPPI?

Solution. Each word corresponds to a surjection from the set
{x1, x2, . . . , x11} to the set of four “boxes” {I,M, P, S}, such that 4 objects
go to the “box” I, one object to “box” M, 2 objects to “box” P and 4 objects
to “box” S. The total number of words will be(

11

4, 1, 2, 4

)
=

11!

4!1!2!4!
= 34650.

Let us note that in the particular case k = 2 the multinomial number
equals the binomial number. For this reasons we expect to have a generaliza-
tion of the binomial theorem. This generalization is known as themultinomial
theorem.

Theorem 1.15 (The multinomial theorem) Let n, k be positive
integers. Then

(x1 + x2 + . . .+ xk)
n =

∑(
n

n1, n2, . . . , nk

)
xn1
1 xn2

2 . . . xnk
k , (1.17)

where the sum is taken over all k-tuples of non-negative integers
(n1, n2, . . . , nk) such that n1 + n2 + . . .+ nk = n.

Proof. When we calculate the left-hand side, the term xn1
1 xn2

2 · · · xnk
k arises

by choosing ni times the factor xi, i = 1, 2, . . . , k. In other words, the term
xn1
1 xn2

2 · · · xnk
k corresponds to a function from the set of n factors (monomials)

to the set {x1, x2, · · · , xk}, with the property that ni of the factors go to xi,
for i = 1, 2, . . . , k. There are (

n

n1, n2, . . . , nk

)
such functions, and therefore this is the number of terms xn1

1 xn2
2 · · · xnk

k in the
product. �

1.6.3 Integer partitions

Definition 1.8 Let n ∈ N. Then n = n1+n2+ . . .+nk, with ni ∈ N, n ≥ 1,
is called a k-(integer) partition of n. The number of k-partitions of n will
be denoted by P (n, k).

Remark 1.11 Defining a k-integer partition of n is equivalent to placing n
identical balls in k identical boxes, such that no box remains empty (surjective
placement).

For the numbers P (n, k) there is no nice recurrence formula similar to the
one given in Theorem 1.12 for the Stirling numbers S(n, k).

Example 1.21 The 4-partitions of 8 are:

5 + 1 + 1 + 1, 4 + 2 + 1 + 1, 3 + 3 + 1 + 1, 3 + 2 + 2 + 1, 2 + 2 + 2 + 2.
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We can also consider ordered k-integer partitions, if, for instance, we
consider that 3 + 3 + 1 + 1 ̸= 3 + 1 + 3 + 1. Thus, the construction of an
ordered k-integer partition of n is equivalent to the placement of n identical
balls in k distinct boxes, such that no box remains empty.

The problem of counting the ordered integer partition cannot be solved
similarly to the case of ordered set partitions, where we multiplied the number
S(n, k) of unordered set partitions by the number k! in which the parts can
be permuted among themselves (see Theorem 1.13). Indeed, for 3 + 1 + 1
there are not 6 = 3! distinct ordered partitions, but only three: 3 + 1 + 1,
1 + 3 + 1, 1 + 1 + 3. Therefore, we have to use another approach.

Theorem 1.16 The number of ordered k- integer partitions of n is
(
n−1
k−1

)
.

Proof. One can see that each k-ordered partition of n is equivalent to the
placement of n identical balls in k distinct boxes, such that no box remains
empty. So, we start by placing a ball in each box. Thus, it remains to place
arbitrarily the remained n−k balls in k boxes. The associated bit string (see
Section 1.4.5, p. 15) will contain n− k ones and k− 1 zeros. The number of
bit strings of length n− k+ k− 1 = n− 1, with exactly k− 1 zeros, is indeed(
n−1
k−1

)
. �

Example 1.22 The ordered 3-partitions of 6 are:

4 + 1 + 1, 1 + 4 + 1, 1 + 1 + 4, 3 + 2 + 1, 3 + 1 + 2,

2 + 3 + 1, 2 + 1 + 3, 1 + 3 + 2, 1 + 2 + 3, 2 + 2 + 2.

There are indeed
(
5
2

)
= 10 ordered partitions.

1.7 Solving counting problems using recur-

rence relations

Example 1.23 (Towers of Hanoi puzzle) We have three pegs
numbered 1,2,3 and on one peg we have a stack of n discs, each smaller in
diameter than the one below. An allowable move consists of removing a disk
from one peg so that it is not above another disk of smaller size. How many
allowable moves are needed to move the disks from one peg to another?

Solution. To solve the problem of moving all disks from peg 1 to peg 2, we
do the following:

1. (recursively) Solve the problem of moving n− 1 disks from peg 1 to peg
3;

2. move disk n to peg 2;

3. (recursively) Solve the problem of moving n− 1 disks on peg 3 to peg 2.
Let an denote the number of moves needed to move n disks from peg i to

peg j. We have the recursion

an = 2an−1 + 1, a1 = 1.

Further, a2 = 3, a3 = 7, so we can easily guess that an = 2n − 1, fact which
can be proved immediately by induction.

What happens if we get to a recurrence relation where it is impossible to
guess the general term? We will need a more sophisticated theory for these
situations.
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1.8 Recursions and generating functions

1.8.1 The linear recursion

Let k ∈ N. A simple kind of recursion is the following

un+k = α1un+k−1 + α2un+k−2 + . . .+ αkun, n ≥ 0. (1.18)

with αi, i = 1, 2, . . . , k, given real numbers such that αk ̸= 0. This is called
a linear recursion of degree k and we can find an explicit formula for the
general term un whenever u0, u1, . . . , uk−1 are given. For this we need first
to prove the following Lemma.

Lemma 1.17 The set of sequences satisfying the recurrence (1.18) is a vec-
tor space of dimension k.

Proof. If (an)n and (bn)n satisfy (1.18), then a simple calculation shows that
α · (an)n and (an + bn)n satisfy (1.18), so we have a linear space. In order to
find its dimension, we need to find a basis consisting of k sequences.

The idea is to associate the characteristic equation R(x) = 0, where

R(x) = xk − α1x
k−1 − . . .− αk−1x− αk. (1.19)

The following situations are possible:

1. If r1 is a root of R, then the sequence (un)n, where un = rn1 , satisfies
(1.18). Indeed, we have rk1 = α1r

k−1
1 + . . .+αk−1r1+αk and then, after

multiplying this equality by rn1 , we get the conclusion.

2. If r1 is a nonzero double root of R, then the sequence (bn)n, where bn =
n rn1 , satisfies (1.18). Indeed, from R(r1) = R′(r1) = 0 we obtain

k rn+k
1 = α1(k − 1)rn+k−1

1 + . . .+ αk−1r
n+1
1 ,

rn+k
1 = α1r

n+k−1
1 + . . .+ αk−1r

n+1
1 + αkr

n
1 .

If we multiply the second identity by n and add them, we get the
conclusion.

3. If r1 is a root with multiplicity p for R, then the sequences (un)n with

un ∈ {rn1 , n rn1 , n
2rn1 , . . . , n

p−1rn1}

are solutions of (1.18). To prove this we follow the similar arguments
as before.

4. If r1,2 = α± β i = ea±b i are complex roots of R, then we can write

r1 = eaebi = ea(cos b+ i sin b),

and therefore rn1,2 = ean(cos b n ± i sin b n). In this case the sequences
(cn)n and (dn)n, given by

cn =
1

2
(rn1 + rn2 ) = ean cos b n,

dn =
1

2
(rn1 − rn2 ) = ean sin b n,

are real solutions of (1.18).
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5. If r1,2 = α ± β i = ea±b i are complex roots of R with multiplicity p, then
similarly we can prove that

cn, dn, n cn, n dn, n
2cn, n

2dn, . . . , n
p−1cn, n

p−1dn

satisfy the recurrence (1.18).

In conclusion, to the k roots of R one can associate linearly independent
solutions. The general solution (Yn)n of the recurrence (1.18) will be a linear
combination of these solutions. The coefficients of the linear combination
will be uniquely determined from the “initial” conditions Y0 = u0, . . . , Yk−1 =
uk−1. For instance, in the case whenR has real distinct roots, then the general
solution is (Yn)n, with Yn = β1r

n
1 + β2r

n
2 + . . .+ βkr

n
k . The real constants βi

are uniquely determined from the conditions Yi = ui, i = 1, . . . , k, which can
be written as

β1 + β2 + . . .+ βk = u0,

β1r1 + β2r2 + . . .+ βkrk = u1,
...

β1r
n−1
1 + β2r

n−1
2 + . . .+ βkr

n−1
k = uk−1.

The unknowns β1, . . . , βk are uniquely determined since the determinant of
the system is nonzero (as a Vandermonde determinant of the distinct roots
ri). One can prove that this determinant is nonzero in the rest of the cases. �

1.8.2 Generating functions

As we have already seen in Example 1.23, the solution of a counting problem
(and not only) can be expressed as a sequence (un)n. In such cases, a common
way to solve this type of problems is based on the representation of (un)n as
a power series

gu(x) =
∞∑
n=0

unx
n. (1.20)

In this situation, gu is referred to as the generating function3 for the
sequence (un)n. (It is of course necessary that the series converges somewhere
if gu is defined as a function of x. If we regard gu as an element of a ring of
polynomials, such a convergence is not necessary.) In some cases, the series
(1.20) can be reduced to a finite sum, in which case gu is a polynomial.

Example 1.24 Let m ∈ N be fixed and let un denote the number of n-subsets
of an m-set. It is known (see Section 1.4.4, p. 14) that

un =

(
m

n

)
,

whence the generating function will be

gu(x) =
m∑

n=0

(
m

n

)
xn = (1 + x)m.

3They were introduced by De Moivre and Euler in the early eighteenth century.
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In the case when a recurrence formula is given for (un)n, the generat-
ing function can be useful in determining a general expression for un. The
method uses three stages:

(i) from the recurrence relation we find an equation for gu(x),

(ii) we solve the equation for gu(x),

(iii) we find a formula for the coefficients un of gu(x) (via partial fraction
decomposition or binomial theorem)in the following way: If we can
determine gu and its power series, we will identify the coefficients of
the power series in order to find un.

Remark 1.12 For linear and homogeneous recursion studied the previous
section, one can also use the generating functions, but this method requires
more calculation than using the characteristic polynomial.

1.8.3 Non-homogeneous linear recursions

In some cases the method of generating functions can be used to solve non-
homogeneous recursion. Such a recursion is

un+2 = aun+1 + bun + f(n), u0, u1 given. (1.21)

The applicability of the method depends on the particular form of f . Let

gu(x) =
∞∑
n=0

unx
n.

If we multiply this identity by (a+ bx) we obtain

(a+ bx)gu(x) = au0 + (au1 + bu0)x+ (au2 + bu1)x
2 + . . .

+(aun + bun−1)x
n + . . .

From (1.21) we deduce that

au1 + bu0 = u2 − f(0),

au2 + bu1 = u3 − f(1),
...

aun + bun−1 = un+1 − f(n− 1).

Inserting this expression we get, after grouping the terms and multiplying
the equality by x,

x(a+ bx)gu(x) = au0x+
∞∑
n=1

un+1x
n+1 −

∞∑
n=1

f(n− 1)xn+1. (1.22)

At this stage, we need to determine the sum of the power series

∞∑
n=1

f(n− 1)xn+1 = h(x).

If we cannot find its sum h, the method fails.
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Let us suppose that we have found h. We focus on (1.22) and we replace
the first sum in the right-hand side with gu(x) − u0 − u1x. Thus, (1.22)
becomes

gu(x) =
−u0 + (au0 − u1)x− h(x)

bx2 + ax− 1
. (1.23)

By expanding this function in a power series and identifying the coefficient
of xn, we obtain a general expression for un.

Example 1.25 Find the general term un of the recursion

un+2 = −un+1 + 2un + n, with u0 = −2, u1 = 1.

Solution. From the calculations above, made in the general case, we find

h(x) =
∞∑
n=1

(n− 1)xn+1 = x3

∞∑
n=2

(n− 1)xn−2 =
x3

(1− x)2
,

Then, from (1.23),

gu(x) =
−2 + 3x

(1− x)3(2x+ 1)
=

A

(1− x)3
+

B

(1− x)2
+

C

1− x
+

D

2x+ 1
,

with A = 1
3
, B = −7

9
, C = −14

27
, D = −28

27
. Further, we write

1

1− x
=

∞∑
n=0

xn | · C

1

(1− x)2
=

∞∑
n=0

(n+ 1)xn | ·B

1

(1− x)3
=

∞∑
n=0

(n+ 1)(n+ 2)xn | · A

1

2x+ 1
=

∞∑
n=0

(−1)n(2x)n | ·D

By identifying the coefficient of xn we obtain

un =
A

2
(n+ 1)(n+ 2) +B(n+ 1) + C +D(−1)n2n

=
1

54

(
9n2 − 15n− 52− 7(−1)n2n+3

)
.

Remark 1.13 In a more general case, when the non-homogeneous linear
recursion is

un+k = a1un+k−1 + a2un+k−2 + . . .+ akun + g(n),

with u0, u1, . . . , uk−1 given, we start by calculating

(1 + a1x+ a2x
2 + . . .+ akx

k−1)gu(x)

and hope again that the terms containing g(n) can be conveniently manipu-
lated.
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1.8.4 Catalan recursion

If we want to count the number un of binary trees with n vertices (see Section
3.4.1), we arrive at the following recursion, known as Catalan4 recursion.

un+1 = u0un + u1un−1 + . . .+ ukun−k + . . .+ unu0.

with u0 = u1 = 1. The quantity un is called the n th Catalan number.
Let us note that the number of terms in this recursion is not constant, as in
the previous cases.

Consider the generating function

gu(x) =
∞∑
n=0

unx
n.

One has

g2u(x) = (u0 + u1x+ u2x
2 + . . .)(u0 + u1x+ u2x

2 + . . .)

= u0 + 2u0u1x+ (u0u2 + u2
1 + u2u0)x

2 + . . .

+ (u0un + u1un−1 + . . .+ unu0)x
n + . . .

= u0 + u2x+ u3x
2 + . . .+ un+1x

n + . . . ,

whence

xg2u(x) = x+
∞∑
n=2

unx
n,

and further
xg2u(x)− gu(x) + 1 = 0.

Solving this equation we obtain

gu1(x) =
1 +

√
1− 4x

2x
, gu2(x) =

1−
√
1− 4x

2x
.

Because gu(0) = u0 = 1, the only solution is

gu(x) =
1−

√
1− 4x

2x
.

We expand now the function gu using the formula

(1− y)α = 1 +
α

1!
y +

α(α− 1)

2!
y2 + . . .+

α(α− 1) . . . (α− n+ 1)

n!
yn + . . .

for α = 1/2 and y = −4x.
The coefficient of xn will be

un =
1 · 3 · . . . · (2n− 1)

2n+2(n+ 1)!
4n+1 =

1

n+ 1

(
2n

n

)
.

4Eugène Charles Catalan (1814-1894), Belgian mathematician.
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1.8.5 Some properties of generating functions

Theorem 1.18 (Convolution) If un can be written as a convolution of the
sequences (an)n and (bn)n, so

un =
n∑

k=0

akbn−k,

then
gu(x) = ga(x)gb(x).

Proof. If we evaluate gagb,

ga(x)gb(x) = (a0 + a1x+ . . .+ anx
n + . . .)(b0 + b1x+ . . .+ bnx

n + . . .),

the coefficient of xn is indeed

a0bn + a1bn−1 + . . .+ anb0 =
n∑

k=0

akbn−k.

�

Theorem 1.19 If

bn =
n∑

k=0

ak,

then

gb(x) =
ga(x)

1− x
.

Proof. Using the geometric series we get

ga(x)

1− x
= (a0 + a1x+ . . .+ anx

n + . . .)(1 + x+ x2 + . . .+ xn + . . .)

= a0 + (a0 + a1)x+ (a0 + a1 + a2)x
2 + . . .

+ (a0 + a1 + . . .+ an)x
n + . . .

so the coefficient of xn will be indeed bn =
n∑

k=0

ak. �
Theorem 1.20 (Tails) If

bn =
∞∑
k=1

an+k, n ≥ 0,

then

gb(x) =
ga(1)− ga(x)

1− x
.

Proof. Let ha(x) = ga(1)−ga(x). Its power series can be written as
∞∑
n=0

cnx
n,

with

c0 = g(1)− a0 = a1 + a2 + . . . ,

cn = −an, for n ≥ 1.

According to Theorem 1.19 we have

ha(x)

1− x
=

∞∑
n=0

bnx
n, with bn =

n∑
k=0

ck = c0 +
n∑

k=1

(−ak) =
∞∑
k=1

an+k.

�
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1.9 Solved problems

Problem 1.1 (Identical balls into distinct boxes with multiple balls
per box allowed) The number of ways k identical balls can be placed into
n distinct boxes, with any number of balls allowed in each box is

(
n+k−1

k

)
.

Solution. The required number can be found by a direct application of The-
orem 1.10, p. 15.

Problem 1.2 Which is the number of nonnegative integer solutions to the
equation

x1 + x2 + . . .+ x6 = 10?

Solution. See Example 1.14, p. 16 or Problem 1.1. The required number will
be again

(
15
5

)
.

Problem 1.3 (Identical balls into distinct boxes with no box al-
lowed to be empty) The number of ways k identical balls can be placed
into n distinct boxes, with any number of balls allowed in each bin and no
box allowed to remain empty, is

(
k−1
n−1

)
.

Solution. We use the idea in the proof of Theorem 1.10, p. 15. We place one
ball into each box, since no box should be empty. Thus, it rests to place the
remaining k − n balls into n boxes, in the same way we did in the previous
problem. This number is therefore(

n− 1 + k − n

n− 1

)
=

(
k − 1

n− 1

)
.

Problem 1.4 Which is the number of positive integer solutions to the equa-
tion

x1 + x2 + . . .+ x6 = 10?

Solution. According to Problem 1.3, the required number is
(
9
5

)
.

Problem 1.5 What is the number of nonnegative integer solutions to the
equation

x1 + x2 + x3 + x4 + x5 = 36,

where x1 ≥ 4, x4 ≥ 7.

Solution. The problem can be reformulated as follows: What is the number
of ways 36 identical balls can be placed into 5 distinct boxes, with at least 4
balls in the first box and at least 7 balls in the 4th box?

We start by placing 4 balls in the first box and 7 balls in the fourth box.
It rests 25 balls to be placed arbitrarily into the 5 boxes, and this can be
done in

(
29
4

)
ways (see Problem 1.1).

Problem 1.6 (The derangement problem) An inefficient secretary has
n letters and n addressed envelopes. In how many ways can the secretary
achieve the feat of putting every letter into the wrong envelope?

Solution. We have to count the number of derangements of Πn (see Definition
1.5, p. 14). Let π : Nn → Nn denote the permutation defined as

π(i) = j, if letter i goes into envelope j.
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For i ∈ Nn we denote by Ai the set of permutations which fix the position i.
According to Corollary 1.3, p. 9, the number of derangements will be

dn = n!− α1 + α2 − α3 · · ·+ (−1)nαn,

where αk is the number of permutations which fix k positions. We say that
a permutation π fixes the position j if π(j) = j.

We can chose k positions in
(
n
k

)
ways. For each fixation of k positions,

there are (n− k)! permutations of the remaining positions, therefore

αk =

(
n

k

)
(n− k)! =

n!

k!
.

Thus

dn = n!

(
1− 1

1!
+

1

2!
− 1

3!
+ . . .+ (−1)n

1

n!

)
.

Problem 1.7 (Poker hands) In the poker game there are 52 cards and a
player receives 5 cards. Find the number of each of the following hands:
a. royal flush (ace, king, queen, jack, 10 in the same suit);
b. straight flush (5 cards of 5 consecutive ranks, all in 1 suit, but not a royal
flush);
c. four of a kind (four cards in 1 rank and a fifth card);
d. full house (3 cards of 1 rank, 2 of another rank);
e. flush (5 cards in 1 suit, but neither royal nor straight flush);
f. straight (5 cards in 5 consecutive ranks, but not all of the same suit);
g. three of a kind (3 cards of 1 rank and 2 cards of 2 different ranks);
h. two pairs (2 cards in each of 2 different ranks and a fifth card of a third
rank);
i. one pair (2 cards in 1 rank, plus 3 cards from 3 other ranks).

Solution.
a. 4 (there are 4 choices for a suit (♣,♢,♡,♠) and one royal flush in

each suit).
b. 4 · 9 = 36 (4 choices for a suit, in each suit 9 ways to get 5 cards in a

row: (A, 2, 3, 4, 5), (2, 3, 4, 5, 6), (3, 4, 5, 6, 7), . . . , (9, 10, J,Q,K)).
c. 13 · 48 = 624 (13 choices for a rank, one way to select 4 cards in that

rank, 48 ways to select the fifth card).
d. 13 ·

(
4
3

)
· 12 ·

(
4
2

)
= 3744 (13 ways to select a rank for the 3-of-a-kind,(

4
3

)
ways to choose 3 of this rank, 12 ways to select a rank for the pair and(

4
2

)
ways to get a pair of the other rank).

e. 4
(
13
5

)
− 40 = 5108 (4 ways to select a suit,

(
13
5

)
ways to choose 5 cards

in that suit; subtract royal+straight flush).
f. 10 · 45 − 40 = 10200 (10 ways to choose 5 ranks in a row and 4 ways to

choose a card from each rank; subtract royal+ straight flush).
g. 13

(
4
3

)(
12
2

)
·42 = 54912 (13 ways to select one rank,

(
4
3

)
ways to choose 3

cards of that rank,
(
12
2

)
ways to pick other ranks and 42 ways to pick a card

of each of those 2 ranks).
h.
(
13
2

)(
4
2

)(
4
2

)
·44 = 123 552 (

(
13
2

)
ways to select 2 ranks,

(
4
2

)
ways to choose

2 cards in each of these ranks, 44 ways to choose a non matching fifth card).
i. 13

(
4
2

)(
12
3

)
· 43 = 1098 240 (13 ways to select a rank,

(
4
2

)
ways to choose

2 cards in that rank,
(
12
3

)
ways to pick one card from each of those ranks).
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Let us mention that there are
(
52
5

)
= 2598 960 ways to chose 5 cards.

The number of hands which are none of the above mentioned hands will be
1 302 540, which is slightly greater than

(
52
5

)
/2 = 1 299 480.



Chapter 2

Discrete Probability Theory

2.1 Random events

Many processes in nature, economy, social sciences, medicine, etc. are subject
to chance, that is, the outcomes of a process cannot be predicted. The
exchange rate at a certain day in the future, the blood pressure of a person
at a given moment, are only two examples. Such random events cannot be
predicted with certainty, but the relative frequency with which they occur
in a long series of trials is often stable. Events possessing this property are
called random or stochastic events. Probability theory supplies mathematical
models for such random phenomena.

A random experiment (or a trial) is a process in which various out-
comes are possible, so that one cannot say in advance what outcome will
be.

We say that two outcomes are incompatible if they cannot occur simul-
taneously. The possible pairwise incompatible outcomes of an experiment are
called its elementary events. The set of elementary events is denoted by E
and is called the sample space. For example, in the experiment of rolling a
die once, the elementary events are e1, e2, . . . , e6, where ei is the event “face
number i appears”. So, the sample space will be E = {e1, e2, e3, e4, e5, e6}.
If we consider the experiment of testing the lifespan of an electric bulb, one
has an infinity of elementary events ex, x ∈ [0,∞), ex being the event “the
lifespan is x minutes”.

Since this work is dedicated to discrete mathematics, we will consider in
the sequel only experiments with a finite or countable number of outcomes.

Apart of the elementary events, one is often interested in events of a
complex nature, for instance, when a die is rolled, “an even number appears”.
Let an experiment be given and let E be the set of its elementary events.
Every subset of E is called an event. An event A occurs if and only if one
of the elementary events forming A occurs. For example, in the experiment
of rolling a die, the set A = {e2, e4, e6} can be interpreted as the event “an
even number appears”. Indeed, this event occurs in the rolling of a die if and
only if one of the elementary events contained in A occurs.

Since E ⊆ E and ∅ ⊆ E, E and ∅ can also be regarded as events,
according to the definition of an event. Since E consists of all elementary
events and in any experiment exactly one elementary event takes place, E
always take place. This is why E is called the sure event. On the other
hand, ∅ contains no elementary event, therefore never takes place. It will be
called the impossible event.

32
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Let A1, A2, . . . , An ⊆ E be events. Then:

1. A1 ∪ . . . ∪ An is an event called the sum of the events Ai, which takes
place exactly when at least one of the events A1, . . . , An occurs.

2. A1 ∩ . . . ∩ An is an event called the product of the events Ai, which
occurs if and only if A1, . . . , An occur simultaneously.

The events A1, A2 ⊆ E are called incompatible if A1 ∩ A2 = ∅ (A1 and
A2 cannot occur simultaneously).

Since A = E \A ⊆ E, A is also an event. It occurs precisely when A does
not occur. The event A will be called the complementary event to A.

Finally let us mention that all the properties of the operations ∪,∩ and
complementarity available for sets will be also true for events.

2.2 The axioms of probability theory

Definition 2.1 (Kolmogorov) 1 Let E be a sample space associated to a
random experiment and let P(E) = {A, A ⊆ E}. A probability measure
on E is a function P : P(E) → [0, 1] satisfying the following conditions
(axioms):

1. P (E) = 1,

2. P

(
∞∪
k=1

Ak

)
=

∞∑
k=1

P (Ak) if Ak are pairwise disjoint events.

Consequences
Let E be a sample space associated to a random experiment and let

A,B ⊆ E be events. The following properties hold:

1. P (∅) = 0.

2. P

(
n∪

k=1

Ai

)
=

n∑
k=1

P (Ak) if Ak, k = 1, . . . , n, are pairwise incompatible

events.

3. P (A) = 1− P (A),

4. P (B \ A) = P (B)− P (A ∩B).
If A ⊆ B, then P (B \ A) = P (B)− P (A).

5. P (A ∪B) = P (A) + P (B)− P (A ∩B).

6. If A ⊆ B, then P (A) ≤ P (B).

7. If Ai, i = 1, . . . , n, are arbitrary events, then

P

(
n∪

i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩ Aj)+∑
1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak)− · · · − (−1)n P (A1 ∩ . . . ∩ An).

8. P (A ∪B) ≤ P (A) + P (B).

1Andrey Nikolaevich Kolmogorov (1903–1987), Russian mathematician.
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9. P

(
∞∪
k=1

Ai

)
≤

∞∑
k=1

P (Ak).

Proof.

1. Taking in condition 2. A1 = E, Ak = ∅, for k > 1, we get

P (E) = P (E) +
∞∑
i=2

P (∅), so P (∅) = 0.

2. We take in condition 2. Ak = ∅, for k > n.

3. We have 1 = P (E) = P (A ∪ A) = P (A) + P (A).

4. We write B = (A∩B)∪ (B \A). Since A∩B and B \A are disjoint, we
have P (B) = P (A ∩B) + P (B \ A), whence the conclusion.

5. We write A∪B = A∪(B\A), so P (A∪B) = P (A)+P (B\A). Replacing
P (B \ A) from the previous property, we get the conclusion.

6. Using property 4 for the case A ⊆ B, we get 0 ≤ P (B\A) = P (B)−P (A),
whence the required inequality.

7. This property can be proved by induction on n. �

Remark 2.1 Definition 2.1 was given by Kolmogorov and 1.,2. will be re-
ferred as Kolmogorov’s axioms. There are other definitions for the probabil-
ity, using some of the properties 1-9, in which case the Kolmogorov axioms
appear as consequences.

Proposition 2.1 If the nature of an experiment is such that it has only
finitely many elementary events, and if they are equally possible, then it
follows from the Kolmogorov axioms that the probability of an event A is

P (A) =
number of elementary events favorable to A

number of all elementary events
. (2.1)

Formula (2.1) was used by Laplace2 to define probability.
Proof. We will prove that a probability given by the Kolmogorov definition
satisfies (2.1).

For the beginning we consider the sample space E = {e1, . . . , en} with ei
equally possible elementary events. Then

1 = P (E) = P (e1 ∪ . . . ∪ en) =
n∑

i=1

P (ei) = nP (ej), (2.2)

whence

P (ej) =
1

n
for all j ∈ Nn.

In the third equality in (2.2) we used the fact that the elementary events are
incompatible. Further, let A ⊆ E, A = e1 ∪ e2 ∪ . . . ∪ ek. The probability of
A will be

P (A) = P (e1 ∪ e2 ∪ . . . ∪ ek) =
k∑

j=1

P (ej) = k · 1
n
=

k

n
.

2Pierre-Simon, Marquis de Laplace (1749-1827), French mathematician and as-
tronomer.
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Indeed, k is the number of elementary events favorable to A and n is the
number of total events. In conclusion, (2.1) is proved. �

Example 2.1 Two dice are rolled at the same time and there is a prize when
the total of faces is ≥ 10. What is the probability of winning?

Solution. The sample space will be

E = {e11, e12, . . . , e16, e21, e22, . . . , e26, . . . , e61, e62, . . . , e66},

while the event A of having the total of faces ≥ 10 can be written as

A = {e46, e55, e56, e64, e65, e66}.

Hence,

P (A) =
|A|
|E|

=
6

36
=

1

6
.

2.3 Conditional probabilities and

independent random events

The probability of a random event A is altered, in general, when it is already
known that another random event B with P (B) ̸= 0 has taken place. The
probability of A, under the condition that B (with P (B) ̸= 0) has already
occurred, is denoted by P (A|B) and is called the conditional probability
of A under the condition B or the conditional probability of A given
B.

Example 2.2 Suppose we have two urns, U1 containing 5 white and 5 black
balls and U2 containing one white and 9 black balls. We perform the experi-
ment of choosing blindly one of the urns and taking out of it, blindly, a ball.
Then we consider the following events:

B : “the drawn ball is white”,

Ai : “the ball was taken from the i-th urn”, i = 1, 2.

Then

P (B|A1) =
5

10
=

1

2
, P (B|A2) =

1

10
.

In general, conditional probabilities are defined by the relations

P (A|B) =
P (A ∩B)

P (B)
, if P (B) ̸= 0,

P (B|A) =
P (A ∩B)

P (A)
, if P (A) ̸= 0,

which implies

P (A ∩B) = P (B) · P (A|B) = P (A) · P (B|A). (2.3)

Definition 2.2 Two random events A,B are called independent (of each
other) when the occurrence of one does not influence in any way the proba-
bility of the other occurring, that is, when P (A|B) = P (A).
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Thus, for the independent events A,B, we have

P (A ∩B) = P (A) · P (B). (2.4)

Definition 2.3 The random events A1, . . . , An are called totally indepen-
dent if for every m ≤ n and any m-tuple (i1, i2, . . . , im), 1 ≤ i1 ≤ i2 ≤ . . . ≤
im ≤ n we have

P (Ai1 ∩ Ai2 ∩ . . . ∩ Aim) = P (Ai1)P (Ai2) . . . P (Aim).

Definition 2.4 The random events A1, . . . , An are called pairwise inde-
pendent if Ai and Aj are independent for any i ̸= j.

It is immediate that total independence implies pairwise independence. How-
ever, the reverse implication is not true, as shown by the following example.

Example 2.3 Let E = {e1, e2, e3, e4} be a sample space, where the elemen-
tary events ei have all the probability P (ei) = 1/4. Consider the events
A = e1 ∪ e2, B = e1 ∪ e3, C = e1 ∪ e4. We will show that A,B,C are
pairwise independent, but not totally independent events.

On one hand, P (A) = P (B) = P (C) = 1/2,

P (A ∩B) = P (e1 ∪ (e2 ∩ e3)) = P (e1 ∪ ∅) = P (e1) =
1

4
,

and analogously P (A ∩ C) = P (B ∩ C) = 1/4. In conclusion

P (A ∩B) = P (A) · P (B),

P (A ∩ C) = P (A) · P (C),

P (B ∩ C) = P (B) · P (C),

whence the events A,B,C are pairwise independent.
On the other hand,

P (A ∩B ∩ C) = P (e1) =
1

4
, P (A) · P (B) · P (C) =

1

8
,

so A,B,C are not totally independent.

Theorem 2.2 Let A1, A2, . . . , An be random events. Then

P (A1 ∩ A2 ∩ . . . ∩ An) =

P (A1) · P (A2|A1) · P (A3|A1 ∩ A2) · . . . · P (An|A1 ∩ . . . ∩ An−1).

Proof. The proof is immediate using the induction on n and formula (2.3). �

An immediate consequence is

Corollary 2.3 If the events A1, A2, . . . , An are totally independent, then

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1) · P (A2) · . . . · P (An).



CHAPTER 2. DISCRETE PROBABILITY THEORY 37

2.4 The law of total probability.

Bayes’ formula3

Definition 2.5 Let E be a sample space. A set S = {A1, A2, . . . , An} of
random events is called complete system of events (CSE) for E if

1. E = A1 ∪ A2 ∪ . . . ∪ An,

2. Ai ∩ Aj = ∅, whenever i ̸= j.

A (CSE) can analogously be defined for countable many events.

Theorem 2.4 (Law of total probability) Let E be a sample space, S =
{A1, A2, . . . , An} a (CSE) and B a random event. Then

P (B) =
n∑

i=1

P (Ai) · P (B|Ai). (2.5)

Formula (2.5) is referred to as the formula for total probability (FTP).
Proof. We have

B = E ∩B = (A1 ∪ A2 ∪ . . . ∪ An) ∩B

= (A1 ∩B) ∪ (A2 ∩B) ∪ . . . ∪ (An ∩B).

Since the events Ai ∩B in the last sum are pairwise incompatible, we obtain

P (B) =
n∑

i=1

P (Ai ∩B).

Further, the use of formula (2.3) for the probabilities P (Ai ∩ B) leads to
conclusion (2.5). �

Remark 2.2 Let us mention that the event B takes place together with one
(and only one) of the events of a CSE.

Example 2.4 We have three urns of type 1 (containing two white balls and
six black balls) and one urn of type 2 (containing one white ball and eight
black balls). One urn is chosen at random and then a ball is drawn from it.
What is the probability of the event B: “the drawn ball is white”?

Solution. Consider the events Ai: “an urn of type i is chosen”, i = 1, 2. Then
S = {A1, A2} will be a CSE, since E = A1 ∪A2 and A1 ∩A2 = ∅. The event
B occurs together with one of the events of S. According to formula (FTP)
we have

P (B) = P (A1) · P (B|A1) + P (A2) · P (B|A2).

Replacing P (A1) = 3/4, P (A2) = 1/4, P (B|A1) = 2/8, P (B|A2) = 1/9, we
obtain P (B) = 31/144.

Suppose that the assumptions of the theorem on total probability are sat-
isfied. Then one can also ask about the probability of Ai under the condition
that the event B occurred. This probability will be

P (Ai|B) =
P (Ai) · P (B|Ai)

P (B)
=

P (Ai) · P (B|Ai)
n∑

k=1

P (Ak) · P (B|Ak)
. (2.6)

3Thomas Bayes (1702-1762), British mathematician.
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This formula is referred to as Bayes’ formula. It is used to evaluate
the probabilities of the events Ai which form a (CSE), after the result of an
experiment is known. Actually these are the probabilities of the causes of
the occurrence of an event.

Bayes’ formula contains the probabilities

P (Ai), P (B|Ai), i ∈ Nn,

which can be calculated before the experiment. For this reason they are
called probabilities a priori.

By performing the experiment, we find out that the event B occurred and
we want to establish the probabilities

P (Ai|B), for i = 1, . . . , n,

where P (Ai|B) represents the probability that the occurrence of B is due to
the occurrence of event Ai (together with Ai). These probabilities are called
probabilities a posteriori.

Example 2.5 In the same experiment as in Example 2.4, suppose that a
white ball has been drawn (B has been realized). What is the probability that
it came from an urn of type 1 (the probability of being realized together with
A1)?

Solution. Applying Bayes’ formula we have

P (A1|B) =
P (A1) · P (B|A1)

P (B)
=

3
4
· 1
4

31
144

=
27

31
.

2.5 Probabilistic schemes

2.5.1 Binomial scheme

Suppose we have an urn containing N1 white balls and N2 black balls. We
extract a ball, note its color and then we put it back into the urn. Obviously,
the structure of the urn remains unchanged from one extraction to another.
If we denote by A the event “the extracted ball is white”, then A will be the
event “the extracted ball is black” and the probabilities of these events will
be

P (A) =
N1

N
= p, P (A) =

N2

N
= q, with N = N1 +N2.

Of course, p+ q = 1 and p, q are unchanged from one extraction to another.
We perform n extractions according to the procedure described above.

We ask the probability of the event

Xk : “among the n extracted balls, k are white and n− k are black”.

Solution. A favorable succession of events A,A is the event

B = A A . . . A︸ ︷︷ ︸ A A . . . A︸ ︷︷ ︸ .
k times n− k times
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Thus, P (B) = pkqn−k. Since there are
(
n
k

)
such favorable events with k

occurrences of A and n− k occurrences of A (see Example 1.12, p. 15) and
since these

(
n
k

)
events are incompatible, we have

P (Xk) =

(
n

k

)
pkqn−k, for k = 0, 1, . . . , n.

Remark 2.3 The probability P (Xk) is the coefficient of xk in the polynomial
φn(x) = (p x + q)n. For this reason, this function is called the generating
function for the binomial scheme.

The binomial scheme was first studied by Bernoulli4 For this reason, it is
also referred to as the Bernoulli scheme. An application of this scheme is
presented in Section 2.14, p. 62.

2.5.2 The multinomial scheme

This scheme is a generalization of the binomial scheme. Suppose we are
given an urn containing a total of N balls of k colors denoted c1, c2, . . . , ck.
Specifically, there are Ni balls of color ci, for i ∈ Nk, N1 + . . .+Nk = N . As
in the previous case, we extract a ball, we note the color, and we put it back
into the urn. If we denote by Ai the event “the extracted ball has the color
ci”, then

pi = P (Ai) =
Ni

N
, for i ∈ Nk

and S = {A1, A2, . . . , Ak} will be a complete system of events, with the sure
event E : “a ball is extracted”. Obviously, p1 + p2 + . . .+ pk = 1.

We perform n extractions in the way described above. We ask the prob-
ability of the event

Xn1,...,nk
: “among the n extracted balls, ni have color ci, for i ∈ Nk”.

Of course, n1 + n2 + . . .+ nk = n.
Solution. We will show that

P (Xn1,n2,...,nk
) =

n!

n1! · n2! · . . . · nk!
· pn1

1 pn2
2 . . . pnk

k . (2.7)

A favorable succession of events A1, A2, . . . , Ak is the event

B = A1 A1 . . . A1︸ ︷︷ ︸ A2 A2 . . . A2︸ ︷︷ ︸ . . . Ak Ak . . . Ak︸ ︷︷ ︸ .
n1 times n2 times nk times

Its probability is P (B) = pn1
1 pn2

2 . . . pnk
k . Since there are(
n

n1, n2, . . . , nk

)
such favorable events with ni occurrences of color ci for 1 ≤ i ≤ n (see
Theorem 1.14, p. 20) and since these events are incompatible, formula (2.7)
holds.

Theorem 1.15 allows us to state the following remark.

4James Bernoulli (also known as Jacob I) (1654-1705), Swiss mathematician.
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Remark 2.4 The probability in (2.7) is the coefficient of
xn1
1 xn2

2 . . . xnk
k in the multivariate polynomial

Φn(x1, x2, . . . , xk) = (p1x1 + p2x2 + . . .+ pkxk)
n.

For this reason, this function is called the generating function for the multi-
nomial scheme.

2.5.3 The hypergeometric scheme

Suppose we have an urn containing N balls of which N1 are white and N2 =
N −N1 are black. Let n balls be drawn successively, without reintroducing
them back into the urn. We ask the probability of the event

Yn1,n2 : “among the n extracted balls, n1 are white and n2 are black”.

Solution. If we denote the white balls by w1, w2, . . . , wN1 , and the black balls
by b1, b2, . . . , bN2 , then there are

(
N
n

)
ways of extracting n balls from an urn

of N balls and the favorable sequence of balls are of the form

wi1 , wi2 , . . . , win1
, bj1 , bj2 , . . . , bjn2

.

There are
(
N1

n1

)
ways of extracting n1 white balls out of N1 white balls. For

each fixed sequence of white balls, there are
(
N2

n2

)
ways of extracting n2 black

balls out of N2 black balls. So, in total there are(
N1

n1

)(
N2

n2

)
favorable extractions and therefore the required probability is

P (Yn1,n2) =

(
N1

n1

)(
N2

n2

)(
N
n

) =

(
N1

n1

)(
N2

n2

)(
N1+N2

n1+n2

) . (2.8)

An application of this scheme is presented in Section 2.14, p. 63.

2.5.4 The generalized hypergeometric scheme

One can generalize the hypergeometric scheme in the following way: suppose
that the urn contains N balls of k colors, denoted c1, c2, . . . , ck. More pre-
cisely, there are Ni balls of color ci (1 ≤ i ≤ n) and N1 + . . .+Nk = N . We
extract n balls and we ask the probability of the event

Yn1,...,nk
: “among the n extracted balls, ni have color ci, i ∈ Nk”.

Of course, n1 + n2 + . . .+ nk = n.
Analogous arguments as for the hypergeometric scheme will lead us to

the formula

P (Yn1,n2,...,nk
) =

(
N1

n1

)(
N2

n2

)
. . .
(
Nk

nk

)(
N
n

) . (2.9)
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2.5.5 The Poisson’s urns scheme

In this scheme we have n urns denoted Ui, 1 ≤ i ≤ n, each of which con-
taining white and black balls, but in different proportions. We introduce the
following notations:

pi = the probability to extract a white ball from the urn Ui,

qi = the probability to extract a black ball from the urn Ui,

for 1 ≤ i ≤ n and with pi + qi = 1. We extract n balls, one from each urn,
and we ask the probability of the event

Zk : “among the n extracted balls, k are white and n− k are black”.

Solution. In order to simplify the presentation, we consider first a particular
case, with n = 4 urns and we calculate the probability to have k = 3 white
balls and n − k = 1 black ball. For i ∈ N4, we consider the events Ai :“the
ball extracted from Ui is white”. Then the complementary events Ai will be
“the ball extracted from Ui is black”.

The events illustrating the favorable extractions are:

B1 = A1 ∩ A2 ∩ A3 ∩ A4,

B2 = A1 ∩ A2 ∩ A3 ∩ A4,

B3 = A1 ∩ A2 ∩ A3 ∩ A4,

B4 = A1 ∩ A2 ∩ A3 ∩ A4,

the events involved in each of the products being totally independent. There-
fore, the probabilities of the favorable events are

P (B1) = p1p2p3q4, P (B2) = p1p2q3p4,

P (B3) = p1q2p3p4, P (B4) = q1p2p3p4.

Further, the event of interest Z3 can be written as

Z3 = B1 ∪B2 ∪B3 ∪B4.

Since the events in this sum are incompatible, the required probability will
be the sum of P (Bi),

P (Z3) = p1p2p3q4 + p1p2q3p4 + p1q2p3p4 + q1p2p3p4. (2.10)

If we consider the polynomial

Q4(x) = (p1x+ q1)(p2x+ q2)(p3x+ q3)(p4x+ q4),

then P (Z3) represents the coefficient of x3 in the polynomial Q4(x).
In the general case, we consider the polynomial

Qn(x) =
n∏

i=1

(pix+ qi)

and similar arguments are used to prove that the probability P (Zk) is the
coefficient of xk in Qn(x).
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Remark 2.5 If all the urns are identical, then pi = p, qi = q and the
polynomial Qn(x) reduces to

Qn(x) = (px+ q)n.

The coefficient of xk will be (
n

k

)
pkqn−k,

which is exactly the probability in the binomial scheme. Indeed, the fact that
the urns are identical is equivalent to the situation when we have one urn
and we reintroduce the ball into the urn after each extraction.

2.6 Random variables

There are many definitions of a random variable (r.v.), but we will adopt the
following one:

Definition 2.6 A real variable that takes values depending on the outcome
of an experiment, thus depending on chance, is called a random variable.
It is actually a real-valued function defined on the sample space.

The number of bacteria per unit area in the study of drug control, the number
of voters favoring a certain candidate are two examples of random variables.

Definition 2.7 Let X be a random variable. The distribution function
(or repartition function) of X is defined as F : R → [0, 1],

F (x) = P (X < x), for all x ∈ R.

From the point of view of probability theory, a random variable is completely
characterized by its distribution function. It is to be regarded as known when
its distribution function is given. The distribution function F defined above
has the following properties:

P1. P (a ≤ X < b) = F (b)− F (a), for all a, b ∈ R, a < b.
Proof. If we consider the events

A : a ≤ X < b,

B : X < b,

C : X < a,

we have B = A ∪ C and A ∩ C = ∅. Thus, P (B) = P (A) + P (C) and
therefore

P (A) = P (B)− P (C) = P (X < b)− P (X < a) = F (b)− F (a).

P2. The function F is nondecreasing.
Proof. Let x1 ≤ x2. Then P (x1 ≤ X < x2) ≥ 0, whence, using P1,
F (x2)− F (x2) ≥ 0.
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P3. The function F is continuous to the left:

F (x− 0) = F (x), for all x ∈ R.

P4. lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

In practice, two types of variables are of particular importance: the discrete
and the continuous random variables.

2.6.1 Discrete random variables

Definition 2.8 A random variable X is called discrete (d.r.v.) if it can
take only finitely or countable many values. Thus, it is determined by the
values x1, x2, . . . , xn (or x1, x2, . . .) it can take and by the probabilities pi =
P (X = xi) with which it takes these values. The values pi must satisfy the
condition

∑
i pi = 1.

So, a d.r.v. can be written as

X :

(
x1 x2 . . . xn

p1 p2 . . . pn

)
, pi > 0,

n∑
i=1

pi = 1,

if it take a finite number of values, or as

X :

(
x1 x2 . . . xn . . .
p1 p2 . . . pn . . .

)
, pi > 0,

∞∑
i=1

pi = 1,

if it take a countable number of values. In order not to consider separate
cases we will sometimes adopt the second notation for a finite r.v., allowing
pi = 0 for i = n+ 1, n+ 2, . . . , and we will denote

X = {x1, x2, . . . , xn, . . .} or X = {x1, x2, . . . , xn}.

Definition 2.9 The mapping fX : X → {p1, p2, . . . , pn, . . .},

fX(xi) = pi = P (X = xi),

is called the probability function of the d.r.v. X.

The probability function fX defines completely the r.v. X.

Proposition 2.5 With the notations above, we have

F (x) =
∑
xi<x

pi.

Proof. Let k ∈ N be such that xk < x ≤ xk+1. Then

F (x) = P (X < x)

= P (X = x1 ∪ X = x2 ∪ . . . ∪ X = xk)

= p1 + p2 + . . .+ pk =
k∑

i=1

pi =
∑
xi<x

pi

�
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Figure 2.1: The repartition function of a discrete random variable.

Definition 2.10 The random variables X and Y are called independent
if

P (X = x, Y = y) = P (X = x) · P (Y = y).

The random variables X1, . . . , Xn are called totally independent if for all
m ≤ n and for all m-tuple (i1, i2, . . . , im), 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n we
have

P (Xi1 = x1, Xi2 = x2, . . . , Xim = xm)

= P (Xi1 = x1) · P (Xi2 = x2) · . . . · P (Xim = xm).

2.6.2 Continuous random variables

Definition 2.11 A r.v. is called absolutely continuous when its distri-
bution function F can be represented as

F (x) =

∫ x

−∞
f(t) dt.

In this case, the function f : R → R is called the density of the distribution.

Since lim
x→∞

F (x) = 1, the density must satisfy the equality∫ ∞

−∞
f(x) dx = 1.

Another immediate properties of a continuous r.v. are

P (a ≤ X < b) = F (b)− F (a) =

∫ b

a

f(x) dx,

P (X = a) = 0.

An example of continuous distribution is the normal distribution, also
named Gaussian distribution, after Gauss:5

f(x) =
1√
2πσ

· e−
1
2(

x−µ
σ )

2

.

This probability distribution has a great importance in many fields. It

5Carl Friedrich Gauss (Gauß) (1777-1855), German mathematician and physicist, who
contributed significantly to many fields, including number theory, analysis, differential
geometry, geodesy, magnetism, astronomy and optics.
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Figure 2.2: Some normal density functions.

consist of a family of distributions of the same general form, differing in
their location and scale parameters: the mean µ and standard deviation σ,
respectively. Its graph is often called the bell curve because the graph of its
probability density resembles a bell (see Figure 2.2).

In the following we restrict ourselves to discrete random variables.

2.7 The sum of random variables

Definition 2.12 Let X, Y be two discrete random variables. The sum of
X,Y is also a d.r.v., denoted X + Y and defined by

P (X + Y = z) =
∑
x∈X

P (X = x, Y = z − x), (2.11)

For the sum of n random variables X1, . . . , Xn, the definition can be easily
adapted:

P (X1 + . . .+Xn = z) =∑
x1∈X1,...,xn−1∈Xn−1

P (X1 = x1, . . . , Xn−1 = xn−1, Xn = z − (x1 + . . .+ xn−1).

If X, Y are independent random variables, the sum (2.11) becomes

P (X + Y = z) =
∑
x∈X

P (X = x) · P (Y = z − x).

Example 2.6 Let p ∈ (0, 1), q = 1− p and X,Y be independent d.r.v. gen-
erated by binomial schemes:

X :

(
i(

n
k

)
piqn−i

)
, i = 0, . . . , n, Y :

(
j(

m
j

)
pjqm−j

)
, j = 0, . . . ,m.

For the sum X + Y we have

P (X + Y = k) =
k∑

j=0

P (X = j) · P (Y = k − j)

=
k∑

j=0

(
n

j

)
pjqn−j ·

(
m

k − j

)
pk−jqm−(k−j)

= pkqn+m−k

k∑
j=0

(
n

j

)(
m

k − j

)
= pkqn+m−k

(
m+ n

k

)
.
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In conclusion,

X + Y :

(
k(

m+n
k

)
pkqm+n−k

)
, i = 0, . . . ,m+ n.

2.8 Examples of discrete random variables

2.8.1 Binomial distribution

Definition 2.13 The discrete random variable X has a binomial distri-
bution with parameters n, p (n ∈ N, p ∈ (0, 1)) if its probability function is
fX : {0, 1, . . . , n} → (0, 1],

fX(k) =

(
n

k

)
pkqn−k for all k ∈ Nn ∪ {0}, where q = 1− p. (2.12)

The definition is correct since fX > 0 and
n∑

k=0

fX(k) = 1, as

n∑
k=0

(
n

k

)
pkqn−k = (p+ q)n = 1.

With the notations in Definition 2.8, this r.v. can also be denoted as

X :

(
k(

n
k

)
pkqn−k

)
, k ∈ {0, 1, . . . , n}. (2.13)

The binomial distribution can be defined as follows: suppose we repeat a
certain experiment n times and that the individual experiments in this series
are totally independent. Suppose also that in every experiment an event
A occurs with probability p, independent of the number of the experiment.
The r.v. X will represent the number of occurrences of A in such a series
of n experiments. As we have already seen in Section 2.5.1, the probability
function fX is indeed the one given in (2.12).

2.8.2 The hypergeometric distribution

Definition 2.14 The discrete random variable X has a hypergeometric
distribution with parameters n, a, b (n, a, b ∈ N, n ≤ a, n ≤ b) if its
probability function is fX : {0, 1, . . . , n} → (0, 1],

fX(k) =

(
a
k

)(
b

n−k

)(
a+b
n

) , for all k ∈ {0, 1, . . . , n}. (2.14)

The definition is correct, since fX > 0 and
n∑

k=0

fX(k) = 1. The last equality

is due to the Vandermonde6 identity
n∑

k=0

(
a

k

)(
b

n− k

)
=

(
a+ b

n

)
, (2.15)

which follows by identifying the coefficients of xn in the equality

(1 + x)a+b = (1 + x)a(1 + x)b.

The hypergeometric scheme can be generated using the hypergeometric scheme
(see Section 2.5.3).

6Alexandre-Théophile Vandermonde (1735–1796), French musician and chemist.
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2.8.3 Poisson distribution

Definition 2.15 The discrete random variable X has a Poisson7 distri-
bution with parameter λ > 0 if its probability function is fX : {0, 1, 2, . . .} →
(0, 1],

fX(k) =
λk

k!
e−λ. (2.16)

We have fX > 0 and

∞∑
k=0

fX(k) = e−λ

∞∑
k=0

λk

k!
= e−λ · eλ = 1,

so the definition is correct.

2.8.4 Geometric distribution

Definition 2.16 The discrete random variable X has a geometric distri-
bution with parameter p ∈ (0, 1] if its probability function is fX : N → (0, 1],

fX(k) = p qk−1, for all k ∈ N and with q = 1− p. (2.17)

The geometric distribution can be generated as follows: consider an experi-
ment and let A be an event which can occur as a result of the experiment.
Let p = P (A). We repeat the experiment independently, until the first oc-
currence of A and we denote by Ai the event consisting in the occurrence
of A at the i-th experience, i = 1, 2, . . . . Then, for the random variable X
representing the number of experiments performed until the first occurrence
of A, we have

fX(k) = P (X = k) = P (A1 ∩ A2 ∩ . . . ∩ Ak−1 ∩ Ak) = p qk−1.

Of course, fX > 0 and

∞∑
k=1

p qk−1 =
p

1− q
= 1,

the series involved being the geometric one (whence the name geometric for
the distribution).

2.8.5 Negative binomial distribution

Definition 2.17 The discrete random variable X has a negative binomial
distribution, or binomial with negative exponent with parameter p ∈
(0, 1] if its probability function is fX : {n, n+ 1, . . .} → (0, 1],

fX(k) =

(
k − 1

n− 1

)
pnqk−n, (2.18)

for all k ∈ {n, n+ 1, . . .}, q = 1− p.

7Siméon Denis Poisson (1781-1840), French mathematician and physicist.
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In order to prove the correctness, we use the general binomial series

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + . . .

=
∞∑
j=0

(
α

j

)
xj with α ∈ R, |x| < 1. (2.19)

Here
(
α
j

)
represents the binomial number(

α

j

)
=

α(α− 1) . . . (α− j + 1)

j !
,

defined in formula (1.9), p. 15.
In the particular case x = −q, α = −n , the series (2.19) reads

(1− q)−n =
∞∑
j=0

(
n+ j − 1

j

)
qj =

∞∑
j=0

(
n+ j − 1

n− 1

)
qj

=
∞∑
k=n

(
k − 1

n− 1

)
qk−n,

whence
∞∑
k=n

fX(k) = pn(1− q)−n = 1

and therefore the r.v. is well defined.
The negative binomial r.v. can be generated as follows: consider an

experiment and let A be an event which can occur by performing the exper-
iment. Let p = P (A) > 0. We repeat the experiment independently, until
the event A takes place n times, and then we stop. X is the random variable
which represents the number of experiments performed until A was realized
n times. The possible values for X are indeed n, n + 1, n + 2, . . .. Then, for
a fixed k (k ≥ n), fX(k) can be calculated as follows:

fX(k) = P (X = k) = P (An−1
k−1 ∩ A1

k),

where A1
k and An−1

k−1 are the events

A1
k : “A occurs in the k-th experiment”,

An−1
k−1 : “A occurs n− 1 times in the first k − 1 experiments”.

Their probabilities are, using the binomial scheme (see Section 2.5.1),

P (A1
k) = p,

P (An−1
k−1) =

(
k − 1

n− 1

)
pn−1(1− p)(k−1)−(n−1) =

(
k − 1

n− 1

)
pn−1qk−n.

Since these events are independent, formula (2.18) is proved.
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2.8.6 Poisson’s urns distribution

Definition 2.18 The discrete random variable X has a Poisson’s urns
distribution, with parameters pi ∈ (0, 1], i ∈ {1, . . . , n} if its probability
function is fX : {0, 1, . . . , n} → (0, 1],

fX(k) = p̃k, (2.20)

for all k ∈ {0, 1, . . . , n}, where p̃k is the coefficient of xk in the polynomial

Qn(x) =
n∏

i=1

(pix+ qi).

Here qi = 1− pi. This r.v. is well defined since fX > 0 and

n∑
k=0

p̃k = Qn(1) =
n∏

i=1

(pi + qi) = 1.

This distribution is generated by the Poisson’s urns scheme (see Section
2.5.5).

2.9 Expected value and variance of a discrete

random variable

Let X be a d.r.v. with possible values x1, x2, . . . , xn, . . ., let pk = P (X = xk)
and i ∈ N.

Definition 2.19 The number

αi =
∑
k

xi
k pk,

if the series converges absolutely, is called the i-th moment of X.
The number

µi =
∑
k

(xk − α1)
ipk,

is called the i-th central moment of X.

Of a particular importance are the moments α1 and µ2.

Definition 2.20 The number

α1 =
∑
k

xk pk,

is called the expectation or expected value or mean of X and is denoted
E(X) or M(X).

The expected value is a measure of the center of distribution in the following
sense: if pk are interpreted as masses attached to the points xk ∈ R, then
E(X) is the center of mass of this system on the real axis:

α1 = E(X) =

∑
xk pk∑
pk

.
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Example 2.7 If we consider the random variable

X :

(
k
1/6

)
k∈N6

representing the number of face which appears when rolling a die, then its
expected value is

E(X) =
6∑

k=1

k · pk =
1

6

6∑
k=1

k = 3.5 .

Definition 2.21 The number µ2 is called the variance of X and is denoted
by var (X) or D2(X). Thus,

var (X) =
∑
k

(xk − E(X))2 pk = E
(
(X − E(X))2

)
.

The square root of the variance is called the standard deviation or dis-
persion and is denoted by σ(X) or D(X):

σ(X) =
√

var (X).

Before presenting the main properties of the expectation and variance, we
give the following definition.

Definition 2.22 Let X :

(
xk

pk

)
, k ∈ I, be a d.r.v., i ∈ N and a ∈ R.

Then the random variables a+X, aX and X i are defined, respectively, as

a+X :

(
a+ xk

pk

)
, k ∈ I,

aX :

(
a xk

pk

)
, k ∈ I,

X i :

(
xi
k

pk

)
, k ∈ I.

Proposition 2.6 The expectation and the variance have the following prop-
erties:

P1. E(a) = a, if a is the constant r.v. a :
(
a
1

)
.

P2. E(aX) = aE(X).

P3. E(X + Y ) = E(X) + E(Y ); Indeed, if Z = X + Y,

X :

(
xk

pk

)
, k ∈ Nn, Y :

(
yk
rk

)
, k ∈ Nm, then Z :

(
xi + yj
pij

)
,

with pij = P (X = xi, Y = yj), i ∈ N, j ∈ Nm. Thus,

E(Z) =
n∑

i=1

m∑
j=1

(xi + yj)pij =
n∑

i=1

xi

m∑
j=1

pij +
m∑
j=1

yj

n∑
i=1

pij.
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But

m∑
j=1

pij = P (Z = xi + y1) + . . .+ P (Z = xi + ym)

= P (Z = xi + y1 ∪ . . . ∪ Z = xi + ym)

= P (X = xi) = pi,

for all i ∈ Nn. Analogously we calculate
∑n

i=1 pij = rj, for all j ∈ Nm,
whence the conclusion

E(X + Y ) =
n∑

i=1

xipi +
m∑
j=1

yjrj = E(X) + E(Y ).

P4. E(aX + bY ) = aE(X) + bE(Y ), E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE(Xi)

P5. E(X − E(X)) = 0.

P6. If X ≥ 0, then E(X) ≥ 0.

P6’. If X ≥ Y, then E(X) ≥ E(Y ).

P7. var (X) = α2 − α2
1 = E(X2)− (E(X))2 . Indeed,

var (X) = E
(
(X − E(X))2

)
= E

(
X2 − 2E(X) ·X + (E(X))2

)
= E(X2)− 2E(X) · E(X) + (E(X))2

= E(X2)− (E(X))2.

P8. var (aX + b) = a2var (X). Indeed,

var (aX + b) = E
(
(aX + b− E(aX + b))2

)
= E

(
(aX + b− aE(X)− b)2

)
= E

(
a2(X − E(X))2

)
= a2var (X).

Consequences:
var (b) = 0,

var (X + b) = var (X),

var (aX) = a2var (X).

P9. If X, Y are independent r.v., E(X · Y ) = E(X)E(Y ).

Indeed, let

X :

(
xk

pk

)
, k ∈ Nn, Y :

(
yk
rk

)
, k ∈ Nm. Then X · Y :

(
xiyj
pij

)
,

with

pij = P (X = xi ∩ Y = yj) = P (X = xi) · P (Y = yj) = pirj.
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Then

E(X · Y ) =
n∑

i=1

m∑
j=1

xiyjpij =
n∑

i=1

m∑
j=1

xiyjpirj

=

(
n∑

i=1

xipi

)(
m∑
j=1

yjrj

)
= E(X)E(Y ).

P9’. If Xi, i ∈ Ns are totally independent d.r.v., then

E

(
s∏

i=1

Xi

)
=

s∏
i=1

E(Xi).

Remark 2.6 If two d.r.v. are not independent, property P9 does not hold
in general.

The standard deviation and the variance are a measure of the scattering
of the distribution about the expected value.

2.10 Covariance

As we have just seen, it is important to calculate the variance of a sum of r.v.,
knowing the individual variances. To do this, we need some preliminaries.
We start with the following definition.

Definition 2.23 Let X,Y be two r.v. such that E(X), E(Y ),
E(X ·Y ), var (X) and var (Y ) exist. The covariance of X and Y is defined
as

cov (X, Y ) = E ((X − E(X)) · (Y − E(Y ))) . (2.21)

Proposition 2.7 The covariance has the following properties:

P1. cov (X,X) = var (X).

P2. cov (X, Y ) = E(X · Y )− E(X)E(Y ).

P2’. If X and Y are independent, then cov (X,Y ) = 0.

P3. If Xi, i ∈ Nn, then

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var (Xi) + 2
∑

1≤i<j≤n

cov (Xi, Xj). (2.22)

Proof. We have, using P4 from Proposition 2.6 p. 50,

var

(
n∑

i=1

Xi

)
= E

( n∑
i=1

Xi −
n∑

i=1

E(Xi)

)2


= E

( n∑
i=1

Xi − E(Xi)

)2
 .
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Employing now the formula(
n∑

i=1

ai

)2

=
n∑

i=1

a2i + 2
∑

1≤i<j≤n

aiaj,

for ai = Xi − E(Xi), we get the conclusion.

Definition 2.24 The random variables X1, X2, . . . , Xn are said to be un-
correlated if

cov (Xi, Xj) = 0, whenever i ̸= j.

We are now able to establish a result regarding the variance of the sum of
random variables. More precisely, the following result holds.

Proposition 2.8 The following statements are true:

P4. Totally independent r.v. are uncorrelated.

P5. If X1, . . . , Xn are uncorrelated r.v., then

var (X1 +X2 + . . .+Xn) = var(X1) + var(X2) + . . .+ var(Xn).

Proof The second term in the right-hand side of (2.22) vanishes.

P6. var(X + Y ) = var(X) + var(Y ) if and only if cov(X,Y ) = 0.

2.11 Expected values and variance for some

discrete random variables

Binomial distribution

Theorem 2.9 If X is a d.r.v. having a binomial distribution given in (2.13),
then

E(X) = np, var (X) = np q.

Proof.

E(X) =
n∑

k=0

k

(
n

k

)
pkqn−k.

To calculate this sum differentiate with respect to x the binomial formula

(q + p x)n =
n∑

k=0

(
n

k

)
pkxkqn−k,

obtaining

n(q + p x)n−1p =
n∑

k=1

(
n

k

)
pkqn−kkxk−1. (2.23)

For x = 1, we obtain

E(X) = n(p+ q)n−1p = np.

Further, using the property P7 of Proposition 2.6,

var (X) = E(X2)− (E(X))2 , (2.24)
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where

E(X2) =
n∑

k=0

k2

(
n

k

)
pkqn−k.

If now we multiply the identity (2.23) by x, we differentiate it (with respect
to x) and then we replace x = 1, we get

E(X2) = np (1 + (n− 1)p).

Replacing it in (2.24), we finally obtain the conclusion

var (X) = np (1 + np− p)− n2p2 = np q.

�

Hypergeometric distribution

Theorem 2.10 If X is a d.r.v. having a hypergeometric distribution given
in (2.14), then

E(X) = np, var (X) = np q
a+ b− n

a+ b− 1
, with p =

a

a+ b
, q =

b

a+ b
.

Proof.

E(X) =
1(

a+b
n

) n∑
k=0

k

(
a

k

)(
b

n− k

)
.

Since

k

(
a

k

)
= a

(
a− 1

k − 1

)
, (2.25)

we can write

E(X) =
1(

a+b
n

) n∑
k=1

a

(
a− 1

k − 1

)(
b

n− k

)
= a

(
a+b−1
n−1

)(
a+b
n

) ,

where in the last equality we used the Vandermonde equality (2.15). After
simplifications, the conclusion holds.

For the variance we first evaluate

E(X2) =
1(

a+b
n

) n∑
k=1

k2

(
a

k

)(
b

n− k

)

=
1(

a+b
n

) ( n∑
k=1

k

(
a

k

)(
b

n− k

)
+

n∑
k=2

k(k − 1)

(
a

k

)(
b

n− k

))
.

Next we use (2.25) and the relation

k(k − 1)

(
a

k

)
= a(a− 1)

(
a− 2

k − 2

)
. (2.26)

Then again Vandermonde type equalities occur and we obtain

E(X2) =
a(

a+b
n

)(a+ b− 1

n− 1

)
+

a(a− 1)(
a+b
n

) (
a+ b− 2

n− 2

)
=

n

a+ b
+ n(n− 1)

a(a− 1)

(a+ b)(a+ b− 1)
.

Replacing now E(X) and E(X2) in formula (2.24) and making some calcu-
lations, we obtain the conclusion. �
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Poisson distribution

Theorem 2.11 If X is a d.r.v. having a Poisson distribution given in
(2.16), then

E(X) = λ, var(X) = λ.

Proof.

E(X) = e−λ

∞∑
k=0

k
λk

k!
= λe−λ

∞∑
k=1

k
λk−1

(k − 1)!
= λe−λeλ = λ.

Then we evaluate E(X2), obtaining

E(X2) = e−λ

∞∑
k=0

k2λ
k

k!
= λe−λ

∞∑
k=1

k
λk−1

(k − 1)!

= λe−λ

(
∞∑
k=1

(k − 1)
λk−1

(k − 1)!
+

∞∑
k=1

λk−1

(k − 1)!

)

= λ2e−λ

∞∑
k=2

λk−2

(k − 2)!
+ λe−λ

∞∑
k=1

λk−1

(k − 1)!

= λ2e−λeλ + λe−λeλ = λ(λ+ 1).

Finally, var(X) = E(X2)− (E(X))2 = λ(λ+ 1)− λ2 = λ. �

Geometric distribution

Theorem 2.12 If X is a d.r.v. having a geometric distribution given in
(2.17), then

E(X) =
1

p
, var(X) =

q

p2
.

Proof.

E(X) = p

∞∑
k=1

kqk−1 = p

(
1

1− q

)′

q

=
p

(1− q)2
=

1

p
.

E(X2) = p
∞∑
k=1

k2qk−1.

To evaluate this sum, we consider the power series

∞∑
k=1

kqk−1 =
1

(1− q)2
,

we multiply it by q and then we differentiate the equality with respect to q.
We obtain

∞∑
k=1

k2qk−1 =

(
q

(1− q)2

)′

q

=
1 + q

(1− q)3
.

By replacing it in E(X2) we obtain the conclusion. �
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Negative binomial distribution

Theorem 2.13 If X is a d.r.v. having a negative binomial distribution,
given in (2.18), then

E(X) =
n

p
, var(X) =

nq

p2
.

Proof. In this case, if we use the methods above the calculations are quite
complicated. This is why we will describe another method for calculating
expectation and dispersion. Specifically, we will write the r.v. X as a sum of
totally independent random variables whose expected values and variances
can be calculated more easily.

So, we consider the following random variables:

X1 = nr. of experiments performed until the first occurrence of A,

Xk = nr. of experiments performed between the (k − 1)-th

occurrence and the k-th occurrence of A,

for k = 2, 3, . . . , n. These r.v. are totally independent and have a geometric
distribution with the same parameter p.

According to Theorem 2.17 one has

E(Xk) =
1

p
, var(Xk) =

q

p2
,

for all k ∈ Nn.
Since the expectation of the sum of r.v. equals the sum of their expectan-

cies (see P9’ p. 52), we have

E(X) = E(X1) + . . .+ E(Xn) = nE(X1) =
n

p
,

and thus the formula for E(X) is proved.
For the variance, the analogous result is in general not true, unless the

r.v. are totally independent. This result will be proved in the next section
(Proposition 2.8, P5, p. 53). Fortunately, in our case the r.v. are totally
independent, so

var(X) = var(X1) + . . .+ var(Xn) = n · var(X1) =
nq

p2
.

�

Poisson’s urns distribution

Theorem 2.14 If X is a d.r.v. having a Poisson’s urns distribution, given
in Definition 2.18, then

E(X) =
n∑

k=1

pk, var(X) =
n∑

k=1

pkqk.
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Proof. In this case the direct methods are again very complicated, so we
will use the same idea of writing X as a sum of n totally independent random
variables.

So, let Xk (1 ≤ k ≤ n) be the r.v. representing the number of white balls
extracted from the urn Uk. Then Xk are totally independent and X can be
expressed as

X = X1 +X2 + . . . Xn.

The random variable Xk has the distribution

Xk :

(
1 0
pk qk

)
.

A simple calculation shows that

E(Xk) = pk, E(X2
k) = pk, var(Xk) = pkqk, for k ∈ Nn,

whence

E(X) =
n∑

i=1

E(Xk) =
n∑

i=1

pk,

var(X) =
n∑

i=1

var(Xk) =
n∑

i=1

pkqk.

We finish by noting that, in the case when the urns are identical (pk = p),
we recover the expectation and the variance of the binomial distribution. �

2.12 Markov’s inequality, Chebyshev’s

theorem

Proposition 2.15 (Markov’s inequality) 8Let X be a random variable
and a > 0. Then

P (|X| ≥ a) ≤ E(|X|2)
a2

. (2.27)

Proof. Let Za be the r.v.

Za =

{
1, if |X| ≥ a,
0, otherwise.

This r.v. satisfies the inequality |X|2 ≥ a2 · Za, which further implies

E(|X|2) ≥ a2E(Za) = a2P (|X| ≥ a).

�

The following result, known as Chebyshev’s9 theorem, can be used to
determine a lower bound for the probability that a random variable Y of
interest falls in an interval [µ− kσ, µ+ kσ] around the mean µ.

8Andrey Markov (1856-1922), Russian mathematician.
9Pafnuty Lvóvich Chebyshev (1821-1894), Russian mathematician
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Theorem 2.16 (Chebyshev) Let Y be a random variable with expected
value µ and finite variance σ2. Then, for any positive constant ε1 we have

P (|Y − µ| ≥ ε1σ) ≤
1

ε21
. (2.28)

Proof. If in inequality (2.27) one takes X = Y − E(Y ) and a = ε1σ, we
immediately get the conclusion. �

The inequality (2.28) can also be written as

P (|Y − µ| < ε1σ) ≥ 1− 1

ε21
,

or, if one denotes ε = σε1,

P (|Y − E(Y )| ≥ ε) ≤ var(Y )

ε2
, or

P (|Y − E(Y )| < ε) ≥ 1− var(Y )

ε2
. (2.29)

Example 2.8 The number of customers per day at a certain sales counter
denoted by Y has been observed for a long period of time and found to have a
mean of 20 customers with a standard deviation of 2 customers10. The prob-
ability distribution of Y is not known. What can be said about the probability
that Y will be between 16 and 24 tomorrow?

Solution. We need to find P (16 < Y < 24). For any ε > 0, inequality (2.29)
can be written as

P (µ− ε < Y < µ+ ε) ≥ 1− σ2

ε2
.

For µ = 20 and σ = 2, it follows that µ − ε = 16 and µ + ε = 24 if ε = 4.
Thus

P (16 < Y < 24) ≥ 1− 22

42
=

3

4
.

This means that tomorrow’s customer total will be between 16 and 24 with
high probability (at least 3/4).

Notice that, if σ was 1,

P (16 < Y < 24) ≥ 1− 1

42
=

15

16
.

So the value of σ has considerable effect on probabilities associated with
intervals.

2.13 Laws of large numbers

The Laws of Large Numbers (LLN), called also the Golden Theorems of
probabilities, are theorems describing the long-term stability of a random
variable. For example, when rolling a die a certain number of times, the
average of points will be stable around the expected value 3.5 (see Example
2.7, p. 50), as the number of repetitions becomes large.

10How can one estimate the standard deviation after many observations, is a subject of
statistics, not treated in this book.
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Forms of LLN

The Laws of Large Numbers exist in two forms: the Weak Law of Large
Numbers (WLLN) and the Strong Law of Large Numbers (SLLN).
Both state the convergence of the sample average towards the mean value,
the difference between them being the type of convergence.

Definition 2.25 A sequence (Xn)n∈N of random variables converges in

probability to a random variable X (denoted Xn
p−→ X) if

lim
n→∞

P (|Xn −X|) < ε = 1, for all ε > 0. (2.30)

A sequence (Xn)n∈N of random variables converges almost sure to a ran-
dom variable X (denoted Xn

a.s.−→ X) if

P
(
lim
n→∞

Xn = X
)
= 1, for all ε > 0. (2.31)

One can show that, if Xn
a.s.−→ X, then Xn

p−→ X, but the reverse implication
is not true in general. However, it is known the fact that, if Xn

p−→ X, then
there exists a subsequence (Xnk

)k∈N such that Xnk

a.s.−→ X. For these reasons,
the convergence in probability is known as weak convergence, while the
almost sure convergence is known as strong convergence.

Definition 2.26 (Weak Law of Large Numbers) A sequence
(Xn)n∈N of random variables with E(Xn) < ∞ for all n ∈ N obeys the
WLLN if

1

n

n∑
k=1

(Xk − E(Xk))
p−→ 0, that is

lim
n→∞

P

(
1

n

n∑
k=1

(Xk − E(Xk)) < ε

)
= 1, for all ε > 0. (2.32)

In the following we give some theorems regarding the WLLN.

Theorem 2.17 (WLLN, Markov) Let (Xn)n∈N be a sequence of random
variables satisfying the following condition (known as Markov’s condition):

lim
n→∞

1

n2
var (X1 +X2 + . . .+Xn) = 0.

Then (Xn)n∈N obeys the WLLN.

Proof. For n ∈ N we consider the average

Xn =
1

n
(X1 +X2 + . . .+Xn) .

Then, we have

P

(
1

n

n∑
k=1

Xk − E(Xk) ≥ ε

)
≤ P

(∣∣∣∣∣ 1n
n∑

k=1

Xk − E(Xk)

∣∣∣∣∣ ≥ ε

)
= P

(∣∣Xn − E(Xn)
∣∣ ≥ ε

)
≤

var
(
Xn

)
ε2

=
var(X1 + . . .+Xn)

n2ε2
.
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In the last equality we have used the Cebyshev inequality given in Theorem
2.16, for Y = Xn. If we make n → ∞ one obtains

lim
n→∞

P

(
1

n

n∑
k=1

Xk − E(Xk) ≥ ε

)
= 0, for all ε > 0,

which is equivalent to (2.32), whence the sequence (Xn)n∈N obeys the WLLN.
�

Theorem 2.18 (WLLN, Chebyshev) Let (Xn)n∈N be a sequence of pair-
wise independent random variables for which there exists the real constant
0 < M < ∞ such that

var(Xn) ≤ M, for all n ∈ N.

Then the sequence (Xn)n∈N obeys the WLLN.

Proof. The conclusion follows immediately from the fact that

1

n2
var(X1 + . . .+Xn) =

1

n2
(var(X1) + . . .+ var(Xn)) ≤

M

n

and from the previous theorem. �

Theorem 2.19 (WLLN, Poisson) If in a sequence of independent trials
of an experiment the probability that an event A occurs in each trial is p,
then for all ε > 0 we have

lim
n→∞

P
(∣∣∣mn

n
− p
∣∣∣ < ε

)
= 1,

where mn is the number of occurrences of A in n trials.

Poisson’s Theorem states that the sequence of relative frequencies mn/n
of the occurrence of an event tends in probability to the probability of the
event.
Proof. For an experiment we consider the random variable

X :

(
1 0
p q

)
, with q = 1− p,

which takes the value 1 if event A occurs and 0 otherwise. A simple calcula-
tion shows that E(X) = p and var(X) = pq. Then, to each trial we consider
a random variable Xn = X and we see that

Xn =
1

n
(X1 +X2 + . . .+Xn) =

mn

n
and E(Xn) =

np

n
= p.

The sequence of r.v. (Xn)n∈N satisfies the Markov condition:

1

n2

n∑
i=1

var(Xi) =
pq

n
−→ 0, n → ∞,

therefore, by applying Markov’s Theorem the conclusion follows immediately.
�
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Definition 2.27 (Strong Law of Large Numbers) A sequence
(Xn)n∈N of random variables with E(Xn) < ∞ for all n ∈ N obeys the
SLLN if

1

n

n∑
k=1

(Xk − E(Xk))
a.s.−→ 0, that is

P

(
lim
n→∞

1

n

n∑
k=1

(Xk − E(Xk)) = 0

)
= 1. (2.33)

We will give without proof two results regarding the SLLN.

Theorem 2.20 (Kolmogorov) If (Xn)n∈N is a sequence of independent
random variables satisfying

lim
n→∞

n∑
k=1

1

k2
var(Xk) < ∞,

then
1

n

n∑
k=1

(Xk − E(Xk))
a.s.−→ 0,

i.e. the sequence (Xn)n∈N obeys the SLLN.

Theorem 2.21 (Kolmogorov) If (Xn)n∈N is a sequence of independent
identically distributed random variables such that E(Xn) = µ < ∞. Then

1

n

n∑
k=1

Xk
a.s.−→ µ,

i.e. the sequence (Xn)n∈N obeys the SLLN.

2.14 Solved problems

Problem 2.1 (Birthday problem) How many persons do we need to have
in the room to make it a favorable bet (probability of success grater than 0.5)
that two persons in the room will have the same birthday?

In probability theory, this is also called birthday paradox. There are 365
possible birthdays, so it is tempting to guess that we would need about 1/2
of this number, 183. The result will be somehow surprisingly, in fact the
required number being 23. For 60 or more person, the probability is greater
than 99%, although it cannot actually be 100% unless there are 366 persons.

Solution. Let pn denote the probability that, in a room with n people,
there is no duplication of birthday. We suppose that for each person, there
are 365 possible birthdays, all equally probable.11 Then

pn =
365 · 364 · . . . · (365− n+ 1)

365n
.

11Even if we have supposed that the 365 birthdays are equally likely to fall in any
particular day, statistical evidence shows this is not true.
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For our problem, we need the minimum value of n for which 1 − pn > 0.5
(or, equivalent pn < 0.5). Evaluating qn = 1− pn for different values of n, we
find

n = 15 qn = 25.29% n = 30 qn = 70.63%
n = 20 qn = 41.14% n = 40 qn = 89.12%
n = 21 qn = 44.36% n = 50 qn = 97.03%
n = 22 qn = 47.56% n = 57 qn = 99.01%
n = 23 qn = 50.72% n = 100 qn = 99.99996%

Problem 2.2 (Same birthday as you) What is the probability that in a
room with n people someone in the room has the same birthday as you?

Solution. Let qn denote the probability of the contrary event An, that nobody
in the room has the same birthday as you. Then An can be written as a
product of n independent events,

An = B1 ∩B2 ∩ · · · ∩Bn,

where Bk (1 ≤ k ≤ n) is the event “person k does not have the same birthday
with you”. The probability of each Bk is

P (Bk) =
364

365
,

since there are 364 favorable cases (all the days, except yours) and 365 pos-
sible cases. Therefore, the required probability will be

sn = 1− qn = 1−
(
364

365

)n

.

A calculation show that, for n = 23 persons, the probability is s23 = 6.1%,
and sn starts to be greater than 50% for n ≥ 253, which is significantly greater
than 365/2 = 185.5 .

Problem 2.3 (The problem of points) This is an old and classical prob-
lem in probability theory.

Consider two teams, A and B, which are supposed to be evenly matched.
They are competing for a prize, received by the first team which wins n games.
After A has won i games and B has won j games (i, j < n), the competition
is interrupted unexpectedly and one has to decide how to divide up the prize
money.

Solution. This problem received a lot of interest early in the history of
probability. The following list give some suggestions about the proportion
that A should receive.

Pacioli (1494) : i/(i+ j),

Tartaglia (1556) : (n+ i− j)/2n,

Forestani (1603) : (2n− 1 + i− j)/(4n− 2).

The problem was solved by Fermat and Pascal in 1654 and their exchange
of letters in which they established the solution can be seen in [5]. The
idea was that each team should receive a fraction of the prize equal to the
probability that it will win the remaining match. So, the number of games
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A needs to win is k1 = n − i and the number of games B needs to win is
k2 = n − j. The maximum number of games to be played in the remaining
match is k1 + k2 − 1.

For winning the contest in exactly m games, A must win the last game
and k1 − 1 of the first m − 1 games. According to the binomial scheme (p.
38), the probability of winning k1 − 1 of m− 1 games is(

m− 1

k1 − 1

)(
1

2

)m−1

,

therefore the probability that A wins in m games will be 2−m
(
m−1
k1−1

)
.

The possible values for m are k1, k1 + 1, . . . , k1 + k2 − 1. In conclusion,
the probability that A wins is

k1+k2−1∑
m=k1

1

2m

(
m− 1

k1 − 1

)
.

Analogously, the probability that B wins is

k1+k2−1∑
m=k2

1

2m

(
m− 1

k2 − 1

)
.

Problem 2.4 (Capture-recapture experiments) A biologist goes to a
pond and captures K = 60 fishes, marks each with a dot of paint and then
release them. After a while he goes back and captures another sample of
n = 50, finding k = 12 marked and n− k = 38 unmarked fishes. What is his
best guess about the size of the population of fishes in the pond? (We suppose
that no fishes enter or leave the population between the two visits).

Solution. Let N denote the number of fishes in the pond. The probability
of getting k marked and n − k unmarked in a sample of n is (using the
hypergeometric scheme, p. 40)

pN =

(
K
k

)(
N−K
n−k

)(
N
n

) .

In order to estimate the population, we chose N to maximize pN . A simple
calculation shows that

pN = pN−1 ·
N −K

N −K − (n− k)
· N − n

N
,

so the inequality
pN
pN−1

≥ 1

will be equivalent to

N ≤ Kn

k
.

In conclusion, for

N =

[
Kn

k

]
the probability pN will be maximized.
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Let us mention that, in the case when N = Kn
k
, we have the equality

K

N
=

k

n
,

which means that the proportion of marked fishes in the population coincides
with the proportion of marked fishes in the sample.

In our example N = 60·50
12

= 250, so the probability pN is maximized for
N = 250.

Problem 2.5 5% of men and 0.25% of women are colorblind. What is the
probability a colorblind person is a man?

Solution. Consider the experiment of testing a person at random and take
the events

A : “the tested person is colorblind”,

B1 : “the tested person is a woman”,

B2 : “the tested person is a man”.

Then S = {B1, B2} is a (CSE) since B1 ∩B2 = ∅ and B1 ∪B2 = E, E being
the sure event “a person is tested”. So, A takes place together with one (and
only one) of the events of S. According to the formula on total probability
we have

P (A) = P (B1) · P (A|B1) + P (B2) · P (A|B2).

The probabilities involved here are

P (B1) =
1

2
, P (A|B1) =

5

100
, P (B2) =

1

2
P (A|B2) =

0.25

100
,

therefore P (A) = 2.62%.
Suppose now that the experiment of testing was realized and the event

A took place, meaning that the tested person is colorblind. We are asked
about the probability P (B2|A), that is, the probability that the person is a
man, knowing already that is colorblind. This can be also interpreted as the
probability that the occurrence of A is due to the event B2 in the (CSE) S.
To calculate the required probability we use Bayes’ formula

P (B2|A) =
P (B1) · P (A|B1)

P (A)
= 0.9523 . . . ,

thus the probability that a colorblind person is a man is 95.23%.

Problem 2.6 (Genetics) A woman has a brother with hemophilia but two
parents who do not have the disease. If she has two sons without the disease,
what is the probability she is a carrier?

Solution. It is known that hemophilia is caused by a recessive gene h on
the X chromosome and that a woman has the last pair of chromosome XX,
while a man has XY . A baby will take one chromosome from mother and
one from father.

Since the brother is ill, he must be XhY (where Xh is from mother and
Y from father). From the fact that the mother is healthy, we deduce that
the mother is XhXH . This is because the healthy gene H is dominant over
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the recessive h and then, since the mother is a carrier, she has an ill gene
h. The father must therefore be XHY , because the other possibility XhY
would mean that he were ill.

In conclusion, the parents are XhXH and XHY .
In this situation, their children might be:

XhXH XHXH XhY XHY .

So, for a daughter, the chances of being a carrier are 50%. If she is a carrier,
then the chance that her sons will have the disease is 50% (since the sons
can be either XhY or XHY ).

So, let us consider the following events:

B : “ she is a carrier”

A : “ she has two healthy sons”

We are asked about the probability P (B|A), which can be calculated with
Bayes’ formula. First we use the FTP formula

P (A) = P (A|B)P (B) + P (A|B)P (B) =
1

4
· 1
2
+ 1 · 1

2
=

5

8
.

The probability P (A|B) was calculated in the following way: she is XhXH ,
therefore a son can be either XhY (in which case he is ill), or XhXH (in
which case he is healthy). So the probability that one son is healthy is 1/2.

Now, Bayes’ formula gives

P (B|A) = P (A|B)P (B)

P (A)
=

1
8
5
8

=
1

5
.

Problem 2.7 If one plays a roulette and bet C1 on black, then one wins C1
with a probability 18

37
and loses C1 with a probability 19

37
.

a) How much is the expected value of winning?

b) If the roulette is an American one, where the probability of winning is
18
38
, while the probability of loosing is 20

38
, how much is in this case the

expected value of winning?

c) A man plays American roulette and bets $1 on black 19 times. What are
his expected winnings?

Solution.

a) The r.v. representing the winning is

X :

(
1 −1
18
37

19
37

)
.

Its expected value will be

E(X) = 1 · 18
37

+ (−1) · 19
37

= −0.0270.

It means that one loses about 2.70 cents per play.



CHAPTER 2. DISCRETE PROBABILITY THEORY 66

b) In the second case, the r.v. representing the winning is

Y :

(
1 −1
18
38

20
38

)
and its expected value will be

E(Y ) = 1 · 18
38

+ (−1) · 20
38

= −0.0526 $.

c) For i ∈ N19, let Yi be the r.v. representing the winning at the i-th game.
Then E(Yi) = E(Y ) = − 2

38
, whence the required expectation will be

E(Y1 + . . .+ Y19) = E(Y1) + . . .+ E(Y19) = 19 ·
(
−2

38

)
= −1 $.

Problem 2.8 A man never buy bus tickets. He assumes that there is a
probability 0.05 that he will be caught. The first offense costs nothing, the
second costs C20, and the subsequent offenses cost C40 each. Under these
assumptions, how does the expected cost of traveling 100 times without buying
tickets compare with the cost of paying the ticket each trip, if the ticket for
one trip costs C2?

Solution. Let p = 0.05 denote the probability of being caught once. The r.v.
representing the sum he owes in the case when he never pays the ticket

X :

(
0 20 20 + 40 · 1 . . . 20 + 40 k . . . 20 + 40 · 98

p0 + p1 p2 p3 . . . pk+2 . . . p100

)
,

where pk =
(
100
k

)
pk(1− p)100−k. Then

E(X) =
98∑
k=0

(20 + 40k)

(
100

k + 2

)
pk+2(1− p)98−k = 140.98C,

which is smaller than the sum spent in the case he pays each trip (C200). To
calculate the sum, we used similar arguments with those used in calculating
the expectation of the binomial distribution.

Problem 2.9 Suppose that, when somebody travels with the bus, the cost of
one trip is C2 and there is a probability p of being controlled. Each time when
a person is caught without ticket, the penalty is C40. Which is the maximum
value of p for which the expected cost of traveling 100 times without buying
a ticket is smaller than the C200 (the sum owed in the case one pays each
ticket)?

Solution. The r.v. representing the sum owed in the case when one never
pays the ticket is

X :

(
40k(

100
k

)
pk(1− p)100−k

)
, k = 0, 1, . . . , 100,

therefore if we consider the r.v. X̃ = 1
40
X, then X̃ will have a binomial

distribution. According to Theorem 2.9, its expected value will be E(X) =
100p, whence E(X) = 4000p. The inequality 4000p ≤ 200 implies

pmax =
200

4000
= 0.05 .



Chapter 3

Graph Theory

3.1 Introduction to graphs

3.1.1 Graphs

In real world, many situations can be described by means of a diagram con-
sisting of set of points together with lines joining certain pairs of these points.
For examples, the points could represent communication centers with lines
representing communications links, or the points could be people with lines
joining pairs of friends. In such diagrams one is mainly interested in whether
or not two given points are joined by a line. A mathematical representation
of situations of this type leads to the concept of graph.

Definition 3.1 A graph G consists of a (finite) set V , whose members are
called vertices, and a set E of unordered pairs with components in V , whose
members are called edges. We usually write G = (V,E) and denote the edges
as {x, y} or simply xy, where x, y ∈ V .

Remark 3.1 In a graph, the edge {x, y} coincides with the edge {y, x} and
we also allow as edge a pair {x, x}.

Example 3.1 G = (V,E), with

V = {a, b, c, d, f}, E = {{a, b}, {a, d}, {b, f}, {c, d}, {d, f}} .
Definition 3.2 Let G = (V,E) be a graph.

We say that two vertices x, y ∈ V are adjacent (or neighbors) whenever
xy is an edge.

An edge has a set of one or two distinct vertices called endpoints.

If a vertex v is an endpoint of the edge e, then v is said to be incident on
e and e is said to be incident on v.

A loop (or self-loop) at a vertex v is an edge that joins the vertex v with
itself. A proper edge is an edge that joins two different endpoints.

A graph with no loops is called simple graph.

The graph G′ = (V ′, E ′) is called subgraph of G if V ′ ⊆ V and E ′ ⊆ E.

If V1 ⊆ V , the graph formed by the vertices of V1 and all the edges in E
between these vertices is called the subgraph induced on the vertex
subset V1.

67
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Figure 3.1: The pictorial representation of the graph in Example 3.1.

A spanning subgraph of the graph G is a subgraph that contains all the
vertices of G.

The graph G is called complete if xy ∈ E for all x, y ∈ V , x ̸= y.

Remark 3.2 Let G = (V,E) be a graph and let

G = {H, H subgraph of G}

be the set of all subgraphs of the graph G. On G one can introduce the
following relation:

H1 ≼ H2 ⇐⇒ H1 subgraph of H2. (3.1)

One can easily prove that (G,≼) is a poset. For the definition of the poset
and more details about order relations, see Appendix 3.9.4, p. 135.

3.1.2 Degree of a vertex. Euler’s theorem for
graphs

Definition 3.3 The degree of a vertex v in a simple graph G = (V,E) is
the number of edges of G incident on v. It will be denoted δ(v) or deg(v).

In a graph with loops, it is considered that each loop at v brings a contri-
bution 2 to δ(v).

For the graph in Example 3.1, the degrees are

δ(a) = 2, δ(b) = 2, δ(c) = 1, δ(d) = 3, δ(f) = 2.

The relation between the sum of degrees and the number of edges is given
by Euler’s1 theorem.

Theorem 3.1 (Euler) The sum of the values of δ(v), taken over all the
vertices of a graph G = (V,E), is equal to twice the number of edges:∑

v∈V

δ(v) = 2|E|.

Proof. An edge e = {x, y} brings a contribution 2 to the total degree: 1 to
δ(x) and 1 to δ(y). �

An immediate consequence of Euler’s theorem is the following corollary:

Corollary 3.2 In a graph, there is an even number of vertices having odd
degree.

This result is sometimes known as the handshaking lemma, in view of the
following interpretation: Given any set of people, the number of people who
have shaken hands with an odd number of other members of the set is even.

1Leonhard Euler (1707-1783), Swiss mathematician and physicist.
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3.1.3 Walks, trails, paths, cycles in graphs

Frequently, we use graphs as models of practical situations involving routes.
In these situations, the vertices represent towns/junctions and each edge
represents a road or some other form of communication link. Therefore one
needs to introduce some additional notions, in order to handle these practical
situations.

Definition 3.4 2Let G = (V,E) be a graph.

A walk of length k (k ∈ N) in G is a sequence

ω = ⟨v0, e1, v1, e2, v2, . . . , ek, vk⟩,

whose terms are alternately vertices and edges, such that, for 1 ≤ i ≤ k,
the ends of ei are vi−1 and vi. We say that ω is a walk from v0 to vk
or a (v0, vk)-walk. The walk ω is often represented simply by its vertex
sequence ⟨v0, v1, . . . , vk⟩ or by its edge sequence ⟨e1, e2, . . . , ek⟩.

A walk ω1 in G is called a sub-walk of the walk ω if ω1 is a sequence
ω1 = ⟨vi, ei+1, vi+1, . . . , ej, vj⟩ of consecutive terms of ω.

A trail in G is a walk in which all the edges (but not necessary the vertices)
are distinct.

A path in G is a walk in which all vertices (and implicitly all edges) are
distinct, except the first and the last, which can sometimes coincide.

We will also use the word “path” to denote a graph or subgraph whose
vertices and edges belong to path.

A walk/trail/path in G is called closed if the first and the last vertex
coincides. A walk/trail/path which is not closed is called open.

A cycle in G is a closed path in G.

The distance between two vertices x, y ∈ V , denoted d(x, y) or dist(x, y),
is the minimum of the lengths of all (x, y) - paths in G:

d(x, y) = min{length(ω), with ω an (x, y) - path}.

Definition 3.5 Let ω1 = ⟨x1, x2, . . . , xk⟩, ω2 = ⟨y1, y2, . . . , yp⟩ be two walks
of a graph G = (V,E), such that xk = y1. The walk

ω1 ∪ ω2 = ⟨x1, x2, . . . , xk, y2, . . . , yp⟩

is called the union of the walks ω1 and ω2.

If a walk ω contains a closed sub-walk ω′, then ω can be reduced to a walk
denoted ω−ω′, by removing from ω all vertices and edges of ω′, except
the first vertex.

In the following we give some properties of walks in a graph.

Proposition 3.3 Every walk ω between two distinct vertices x, y is either a
path or contains a closed sub-walk of ω.

2The corresponding Romanian terms are: walk = lanţ, closed walk = lanţ ı̂nchis,
trail = lanţ simplu, path = lanţ elementar, cycle = ciclu elementar, closed trail = ciclu
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Proof. If ω is not a path, then a subsequence of ω between repeated vertices
defines a closed sub-walk of ω. �

A simple consequence is the following:

Proposition 3.4 If there exists a (x, y)-walk in G, then there exists also a
(x, y)-path in G.

Proof. If the walk ω is not a path, it contains a closed sub-walk ω1. The
walk ω−ω1 is either a path, or contains a sub-walk ω2. In the second case, we
consider (ω − ω1)− ω2 and repeat the procedure (a finite number of times),
until we obtain a path. �

Proposition 3.5 Every closed trail T contains a sub-walk that is a cycle.

Proof. Let T ∗ be a closed walk of minimum length. Then T ∗ has no proper
closed sub-walks, hence its only repeated vertices are its first and last. In
conclusion, T ∗ is a cycle. �

Remark 3.3 This property is not true if T is merely a closed walk.

For the following result, we need to introduce some terminology.

Definition 3.6 A collection of edge-disjoint cycles C1, C2, . . . , Cn is called a
decomposition of the closed trail τ , if these cycles are sub-walks of τ and if
the union of their edge-sets coincides with the edge-set of τ (with other words
{C1, C2, . . . , Cn} forms a partition of the edge-set of τ).

Proposition 3.6 A closed trail can be decomposed into edge-disjoint cycles.

Proof. We prove by induction on k (k = the number of edges). For k = 1,
the trail is a loop. Suppose the property true for all closed trails with ≤ m
edges and let τ be a closed trail with m+1 edges. According to Proposition
3.5, τ contains a cycle, say C. Then τ−C is a closed trail having ≤ m edges.
By the hypothesis of induction, τ −C can be decomposed into edge-disjoint
cycles and therefore τ can be written as a union of these disjoint cycles and
C. �

Definition 3.7 (Operations on graphs) Let G = (V,E) be a graph.

Deleting an edge e ∈ E from the graph G, one obtains a subgraph
denoted G − e, that contains all the vertices of G and all the edges of
G except for e.

Deleting a vertex x ∈ V from the graph G, one obtains a subgraph
denoted G− x, that contains all the vertices of G except x and all the
edges of G except those incident on x.

Adding an edge e1 = xy /∈ E to the graph G, one obtains another graph,
denoted G+ e1, with vertex set V ∪ {x} ∪ {y} and edge set E ∪ {e1}.
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3.1.4 Connectivity in graphs

Definition 3.8 Let G = (V,E) be a graph.

G is called connected if, for every two vertices x, y, there exists an (x, y)-
walk.

A connected component (or simply component) of G is a maximal3

connected subgraph S of G, in the sense that S is not a proper subgraph
of any connected subgraph of G.

An edge e ∈ E is called a cut edge or bridge if the removal of e increases
the number of components.

When a small graph is given by a pictorial representation, it is quite easy
to precise whether it is connected or not. However, when a graph is given
in another way (incidence matrix, for instance), we need some efficient algo-
rithms to decide whether it is connected or not. Such a method is presented
in Section 3.2.1, p. 81.

The following theorem states that every non-connected graph G can be
decomposed into connected components. Its importance is significant, since
many properties of graphs can be establish by considering each component
separately. For this reason, theorem about graphs are often proved only for
connected graphs.

Theorem 3.7 (Decomposition into connected subgraphs)
For every graph G = (V,E) there exist a (finite) number k of connected
subgraphs Gi = (Vi, Ei), i ∈ Nk, with the following properties:

1. Vi ∩ Vj = ∅, Ei ∩ Ej = ∅, for all i, j ∈ Nk, i ̸= j,

2. V =
k∪

i=1

Vi, E =
k∪

i=1

Ei.

Proof. On the set of vertices V we define the following relation:

x ∼ y ⇐⇒ x = y or there exists an (x, y) -walk. (3.2)

This relation is an equivalence relation on V , called the reachability relation.
It induces a partition {V1, V2, . . . , Vk} of the vertex set V (see Appendix
3.9.4). For each i ∈ Nk, we denote by Gi = (Vi, Ei) the graph induced on the
vertex subset Vi.

Next we need to prove that Es∩Et = ∅ and
k∪

i=1

Ei = E. Suppose there ex-

ist s ̸= t such that Es∩ Et ̸= ∅ and let e = xy ∈ Es∩Et. Then x, y ∈ Vs∩Vt,

which is a contradiction. It remains to prove the inclusion E ⊆
k∪

i=1

Ei. Let

e = xy ∈ E. If x ∈ Vs and y ∈ Vt with s ̸= t, then there exists a (x, y)
- walk between a vertex in Vs and a vertex in Vt, which is a contradiction
with the fact that Vs and Vt belong to different equivalence classes. In conclu-

sion x, y belong to the same class of equivalence Vj. Thus, e ∈ Ej ⊆
k∪

i=1

Ei. �

An immediate consequence of Theorem 3.7 is the following corollary.

3For the definition of a maximal element, see Appendix 3.9.4, p. 136. The order relation
in this case is the one defined in (3.1).
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Corollary 3.8 (Decomposition into connected components)
The graphs Gi = (Ei, Vi), 1 ≤ i ≤ k, induced by the equivalence classes of the
reachability relation (3.2), are the connected components of the graph G.

Proof. Suppose that there exists a connected subgraph of G, say G′ =
(V ′, E ′), such that Gi ≼ G′. We will prove that G′ = Gi.

From Gi ≼ G we have Vi ⊆ V ′ and Ei ⊆ E ′. Suppose there exists
x ∈ V ′ \ Vi. Since Gi ≼ G′ and G′, Gi are connected, the vertex x is also
connected to all vertices in Vi, in contradiction with the construction of Vi.
Next, let e = xy ∈ E ′. From V ′ = Vi we have x, y ∈ Vi, and therefore e ∈ Ei,
since (Vi, Ei) is the graph induced on the vertex subset Vi. In conclusion,
E ′ ⊆ Ei, which completes the proof. �

This corollary suggests the following alternate definition of component.

Definition 3.9 A component of a graph G = (V,E) is a subgraph induced
by an equivalence class of the reachability relation on V .

3.1.5 Multi-graphs, digraphs and multi-digraphs

In practice there are situations (like, for instance, electrical networks), when
one needs to consider more than one edge between two vertices. In this
situation one needs to enlarge the notion of graph with a new one that allow
more edges joining the same two vertices.

Definition 3.10 Multiple edges (also called parallel edges or a multi-
edge), are two or more edges that are incident on the same two vertices.

A multi-graph is a graph which is permitted to have multiple edges.

Mathematically, a multi-graph consist of:
· a set V of vertices,
· a set E of unordered pairs with components in V , whose members are

called edges,
· a function µ : E → N, µ(xy) = number of edges with the endpoints x, y.
Usually, a multi-graph is denoted G = (V,E, µ). The terminology intro-

duced in Definitions 3.2, 3.4, is also valid for multi-graphs, with the remark
that from the tree notations available for walks (see p. 69), only the one in
which both vertices and edges are mentioned is correct. We will allow also
loops, and for a multi-graph with no loops we employ the terminology simple
multi-graph.

The concepts of graph and multi-graph may not be sufficient. For in-
stance, when dealing with problems of traffic flow, it is necessary to know
which roads on the network are one-way and in which direction traffic is per-
mitted. Clearly, a graph of the roads network is not of much use in such a
situation. What we need is a graph in which each link has a certain orienta-
tion – a directed graph.

Definition 3.11 A digraph (or a directed graph) D consist of a (finite)
set V , whose members are called vertices, and a set A, A ⊆ V × V , whose
members are called arcs. We usually write D = (V,A) and denote the arcs
as (x, y), with x, y ∈ V .



CHAPTER 3. GRAPH THEORY 73

Figure 3.2: The digraph in Example 3.2.

Unlike the edges, the arcs are ordered pairs. Thus, an arc (x, y) joins the
vertices x and y in a specified direction (from x to y). For x ̸= y, the arc
(x, y) does not coincide with the arc (y, x).

Example 3.2 D = (V,A), with

V = {a, b, c, d, f},
E = {(a, b), (b, c), (c, d), (f, d), (f, b), (f, a), (a, f), (f, b)} .

Definition 3.12 Let D = (V,A) be a digraph.

Two or more arcs joining the same pair of vertices in the same direction
are called multiple arcs (But two arcs joining the same vertices in
opposite directions are not multiple arcs !).

An arc joining a vertex to itself is a loop.

A loop-less digraph is called a simple digraph.

Two vertices joined by an arc in either direction are called adjacent.

The vertices are incident to and from the arc joins them.

An arc is incident to and from the vertices it joins.

A tail of an arc is the vertex at which the arc originates.

A head of an arc is the vertex at which the arc terminates.

A sub-digraph of D is a digraph all of whose vertices and arcs are vertices
and arcs of D.

If V1 ⊂ V , the sub-digraph constructed with the vertices of V1 and all the
arcs in A joining these vertices is called the sub-digraph induced by
V1.

The underlying graph of a digraph is the graph obtained by replacing all
the arcs of the digraph by undirected edges.

The out-degree of a vertex x is the number of arcs incident from x. The
in-degree of a vertex x is the number of arcs incident to x. Loops
count as one of each.

Remark 3.4 Let D = (V,A) be a digraph and let

D = {H, H subdigraph of D}
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be the set of all subgraphs of the digraph D. As in the case of the graphs, on
D one can introduce the following relation:

H1 ≼ H2 ⇐⇒ H1 sub-digraph of H2. (3.3)

One can easily prove that (D,≼) is a poset.

Theorem 3.9 (Euler’s theorem for digraphs) The sum of the
out-degree and of the in-degree of the vertices of a graph are both equal to the
number of arcs.

Proof. Every arc brings the following contributions:
· one, to the out-degree of the vertex to which it is incident,
· one, to the in-degree of the vertex to which it is incident. �

3.1.6 Walks, trails, paths, cycles in digraphs

Definition 3.13 4 Let D = (V,A) be a digraph.

A directed walk of length k (k ∈ N) in D is a finite sequence
ω = ⟨v0, a1, v1, . . . , ak, vk⟩ whose terms are alternately vertices and arcs,
such that, for 1 ≤ i ≤ k, the arc ai has head vi and tail vi−1. We say
that ω is a directed (v0, vk)- walk.

As for walks in graphs, a walk ω = ⟨v0, a1, v1, . . . , ak, vk⟩ can also be
given only by its vertex sequence ω = ⟨v0, v1, . . . , vk⟩ or by its arc se-
quence ω = ⟨a1, . . . , ak⟩.

A directed trail in D is a walk in which all the arcs (but not necessary the
vertices) are distinct.

A directed path in D is a walk in which all vertices (and implicitly all
arcs) are distinct, except the first and the last, which can sometimes
coincide.

A directed walk/trail/path in D is called closed if the first and the last
vertex coincides. A walk/trail/path which is not closed is called open.

A closed path in D is called cycle (sometimes directed cycle or circuit).

The terminology introduced in Definitions 3.5 and 3.7 is also available,
taking arcs instead of edges.

3.1.7 Connectivity and strong connectivity in digraphs

Regarding the connectivity of a digraph, things are slightly different than for
graphs.

Definition 3.14 A connected digraph is one whose underlying graph
is a connected graph. A disconnected digraph is a digraph which is
not connected.

4The corresponding Romanian terms in the case of digraphs are: digraph = graf ori-
entat, (but, there also exist the terminology “oriented graph”, which means something
else and does not translate by graf orientat !), walk = drum, closed walk = drum ı̂nchis,
trail = drum simplu, path = drum elementar, cycle = ciclu elementar, closed trail = ciclu
orientat, circuit.
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Figure 3.3: A directed graph and its strongly connected components.

A digraph is strongly connected if there is a walk joining every pair of
vertices.

A digraph is weakly connected if the underlying graph is connected.

A strongly connected component of a digraph D is a maximal strongly
connected subgraph S of D, in the sense that S is not a proper subgraph
of any strongly connected sub-digraph of D.

Let us mention that strongly connectivity implies connectivity, but the
reverse implication is in general not true.

Theorem 3.10 (Decomposition of a digraph into strongly connected
components) For every digraph D = (V,A), there exists a partition {V1, V2, . . . , Vk}
of the set V , such that the sub-digraphs Di = (Vi, Ai) induced by Vi are
strongly connected components of D.

Proof. We define the relation ∼ on V, by

vi ∼ vj ⇐⇒ i = j or
there exist both a walk from
vi to vj and from vj to vi.

Then ∼ is an equivalence relation on V , called the mutual-reachability rela-
tion. It induces a partition {Vl, l = 1, . . . , k} of V . For l ∈ Nk, consider the
sub-digraphs Dl = (Vl, Al) induced by Vl. Let s ∈ Nk. We will prove that Ds

is strongly connected.
So let vi, vj ∈ Vs, vi ̸= vj. Since vi, vj belong to the same equivalence

class, we will have vi ∼ vj. Thus, there exist the walks ω1 = ⟨vi, . . . , vj⟩ and
ω2 = ⟨vj, . . . , vi⟩, with arcs in A. We prove that these walks have all the arcs
in As. Suppose the contrary, that there exists x∗ /∈ Vs such that

ω1 = ⟨vi, . . . , x∗, . . . , vj⟩.

Then ω3 = ⟨vi, . . . , x∗⟩ is a walk from vi to x∗ and ω4 = ⟨x∗, . . . , vj⟩ ∪ ω2 is a
walk from x∗ to vi. Therefore, x

∗ = vi, which is a contradiction with x∗ /∈ Vs.
In conclusion both ω1 and ω2 are walks with arcs from As, so Ds = (Vs, As)
is a strongly connected subgraph.

The fact that Ds is maximal can be shown by following the same argu-
ments as in the proof of Corollary 3.8. �
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As for graphs, we have the following alternate definition of a strongly
connected component.

Definition 3.15 A strongly connected component of a digraph D =
(V,A) is a sub-digraph induced by an equivalence class of the mutual-reachability
relation on V .

Remark 3.5 In the case of digraphs, we do not have necessarily a partition
of the set of arcs, that is

k∪
i=1

Ai ̸= A, in general.

This means that in some digraph there are some arcs which do not belong
to any of the sub-digraphs of the partition. These arcs have the following
property (see Figure 3.3):

If V1, V2 are the vertex sets of two strongly connected components of D,
then all the arcs between V1 and V2 face the same way (either all are from

V1 or all are to V1).

Unlike the digraphs, in graphs we always have a partition of edges, as we
could see in Theorem 3.7.

Of course, in practice we need sometimes to consider multi-digraphs. The
definition will be similar with the one of multi-graphs.

Definition 3.16 A multi-digraph is a digraph which is permitted to have
multiple arcs.

Mathematically, a multi-digraph consist of:
· a set V of vertices,
· a set A ⊆ V ×V of ordered pairs with components in V , whose members

are called arcs,
· a function µ : A → N, µ ((x, y)) = number of arcs from x to y.
Usually, a multi-digraph is denoted D = (V,A, µ). The terminology in-

troduced in Definitions 3.2 and 3.4 is also valid for multi-digraphs.

3.2 Graphs representation

There are several ways of representing a graph/digraph: pictorial representa-
tion, adjacency matrix, incidence matrix, table of incident edges (respectively
tables of outgoing arcs and incoming arcs).

3.2.1 Adjacency matrix

Definition 3.17 The adjacency matrix AG of a graph (digraph, multi-graph,
multi-digraph) G with the vertex set V = {v1, v2, . . . , vn} is a n × n matrix
with entries

(AG)ij =

{
the number of (vi, vj) - edges (arcs), if i ̸= j,
the number of loops at vi if i = j,

for 1 ≤ i, j ≤ n.
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Figure 3.4: The graph G and digraph D in Example 3.3.

Throughout this section we use the term graph (resp. digraph) also for
multi-graph (resp. multi-digraph).

Example 3.3 For the graph G and digraph D in Figure 3.4, the adjacency
matrices are, respectively,

AG =

v1 v2 v3 v4
v1
v2
v3
v4


2 1 1 0
1 0 0 3
1 0 0 1
0 3 1 0

 , AD =

v1 v2 v3 v4
v1
v2
v3
v4


2 0 1 0
1 0 0 1
1 0 0 0
0 2 1 0

 .

Some immediate properties of the adjacency matrix are:

1. The adjacency matrix of a simple graph (digraph) has entries 0 and 1
and 0 on the main diagonal;

2. The adjacency matrix of a graph is symmetric;

3. If D = (V,A) is a digraph with V = {v1, . . . , vn} and the entries of the
adjacency matrix are aij, 1 ≤ i, j ≤ n, then

n∑
j=1

aij = out-degree(vi),
n∑

i=1

aij = in-degree(vj).

If we want the number of the walks of length two between two vertices
in Example 3.3, one can easily count that there are 2 such (v1, v2) -walks,
no (v2, v4) -walk, 4 such (v2, v3) -walks, a.s.o. If we construct a matrix whose
entry αi,j (1 ≤ i, j ≤ n) represents the number of (vi, vj) - walks of length
two, this matrix equals 

6 2 2 4
2 10 4 0
2 4 2 0
4 0 0 10

 ,

representing exactly A2
G. In general, we have the following property:

Proposition 3.11 Let G be a graph (digraph) with the vertex set V =
{v1, v2, . . . , vn} and let AG be its adjacency matrix. Then the value of the

entry a
(r)
ij of the r-th power of AG equals the number of (directed) (vi, vj) -

walks of length r.
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Proof. By induction on r. For r = 1, the property is true. Suppose it is
true for r. One has

a
(r+1)
ij =

n∑
k=1

a
(r)
ik akj.

In the k-th term of this sum, the factor a
(r)
ik represents the number of (vi, vk) -

walks of length r and the factor akj represents the number of (vk, vj) - walks

of length 1. Therefore, the product a
(r)
ik akj equals the number of (vi, vj) -

walks of length r + 1, with the last but one vertex vk. Summing up over k,
we obtain the total number of (vi, vj) - walks of length r + 1, and thus the
conclusion is proved. �

Remark 3.6 The equality a
(p)
ij = 0 does not imply that there is no (vi, vj) -

walk of length < p.

Proposition 3.11 allows us to decide whether a graph is connected (or
whether a digraph is strongly connected) or not. If a graph is connected,
there must be paths (of any length) from each vertex to every other vertex.
The length of each of these paths must be ≤ n− 1, otherwise a vertex would
be visited more than twice. In conclusion, we have the following result.

Proposition 3.12 If A is the adjacency matrix of a graph (or directed graph)
G with n vertices and

Tn−1 = A+A2 + . . .+An−1,

then G is connected (respectively strongly connected) if and only if each non-
diagonal element of Tn−1 is > 0.

Proof. Let Ak = (a
(k)
ij )1≤i,j≤n for k ∈ Nn−1, Tn−1 = (tij)1≤i,j≤n and let

i, j ∈ Nn, i ̸= j.

⇒ Suppose G is strongly connected. Then there exists a (vi, vj) - path, of a

certain length k, k ∈ Nn−1. Thus, a
(k)
ij > 0 and therefore tij > 0.

⇐ If tij > 0, then there exists k ∈ Nn−1 such that a
(k)
ij > 0. So, there exists

a (vi, vj) - walk (of length k), whence G is strongly connected.
�

For the digraph in Example 3.3 we have

A2
D =


4 0 2 0
2 2 2 0
0 0 0 0
2 0 0 2

 , A3
D =


8 0 4 0
6 0 2 4
0 0 0 0
4 4 4 0

 , T3 =


4 0 2 0
2 2 2 0
0 0 0 0
2 0 0 2

 ,

therefore the digraph D is not strongly connected, and this is because there
is no path from v3 to any other vertex.

In the case we are only interested whether there is at least one (vi, vj) -
walk rather than wanting to know how many walks, we can use Boolean
matrices. A Boolean adjacency matrix of a graph (digraph) G with the
vertex set V = {v1, . . . , vn} has the entries

bij =

{
1, if there is at least one (vi, vj) - edge (arc),
0, otherwise.
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Figure 3.5: The digraph in Example 3.4.

For the graphs in Example 3.3 the Boolean matrices are

BG =


1 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , BD =


1 0 1 0
1 0 0 1
0 0 0 0
0 1 1 0

 .

The powers and sums of these matrices will be done using Boolean5 arith-
metic. In this arithmetic, the numbers are 1 and 0 (sometimes used as true
and false), with the sum and product denoted ⊕ and ⊙, respectively, and
defined as

⊕ 0 1
0 0 1
1 1 1

⊙ 0 1
0 0 0
1 0 1

The advantage of using Boolean arithmetic when working with a com-
puter is the fact that less memory and less time is needed.

The operations ⊕ and ⊙ on Boolean matrices are defined like in the case
of real matrices, with ⊕ instead of + , ⊙ instead of ·, respectively, and have
the properties

A⊕ A = A,

A⊙ I = I ⊙ A = A,

A⊙ (B ⊕ C) = A⊙B ⊕ A⊙ C.

For a Boolean matrix B we will adopt the notations

B[2] = B ⊙B, B[p] = B[p−1] ⊙B, for p ≥ 3.

Example 3.4 Consider the digraph in Figure 3.5. Its Boolean adjacency
matrix will be

B =


0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 1 0

 ,

and then, with the notation R4 = B ⊕B[2] ⊕B[3] ⊕B[4],

5After the name of George Boole (1815-1864), British mathematician and philosopher,
inventor of Boolean algebra, the basis of all modern computer arithmetic.
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B[2] =


1 0 1 1 0
0 0 0 1 0
0 1 0 1 0
0 0 1 0 0
0 1 0 0 1

 , B[3] =


0 1 0 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 1 1 0

 ,

B[4] =


1 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 1 0 1 1

 , R4 =


1 1 1 1 1
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
1 1 1 1 1

 .

We have a result similar to the one given in Proposition 3.11, namely:

Proposition 3.13 Let B be the Boolean matrix of a graph (digraph) with

n vertices and p ∈ N. We denote by a
[p]
ij the entries of B[p] and by r

[p]
ij the

entries of Rp = B ⊕B[2] ⊕ . . .⊕B[p]. The following statements are true, for
i ̸= j:

1. If a
[p]
ij = 1, then there exists a (vi, vj )- walk of length = p,

2. If a
[p]
ij = 0, then there exists no (vi, vj) - walk of length = p,

3. If r
[p]
ij = 1, then there exists a (vi, vj) - walk of length ≤ p,

4. If r
[p]
ij = 0, then there exists no (vi, vj) - walk of length ≤ p.

Proof. The proof follows the same ideas as the proof of Proposition 3.11. �
The calculation of the sum Rp = B⊕B[2]⊕ . . .⊕B[p] can be too expensive

for large n. We can deduce the same conclusions as in 3. and 4., by using
the matrix Bp = I ⊕Rp instead of Rp. This matrix changes only the main
diagonal, but it has the following property:

Proposition 3.14 If B is a Boolean matrix and C = I ⊕B, then

C [p] = I ⊕B ⊕B[2] ⊕ . . .⊕B[p], for all p ∈ N.

Proof. By induction. For p = 1, the conclusion is true. Suppose that is true
for p. We have

C [p+1] = C [p] ⊙ C =
(
I ⊕B ⊕B[2] ⊕ . . .⊕B[p]

)
⊙ (I ⊕B)

= I ⊕ (B ⊕B)⊕ (B[2] ⊕B[2])⊕ . . .⊕ (B[p] ⊕B[p])⊕B[p+1]

= I ⊕B ⊕B[2] ⊕ . . .⊕B[p+1],

and using the principle of induction, the conclusion is proved. �

An important application of this property is the following: Given two
distinct vertices vi, vj of a graph (digraph), one can determine the length of
a (vi, vj) - walk of minimum length, by successively calculating the boolean
powers of C and recording the first apparition of 1 on the position (i, j).
Once 1 appears on a certain position (i, j) of C [p], it will appear on the same
position of all the matrices C [p′] with p′ ≥ p.
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Actually, there is a faster method, in which one evaluates the powers
C [2], C [4], . . . , C [2s], . . . and some intermediate Boolean powers between those
powers 2s and 2s+1 where the position (i, j) changes from 0 to 1. For example,
suppose that the minimum length of a (vi, vj) - walk is 51, but it is not known.
First we calculate C [2], C [4], C [8], C [16], C [32], finding the entries

c
[2]
ij = c

[4]
ij = c

[8]
ij = c

[16]
ij = c

[32]
ij = 0.

Then, for C [64] we find c
[64]
ij = 1 (so s = 5), therefore there exists a (vi, vj) -

path of length l, with 32 < l ≤ 64.
Further, we calculate C [32]⊙C [2k], for k = 1, 2, 3, 4 (in general we calculate

for k ≤ s− 1, until 1 appears). In our case

c
[32+2]
ij = c

[32+4]
ij = c

[32+8]
ij = c

[32+16]
ij = 0,

so 48 < l ≤ 64. Next, we calculate C [48] ⊙ C [2k], for k = 1, 2 (in general

for k ≤ s − 2, until 1 appears) and we find c
[48+2]
ij = 0, c

[48+4]
ij = 1. Thus,

50 < l ≤ 52, and we need one more calculation to find l, namely c
[51]
ij = 1.

In total, we performed 6+4+2+1=13 operations, instead of 50 needed to
calculate the successive Boolean powers of C until 51.

The Boolean powers of the matrix C are also useful for determining the
strongly connected components of a digraph (respectively the components of
a graph). More precisely we have the following result.

Theorem 3.15 (Foulkes method for finding the components) Let G
be a simple graph (digraph) with m edges (arcs), B its boolean adjacency
matrix, C = I ⊕ B, and p ∈ N such that 2p ≥ m. Then two distinct vertices
vi, vj are situated in the same (strongly) connected component of G if and
only if the rows i and j in C [2p] are identical.

Proof. Let i ̸= j and let αij be the entry (i, j) of the matrix C [2p]. Every
path in G has at most m arcs, so, if αij = 0, then there is no (vi, vj) - path.

⇒ Suppose vi, vj are situated in the same component. Then it is immediate
that αii = αij = αji = αjj = 1. Let ν ̸= i, ν ̸= j.

If αiν = 1, there is a (vi, vν) - walk in G. Since there exists also a
(vj, vi) - walk, the union of these two walks will be a (vj, vν) - walk, and
therefore αjν = 1.

If αiν = 0, suppose αjν = 1, so there is a (vj, vν) - walk. As before,
we deduce that there exists a (vi, vν) - walk, which is the union of a
(vi, vj) - walk and the above (vj, vν) - walk. Hence, αiν = 1, which is a
contradiction. Therefore, αjν = 0.

In conclusion, in both cases we obtain αiν = αjν , meaning that the
rows i and j of C [2p] coincide.

⇐ Suppose αiν = αjν for all ν.

From αii = 1 we deduce αji = 1, whence there exists a (vj, vi) - walk.
In the same way, from αjj = 1 we deduce αij = 1, whence there exists
a (vi, vj) - walk. In conclusion, vi and vj are situated in the same
connected component.



CHAPTER 3. GRAPH THEORY 82

Figure 3.6: The graph in Example 3.5.

�
For the graph in Example 3.4 we have C [4] = R4, so the graph has two

strongly connected components, one containing the vertices v1, v5 and the
other one containing the vertices v2, v3, v4.

3.2.2 Incidence matrix

Definition 3.18 (Incidence matrix of a graph) Let G = (V,E) be a graph
with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. The incidence matrix of
the graph G is an n×m matrix IG with entries

(IG)ij =


0, if vi is not an end-point of ej,
1, if vi is an end-point of ej and ej is a proper edge,
2, if ej is a loop at vi.

for 1 ≤ i, j ≤ n.

Example 3.5 For the graph in Figure 3.6, the incidence matrix is

IG =

e1 e2 e3 e4 e5 e6 e7 e8
v1
v2
v3
v4


2 2 1 0 0 0 0 1
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 1 1

 .

Some properties of the incidence matrix of a graph are:

1. The sum of the entries in any row of an incidence matrix equals the
degree of the corresponding vertex, if a loop is considered as having the
degree 2;

2. The sum of the entries in any column of an incidence matrix is 2;

3. The incidence matrix of a graph G with n ≥ 2 vertices has the rank
n− p, where p is the number of connected components of G.

Definition 3.19 (Incidence matrix of a digraph) Let D = (V,A) be a
digraph with V = {v1, v2, . . . , vn} and A = {a1, a2, . . . , am}. The incidence
matrix of the graph D is an n×m matrix ID with entries

(ID)ij =


0, if vi is not an end-point of aj,
1, if vi is the head of aj,

−1, if vi is the tail of aj,
2, if aj is a loop at vi.

for 1 ≤ i, j ≤ n.
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Figure 3.7: The graph in Example 3.6.

Figure 3.8: Examples of trees.

Example 3.6 For the graph in Figure 3.7, the incidence matrix is

ID =

a1 a2 a3 a4 a5 a6 a7 a8
v1
v2
v3
v4


2 2 1 0 0 0 0 −1
0 0 −1 1 1 −1 0 0
0 0 0 −1 −1 1 −1 0
0 0 0 0 0 0 1 1

 .

An immediate property is that in a loopless digraph, every column sum
is zero.

3.3 Trees, sorting and searching

Definition 3.20 A tree is a connected graph that contains no cycles. Any
connected subgraph of a given tree is called subtree.

A forest is an acyclic graph (or, equivalently, a collection of trees).

Examples of trees are given in Figure 3.8. We give some simple properties of
trees.

Theorem 3.16 In a tree T , any two distinct vertices x, y are connected by
a unique path.

Proof. Since T is connected, there is an (x, y) - path, say ⟨v0, v1, . . . , vr⟩,
with v0 = x, vr = y. If there exists a different (x, y) - path, say ⟨u0, u1, . . . , us⟩,
with u0 = x, us = y, then let i be the smallest index for which ui+1 ̸= vi+1.
Since both paths finish at y, they will meet again, and we define j to
be the smallest index such that j > i and vj = uk for some k. Then
⟨vi, vi+1, . . . , vj, uk−1, . . . , ui+1, vi⟩ is a cycle in T , contrary with the hypoth-
esis. �
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Theorem 3.17 The graph obtained from the tree T = (V,E) by removing
any edge has two components, each of which is a tree.

Proof. Suppose uv ∈ E, E ′ = E \ {uv}, and let S = (V,E ′). Define

V1 = {x ∈ V : the unique (x, v) - path in T passes through u}.

For every x ∈ V1, the unique (x, v) - path must end with the edge uv, other-
wise T would have a cycle ⟨x, . . . , u, v, . . . , x⟩.

Let V2 = V \V1. Each vertex in V1 is joined by a path in S to u and each
vertex in V2 is joined in S to v. In conclusion V1 and V2 are the vertex sets
of two components of S. Each component is (by definition) connected and it
contains no cycle, since there are no cycles in T . Hence, the two components
are trees. �

Theorem 3.18 If T = (V,E) is a tree, then |E| = |V | − 1.

Proof. By induction on |V |.
If |V | = 1, the conclusion holds, since the only possible tree has no cycle

in this case.
Suppose the conclusion is true for a tree with ≤ k vertices. Let T be a

tree with |V | = k + 1 and let uv be any edge of T . If T1 = (V1, E1) and
T2 = (V2, E2) are the trees obtained by removing uv from T (see Theorem
3.17), we have

|V1|+ |V2| = |V | and |E1|+ |E2| = |E|.

Thus, we have

|E| = |E1|+ |E2|+ 1 = |V1| − 1 + |V2| − 1 + 1 = |V | − 1.

In the second equality we applying the induction hypothesis for the trees T1

and T2. �

Remark 3.7 The conclusions of Theorems 3.16–3.18 provide several alter-
native ways of defining a tree.

3.3.1 Rooted trees

Frequently, one vertex of the tree is distinguishable in some way. For instance,
in a “family tree” which traces the descendants of a king, we might emphasize
the special position of the king by putting him at the top of the tree and all
the sons “under” their parents.6 In general we refer to distinguished vertex
as the root and we assign a direction to each edge, namely from parent to
child.

6Note that, when drawing a genealogical tree, historians usually put the king at the
bottom and the descendants above him, so as to reproduce the form of a real tree. The
two versions are, of course, fully equivalent.
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Figure 3.9: Construction of the tree rooted at a given vertex r of a tree.

Definition 3.21 A directed tree is a digraph whose underlying graph is
a tree.

A rooted tree or arborescence is a directed tree with a distinguished
vertex r, called the root, such that for every other vertex v, there is a
directed path from r to v.

In drawing a rooted tree, the arrows are usually omitted from the arcs since
the direction of the arc is always “away” from the root. It also follows that
the directed path from the root to a given vertex is unique.

Definition 3.22 In a rooted tree, the depth or level of a vertex v is the
distance from the root, that is, the length of the unique path from the
root to v. Thus, the root has depth 0.

A vertex in a rooted tree is said to be a leaf if it is at level i (i ≥ 0) and is
not adjacent to any vertices at level i+ 1.

A vertex which is not a leaf is an internal vertex.

The height of a rooted tree is the maximum value of k for which level k is
not empty.

If vertex x immediately precedes vertex y on the path from the root to y,
then x is the parent or father of y and y is the child or son of x.

Let x, y be distinct vertices of a rooted tree. Then y is called descendant
of x (and x is called an ancestor of y) if x is on the unique path from
the root to y.

Each vertex (except the root) has a unique father, but a vertex may have any
number of sons (including 0). So, a vertex is a leaf if and only if it has no
sons. Also, a vertex is a father if and only if it is an internal vertex. Rooted
trees are actually directed graphs, the directions of arcs being from a father
to his child. For simplicity, we omit the notations and the terminology for
digraphs.

In many applications, it happens that every father has the same number
of sons.

Definition 3.23 If in a rooted tree each father has at most m sons, we speak
of an m-ary rooted tree. In particular, when m = 2, we call it binary tree,
while when m = 3 we call it ternary. The m-ary rooted trees in which each
father has exactly m sons are called complete.
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3.3.2 Decision trees

We start this section with the following theorem:

Theorem 3.19 The height of an m-ary rooted tree with k leaves is at least
logm k.

Proof. Let h denote the height of the tree. The required inequality

h ≥ logm k (3.4)

is equivalent to mh ≥ k, so it would be enough to prove that an m−ary
rooted tree with height h has at most mh leaves.

We prove this by induction on h. If h = 0, the tree consists of one vertex,
which is both leaf and father, so k = 1, and thus the inequality is true.
Suppose now the inequality true for 0 ≤ h ≤ h0 and let T be an m-ary
rooted tree with height h0 + 1. If we denote the root by r, then the tree
T − r (see Definition 3.7, p. 70) will consist of at most m trees T1, . . . , Tm

whose roots are the vertices at level 1 in T . Each Ti are thus rooted trees, of
height ≤ h0. By hypothesis of induction, each of these Ti trees has at most
mh0 leaves. The leaves of T coincide with the leaves of T1, . . . , Tm, therefore
the number of leaves of T will be smaller than m ·mh0 = mh0+1.

In conclusion, by the principle of induction, the inequality k ≤ mh is true
for all h ≥ 0. �

Remark 3.8 The number logm k is in general not an integer. The inequality
(3.4) may be rewritten as

h ≥ ⌈logm k⌉, (3.5)

where for a real number x, ⌈x⌉ denotes the ceil of x (the least integer z such
that z ≥ x).

Theorem 3.19 is applied in studying the decision trees. A decision tree is an
m-ary tree where:

• each internal vertex represents a decision,

• the possible results of that decision are represented by the edges leading
to the vertices at the next level,

• the leaves of the tree represent the final outcomes of the procedure.
In the case when the results of the decision are only true or false state-

ments (0 or 1), we deal with a binary decision tree.

Example 3.7 (The false coin problem) Suppose we have a genuine coin
labeled 0 and n other coins, indistinguishable from 0 by appearance, except for
being labeled 1, 2, . . . , n. It is suspected that one coin may be false – either too
light or too heavy. Show that at least ⌈log3(2n + 1)⌉ weighings on a balance
are needed to decide which coin (if any) is false, and also to decide whether
it is light or heavy. Devise a procedure which uses exactly this number of
weighings, when n = 4.

Solution. There are 2n+ 1 outcomes (leaves of the decision tree), namely

G 1H 1L 2H 2L . . . nH nL,

where G means that all the coins are good, kH means that coin k is heavier
and kL means that coin k is lighter.
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Figure 3.10: The decision tree for Example 3.7.

We need a ternary decision tree, since there are three possible results of
each decision, when weighing one set of coins against other:

< : left-hand set of coins is lighter

= : equally weighted sets of coins

> : left-hand set of coins is heavier

According to Theorem 3.19, the height will be ≥ ⌈log3(2n+ 1)⌉.
In the case when n = 4 the height will be ≥ 2. The procedure which

performs two weighing only is depicted in Figure 3.10.
We finish this section by mentioning that the bound ⌈logm k⌉ given in (3.5)

is a theoretical one in decision problems. In some situations it is possible
to design a procedure which allows us to draw a conclusion with ⌈logm k⌉
decisions only, but there are also situations when this number cannot be
achieved.

3.3.3 Sorting trees

We want to arrange a list x1, x2, . . . , xn of pairwise distinct numbers in in-
creasing order. The algorithms used for solving this problem involve the
comparison of two numbers and (or not) a transfer of data (switching). This
kind of procedure can be represented by a decision tree, where a vertex is a
comparison of two numbers, xi and xj. Since there are two possible results
(xi < xj and xi > xj), the decision tree is a binary tree.

One very simple algorithm used in sorting is the so-called bobble sort al-
gorithm, where one compares every time two consecutive numbers, switching
them if they are not in the correct order.

Algorithm 1 (Bobble sort algorithm)
for j = 1 to n do

for i = 1 to n− j do
if xi > xi+1 switch xi, xi+1

A more efficient algorithm, which makes use of binary trees and needs less
comparisons, is the heap-sort algorithm. In the following we will describe the
stages of the heap-sort algorithm.

Constructing the unsorted tree

We start by assigning the members of the list X = {x1, x2, . . . , xn} to the
vertices of an unsorted binary tree, as follows:

x1 root – level 0
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Figure 3.11: The binary tree associated to the list X.

x2, x3 – level 1
x4, x5, x6, x7 – level 2
· · ·
Thus, in this tree xk is the father of x2k and x2k+1, provided 2k + 1 ≤ n.

The last level is usually incomplete and if n is even, then xn/2 has only one
child.

The heap-sort algorithm continues in the following way: first, the un-
sorted tree is transformed into a special kind of tree known as a heap. Then
the heap is transformed into a sorted list y1, y2, . . . , yn.

Definition 3.24 A heap is a binary tree, with a number xi associated to
each vertex and with the property that each father is smaller than its sons
(xi < x2i, xi < x2i+1).

Transforming the unsorted tree into a heap

We deal with fathers (internal vertices) in reverse order. Suppose that,
when we come to deal with xk, the two subtrees rooted at x2k and x2k+1 have
already been made into heaps.

If xk < xk+1 and xk < x2k+1 we don’t do anything, since the subtree
rooted at xk is already a heap.

If not, we store xk temporarily and move the smallest of x2k and x2k+1 in
the vacant vertex. This create a new vacancy.

If xk is smaller than the sons of the vacant vertex or if there are no
sons, we fill the vacancy with xk.

If not, we fill the vacancy with the smaller of the sons and continue.
Finally we will find a place for xk when we reach a leaf, if not before.

Let heap(k,n) denote the procedure which, given a vertex xk with the
property that the trees rooted at x2k and x2k+1 are heaps, transforms the
subtree rooted at xk into a heap. By applying this procedure for k =[
1
2
n
]
,
[
1
2
n
]
− 1, . . . , 2, 1, the whole tree will be transformed into a heap.

Transforming the heap into a sorted list

In a heap, the root has the smallest value, so it will go into the first place
y1 in the sorted list.

The vacancy at the root is filled by the smallest last value xn and the old
leaf xn is removed.

We have now a tree with n − 1 vertices and two subtrees rooted at
x2 and x3, which are heaps. We apply now the procedure heap(1,n-1) to
restore the heap property of the whole tree.

In the new tree (which is a heap) the root has the smallest remaining
value and this is assigned to y2.
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Figure 3.12: Step1: Transform the unsorted list X into a heap.

The last leaf is removed.
We restore now the heap by heap(1,n-2)

and so on.

Example 3.8 Consider the list

X = {79, 27, 81, 49, 50, 11, 99, 87, 40, 95, 55, 73}

The binary tree associated to this list is depicted in Figure 3.11, the steps of
the construction of the first heap are shown in Figure 3.12. The next step is
presented in Figure 3.13.

3.4 Binary trees and binary codes

3.4.1 Binary trees

The definition of a binary tree was given on p. 85. In a binary tree, we
consider that a child is either a left-child or a right-child, in other words
we order the children.
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Figure 3.13: Step2: Extract the root y1 = 11, delete the last leaf, and
construct again a heap.

Figure 3.14: A binary tree of height 4, rooted at r, and its left and right
subtrees of height 3 and resp. 2, rooted at r1 resp. r2.

Definition 3.25 Let T = (V,E) be a binary tree and v ∈ V . A left(right)
subtree of the vertex v is the binary subtree induced by the left(right) child
of v and all of its descendants.

So, we can consider a tree as having three components: the root and its left
and right subtrees. This allows us to state the following recursive property of
a binary tree: If T is a binary tree of height h, then its left and right subtrees
both have height ≤ h− 1, with equality for at least one of them. The proof
of this property is immediate, by induction on h.

Remark 3.9 Other immediate properties of a binary tree are the following:

1. A complete binary tree of height h has 2h+1 − 1 vertices.

2. Every binary tree of height h has at most 2h+1 − 1 vertices.
The proofs of the above properties follow immediately by induction.

3.4.2 Binary codes

For encoding the information, the computer uses bit strings. The most com-
mon encoding is known as ASCII code, in which each of the letters and other
symbols has a seven-bit code.



CHAPTER 3. GRAPH THEORY 91

Definition 3.26 A binary code is an assignment of bit-strings to a set of
symbols. Each bit-string is referred to as a codeword.

For some applications, it is desirable to allow codewords to vary in length.
So let us consider three examples of encodings:

(c1) x1 → 00 x2 → 01 x3 → 10 x4 → 11
(c2) x1 → 0 x2 → 10 x3 → 110 x4 → 111
(c3) x1 → 0 x2 → 1 x3 → 00 x4 → 01

The codewords associated to the string x1x3x1x4 are:

(c1) 00100011,
(c2) 01100111,
(c3) 000001.
The decoding can be done uniquely in the first two encodings, whereas in

the third encoding, the bit-string can also be decoded as x1x1x1x1x1x2 or as
x3x3x4. In conclusion, we need to avoid this situation, generated by the fact
a codeword is the beginning of another codeword, and thus we do not know
where a code starts and where it stops.

To avoid this ambiguity, we introduce the following property:

Definition 3.27 A prefix code is a binary code with the property that no
codeword is an initial substring of any other codeword. The number of bits
in the prefix code of a symbol is referred to as the length of the code.

One can see that in the third encoding, the code x1 → 0 is an initial
sequence of the codes x3 → 00 and x4 → 01, therefore (c3) is not a prefix
code.

The construction of prefix codes can be done by making use of binary
trees.

Construction of prefix codes

Let T be a binary tree. If we label each left edge with 0 and each right edge
with 1, then to each leaf one assigns a codeword formed by the sequence of
edge labels, from the unique path from the root to that leaf. For example,

letter a b c d e f g
codeword 000 0010 0011 0101 011 100 101

One can see that any path from root to a leaf is not an initial sub-path
for another path from root to another leaf, so the codes are prefix codes.

Huffman codes

In a prefix code, it is desirable to use fewer bits for encoding the more fre-
quently occurring symbols. A measure of a code’s efficiency is the average
weighted length (AWL) of its codewords, where the length of each code-
word is multiplied by the frequency of the symbol it encodes. In the example
above, if frequencies are

letter a b c d e f g
frequency 0.2 0.05 0.1 0.1 0.25 0.15 0.15

, (3.6)
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then the average weighted length is

3 · 0.2 + 4 · 0.05 + 4 · 0.1 + 4 · 0.1 + 3 · 0.25 + 3 · 0.15 + 3 · 0.15 = 3.25.

The coefficients of the frequencies are the depths of the corresponding leafs
in the tree.

Definition 3.28 Let T be a binary tree and s1, s2, . . . , sl its leaves, such that
leaf si is assigned a weight wi. Then the average weighted depth (AWD)
of the binary tree T is

W(T ) =
l∑

i=1

depth (si) · wi.

An algorithm for constructing a prefix code whose codewords have the small-
est possible AWL was given in 1952 by Huffman7 in his PhD thesis at MIT.

Algorithm 2 (Huffman prefix codes)
Input: a set S = {s1, . . . , sl} of symbols

a list W = {w1, . . . , wl} of weights associated to S (wi → si)
Output: a binary tree representing a prefix code for the set of symbols

S, whose codewords have minimum average weighted length
� initialize F as a forest of isolated vertices labeled s1, . . . , sl, with
respective weights w1, . . . , wl

� for i = 1 to l − 1
- choose from forest F two trees, T0 and T1 of smallest weights
- create a new binary tree whose root has T0 and T1 as its left
and right subtrees, respectively

- label the edge to T0 with a 0 and the edge to T1 with a 1
- assign to the new tree the weight w(T0) + w(T1)
- replace trees T0 and T1 in forest F by the new tree

� return a binary tree associated to the list W

Definition 3.29 The binary tree that is the output from Algorithm 2 is called
the Huffman tree for the list of symbols. The corresponding prefix code is
called the Huffman code.

Example 3.9 Consider the frequencies of the set of symbols S = {a, b, c, d, e, f, g}
given in formula (3.6).

letter a b c d e f g
codeword 00 0010 0101 011 10 110 111

The average weighted length of a codeword for this prefix code is

2 · 0.2 + 4 · 0.05 + 4 · 0.1 + 3 · 0.1 + 2 · 0.25 + 3 · 0.15 + 3 · 0.15 = 2.7.

7David Albert Huffman (1925-1999), American electrical engineer.
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Figure 3.15: Iterations 1-4 in Huffman’s algorithm for Example 3.9.
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Figure 3.16: Iterations 5-6 in Huffman’s algorithm for Example 3.9.

Decoding scheme using a Huffman tree

A given codeword determines the unique path from the root to that leaf
which stores the corresponding symbol. For decoding, we scan the codeword
from left to right and traverse the tree from the root. When a leaf is reached,
its corresponding symbol is recorded. The next bit begins a new path from
root to the next symbol. We continue until all the bits in the codeword have
been read.

Example: By decoding the following bit-strings

1100001010001110, 0100001111110011110, 11000010110011

we obtain the strings facade, baggage, faced, respectively.

Correctness of Huffman’s algorithm

We need to prove that Huffman’s algorithm produces an optimal prefix code
(with the smallest AWL). This can be done by induction, but first we need
a preliminary result.

Lemma 3.20 If the leaves of a binary tree are assigned weights and if each
internal vertex is assigned a weight equal to the sum of its children’s weights,
then the tree’s AWD equals the sum of the weights of its internal vertices:

W(T ) =
∑
v∈I

w(v)

(I denotes the set of internal vertices of T ).
Proof. For each leaf (symbol) sk, we denote dk = depth(sk). The contribu-
tion of the symbol sk to the right-hand side is wk · dk, since the weight wk

appears at levels 0, 1, 2, . . . , dk−1, so dk times. The contribution of sk to the
left-hand side will be (from Definition 3.28) depth(sk) · wk = dkwk. �
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Theorem 3.21 Let S = {s1, . . . , sl} be a set of symbols. For every given list
of weights W = {w1, . . . , wl}, a Huffman tree has the smallest possible AWD
among all binary trees whose leaves are assigned those weights.

Proof. We use induction on l.
For l = 2, the tree has a root with weight w1 + w2, a left-child and a

right-child, therefore AWD = 1 · w1 + 1 · w2 → min .
For a given l0 ≥ 2, assume that Algorithm 2 produces a Huffman tree H

of minimum AWD for any list of l0 weights. Let w1, w2, . . . , wl0+1 be a list
of l0 + 1 weights and suppose that w1 and w2 are two of the smallest ones,
chosen first by the algorithm. Thus, the leaves s1 and s2 are brothers. Let y
denote their father and let H = H − s1− s2. Then H coincides with the tree
obtained by applying Huffman’s algorithm for the set {y, s3, s4, . . . , sl0+1},
with w(y) = w1 + w2. But,

depth(s1) = depth(s2) = depth(y) + 1, (in H)

therefore

W(H) =

l0+1∑
i=1

depth(si) · wi

= depth(s1)w1 + depth(s2)w2 +

l0+1∑
i=3

depth(si) · wi

= w1 + w2 + depth(y)(w1 + w2) +

l0+1∑
i=3

depth(si) · wi

= w1 + w2 +W(H).

By the hypothesis of induction, H is optimal among all binary trees whose
leaves are assigned weights w1 + w2, w3, . . . , wl0+1.

Suppose now that T ∗ is an optimal binary tree for the weights w1, w2, w3, . . . , wl0+1.
Let x be an internal vertex of T ∗ of greatest depth and denote z and v its
children. Without loss of generality, we can assume that the weights of z and
v are w1 and w2, since otherwise we could swap their weights with w1 and
w2 to produce a tree with smaller AWD.

Consider the tree T = T ∗ − z − v. Then

W(T ∗) = W(T ) + w1 + w2.

But T is a binary tree with leaves of weights w1+w2, w3 . . . , wl0+1, and hence

W(T ) ≥ W(H).

Thus, W(T ∗) ≥ W(H) and therefore H is optimal. �

3.5 Spanning trees

Definition 3.30 A spanning tree for the graph G = (V,E) is a spanning
subgraph 8 which is a tree.
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Figure 3.17: A graph and one of its spanning trees.

Figure 3.18: A tree in a graph and its frontier edges.

The natural questions that arise are whether a spanning tree exist, given a
connected graph and if yes, how can we grow a spanning tree?

Before presenting some methods of growing spanning trees, we need to
introduce some terminology.

Definition 3.31 Let G = (V,E) be a graph and G1 = (V1, E1) a subgraph
of G. An edge of G is called a frontier edge for G1 in G, if it has one
endpoint in V1 and one endpoint in V \ V1.

Many algorithms for growing a spanning tree are based on the following
result.

Proposition 3.22 Let G = (V,E) be a graph, T a tree which is a subgraph
of graph G, and e a frontier edge for T . Then the subgraph9 T + e is also a
tree.

Proof. The addition of the frontier edge e to the tree T cannot create a
cycle, since one of the endpoints of e is outside of T . �

Let us mention that by adding the edge e to T involves also adding a new
vertex to T .

Basic tree growing

The basic tree growing scheme use vertex labels to keep track of the order
in which vertices are added to the tree. By vertex labeling we mean an
assignment of integers in 0, 1, 2, . . . n − 1 (sometimes 1, 2, . . . , n) to the n
vertices of the graph.

8See Definition 3.2, p. 67
9See Definition 3.7, p. 70.
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Definition 3.32 Let G = (V,E) be a graph and x ∈ V a vertex. The
component of x in G, denoted CG(x), is the subgraph of G induced on the
set of vertices that are reachable from x.

Thus, if a graph G = (V,E) is connected, then CG(x) = G for all x ∈ V .
Conversely, if there exists x ∈ V such that CG(x) = G, then the graph G is
connected.

In the following we present a basic algorithm for growing a spanning tree
in the component CG(x). It starts with an edge and adds frontier edges
successively to the tree, until all the vertices of the given graph are taken.

Algorithm 3 (Basic tree-growing algorithm with vertex
labeling)
Input: a graph G = (V,E) and a starting vertex u ∈ V .
Output: a spanning tree T of CG(u) and a vertex-labeling for CG(u).

� initialize tree T as vertex u
� write label 0 on vertex u
� initialize label counter i = 1
� while T does not yet span CG(u)

- choose a frontier edge e for T
- let v be the endpoint of edge e that lies outside of T
- add edge e and vertex v to tree T
- write label i on vertex v
- set i = i+ 1

� return tree T and vertex labeling of CG(u)

Remark 3.10 (uniqueness) Let us mention that, without a rule for choos-
ing a frontier edge, the output tree of Algorithm 3 is not unique. The unique-
ness of the algorithm depends on some default priority based on the ordering
of the edges or vertices.

Remark 3.11 Whenever Algorithm 3 is applied, the resulting spanning tree
can be regarded as a rooted tree with root u.

Proposition 3.23 If an execution of the basic tree-growing algorithm starts
at a vertex v of graph G, then the subgraph consisting of the labeled vertices
and tree edges is a spanning tree of the component CG(v).

Corollary 3.24 A graph is connected if and only if the basic tree-growing
algorithm labels all its vertices.

In the case when the graph G is not connected, we will have a forest-growing
algorithm.

Definition 3.33 A spanning forest of a graph G is a collection of trees,
such that each tree is a spanning tree of a different component of G.

Let us note that a forest is a collection of trees. For forest-growing we give
the following basic algorithm.

Algorithm 4 (Basic forest-growing algorithm with vertex labeling)
Input: a graph G = (VG, EG)
Output: a spanning forest F of G and a vertex- labeling for G.

� initialize forest F as empty graph
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Figure 3.19: DFS tree.

� initialize component counter t = 1
� while forest F does not yet span G (doesn’t have yet |VG| vertices)

- choose a vertex v which is not in the forest F
- use basic tree-growing to construct spanning tree Tt in CG(v)
- add the number |VF | to each vertex label in tree Tt

- add tree Tt to forest F
- set t = t+ 1

� return forest F and vertex- labeling for G

3.5.1 Depth-first search and breadth-first search

Depth-first search and breadth-first search are actually tree-growing algo-
rithms, based on Algorithm 3, with wider use. Even if they are sometimes
used for search something, the word “search” is somehow misleading, but too
well established to try to change it.

Depth-first search (DFS)

The idea of DFS is to select a frontier edge incident on the most recently
acquired vertex (i.e., with highest label) of the growing tree. When this is not
possible, the algorithm backtracks to the next most recently labeled vertex
(i.e., the parent) and tries again. Thus, the search moves deeper into the
graph (hence the name depth-first).

In the following we will describe the DFS algorithm. An example of DFS
is illustrated in Figure 3.19. During the DFS, the label assigned to a vertex
w is denoted dfnumber(w).

Algorithm 5 (Depth-first search)
Input: a connected graph G = (V,E) and a starting vertex v ∈ V
Output: a depth-first spanning tree T and a vertex-labeling for G

� initialize tree T as vertex v
� initialize the set of frontier edges for T as empty
� set dfnumber(v) = 0
� initialize label counter i = 1
� while tree T does not yet span G (doesn’t have yet |V | vertices)

- update the set of frontier edges for T
- Let e be a frontier edge for T whose labeled endpoint has the
largest possible dfnumber.

- Let w be the unlabeled endpoint of edge e
- Add edge e (and vertex w) to tree T
- set dfnumber(w) = i
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Figure 3.20: BFS tree.

- set i = i+ 1
� return tree T with its dfnumbers

Breadth-first search (BFS)

Whereas in DFS we advance from the current vertex to a new one whenever
is possible, in BFS we check all the vertices adjacent to the current vertex
before going on to the next one. The selection of frontier edges will be as
close to the starting vertex as possible, or, in term of priorities, the frontier
edges incident on vertices having the smallest possible label will have the
highest priority. An example of construction of BFS is given in Figure 3.20.

Algorithm 6 (Breadth-first search)
The algorithm writes identically with DFS Algorithm 5, except the word

largest, which have to be replaced with smallest.

Proposition 3.25 When BFS is applied to an undirected connected graph
G = (V,E), the end-points of each non-tree edge are either at the same level,
or at consecutive levels (or, equivalently, if r denotes the starting vertex, the
distances10 to r are either equal or differ by one).

Proof. Let T = (V,E ′) be the spanning tree resulted by applying the BFS
algorithm.

Suppose there exists an edge e = xy ∈ E \ E ′ such that

d(r, x) = p, d(r, y) = p+ s, s > 1.

If ω denotes the (r, x) - path in T , then ω ∪ e forms an (r, y) - path of length
p+ 1 < p+ s, contradiction with the property that p+ s is the length of the
shortest (r, y) -path. �

Theorem 3.26 (Property of tree of distances of the BFS tree) Let G =
(V,E) and let T be a BFS tree starting from v ∈ V . Then, for each vertex x,
the distance d(v, x) (in G) equals the length of the unique path in T between v
and x. That is, the BFS tree is a tree of distances with respect to the starting
vertex v.

Proof. Let k = d(v, x). We construct a partition of V into the disjoint
classes

ℓv(p) = {y ∈ V, d(v, y) = p}, p = 0, 1, . . . ,m.

10The definition of the distance between two vertices was given on p. 69.
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Figure 3.21: A graph and a minimum spanning tree.

So, x ∈ ℓv(k) and its parent in T will be a vertex y1 ∈ ℓv(k− 1). The parent
of y1 in T will be a vertex y2 ∈ ℓv(k − 2), and continuing we rich the vertex
yk ∈ ℓv(0), that is yk = v.

Therefore we have obtained the path ⟨v, yk−1, yk−2, . . . , y2, y1, x⟩ in T ,
which has the length k. �

3.5.2 Weighted graphs and minimum spanning
tree

Definition 3.34 A weighted graph is a graph in which each edge is a
assigned a number, called its edge-weight. The weight of the edge e will be
denoted w(e).

Weighted graphs occur frequently in applications. In the friendship graph,
for example, weights might indicate the intensity of friendship; in the commu-
nication graph, they could represent transportation cost, travel time, spatial
distance, price of communication or maintenance.

Suppose that several computers in fixed locations are to be linked to
form a computer network (see Figure 3.21). The cost of creating a direct
connection between a pair of computer is known for each possible pair and
is represented by the edge weights. Of course we need the least expensive
connection. If we associate a graph in which the vertices are the computers,
the edges are the cables linking them and the weight of each edge is the cost
of connection, then our goal will be to determine a spanning tree of minimum
weight.

Definition 3.35 Let G = (V,E) be a connected weighted graph, T = (V,E1)
a spanning tree of G and ω = ⟨e1, e2, . . . , en⟩ a walk in G.

The weight of a walk ω = ⟨e1, e2, . . . , en⟩ is the sum of its edge-weights:

w(ω) =
n∑

i=1

w(ei).

The weight of the spanning tree T is the sum of the weights of its
edges:

w(T ) =
∑
e∈E1

w(e).
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Figure 3.22: The MST obtained with Algorithm 7.

A tree Tmin for which w(Tmin) is minimum is called minimum spanning
tree (MST). So,

w(Tmin) = min{w(T ), T spanning tree of G}.

Minimum spanning tree problem (MSTP): Let G be a connected
weighted graph. Find a spanning tree of G whose total edge-weight is mini-
mum.

A naive solution would be to write all spanning trees, to calculate their
weights and take the minimum. In this case, if the graph G has n vertices
and is complete, then there are nn−2 spanning trees,11 which are impossible
to be analyzed in real time. Therefore one needs more efficient algorithms
for solving the (MSTP).

An algorithm which solves (MSTP) is known under the name Prim’s
algorithm. It was discovered in 1930 by Jarǹık12 and later, independently,
by Prim13 in 1957 and Dijkstra in 1959. Therefore it is sometimes called the
DJP algorithm or Jarǹık algorithm.

Algorithm 7 (Prim’s algorithm for finding a MST)
Input: a weighted connected graph G = (V,E)
Output: a minimum spanning tree T

� choose an arbitrary vertex s of graph G
� initialize the Prim tree T as vertex s
� initialize the set of frontier edges as empty
� while T does not yet span G (doesn’t have yet |V | vertices)

- update the set of frontier edges for T
- let e be a frontier edge with the smallest edge-weight w(e)
- add edge e to tree T

� return Prim tree T

For the graph in Figure 3.22, the steps of Prim’s algorithm starting with the
vertex s are given in the following table:

step frontier edges added edge
1 sd, sa, sc sc
2 cd, ca, cb, sa, sd, sb ac
3 ab, bc, cd, sb, sd cd
4 ab, bc, db, sb sb

11This result is known as Cayley’s tree formula.
12Vojtěch Jarǹık (1897-1970), Czech mathematician.
13Robert Clay Prim (b. 1921), American mathematician and computer scientist.
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Theorem 3.27 (Correctness of Prim’s algorithm) The output
of Prim’s algorithm is a minimum spanning tree.

Proof. Let G = (V,E) a connected weighted graph, T the output of Prim’s
algorithm applied to G and Y a minimum spanning tree of G. Denote by
Tk = (Vk, Ek) the Prim’s tree constructed after k iterations.

For simplicity we start with the case when all edges have different weights.
~ If Y = T, then T is a MST. If not, we should obtain a contradiction.
So, suppose Y ̸= T . Let e be the first edge considered by the algorithm,

which is in T but not in Y . Let Ti = (Vi, Ei) be the set of vertices connected
by the edges added before e. So, one endpoint of e is in Vi and the other is
not in Vi. Since Y is a spanning tree of G, there exists a path in Y joining
the two endpoints of e. As one moves along the path, one must meet an edge
f joining a vertex in Vi to one not in Vi. At the (i+ 1)-th iteration, when e
was added to T , f was a frontier edge, so f could also have been added to
T . Since f was not added, we conclude that

w(f) > w(e). (3.7)

Consider now the subgraph Y1 = Y − f + e, which is a tree. Indeed, Y + e
has a cycle which contains f , and therefore Y + e − f has no cycle and is
connected. Let us note that Y1 has in T one edge more than has Y . For Y1

we have
w(Y1) = w(Y )− w(f) + w(e) < w(Y ), (3.8)

which is a contradiction with the fact that Y is a MST. So, T = Y and
therefore T is a MST.

To finalize the proof, we have to consider the case where we allow equal
weights. The proof above also works, until the point where we conclude
(3.7). It will be replaced with w(f) ≥ w(e), whence inequality (3.8) changes
into w(Y1) ≤ w(Y ). At this point we do not have a contradiction, but the
conclusion that Y1 is also a MST. We “replace” now Y with Y1 and we repeat
the proof from the point ~, for the “new” MST Y . Since Y1 has in T one
more edge than Y does, the algorithm will finish after at most |V | − 1 steps,
where at the point ~ we must have Y = T . �

We finish by mentioning that, in the case when any distinct edges have
different weights, the minimum spanning tree is unique. In the case when we
have equal weights, it is possible to have more spanning trees, and Prim’s
algorithm will find one of them.

Another algorithm used for finding a minimum spanning tree was given
by Kruskal14 in 1956. The algorithm first orders the edges by weight and
then proceeds through the ordered list adding an edge to the partial graph
provided that adding the new edge does not create a cycle.

Algorithm 8 (Kruskal’s algorithm for finding a MST)
Input: a weighted connected graph G = (V,E).
Output: a minimum spanning tree T

� initialize the Kruskal graph K as a forest where each vertex in V is a
separate tree

14Joseph Bernard Kruskal (b. 1928), American mathematician, statistician and psycho-
metrician.
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� create a set S containing all the edges in G
� while S is nonempty

- remove an edge with smallest edge-weight from S
- if that edge does not close a cycle in K (when added to K),
then add it to K

- else discard that edge
� return Kruskal tree K

Remark 3.12 At the step where we check if the edge e closes a cycle, we
check actually whether it connect two different trees of the forest K. When
e is added to the graph K, it will combine the two trees into a single tree. If
the graph G is not connected, then Algorithm 8 does not create a MST, but
a minimum spanning forest.

Theorem 3.28 (Correctness of Kruskal’s algorithm) Let G be a con-
nected weighted graph and let K be the subgraph of G produced by Kruskal’s
algorithm. Then K is a minimum spanning tree.

Proof. First, by construction, K cannot have a cycle. Then K cannot be
disconnected. Indeed, if we suppose that K has two components, then at
one point of the algorithm, one adds the minimum weight edge which joins
the two components. Thus, K is a spanning tree of G.

For simplicity, we start with the case where all edges have different
weights. Let Y be a minimum spanning tree and let Kk denote the graph
constructed at the end of the k-th iteration.

⋆ If Y = K, then K is a minimum spanning tree. If not, we should
obtain a contradiction.

So suppose that Y ̸= K. Let e be the first edge considered by the
algorithm, which is inK but not in Y and letKi denote the graph constructed
until the point when edge e was added. Then Y + e has a cycle (one cannot
add an edge to a spanning tree and still have a tree). This cycle contains
another edge f which, at the stage of the algorithm where e was added to
Ki, has not been considered. The reason for which f was not considered is
because w(f) > w(e), and not because f would have been closed a cycle, if it
were added to Ki. (Indeed, if f closed a cycle if added to Ki, then Y would
contain a cycle, namely Ki + f , so f was a frontier edge at the beginning of
(i+ 1)-th iteration).

The subgraph Y1 = Y + e− f is also a spanning tree, with the weight

w(Y1) = w(Y ) + w(e)− w(f) < w(Y ), (3.9)

which is a contradiction with the fact that Y is a MST. Thus the assumption
K ̸= Y is false, whence K = Y , therefore K is a MST.

To finalize, we have to consider also the case when some weights are equal.
We repeat the arguments above but at the point when we reach inequality
(3.9), it transforms into

w(Y1) = w(Y ) + w(e)− w(f) ≤ w(Y ).

It implies this time that Y1 is also a MST. In this case we “replace” Y with
Y1 and repeat the proof from the point ⋆ with the “new” Y , until we obtain
Y = K. �
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Remark 3.13 Another argumentation for the correctness will be given in
Example 3.16, p. 111.

3.5.3 Minimum spanning tree in directed graphs

Definition 3.36 Let D = (V,A) be a digraph. A spanning rooted tree of
D is a rooted tree (see Definition 3.21, p. 85) which contains all the vertices
of D.

Proposition 3.29 Let D = (V,A) be a strongly connected digraph and let r
be an arbitrary vertex. Then there exists a spanning rooted tree of D, rooted
at r.

As in the case of graphs, we can associate to a digraph D = (V,A) a
weight function w : A → R+, and obtain a weighted digraph. The weight
of D is defined as

w(D) =
∑
a∈A

w(a).

For a strongly connected weighted digraph D = (V,A) and a fixed vertex
r ∈ V , we want to find a minimum-weighted spanning rooted tree T ∗(r),
rooted at r, in the sense that

w(T ∗(r)) ≤ w(T (r)),

for any other spanning rooted tree T (r) of D, rooted at r. One algorithm
for growing such a rooted tree was discovered by Chu and Liu in 1965 and
then independently by Edmonds in 1967. Before giving this algorithm, we
introduce some notations.

For a set of vertices U ⊆ V , we introduce the following notations:

A−(U) = {x ∈ V : (x, u) ∈ A and u ∈ U} ,
A+(U) = {x ∈ V : (u, x) ∈ A and u ∈ U} .

Thus, A−(U) is the set of tails of arcs with heads in U and A+(U) is the set
of heads of arcs with tails in U .

Algorithm 9 (Chu, Liu, Edmonds)
Input: - a weighted strongly connected digraph D = (V,A) with the

weight w : A → R+

- a vertex r
Output: a minimum spanning rooted tree, with the root at r

� for each vertex v different from r
choose the arc with the head v, of minimum weight

� let S be the set of selected arcs (one arc for each v)
� initialize M = S
� while T = (V,M) is not a rooted tree

- let C be a directed cycle in T , denoted C = {v1, v2, . . . , vk, v1}
- for all vi ∈ A−(C) \ C calculate
w(i, C) = min{w(i, vj) + w(C)− w(vj−1, vj), vj ∈ A+(i) ∩ C},
where vj−1 is the tail of the arc (vj−1, vj) of C with head vj

- select i0 ∈ A−(C) for which w(i0, C) is minim
- let vj0 ∈ C for which
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Figure 3.23: Left: The strongly connected digraph in Example 3.10. Right:
the set S (bold) and the arcs candidates for replacing one of the arcs in the
cycle C (dotted).

w(i0, C) = w(i0, vj0) + w(C)− w(vj0−1, vj0)
- M = M − (vj0−1, vj0) + (vi0 , vj0)

� return M , the required spanning directed tree, rooted at r

Theorem 3.30 (Correctness of Chu-Liu-Edmonds algorithm) The rooted
tree obtained by applying Algorithm 9 to a digraph D = (V,A) for a given
starting vertex r ∈ V is the minimum spanning tree for D, rooted at r.

Proof. First we observe that the number of arcs in S is |V | − 1 and remains
unchanged during the algorithm. Therefore, at the moment when the graph
T does not contain any more cycles, it will be a spanning rooted tree. We
prove that, when the weight function is injective, the spanning rooted tree
has minimum weight. When the weight is not injective, we use the same
arguments as in the proof of Theorem 3.27 (correctness of Prim’s algorithm).

Let T denote the output tree of Algorithm 9 and let T ∗ = T ∗(r) be the
minimum spanning tree rooted at r. Suppose that T ∗(r) ̸= T. Then there
exist the arcs a1 = (i, j) ∈ T ∗ \ T and a2 = (k, j) ∈ T.

If a2 ∈ S, then w(a2) < w(a1). If a2 /∈ S, then j is vertex in a cycle
C = {vj, vj+1, . . . , vj−1, vj} in S, with vj = j. From the criterion of selection
of arc a2 ∈ T , we conclude that

w(k, j) + w(C)− w(vj−1, vj) < w(i, j) + w(C)− w(vj−1, vj),

whence w(a2) < w(a1). We denote by T1 the rooted tree obtained from T ∗ by
replacing the arc a1 with the arc a2. Then w(T1) < w(T ∗), which contradicts
the minimality of T ∗. �

Example 3.10 We consider the digraph in Figure 3.23 (left) and we apply
Algorithm 9, with the starting vertex r.

At the first step, the set S is

S = {(r, 1), (4, 2), (2, 3), (8, 4), (2, 5), (5, 6), (1, 7), (6, 8)}.

This set of arcs form the cycle C = ⟨2, 5, 6, 8, 4, 2⟩ (see Figure 3.23, right)
of weight w(C) = 200 . The set A−(C) of tails of arcs with heads in C is

A−(C) = {1, 3, 7},
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and for each of the vertices in this set we calculate

A+(1) ∩ C = {2, 5}, A+(3) ∩ C = {4}, A+(7) ∩ C = {8}.

Then

w(1, C) = min{w(1, vj) + 200− w(vj−1, vj), vj = 2, 5}
= min{60 + 200− 20, 70 + 200− 40} = 230,

w(3, C) = w(3, 4) + 200− w(8, 4) = 230,

w(7, C) = w(7, 8) + 200− w(6, 8) = 210.

So, i0 = 7, vj0 = 8 and the arc (6, 8) will be replaced with the arc (7, 8).
At this moment

M = {(r, 1), (4, 2), (2, 3), (8, 4), (2, 5), (5, 6), (1, 7), (7, 8)},

and it forms a rooted spanning tree, which has minimum weight equal to 210,
so the algorithm stops.

3.5.4 Shortest path. Dijkstra’s algorithm

Another optimization problem is the shortest path problem. Given, for ex-
ample, a railway network connecting various towns, determine a shortest
route between two specified towns in the network. The formulation of the
problem is the following:

Shortest Path Problem: Let s, t be vertices of a connected weighted
graph G. Find a path from s to t whose total edge-weight is minimum.

Remark 3.14 If the weights are all 1, then the problem reduces to finding a
path between s and t that uses a minimum number of edges. This version of
SPP has already been solved with BFS algorithm.

The SPP problem was solved in 1959 by Dijkstra.15 His algorithm does
actually slightly more than the problem requires: it finds the shortest path
from a given vertex s to each of the vertices of the graph.

Definition 3.37 Let G = (V,E) be a weighted graph. The distance between
two vertices x, y ∈ V , denoted by dist(x, y), is the length of the shortest path
between them:

dist(x, y) = min{w(p), p path between x and y}.

The idea of the algorithm is to grow a Dijkstra tree, starting at a given
vertex s, by adding, at each iteration, a frontier edge whose non-tree end-
point is as close as possible to s. For simplicity, once the vertex s is fixed, for
an arbitrary vertex x we will denote dist(s, x) by dist(x). At each iteration,
one adds an edge (and implicitly a vertex) to the Dijkstra tree, and then one
writes a label on the new vertex. Thus, the vertices in the Dijkstra tree at
a given iteration are those to which shortest paths from s have already been
found.

Let the P -value of the frontier edge e be

P (e) = dist(x) + w(e),

15Edsger Wybe Dijkstra [’dεikstra] (1930-2002), Duch computer scientist.
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where x is the labeled endpoint of e. The edge with the smallest P -value is
given the highest priority. Moreover, the P -value of its highest priority edge
will give the distance from s to the unlabeled endpoint of e. The algorithm
labels each tree vertex with the distance between vertex s and that vertex.

Algorithm 10 (Dijkstra’s shortest path)
Input: a weighted connected graph G = (V,E) with nonnegative weights and
s ∈ V
Output: – a spanning tree T of G, rooted at s, whose path between s and
each vertex v is the shortest path between s and v in G

– a vertex labeling giving the distance from s to each vertex
� initialize Dijkstra tree T as vertex s
� initialize the set of frontier edges for T as ∅
� set dist(s) = 0
� write label 0 on vertex s
� while tree T does not yet span G

- for each frontier edge e for T
let x be the labeled endpoint of edge e
let y be the unlabeled endpoint of edge e
set P (e) = dist(x) + w(e)

- let e be a frontier edge for T that has the smallest P -value
- let x be the labeled endpoint of edge e
- let y be the unlabeled endpoint of edge e
- add edge e (and vertex y) to tree T
- dist(y) := P (e)
- write label dist(y) on vertex y

� return Dijkstra tree T and its vertex labels

Theorem 3.31 (correctness of Dijkstra’s algorithm) Let G be a con-
nected weighted graph and T the Dijkstra tree produced by Algorithm 10 start-
ing at vertex s. Then, for each vertex x of T , the unique path in T between
s and x is the shortest path in G between s and x.

Proof. The proof follows the same ideas as the proof of Theorem 3.27. �

Example 3.11 Consider the weighted graph in Figure 3.24. If we apply
Algorithm 10 starting at vertex s, the steps are the following:

Step 1 dist(s) = 0,
P (sz) = 8
P (sy) = 16
P (sw) = 13

⇒ min = 8, ⇒ sz added, dist(z) = 8.

Step 2
P (sw) = 13
P (sy) = 16
P (zy) = 15
P (zv) = 18
P (zw) = 19
P (zx) = 25

⇒ min = 13 ⇒ sw added, dist(w) = 13.
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Figure 3.24: Dijkstra trees (bolded) after the steps 2,3,4,5.

Step 3
P (sy) = 16
P (zy) = 15
P (zx) = 25
P (zv) = 18
P (wx) = 27

⇒ min = 15 ⇒ zy added, dist(y) = 15.

Step 4
P (yx) = 20
P (zx) = 25
P (zv) = 18
P (wx) = 27

⇒ min = 18 ⇒ zv added, dist(v) = 18.

Step 5
P (wx) = 27
P (yx) = 20
P (vx) = 24
P (zx) = 25

⇒ min = 20 ⇒ yx added, dist(x) = 20.

For directed graphs, there exist more algorithms for finding a directed
spanning tree. Among them we mention the Moore-Dijkstra algorithm, the
Bellman-Kalaba algorithm and the Ford algorithm, with their variations.

3.6 Greedy algorithms

An optimization problem is one in which one wants to find not only a solution,
but the best solution.

A greedy algorithm is an algorithm that “gobbles up” all of its favorites
first, without worrying about the consequences. It uses a single procedure
again and again, until it can’t do anything.

Mathematically, we say that it takes the best immediate (or local) so-
lution, without worrying about the effect of the decision in the future, but
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hoping that by choosing a local optimum at each step, one ends up at a
global optimum.

Example 3.12 Suppose we want to give rest an amount of C6.39 using the
fewest possible bills and coins. A Greedy algorithm would do this: at each
step, take the largest possible bill or coin. The available pieces are

5C, 2C, 1C, 50 c, 20 c, 10 c, 5 c, 2 c, 1 c,

so our rest can be given as follows:

6.39 = 5C + 1C + 20 c+ 10 c+ 5 c+ 2 · 2 c. (7 pieces)

For euro, the greedy algorithm always gives the optimum solution.
But, Suppose we are given a fictional monetary system, with the coins

10u, 7u, 1u. With a greedy algorithm, one pays the amount of 15u as

15u = 1 · 10u+ 5 · 1u (6pieces).

There exists however a payment with only 3 coins, namely

15u = 2 · 7u+ 1 · 1u.

So, GA gives a solution, but not an optimal solution.

Other examples of GA are Prim’s, Kruskal’s and Dijkstra’s algorithms,
but as we could see, they always lead to the optimal solution. So, for some
optimization problems, a greedy algorithm can however find the optimal
solution.

The natural questions which arises are: When does a GA find the optimal
solution? If we know that it is possible not to find the optimal solution, why
do we apply it? We will give a partial answer to the first question in the
next section. Regarding the second question, the reason we use GA is that
usually such algorithms are quick, easy to implement, and often give a good
approximation to the optimum.

3.6.1 Greedy algorithm for the maximum weight prob-
lem

Let E be a finite set and I a family of subsets of E, called admissible sets.
Then the pair S = (E, I) is called an admissible system of (sub)sets. If
w : E → R+ is a weight function, then for the subset N ∈ I we define its
weight as

w(N) =
∑
x∈N

w(x).

The maximum weight problem Pmax: Find an admissible set with max-
imum weight.

A greedy algorithm for solving this problem is the following:

Algorithm 11 (Greedy Algorithm for Pmax)
Input: S = (E, I) a system of admissible subsets
Output: a solution of Pmax (at least we hope for the maximality)

� initialize M = ∅ and A = E



CHAPTER 3. GRAPH THEORY 110

� while A ̸= ∅
- choose e ∈ A with maximum weight
- set A = A− e
- if M + e ∈ I, then M = M + e

� return the set M

So, each e ∈ E was considered once, being either added or definitively
eliminated. Thus, the algorithm is fast and simple, but it is not sure that it
is optimal.

Example 3.13 Let E = {e1, e2, e3}, with the weights

w(e1) = 3, w(e2) = w(e3) = 2,

and I = {{e1}, {e2}, {e2, e3}}.
The solution of Pmax is M = {e2, e3}, having w(M) = 4, while the solution

obtained with Algorithm 11 is M = {e1}.

The fact that GA did not find the optimal solution is caused by the fact that
there is no link between the sets in I.

Definition 3.38 A system of sets S = (E, I) is called hereditary if it is
closed under inclusion, i.e.,

if A ∈ I and A′ ⊆ A, then A′ ∈ I.

Example 3.14 Let E = R3 and I the set of all sets of linearly independent
vectors. Then S = (R3, I) is an hereditary system of subsets, since any
subset of linearly independent set of vectors is linearly independent.

Example 3.15 Let G = (VG, EG) be a graph and I the set of subsets of EG

whose induced subgraphs are acyclic subgraphs of G. Then S = (EG, I) is an
hereditary system of sets.

In the sequel we will consider the problem Pmax for hereditary systems of
sets.

Proposition 3.32 If the system S = (E, I) has the property that for every
w : E → R+ greedy algorithm 11 leads to a solution of Pmax, then (E, I) is
an hereditary system of sets.

Proposition 3.33 By applying GA to an hereditary system of sets (E, I)
and a given weight function w : E → R, we obtain a maximal set, in the
sense

there exists no x ∈ E such that M ∪ {x} ∈ I.

Definition 3.39 An hereditary system of sets M = (E, I) is called a ma-
troid if it satisfies the following condition, which is referred to as the aug-
mentation property:

(AP ) :
If I, J ∈ I and |I| < |J |, then there exists e ∈ J \ I

such that I ∪ {e} ∈ I.

Proposition 3.34 If an hereditary system of sets (E, I) has the property
that for every weight w : E → R+ the GA leads to a solution of Pmax, then
this system has also the augmentation property.
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Figure 3.25: The graph for the timetable problem.

Theorem 3.35 A system of sets (E, I) has the property that for every w :
E → R+, greedy algorithm leads to a solution of Pmax, if and only if (E, I)
is a matroid.

Example 3.16 (matroid) Let G = (V,E) be a graph and let I be the set
of edges with the property that the graph generated by these edges does not
contain cycles. Then S = (E, I) is a matroid.

Thus, Kruskal’s algorithm (p. 102) leads to a minimum spanning tree.

3.6.2 Greedy algorithm for vertex coloring

Suppose we want to timetable six one-hour lectures V = {v1, v2, . . . , v6}.
Among the potential audience there are people who wish to hear both v1
and v2, v1 and v4, v3 and v5, v2 and v6, v4 and v5, v5 and v6, v1 and v6. How
many hours are necessary in order that the lectures can be given without
clashes? We can represent the situation by a graph (see Figure 3.25), whose
vertices are the six lectures and the edges represent potential clashes. A
possible timetable avoiding clashes is:

Hour 1 Hour 2 Hour 3 Hour 4
v1 and v3 v2 and v4 v5 v6

Mathematically we construct a partition of V into four parts, such that no
part contains a pair of adjacent vertices of the graph. Actually, we define a
function

c : {v1, v2, v3, v4, v5, v6} → {1, 2, 3, 4},

which assign to each vertex (lecture) the hour scheduled for it. Usually we
speak about colors assigned to the vertices and what is important is that
vertices which are adjacent in the graph must have different colors.

Definition 3.40 A vertex coloring of a graph G = (V,E) is a function
c : V → N with the property

c(x) ̸= c(y) whenever xy ∈ E.

The chromatic number of G, denoted χ(G), is defined as the least
integer k for which there is a vertex coloring of G using k colors.

Returning to Figure 3.25, our timetable is equivalent to a vertex coloring
using four colors. But the chromatic number of the graph is three, since there
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exist the coloring

Color 1 Color 2 Color 3
v1 v2 and v5 v3, v4 and v6

Furthermore, there is no coloring with only two colors since v1, v2, v6 are
mutually adjacent, so they must have different colors. In conclusion, the
chromatic number of the graph is 3.

In general it is a difficult problem to find χ(G) and there is no fast algo-
rithm (polynomial time) which do this. a method for constructing a vertex
coloring with a reasonable number of colors is to assign colors to the vertices
in order, in such a way that each vertex receives the first color which has not
already be assigned to one of its neighbors. Thus, we take the best choice at
each step, without looking ahead to see if that choice will create problems
later, in other words we use a greedy algorithm.

Algorithm 12 (Greedy algorithm for vertex coloring)
Input: a graph G = (V,E) with |V | = n
Output: a vertex coloring for G

� assign color 1 to v1
� for i=2 to n

- let S be the empty set of colors
- for j = 1 to i− 1
if vj is adjacent to vi
then add the color of vj to S

- k = 1
- while color k is in S do k = k + 1
- assign color k to vertex vi

� return a color for each vertex in V

We finish by giving a result concerning the chromatic number of a par-
ticular class of graphs.

Definition 3.41 A graph is called planar if it can be drawn in a plane
without edges crossing.

Theorem 3.36 (The four-color theorem) Any map in a plane can be
colored using four colors in such a way that regions sharing a common bound-
ary (other than a single point) do not share the same color.

This result was first conjectured16 by Guthrie in 1853. At that time, it was
not difficult to prove that five colors are sufficient. The four-color theorem
is the first major theorem which was proved using a computer. Since it was
conjectured, there were many attempts at proving, each proof shown after
years to be incorrect. Finally, it was proven in 1976 by Appel and Haken,
using an algorithm of Koch. Their proof reduced the infinitude of possible
maps to 1936 configurations (later reduced to 1476), checked one by one by
computer. Later, in 1996, it was proven that there are actually only 633
possible configurations.

16In mathematics, a conjecture is a mathematical statement which appears likely to be
true, but has not been formally proven to be true under the rules of mathematical logic.
Once a conjecture is formally proven true it is elevated to the status of theorem and may
be used afterwards without risk in the construction of other formal mathematical proofs.
Until that time, mathematicians may use the conjecture on a provisional basis, but any
resulting work is itself conjectural until the underlying conjecture is cleared up.
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Figure 3.26: A 3-partite graph (left) and a 3-partite complete graph (right).

3.7 Bipartite graphs

Definition 3.42 Let r ∈ N, r ≥ 2. A graph G = (V,E) is called r-partite
if V admits a partition into r classes such that every edge has its endpoints
in different classes (or, equivalently, vertices in the same partition class must
not be adjacent).

Remark 3.15 A 2-partite graph is called bipartite. It is denoted G = (V1∪
V2, E), where V1 and V2 are the two classes of the partition. An immediate
property in a bipartite graph is∑

v∈V1

deg(v) =
∑
v∈V2

deg(v).

We give now an important characterization of bipartite graphs.

Theorem 3.37 (Characterization of bipartite graphs) A graph is bi-
partite if and only if it contains no odd cycle.

Proof.

⇒ Let G = (V1 ∪ V2, E) be bipartite graph. Then G either has no cycle,
or, if there exists a cycle, it has the vertices successively in V1 and V2,
with the last vertex in the same class as the first. Such a cycle has an
even number of edges.

⇐ Let G = (V,E) be a graph without odd cycle (G has therefore no cycle
or even cycle). Let G0 = (V0, E0) a connected component of G and
denote T0 the spanning tree obtained by BFS algorithm, starting at a
given vertex s ∈ V0. Consider the sets

V1 = {s} ∪ {x ∈ V, d(x, s) = even},
V2 = {x ∈ V, d(x, s) = odd}.

Then every edge e0 ∈ T0 has one endpoint in V1 and the other in V2.
Let e = {x, y} a non-tree edge. Then d(x, s) and d(y, s) are either equal
or differ by 1 (see Proposition 3.25). If they were equal, e would close
an odd cycle, fact which contradicts the hypothesis. In consequence

|d(x, s)− d(y, s)| = 1,

which implies that one of the vertices x, y is in V1 and the other is in
V2.
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Figure 3.27: The graph in Example 3.17.

�

An application of bipartite graphs is the job assignment. If X is a set of
people and Y a set of jobs, such that each person in X is qualified for some
jobs in Y , then the question is: how can we assign people to jobs, so that a
maximum number of people get jobs for which they are qualified?

In terms of graphs, we consider the bipartite graph G = (X ∪ Y,E),
where xy ∈ E if and only if x is qualified for job y. Such an assignment is
called a matching in G.

3.7.1 Matchings

Definition 3.43 Let G = (V,E) be a graph.

A set M ⊆ E is called matching in G if no two edges in M are adjacent
in G.

A matching M saturates the vertex v ∈ V , and v is said to be M- satu-
rated, if some edge of M is incident on v; otherwise v is unsaturated
by M .

A perfect matching is a matching M in which every vertex of G is M-
saturated.

If e = xy ∈ M, we say that M matches x with y (or x is matched with y
by M).

A maximum(-cardinality) matching is a matching with the greatest num-
ber of edges (no other matching has a greater cardinality).

A maximal matching is a matching that is not a proper subset of any
other matching in G.

Example 3.17 In the graph in Figure 3.27,

{b}, {c}, {d}, {e} are matchings which are not maximal.

{b, d}, {c, e} are maximum matchings,

{a} is a maximal matching, but not a maximum matching.

The commonest applications of matchings are machine scheduling and job
assignment.
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Figure 3.28: The matchings M1 and M2.

3.7.2 Matchings in bipartite graphs

Consider the bipartite graph in Figure 3.28. The setM1 = {x1y3, x4y4} is not
a maximum matching, but M2 = {x1y2, x3y3, x4y4} is a maximum matching,
since there is no other matching with more than three edges. Indeed, if we
consider that X is a set of people and Y is a set of jobs, then it is impossible
for all four people to get jobs for which they are qualified. Because {x1, x2, x3}
are together qualified only for two jobs y2 and y3, one of them cannot get a
job however the jobs are filled.

In many applications one wishes, if possible, to find a matching of G that
saturates every vertex in X.

Definition 3.44 If |M | = |X| (all people get jobs), we say that M is a
complete matching.

Of course, M1 and M2 are not complete matchings. The first step in
studying matchings is to decide if a complete matching is possible. We have
seen in the above example that if there are three people and two jobs, a com-
plete matching cannot exist. Afterwards, we are interested to find necessary
and sufficient conditions for the existence of such a matching.

Let G = (X ∪ Y,E) a bipartite graph and S ⊆ X. We define the set of
all vertices adjacent to vertices in S,

J(S) = {y ∈ Y, xy ∈ E for some x ∈ S},

meaning the set of jobs for which people in S are collectively qualified.

Remark 3.16 If |J(S)| < |S|, then someone in S will not get a job. So, if
J is a complete matching, then

|J(S)| ≥ |S| for all S ⊆ X. (3.10)

The condition given in (3.10) is referred to as Hall’s17 condition.

Theorem 3.38 (Hall, 1935) The bipartite graph G = (X ∪ Y,E) has a
complete matching if and only if Hall’s condition (3.10) is satisfied.

Proof.

17Philip Hall (1904-1982), English mathematician.
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Figure 3.29: The matchings M and M ′ in the proof of Hall’s theorem. The
edge x1y1 in M is removed and the edges x0y1, x1y2 not in M are added.

⇒ Let M be a complete matching and let S ⊆ X. The vertices in Y
matched by M with those in S form a subset of J(S) with size ≥ |S|.
Hence, |J(S)| ≥ |S|.

⇐ Suppose |J(S)| ≥ |S| for all S ⊆ X. Given a matching M for which
|M | < |X|, we will show how to construct a matching M ′ with |M ′| =
|M |+ 1 (such a matching M ′ will always exist !).

Let x0 be any vertex not matched by M . Then

|J({x0})| ≥ |{x0}| = 1,

so there is at least one edge e = x0y1 in M .
If y1 is unmatched, then M ′ = M ∪ {e}.
If y1 is matched in M , with x1 say, then

|J({x0, x1})| ≥ |{x0, x1}| = 2,

so there exists y2, y2 ̸= y1, adjacent to x0 or x1.
If y2 is unmatched, stop.
If y2 is matched, to x2 say, repeat the argument,
so there exists y3, adjacent to at least one of x0, x1, x2.
. . .
Continuing in this way, we must eventually stop at an
unmatched vertex yr (since G is finite).

Each yi, i ∈ Nr, is adjacent to at least one of the vertices x0, x1, . . . , xi−1,
therefore we have a path

p = ⟨yr, xr−1, yr−1, . . . , x1, y1, x0⟩, in which xiyi ∈ M.

We construct the matching M ′ such that xiyi of the path p are not in
M ′, but the alternate edges are in M ′ (see Figure 3.29).

Since the terminal edges yrxr−1 and y1x0 are both in M ′, we have
|M ′| = |M |+ 1 (the number of added edges equals one plus number of
removed edges).

�
To summarize, the idea of the proof is the construction of a path whose edges
are alternately in M and not in M . In general, for a graph G = (V,E) and
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for a matching M in G, we say that a path is an alternating path for M
if its edges are alternately in E \M and M . An augmenting path for M
is an alternating path for M whose initial and final vertices are unsaturated
by M . For example, an augmenting path for the matching M in Figure 3.29
is ⟨x0, y1, x1, y2⟩.

Let us note that, since the first and last edges in an augmenting path do
not belong to M , the path has one edge fewer in M than it has not in M .

From the proof of the theorem we can also deduce that, if Hall’s condition
is satisfied and M is not complete, then an augmenting path for M exist.

The idea of the proof constitutes also a practical device for the con-
struction of complete matchings, supplying actually an algorithm for this
construction.

Remark 3.17 Hall’s theorem is also known as the marriage theorem,
due to the following interpretation: X is a set of men and Y is a set of
women, some of those know each other. We require the condition that each
man marries to one of the women he knows. In Hall’s theorem, J(S) denotes
the set of women known by at least one man in S. A matching is a set of
pairs who marry.

3.7.3 Maximum matching

In general, a bipartite graph will not have a complete matching, so the prob-
lems which arise in this case are: how can we find the maximum size of
a matching and how can we find an assignment which results in the largest
possible number of people getting suitable jobs. The solution can be deduced
from Hall’s theorem.

First, let us observe that, if |S| > |J(S)|, then some people won’t get jobs,
actually at least |S|− |J(S)| people won’t get jobs. This remark suggests the
following definition.

Definition 3.45 The deficiency d of the bipartite graph G = (X ∪ Y,E)
is defined as

d = max{|S| − |J(S)|, S ⊆ X}.

Remark 3.18 For S = ∅ we have |S| = |J(S)| = 0, so d ≥ 0. Then, in
terms of deficiency, Hall’s theorem can be reformulated as follows: There
exists a complete matching if and only if d = 0.

The next theorem deals with the size of a maximum matching in the general
case.

Theorem 3.39 The size of a maximum matching M in a bipartite graph
G = (X ∪ Y,E) is

|M | = |X| − d,

where d is the deficiency of G.

Proof. From Definition 3.45 we deduce that there exists S0 ⊆ X such that

|S0| − |J(S0)| = d.

In any matching, at least d members of S0 remain unmatched, so

|M | ≤ |X| − d.
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It remains to show that there exists a matching with size equal to |X| − d.
Let D be a new set, with size |D| = d. We construct the graph G∗ =

(X∗ ∪ Y ∗, E∗), with

X∗ = X,

Y ∗ = Y ∪D,

E∗ = E ∪K,

where K is the set of all possible edges linking X and D. Then, for the graph
G∗ we have J∗(S) = D ∪ J(S), hence

|J∗(S)| − |S| = d+ |J(S)| − |S| ≥ 0.

Thus, G∗ satisfies Hall’s condition and therefore G∗ has a complete matching
M∗.

By removing from M∗ the d edges which have a vertex in D, we obtain
the required matching in G. �

Remark 3.19 Theorem 3.39 is not very efficient to find the size of a max-
imum matching, because in order to calculate d we must examine all 2|X|

subsets of X.

A more practical approach is based on the fact that, if we have an alternating
path for a matching M , then we can construct a better matching M ′. In
order to make this idea work, we need the following result, known as Berge’s
theorem.

Theorem 3.40 (Berge,18 1957) The matching M in a graph G is a max-
imum matching if and only if G contains no augmenting path for M .

Proof.

⇐ We show that, if G contains no alternating path for M , then M is max-
imum. Suppose that M is not maximum and let M∗ be a maximum
matching. Then |M∗| > |M |.
Let F be the set of edges in

M∆M∗ = (M ∪M∗) \ (M ∩M∗) = (M \M∗) ∪ (M∗ \M).

With the edges in F we form a graph H, in which every vertex will
have the degree one or two, since it can be incident on at most one edge
of M and one edge of M∗. So, the components of H are either paths
or cycles and in each of these paths/cycles the edges in M alternate
with edges not in M . Thus, in any cycle, the number of edges in M
(in M \M∗) equals the number of edges not in M (in M∗ \M). But,

|M∗| > |M | ⇒ |M∗ \M | > |M \M∗|,

so it is impossible to have only cycles in F . In conclusion, there exists
at least one component which is a path with an odd number of edges,
and this is an augmenting path for M . This is a contradiction.

18Claude Berge (1926-2002), French mathematician.
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⇒ LetM be a maximummatching. We prove thatG contains no augmenting
path for M . We suppose the contrary, that G contains an augmenting
path in M , denoted P = ⟨e1, e2, . . . , e2s+1⟩. Since e1 /∈ M, we deduce
that

e1, e3, . . . , e2s+1 /∈ M and e2, e4, . . . , e2s ∈ M.

Define the set M1 ⊆ E obtained from M by removing e2, e4, . . . , e2s and
adding e1, e3, . . . , e2s+1. Then M1 is a matching in G which contains
one more edge than M , a fact that contradicts the maximality of M .�

From the proof of Berge’s theorem, we can deduce the following algorithm
for finding a maximum matching:

Algorithm 13 (find a maximum matching for a given M)
Input: a graph G
Output: a maximum matching in G

� initialize M with any edge
� ~ search an augmenting path for M

If an augmenting path is found, construct a better matching M ′

in the usual way, and return to ~, with M ′ replacing M
If no augmenting path can be found, STOP: M is a maximum
matching.

The search of an augmenting path can be made by a modified BFS pro-
cedure. Choose an unmatched vertex x0 and construct a tree of “partial”
alternating paths, starting from x0, as follows:

1. At level 1, insert all the vertices y1, y2, . . . , yk adjacent to x0 in G. If any
one of these vertices yi is unmatched, STOP: ⟨x0, yi⟩ is an augmenting
path.

2. If all level-1-vertices y1, y2, . . . , yk are matched, at level 2 insert the
vertices x1, x2, . . . , xk with which they are matched.

3. At level 3, insert all new vertices adjacent to the level-2-vertices. If
any one of the them is unmatched, STOP: the path leading from this
vertex x0 is an augmenting path.

4. If all level 3 vertices are matched, insert at level 4 the vertices with
which they are matched,
and so on.

The construction may be halted because there are no new vertices to insert
at an odd-numbered level. When this happens, there is no augmenting path
beginning at the chosen vertex x0. We must, however, repeat the procedure
for every unmatched vertex in X before we can be sure that no alternating
path can be found in G.

3.8 Hamiltonian graphs and Eulerian

graphs

We begin by mentioning that all the results given in this section for graphs
are also valid for multi-graphs, unless we specify the contrary.
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Figure 3.30: A map of towns and the roads linking them.

Consider the map in Figure 3.30, of six towns and the roads connecting
them.

A highway engineer (E) wishes to inspect all the roads, in either direc-
tion, being prepared to start and finish in different places, whilst his friend,
inspector (H), wishes to dine in a restaurant in each town. Each wishes to
achieve his objective in a way as efficient as possible. So, (E) states his aim
as “I wish, if possible, to visit every road once and only once”, whilst (H)
says “I wish, if possible, to visit each town once and only once and return
to my starting point. The question is: “Can suitable routes for them be
found”?

For inspector (H) one possibility is the closed walk

ω = ⟨p, q, t, s, u, r, p⟩.

For engineer (E), let x denote the starting vertex and y the final vertex
and suppose for the moment that x ̸= y. He uses one edge incident on x
when he starts, and each time he returns to x he must arrive and depart by
new edges. In this way, he uses an odd number of edges at x, and thus the
degree of x should be an odd number (x should be an odd vertex). Similarly,
the degree of y should be odd. All the remaining vertices should be even,
since every time he arrives at an intermediate vertex he also departs, and
thereby uses two edges.

In conclusion, a route for (E), starting and finishing at distinct vertices
x and y is possible if and only if x and y are odd vertices and the rest are
even. In our case, the degrees are

v p q r s t u
δ(v) 4 4 5 5 5 3

,

so there is no route for (E).
If x = y, again there is no solution, since all the vertices should be even.

3.8.1 Hamiltonian graphs

In general, (H)’s route is a cycle which contains all vertices of a given graph.
Such cycles were first studied by Hamilton,19 so a cycle with this property
is called a Hamiltonian cycle. A graph which is connected and contains
a Hamiltonian cycle is called a Hamiltonian graph. In the case when we
do not impose the restriction that the initial and the final vertices coincide,
such a path which visits each vertex exactly once is called a Hamiltonian
path.

19William Rowan Hamilton (1805-1865), Irish mathematician, physicist and astronomer.
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In general, it is not so easy to decide if a graph is Hamiltonian or not.
Some results given sufficient conditions for the existence of a Hamiltonian
path are the following:

Theorem 3.41 (Dirac,20 1952) A graph with n > 2 vertices is Hamil-
tonian if each vertex has the degree ≥ n/2. This theorem is valid only for
graphs, not for multi-graphs.

Theorem 3.42 (Ore,21 1960) A connected graph with n > 2 vertices is
Hamiltonian if the sum of the degrees of two non-adjacent vertices is ≥ n.
An immediate consequence is that all complete graphs are Hamiltonian.

The best characterization of Hamiltonian graphs, which generalizes the pre-
vious results of Ore and Dirac, was given by in 1972 by Bondy22 and Cvátal.23

Before we give this theorem we need to introduce some terminology.

Definition 3.46 Given a graph G with n vertices, the closure of G is the
graph uniquely constructed from G by adding, for all non-adjacent pairs of
vertices x, y with deg(x) + deg(y) ≥ n, the edge xy.

Theorem 3.43 (Bondy-Chvátal, 1972) A graph is Hamiltonian if and
only if its closure is Hamiltonian.

As a consequence of this theorem, every platonic solid,24 considered as a
graph, is Hamiltonian.

Among the algorithms for constructing a Hamiltonian cycle we mention
the Ham algorithm.

3.8.2 Eulerian graphs

The problem of finding a route for (E) was easily settled: the answer was
“no”. This problem was first discussed in 1736 by Euler, while solving the
famous Seven Bridges of Königsberg problem.

The Seven Bridges of Königsberg Problem is a famous solved math-
ematics problem inspired by an actual place and situation. The city of
Königsberg, Prussia (now Kaliningrad, Russia) is set on the Pregel River,
and included two large islands which were connected to each other and the
mainland by seven bridges (see Figure 3.31). The question is whether it is
possible to walk with a route that crosses each bridge exactly once. In 1736,
Leonhard Euler proved that it was not possible. In proving the result, Euler
formulated the problem in terms of graph theory, by abstracting the case
of Königsberg first, by eliminating all features except the landmasses and
the bridges connecting them; second, by replacing each landmass with a dot
(vertex), and each bridge with a line (edge), as in Figure 3.32. Thus, he
introduces a new mathematical structure – the graph.

If we calculate the degrees of the vertices in the graph of the Seven Bridges
Problem (Figure 3.32), we see that the requirement that all the vertices have
even degree is not satisfied.

20Gabriel Andrew Dirac (1925-1984), British mathematician.
21Øystein Ore (1899-1968), Norwegian mathematician.
22John Adrian Bondy, American mathematician.
23Vašek Chvátal (b. 1946), Czech mathematician.
24The platonic solids are: tetrahedron, cube, octahedron, dodecahedron, icosahedron.
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Figure 3.31: A map of Königsberg and its famous seven bridges.

Figure 3.32: The Königsberg graph.

Definition 3.47 A trail that uses each edge of the graph exactly once is
called an Eulerian trail.

An Eulerian trail which is closed is called Eulerian tour or Eulerian
circuit.

A graph is called Eulerian graph if it contains an Eulerian tour.

As we have already mentioned, Euler observed that a necessary condition
for the existence of Eulerian tours is that all vertices in the graph have an
even degree; this means the Königsberg graph is not Eulerian. As for the
existence of an Eulerian trail, either all, or all but two vertices should have
an even degree. The natural question is whether these necessary conditions
are also sufficient.

Carl Hierholzer published the first complete characterization of Eulerian
graphs in 1873, by proving that in fact the Eulerian graphs are exactly the
graphs which are connected and where every vertex has an even degree.

Theorem 3.44 (Hierholzer, 1873) Let G = (V,E) be a connected graph.
Then the following statements are equivalent:

a) G is Eulerian

b) Every vertex has even degree

c) G is the union of edge-disjoint cycles

Proof.

a) ⇒ b) This implication was already discussed.

b) ⇒ c) Since every vertex has even degree, G cannot be a tree, therefore G
contains a cycle, say C1.
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If C1 = G, then the conclusion is proved.

If not, consider the graph G1 = G − C1. Since the edges that were
removed from G form a cycle, the degree in G1 of each vertex in C1 is
reduced by two, and therefore every vertex of G1 is even. Hence, G1 is
not a tree, therefore it contains a cycle C2.

If G = C1 ∪ C2, the conclusion is proved.

If not, we continue in the following way and we must finish with the
conclusion G = C1 ∪ C2 ∪ . . . ∪ Cn.

c) ⇒ a) Let T ∗ be a closed trail in G of maximum length. According to
Proposition 3.6, T ∗ is the union of edge-disjoint cycles.

If T ∗ includes all edges in G, then the conclusion is proved.

If not, then there exists a cycle, say C, which is not a part of T ∗. Since
G is connected, there exists a vertex v ∈ C∗ ∩ C and a closed trail
obtained in the following way:

- traversing T ∗ until v is first encountered

- “detouring” around C back to v

- traversing then the remaining portion of T ∗

By constructing this trail, we obtain a contradiction with the maximal-
ity of T ∗. In conclusion, the existence of C which is not a part of T ∗ is
false, and therefore T ∗ includes all edges in G.

�

Constructing Eulerian trails and tours

Being given a connected graph with at most two vertices of odd degree, we
can construct an Eulerian trail or an Eulerian tour out of this graph by using
Fleury’s algorithm, which dates from 1883. We start with a vertex of odd
degree if the graph has none, then start with any vertex. At each step
we move across an edge whose deletion does not result into two connected
components, unless we have no choice, then we delete that edge. At the end
of the algorithm there are no edges left, and the sequence of edges we moved
across forms an Eulerian tour if the graph has no vertices of odd degree or
an Eulerian trail if there are two vertices of odd degree.

Definition 3.48 For an arbitrary graph G, an edge e with the property that
G− e has more components than G is called a bridge.

Algorithm 14 (Fleury, 1883)
Input: - a connected graph G = (V,E), all of whose vertices having (a) even
degree; (b) exactly two vertices x, y of odd degrees

- a starting vertex v0
Output: (a) an Euler tour; (b) an Euler (x, y)-trail

� set current trail as empty, current vertex as v0 and A = E
� while A ̸= ∅

- select an edge e incident on the current vertex, but choosing
a bridge only when there is no alternative
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Figure 3.33: The steps in Example 3.18.

- add e to the current trail
- set the current vertex as the other point of edge e
- set A = A \ {e}
- delete any isolated vertices

� return an Eulerian tour in case (a) and an Eulerian (x, y)-trail in case
(b)

Example 3.18 Consider the graph in Figure 3.33 (top left). We will take
the vertex A as the starting vertex. The first edges considered in the trail C
will be AB,BC,CD. At this point, the remained graph is depicted in Figure
3.33 (top right) and the current vertex is D. The edge DA becomes a bridge,
so we will take in C the edges DB, BE, EF , FG, the remained graph being
the one in Figure 3.33 (bottom left). Then GK is a bridge, therefore we will
choose GE, EH, HG, GK, KI. Next, ID is a bridge, so we choose IJ ,
JK, KL, LI, ID, DA.

As applications of Eulerian graphs we mention garbage collection, street
sweeping, snow-plowing, line-painting down the center of the street, post
delivering.

3.8.3 The postman problem

In 1962, the Chinese mathematician Meigu Guan introduced the problem of
finding a shortest closed walk to traverse every edge of a graph at least once.
He envisioned a postman who wants to deliver the mail through a network
of streets and return to the post office as quickly as possible. J. Edmonds
dubbed this problem The Chinese Postman Problem.

Definition 3.49 A postman tour in a graph G is a closed walk that uses
each edge of G at least once.

In a weighted graph, an optimal postman tour is a postman tour whose
total edge-weight is minimum.
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Of course, if each vertex of the graph has even degree, an Eulerian tour
is an optimal postman tour. Otherwise, some edges must be retraced (dead-
headed). So, the goal is to find a postman tour whose deadheaded edges
have minimum weight. This corresponds, in fact, to an Eulerian tour of the
graph G∗, formed from G by adding as many additional copies of an edge as
the number of times it was deadheaded during the postman tour.

In 1973, Edmonds and Johnson solved the Chinese Postman Problem
using the following algorithm:

Algorithm 15 (Construction of an optimal postman tour)
Input: a connected weighted graph G
Output: an optimal postman tour W

� find the set S of odd-degree vertices of G
� for each pair of odd-degree vertices u, v ∈ S, find

d(u, v)= the distance between u and v
� form a complete graph K on the vertices of S and in K assign the

weight d(u, v) to each edge uv
� find a perfect matching M in K whose total weight is minimum
� for each edge e in M

- let p be the corresponding shortest path in G between the
endpoints of edge e

- for each edge f on path p, add to graph G a duplicate copy of
edge f , including its weight

� Let G∗ be the Eulerian graph formed by adding to graph G the edge
duplications from the previous step

� construct an Eulerian tour W in G∗. This tour will correspond to the
optimal tour of the original graph G

Remark 3.20 The optimality of the postman tour follows from having cho-
sen a minimum weight perfect matching.

Figure 3.34: The weighted graph G in Example 3.19.

Example 3.19 Consider the weighted graph G in Figure 3.34. The vertices
of odd degree are b, d, f, h. They will form the complete graph K in Figure
3.35 (left). A perfect matching in K with minimum weight is M = {bd, fh}.
Each edge in M represents a path in G: for the edge bd of weight 8 we have
the path in G ⟨b, e, d⟩ (of length 8), while for the edge fh of length 9 we have
the path ⟨f, i, h⟩. The graph G∗ is represented in Figure 3.35 (right).

Finally, to construct an Eulerian tour we apply Fleury’s algorithm and
we obtain

W = ⟨a, b, c, f, e, b, e, d, e, h, i, f, i, h, g, d, a⟩.
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Figure 3.35: The complete graph K and the Eulerian graph G∗.

Figure 3.36: The digraph associated to the project in Example 3.20.

3.9 Networks

3.9.1 Critical paths

Let D = (V,A) be a digraph and w : A → N be a weight function represent-
ing costs, distances or time. This digraphs can be used in planning a project,
when the project can be broken down into small activities which are related.
For instance, the project of building a house can be broken down into many
small activities as laying foundations, bricklaying, roofing, installing electri-
cal network, etc. These activities are of course related, in the sense that on
cannot begin some of them until some of the other activities have been com-
pleted. The digraph associated to this type of project will be constructed as
follows:

- the arcs represent activities,

- the vertices represent events (an event is the completion of some activities),

- the weight of an arc is the time required for that activity .

Example 3.20 We want to schedule the activities α1, . . . , α8 such that the
total time required for the project is as small as possible, knowing the times
and the prerequisites for each αi:

Activity α1 α2 α3 α4 α5 α6 α7 α7

Time needed (days) 4 3 7 4 6 5 2 5
Prerequisites – – α1 α1 α2 α4 α3 α4

α5 α6 α5

Thus, for instance, α6 cannot start until α4 and α5 are completed. We
are interested in finding the minimum number of days needed for the whole
project. The digraph associated to the project is depicted in Figure 3.36.
There, the vertex s is the event “the project starts”, t represents the event
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“the project is accomplished”, while an intermediate vertex, say q, represents
the event “activities α4 and α5 are completed”.

For v ∈ V we denote by E(v) the earliest time for the event corresponding
to v. Thus, we have

E(s) = 0, E(p) = 3, E(r) = 4.

Then, at q both α4 and α5 must be completed, so

E(q) = max{E(r) + w(r, q), E(p) + w(p, q)} = max{4 + 4, 3 + 6} = 9.

In general, for the calculation of E(v) we have the formulas{
E(s) = 0,
E(v) = max

u∈A−(v)
{E(u) + w(u, v)} ,

where A−(v) is the set of tails of the arcs with heads in v. For the remaining
vertices one has

E(z) = max{E(q) + w(q, z), E(r) + w(r, z)} = 14,

E(t) = max{E(z) + w(z, t), E(q) + w(q, t)} = 16.

Therefore, the earliest time for the completion of t is E(t) = 16, meaning
that the minimum number of days needed for the project is 16. Actually,
this number represents the length of the longest path from s to t, and it can
be also found by applying to D a BFS algorithm for digraphs.

The method described above is a part of a technique called critical path
analysis. The rest of the technique is as follows: for each v ∈ V , we calculate
the numbers L(v), representing the latest time by which all activities (v, x)
must be started, if the whole project is to be completed on time. The formulas
for L(v) are: {

L(t) = E(t),
L(v) = min

x∈A+(v)
{L(x)− w(v, x)} ,

where A+(v) is the set of heads of the arcs with tails in v. Thus, about an
activity (y, z) we know that:

- it cannot start before time E(y), at the earliest;

- it must finish by time L(z), at the latest;

- it takes time w(y, z).

Definition 3.50 For an activity (y, z), the float time F (y, z) is defined as

F (y, z) = L(z)− E(y)− w(y, z).

Thus, (y, z) can start at any time after E(y) and before E(y) + F (y, z),
without delaying the project.

Definition 3.51 An activity (y, z) for which the float time F (y, z) is zero is
said to be critical.



CHAPTER 3. GRAPH THEORY 128

A critical activity must be started at the earliest possible time E(y), if the
project is to finish on time. In the digraph associated to the project there
will be at least one directed path from s to t consisting entirely of critical
activities, and this is called a critical path. This path is in fact the unique
path in the BFS spanning tree of the digraph, where the default priority is
the longest weight.

For our example, the numbers L are:

L(t) = 16,

L(q) = min{L(t)− w(q, t), L(z)− w(q, z)} = 9,

L(p) = L(q)− w(p, q) = 3,

L(r) = min{L(z)− w(r, z), L(q)− w(r, q)} = 5,

L(s) = min{L(r)− w(s, r), L(p)− w(s, p)} = 0.

The float times will be:

F (s, r) = L(r)− E(s)− w(r, s) = 5− 0− 4 = 1,

F (s, p) = L(p)− E(s)− w(p, s) = 3− 0− 3 = 0,

F (p, q) = L(q)− E(p)− w(p, q) = 9− 3− 6 = 0,

F (r, q) = L(q)− E(r)− w(r, q) = 9− 4− 4 = 1,

F (r, z) = L(z)− E(r)− w(r, z) = 14− 4− 7 = 3,

F (z, t) = L(t)− E(z)− w(t, z) = 16− 14− 2 = 0,

F (q, z) = L(z)− E(q)− w(q, z) = 14− 9− 5 = 0,

F (q, t) = L(t)− E(q)− w(q, t) = 16− 9− 5 = 2.

Therefore, the activities (s, p) = α2, (p, q) = α5, (q, z) = α6, (z, t) = α7 are
critical activities. About the activities that are not critical, one can say the
following:

(s, r) = α1 can start after E(s) = 0 and before E(s) + 1 = 1,

(r, z) = α3 can start after E(r) = 4 and before E(r) + 3 = 7,

(r, q) = α4 can start after E(r) = 4 and before E(r) + 1 = 5,

(q, t) = α8 can start after E(r) = 9 and before E(r) + 2 = 11.

One can easily see that a critical path is

⟨s, p, q, z, t⟩.

3.9.2 Flows and cuts

In a directed graph, one can regard the set of arcs as a network of pipelines
along which some commodity can flow, the weight of an arc representing in
this case its capacity. In such a graph, there are two vertices, s ( the source)
and t (the sink), having a special role:

- all arcs containing s are directed away from s;

- all arcs containing t are directed towards t.

So, we deal with a connected digraph D = (V,A), a capacity function
c : A → R+, a source s and a sink t. Such a digraph will be called a
transportation network, or simply network.
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Figure 3.37: The network in Example 3.21.

Suppose a commodity is flowing along the arcs of the network and let
f(x, y) be the amount which flows along the arc (x, y). The amount of flow
which arrives at a vertex v should be equal to the amount of flow leaving v,
except the vertices s and t. If we define

inflow (v) =
∑

(x,v)∈A

f(x, v),

outflow (v) =
∑

(v,y)∈A

f(v, y),

this requirement can be written as inflow (v) = outflow (v), for v ̸= s, t.
We should also require that no arc carries flow exceeding its capacity. In
conclusion, we give the following definition:

Definition 3.52 A flow from the source s to the sink t in a network is a
function which assigns a nonnegative number f(x, y) to the arc (x, y), such
that:

a) inflow(v) = outflow(v), for v ̸= s, t (conservation rule);

b) f(x, y) ≤ c(x, y), for all (x, y) ∈ A (feasibility rule).

Of course, nothing is allowed to accumulate at intermediate vertices, and this
means

outflow(s) = inflow(t).

This common value is called the value of the flow f and is denoted val(f).

Example 3.21 Consider the network given in Figure 3.37. The function
f defined in the following table is a flow in this network and has the value
val(f) = 8.

(x,y) (s,a) (s,b) (s,c) (a,d) (b,d) (c,t) (a,t) (c,t) (d,t)
f(x,y) 3 2 3 1 2 1 2 2 4

Our aim now is to calculate the maximum value of a flow for the network
given in Figure 3.37.

The first step is to find an upper bound for this value in terms of capaci-
ties. Since from s one can transport 5+ 4+3 = 12, the flow should be ≤ 12.
The idea is to partition the vertex set into two parts, S containing s and T
containing t. Thus, the flow from S to T equals the flow from s to t and this
common value is val(f). The value val(f) can be written as

val(f) =
∑

x∈S, y∈T

f(x, y)−
∑

u∈T, v∈S

f(u, v),
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where the first sum represents the total flow from S to T and the second
sum represents the total flow in reverse direction. In our example, if S =
{s, a, b, c} and T = {d, t}, then, indeed

val(f) = f(a, d) + f(a, t) + f(b, d) + f(c, d) + f(c, t)− 0 = 8.

Of course, the same value is obtained, for the partition {S, T} with S = {s, b},
T = {a, c, d, t}:

val(f) = f(s, a) + f(s, c) + f(b, d)− 0 = 8.

Also, let us mention that, for the last partition

val(f) ≤ c(s, a) + c(s, c) + c(b, d) = 10. (3.11)

At this point we need to give the following definition.

Definition 3.53 In a network D = (V,A), with source s, sink t and capacity
c : A → R+, the pair (S, T ) is called a cut if {S, T} is a partition of V such
that s ∈ S and t ∈ T . The capacity of the cut is defined as

cap (S, T ) =
∑

x∈S, y∈T

c(x, y).

Then, the following result is immediate:

Theorem 3.45 Let s be the source and t be the sink in a network. If f :
A → R+ is any flow from s to t and (S, T ) is a cut, then

val(f) ≤ cap (S, T ).

3.9.3 Max flow, min cut

An immediate consequence is the following result: if f0 is a flow with maxi-
mum possible value and (S0, T0) is a cut with minimum capacity, then

val(f0) ≤ cap (S0, T0), meaning that

max-flow ≤ min-cut

Actually, the two values are equal, and this will be proved in Theorem 3.46.
The idea used for constructing a max-flow is to increase the value of

a given flow, if the flow does not have the maximum possible value. We
will illustrate this idea for the network in Figure 3.37 and the flow given in
Example 3.21.

There are two types of improvements:
Type 1 improvement: Consider the path ⟨s, a, t⟩. Neither (s, a), nor (a, t)

carry flow to its full capacity, therefore we can increase the flow on both arcs,
until the capacity of one of them is reached. If we define

f1(s, a) = 4,

f1(a, t) = 3,

then (a, t) is saturated. Further, since the flows on both arcs have been
increased by the same amount, since the conservation rule still holds at a,
one has

f1(x, y) = f(x, y)
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on the remaining arcs. Therefore, we have obtained a new flow f1 with

val(f1) = val(f) + 1 = 9.

Type 2 improvement: Consider the path ⟨s, a, d, c, t⟩ in the underlying
graph.

This is not a path in the network since (d, c) is not an arc. The arc (c, d)
is contrary to the direction of the path, therefore we can reduce the flow on
(c, d) by 1 and increase the flows on the other arcs of the path by 1, without
violating the conservation rule. Thus, we can define a new flow f2 as

and f2 = f1 for the rest of the arcs. The arc (s, a) is thus saturated and
the flow on (c, d) cannot be negative, so we cannot make any greater change
on this path. The value of the new flow is

val(f2) = val(f1) + 1 = 10,

and it is the maximum value, as we have seen in (3.11). Therefore, f2 is a
maximum flow.

The paths ⟨s, a, t⟩ and ⟨s, a, d, c, t⟩ used to augment the flows f and f1
are flow-augmenting paths.

Definition 3.54 Given a flow f in a network, a path p = ⟨s = x1, x2, . . . , xk−1, xk =
t⟩ in the underlying graph is called an
f–augmenting path if

f(xi, xi+1) < c(xi, xi+1) and (xi, xi+1) ∈ A (3.12)

or f(xi+1, xi) > 0 and (xi+1, xi) ∈ A, (3.13)

for 1 ≤ i ≤ k − 1.

In fact, (3.12) means that the forward arcs are not used at their full capacity,
while (3.13) means that the backward arcs are carrying some “contra-flow”.
In fact, the f–augmenting paths are the paths which can be “improved”.
Given such a path, we can increase flow on the forward arcs and decrease
the flow on the backward arcs by the same amount, without violating the
conservation rule.

The greatest change (without overloading the forward arcs or making the
flow on the backward arcs negative) is the minimum in the range 1 ≤ i ≤ k−1
of the quantities

α(i) =

{
c(xi, xi+1)− f(xi, xi+1), if (xi, xi+1) ∈ A,
f(xi+1, xi), if (xi+1, xi) ∈ A.

This minimum will be denoted by α and will be called residual capacity
of the path p. If we add α to the flow on forward arcs and subtract α from
the backward arcs we obtain the flow f ∗ with

val(f ∗) = val(f) + α > val(f),
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therefore f was augmented.
In conclusion, the existence of an augmenting path from s to t enables us

to find a new flow f ∗ with val(f ∗) > val(f). This idea will be used in order
to prove the next theorem. In the proof we need the following definition.

Definition 3.55 An incomplete f–augmenting path is a path satisfying
the conditions (3.12) – (3.13) for an f–augmenting path, except that the final
vertex is not t.

Theorem 3.46 (Max-flow, min-cut theorem) The maximum
value of a flow from s to t in a network is equal to the minimum capacity of
a cut separating s and t:

max-flow = min-cut.

Proof. Let f be a maximum flow. We define the sets of vertices

S = {x ∈ V, there is an incomplete f–augmenting path from s to x} ,
T = V \ S.

Then t ∈ T , otherwise there would exist an f–augmenting path from s to t
and f could be augmented, contrary to the hypothesis that f is a maximum
flow. Therefore (S, T ) is a cut.

We have to prove that

cap (S, T ) = val(f).

� Let (x, y) be an arc with x ∈ S, y ∈ T. From the definition of S, there
exists an incomplete f–augmenting path from s to x. If f(x, y) < c(x, y),
then we could extend this path to y, contradiction with y ∈ T. Hence,

f(x, y) = c(x, y).

� Let (u, v) be an arc with u ∈ T, v ∈ S. Then, there exists an incom-
plete f–augmenting path from s to v. If f(u, v) > 0, we could extend the
incomplete path to u, contradiction with u ∈ T. Hence,

f(u, v) = 0.

In conclusion,

val(f) =
∑

x∈S, y∈T

f(x, y)−
∑

u∈T, v∈S

f(u, v) =
∑

x∈S, y∈T

c(x, y) = cap (S, T ).

If (S ′, T ′) is another cut, then

cap (S ′, T ′) ≥ val(f) = cap (S, T ),

whence the cut (S, T ) has minimum capacity. Therefore the theorem is
proved. �
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3.9.4 Algorithms for finding an integer max flow

Along this section, we consider the network D = (V,A) with source s, sink t
and capacity c : A → R+.

The first algorithm, constructed by Ford and Fulkerson, is based on the
idea used in the proof of Theorem 3.46: given a flow f , we look for an f–
augmenting path and we construct a new flow f ∗, as described at page 131.

For the second algorithm, constructed by Edmonds and Karp, we need
the following definition.

Definition 3.56 For a flow f and a tree T in a network D = (V,A), an arc
(x, y) is called a usable frontier arc for f if:

x ∈ T, y /∈ T and f(x, y) < c(x, y)

or x /∈ T, y ∈ T and f(x, y) > 0.

We will give now an algorithm for constructing a tree T with usable frontier
arcs.

Algorithm 16 (Edmonds, Karp)
Input: a network D = (V,A) with source s, sink t, capacity c : A → N and a
flow f : A → N
Output: a tree T

� initialize T = {s}
� put label 0 on vertex s
� i=1
� while T doesn’t contain vertex t and there exist usable frontier
arcs for T
- update the set of usable frontier arcs for T
- let a = (x, y) be the usable frontier arc with the labeled
endpoint having the smallest label

- add to tree T the arc a and the unlabeled endpoint of a
- put label i on the unlabeled endpoint of a
- i=i+1

� return tree T

The connection between the tree T and the maximum flow is given in the
following theorem.

Theorem 3.47 Let D = (V,A) be a network with source s, sink t, capacity
c : A → N and a flow f : A → N. If the tree T which results by applying
Algorithm 16 contains the sink t, then the unique path in T from s to t is an
f–augmenting path. If T does not contain t, then f is a maximum flow.

The proof of this theorem can be found in [13].



Binary relations

� The cartesian product of two sets A and B is the set

A×B = {(x, y), x ∈ A, y ∈ B}.

� A binary relation is a triple (A,B,R), when A,B are arbitrary sets
and R ⊆ A×B.

� If (x, y) ∈ R, then x is said to be related to y (by R). This is often
denoted xR y.

� The relation (A,A,R), R ⊆ A × A is said to be a binary relation on
the set A.

� A binary relation on A is called:

� reflexive if xRx for all x ∈ A

� transitive if xR y and y R z implies xR z

� symmetric if xR y implies y Rx

� antisymmetric if xR y and y Rx implies x = y

A.1 Equivalence relations

Definition .1 A relation R ⊆ A × A is an equivalence relation on A if
R is reflexive, transitive and symmetric.

Example .1 Let R ⊆ Z× Z, given by

xR y ⇐⇒ x− y ∈ 3Z,

where 3Z = {3k, k ∈ Z}. Then R is an equivalence relation on Z.

Definition .2 Let R be an equivalence relation on a set A and let x ∈ A.
The equivalence class of x, denoted x̂ or R⟨x⟩, is the set

x̂ = {y ∈ A, xR y}.

The set of all classes of equivalence, denoted A/R, is called the quotient
set:

A/R = {x̂, x ∈ A}.
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Example .2 For the equivalence relation defined in Example .1,

0̂ = {3k, k ∈ Z},
1̂ = {3k + 1, k ∈ Z},
2̂ = {3k + 2, k ∈ Z}.

Observe that the equivalence classes are pairwise disjoint and any integer is
in one of these classes.

Definition .3 A collection of subsets {S1, S2, . . . , Sn} of a set A is a parti-
tion of A if the two following conditions are satisfied

� Si ∩ Sj = ∅, for all 1 ≤ i < j ≤ n,

�

n∪
i=1

Si = A.

Proposition .48 Let R be an equivalence relation on a set A and let x, y ∈
A. Then the following statements are equivalent:

1. xR y,

2. x̂ = ŷ,

3. x̂ ∩ ŷ ̸= ∅.
Corollary .49 Let R be an equivalence relation on a set A. Then the equiv-
alence classes form a partition of A:

{x̂, x ∈ A} is a partition.

Conversely, given a partition {S1, S2 . . . , Sn} of a set A, there exists an
equivalence relation on A. It is defined as follows:

xR y ⇐⇒ ∃ i ∈ Nn such that x, y ∈ Si.

Example .3 The equivalence classes 0̂, 1̂, 2̂ of Example .2 form a partition
of Z. Indeed,

0̂ ∪ 1̂ ∪ 2̂ = Z and 0̂ ∩ 1̂ = ∅, 0̂ ∩ 2̂ = ∅, 1̂ ∩ 2̂ = ∅.

The quotient set in this case is

Z/R = {0̂, 1̂, 2̂} = Z3.

A.2 Ordered relations

Definition .4 Let A be a set and R ⊆ A× A.

R is an partial order relation on A if R is reflexive, transitive and an-
tisymmetric. In this case, the pair (A,R) is called partially ordered
set, poset, or just ordered set if the intended meaning is clear.

R is a total order relation if it is a partial order relation and for every
x, y ∈ A one has xR y or y Rx (that is every two elements are related).
In this case the pair (A,R) is called totally ordered set.

Example .4 (R,≤) is a totally ordered set, but (P(R),⊆) is only a poset.
Here P(R) = {S, S ⊆ R}.
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Special elements

In posets there may be some elements that play a special role.

Definition .5 Let (A,≤) be a poset.

The element x ∈ A is called the least element of A if

x ≤ y, for all y ∈ A.

The element z ∈ A is called the greatest element of A if

y ≤ z, for all y ∈ A.

The element m ∈ A is called a minimal element of A if

x ≤ m for some x ∈ A =⇒ x = m.

The element M ∈ A is called a maximal element of A if

M ≤ x for some x ∈ A =⇒ x = M.

What is important to note about maximal elements is that they are in general
not the greatest elements, i.e., they do not have to be greater than all other
elements. Indeed, consider (A,⊆), with

A = {{n}, n ∈ N}.

It consists only of maximal elements, but has no greatest element. More-
over, all elements of A are minimal. This example also shows that maximal
elements are usually not unique and that it is possible for an element to be
both maximal and minimal at the same time.

If a subset has a greatest element, then this is the unique maximal el-
ement. Conversely, even if a set has only one maximal element, it is not
necessarily the greatest one.

Yet, in a totally ordered set, the terms maximal element and greatest
element coincide, this is why both terms are used interchangeably.
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