
Bogdan MOCAN

Sanda TIMOFTEI Anca STAN Mircea FULEA

RobotStudio®

Simulation of industrial automation processes and

offline programming of ABBs robots

- Practical guide for students -

U.T. PRESS
CLUJ-NAPOCA, 2017

ISBN 978-606-737-254-0

 Editura U.T. PRESS
 Str. Observatorului nr. 34
 C.P. 42, O.P. 2, 400775 Cluj-Napoca
 Tel.:0264-401.999
 e-mail: utpress@biblio.utcluj.ro
 http://biblioteca.utcluj.ro/editura

 Director: Ing. Călin D. Câmpean

 Recenzia: Prof.dr.ing. Stelian Brad
 Conf.dr.ing. Emilia Brad

Copyright © 2017 Editura U.T.PRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această
carte este posibilă numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-254-0

3

Table of Contents

Table of Contents ... 3

Workshop 1: Getting started with RobotStudio® .. 6

1.1. Introduction ... 7

1.2. RobotStudio® - terms and concepts ... 8

1.3. RobotWare ... 11

1.4. RAPID concepts .. 13

1.5. Programming concepts .. 15

1.6. Paths and targets .. 17

1.7. Coordinate systems .. 18

Tool Centre Point Coordinate system .. 19

RobotStudio® World Coordinate system... 19

Base Frame (BF) .. 20

Task Frame (TF) ... 20

Stations with multiple robot systems ... 21

1.8. MultiMove Coordinated systems ... 22

1.9. Robot axis configurations .. 26

Storing axis configurations in targets ... 26

Common problems related to robot axis configurations 26

Common solutions for configuration problems 27

How configurations are denoted (quaternions) 27

Configuration monitoring ... 29

Turning configuration monitoring off .. 29

Turning configuration monitoring on ... 30

Libraries, geometries and CAD files .. 30

Difference between geometries and libraries ... 30

How geometries are constructed .. 31

Importing and converting CAD files .. 31

Supported 3D formats .. 31

1.10. Installing and licensing RobotStudio® .. 33

4

Activation the RobotStudio® ... 33

Workshop 2: Introduction in RobotStudio® environment 35

2.1. Aim of the workshop ... 36

2.2. Theoretical notions .. 36

How to create a station in RobotStudio®? ... 38

How to program a robot to work in RobotStudio®? 42

How to import a tool in RobotStudio®? .. 46

Workshop 3: Define Targets and Paths (trajectories) 48

3.1. Aim of the workshop ... 49

3.2. Robot Targets .. 49

Paths ... 58

Simulation .. 63

Workshop 4: Collision Control & Create a mechanism 67

4.1. Aim of the workshop ... 68

4.2. Collision Control ... 68

4.3. Tool mechanism .. 71

TCP definition .. 80

Workshop 5: Create the Conveyor’s Mechanism and Programming

MultiMove systems .. 83

5.1. Aim of the workshop ... 84

5.2. Create Conveyor Mechanism .. 84

5.3. Programming/Setting up/Testing MultiMove systems 86

Programming MultiMove systems ... 86

Setting up MultiMove systems ... 87

Testing the MultiMove systems ... 88

Workshop 6: Create a smart component tool ... 90

6.1. Aim of the workshop ... 91

6.2. The smart component’s definition ... 91

Workshop 7: Create a path from a curve .. 101

7.1. Aim of the workshop ... 102

7.2. Defining an Auto path ... 102

7.3. Edit a RAPID program in RobotStudio® 104

5

Workshop 8: Virtual FlexPendant from RobotStudio® 106

8.1. Aim of the workshop ... 107

8.2. Virtual FlexPendant in RobotStudio®... 107

HotEdit menu ... 108

Inputs and outputs, I/O menu ... 110

Jogging menu ... 111

Production window .. 112

Program editor .. 113

Program data .. 114

The Quickset menu ... 115

Workshop 9: Creating a robotic station using RobotStudio® 116

9.1. Aim of the workshop ... 117

9.2. Creating a robotic station using RobotStudio® 117

Workshop 10: Examples of robotic cells and RAPID programmes developed

in RobotStudio®... 128

10.1. Arc welding one robot cell overview 128

10.2. RAPID program of the arc welding one robot cell 129

10.3. Arc welding two robots cell overview 130

10.4. RAPID program of the two robots arc welding cell 131

10.5. Arc welding four robots cell overview.................................... 133

10.6. RAPID program of the four robots arc welding cell 134

10.7. Assembly two robots cell overview ... 136

10.8. RAPID program of the two robots assembly cell 137

Bibliography ... 140

6

Workshop 1: Getting started with

RobotStudio®

Necessary resources and knowledge

Resources

Microsoft Windows 7 SP1 (recommended) 64-bit edition

Microsoft Windows 10 (recommended) 64-bit edition

CPU: 2.0 GHz or faster processor, multiple cores recommended

Memory: 3 GB if running Windows 32-bit 8 GB or more if running

Windows 64-bit (recommended)

Disk: 10+ GB free space, solid state drive (SSD)

Graphics card: High-performance, DirectX 11 compatible, gaming

graphics card from any of the leading vendors. For the Advanced

lightning mode Direct3D feature level 10_1 or higher is required

Knowledge

Basic knowledge about industrial robotics. Basic knowledge about using

PC.

Take away lessons

 Offline programming is the best way to maximize return on

investment for robot systems. RobotStudio® allows robot

programming to be done on a PC in the office without shutting

down production.

 RobotStudio® provides the tools to increase the profitability of a

robot system by letting you perform tasks such as training,

programming, and optimization without disturbing production.

 Offline programming of robotic systems facilitates:

- Risk reduction

- Quicker start-up

- Shorter change-over

- Increased productivity.

7

1.1. Introduction

Industrial robot (Figure 1.1) as defined by ISO 8373 is [1]: “An automatically

controlled, reprogrammable, multipurpose manipulator programmable in

three or more axes, which may be either fixed in place or mobile for use in

industrial automation applications”.

Reprogrammable: whose programmed motions or auxiliary functions may be

changed without physical alterations;

Multipurpose: capable of being adapted to a different application with

physical alterations;

Physical alterations: alteration of the mechanical structure or control system

except for changes of programming cassettes, ROMs, etc.

Axis: direction used to specify the robot motion in a linear or rotary mode

In the case of ABB industrial robots, the company has realized a software
application available just for their robots - RobotStudio®.

Figure 1.1. An example of industrial robot (robot manipulator)

RobotStudio® is a PC application for modelling, offline programming, and

simulation of robotic cells. RobotStudio® allows you to work with an off-line

controller, which is a virtual IRC5 controller running locally on your PC. This

offline controller is also referred to as the virtual controller (VC).

8

RobotStudio® also allows you to work with the real physical IRC5 controller,

which is simply referred to as the real controller [1].

When RobotStudio® is used with real controllers, it is referred to as the online

mode. When working without being connected to a real controller, or while

being connected to a virtual controller, RobotStudio® is said to be in offline

mode.

Within this workbook, the focus will be on modelling robotic cells and offline

programming with the help of RobotStudio® software application.

During installation process of the RobotStudio®, there are the following

options [1]:

• Complete

• Custom, allowing user-customized contents and paths

• Minimal, allowing you to run RobotStudio® in online mode only.

The background of each program is a language programming specialized on

the machine and the domain that is used, being impossible for it to be used

for other aims. In the case of ABB robots programming, the RAPID language

program was created. This language program is used to create different tasks

for ABB industrial robots using all the information offered by the program.

Nowadays, each language programming is using English words because it is

very easy to be understood by humans. RAPID is a high-level programming

language [2], having at same time predefined data, instructions and so on. In

this way, it is very easy to program in RAPID, even if it is an online or offline

programming.

1.2. RobotStudio® - terms and concepts

In a robotic cell, there are further hardware components that are used to

work simultaneously in order to realize different tasks with an ABB industrial

robot. Table 1.1. gives information about each component that is part of the

robotic cell, in this case it is an IRC5 robotic cell.

9

Table 1.1. Standard hardware in an IRC5 robotic cell [1]

Hardware Explanation Examples

Robot
manipulator

An ABB industrial robot.

Control
module

Contains the main computer that
controls the motion of the manipulator.
This includes RAPID execution and signal
handling. One control module can be
connected to 1-4 drive modules.

Drive module

A module containing the electronics that
power the motors of a manipulator. The
drive module can contain up to nine
drive units, each controlling one
manipulator joint. Since the standard
robot manipulators have six joints, you
usually use one drive module per robot
manipulator.

FlexController

The controller cabinet for the IRC5
robots. It consists of one control module
and one drive module for each robot
manipulator in the system.

FlexPendant

The programming pendant, connected
to the control module. Programming on
the FlexPendant is referred to as “online
programming”.

Tool

A device usually mounted on the robot
manipulator to allow it to perform
specific tasks, such as gripping, cutting
or welding. The tool can also be
stationary (not mounted on the robot;
also, called “external tool”).

To have a complete robotic cell, that will be programmed to realize a certain

task that is desired to be done, further components are needed. These

components, in the case of an IRC5 robotic cell, represent the optional

hardware (see Table 1.2.)

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiGu_y6tajSAhXDXRoKHTNAC7MQjRwIBw&url=http://www.directindustry.com/prod/abb-robotics/product-30265-169124.html&bvm=bv.147448319,d.d24&psig=AFQjCNEXk-SIwJdBDwk2Leiox53_QwiVPw&ust=1488014858910752
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwikir_DtanSAhUG7xQKHegJAdgQjRwIBw&url=http://new.abb.com/products/3HAC020536-014&bvm=bv.148073327,bs.2,d.d24&psig=AFQjCNFvIH_-QNAA6ckMbB_yjDyQgExNQw&ust=1488049123786129
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjY49GitKnSAhXExRQKHWLYBhkQjRwIBw&url=http://www.directindustry.com/prod/abb-robotics/product-30265-169114.html&bvm=bv.148073327,d.d24&psig=AFQjCNFSG6N3G42gCyGhn6Bb4b348kPybA&ust=1488048890516697
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY5qyFtKnSAhXLWBQKHdVFDjMQjRwIBw&url=http://new.abb.com/products/3HAC020536-014&psig=AFQjCNHdtJxs90znUgcWjfweUyBrdzvtSg&ust=1488048829426831
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi8jMKdtqnSAhXBNxQKHeGxABkQjRwIBw&url=http://www.robotictips.com/quiet-evolution-in-industrial-grippers-and-end-effectors/&bvm=bv.148073327,d.d24&psig=AFQjCNHOyK-df3Tn4bFlb_57QLoQ9qwJbw&ust=1488049335451285

10

Table 1.2. Optional hardware in an IRC5 robotic cell [1]

Hardware Explanation Examples

Track
manipulator

A moving stand holding the
robot manipulator to give it a
larger work space. When the
control module controls the
motion of a track manipulator, it
is referred to as a “Track External
Axis”.

Positioner
manipulator

A moving stand normally holding
a work piece or a fixture. When
the control module controls the
motion of a positioned
manipulator, it is referred to as
an “External Axis”.

FlexPositioner

A second robot manipulator
acting as a positioner
manipulator. It is controlled by
the same control module as the
positioner manipulator.

Stationary
tool

A device that stands in a fixed
location, the robot manipulator
picks up the work piece and
brings it to the device to perform
specific tasks, such as gluing,
grinding or welding.

Work piece The product being worked on.

Fixture

A construction holding the work
piece in a specific position so
that the repeatability of the
production can be maintained.

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj1j9_VrOLTAhVCQBoKHeroBTkQjRwIBw&url=http://www.renishaw.com/en/metrology-fixtures--20748&psig=AFQjCNEeQPWtJx8Bcg27ZuY1zWF4yPMaag&ust=1494403386929970

11

1.3. RobotWare

RobotWare is a system that is used just in collaboration with RobotStudio®.

This is the reason why there are further versions of the system, because it

must be compatible with the RobotStudio® version [1]. It must be mentioned

that RobotWare must be installed before RobotStudio®.

In the next table are presented all the components of a RobotWare system

that are useful to work with RobotStudio® (Table 1.3.).

Table 1.3. RobotWare terminology and concepts [1]

Information Explanation

RobotWare
As a concept, refers to both the software used to create
a RobotWare System and the RobotWare systems
themselves.

RobotWare
installation

When installing RobotStudio®, only one version of
RobotStudio® will be installed. To simulate a specific
RobotWare system, the RobotWare version used for this
particular RobotWare system must be installed on PC.
RobotWare 5 is installed into the PC’s program files folder
using a standard PC installer. RobotWare 6 is
automatically installed for the Complete installation
option of RobotStudio®. Alternatively, use the RobotApps
page in the Add-Ins tab to install RobotWare 6.

RobotWare
key

Used when you create a new RobotWare system or
upgrade an existing system. The RobotWare keys unlock
the RobotWare options included in the system, and
determine the RobotWare version from which the
RobotWare system will be built. For IRC5 systems there
are three types of RobotWare keys:

 The controller key (specifies the controller and
software options).

 The drive keys, which specify the robots in the
system. The system has one drive key for each
robot it uses.

 Add-ins specify additional options, like positioned
external axes.

12

Information Explanation
A virtual key allows you to select any RobotWare options
you wish, but a RobotWare system created from a virtual
key can only be used in a virtual environment such as
RobotStudio®.

RobotWare
system

A set of software files that, when loaded into a controller,
enables all functions, configurations, data and programs
controlling the robot system.
RobotWare systems are created in the RobotStudio®
software. The systems can be stored and saved on a PC,
as well as on the control module.
RobotWare systems can be edited by RobotStudio® or
the FlexPendant.

RobotWare
version

Each RobotWare is released with a major and a minor
version number, separated by a dot. The RobotWare
version for IRC5 is 6.xx, where xx identifies the minor
version.
When ABB releases a new robot model, a new
RobotWare version will be released with a support for the
new robot.

Mediapool

For RobotWare 5, the mediapool is a folder on the PC in
which each RobotWare version is stored in a folder of its
own.
The files of the mediapool are used to create and
implement all the different RobotWare options.
Therefore, the correct RobotWare version must be
installed in the mediapool when creating RobotWare
systems or running them on virtual controllers.

RobotWare
Add-In

A RobotWare add-in is a self-contained package that
extends the functionality of a robot system. RobotWare
add-ins are the RobotWare 6 equivalent of RobotWare 5
additional options.

Product
In the context of RobotWare 6, a product can be either a
RobotWare version or a RobotWare add-in. Products can
be free or licensed.

License

The license unlocks the options you can use in your robot
system, for example robots and RobotWare options.
If you wish to upgrade from RobotWare version 5.15 or
earlier, you must replace the controller main computer

13

Information Explanation
and get RobotWare 6 licenses. Contact your ABB Robotics
service representative at www.abb.com/contacts

Distribution
package

A Distribution package may contain RobotWare and
RobotWare add-ins. RobotWare 6 Distribution package
also contains RobotWare Add-ins for Positioners and
TrackMotion.

1.4. RAPID concepts

To use an ABB robot and to program it, as in all cases of industrial or

automated equipment, a language programming must be known. In this case,

it is about a particular programming language, used just for ABB robots,

RAPID, whose structure is the general one, using the concepts presented in

Table 1.4.

Table 1.4. RAPID concepts [1]

Concept Explanation

Data
declaration

Used to create instances of variables or data types, like
num or tooldata.

Instruction

The actual code commands that make something
happen, for example, setting data to a specific value or a
robot motion. Instructions can only be created inside a
routine.

Move
instruction

Create the robot motions. They consist of a reference to
a target specified in a data declaration along with
parameters that set motion and process behaviour. If
inline targets are used, the position is declared in the
move instructions.

Action
instruction

Instructions that perform other actions than moving the
robot, such as setting data or sync properties.

Routine

Usually a set of data declarations followed by a set of
instructions implementing a task. Routines can be divided
into three categories: procedures, functions and trap
routines.

Procedure A set of instructions that does NOT RETURN a value.

Function A set of instructions that that RETURN a value

Trap A set of instructions that is triggered by an interrupt.

http://www.abb.com/contacts

14

Concept Explanation

Module

A set of data declarations followed by a set of routines.
Modules can be saved, loaded and copied as files.
Modules are divided into program modules and system
modules.

Program
module (.mod)

Can be loaded and unloaded during execution.

System
module (.sys)

Used mainly for common system-specific data and
routines, for example, an arcware system module that is
common for all arc robots.

Program files
(.pgf)

In IRC5 a RAPID program is a collection of modules files
(.mod) and the program files (.pgf) that references all the
modules files. When loading a program file, all old
program modules are replaced by those referenced in the
.pgf file. System modules are unaffected by program load.

Figure 1.2. RAPID concepts and structure.

A program consists of instructions and data, programmed in the RAPID

programming language (Figure 1.2), which control the robot and peripheral

equipment in a specified way. The program is usually made up of three

different parts:

 a main routine

 several subroutines

 program data.

In addition to this, the program memory contains system modules.

15

The main routine is the routine from which program execution starts.

Subroutines are used to divide the program up into smaller parts in order to

obtain a modular program that is easy to read. They are “called” from the

main routine or from some other routine. When a routine has been fully

executed, program execution resumes at the next instruction in the calling

routine.

Data is used to define positions, numeric values (registers, counters) and

coordinate systems, etc. Data can be changed manually, but it can also be

changed by the program; for example, to redefine a position, or to update a

counter.

An instruction defines a specific action that is to take place when the

instruction is executed; for instance, moving the robot, setting an output,

changing data or jumping within the program. During program execution, the

instructions are executed one at a time, in the order in which they were

programmed.

System modules are programs that are always present in the memory.

Routines and data related to the installation rather than the program, such as

tools and service routines, are stored in system modules.

1.5. Programming concepts

In the case of industrial robots from ABB, the programming of the robots can

be realized in different ways. Types of programming and further programming

concepts are presented in Table 1.5.

Table 1.5. Programming concepts [1]

Concept Explanation Examples

Online
programming

Programming when connected to a
real controller. This expression also
implies using the robot to create
positions and motion.

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjdrt3yvanSAhVBuBQKHTwaCQsQjRwIBw&url=http://weldingdesign.com/equipment-amp-automation/advancing-programming-laser-cutting&bvm=bv.148073327,d.d24&psig=AFQjCNER-V0WlYi65uREwqhemrVAONyYJA&ust=1488051480672231

16

Concept Explanation Examples

Offline
programming

Programming without being
connected to the robot or to the
real controller.

True offline
programming

Refers to the ABB Robotics concept
of connecting a simulation
environment to a virtual controller.
This enables not only program
creation, but also program testing
and optimizing offline.

Virtual
controller

A software that emulates a
FlexController to allow the same
software (the RobotWare system)
that is controlling the robots to run
on a PC. This gives the same
behaviour of the robots offline as
you get online.

MultiMove
Running multiple robot
manipulators with the same control
module.

Coordinate
systems

Used to define positions and
orientations. When programming a
robot, you can take advantage of
using different coordinate systems
to more easily position objects
relative to each other.

Frame A synonym for coordinate system.

Workobject
calibration

If all your targets refer to
workobjects, you only need to
calibrate the workobjects when
deploying offline programs.

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiy2vSKvqnSAhWH1RQKHZJZA_8QjRwIBw&url=http://new.abb.com/products/robotics/robotstudio/tutorials&bvm=bv.148073327,d.d24&psig=AFQjCNER-V0WlYi65uREwqhemrVAONyYJA&ust=1488051480672231
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiIpLbHvqnSAhUCXRQKHZ6sDM0QjRwIBw&url=http://www.railway-technology.com/features/feature61271/feature61271-1.html&bvm=bv.148073327,d.d24&psig=AFQjCNEHQB1J9s7RITEh5OcZRopRKE6OoQ&ust=1488051658086329
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj6ssP9vqnSAhWBrhQKHZ_KChIQjRwIBw&url=http://www.ipacv.ro/proiecte/robotstudio/textbooks/file/robot_motion.htm&bvm=bv.148073327,d.d24&psig=AFQjCNHzDbMhv8wMROe3Px0zCylNYwCh6g&ust=1488051751736708
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjZ_NPht_TSAhWL7hoKHcUGDY0QjRwIBw&url=https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html&psig=AFQjCNHY53DEepajy7W5jM_WjWUHw4X6yw&ust=1490626541058516
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwitpqr_v6nSAhXBoBQKHVrGC2sQjRwIBw&url=https://forums.robotstudio.com/discussion/2606/user-and-object-frame&bvm=bv.148073327,d.d24&psig=AFQjCNHrO6T_hPXrGZVeGgI9W-AtdVaL8Q&ust=1488051960147357

17

1.6. Paths and targets

In order to be able to program an industrial robot, it is necessary to know

what the robot must do. For this, the targets (positions) and paths

(sequences of move instructions to targets) must be known in order to be

able to program the robot in RobotStudio® [1].

In RobotStudio®, there is an option to synchronize the RobotStudio® station

to the virtual controller. It must be mentioned that the paths are realized in

order to get RAPID programs. [1]

In RAPID programming, the targets are the points that must be reached by

the robot. In this context, these must be saved in a data type that is

recognized by the robot and then to be able to synchronize the robot with the

virtual controller. A specific data must be used, and this is called robtarget [1].

In Table 1.6. are presented the characteristics of the targets.

Table 1.6. Targets characteristics [1]

Information Explanation Examples

Position
The position of the target,
defined in a workobject
coordinate system

Orientation

The orientation of the target,
relative to the orientation of
the workobject. When the
robot reaches the target, it will
align the TCP’s orientation with
the target’s orientation.

Configuration
Configuration values that
specify how the robot shall
reach the target.

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjS6MDs--LTAhUFUlAKHT78DCoQjRwIBw&url=https://www.researchgate.net/publication/311667376_Program_Creation_in_ABB_RobotStudio_51502&psig=AFQjCNHYnyWKk4QBMzgXZxa8UYX25HJEMA&ust=1494424635456548
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi0s9WZ_OLTAhXKZlAKHen_DkUQjRwIBw&url=http://developercenter.robotstudio.com/BlobProxy/manuals/RobotStudioOpManual/doc55.html&psig=AFQjCNFclETkuokfxMa6M9jCgEnNfYNkSg&ust=1494424729885365
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjtzoib_eLTAhUOJlAKHbnQCFkQjRwIBw&url=https://www.slideshare.net/teperini/robot-studio-abb&psig=AFQjCNGeDPzovabXZMVPzuNNH5gfzaFMPQ&ust=1494424842552860

18

The way in which the robot reached all the targets and how it moves from

one point to another, represents a path. A path is a sequence of move

instructions “used to make the robot move along a sequence of targets” [1].

Once the robot station is synchronized with the virtual controller, the paths

convert into procedures [1].

In order to follow a path, the robot must move from one target to another.

For this, move instructions are used. A move instruction is formed by:

- reference to target

- motion data (motion type, like speed and zone)

- reference to a tooldata

- workobject reference [1]

“An action instruction is a RAPID string that can be used for setting and

changing parameters. Action instructions can be inserted before, after or

between instruction targets in paths” [1].

1.7. Coordinate systems

A coordinate system is a system formed by one or more coordinates

(numbers), to determine the position of a point or a geometric element,

position, that is unique.

Generally, industrial robots use the “right hand” Cartesian coordinate system

(Figure 1.3) that is, also, commonly used in manual and CNC machining and in

most, if not all, CAD/CAM software applications.

In the following paragraphs, there are presented the coordinate systems used

in RobotStudio®, to program the ABB robots in an offline manner. For offline

programming, the systems that are already predefined (robots that are

already in the RobotStudio® database) can be used: the coordinate systems

are co-related hierarchically, the origin of each coordinate system is defined

as a position in one of its ancestries. The following are the descriptions of the

commonly used coordinate systems [1].

19

+x = index finger

+y = middle finger (and/or ring and

pinky fingers) bent 90 degrees inward

+z = thumb sticking out

Figure 1.3. “Right hand” Cartesian coordinate system configuration

Tool Centre Point Coordinate system

The tool centre point coordinate system can also be called TCP and it

represents the centre point of the tool. Different TCPs can be defined for one

tool (multifunctional tool). It must be known that the implicit tool for each

robot is tool0, which means that the tool’s TCP is identical with the cartesian

frame attached to the robot flange. When the robot is programmed, that

means the robot moves the TCP from one point to another to reached all the

programmed points. Because of this, before starting programming a robot, its

TCP must be defined (Figure 1.4) [1].

Figure 1.4. “Tool Center Point” associated to different tools

RobotStudio® World Coordinate system

When talking about the RobotStudio® world coordinate system, one refers to

the entire station or robotic cell. This coordinate system is the reference for

20

the other coordinate systems, this being at the top of the hierarchy (when

using RobotStudio®) [1].

Base Frame (BF)

The Base Frame (BF) is the base coordinate system and it has the origin at the

base of the robot, whether this is about a robot in the real world or in

RobotStudio® [1].

Task Frame (TF)

The origin of the robot controller world coordinate system (in RobotStudio®)

represents the Task Frame. The differences between base frame and task

frame are presented in Figure 1.5. In the first picture (left), the task frame and

the base frame are located in the same position. In the other figure, the task

frame has been moved to another position [1].

Figure 1.5. Representation for the Task Frame [1]

Figure 1.6 illustrates the mapping of the task frame in RobotStudio® to the

robot controller coordinate system in the real world (e.g. on shop floor) [1].

In Table 1.7 there are presented the components’ elements (regarding
coordinate systems) of a station with a robot system.

21

Figure 1.6. Mapping the Task Frame [1]

Table 1.7 Station with a robot systems [1]

RS-WCS World coordinate system in RobotStudio®

RC-WCS
World coordinate system as defined in the robot controller.
It corresponds to the task frame of RobotStudio®.

BF Robot Base Frame

TCP Tool Center Point

P Robot target

TF Task Frame

Wobj Workobject

Stations with multiple robot systems

In the case of a single robot system, the task frame is the same with the robot

controller world coordinate system. The presence of the task frame in the

presence of several controllers, allows the connected robots to work in

different coordinate systems. This means that each robot can be located

independent having its own task frame (Figure 1.6) [1]. A station with multiple

robot systems is presented in Figure 1.7.

22

Figure 1.7. Station with multiple robot systems [1]

In Table 1.8 there are presented the components’ elements (regarding

coordinate systems) of a station with multiples robot systems.

Tabel 1.8 Stations with multiple robot systems [1]

RS-WCS World coordinate system in RobotStudio®

TCP (R1) Tool Center Point of robot 1

TCP (R2) Tool Center Point of robot 2
BF (R1) Robot Base Frame of robot system 1

BF (R2) Robot Base Frame of robot system 2

P (R1) Robot target 1

P (R2) Robot target 2
TF (R1) Task Frame of robot system 1

TF (R2) Task Frame of robot system 2

Wobj Workobject

1.8. MultiMove Coordinated systems

A function used in RobotStudio® is the MultiMove (Figures 1.8, 1.9, Table 1.9).

This function helps to create and optimize programs for MultiMove systems.

These types of systems consist of a robot or a position that holds the work

piece and another robot that operates on it [1].

In the case a robot is using the RobotWare option MultiMove Coordinated,

the robots must work in the same coordinate systems, because

23

“RobotStudio® does not allow task frames of the controller to be separated”

[1].

Figure 1.8. MultiMove Coordinate System (example 1) [1]

Figure 1.9. MultiMove Coordinate System (example 2) [1]

Tabel 1.9 MultiMove Coordinate System [1]

RS-WCS World coordinate system in RobotStudio®

TCP (R1) Tool Center Point of robot 1

TCP (R2) Tool Center Point of robot 2
BF (R1) Robot Base Frame of robot system 1

BF (R2) Robot Base Frame of robot system 2

BF (R3) Robot Base Frame of robot system 3

P1 Robot target 1

24

TF Task Frame
Wobj Workobject

MultiMove Independent systems

There is another option for a robot system with RobotWare and this is to use

the MultiMove Independent option (Figure 1.10), where robots are working

at the same time but independently, having the same controller [1].

The presence of one robot controller world coordinate system allows the

robots to work individually in their own coordinate system. In this case,

RoborStudio® offers the possibility to separate and set and independent

position of the robots’ task frames (Table 1.10) [1].

Figure 1.10. MultiMove Independent System [1]

Tabel 1.10 Stations with multiple robot systems [1]

RS-WCS World coordinate system in RobotStudio®

TCP (R1) Tool Center Point of robot 1
TCP (R2) Tool Center Point of robot 2

BF (R1) Robot Base Frame of robot system 1

BF (R2) Robot Base Frame of robot system 2

P1 Robot target 1
P2 Robot target 2

TF (R1) Task Frame of robot system 1

TF (R2) Task Frame of robot system 2

Wobj Workobject

25

Workobject coordinate system

The workobject is the work piece that will be moved or will be submitted to

processing operations. It has two coordinate systems: User frame and Object

frame, the last one being part of the first one [1].

If there is no workobject defined, the programmed targets (points) are related

to a default object frame, called wobj0, which coincides with the base frame

of the robot [1].

Defining your own workobject makes it much easier to adjust the programs

from the robots, using just the offset option when the piece is moved from

the initial position. In the case of offline programming, the solution is proper

because even if the positions are not similar in the real world, they can be

easily adjusted, particularly the workobject’s position [1].

When a work piece is attached to a mechanical unit and the workobject is

defined in accordance with the piece and the target is saved in accordance

with the workobject, the target will be easily found in any position of the

mechanical unit, just by specifying the workobject [1].

In Figure 1.11 the grey coordinate system is the world coordinate system, and

the black ones are the object frame and the user frame of the workobject.

Here the user frame is positioned at the table or fixture and the object frame

of the workpiece [1].

Figure 1.11. Work object system (wobj) [1]

26

1.9. Robot axis configurations

Axis configuration is a characteristic of the robot that defines the way in which

a target is reached. When targets are saved, the action is done with respect

to the workobject coordinate system. To reach a certain target, the controller

is calculating the position of the robot’s axis, finding, this way, different

possibilities. For one target, there can exist different possible configurations

(Figure 1.12). The proper configuration is defined by a value that represents

the quadrant in which each axis must be located [1].

Figure 1.12. RobotStudio® - Selecting the desired robot configuration among the possible

configuration

Storing axis configurations in targets

Once a configuration has been set, it is stored in the target. When it is saved,

the default value is replaced with the good configuration. Default value

(0,0,0,0) is invalid when a wanted target is reached [1].

Common problems related to robot axis configurations

When a configuration is created in ways other than jogging, there is a

possibility that they cannot reach their default configuration [1].

27

In some cases, the targets in a path have validated configurations, but errors

might appear when running the path. In other words, the robot cannot move

from one target to another and this is because the axis shifts are greater than

90 degrees in the case of linear movements. This is possible in the case of

moving targets even if the targets keep their configuration [1].

Common solutions for configuration problems

The problem described above can be solved if each configuration (Figure 1.13)

is assigned to the target and it will be checked if the robot can move along

the path. Another solution is to turn configuration monitoring off. In this case

the configuration is done automatically. If this is not done correctly, there is

the possibility to get unexpected results.

Another solution is to reposition the work piece, to reorient the targets or to

add an external axis that allows the work piece or the robot to be replaced,

increasing the reachability.

Figure 1.13. RobotStudio® - Different configurations for the same target [1]

How configurations are denoted (quaternions)

The robot’s axis configurations are denoted by quaternions. A quaternion is a

four-element vector that can be used to encode any rotation in a 3D

coordinate system. Technically, a quaternion is composed of one real element

and three complex elements, and it can be used for much more than

rotations.

The general definition of a quaternion is given by (1):

𝑄 = 𝑎 + 𝑏 ∗ 𝑖 + 𝑐 ∗ 𝑗 + 𝑑 ∗ 𝑘 = [𝑎 𝑏 𝑐 𝑑] (1)

28

Quaternions representation (Figure 1.14): let's consider a vector V⃗ defined

by 3 scalars (Vx, Vy and Vz) and θ an angle of rotation around V⃗:

Figure 1.14. Rotation of a solids using quaternions

The quaternion associated to this transformation is given by (2):

𝑄 = [cos
𝜃

2
− 𝑉𝑥 sin

𝜃

2
− 𝑉𝑦 sin

𝜃

2
− 𝑉𝑧 sin

𝜃

2
] (2)

Rotation around axes:

Based on formula 2, we can now calculate the quaternion defining a rotation

around each axis:

Rotation around X (3)

𝑄𝑥 = [cos
𝜃

2
− 𝑉𝑥 sin

𝜃

2
 0 0] (3)

Rotation around Y (4)

𝑄 = [cos
𝜃

2
 0 − sin

𝜃

2
 0] (4)

Rotation around Z (5)

𝑄 = [cos
𝜃

2
 0 0 − sin

𝜃

2
] (5)

Thus, the ABB robot’s axis configurations are denoted by quaternions, a series

of four integers, specifying in which quadrant of a full revolution significant

axes are located. The quadrants are numbered from zero for positive (counter

clockwise) rotation and from -1 for negative (clockwise) rotation.

29

For a linear axis, the integer specifies the range (in meters) from the neutral

position in which the axis is located.

A configuration for a six-axis industrial robot (like IRB 140) may look like:

[0 -1 2 1]

 The first integer (0) specifies the position of axis 1: somewhere in the

first positive quadrant (between 0 and 90 degrees’ rotation).

 The second integer (-1) specifies the position of axis 4: somewhere in

the first negative quadrant (between 0 and -90 degrees’ rotation).

 The third integer (2) specifies the position of axis 6: somewhere in the

third positive quadrant (between 180 and 270 degrees’ rotation).

 The fourth integer (1) specifies the position of axis x, a virtual axis used

for specifying the wrist centre in relation to other axes.

Configuration monitoring

When executing a robot program, you can choose whether to monitor

configuration values or not. If configuration monitoring is turned off,

configuration values stored with the targets are ignored, and the robot will

use the configuration closest to its current configuration for reaching the

target. If turned on, it will only use the specified configuration for reaching

the targets.

Configuration monitoring can be turned off and on for joint and linear

movements independently and is controlled by the ConfJ and ConfL action

instructions.

Turning configuration monitoring off

Running a program without configuration monitoring may result in different

configurations each time a cycle is executed: when the robot returns to the

start position after completing a cycle, it may choose a different configuration

then the original one.

30

For programs with linear move instructions this might cause a situation where

the robot gets closer and closer to its joint limits and eventually will not be

able to reach the target.

For programs with joint move instructions this might cause sweeping,

unpredictable movements.

Turning configuration monitoring on

Running a program with configuration monitoring forces the robot to use the

configurations stored with the targets. This results in predictable cycles and

predictable motions. In some situations, however, like when the robot moves

to a target from an unknown position, using configuration monitoring may

limit the robot’s reachability.

When programming offline, you must assign a configuration to each target if

the program shall be executed with configuration monitoring.

Libraries, geometries and CAD files

In order to program or simulate in RobotStudio®, CAD models are needed to

create the real robotic cell. These models can be imported from the libraries

or geometries that exist in RobotStudio® or they can be imported as

geometries. Another option is to create them in RobotStudio® [1].

Difference between geometries and libraries

The imported objects can be libraries (objects saved in RobotStudio® as

external files) or geometries (CAD files, that once imported, are copied to the

RobotStudio® station). When importing a library in RobotStudio®, a link is

created between the station and library file. This is not happening in the same

way for geometries. “For example, if a tool is saved as a library, the tool data

is saved together with the CAD data” [1].

31

How geometries are constructed

Imported geometries are a body called Part that can be seen in the Layout

browser. From RobotStudio®’s Modelling tab, each component that forms the

part can be seen, even if it is solid, surface or curve [1].

In the case of solid bodies, it is about 3D objects realized by faces. A surface

is a 2D object formed by just one face and a curved body is not formed by any

child nodes [1].

The Modeling tab offers the possibility to edit the parts using further

commands like adding, deleting unnecessary bodies, moving, rearranging or

creating new bodies that will be grouped after [1].

Importing and converting CAD files

For importing geometries from single CAD files, you use RobotStudio®’s

import function.

“RobotStudio® retains assembly structures in the imported CAD part. For

parts with many entities, the import may take long. To work around this

problem, in the Home tab, click Import Geometry and then select Convert

CAD geometry to single part” [1].

Supported 3D formats

“The native 3D format of RobotStudio® is ACIS. RobotStudio® contains ACIS
R25SP2 which supports later versions of its supported CAD formats.
RobotStudio® also supports other formats for which you need an option. The
following table shows the supported formats and the corresponding options”
(Table 1.11) [1].

Table 1.11 Supported formats by RobotStudio®

Format File extension Option required

3DStudio 3ds -

3DXML, reads version v4.3 .3dxml CATIA V5

32

Format File extension Option required

ACIS, reads versions R1 - R25,
writes versions V6, R10, R18 - R25

sat -

CATIA V4, reads versions

4.1.9 to 4.2.4
model, exp CATIA V4

CATIA V5/V6, reads versions

R8 – R25 (V5 – 6 R2015),

writes R16 – R25 (V5 – V6

R2015)

CATPart,
CATProduct, .CGR

CATIA V5

COLLADA 1.4.1 dae -

DXF/DWG, reads versions

2.5 - 2014

.dxf, .dwg

AutoCAD

IGES, reads up to version 5.3,
writes version 5.3

igs, iges IGES

Inventor, reads V6 – V2015 ipt Inventor

JT, reads versions 8.0 - 9.5 .jt JT

NX, reads versions 11 – NX 10 .prt NT

OBJ obj -

Parasolid, reads versions 9.0.* –
27.0.*

.x_t, .xmt_txt,
.x_b, .xmt_bin

Parasolid

Pro/E / Creo, reads versions 16 –
Creo 3.0

prt, asm Pro/ENGINEER

Solid Edge, reads versions V18 –
ST7

.par, .asm, .psm SolidEdge

SolidWorks, reads versions V18 –
ST7

sldprt, .sldasm SolidWorks

STEP, reads versions AP203 and
AP214 (geometry only),

writes version AP214

stp, step, p21 STEP

STL, ASCII STL supported

(binary STL not supported)
stl -

33

Format File extension Option required

VDA-FS, reads 1.0 and 2.0, writes
2.0

Vda, vdafs VDA-FS

VRML, reads VRML2 (VRML1 not
supported)

wrl, vrml, vrml2 -

1.10. Installing and licensing RobotStudio®

It is important to know that in order to install RobotStudio®, you should have

administrator privileges [1].

To install RobotStudio®, further options are available:

• Minimal –just the features needed to program, monitor and configure a

real controller that is using Ethernet connection are available

• Complete – all the features that are required to use all the functionalities

of the program RobotStudio®. In this case, Basic and Premium

functionality is available

• Custom – in this case just the options that the user needs are installed [1]

On a 64-bit operating system, setting installing option Complete, both 32 and

64-bit versions of RobotStudio® will be installed. Having 64-bit version, large

CAD-models can be imported in order to create a robotic station. At same

time, some limitations of this version are available [1]:

• “ScreenMaker, SafeMove Configurator, and EPS Wizard are not

supported.

• Add-ins will be loaded from folder C:\Program Files (x86)\ABB Industrial

IT\Robotics IT\RobotStudio® 6.03\Bin64\Addins” [1]

Activation the RobotStudio®

RobotStudio® has two feature levels [1]:

• Basic - offers the possibility to configure, program, and run a virtual and a

real controller, the last one being connected via Ethernet;

• Premium – using this version, RobotStudio® has the functionality to

simulate and program offline multiple robots. This contains Basic level,

34

but it requires activation that can be taken from the local ABB Robotics

sales representative (www.abb.com/contacts).

To activate RobotStudio®, two types of licenses are available, a standalone

license and a network license.

In the case of a standalone license, the activation is done using Activation

Wizard. Having internet connection, the activation is done automatically,

otherwise, it must be done manually. In order to do Activation Wizard, follow

these steps [1]:

1. File tab > Help section

2. Manage Licenses (under Support) > Licensing options (in Options

dialog)

3. Activation Wizard (under Licensing) → license options for

RobotStudio®

When the computer has internet connection, an activation request is sent

automatically to the ABB licensing server by the Activation Wizard. The

license is installed automatically and then the program is ready to use, once

the program is restarted after activation. If the computer is not connected to

the internet, a manual activation must be done [1].

The activation of RobotStudio® can also be done using a network license, that

means installing the license on a single server and not on an individual client

machine. This type of license offers the possibility for further clients to use

the program.

Network Licensing is done using these steps [1]:

1. Install the server for network licensing (See Installing the Network

Licensing Server on page 45)

2. Activate the licenses for network licensing (See Using the SLP Server

Web Interface on page 46)

3. Set up the client for network licensing (See Setting up Network

Licensing in the client on page 48) [1].

http://www.abb.com/contacts

35

Workshop 2: Introduction in

RobotStudio® environment

Necessary knowledge

Workshop 1 completed.

Workshop 2 summary:

At the end of this workshop, the students should know:

 How to make the basic settings for RobotStudio® when it is

launched

 How to import a robot from the library and how to change its

position according to the world frame

 How to import the controller into the system and define it

 How to import a tool from the library and attach it to the robot

flange

36

2.1. Aim of the workshop

The aim of this workshop is for the students to learn how to start using ABB

RobotStudio® environment and the additional programs that it needs in order

to function.

2.2. Theoretical notions

RobotStudio® is a PC application for offline programming, and simulation of

robotic systems which integrates one or more robots and different auxiliary

equipment. RobotStudio® allows you to work with an off-line controller,

which is a virtual IRC5 controller, running locally on your PC. This offline

controller is also referred to as the Virtual Controller (VC). RobotStudio® also

allows you to work with the real physical IRC5 controller, which is simply

referred to as the real controller.

When RobotStudio® is used with real controllers, it is referred to as the online

mode. Working without being connected to a real controller, or while being

connected to a virtual controller, RobotStudio® is said to be in offline mode.

RobotStudio® offers the following installation options:

 Complete

 Custom, allowing user-customized contents and paths

 Minimal, allowing you to run RobotStudio® in online mode only

All the necessary stages to create a given robot application are described,

step-by-step in the next chapters and workshops. Several print screens from

RobotStudio® help to understand in a better way the process of operating

with RobotStudio® and of creating robot programs off-line.

37

Figure 2.1. RobotStudio® - starting window

Figure 2.2. RobotStudio® - Help option

38

Figure 2.1 represents the window that will appear once ABB RobotStudio is

launched. This window offers you the possibility to choose from further

options: how to open or create a new station. Also, from this window, you

have the Help option, which gives all the necessary information about

RobotStudio® 5.60 version, RAPID language and the ABB teach pendant

(FlexPendant) (Figure 2.2).

How to create a station in RobotStudio®?

From the starting window, using the New option, an Empty station can be

created. This station only contains the working plane with a reference system

(world reference system). Therefore, we need to include a robotic arm in the

station. Just go to the ABB Library (Figure 2.3) and select the desired robot

(robotic arm).

Figure 2.3. RobotStudio® – ABB Library

39

Figure 2.4. RobotStudio® - Move option of the robot

Figure 2.5. RobotStudio® - Move option of the robot (translation in the robot base)

40

Figure 2.6. RobotStudio® - Move option of the robot (rotation in the robot base)

Figure 2.7. RobotStudio® - Move option of the robot with accuracy

41

It is now possible to move (translations + rotations) the robot in the working

space. In addition, we can change the angle of each robot’s joint. To do that,

just click on the robot model (Figure 2.4, the highlighted area on the left). By

clicking on the button move (highlighted in Figure 2.5) we can move the

robot’s base with the mouse (see Figure 2.6).

In Figure 2.7 it can be seen how the robot can be positioned with precision

and in the next figure (Figure 2.8) the result of this movement can be

observed.

Figure 2.8. RobotStudio® - Move option of the robot with accuracy (result)

You can change the zoom of the working environment with the roller of the

mouse.

Pressing CTRL and left click with the mouse you can move the scene.

Pressing CTRL and SHIFT and left click with the mouse you can rotate the

scene.

An explanation on how you can change the robot’s joint angles (Figure 2.9)

can be observed further on, just right click on the robot model (Layout tab)

and select Mechanism Joint Jog.

42

Figure 2.9. RobotStudio® - Joint jog of the robot

How to program a robot to work in RobotStudio®?

To make a robot move in RobotStudio®, like in real life, it has to be

programmed. In order to program it, the robot has to have a “brain” which

controls its movements. This way, it is about having a controller. When a

robot is imported from library, there is no controller, just the robot as an

object.

To import a controller into the system, press the Home menu button, from

Robot System. From this list, you choose From Layout. The graphical view of

these steps can be seen in Figure 2.10.

You can select a number of options for the controller, but, for now, the default

configuration is considered to be ok. Continue by just pressing next, next and

finish. Remember that this process may take a while until obtaining the green

light (Figure 2.11).

The 3 buttons highlighted in the Figure 2.12 are active or can be accessed like

the ones in Figure 2.13. At this moment, the virtual robot controller is ready

to apply motion to the robot.

43

Figure 2.10. RobotStudio® - From Layout

Figure 2.11. RobotStudio® – Robot controller is ready

44

Figure 2.12. RobotStudio® – Move buttons are active

Figure 2.13. RobotStudio® – Another way to realize the robotic arm motion

45

Figure 2.14. RobotStudio® – The result of the robotic arm motion

Figure 2.15. RobotStudio® – Task Frame associated to the base of the robot

46

Figures 2.14 and 2.15 show the result of the motion of the robotic arm and

the associated task frame to the base of the robot.

Now, since we have a controller associated to the arm, if we want to move

the robot’s base, the software asks if we want to move the task frame

associated to the base of the robot. The answer is yes.

How to import a tool in RobotStudio®?

The next step is to attach a tool to the robot’s wrist. It can be imported from

the library, just select, for example, a pre-defined tool named MyTool (Figure

2.16).

Figure 2.16. RobotStudio® – Import a tool

After selecting a tool, we have to attach that tool to the robot, and, in order

to do this just drag it to the inside of the robot (Figure 2.17) or right click on

the tool, in the third window, and select “Attached to” and then select the

[name/type of the robot].

Now, it is possible to change the orientation of the tool while keeping the

position of the “Tool Center Point” (TCP) (Figure 2.18).

47

Figure 2.17. RobotStudio® – Tool position updated

Figure 2.18. RobotStudio® – Change the orientation of the tool

48

Workshop 3: Define Targets and Paths

(trajectories)

Necessary knowledge

Workshop 2 completed

Workshop 3 summary

At the end of this workshop, the students should know how to:

 Create and define robot targets

 Create a path with the existing targets and select the type of

motion

 Modify the position and orientation of the tool in the defined

targets

 Select and set the configuration of the robot in each target

 Simulate the operation that the robot will do (following a defined

path)

 Save the robotic cell in order to use it on another computer

49

3.1. Aim of the workshop

The aim of this workshop is for the students to start learning how to program

a robot to move in ABB RobotStudio®.

3.2. Robot Targets

In order to make a robot move in RobotStudio®, firstly, it has to know which

points must be reached. The points that must be reached are called targets.

In the next steps, you will learn how to define the target points. These points

represent the base for the robot’s paths.

You can create a new target manually, either by entering the position for the

target in the Create Target dialog box, or by clicking in the graphics’ window.

The target will be created in the active workobject.

A workobject is a coordinate system used to describe the position of a work

piece. The workobject consists of two frames: a user frame and an object

frame. All programmed positions will be related to the object frame, which is

related to the user frame, which is related to the world coordinate system.

A path is a sequence of targets (Figure 3.1) with move instructions that the

robot follows. An empty path will be created in the active task.

If the work piece has curves or contours that correspond to the path to be

created, you can create the paths automatically. The create the path from

curve’s command generate paths, complete it with targets and instructions

along existing curves. The path will be created in the active task. The

orientation of the targets that will be created will be according to the settings

of the approach/travel vectors in the Options dialog box. To create a path

from a curve, the curve must first be created in the station.

The points are created in relation to workobject_1 (Figure 3.2) by following

the steps.

50

Figure 3.1. RobotStudio® - Create a target

Figure 3.2. RobotStudio® - The frame in which the points are chosen

51

Figure 3.3. RobotStudio® - Select the targets

Now, it becomes easy to move the workobject_1 with the associated target

points.

Figure 3.4. RobotStudio® - Correlation between working frame and targets

52

Figure 3.5. RobotStudio® - Move the robot in the desired position

Figure 3.6. RobotStudio® - Select the workobject on which the robot is supposed to work

Answer yes (Figure 3.7) and the target is created (Figure 3.8):

53

Figure 3.7. RobotStudio® - Save a target

Figure 3.8. RobotStudio® - Save a target and the location where it is saved according to the

chosen frame

At this moment, we don’t have information on whether the robot can

effectively reach the defined targets or not. However, in most of the robot

54

applications/ programs we usually define a home position for the robot in

relation to the base of the robot, which in this case is wobj0. Therefore, you

can move the robot to a desired home position (Figure 3.5), after selecting a

target (Figure 3.3) and correlating the working frames to the targets (Figure

3.4).

Afterwards, create another type of target, a Teach Target in relation to wobj0

or another defined workobject (Figure 3.6). This creates a target according to

the current position of the robot.

After this, we are going to check if the robot reaches or not the previously

defined target point, starting with the following tool: MyTool (Figure 3.9).

It can easily be observed that the tool has the wrong orientation (Figure 3.10)

and the robot is not able to reach that point with the desired orientation

(Figure 3.12). The robot remains in the initial position until the orientation of

the target point (Figure 3.13) is changed until a robot configuration is found,

to allow the robot to reach the defined target point (Figure 3.14).

Figure 3.9. RobotStudio® - Check if the robot reaches the target

55

Figure 3.10. RobotStudio® - Check if the robot reaches the target (position of the tool)

Figure 3.11. RobotStudio® - The position of the robot in the target

56

Figure 3.12. RobotStudio® - Robot cannot reach that point – an error in the Output window

is listed

Figure 3.13. RobotStudio® - Changing the orientation of the tool

57

Figure 3.14. RobotStudio® - Changing the orientation of the tool according to Y axis

Figure 3.15. RobotStudio® - Copy the actual orientation of the tool

58

Figure 3.16. RobotStudio® - Copy the actual orientation of the tool in that target to the

other targets

It can be observed nothing is happening (Figure 3.11) because the robot is not

able to reach such a position. This way, RobotStudio® is giving us a warning.

In order to fix this problem, we have to change the orientation of the tool:

MyTool in that target point. The change is done for Target_10, but the other

targets have the same problem. We can copy the orientation of this target

(Figure 3.15) and apply that orientation to all the other targets. Select the

other target points and apply orientation (Figure 3.16).

Now, by clicking on the targets we can see whether the robot reaches or not

that targets. If the robot does not reach a target, we have to change that

target point (position or orientation) using the command Set Position or

Rotate.

Paths

Now the target points can be connected in order to create a working path

(Figure 3.17) for the robot.

59

Figure 3.17. RobotStudio® - Create an empty path

And select MoveL (straight line motion between targets) (Figure 3.18).

Figure 3.18. RobotStudio® - Type of motion between targets

60

Figure 3.19. RobotStudio® - Create the path with drag and drop targets associated to wobj0

Figure 3.20. RobotStudio® - Create the path with drag and drop targets associated to

workobject_1

After having created Path_10, drag the targets to Path_10 in the desired order

(Figure 3.19, Figure 3.20). Having the targets connected, in order to eliminate

the warnings, we have to define the robot configuration for each one. This is

61

happening because there are different ways to achieve the same position and

orientation for the robot’s tool (Figure 3.21).

The software is able to auto-configure the defined path (Figure 3.22). Or we

are able to check and define the configuration for each target (Figure 3.23)

Figure 3.21. RobotStudio® - Configurations of a robot in the same point (Target_10)

Figure 3.22. RobotStudio® - Auto-configuration of the robot

62

Figure 3.23. RobotStudio® - Select the configuration of the robot manually

Besides creating paths, there are several movements a robot can follow:

reversing paths, rotating paths, translating paths etc. This section of the

workshop will focus on defining and explaining some of them.

Reversing a path – changing the sequence of targets in which the robot

moves, from last to first. One can reverse the entire motion process or just

the target sequence.

Rotating a path – rotate the entire paths and move the targets that are used

by the paths in accordance. Targets will lose their axis configuration if one

was assigned. Before starting the rotate path command there must exist a

frame or target to be able to rotate around.

Translating a path – move a path and all included targets.

Compensating paths for tool radius – compensate by offsetting a path.

Targets will lose their axis configuration if one was assigned.

Interpolating a path – reorients the targets in order to have even distribution

between the difference in orientation at start and end targets with the in-

between ones. The interpolation can be either linear or absolute. The linear

one assigns the difference in orientation equally, taking into consideration the

targets’ positions along the length of the path, while the absolute

63

interpolation assigns the difference in orientation equally, taking into

consideration the targets’ sequence in the path.

Simulation

It is time to simulate the robot movements based on the program we created.

First, synchronize with the robot’s virtual controller (VC) - this means that we

have to upload the created program into the robot’s controller (Figure 3.24,

Figure 3.25).

Figure 3.24. RobotStudio® - Synchronization with virtual controller (VC)

Figure 3.25. RobotStudio® - Synchronization with VC – select the equipment

64

Next, select what paths to simulate (Figure 3.26). In this case, we have only

Path_10 to simulate.

Figure 3.26. RobotStudio® - Select the desired path to be simulated

Figure 3.27. RobotStudio® - Run the simulation

65

And after that, select the Play button to start the simulation (the robot will

follow the selected path (ex. Path_10) according to the generated program)

(Figure 3.27).

After simulation, if you observe that something needs to be changed, like a

target (orientation or position) for example, follow the explanation in Figure

3.28.

After taking this step, you have to synchronize again with the virtual

controller. Sometimes, during simulation it is useful to view the angles of each

joint of the robot (Figure 3.29).

If you want to save the robotic station (or robotic cell) you can do it in the

usual way or by using “Pack and Go” function (Figure 3.30). This last option

saves the entire project in a folder, so that you can open it on another

computer.

Figure 3.28. RobotStudio® - Changing the position of a known target

66

Figure 3.29. RobotStudio® - Activate the Joint Jog window for angles in joints

Figure 3.30. RobotStudio® - Pack and Go function

67

Workshop 4: Collision Control & Create

a mechanism

Necessary knowledge

Workshop 3 completed.

Workshop 4 summary

At the end of this workshop, the students should know how to:

 Define and simulate a collision

 Import geometric parts (import 3D objects from another software

application like solidworks, CATIA, etc.)

 Create and define a tool mechanism (create links, joints and

define the tool)

 Save the created mechanism into Robotstudio® Library

 Define the TCP (Tool Center Point)

68

4.1. Aim of the workshop

The aim of this workshop is for the students to know the importance of

collision study when referring to a robot programming. Furthermore, they

must know how to create a mechanism for a tool in case they need a specific

tool for their own application and they want to define it, in order to be

recognized by the robot controller.

4.2. Collision Control

Sometimes, when a robotic cell is implemented, the fact that around the

robot there are both other objects and an operator has to be taken into

consideration. All these are considered obstacles and the contact between

the robot and one of them is called a collision. This can be simulated in

RobotStudio®. In the simulation tab press the Create Collision button (Figure

4.1).

Open the collision object and drag the tool to Objects A and the work pieces

to Objects B. The software analyses collisions between objects, type A and B

(Figure 4.2).

Figure 4.1. RobotStudio® - Create Collision

69

Figure 4.2. RobotStudio® - Specify the tool and the obstacle for collision

Figure 4.3. RobotStudio® - Modify Collision options

70

Figure 4.4. RobotStudio® - Set a certain collision distance

Also, we are able to modify the defined collision scenario (Figure 4.3) or to

change the collision distance (Figure 4.4). Afterwards, we are able to simulate

the collision and to analyse the results, as in Figure 4.5.

Figure 4.5. RobotStudio® - Simulate collision

71

4.3. Tool mechanism

To create and define a tool mechanism, all the 3D parts that form the tool are

needed, with the *.sat extension, created in CAD software.

Figure 4.6. RobotStudio® - Create an empty station

Figure 4.7. RobotStudio® - Import parts in RobotStudio®

72

Once all these 3D parts are created, in a specialized software application (ex.

SolidWorks, Catia, etc.), they can be imported in RobotStudio® in order to

make the tool and start defining it.

The first step is to create a new empty station (Figure 4.6). Once it is created,

the 3D parts of the tool will be imported one by one (Figure 4.7). After we

access the Geometry folder, the parts that form the gripper should be

selected.

Figure 4.8. RobotStudio® - Positioning of the part which represent the base (rotation and

translation)

Select the first 3D part, ex. gripper_part_1 from the left list (Figure 4.7) and,

instantly, the Modify menu is available. The 3D part is imported and displayed

in the working window, like in Figure 4.8. The Rotation option is available and

the position and the orientation of the gripper_part_1 could be changed and

so the base position of the gripper is changed (for exemplification, set 90°

rotation according with X axis and with Z axis). PAY ATTENTION to the

Reference system (cartesian system) according which the position of the

gripper base is done. When you want to rotate or position it, it has to be done

in accordance with the cartesian system established as Reference. In this case

the position and orientation changes are done according to World Frame

System (Figure 4.9).

73

From the Offset/ Set Position, set 20 mm along Z axis. After the desired

position is achieved, the Apply button must be selected once and, the window

can be closed. Also, from Modify menu, from Set Local Origin, one can set the

origin of the gripper’s base. Initially, the values are those that we used to set

the position we wanted (Figure 4.10).

It can be noticed that the position of the gripper’s base has not been

modified.

Figure 4.9. RobotStudio® - Set the desired position of the gripper base

Figure 4.10. RobotStudio® - Set the origin of the gripper

74

The next step is to import, from the Browse for Geometry menu, the “fingers”

of the gripper (in this case, the 4 fingers). From the Modify menu, each finger

must be placed at the end of each “bar”, symmetrically, like in the Figure 4.11.

Figure 4.11. RobotStudio® - Set position of one finger

Figure 4.12. RobotStudio® - The result using the given values to set the position of each

finger

One can use the below values for orientation and position the four fingers of

the gripper:

75

 Tx = 100, Ty=270, Tz = 65; Rx = 90°, Ry = 0°, Rz = 90°

Tx = -100, Ty=270, Tz = 65; Rx = 90°, Ry = 0°, Rz = -90°

Tx = 100, Ty=-270, Tz = 65; Rx = 90°, Ry = 0°, Rz = 90°

Tx = -100, Ty=-270, Tz = 65; Rx = 90°, Ry = 0°, Rz = -90°

The result of using these values can be seen in Figure 4.12. When all the parts

are in the desired position, in order to function, a mechanism must be

created. This it is done using the Modeling menu, Create Mechanism option

(Figure 4.13).

Figure 4.13. RobotStudio® - Create Mechanism option

After you click on Create Mechanism, a window will appear. In this window,

you have to establish the name of the mechanism (should be an intuitive one:

ex. Welding_gun), to set the type of the mechanism (tool, conveyor, etc.), in

this case will be a mechanism Tool type. The next steps are to create joints

between parts that are moving and to define the tool. Further on, define each

part as a link: right click on Links and Add Link.

A new window (Figure 4.14) will be opened. In this window, each part (each

finger) is defined as a link. The link’s name is given automatically. The part you

want to define must be set and then add it to the Added Parts list. Make sure

76

that the part: gripper_part_1; is Set as BaseLink. The other parts, like fingers,

have to be defined like “Link” not as a BaseLink. After all the parts are defined,

close the window.

Figure 4.14. RobotStudio® - Set the links

The next step is to create the Joints between the parts, so right click on Joints

and Add Joint and the window from Figure 4.15 will appear. The name is given

automatically. The type of joint in this example is prismatic, for all the joints

(be careful to set the Joint Type as Prismatic) and all joints are between the

base and each “finger” (that changes each time from Child Link).

Based on the given example, regarding prismatic joints, the displacement

length of the prismatic link will be set: for Second Position on X (red cell) on

100 [mm] value; Joints Limits: Min Limit will be 0 and Max Limit will be 100.

The only value that changes for the 4 joints is the Second Position, which is

100 mm or -100 mm, depends on each of the four fingers is defined. To check

if the fingers are moving in the right and logic position, use the slide from Jog

Axis (Figure 4.15).

77

If everything is correct, based on the logic function of the gripper, set Apply

and automatically go to the next joint. After all the joints are defined, click

Cancel and the window closed.

Figure 4.15. RobotStudio® - Create joints

Afterwards, the tool must be defined, precisely to set the Mass, the Center of

Gravity and the Moments of Inertia. To set these, right click on Tooldata and

Add Tooldata. The window from Figure 4.16 will open. The values that must

be set, for our example, are presented in Figure 4.16. Make sure you set the

base in the cell Belongs to Link.

The next step is to create dependencies between links. For this, right click on

Dependencies and Add Dependency. The window from Figure 4.17 will

appear. First dependency is between J2 and J1 (LeadJoint), then between J4

and J1 (LeadJoint) and, lastly, between J3 and J1 (LeadJoint). In all cases the

Factor is 1. After all these dependencies have been created, click OK.

78

On the right side of the screen, notice that all the characteristics are indicated

in green, highlighted in blue (Figure 4.18). The next step is to Compile

Mechanism (Figure 4.18).

Figure 4.16. RobotStudio® - Define
the tool

Figure 4.17. RobotStudio® - Create
dependencies

Once the Compile Mechanism button is pushed, a new window appears. In

that window, if in Joint Mapping the values are correct, select Set. At Poses

establish the position of the gripper’s fingers and give them specific names.

To create a new one click, Add, to modify one click Edit and if you want to

erase it, click Remove. Click on Add and create a HomePose and an Open

position (see Figure 4.19 and Figure 4.20).

79

 Figure 4.18. RobotStudio® - Compile Figure 4.19. RobotStudio® - Joint Mapping and

 Mechanism Poses

Figure 4.20. RobotStudio® - Values for Open position

80

Once all these are set, click on Set Transition Times and click OK and then

Close. On the left side of the window, at Layout, the mechanism that was

created can be seen.

Right click on its name and set Mechanism Joint Jog. Further slide bars are

opened and if you move just the first one, which corresponds to the first joint,

one can notice that all the fingers are moving at the same time. If the gripper

is in Open position, then right click on its name and set Jump Home.

The next step is to learn how to save the mechanism in the RobotStudio®

Library. For this, right click on the mechanism that was created, in the left list

found on the screen and select Save As Library. Give it a name and Save it. To

see if the mechanism has been saved, Import Library and User Library.

TCP definition

To set the TCP of a tool, follow these steps:

 click on Create Target,

 select the top of the tool,

 click Create and then Close.

If the tool has a mechanism like the one created in the above section, the TCP

must be set at the center of the gripper (in-between the fingers) in a zone

where the target point can be defined. To create/define a tool follow these

aproach: Modeling -> Create Tool. Make sure to create a tool that is formed

of a single body. If there are any other bodies, make just one using Union

option from Modeling menu. Once the Create Tool option is activated, the

window from Figure 4.21 will open.

Step 1: write a name for the tool

Step 2: at Select Part: Use Existing

Step 3: Center of Gravity is picked with Snap Center, then click Next

Step 4: Select TCP name (Figure 4.22)

Step 5: Select the TCP as being the Target_10 (Layout list) and then add it to

TCP(s)

Step 6: Done

81

Figure 4.21. RobotStudio® - Set/define the TCP

Figure 4.22. RobotStudio® - Set the TCP – attach the Target_10

Save the tool: right click on the mechanism that was created, in the left list of

the screen and select Save As Library. Give it a name and Save. To see if the

82

mechanism has been saved, Import Library and User Library. If you followed

the steps presented before, the tool must be there. To check if the tool is well

defined, import an ABB robot, attach the tool and do like in Workshop 3 -

Targets and Trajectories.

Note: For this section of the workshop, you can practice on the station found

in the folder called “tool.rsstn”.

83

Workshop 5: Create the Conveyor’s

Mechanism and Programming

MultiMove systems

Necessary knowledge

Workshop 4 completed

Workshop 5 summary

At the end of this workshop, the student should know how to:

 create a box and different 3D geometry in RobotStudio®

 create and define a conveyor mechanism from a 3D geometry in

RobotStudio®

84

5.1. Aim of the workshop

The aim of this workshop is for the students to learn how to create a

conveyor, which is a mechanism used to transfer the objects that are

manipulated by the robots, from one point to another.

5.2. Create Conveyor Mechanism

Nowadays, the technology is at a high level. Because of this, more and more

domains are automated or robotized. The time, as a resource, became even

more appreciated by the companies, alongside with the quality of the

products. Therefore, companies must manage these resources more

efficiently and effectively.

A robot’s working area is clearly defined in their data sheets even in their

construction phase. Nevertheless, for some applications, this working area is

too small and, therefore, must be extended. Both the extension of the

working area and the improving of the production time can be done using

conveyors or creating external axis for the robots.

Taking all these into consideration, the aim of this workshop is to create a

conveyor mechanism in RobotStudio® to complete a virtual simulation of

industrial robots in different situations. The first part of the workshop

presents the theoretical part, while in the second part an application is

conveyed.

In order to define the mechanism of a conveyor in RobotStudio® it is

necessary to create an empty station. For this exercise, a box will be

considered the conveyor. To create it, from Modeling menu, use the Solid

option > Box. The box will have the following dimensions: length 5000 mm,

width 400 mm and height 100 mm; for position, with y = -200 mm. Afterward,

press Create and Close (Figure 5.1).

Like in the case of the defining a tool, a mechanism will also be created here,

but the type of the mechanism will be different. From the Modeling menu,

choose Create Mechanism (number 1 marked with red). Give a certain and

intuitive name for the mechanism and at the Mechanism Type option select

Conveyor (Figure 5.2).

85

Figure 5.1. RobotStudio® - Create a box that will be considered the conveyor

Figure 5.2. RobotStudio® - Define the conveyor mechanism

At Selected Part (2) choose the create box, chose a starting position and an

end position). Choose a Pitch and a count and then Add (number 3 marked

with red); data from the video’s start position = -500 mm, end position 5000

mm, pitch 1000 mm and count = 2 (Figure 5.2).

86

Figure 5.3. RobotStudio® - Save As Library

After all this data has been introduced, click on Compile Mechanism (number

4 marked with red) and your mechanism can be found in list on the left of the

screen, in Layout (number 5 marked with red). From there you have to save

it using Save As Library, where you have to choose a name (Figure 5.3). If all

the steps have been correctly executed, the mechanism can be found in

Import Library and User Library.

5.3. Programming/Setting up/Testing MultiMove systems

Programming MultiMove systems

If you want to develop or optimize programs for MultiMove systems you use

MultiMove functions. This subchapter details the main workflow to program

MultiMove systems with the help of RobotStudio®.

In oder to be able to use the MultiMove functions, one must possess the

following [2]:

 A virtual controller that can run a MultiMove system

 The tools used by the system

 All coordinate systems

87

 All the paths the tool will move onward (these paths will be created in

a workobject that pertain to a tool robot and that adhere to the work

piece robot

If you want to create MultiMove programs utilizing the MultiMove function,

you must complete the steps shown in Table 5.1.

Table 5.1. Typical and additional workflow for creating MultiMove programs [2]
Typical Action Description

Set up the MultiMove
Select the robots and paths to use in the
program

Test the MultiMove
Execute the motion instructions along the
paths

Tune the motion
behavior

Tune motion behavior, such as tolerances and
constraints for TCP motions

Create the program Generate the tasks for the robots

Additional Action Description

Create Tasklists and
Syncidents

The tasks and paths that shall be synchronized
with each other

Add and update ID
arguments to the
instructions to
synchronize

Add and update IDs for instructions in paths
that already are synchronized.
Add IDs to instructions in paths that have not
yet been
synchronized.

Add and adjust Sync
instructions to the
paths.

Add SyncMoveon/Off or WaitSyncTask
instructions
to the paths to synchronize and set their
tasklist and
Syncident parameters

Teach MultiMove
instructions

It is also possible to jog all robots to the desired
positions and then teach instructions to new
synchronized paths.

Setting up MultiMove systems

In order to select the robots and paths in the station, that will be utilized for

the MultiMove program, it is mandatory to make sure that all the robots of

88

the MultiMove program belong to the same system. After completing this

step, follow items 1-10 shown below [2]:

1. Home tab → MultiMove → Setup tab below the MutliMove

work area

2. In the work area, press System config bar to expand the system

configuration section

3. Select System box → select the system that contains the robots to

program. The robots of the selected system are now displayed in the

System grid (below the Select system box)

4. Select the check box in the Enable column (for each robot that will be

used in the program)

5. For each robot specify whether it carries the tool or the work piece

using the options in the Carrier column

6. Click the Path config bar for expanding the path configuration section

(in the work area)

7. Select the Enable check box (for the tool robot) → press the expand

button in order to display the robot’s paths

8. Using Path name column select the order of the paths that are to be

executed

9. Select the check box in the Enable column for each path that will be

included in the program

10. Continue testing the MultiMove and, if necessary, tune the motion

properties

Testing the MultiMove systems

This section refers to the motion instructions along the paths in accordance

with the current setting on the setup of the MultiMove.

Basically, it refers to setting the robot’s start position and testing its

movements along the path.

In order to test the paths, one must [2]:

 Jog the robots to a good start position

 Home tab → MultiMove → Test tab (bottom of the MultiMove work

area) – displays the test area

89

 (If wanted) press the Stop at end check box (this ensure that the

simulation stop subsequently to moving along the paths). If the Stop

and end is not pressed, the simulation will loopingly continue until

clicking Pause

 In order to simulate the motions along the paths, click Play. If the

motions are satisfactory, advance developing multimove paths.

However, if the motions are not satisfactory, choose to do one of the

following actions (Table 5.2):

Table 5.2. Actions to adjust motions [2]
Action Description

Examine the robots’
positions for critical
targets

Press Pause and use the arrow buttons to
move to one target at a time

Jog the robots to new
start positions

The cause of changed motions are new start
positions. Taking this into consideration, please
avoid positions near the robots’ joint limits

Go to the Motion
Behavior tab and
remove constraints

For the motion properties, the default setting
is no constraints. If this has changed, there
might exist limited motions.

90

Workshop 6: Create a smart component

tool

Necessary knowledge

Workshop 5 completed

Workshop 6 summary

At the end of this workshop, the students should know how to:

 Create a Smart Component

 Add new components and signals used to define a Smart

Component

 Make the connections between the added components and

signals

91

6.1. Aim of the workshop

The aim of this workshop is for the students to know what a smart component

is, how to define and how to use it. Furthermore, they will learn how to work

with signals in RobotStudio® and how to make the connections between the

tool’s elements in order for them to work as a real tool.

6.2. The smart component’s definition

Nowadays, more and more persons are interested in the new developed

technology and is eager to know everything it has to offer. This interest also

manifests itself in wanting to understand how each new device and newly

developed gadget works. Therefore, this workshop aims to teach students

how to program a tool in order for it to work as it does in reality. It aims at

teaching how to connect all the tool’s elements and how to define the

necessary sensors.

This workshop has the aim to define a tool as a smart component that is

working with vacuum. In the beginning, an industrial robot and the tool that

will be defined are imported. One of the important aspects is for the tool to

be saved as library.

The next step is to create the smart component. The Smart Component

option can be found in the Modeling menu. Once the option is accessed, a

window will open (Figure 6.1). In the Layout menu (indicated with red in

Figure 6.1), using drag and drop, place the imported tool in the smart

component object.

Once the tool is set to be a smart component, in the right window of the

screen it can be seen as a Child component (Figure 6.2). Right click on the

smart component and select Set as Role.

92

Figure 6.1. RobotStudio® - Smart Component option

Figure 6.2. RobotStudio® - The Smart Component’s definition

93

The next step is to add to the tool (that actually is an object) different

components, in order for it to be defined as a smart component. The first

component is called Line Sensor (click on Add component > sensors; see

Figure 6.3). It is added in order to define a sensor inside the object, that will

later be programmed. It is not enough to add it, you must also define it (Figure

6.4). Afterwards, click Apply.

Figure 6.3. RobotStudio® - Add a Line Sensor

This tool is using the vacuum technology. This is why it needs to have the

attach and detach functions. Taking this into consideration, the next steps are

to add the two components, Attacher and Detacher. These two components

can be found in the Add component menu, in Actions (Figure 6.5). The only

option that must be set here, is for the Parent to be set from the tool list as a

smart component. Then click Apply.

Attach function will work if it is connected to the sensor. In this case, the next

step is to create a connection between the attach function and the Line

sensor from Properties and Binding (Figure 6.5). Select Add Binding (Figure

6.6) and then set the characteristics market with blue and click OK. This

connection can be observed in Property Bindings.

94

Figure 6.4. RobotStudio® - Define a Line Sensor

Figure 6.5. RobotStudio® - Attach and Detach components

95

Figure 6.6. RobotStudio® - Add a binding for the attach function

Once the attach function was defined, the next step is to define de detach

function, too. As already mentioned, the detach function will be created from

the Compose window, Add component, and, in Actions, the component

Detacher will be selected. Also, for this component a binding will be created.

The characteristics are presented in Figure 6.7.

Figure 6.7. RobotStudio® - Add a binding for the detach function

The functions are needed to be defined. The next step is to create a link

between the Line Sensor and these functions. For this, from the Signals and

Connections menu, the needed signals will be added, in the beginning a digital

96

input signal (Figure 6.8) and then a digital output signal (Figure 6.14). From

the Add I/O Connection menu the connections between the elements will be

made (Figure 6.9, Figure 6.10). The steps are presented in the next figures.

Figure 6.8. RobotStudio® - Add a digital input signal

Figure 6.9. RobotStudio® - Connection between the tool that will be a smart component

and the line sensor

97

Figure 6.10. RobotStudio® - Connection between the line sensor and the attach function

From the Compose menu, a Logic Gate will be added. This can be found in the

Add component menu, in Signals and Properties. This is a logic function that

has certain properties shown in Figure 6.11. Once this option is defined,

continue with defining the connections between the elements (Figures 6.12,

6.13, 6.1, 6.15, 6.16, 6.17).

Figure 6.11. RobotStudio® - Logic Gate properties

98

Figure 6.12. RobotStudio® - Connection between the tool and Logic Gate

Figure 6.13. RobotStudio® - Connection between Logic Gate and the detach function

Figure 6.14. RobotStudio® - Add a digital output signal

99

It is a known fact that a sensor must be reset before any other operation

starts. Knowing this, a logic component to set the reset will be added. This it

is added from the Compose menu, Add component, Signals and Properties.

This component is called LogicSRLatch. The connections’ definitions are

shown in the next figures.

Figure 6.15. RobotStudio® - Connection between the attach function and LogicSRLatch

Figure 6.16. RobotStudio® - Connection between the detach function and LogicSRLatch

100

Figure 6.17. RobotStudio® - Connection between LogicSRLatch and the tool that will be a

smart component

In the Smart Component window, in View/Design, all the connections that

have been made between the created components and signals can be seen.

To check if the tool is well defined, go to the View window of Robot Studio,

attach the tool to the robot, import or create a box from the Modeling menu

and check if the vacuum function of the tool is working. With Jog Linear and

Jog Reorient (Home menu, Freehand), position the robot with the tool on the

object and on the left side of the window, in signals, set de digital input signal

to make sure it is active. Once this is active, having the 1 value, the digital

output signal also has the 1 value. This signifies that the tool has been well

defined as a smart component and it can be used further on, in other

applications.

Remember, this example of a smart component’s definition is a particular

example used just to define a vacuum gripper.

101

Workshop 7: Create a path from a curve

Necessary knowledge

Workshop 6 completed

Workshop 7 summary

At the end of this workshop, the student should know how to:

• Create an autopath

• Use the autoconfiguration command

• Use the RAPID editor

102

7.1. Aim of the workshop

One of the aims of this workshop is for the students know how to easily create

a path that contains lines and curves. Furthermore, the student learns how to

edit an already created program in RobotStudio®.

7.2. Defining an Auto path

For this application, it is necessary to create a station. This station must

contain a robot, a tool to perform the operation and a part, an object on

which the robot will work on. The first step is to select the surface and to

create a border around that surface, that will serve as a trajectory to follow

by the robot. These two steps are presented in Figure 7.1 and 7.2. Once the

surface is selected, click Create the “Border around the Surface”.

Figure 7.1. RobotStudio® - Surface selection

103

Figure 7.2. RobotStudio® - Border around surface

Figure 7.3. RobotStudio® - AutoPath function

104

Figure 7.4. RobotStudio® - Frames of the targets that form the path

On the left part of the window, in the Layout menu a new part that represents

the selected surface will be created. The next step is to create the path that

will be automatically followed by the robot. This can be performed from the

Home menu, Path, AutoPath. A new window will open (Figure 7.3). The

trajectory that the robot will follow is also presented in this window. Once all

the characteristics have been set, click Create. Once the path has been

created, for each point that forms the path, its own reference frame will

appear (Figure 7.4).

The next steps refer to the targets. These steps have been presented in the
2nd workshop and are in reference to position and orient the targets and
defining their configurations or autoconfiguration.

7.3. Edit a RAPID program in RobotStudio®

RobotStudio® is the software through which offline programming for ABB

robots can be performed. The program language used is called RAPID.

105

Figure 7.5. RobotStudio® - RAPID editor – example

It is very easy to program a robot, if you know the programming language.

The programs can be written using the virtual teach pendant or the RAPID

editor. Furthermore, you can edit any program you want to modify with it

(Figure 7.5).

106

Workshop 8: Virtual FlexPendant from

RobotStudio®

Necessary knowledge

Workshop 7 completed

Workshop 8 summary

At the end of this workshop, the student should know how to:

• Launch the virtual FlexPendant integrated in RobotStudio®

• Use FlexPendant menu

107

8.1. Aim of the workshop

The aim of this workshop is for the students to know how to use virtual

FlexPendant from the RobotStudio®. Furthermore, the students will

familiarise themselves with the virtual FlexPendant menus.

8.2. Virtual FlexPendant in RobotStudio®

ABB calls the teach pendant as FlexPendant. RobotStudio® provides us a

virtual teach pendant. We are able to use the virtual FlexPendant in

RobotStrudio® after defining a robotic system (robot arm and active

controller). To launch the ABB virtual FlexPendant (Figure 8.2 and 8.3) go to

Controller menu and select FlexPendant (Figure 8.1).

Figure 8.1. RobotStudio® - Launching the virtual FlexPendant in RobotStudio®

108

Figure 8.2. RobotStudio® - The FlexPendant starting window

Figure 8.3. RobotStudio® - The FlexPendant menus illustration

HotEdit menu

HotEdit (Figure 8.4 and 8.5) is a function for tuning programmed positions.
This can be done in all operating modes, even while the program is running.
Both coordinates and orientation can be tuned. HotEdit can only be used for
named positions of the defined robtarget. The functions available in HotEdit
may be restricted by the user’s authorization system (UAS).

109

Figure 8.4. RobotStudio® - The HotEdit menu illustration

Figure 8.5. RobotStudio® - The HotEdit menu details – Tune Targets

The functions available in HotEdit menu are presented in Table 8.1.

Table 8.1. Functions in HotEdit
Target selections Lists all named positions in a tree view. Select positions and add

them to the section by tapping the arrow. Note that if a position
is used in more than one routine, it will appear in all places used
and any changes made to the offset will be the same for
everywhere it is used.

110

Selected targets Lists all selected positions and their current offset. Tap the trash
can to the right of the position name to remove them from the
selection

File You can save and load selections of often used positions using
the File menu. If your system uses UAS, this may be the only way
to select positions for editing.

Baseline The baseline menu is used to apply or reject changes to the
baseline.

Tune targets Tap Tune targets to display icons for editing the offset values
(coordinates and orientation).

APPLY Tap APPLY to apply changes made in the Tune targets menu.
Note: that this does not change the original values for the
positions!

Inputs and outputs, I/O menu

Inputs and outputs, I/O, are signals used in the robot system. An I/O signal is

the logical software representation of an I/O signal located on a fieldbus unit

that is connected to a fieldbus within the controller. By specifying a signal, a

logical representation of the real I/O signal is created. The signal configuration

defines the specific system parameters for the signal that will control the

behavior of the signal (Figure 8.6).

Figure 8.6. RobotStudio® - Inputs and outputs used in the robot system

111

Jogging menu

The Jogging functions are found in the Jogging window (Figure 8.7 and 8.8).

The most commonly used are also available under the Quickset menu.

Figure 8.7. RobotStudio® - The Jogging menu illustration

The functions available in Jogging menu are presented below:

Table 8.2. Functions in Jogging menu
Mechanical unit Select active mechanical unit

Absolute accuracy Absolute Accuracy: Off is default. If the robot has the Absolute
accuracy option, then Absolute Accuracy: On is displayed.

Motion mode
(Figure 8.xz)

Select motion mode, described in section

Coordinate system Select coordinate system

Tool Select tool

Work object Select work object

Payload Select payload

Joystick lock Select locking joystick directions,

Increment Select movement increments,

Position Displays each axis position in relation to the selected coordinate
system.

Position format Select position format

Joystick directions Displays current joystick directions, depending on setting in
Motion mode.

112

Align... Align the current tool to a coordinate system

Go To... Move the robot to a selected position/target.

Activate... Activate a mechanical unit.

Figure 8.8. RobotStudio® - The Jogging menu – Motion Mode

Production window

The Production window (Figure 8.9) is used to view the program code while
the program is running.

Figure 8.9. RobotStudio® - The Production menu illustration

113

The functions available in Production menu are presented below:

Table 8.3. Functions in Production menu
Load Program... load a new program.

Move PP to Main move the program pointer to the routine main

Debug • Modify Position
• Show Motion Pointer
• Show Program Pointer
• Edit Program.
Debug is only available in manual mode.

Program editor

The Program editor (Figure 8.10) is where you create or modify programs. You
can open more than one window of the Program editor, which can be useful
when working with multitasking programs, for instance. The Program editor
button in the task bar displays the name of the task.

Figure 8.10. RobotStudio® - The Program Editor menu illustration

The functions available in Program Editor window are presented below:

114

Table 8.4. Functions in Editor window
Tasks and programs Menu for program operations

Modules Lists all modules,

Routines Lists all routines,

Add instruction Opens instruction menu,

Edit Opens edit menu,

Debug Functions for moving the program pointer,

Modify position Modifying positions by jogging the robot to the new position
Hide declarations Hide, for example, constant or variable declaration

Program data

The Program data view (Figure 8.11) contains functions for viewing and

working with data types and instances. You can open more than one window

of the Program data, which can be useful when working with many instances

or data types.

Figure 8.11. RobotStudio® - The Program Data menu illustration

The functions available in Program Data window are presented below:

115

Table 8.5. Functions in Program Data window
Change scope changes scope of data types in the list

Show data shows all instances of the selected data type

View shows all or only used data types.

The Quickset menu

The QuickSet menu (Figure 8.12) provides a quicker way to change among

other things jog properties rather than using the Jogging view. Each item of

the menu uses a symbol to display the currently selected property value or

setting. Tap the Quickset button to display available property values.

Figure 8.12. RobotStudio® - The buttons in the Quickset menu

The table 8.1 describes the buttons in the Quickset menu.

Table 8.6. The buttons in the QuickSet menu

① Mechanical unit, ④ Step Mode,

② Increment, ⑤ Speed,

③ Run Mode, ⑥ Tasks (to stop and Start)

116

Workshop 9: Creating a robotic station

using RobotStudio®

Necessary knowledge

Workshops 1, 2, 3, 4, 5, 6, 7,8 completed

Workshop 9 summary

At the end of this workshop, the student should know how to:

• Design, simulate and program a robotic system using

RobotStudio®

117

9.1. Aim of the workshop

The aim of this workshop is for the students to know how to develop and

simulate a robotic cell/ system with one or more industrial ABB robots using

RobotStudio®.

9.2. Creating a robotic station using RobotStudio®

When following the next steps, a person will be able to develop and simulate

a robotic system using RobotStudio®:

Step 1: Select and integrate a robot from the RobotStudio® database and

integrate it in the scene

Step 2: Select a tool (from the RobotStudio® database or a user defined tool)

and attach it to the robot

Step 3: Import the needed auxiliary equipment (ex. the conveyor defined

within the workshop 5 or a part positioner or other mechanism)

Step 4: Define the controller for the integrated robot and auxiliary

equipment

Step 5: Generate some 3D models that will be used as workobjects within

the robotic system using RobotStudio® facility (ex. 3D cubes)

Step 6: Define the target points (position and orientation of the tool in the

targets) that the robot has to “touch”

Step 6: Orient the tool in each targetpoint and find a suitable configuration

of the robot’s structure within each targetpoint

Step 7: Generate the path(s) that the robot has to “follow”

Step 8: Simulate the movement of the robot along the generated path(s)

Step 9: View the generated RAPID program

Each of the eight above steps will be detailed by a set of figures (captured

from RobotStudio®) for exemplification and better understanding.

118

Step 1: Select and integrate a robot from the RobotStudio® database and

integrate it in the scene

Figure 9.1. RobotStudio® - Select and integrate a robot in the scene

119

Step 2: Select a tool (from the RobotStudio® database or a user defined tool)

and attach it to the robot

Figure 9.2. RobotStudio® - Select a tool for the robot

Figure 9.3. RobotStudio® - Attach the tool to the robot

120

Step 3: Import the needed auxiliary equipment (ex. the conveyor defined

within the workshop 5 or a part positioner or other mechanism)

Figure 9.4. RobotStudio® - Import a part positioner form the ABB library

Or

Figure 9.5. RobotStudio® - Import a workobject form the library

121

Step 4: Define the controller for the integrated robot and auxiliary

equipment

Figure 9.6. RobotStudio® - Define the controller for the integrated robot and auxiliary

equipment

122

Step 5: Generate some 3D models that will be used as workobjects within

the robotic system using RobotStudio® facility (ex. 3D cubes)

Figure 9.7. RobotStudio® - Generate two 3D models - a cube and a cylinder using

RobotStudio facility

123

Step 6: Define the target points (position and orientation of the tool in the

targets) that the robot has to “touch”

Figure 9.8. RobotStudio® - Define the robot targets points

124

Step 6: Orient the tool in each target point and find a suitable configuration

of the robot structure within each target point

Figure 9.9. RobotStudio® - Define the orientation of the tool in each target point and the

robot configuration

125

Step 7: Generate the path(s) that the robot has to “follow”

Figure 9.10. RobotStudio® - Define one or more path (trajectory) for the robot

126

Step 8: Simulate the movement of the robot along the generated path(s)

Figure 9.11. RobotStudio® - Simulate the movement of the robot along the generated

path(s)

127

Step 9: View the generated RAPID program

Figure 9.12. RobotStudio® - View the generated RAPID program

128

Workshop 10: Examples of robotic cells

and RAPID programmes developed in

RobotStudio®

10.1. Arc welding one robot cell overview

Figure 10.1. RobotStudio® - Arc welding one robot cell – view 1

Figure 10.2. RobotStudio® - Arc welding one robot cell – view 2

129

10.2. RAPID program of the arc welding one robot cell

MODULE mPart_1

Examples of defining constants, targets and variables at the beginning of
the program application - RAPID program
CONST jointtarget jt_1:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST jointtarget jt_2:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST jointtarget jt_1_2:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST jointtarget jt_2_2:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST robtarget p3:=[[153.054345246,19.898332596,243.218173048],
[0,0,-0.707106781,0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9]];
CONST robtarget p5:=[[230.532452302,19.898332596,279.670326794],
[0,0,-0.707106781,0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9]];
CONST robtarget p6:=[[308.054345246,19.898332596,194.999919243],
[0,0,0.707106781,-0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9]];
CONST robtarget p7:=[[261.673155788,19.898332596,119.279463141],
[0,0,-0.707106781,0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9]];
 …………….

Examples of robot moving instructions (ex. MoveJ, MoveAbsJ) and
welding parameters (ex. ArcLStart, ArcCEnd) - RAPID program procedure

PROC Part_1_Pth_1()
 ActUnit STN1;
 MoveAbsJ jt_1,vmax,fine,tool0\WObj:=wobj0;
 MoveJ p1,v1000,z10,tWeldGun\WObj:=Workobject_1;
 ArcLStart p2,v1000,sm1,wd1,fine,tWeldGun\WObj:=Workobject_1\
 SeamName:="Part_1_Pth_1_Weld_1";
 ArcL p3,v100,sm1,wd1,z1,tWeldGun\WObj:=Workobject_1;
 ArcC p5,p6,v100,sm1,wd1,z1,tWeldGun\WObj:=Workobject_1;
 ArcCEnd p7,p8,v100,sm1,wd1,fine,tWeldGun\WObj:=Workobject_1;
 MoveL p4,v1000,z10,tWeldGun\WObj:=Workobject_1;
 MoveJ p17,v1000,z10,tWeldGun\WObj:=Workobject_1;
 ENDPROC

Examples of activating and deactivating the part positioner procedure –
RAPID program procedure

130

PROC Intch_Pth_2()
 DeactUnit STN2;
 ActUnit INTERCH;
 MoveAbsJ jt_5,vmax,fine,tWeldGun\WObj:=wobj0;
 MoveAbsJ jt_6,vmax,fine,tWeldGun\WObj:=wobj0;
 DeactUnit INTERCH;
 ENDPROC

Examples of calling different procedures (ex. Intch_Pth_1) – RAPID
program procedure

PROC Intch()
 Intch_Pth_1;
 Intch_Pth_2;
 ENDPROC

ENDMODULE

10.3. Arc welding two robots cell overview

Figure 10.3. RobotStudio® - Arc welding two robots cell - view 1

131

Figure 10.4. RobotStudio® - Arc welding two robots cell - view 2

10.4. RAPID program of the two robots arc welding cell

MODULE mPart_1

Examples of defining constants work object: constants, targets and
variables definitions

CONST jointtarget jt_1:=[[0,-30,0,0,30,0],[9E+09,9E+09,9E+09,9E+09,
9E+09,9E+09]];
CONST jointtarget jt_2:=[[30.221811228,40.422424714,-36.801483469,-
12.474192193,81.143214245,44.495178556],[9E+09,9E+09,9E+09,9E+09,
9E+09,9E+09]];
CONST jointtarget jt_3:=[[30.221811228,40.422424714,-36.801483469,-
12.474192193,81.143214245,44.495178556],[9E+09,9E+09,9E+09,9E+09,
9E+09,9E+09]];
CONST jointtarget jt_4:=[[0,-30,0,0,30,0],[9E+09,9E+09,9E+09,9E+09,
9E+09,9E+09]];
 VAR syncident s1;
 VAR syncident s2;
 VAR syncident s3;
 VAR syncident s4;
 VAR syncident s5;

132

 VAR syncident s6;
 VAR syncident s7;
 …………….

Examples of calling different procedures (ex. Intch_Pth_1) – RAPID
program procedure

PROC Part_1()
 Part_1_Pth_1;
 Part_1_Pth_2;
ENDPROC

Examples of defining the arc welding parameters – RAPID program
procedure

MODULE ProcessData
PERS tasks r1r2p1{3}:=[["T_ROB1"],["T_ROB2"],["T_POS1"]];
TASK PERS seamdata sm1:=[0.2,0.05,[0,0,0,0,0,0,0,0,0],0,0,0,0,0,
[0,0,0,0,0,0,0,0,0],0,0,[0,0,0,0,0,0,0,0,0],0.1,0,[0,0,0,0,0,0,0,0,0],0.
05];
TASK PERS welddata wd1:=[20,10,[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0]];

ENDMODULE

Examples of robot moving instructions (ex. MoveJ, MoveAbsJ) and
welding parameters (ex. ArcLStart, ArcCEnd) - RAPID program procedure
PROC Part_1_Pth_1()
 MoveAbsJ jt_1,v1000,fine,tool0\WObj:=wobj0;
 SyncMoveOn s1,r1r2p1;
 MoveJ p1\ID:=10,vmax,z10,tWeldGun\WObj:=r1_s1;
 ArcLStart p2\ID:=20,v1000,sm1,wd1,fine,tWeldGun\WObj:=r1_s1;
 ArcC p4,p3\ID:=30,v100,sm1,wd1,z1,tWeldGun\WObj:=r1_s1;
 ArcC p6,p5\ID:=40,v100,sm1,wd1,z1,tWeldGun\WObj:=r1_s1;
 ArcC p8,p7\ID:=50,v100,sm1,wd1,z1,tWeldGun\WObj:=r1_s1;
 ArcCEnd p10,p9\ID:=60,v100,sm1,wd1,fine,tWeldGun\
 WObj:=r1_s1;
 MoveL p11\ID:=70,v1000,fine,tWeldGun\WObj:=r1_s1;
 SyncMoveOff s2;
 MoveAbsJ jt_2,vmax,fine,tWeldGun\WObj:=wobj0;
 WaitSyncTask s3,r1r2p1;
 MoveAbsJ jt_3,vmax,fine,tWeldGun\WObj:=wobj0;

133

 SyncMoveOn s4,r1r2p1;
 MoveJ p12\ID:=10,vmax,z10,tWeldGun\WObj:=r1_s1;
 ArcLStart p13\ID:=20,v1000,sm1,wd1,fine,tWeldGun\
 WObj:=r1_s1\SeamName:="Part_1_Pth_1_Weld_2";
 ArcLEnd p14\ID:=30,v100,sm1,wd1,fine,tWeldGun\WObj:=r1_s1;
 MoveL p15\ID:=40,v1000,fine,tWeldGun\WObj:=r1_s1;
 SyncMoveOff s5;
 MoveAbsJ jt_4,vmax,fine,tWeldGun\WObj:=wobj0;
 WaitSyncTask s6,r1r2p1;
ENDPROC

ENDMODULE

10.5. Arc welding four robots cell overview

Figure 10.5. RobotStudio® - Arc welding four robots cell – view 1

134

Figure 10.6. RobotStudio® - Arc welding four robots cell – view 2

10.6. RAPID program of the four robots arc welding cell

MODULE Module1

Examples of defining constants work object: constants, targets and
variables definitions

 VAR syncident ident1;
 PERS tasks
task1{4}:=[["T_ROB1"],["T_ROB2"],["T_ROB3"],["T_ROB4"]];
 VAR syncident ident2;
 VAR syncident ident3;
 VAR syncident ident4;
 VAR syncident ident5;
 VAR syncident ident6;
 PERS tasks task4{3}:=[["T_ROB1"],["T_ROB2"],["T_ROB3"]];
 VAR syncident ident7;
 VAR syncident ident8;
 VAR syncident ident9;
 CONST robtarget pHome:=[[1369.51290546514,
37.4666443316968,1010.78350359101],[0.745592277204196,0.01481977

135

93186134,0.66466353261722,0.0457702820966485],[0,-1,0,1],
[9E9,9E9,9E9,9E9,9E9,9E9]];
 CONST robtarget pOver:=[[2078.6090717597,35.5392515079451,
1357.92304563372],[0.636059946803591,-0.0273127221326822,
0.771147462664317,-0.00365378000185044],[0,-
1,0,1],[9E9,9E9,9E9,9E9,9E9,9E9]];
 CONST robtarget pLoad:=[[-1606.02370263678,-
38.0457751002972,675.609388963257],[0.133106755464876,-
0.0305372750704237,-0.990630939577537,0.000638774305297796],[0,-
1,0,7],[9E9,9E9,9E9,9E9,9E9,9E9]];
 CONST robtarget pUnder:=[[2026.43017232093,
41.7456192089369,1534.29951708203],[0.91945264701403,-
0.0277764081076071,0.392048066563009,0.0115591762569867],[0,-
1,0,1],[9E9,9E9,9E9,9E9,9E9,9E9]];
 CONST robtarget pFront:=[[2530.56390764596,
41.3940929579109,1569.72454292973],[0.492426348032876,0.00122286
152930768,0.870261854609902,0.012613515910265],[0,0,0,0],[9E9,9E9,
9E9,9E9,9E9,9E9]];

Examples of calling different procedures (ex. Intch_Pth_1) – RAPID
program procedure

PROC main()
 ToHome;
 Over;
 WaitSyncTask ident1,task1;
 WaitSyncTask ident2,task1;
 Under;
 WaitSyncTask ident3,task1;
 WaitSyncTask ident4,task1;
 WaitSyncTask ident5,task1;
 Front;
 WaitSyncTask ident6,task1;
 WaitSyncTask ident7,task1;
 FlipToBackside;
 WaitSyncTask ident8,task1;
 WaitSyncTask ident9,task1;
 FlipToFrontside;
 ToLoad;

136

ENDPROC

Examples of robot moving instructions (ex. MoveJ) - RAPID program
procedure

PROC FlipToBackside()
 MoveJ pFlip_01,v1000,z100,tool0\WObj:=wobj0;
 MoveJ pFlip_02,v1000,z100,tool0\WObj:=wobj0;
 MoveJ pFlip_03,v1000,fine,tool0\WObj:=wobj0;
ENDPROC

Examples of robot moving instructions (ex. MoveJ) - RAPID program
procedure
PROC FlipToFrontside()
 MoveJ pFlip_02,v1000,z100,tool0\WObj:=wobj0;
 MoveJ pFlip_01,v1000,z100,tool0\WObj:=wobj0;
 MoveJ pHome,v1000,z100,tool0\WObj:=wobj0;
ENDPROC

ENDMODULE

10.7. Assembly two robots cell overview

Figure 10.7. RobotStudio® - Assembly two robots cell – view 1

137

Figure 10.8. RobotStudio® - Assembly two robots cell – view 2

10.8. RAPID program of the two robots assembly cell

MODULE modRobotStudio

Examples of defining constants work object: constants, targets and
variables definitions

CONST robtarget pTurnTablePosROB2:=[[0,4.89842541528954E-16,4],[-
6.12303176911189E-17,1,-1.61279309130843E-
47,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]];
CONST robtarget pOutFeederPos:=[[200.016009205003,
399.937244742038,6.99993896484363],[-2.01362528565985E-
22,0.999999999994593,3.28860826072754E-06,-6.12303176907878E-
17],[1,0,1,0],[9E9,9E9,9E9,9E9,9E9,9E9]];
CONST robtarget pBufferPosROB2:=[[224.500035230801,
100.00001157408,166.454416191376],[4.32963728535968E-
17,0.707106781186547,0.707106781186548, 4.32963728535968E-17],[-
1,0,-1,0],[9E9,9E9,9E9,9E9,9E9,9E9]];
PERS num nZoffset:=-4;

138

Examples of robot moving instructions (ex. MoveJ), conditional
expressions (ex. IF, ELSE) and signals (ex. SetDO)- RAPID program
procedure

PROC PlacePanelInControlBuffer()
 MoveJ RelTool(pBufferPosROB2,0,0,-
100),v1000,z10,tGripper\WObj:=wobjBuffer;
 MoveL RelTool(pBufferPosROB2,0,0,nZoffset),v100,fine,tGripper\
WObj:=wobjBuffer;
 IF diBufferFull=1 THEN
 nZoffset:=0;
 ELSE
 nZoffset:=nZoffset-4;
 ENDIF
 SetDO doVacuumOn,0;
 WaitDI diVacuum,0;
 MoveL RelTool(pBufferPosROB2,0,0,-
100),v1000,z10,tGripper\WObj:=wobjBuffer;
ENDPROC

Examples of robot moving instructions (ex. MoveJ) and signals (ex.
SetDO)- RAPID program procedure

PROC PlacePanelOnOutFeeder()
 MoveJ RelTool(pOutFeederPos,0,0,-
100),v1000,z10,tGripper\WObj:=wobjOutFeeder;
 MoveL pOutFeederPos,v200,fine,tGripper\WObj:=wobjOutFeeder;
 SetDO doVacuumOn,0;
 WaitDI diVacuum,0;
 MoveL RelTool(pOutFeederPos,0,0,-
100),v1000,z10,tGripper\WObj:=wobjOutFeeder;
ENDPROC

Examples of robot moving instructions (ex. MoveJ) and conditional
expressions (ex. IF, ELSE) - RAPID program procedure

PROC main()
 MoveJ RelTool(pTurnTablePosROB2,0,0,-
100),v200,fine,tGripper\WObj:=wobjTurnTableROB2;
 nZoffset:=0;
 WHILE TRUE DO
 PickPanel;
 IF diPlaceCellInBuffer=1 THEN

139

 PlacePanelInControlBuffer;
 ELSE
 PlacePanelOnOutFeeder;
 ENDIF
 ENDWHILE
ENDPROC

ENDMODULE

140

Bibliography

[1] ABB, Technical reference manual RAPID Instructions, Functions and Data

type, 3HAC 16581-1, 2017

[2] ABB, Operating Manual RoboStudio 6.05, 3HAC032104-001 Revision: T,

2017

[3] ABB, Operating Manual RoboStudio 5.61, 3HAC032101-001 Revision: T,

2016

[4] RobotStudio® Help 6.05

[5] RobotStudio® software application versions 5.60, 5.61, 6.05

	RobotStudio
	Table of Contents
	Workshop 1: Getting started with RobotStudio
	1.1. Introduction
	1.2. RobotStudio® - terms and concepts
	1.3. RobotWare
	1.4. RAPID concepts
	1.5. Programming concepts
	1.6. Paths and targets
	1.7. Coordinate systems
	1.8. MultiMove Coordinated systems
	1.9. Robot axis configurations
	1.10. Installing and licensing RobotStudio

	Workshop 2: Introduction in RobotStudio® environment
	2.1. Aim of the workshop
	2.2. Theoretical notions

	Workshop 3: Define Targets and Paths (trajectories)
	3.1. Aim of the workshop
	3.2. Robot Targets

	Workshop 4: Collision Control & Create a mechanism
	4.1. Aim of the workshop
	4.2. Collision Control
	4.3. Tool mechanism

	Workshop 5: Create the Conveyor’s Mechanism and Programming MultiMove systems
	5.1. Aim of the workshop
	5.2. Create Conveyor Mechanism
	5.3. Programming/Setting up/Testing MultiMove systems

	Workshop 6: Create a smart component tool
	6.1. Aim of the workshop
	6.2. The smart component’s definition

	Workshop 7: Create a path from a curve
	7.1. Aim of the workshop
	7.2. Defining an Auto path
	7.3. Edit a RAPID program in RobotStudio

	Workshop 8: Virtual FlexPendant from RobotStudio
	8.1. Aim of the workshop
	8.2. Virtual FlexPendant in RobotStudio

	Workshop 9: Creating a robotic station using RobotStudio
	9.1. Aim of the workshop
	9.2. Creating a robotic station using RobotStudio

	Workshop 10: Examples of robotic cells and RAPID programmes developed in RobotStudio
	10.1. Arc welding one robot cell overview
	10.2. RAPID program of the arc welding one robot cell
	10.3. Arc welding two robots cell overview
	10.4. RAPID program of the two robots arc welding cell
	10.5. Arc welding four robots cell overview
	10.6. RAPID program of the four robots arc welding cell
	10.7. Assembly two robots cell overview
	10.8. RAPID program of the two robots assembly cell

	Bibliography

