Bogdan MOCAN

Sanda TIMOFTEI Anca STAN Mircea FULEA

RobotStudio®

Simulation of industrial automation processes and
offline programming of ABBs robots

- Practical guide for students -

U.T. PRESS
CLUJ-NAPOCA, 2017
ISBN 978-606-737-254-0

Editura U.T. PRESS

Str. Observatorului nr. 34

C.P. 42, 0.P. 2, 400775 Cluj-Napoca
Tel.:0264-401.999

e-mail: utpress@biblio.utcluj.ro
http://biblioteca.utcluj.ro/editura

Director: Ing. Calin D. Cdmpean

Recenzia: Prof.dr.ing. Stelian Brad
Conf.dr.ing. Emilia Brad

Copyright © 2017 Editura U.T.PRESS
Reproducerea integrala sau partiala a textului sau ilustratiilor din aceasta
carte este posibila numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-254-0

Table of Contents

Table OF CONLENTSccveeieieece e e 3
Workshop 1: Getting started with RobotStudio®ccccevviiiiiiiiiiiieniinen, 6
L1 INErOQUCTION .ottt 7
1.2. RobotStudio®™ - terms and CONCEPLSc.c.evevrvecverererereeeeieeeie e, 8
1.3. RODOIWEAIE ...t 11
1.4, RAPID CONCEPLS ...vveeiiieiiiie ettt ciie sttt stes ettt e 13
1.5. Programming CONCEPLSc.vevvervirierierieesieiesie it stesiesiesieseesee s e e sieseeas 15
1.6. Paths and targetS........cccveveiieiieie i 17
1.7. CoOrdinate SYSIEIMS.......ccouiiieiiaie ettt 18
Tool Centre Point Coordinate SYStEMcccooeierenininieniese e 19
RobotStudio® World Coordinate SyStem..........cccecveereeriveereeniieenieeninnens 19
Base Frame (BF) ..oovoiie e 20
TaSK Frame (TF) ..o 20
Stations with multiple robot SyStemscccccveiieviiiie v, 21
1.8. MultiMove Coordinated SYStEMS..........cccereririnininieiesese e 22
1.9. Robot axis configurations...........cccccveveiieeresiiesieese e 26
Storing axis configurations IN targetS.........cocvvvvevieiiie e 26
Common problems related to robot axis configurations......................... 26
Common solutions for configuration problemsccccccecviviiieieinns 27
How configurations are denoted (Quaternions)ccccvvevevveveeciveenen. 27
Configuration MONITOIING.....c..coviiiriiiierieee e 29
Turning configuration monitoring offccccoceeveiiei i, 29
Turning configuration Monitoring ON.........ccccvevieeiieeiie s 30
Libraries, geometries and CAD fileS.......cccovvveviviin i 30
Difference between geometries and libraries............cccoeveveivieinciecnnnne, 30
How geometries are CONSLIUCTEccevververeieieiisee e 31
Importing and converting CAD FIleS.........cooeiiiiiiiiiiceec e 31
Supported 3D fOrMALSccooviiiiiiee e 31
1.10. Installing and licensing RobotStudio®cccccevvirviniiiiinnnn. 33

Activation the RODOISIUAIO®ueeeeeeeeeeeeeeeeeeaeenees 33

Workshop 2: Introduction in RobotStudio® environment...........ccccceeeveruenne. 35
2.1, Aim of the WOrkSNOPccvviiiiieicecee e 36
2.2, Theoretical NOIONSccccvviieiieie et 36

How to create a station in RODOtStUdIO®?...........ccccevvrieiieiiieie e 38
How to program a robot to work in RobotStudio®?.............c.cccevevvennee. 42
How to import a tool in RobotStudio®?cccevvvieieeececeec 46

Workshop 3: Define Targets and Paths (trajectories)ccccoccevvveveevesinenne. 48
3.1, AIm Of the WOrKSNOP ..c.coovviiiiiiecc e 49
3.2. RODOL TAIGELS ... s 49

PALNS L.t 58
SIMUIALION ... 63

Workshop 4: Collision Control & Create a mechanism...........cccocceeeeverenennn. 67
4.1. Aim of the WOrkShopcoeiieiiiiiic e 68
4.2, CollSION CONLIOLooveeiieiiciieeee s 68
4.3, T0OOl MEChANISM ...ceviiiiieccee s 71

TCP defiNItiONccviiiiieieee e 80

Workshop 5: Create the Conveyor’s Mechanism and Programming

MUILIMOVE SYSTEMS ...t 83
5.1. AIm Of the WOrKSNOP ..c..covviiiiiiiii e 84
5.2. Create Conveyor MechaniSmccccverenininiinienieee e 84
5.3. Programming/Setting up/Testing MultiMove systems.................... 86

Programming MUltiMOVE SYSEEMSccvevieriiiiieniicseee s 86
Setting Up MUItIMOVE SYSEEMS.........ccoveieerieciesiere e 87
Testing the MUltiMOVE SYSIEMScccveviiieiiee e 88

Workshop 6: Create a smart component toolc.covvvvriiieicnencncien, 90
6.1. AIm of the WOrkShOpccvviiiiiicccce e 91
6.2. The smart component’s definition.............cccovveviiiiiiiiiiiiiicis 91

Workshop 7: Create a path from a Curve..........ccooeeveniniiniceee e 101
7.1, Aim of the WOrkShopccooviviieiiic e 102
7.2. Defining an Auto path ..., 102
7.3. Edita RAPID program in RobotStudio®............cccceveiieniinieninnins 104

Workshop 8: Virtual FlexPendant from RobotStudio®.............cccceerveenene 106

8.1. Aim of the WOrkShopccviieiiiiicc e 107
8.2. Virtual FlexPendant in RobotStudio®...........ccccvvververieiienieniennnnnns 107
HOTEQIT MEBNU ..o 108
Inputs and outputs, /O MENUcceeviiieiieieee e 110
JOQUING MENU ..o 111
Production WINAOWcoverieeieiieniesie e 112
Program €ITOr.........cueiviieiiere e 113
Program Gataccceeieiieiieie et 114
The QUICKSEL MENU......oiieiieie et 115
Workshop 9: Creating a robotic station using RobotStudio®...................... 116
9.1. AIm of the WOrkSNOPcc.oovviiiiiiicii e 117
9.2. Creating a robotic station using RobotStudio®...............cccceveenne. 117
Workshop 10: Examples of robotic cells and RAPID programmes developed
1N RODOESTUAIO®R)......eiiiiiiiiie ittt 128
10.1. Arc welding one robot cell oVerviewccccoevvevviveesinennn. 128
10.2. RAPID program of the arc welding one robot cell 129
10.3. Arc welding two robots cell oOverview...........cccoccevvvevveieninenne. 130
10.4. RAPID program of the two robots arc welding cell 131
10.5. Arc welding four robots cell overview...........ccccoovevvrinnnnnne. 133
10.6. RAPID program of the four robots arc welding cell 134
10.7. Assembly two robots cell overview...........cccceevevveieceesnnennn. 136
10.8. RAPID program of the two robots assembly cell.................. 137
BIDHOGrapNY ... 140

Workshop 1: Getting started with
RobotStudio®

Necessary resources and knowledge

Resources

Microsoft Windows 7 SP1 (recommended) 64-bit edition
Microsoft Windows 10 (recommended) 64-bit edition

CPU: 2.0 GHz or faster processor, multiple cores recommended

Memory: 3 GB if running Windows 32-bit 8 GB or more if running
Windows 64-bit (recommended)

Disk: 10+ GB free space, solid state drive (SSD)

Graphics card: High-performance, DirectX 11 compatible, gaming
graphics card from any of the leading vendors. For the Advanced
lightning mode Direct3D feature level 10_1 or higher is required

Knowledge

Basic knowledge about industrial robotics. Basic knowledge about using
PC.

Take away lessons

» Offline programming is the best way to maximize return on
investment for robot systems. RobotStudio® allows robot
programming to be done on a PC in the office without shutting
down production.

= RobotStudio® provides the tools to increase the profitability of a
robot system by letting you perform tasks such as training,
programming, and optimization without disturbing production.

= Offline programming of robotic systems facilitates:
- Risk reduction
- Quicker start-up
- Shorter change-over
- Increased productivity.

1.1. Introduction

Industrial robot (Figure 1.1) as defined by ISO 8373 is [1]: “An automatically
controlled, reprogrammable, multipurpose manipulator programmable in
three or more axes, which may be either fixed in place or mobile for use in
industrial automation applications”.

Reprogrammable: whose programmed motions or auxiliary functions may be
changed without physical alterations;

Multipurpose: capable of being adapted to a different application with
physical alterations;

Physical alterations: alteration of the mechanical structure or control system
except for changes of programming cassettes, ROMs, etc.

Axis: direction used to specify the robot motion in a linear or rotary mode

In the case of ABB industrial robots, the company has realized a software
application available just for their robots - RobotStudio®.

Brd-axis motor cover (rear side)

Second arm 4th axis (J4) \ dth-axis cover
\

Tool mounting
face (Flange)

*)
6th axis (J6)

(6]) shaxs18) (9

2nd-axis molor cover (rear side)

Figure 1.1. An example of industrial robot (robot manipulator)

RobotStudio® is a PC application for modelling, offline programming, and
simulation of robotic cells. RobotStudio® allows you to work with an off-line
controller, which is a virtual IRC5 controller running locally on your PC. This
offline controller is also referred to as the virtual controller (VC).

RobotStudio® also allows you to work with the real physical IRC5 controller,
which is simply referred to as the real controller [1].

When RobotStudio® is used with real controllers, it is referred to as the online
mode. When working without being connected to a real controller, or while
being connected to a virtual controller, RobotStudio® is said to be in offline
mode.

Within this workbook, the focus will be on modelling robotic cells and offline
programming with the help of RobotStudio® software application.

During installation process of the RobotStudio®, there are the following
options [1]:

e Complete
e Custom, allowing user-customized contents and paths
* Minimal, allowing you to run RobotStudio® in online mode only.

The background of each program is a language programming specialized on
the machine and the domain that is used, being impossible for it to be used
for other aims. In the case of ABB robots programming, the RAPID language
program was created. This language program is used to create different tasks
for ABB industrial robots using all the information offered by the program.

Nowadays, each language programming is using English words because it is
very easy to be understood by humans. RAPID is a high-level programming
language [2], having at same time predefined data, instructions and so on. In
this way, it is very easy to program in RAPID, even if it is an online or offline
programming.

1.2. RobotStudio® - terms and concepts

In a robotic cell, there are further hardware components that are used to
work simultaneously in order to realize different tasks with an ABB industrial
robot. Table 1.1. gives information about each component that is part of the
robotic cell, in this case it is an IRC5 robotic cell.

Table 1.1. Standard hardware in an IRC5 robotic cell [1]

Hardware Explanation Examples

Robot

) An ABB industrial robot.
manipulator

Contains the main computer that
controls the motion of the manipulator.
This includes RAPID execution and signal
handling. One control module can be
connected to 1-4 drive modules.

A module containing the electronics that
power the motors of a manipulator. The
drive module can contain up to nine
drive units, each controlling one
manipulator joint. Since the standard

robot manipulators have six joints, you F i
usually use one drive module per robot
manipulator.

Control
module

ARR

l Control Module

AR

l Drive Module

Drive module

The controller cabinet for the IRC5
robots. It consists of one control module
and one drive module for each robot
manipulator in the system.

FlexController

The programming pendant, connected
to the control module. Programming on
the FlexPendant is referred to as “online
programming”.

FlexPendant

A device usually mounted on the robot
manipulator to allow it to perform
specific tasks, such as gripping, cutting
or welding. The tool can also be
stationary (not mounted on the robot;
also, called “external tool”).

Tool

o ©
Jrowoma
. o

To have a complete robotic cell, that will be programmed to realize a certain
task that is desired to be done, further components are needed. These
components, in the case of an IRC5 robotic cell, represent the optional
hardware (see Table 1.2.)

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiGu_y6tajSAhXDXRoKHTNAC7MQjRwIBw&url=http://www.directindustry.com/prod/abb-robotics/product-30265-169124.html&bvm=bv.147448319,d.d24&psig=AFQjCNEXk-SIwJdBDwk2Leiox53_QwiVPw&ust=1488014858910752
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwikir_DtanSAhUG7xQKHegJAdgQjRwIBw&url=http://new.abb.com/products/3HAC020536-014&bvm=bv.148073327,bs.2,d.d24&psig=AFQjCNFvIH_-QNAA6ckMbB_yjDyQgExNQw&ust=1488049123786129
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjY49GitKnSAhXExRQKHWLYBhkQjRwIBw&url=http://www.directindustry.com/prod/abb-robotics/product-30265-169114.html&bvm=bv.148073327,d.d24&psig=AFQjCNFSG6N3G42gCyGhn6Bb4b348kPybA&ust=1488048890516697
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiY5qyFtKnSAhXLWBQKHdVFDjMQjRwIBw&url=http://new.abb.com/products/3HAC020536-014&psig=AFQjCNHdtJxs90znUgcWjfweUyBrdzvtSg&ust=1488048829426831
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi8jMKdtqnSAhXBNxQKHeGxABkQjRwIBw&url=http://www.robotictips.com/quiet-evolution-in-industrial-grippers-and-end-effectors/&bvm=bv.148073327,d.d24&psig=AFQjCNHOyK-df3Tn4bFlb_57QLoQ9qwJbw&ust=1488049335451285

Table 1.2. Optional hardware in an IRC5 robotic cell [1]

Hardware Explanation Examples
A moving stand holding the
robot manipulator to give it a
larger work space. When the -
Track .
. control module controls the m
manipulator) . .
motion of a track manipulator, it
IREBT 4004

is referred to as a “Track External
Axis”.

Positioner
manipulator

A moving stand normally holding
a work piece or a fixture. When
the control module controls the
motion of a positioned
manipulator, it is referred to as
an “External Axis”.

FlexPositioner

A second robot manipulator
acting as a positioner
manipulator. It is controlled by
the same control module as the
positioner manipulator.

A device that stands in a fixed
location, the robot manipulator

Stationary picks up the work piece and
tool brings it to the device to perform
specific tasks, such as gluing,
grinding or welding.
Work piece | The product being worked on.
A construction holding the work
Fixture piece in a specific position so

that the repeatability of the
production can be maintained.

10

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj1j9_VrOLTAhVCQBoKHeroBTkQjRwIBw&url=http://www.renishaw.com/en/metrology-fixtures--20748&psig=AFQjCNEeQPWtJx8Bcg27ZuY1zWF4yPMaag&ust=1494403386929970

1.3. RobotWare

RobotWare is a system that is used just in collaboration with RobotStudio®.
This is the reason why there are further versions of the system, because it
must be compatible with the RobotStudio® version [1]. It must be mentioned
that RobotWare must be installed before RobotStudio®.

In the next table are presented all the components of a RobotWare system
that are useful to work with RobotStudio® (Table 1.3.).

Table 1.3. RobotWare terminology and concepts [1]

Information

Explanation

RobotWare

As a concept, refers to both the software used to create
a RobotWare System and the RobotWare systems
themselves.

RobotWare
installation

When installing RobotStudio®, only one version of
RobotStudio® will be installed. To simulate a specific
RobotWare system, the RobotWare version used for this
particular RobotWare system must be installed on PC.
RobotWare 5 is installed into the PC’s program files folder
using a standard PC installer. RobotWare 6 is
automatically installed for the Complete installation
option of RobotStudio®. Alternatively, use the RobotApps
page in the Add-Ins tab to install RobotWare 6.

RobotWare
key

Used when you create a new RobotWare system or
upgrade an existing system. The RobotWare keys unlock
the RobotWare options included in the system, and
determine the RobotWare version from which the
RobotWare system will be built. For IRC5 systems there
are three types of RobotWare keys:
= The controller key (specifies the controller and
software options).
= The drive keys, which specify the robots in the
system. The system has one drive key for each
robot it uses.
= Add-ins specify additional options, like positioned
external axes.

11

Information

Explanation

A virtual key allows you to select any RobotWare options
you wish, but a RobotWare system created from a virtual
key can only be used in a virtual environment such as
RobotStudio®.

RobotWare
system

A set of software files that, when loaded into a controller,
enables all functions, configurations, data and programs
controlling the robot system.

RobotWare systems are created in the RobotStudio®
software. The systems can be stored and saved on a PC,
as well as on the control module.

RobotWare systems can be edited by RobotStudio® or
the FlexPendant.

RobotWare
version

Each RobotWare is released with a major and a minor
version number, separated by a dot. The RobotWare
version for IRC5 is 6.xx, where xx identifies the minor
version.

When ABB releases a new robot model, a new
RobotWare version will be released with a support for the
new robot.

Mediapool

For RobotWare 5, the mediapool is a folder on the PC in
which each RobotWare version is stored in a folder of its
own.

The files of the mediapool are used to create and
implement all the different RobotWare options.
Therefore, the correct RobotWare version must be
installed in the mediapool when creating RobotWare
systems or running them on virtual controllers.

RobotWare
Add-In

A RobotWare add-in is a self-contained package that
extends the functionality of a robot system. RobotWare
add-ins are the RobotWare 6 equivalent of RobotWare 5
additional options.

Product

In the context of RobotWare 6, a product can be either a
RobotWare version or a RobotWare add-in. Products can
be free or licensed.

License

The license unlocks the options you can use in your robot
system, for example robots and RobotWare options.

If you wish to upgrade from RobotWare version 5.15 or
earlier, you must replace the controller main computer

12

Information Explanation

and get RobotWare 6 licenses. Contact your ABB Robotics

service representative at

A Distribution package may contain RobotWare and

Distribution | RobotWare add-ins. RobotWare 6 Distribution package
package also contains RobotWare Add-ins for Positioners and

TrackMotion.

1.4. RAPID concepts

To use an ABB robot and to program it, as in all cases of industrial or
automated equipment, a language programming must be known. In this case,
it is about a particular programming language, used just for ABB robots,
RAPID, whose structure is the general one, using the concepts presented in
Table 1.4.

Table 1.4. RAPID concepts [1]
Concept Explanation
Data Used to create instances of variables or data types, like
declaration num or tooldata.
The actual code commands that make something
happen, for example, setting data to a specific value or a

Instruction robot motion. Instructions can only be created inside a
routine.
Create the robot motions. They consist of a reference to
Move a target specified in a data declaration along with
. . parameters that set motion and process behaviour. If
instruction

inline targets are used, the position is declared in the
move instructions.

Action Instructions that perform other actions than moving the
instruction robot, such as setting data or sync properties.
Usually a set of data declarations followed by a set of
instructions implementing a task. Routines can be divided
into three categories: procedures, functions and trap
routines.
Procedure A set of instructions that does NOT RETURN a value.
Function A set of instructions that that RETURN a value

Trap A set of instructions that is triggered by an interrupt.

Routine

13

http://www.abb.com/contacts

Concept Explanation

A set of data declarations followed by a set of routines.
Modules can be saved, loaded and copied as files.
Modules are divided into program modules and system
modules.

Module

Program

module (.mod) Can be loaded and unloaded during execution.

Used mainly for common system-specific data and
routines, for example, an arcware system module that is
common for all arc robots.

In IRC5 a RAPID program is a collection of modules files
(.mod) and the program files (.pgf) that references all the
modules files. When loading a program file, all old
program modules are replaced by those referenced in the
.pgf file. System modules are unaffected by program load.

System
module (.sys)

Program files
(-pgf)

7 PJ'I’?gI‘(HH memory

——— Program

Program data

Main Sub-
routine routines

System modules

Figure 1.2. RAPID concepts and structure.

A program consists of instructions and data, programmed in the RAPID
programming language (Figure 1.2), which control the robot and peripheral
equipment in a specified way. The program is usually made up of three
different parts:

®" 3 main routine
= several subroutines
= program data.

In addition to this, the program memory contains system modules.
14

The main routine is the routine from which program execution starts.

Subroutines are used to divide the program up into smaller parts in order to
obtain a modular program that is easy to read. They are “called” from the
main routine or from some other routine. When a routine has been fully
executed, program execution resumes at the next instruction in the calling
routine.

Data is used to define positions, numeric values (registers, counters) and
coordinate systems, etc. Data can be changed manually, but it can also be
changed by the program; for example, to redefine a position, or to update a
counter.

An instruction defines a specific action that is to take place when the
instruction is executed; for instance, moving the robot, setting an output,
changing data or jumping within the program. During program execution, the
instructions are executed one at a time, in the order in which they were
programmed.

System modules are programs that are always present in the memory.
Routines and data related to the installation rather than the program, such as
tools and service routines, are stored in system modules.

1.5. Programming concepts

In the case of industrial robots from ABB, the programming of the robots can
be realized in different ways. Types of programming and further programming
concepts are presented in Table 1.5.

Table 1.5. Programming concepts [1]
Concept Explanation Examples

Programming when connected to a

Online real controller. This expression also
programming | implies using the robot to create
positions and motion.

15

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjdrt3yvanSAhVBuBQKHTwaCQsQjRwIBw&url=http://weldingdesign.com/equipment-amp-automation/advancing-programming-laser-cutting&bvm=bv.148073327,d.d24&psig=AFQjCNER-V0WlYi65uREwqhemrVAONyYJA&ust=1488051480672231

Concept

Explanation

Examples

Offline
programming

Programming without being
connected to the robot or to the
real controller.

True offline
programming

Refers to the ABB Robotics concept
of connecting a simulation
environment to a virtual controller.
This enables not only program
creation, but also program testing
and optimizing offline.

A software that emulates a
FlexController to allow the same
software (the RobotWare system)

Virtual . .
that is controlling the robots to run
controller . .
on a PC. This gives the same
behaviour of the robots offline as
you get online.
Running multiple robot
MultiMove | manipulators with the same control
module.
Used to define positions and
orientations. When programming a ﬁ, . —
Coordinate robot, you can take advantage of _ 4{51<
systems using different coordinate systems | ; . i
to more easily position objects :
relative to each other.
Frame A synonym for coordinate system.
If all your targets refer to
Workobject | workobjects, you only need to
calibration calibrate the workobjects when

deploying offline programs.

16

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiy2vSKvqnSAhWH1RQKHZJZA_8QjRwIBw&url=http://new.abb.com/products/robotics/robotstudio/tutorials&bvm=bv.148073327,d.d24&psig=AFQjCNER-V0WlYi65uREwqhemrVAONyYJA&ust=1488051480672231
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiIpLbHvqnSAhUCXRQKHZ6sDM0QjRwIBw&url=http://www.railway-technology.com/features/feature61271/feature61271-1.html&bvm=bv.148073327,d.d24&psig=AFQjCNEHQB1J9s7RITEh5OcZRopRKE6OoQ&ust=1488051658086329
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj6ssP9vqnSAhWBrhQKHZ_KChIQjRwIBw&url=http://www.ipacv.ro/proiecte/robotstudio/textbooks/file/robot_motion.htm&bvm=bv.148073327,d.d24&psig=AFQjCNHzDbMhv8wMROe3Px0zCylNYwCh6g&ust=1488051751736708
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjZ_NPht_TSAhWL7hoKHcUGDY0QjRwIBw&url=https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html&psig=AFQjCNHY53DEepajy7W5jM_WjWUHw4X6yw&ust=1490626541058516
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwitpqr_v6nSAhXBoBQKHVrGC2sQjRwIBw&url=https://forums.robotstudio.com/discussion/2606/user-and-object-frame&bvm=bv.148073327,d.d24&psig=AFQjCNHrO6T_hPXrGZVeGgI9W-AtdVaL8Q&ust=1488051960147357

1.6. Paths and targets

In order to be able to program an industrial robot, it is necessary to know
what the robot must do. For this, the targets (positions) and paths
(sequences of move instructions to targets) must be known in order to be
able to program the robot in RobotStudio® [1].

In RobotStudio®, there is an option to synchronize the RobotStudio® station
to the virtual controller. It must be mentioned that the paths are realized in
order to get RAPID programs. [1]

In RAPID programming, the targets are the points that must be reached by
the robot. In this context, these must be saved in a data type that is
recognized by the robot and then to be able to synchronize the robot with the
virtual controller. A specific data must be used, and this is called robtarget [1].
In Table 1.6. are presented the characteristics of the targets.

Table 1.6. Targets characteristics [1]
Information Explanation Examples

The position of the target,
Position defined in a workobject
coordinate system

The orientation of the target,
relative to the orientation of e ‘//:\
the workobject. When the ~ '

robot reaches the target, it will
align the TCP’s orientation with
the target’s orientation.

Orientation

Configuration values that
Configuration | specify how the robot shall
reach the target.

17

https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjS6MDs--LTAhUFUlAKHT78DCoQjRwIBw&url=https://www.researchgate.net/publication/311667376_Program_Creation_in_ABB_RobotStudio_51502&psig=AFQjCNHYnyWKk4QBMzgXZxa8UYX25HJEMA&ust=1494424635456548
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi0s9WZ_OLTAhXKZlAKHen_DkUQjRwIBw&url=http://developercenter.robotstudio.com/BlobProxy/manuals/RobotStudioOpManual/doc55.html&psig=AFQjCNFclETkuokfxMa6M9jCgEnNfYNkSg&ust=1494424729885365
https://www.google.ro/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjtzoib_eLTAhUOJlAKHbnQCFkQjRwIBw&url=https://www.slideshare.net/teperini/robot-studio-abb&psig=AFQjCNGeDPzovabXZMVPzuNNH5gfzaFMPQ&ust=1494424842552860

The way in which the robot reached all the targets and how it moves from
one point to another, represents a path. A path is a sequence of move
instructions “used to make the robot move along a sequence of targets” [1].
Once the robot station is synchronized with the virtual controller, the paths
convert into procedures [1].

In order to follow a path, the robot must move from one target to another.
For this, move instructions are used. A move instruction is formed by:

- reference to target

- motion data (motion type, like speed and zone)
- reference to a tooldata

- workobject reference [1]

“An action instruction is a RAPID string that can be used for setting and
changing parameters. Action instructions can be inserted before, after or
between instruction targets in paths” [1].

1.7. Coordinate systems

A coordinate system is a system formed by one or more coordinates
(numbers), to determine the position of a point or a geometric element,
position, that is unique.

Generally, industrial robots use the “right hand” Cartesian coordinate system
(Figure 1.3) that is, also, commonly used in manual and CNC machining and in
most, if not all, CAD/CAM software applications.

In the following paragraphs, there are presented the coordinate systems used
in RobotStudio®, to program the ABB robots in an offline manner. For offline
programming, the systems that are already predefined (robots that are
already in the RobotStudio® database) can be used: the coordinate systems
are co-related hierarchically, the origin of each coordinate system is defined
as a position in one of its ancestries. The following are the descriptions of the
commonly used coordinate systems [1].

18

Q{ * 7z +x = index finger
{

+y = middle finger (and/or ring and
pinky fingers) bent 90 degrees inward

Y \ k .
+z = thumb sticking out
AT

Figure 1.3. “Right hand” Cartesian coordinate system configuration

Tool Centre Point Coordinate system

The tool centre point coordinate system can also be called TCP and it
represents the centre point of the tool. Different TCPs can be defined for one
tool (multifunctional tool). It must be known that the implicit tool for each
robot is tool0, which means that the tool’s TCP is identical with the cartesian
frame attached to the robot flange. When the robot is programmed, that
means the robot moves the TCP from one point to another to reached all the
programmed points. Because of this, before starting programming a robot, its
TCP must be defined (Figure 1.4) [1].

Figure 1.4. “Tool Center Point” associated to different tools

RobotStudio® World Coordinate system

When talking about the RobotStudio® world coordinate system, one refers to
the entire station or robotic cell. This coordinate system is the reference for

19

the other coordinate systems, this being at the top of the hierarchy (when
using RobotStudio®) [1].

Base Frame (BF)

The Base Frame (BF) is the base coordinate system and it has the origin at the
base of the robot, whether this is about a robot in the real world or in
RobotStudio® [1].

Task Frame (TF)

The origin of the robot controller world coordinate system (in RobotStudio®)
represents the Task Frame. The differences between base frame and task
frame are presented in Figure 1.5. In the first picture (left), the task frame and
the base frame are located in the same position. In the other figure, the task
frame has been moved to another position [1].

Figure 1.5. Representation for the Task Frame [1]

Figure 1.6 illustrates the mapping of the task frame in RobotStudio® to the
robot controller coordinate system in the real world (e.g. on shop floor) [1].

In Table 1.7 there are presented the components’ elements (regarding
coordinate systems) of a station with a robot system.

20

Figure 1.6. Mapping the Task Frame [1]

Table 1.7 Station with a robot systems [1]

RS-WCS World coordinate system in RobotStudio®
RC-WCS World coordinate system as defined in the robot controller.
It corresponds to the task frame of RobotStudio®.
BF Robot Base Frame
TCP Tool Center Point
P Robot target
TF Task Frame
Wobj Workobject

Stations with multiple robot systems

In the case of a single robot system, the task frame is the same with the robot
controller world coordinate system. The presence of the task frame in the
presence of several controllers, allows the connected robots to work in
different coordinate systems. This means that each robot can be located
independent having its own task frame (Figure 1.6) [1]. A station with multiple
robot systems is presented in Figure 1.7.

21

z z
: ; .
 pra P2& £ -
('|'|;|=||11|] TepiR)|
| 1 d
I I
I I
) K h &
Z - .
z, F ¥ ;
- Wb TRy Wob... ok g

" BF(R2) |
N P

—— ——
e e ——— T

Figure 1.7. Station with multiple robot systems [1]

In Table 1.8 there are presented the components’ elements (regarding
coordinate systems) of a station with multiples robot systems.

Tabel 1.8 Stations with multiple robot systems [1]

RS-WCS | World coordinate system in RobotStudio®
TCP (R1) | Tool Center Point of robot 1
TCP (R2) | Tool Center Point of robot 2
BF (R1) Robot Base Frame of robot system 1
BF (R2) Robot Base Frame of robot system 2
P (R1) Robot target 1
P (R2) Robot target 2
TF (R1) Task Frame of robot system 1
TF (R2) Task Frame of robot system 2
Wobj Workobject

1.8. MultiMove Coordinated systems

A function used in RobotStudio® is the MultiMove (Figures 1.8, 1.9, Table 1.9).
This function helps to create and optimize programs for MultiMove systems.
These types of systems consist of a robot or a position that holds the work
piece and another robot that operates on it [1].

In the case a robot is using the RobotWare option MultiMove Coordinated,
the robots must work in the same coordinate systems, because

22

“RobotStudio® does not allow task frames of the controller to be separated”

[1].

v

Figure 1.8. MultiMove Coordinate System (example 1) [1]

. T e :‘K'H
(TCR{RT) s.-[lcp[nzr

Figure 1.9. MultiMove Coordinate System (example 2) [1]

Tabel 1.9 MultiMove Coordinate System [1]

RS-WCS | World coordinate system in RobotStudio®

TCP (R1) | Tool Center Point of robot 1

TCP (R2) | Tool Center Point of robot 2

BF (R1) Robot Base Frame of robot system 1

BF (R2) | Robot Base Frame of robot system 2

BF (R3) | Robot Base Frame of robot system 3

P1 Robot target 1

23

TF Task Frame
Wobj Workobject

MultiMove Independent systems

There is another option for a robot system with RobotWare and this is to use
the MultiMove Independent option (Figure 1.10), where robots are working
at the same time but independently, having the same controller [1].

The presence of one robot controller world coordinate system allows the
robots to work individually in their own coordinate system. In this case,
RoborStudio® offers the possibility to separate and set and independent
position of the robots’ task frames (Table 1.10) [1].

Fd

P akx h2 &kx £ -
(n:ﬂnu'l TeriR2)|
I

Figure 1.10. MultiMove Independent System [1]

Tabel 1.10 Stations with multiple robot systems [1]

RS-WCS World coordinate system in RobotStudio®
TCP (R1) Tool Center Point of robot 1
TCP (R2) Tool Center Point of robot 2
BF (R1) Robot Base Frame of robot system 1
BF (R2) Robot Base Frame of robot system 2
P1 Robot target 1
P2 Robot target 2
TF (R1) Task Frame of robot system 1
TF (R2) Task Frame of robot system 2
Wobj Workobject

24

Workobject coordinate system

The workobject is the work piece that will be moved or will be submitted to
processing operations. It has two coordinate systems: User frame and Object
frame, the last one being part of the first one [1].

If there is no workobject defined, the programmed targets (points) are related
to a default object frame, called wobjO, which coincides with the base frame
of the robot [1].

Defining your own workobject makes it much easier to adjust the programs
from the robots, using just the offset option when the piece is moved from
the initial position. In the case of offline programming, the solution is proper
because even if the positions are not similar in the real world, they can be
easily adjusted, particularly the workobject’s position [1].

When a work piece is attached to a mechanical unit and the workobject is
defined in accordance with the piece and the target is saved in accordance
with the workobject, the target will be easily found in any position of the
mechanical unit, just by specifying the workobject [1].

In Figure 1.11 the grey coordinate system is the world coordinate system, and
the black ones are the object frame and the user frame of the workobject.
Here the user frame is positioned at the table or fixture and the object frame
of the workpiece [1].

) Figure 1.11. Work object system (wobj) [1]

25

1.9. Robot axis configurations

Axis configuration is a characteristic of the robot that defines the way in which
a target is reached. When targets are saved, the action is done with respect
to the workobject coordinate system. To reach a certain target, the controller
is calculating the position of the robot’s axis, finding, this way, different

possibilities. For one target, there can exist different possible configurations
(Figure 1.12). The proper configuration is defined by a value that represents
the quadrant in which each axis must be located [1].

]) P ma ® @ B 9 O
Figure 1.12. RobotStudio® - Selecting the desired robot configuration among the possible
configuration

Storing axis configurations in targets

Once a configuration has been set, it is stored in the target. When it is saved,
the default value is replaced with the good configuration. Default value
(0,0,0,0) is invalid when a wanted target is reached [1].

Common problems related to robot axis configurations

When a configuration is created in ways other than jogging, there is a
possibility that they cannot reach their default configuration [1].

26

In some cases, the targets in a path have validated configurations, but errors
might appear when running the path. In other words, the robot cannot move
from one target to another and this is because the axis shifts are greater than
90 degrees in the case of linear movements. This is possible in the case of
moving targets even if the targets keep their configuration [1].

Common solutions for configuration problems

The problem described above can be solved if each configuration (Figure 1.13)
is assigned to the target and it will be checked if the robot can move along
the path. Another solution is to turn configuration monitoring off. In this case
the configuration is done automatically. If this is not done correctly, there is
the possibility to get unexpected results.

Another solution is to reposition the work piece, to reorient the targets or to
add an external axis that allows the work piece or the robot to be replaced,
increasing the reachability.

Figure 1.13. RobotStudio® - Different configurations for the same target [1]

How configurations are denoted (quaternions)

The robot’s axis configurations are denoted by quaternions. A quaternion is a
four-element vector that can be used to encode any rotation in a 3D
coordinate system. Technically, a quaternion is composed of one real element
and three complex elements, and it can be used for much more than
rotations.

The general definition of a quaternion is given by (1):

Q=a+bxi+c*j+d*k=[a b cd] (1)

27

Quaternions representation (Figure 1.14): let's consider a vector V/~ defined
by 3 scalars (Vx, Vy and Vz) and B an angle of rotation around V'

AZ

X
Figure 1.14. Rotation of a solids using quaternions

The quaternion associated to this transformation is given by (2):

6 .0 .0 .0
Q= [cos;— szmz— Vysmg— stmz] (2)

Rotation around axes:

Based on formula 2, we can now calculate the quaternion defining a rotation
around each axis:

Rotation around X (3)

9 .8
Q, = [cosE - szmE 0 0] (3)
Rotation around Y (4)
Q= [cosg 0 - sing 0] (4)
Rotation around Z (5)

Q=[cos§ 0 0 —sing] (5)

Thus, the ABB robot’s axis configurations are denoted by quaternions, a series
of four integers, specifying in which quadrant of a full revolution significant
axes are located. The quadrants are numbered from zero for positive (counter
clockwise) rotation and from -1 for negative (clockwise) rotation.

28

For a linear axis, the integer specifies the range (in meters) from the neutral
position in which the axis is located.

A configuration for a six-axis industrial robot (like IRB 140) may look like:
0 -1 2 1]

= The first integer (0) specifies the position of axis 1: somewhere in the
first positive quadrant (between 0 and 90 degrees’ rotation).

= The second integer (-1) specifies the position of axis 4: somewhere in
the first negative quadrant (between 0 and -90 degrees’ rotation).

= The third integer (2) specifies the position of axis 6: somewhere in the
third positive quadrant (between 180 and 270 degrees’ rotation).

= The fourthinteger (1) specifies the position of axis x, a virtual axis used
for specifying the wrist centre in relation to other axes.

Configuration monitoring

When executing a robot program, you can choose whether to monitor
configuration values or not. If configuration monitoring is turned off,
configuration values stored with the targets are ignored, and the robot will
use the configuration closest to its current configuration for reaching the
target. If turned on, it will only use the specified configuration for reaching
the targets.

Configuration monitoring can be turned off and on for joint and linear
movements independently and is controlled by the Conf/ and ConfL action
instructions.

Turning configuration monitoring off

Running a program without configuration monitoring may result in different
configurations each time a cycle is executed: when the robot returns to the
start position after completing a cycle, it may choose a different configuration
then the original one.

29

For programs with linear move instructions this might cause a situation where
the robot gets closer and closer to its joint limits and eventually will not be
able to reach the target.

For programs with joint move instructions this might cause sweeping,
unpredictable movements.

Turning configuration monitoring on

Running a program with configuration monitoring forces the robot to use the
configurations stored with the targets. This results in predictable cycles and
predictable motions. In some situations, however, like when the robot moves
to a target from an unknown position, using configuration monitoring may
limit the robot’s reachability.

When programming offline, you must assign a configuration to each target if
the program shall be executed with configuration monitoring.

Libraries, geometries and CAD files

In order to program or simulate in RobotStudio®, CAD models are needed to
create the real robotic cell. These models can be imported from the libraries
or geometries that exist in RobotStudio® or they can be imported as
geometries. Another option is to create them in RobotStudio® [1].

Difference between geometries and libraries

The imported objects can be libraries (objects saved in RobotStudio® as
external files) or geometries (CAD files, that once imported, are copied to the
RobotStudio® station). When importing a library in RobotStudio®, a link is
created between the station and library file. This is not happening in the same
way for geometries. “For example, if a tool is saved as a library, the tool data
is saved together with the CAD data” [1].

30

How geometries are constructed

Imported geometries are a body called Part that can be seen in the Layout
browser. From RobotStudio®’s Modelling tab, each component that forms the
part can be seen, even if it is solid, surface or curve [1].

In the case of solid bodies, it is about 3D objects realized by faces. A surface
is a 2D object formed by just one face and a curved body is not formed by any
child nodes [1].

The Modeling tab offers the possibility to edit the parts using further
commands like adding, deleting unnecessary bodies, moving, rearranging or
creating new bodies that will be grouped after [1].

Importing and converting CAD files

For importing geometries from single CAD files, you use RobotStudio®’s
import function.

“RobotStudio® retains assembly structures in the imported CAD part. For
parts with many entities, the import may take long. To work around this
problem, in the Home tab, click Import Geometry and then select Convert
CAD geometry to single part” [1].

Supported 3D formats

“The native 3D format of RobotStudio® is ACIS. RobotStudio® contains ACIS
R25SP2 which supports later versions of its supported CAD formats.
RobotStudio® also supports other formats for which you need an option. The
following table shows the supported formats and the corresponding options”
(Table 1.11) [1].

Table 1.11 Supported formats by RobotStudio®

Format File extension Option required
3DStudio 3ds -
3DXML, reads version v4.3 .3dxml CATIA V5

31

Format

File extension

Option required

ACIS, reads versions R1 - R25,

writes versions V6, R10, R18 - R25 sat i
CATIA V4, reads versions
model, exp CATIA V4
419t04.2.4
CATIA V5/V6, reads versions
R8 — R25 (V5 — 6 R2015),
. () CATPart, CATIA VS
writes R16 — R25 (V5 — V6 CATProduct, .CGR
R2015)
COLLADA 1.4.1 dae -
DXF/DWG, reads versions .dxf, .dwg
AutoCAD
2.5-2014
E i . .
IGES, reaTds up tg version 5.3, igs, iges IGES
writes version 5.3
Inventor, reads V6 — V2015 ipt Inventor
JT, reads versions 8.0 - 9.5 Jt T
NX, reads versions 11 —NX 10 .prt NT
0BJ obj -
Parasolid, reads versions 9.0.* — X_t, .xmt_txt, .
Parasolid

27.0.*

X_b, .xmt_bin

Pro/E / Creo, reads versions 16 —

Creo 3.0 prt, asm Pro/ENGINEER
Solid Edge, reads versions V18 — par, .asm, .psm SolidEdge
ST7
SolidWorks, reads versions V18 — sldprt, .sldasm SolidWorks
ST7
STEP, reads versions AP203 and
AP214 (geometry only), stp, step, p21 STEP

writes version AP214

STL, ASCII STL supported
(binary STL not supported)

stl

32

Format File extension Option required

VDA-FS, reads 1.0 and 2.0, writes

20 Vda, vdafs VDA-FS
VRML, reads VRML2 (VRML1 not
wrl, vrml, vrmI2 -
supported)

1.10. Installing and licensing RobotStudio®

It is important to know that in order to install RobotStudio®, you should have
administrator privileges [1].

To install RobotStudio®, further options are available:

* Minimal —just the features needed to program, monitor and configure a
real controller that is using Ethernet connection are available

* Complete — all the features that are required to use all the functionalities
of the program RobotStudio®. In this case, Basic and Premium
functionality is available

* Custom — in this case just the options that the user needs are installed [1]

On a 64-bit operating system, setting installing option Complete, both 32 and
64-bit versions of RobotStudio® will be installed. Having 64-bit version, large
CAD-models can be imported in order to create a robotic station. At same
time, some limitations of this version are available [1]:

* “ScreenMaker, SafeMove Configurator, and EPS Wizard are not
supported.

* Add-ins will be loaded from folder C:\Program Files (x86)\ABB Industrial
IT\Robotics IT\RobotStudio® 6.03\Bin64\Addins” [1]

Activation the RobotStudio®

RobotStudio® has two feature levels [1]:

* Basic - offers the possibility to configure, program, and run a virtual and a
real controller, the last one being connected via Ethernet;

* Premium — using this version, RobotStudio® has the functionality to
simulate and program offline multiple robots. This contains Basic level,

33

but it requires activation that can be taken from the local ABB Robotics
sales representative ().

To activate RobotStudio®, two types of licenses are available, a standalone
license and a network license.

In the case of a standalone license, the activation is done using Activation
Wizard. Having internet connection, the activation is done automatically,
otherwise, it must be done manually. In order to do Activation Wizard, follow
these steps [1]:

1. File tab > Help section

2. Manage Licenses (under Support) > Licensing options (in Options
dialog)

3. Activation Wizard (under Licensing) - license options for
RobotStudio®

When the computer has internet connection, an activation request is sent
automatically to the ABB licensing server by the Activation Wizard. The
license is installed automatically and then the program is ready to use, once
the program is restarted after activation. If the computer is not connected to
the internet, a manual activation must be done [1].

The activation of RobotStudio® can also be done using a network license, that
means installing the license on a single server and not on an individual client
machine. This type of license offers the possibility for further clients to use
the program.

Network Licensing is done using these steps [1]:

1. Install the server for network licensing (See Installing the Network
Licensing Server on page 45)

2. Activate the licenses for network licensing (See Using the SLP Server
Web Interface on page 46)

3. Set up the client for network licensing (See Setting up Network
Licensing in the client on page 48) [1].

34

http://www.abb.com/contacts

Workshop 2: Introduction in
RobotStudio® environment

35

2.1. Aim of the workshop

The aim of this workshop is for the students to learn how to start using ABB
RobotStudio® environment and the additional programs that it needs in order
to function.

2.2. Theoretical notions

RobotStudio® is a PC application for offline programming, and simulation of
robotic systems which integrates one or more robots and different auxiliary
equipment. RobotStudio® allows you to work with an off-line controller,
which is a virtual IRC5 controller, running locally on your PC. This offline
controller is also referred to as the Virtual Controller (VC). RobotStudio® also
allows you to work with the real physical IRC5 controller, which is simply
referred to as the real controller.

When RobotStudio® is used with real controllers, it is referred to as the online
mode. Working without being connected to a real controller, or while being

connected to a virtual controller, RobotStudio® is said to be in offline mode.
RobotStudio® offers the following installation options:

e Complete
e Custom, allowing user-customized contents and paths
e Minimal, allowing you to run RobotStudio® in online mode only

All the necessary stages to create a given robot application are described,
step-by-step in the next chapters and workshops. Several print screens from
RobotStudio® help to understand in a better way the process of operating
with RobotStudio® and of creating robot programs off-line.

36

H sawe
Sawe As
&5 Open
& Close

Info

Recent

New

Print

Share

Online

Modeling

Simulation

Controller RAPID Add-Ins

Create a new Station

Empty Station |
Creates an empty station.

Station with Robot Controller

Creates a station with a robot system.
Avalable robet models are listed to the
right. RobotStudio will automatically
create a matching virtual controller.

Station with existing Robot Controller
Creates a station and adds an existing
Virtual Controller to it.

Create a new RAPID Module

,: RAPID Module File

Creates a RAPID module file and opens
itin the editor.

[¥] Always show this page on startup

Empty Station

Power and productivity
for a better world™

DE9--@

>3

Figure 2.1. RobotStudio® -

This manual presents an overview of the
FlexPendant and the IRCS5 controller.

System Parameters
System parameters describe the

Home Modeling Simulation Controller RAPID Add-ins
S
M save Support
B save As) .
Online Community
[Open Explore the latest forum discussions and
blog posts, read and post your ideas, share
B Close and download RobotStudio simulations and
3D-models and learn about the latest product
Info features from the interactive tutorials.
Recent E Developer Center
New 95-] Manage Licenses
b Activate and review your licenses.
Print
Documentation
Share
RobotStudio Help
Online Get help using the RobotStudio product
RAPID Instructions, F_ctions and Data types
Help Displays the RAPID reference manual with
details on all RAPID base instructions,
'+ Options functions and data types
(XE1 i IRCS with FlexPendant

configuration of the robot system.

Additional Resources \d

Figure 2.2. RobotStudio®

ABB RobotStudio 5.60 (64-bit)

starting window

“© RobotStudio®

About RobotStudio

RobotStudio 5.60 (64-bit)

Version 5.60.5731.84

© 2013 ABB. All rights reserved.

License: Trial

Expires: 18/01/2014

Machine ID: 8a3004e2-7b02-45a7-ae01-2bf0756a80cf

RobotStudio News

v AL IRED
Power and productivity
for a better world™ "...'

- Help option

37

Figure 2.1 represents the window that will appear once ABB RobotStudio is
launched. This window offers you the possibility to choose from further
options: how to open or create a new station. Also, from this window, you
have the Help option, which gives all the necessary information about
RobotStudio® 5.60 version, RAPID language and the ABB teach pendant
(FlexPendant) (Figure 2.2).

How to create a station in RobotStudio®?

From the starting window, using the New option, an Empty station can be
created. This station only contains the working plane with a reference system
(world reference system). Therefore, we need to include a robotic arm in the
station. Just go to the ABB Library (Figure 2.3) and select the desired robot
(robotic arm).

PRI, [Unsaved Station] - ABB RobotStudio 5.60 (64-bit) -
W Home Modeling Simulation Controller RAPID Add-ins > @

a7 ABS Library ‘ @ Import Geometry ~ @ Target ~ [§f] Teach Targe (Defauly . a world M) b}
Robots A 5 | Graphics <7
G - _ e . S ey ep A Toos k-~
v Controller Freehand Graphics
I = L=
- &=
IRE 120 IRE 140 IRE 1410 1RE 1600 RE 15200
IRB 1600ID IRB 2400 IRB 2500 IRB 2600ID IRB 4400
i“ N - ; ; i
IRB 4600 IRE 6620 IRE 6540 IRE £6401D IRB 5640 DP5
@\ i - = e
= =
IRB 66508 IRB 6660 IRB 6700 IRB 7600
S X
y Time Categor
= - 21/12/2013 12:33:20 General
21/12/2013 12:43:24 Ceneral
IRB 250 IRB 460 IRB 660 RE 760 IRB 260
| |Paint Robots 2
2 Ucs: Station |0.00 0.00 0.00 || Controller status: 0/0
e e~ & e~ | . : = |

Figure 2.3. RobotStudio® — ABB Library

38

Home Modeling Simulation Controller RAPID Add-Ins

o
& ABB Library -~ @ Import Geometry -~ @ Target -~ @7 (Default) - a1 orid - @ =
= Import Library ~ T Frame ~ eSPath - [T wobjo 7|l ’i K Gt O
Ja Robot System - [Other ~ 3T 1 toolo - Lopeh 2 Tools k-
Build Station Path Programming m Settings Controller | Freehand | Graphics
P ‘Path.. Tags |7 ||/ View1 x| e
I [Unsaved Station]* For dragging an item, relative
H —RRY to the active reference
coordinate system.
z
X
. Output | o
Show messages from All messages X, Time Ce A
i) RobotStudio license will expire in 28 days 21/12/2013 12:33:20 Ge
i) New station created 21/12/2013 124324 Ge
(i) Imported C:\Program Files (x36)\ABB Industrial IT\Robotics IT\RobotStudio 5.60\ABB Library\Robo... 21/12/2013 12:47:10 Ge V¥
< >
Importe | Movel ™ * v1000 ~ 2100 ~ tool0 ~ \WObj:=wobjo ~ | Selection Level ~ Snap Mode ~ | UCs: station 1426.23 324.99 0.00 | Controller status: 0/0 % |

Figure 2.4. RobotStudio® - Move option of the robot

Modeling Simulation Controller RAPID Add-Ins
& ABB Library ~ & Import Geometry - @ Target -~ 7T t (Default) v % World D =
« Import Library - % Frame - oSPath - BT ction wobj0o bl ‘EQ Gl &
B Robot System - 8 Other + 5 MultiMov toolo - Seoyeh 2 Tools k-
Build Station Path Programming (] Settings | Controller | Freehand | Graphics
| Lay...| Path..| Tags |+ x||/View1 x| o
E [Unsaved Station]*

\

chanisms

A
4| J} IRB140_6.81.C_02

 f
l

e

=302,10 y=-62,13 2=450,18 mm

—

Output | 3 x
Show from All >

i) RobotStudio license will expire in 28 days
i) New station created.

Time Can
21/12/2013 12:33:20 Ge

21/12/201312:43:24 Ge
i) Imported C:\Program Files (x86)\ABB Industrial IT\Robotics IT\RobotStudio 5.60\ABB Library\Robo... 21/12/2013 1247:10 Ge vV
<

| MoveL ~ * v1000 ~ 2100 ~ t00l0 * \WObj:=wobj0 ~

Selection Level ~ Snap Mode * | UCs: Station |140.25 -176.52 928,68 | Controller status: 0/0

Figure 2.5. RobotStudio® - Move option of the robot (translation in the robot base)

39

Modeling Simulation Add-Ins
o ABBlLibrary - @Import Geometry - @ Target - [] Teac (Defaulf) o Local " & 5
< Import Library - % Frame - o3 Path - viobjo World brice @
J Robot System -~ #) Other - tool0 Local ols
Build Station | Path Programming ™ Settings Controller UC? 3 Graphics |
= = — - Active t
 lay.. I’Palh.,,l’Tags]= x! /Vlew1 x| Adiive Tool va
E [Unsaved Station]*
"
Mechanisms i)
4 5 RB140.6 81 |
I (4 Links .
d
I A
I A >
7 d/
X
Output | S X
Showmessages from All messages = Time CsA
(i) RobotStudio licensa will expire in 28 days 21/12/201312:3320 Ge
(i) New station created. 2111242013 12:43:24 Ge
(i) Impored C\Program Files (36)\ABE Industrial IT\Robotics IT\RobotStudia 560/ABB Library\Robo.. 21/12/2013 12:47:10 Ge V¥
< >

Movel ~ * v1000 ~ z100 ~ tool0 ¥ \WObj=wobjd ~

| Selection Level ~ Snap Mode ~ | uCs: Station |[1842.82 1630.76 0.00| cCartroller status: 0/0 A

Figure 2.6. RobotStudio® - Move option of the robot (rotation in the robot base)

[| Home | Modelng simulaon Controller RAPD Add-ins
& ABB Library - @ Import Geometry - (@@ Terget - [(Default) - [} b4
< Import Library - T; Frame ~ «SPath - wobjo o Graphics &
B Robot System ~ & Othar toclo . Tools
Build Station | Path Programming n Settings | Controller Freenand Graphics |
 Lay... [Path../ Tags |7 x|/ View! x =0
I [Unsaved Station]*
Mechanisms
|RB‘|40_ A1 [~ 09
> [l Links % cul cul+x
Ea Copy Ctri+C -
 Save AsLib
s Disconnect Library A

83 Copy Qrientation

rientation

] Visible
©{ Examine

Show Work Envelope

\

&' SetasUCS P X
8 Modify Machznism...
" 4 Geometry
[#] Detectable by Sensors
= from All i
£ Mechanism joint Jog license will expire in 28 days
@ | Me reated.
% Jump Home Program Files (B5)ABB Industiial IT\Robotics IT\RobotStudio 5 60\ABB Library\Robo.. 21/12/2013 1247:10
ﬁ N getPosition.. \WObj=wobj0 ™ || Selaction Leval * Snap Mode
O Rowte. For setting the position of an object relative to a specified coordi
S Place » [
©

Time Ca
2112/20131233:20 Ge
21/12/201312:43:24 Ge

Figure 2.7. RobotStudio® - Move option of the robot with accuracy

40

It is now possible to move (translations + rotations) the robot in the working
space. In addition, we can change the angle of each robot’s joint. To do that,
just click on the robot model (Figure 2.4, the highlighted area on the left). By
clicking on the button move (highlighted in Figure 2.5) we can move the
robot’s base with the mouse (see Figure 2.6).

In Figure 2.7 it can be seen how the robot can be positioned with precision
and in the next figure (Figure 2.8) the result of this movement can be
observed.

da- T = [Unsaved Station] - ABB RobotStudio 5.60 (64-bit) - O
File Home rlvoda‘i'\g Simulation Controller RAPID Add-ins @ O

&P A2 Library ~ @i Import Geometry - @ Target - [§] Teach Targat (Default) - a Local P *
ort Library ~ Fr. . 2 path ~ s e 5 : =

¢ Import Library ~ L Frame o Path e Tea L wobjo anze "?Q Graphics v
3w Robot System ~ # Other ~ Multi “ toolo r Sosh 2 Tools k-

Buld Station Path Programming o Settings Controller Freehand Graphics

Set Position: IRB14..|¥ X |/ Viewl x| 5o
Referenca
r
Waoild v =
Positon X.Y.Z (mm} / \ i \

500005000 <000 3

Oiientation {deg)
000 2000 <000 2

Apply Close I iy
Lay...| Path.| Tags |7 % ; -
jj [Unsa\'ed?taﬁml' l . A b

4 J Ro140.6.81.C.02 7
I |48 Links
X

\

Output | - x
Show messages from All messages * Time Ce A
(i)Redo: Frachand Move IRB140_6_81_C_02 [2] 21/12/201317:2849 Ge
i) Redo: Frachand Rotate IRB140_6_81_C_02 [2) 2112/201317:2849 Ge

v
< >

Moval Y= v1000 ¥ 2100 7 tool0 ¥ \WObj:i=wobj0 ~ | Selection Level ™ Snap Mode ™ | UCS: Station -374.31 260,13 0.00 || Controller status: 0/0 .

Figure 2.8. RobotStudio® - Move option of the robot with accuracy (result)

You can change the zoom of the working environment with the roller of the
mouse.

Pressing CTRL and left click with the mouse you can move the scene.

Pressing CTRL and SHIFT and left click with the mouse you can rotate the
scene.

An explanation on how you can change the robot’s joint angles (Figure 2.9)
can be observed further on, just right click on the robot model (Layout tab)
and select Mechanism Joint Jog.

41

A9+ - < [Unsaved Station] - ABB RobotStudio 5.60 (64-bit) TRy TR
File Home Modeling Simulation Controller RAPID Add-Ins Modify > @

@ ABB Library ~ & Import Geometry - @ Target ~ [T T (Default) - L Local T @D 5]
& Import Library + t Frame ~ oS Path - 8 wobjo x . TqQ Graphics <~
i Robot System ~ & Other ~ toolo . Shlew b £ Tools k-
Build Station Path Programming 1 Settings Controller Freehand Graphics
|~ Joint jog: IRB140_6 81 C 02 ‘; x }, Viewl x o
-27 180 < | >

-21 110[< | >
7.09 00| < | >
200 17.90 200| < | >
-115 30.00 115| < | >
400 2184 400 < | >
CFG: -1000
TCP: 133343 -158.86 1164.95

a

Step: 1.00 ~ deg

Layout | Paths&fTar...| Tags |* |
EJ [Unsaved Station]*

I |4 Links

4 J RB140_6_81.C_02

| output | = x
! L
Show messages from All messages b Time A
i) Undo: Freehand Move IRB140_6_81_C_02. [2] 21/12/2013 17:28:4
i) Redo: Freehand Move IRB140_6_81_C_02. [2] 21/12/2013 17:28:4¢
| (i) Redo: Freehand Rotate IRB140_6_81_C_02. [2] 21/12/201317:284' ¥
< >

I
Movel ~ = vi000 ~ 2100 ~ tool0 ~ \WObj:=wobjo ~ | Selection Level ~ Snap Mode ~ | UCS: Station 107878 1767.26 0.00| Controlier status: 0/0 .i

Figure 2.9. RobotStudio® - Joint jog of the robot

How to program a robot to work in RobotStudio®?

To make a robot move in RobotStudio®, like in real life, it has to be
programmed. In order to program it, the robot has to have a “brain” which
controls its movements. This way, it is about having a controller. When a
robot is imported from library, there is no controller, just the robot as an
object.

To import a controller into the system, press the Home menu button, from
Robot System. From this list, you choose From Layout. The graphical view of
these steps can be seen in Figure 2.10.

You can select a number of options for the controller, but, for now, the default
configuration is considered to be ok. Continue by just pressing next, next and
finish. Remember that this process may take a while until obtaining the green
light (Figure 2.11).

The 3 buttons highlighted in the Figure 2.12 are active or can be accessed like
the ones in Figure 2.13. At this moment, the virtual robot controller is ready
to apply motion to the robot.

42

Modeling Simulation Controller RAPID Add-Ins

& ABB Library - @ Import Geometry ~ @@ Target - [Te: (Default) - ; Local T @D =

< Import Library - % Frame - oSPath - @ Te wobj0 s | 9 Q b -

m | [other - 5& MultiMove toolo = Sleveb & | Toos k-

| From Layout... Path Programming | Settings | Controller | Freehand | Graphics ‘

I For creating a system based on your =
layout.
From Template...
For applying a predefined system to
your station.

- Existing...

E For adding an existing system to your

station.

Quick System

Output |
Show messages from All messages - Time
(i) Undo: Freehand Move IRB140_6_81_C_02. [2] 21/12/201317:28:4°
(i) Redo: Freehand Move IRB140_6_81_C_02. [2] 21/12/2013 17:28:4
21122013 17:28:4: ¥

(i) Redo: Freehand Rotate IRB140_6_81_C_02. [2]
<
| Movel ~ * v1000 ~ 2100 * tool0 * \WObj:=wobj0 * | Selection Level * Snap Mode * | ucs: station ||1495.96 821.29 0.00 1‘ Controller status: 0/0 % |

>

Figure 2.10. RobotStudio® - From Layout

| Home Modeling Simulation Controller RAPID Add-Ins o
o ABB Library ~ @ Import Geometry -~ @@ Target - Teach Target T_ROB1(System1) - =) Local @D =
= - 2 - ach Instruction i = . : -
< Import Library + 1 Frame &% Path BB Teach Instructio wobj0 T || T Q Graphics <
B Robot System ~ [t Other ~ 5Z MultiMove tool0 - - ‘ﬁqoh R Tools k-
Build Station ‘ Path Programming [Settings Controller | Freehand | Graphics
vo

“layout | Pathsaar..| Tags | ¥ X||/ View1 x|
‘3 [Unsaved Station]*
Mechanisms

4 3 RB140_6.81.C_02

b [Links

Output |] s
Show messages from All messages X \\} Time
(i) System1 (Station): 10017 - Automatic mode confirmed \ 21/12/201318:12:21
(i) System1 (Station): 10010 - Motors OFF state 21/12/201318:12:2

v

<
MoveL ~ * v1000 ~ 2100~ t00l0 ~ \WObj=wobj0 * | Selection Level * Snap Mode * | uCS: Station | 1495.96 821.29 0.

Figure 2.11. RobotStudio® — Robot controller is ready

System1

RAPID

Home | Modeling Simulation Controller Add-Ins =
o ABB Library ~ @ Import Geometry -~ (@ Target - [Teach Target T_ROB1(System1) v =] Local D b7
«s Import Library - T Frame - oS Path - [Teach Ins ion wobjo Synchronize Graphics [~ 24
Jw Robot System ~ [Other ~ 5 MultiMove tool0 - Tools k-
Build Station Path Prqg(amming &) Settings ‘ Controller Graphics |
Layout | Pathsaar...| Tags |+ ||/ View1 x| so
ij [Unsaved Station]*
Mechanisms
4 IRB140_6_81_C_02
D Links
Output | s
Show messages from All messages 2 Time o)
i) System1 (Station): 10017 - Automatic mode confirmed 21/12/2013 18:12:24
i) System1 (Station): 10010 - Motors OFF state 21/12/201318:12:2
v
X >
System1 Movel ~ * v1000 ~ 2100 ~ tool0 * \WObj:=wobj0 ~ [Selection Level ~ Snap Mode ~ | ucs: Station “1495.56 821.29 0.00

Figure 2.12. RobotStudio® — Move buttons are active

Modeling Simulation Controller RAPID Add-ins Modify
o ABB Library ~ & Import Geometry -~ (@ Target - [Teach Target T_ROB1(System1) ~ =] World > @ 5]
< Import Library -~ % Frame ~ oS Path ~ [Teach Instruction | | wobjo Synclironize TQ Graphics (< A
S Robot System ~ | Other ~ 32 MultiMove toolo - - Deyed B Toos k-
Build Station | Path Programming & Settings ‘ Controller Freehand Graphics
~Oo

~ Layout rPaths&Tar...] Tags |+ X

station1_:Viewl x|

b station1_*

Mechanisms

Ctrl

Disconnect Library

Copy Orientation

Visible
Examine

Unexamine

Setas UCS

Modify Mechanism...

Remove Geometr

Ctrl+C

Show Work Envelope

+X

utput

Detectable by Sensors

Mechanism Joint Jog

Mechanism Linear Jog

s x
from All & Time A
stem1 (Station): 10017 - Automatic mode confirmed 22/12/20131651:5
ystem1 (Station): 10010 - Motors OFF state 22/12/2013 16:51:5.
v

>

R AIERE

w For jogging mechanisms linearly. i

|* \wobj:=wobjo * | selection Level ~ Snap Mode * | ucs: station | [-645,50 528.82 0.00 _-ﬂ

~

Figure 2.13. RobotStudio® — Another way to realize the robotic arm motion

44

Home Modeling Simulation Controller RAPID Add-Ins G
& ABB Library ~ @i Import Geometry - @ Target - [Teach Target T_ROB1(System1) - World <)) b
i - = 2 = b bt i P~
¢ Import Library ~ T Frame &% Path B Teach instruction wobjo T EQ e <4
B Robot System - [Other - 5% MultiMove tool0 - - Doz & Tools k-
Build Station Path Programming o Settings Controller Freehand | Graphics |
| Linear jog: IRB140 6 81.C_..| ¥ X|| / station1_:View1 x| se
X [151348 <[>
Y 1581 <| > ﬁ
z 113843 el I/
RX [117.34 <|>
RY (046 <=
RZ (8923 <| >
cig
World v
Step:
100 2 mm/deg
| Layout [Pams&Tar...- ¥ X
I station_*
Mechanisms
4 J IRB140_6.81.C_02
b Links
Output | =
Show messages from All messages 7 Time A
1\ Base Frame changed in station, the controller Base Frame must be updated and the controller rest.. 22/12/2013 17.01:2
(i) Undo: Freehand Rotate IRB140_6_81_C_02. 22/12/2013 17:01:3.
v
< >

| MoveL * * vi000 * 2100

t00l0 ~ \WObj:=wobj0 * |

Selection Level

* Snap Mode * | UCS: Station ||1154.30 -74.99 Mz‘@

Figure 2.14. RobotStudio® — The result of the robotic arm motion

DdI-e-@g- = station1_ - ABB RobotStudio 5.60 (64-bit) -0
‘ Home Modeling Simulation Controller RAPID Add-ins Modify > @
| & AeB Library ~ @ Import Geometry ~ (@ Target ~ [Teach Target 'TAR081(Sys(em1) - World - =
«# Import Library ~ T Frame - oS Path - | Teach Instruction | | wobjo e tﬂQ Graotics (< 24
B Robot System ~ [Other - 3T MultiMove toolo - - Sered R Tools k-
Build Station Path Programming e Settings Controller Freehand Graphics |
 Layout | Pathsaar.. Tags |+ x|| /station1 :View1 x| <o
& station1_"
4|) RB140.6.81.C 02/
I [Links
Do you also want to move the Task Frame?
Output | =
Show messages from All messages d Time
1) Undo: Freehand Jog IRB140_6_81_C_02. 22/12/2013 17:06:3
i)Redo: Freehand Jog IRB140_6_81_C_02. 22122013 17:06:3
v
< >
Redo:Fr | MoveL* * v1000 * 2100 tool0 ~ \WObj:=wobj0 ~ || Selection Level * Snap Mode * | UCS: Station |[850.32 54346 0.00 _ :

Figure 2.15. RobotStudio® — Task Frame associated to the base of the robot

45

Figures 2.14 and 2.15 show the result of the motion of the robotic arm and
the associated task frame to the base of the robot.

Now, since we have a controller associated to the arm, if we want to move
the robot’s base, the software asks if we want to move the task frame
associated to the base of the robot. The answer is yes.

How to import a tool in RobotStudio®?

The next step is to attach a tool to the robot’s wrist. It can be imported from
the library, just select, for example, a pre-defined tool named MyTool (Figure
2.16).

® o = nsaved Station] - AB8 RobotStudio 5.61.01.01 (64-bit
e] o
@? F I G L FLHE @ ¥

Loyout " » | S0/ Documents
/ |

el \
= b &2

Figure 2.16. RobotStudio® — Import a tool

After selecting a tool, we have to attach that tool to the robot, and, in order
to do this just drag it to the inside of the robot (Figure 2.17) or right click on
the tool, in the third window, and select “Attached to” and then select the
[name/type of the robot].

Now, it is possible to change the orientation of the tool while keeping the
position of the “Tool Center Point” (TCP) (Figure 2.18).

46

BV EH9-6-F = station1_ - ABB RobotStudio 5.60 (64-bit) - 0
m Home Modeling Simulation Controller RAPID Add-Ins Modify o~ 9
o ABB Library - & Import Geometry - (@ Target ~ [§] Teach Target System1 T_ROB1 - =] World - 3%
i - - g - a tructi T P
s Import Library L Frame &5 Path [Teach Instruction wobjo SrerarE El‘-‘h Graphics o
I Robot System - [other - 5T MultiMove toolo - Sheneh £ Tools k-
Build Station | Path Programming il Settings | Controller | Freehand | Graphics |
Layout Palhs&Tar‘.. ¥ ||/ station1_:Viewl X} >0

¥

Output 1

L
Show messages from All messages z Time A
(@ Undo: Freehand Move IRB140_6_81_C_02. 22{12/201317:18:2
(i) Imported C:\Program Files (x86)\ABB Industrial IT\Robotics IT\RobotStudio 5.60\ABB Librany\Traini.. 22/12/2013 17:26:0.

v

<
Importe Movel ™ * w1000 ™ z100 ~ tool0 ™ \WObj:=wobhj0 ~

Selection Level ™ Snap Mode ™

>
UCs: Station | 542.87 -442.5% 0.00 | |CORONERSItESI ..
Figure 2.17. RobotStudio® — Tool position updated

Modeling

Simulation

Controller RAPID Add-Ins =
o ABB Library ~ & Import Geometry - (@& Target - [Teach Target System1 T_ROB1 = =] Local - @ =
; . . J . R - ~ -
=& Import Library T Frame &5 Path & Teach Instruction wobjo ST T Q - Graphics o
B Robot System - | Other -~ 5Z MuliiMove MyTool - - Thoyed - | Toos k-
Build Station | Path Programming | Seftings | Centroller | Freehand | Graphics |
Layout | Paitutar..| Tags |7 x|| stationt :Viewl x| Jog Rearient
E station1_" i
- . For enabling the rotation o
Mechanisms H o @ \\ \ \\lp é the TCP.
4 J} IRB1406.81.C_02 1
‘s I 0 Press F1 for more help.
4 Links b
4 57 MyTool Z
b [Links :
b [tg Frames
“
¥ s
X

Output 1

<

s x
Show messages from Allmessages ° Time 2
(1) MyTool attached to IRB140_6_81_C_02 221122013 17:28:2
(i) Saved station station1_ successfully. [2] 22/12/201317:31:1

v
>

MoveL ~ * w1000 ~ z100 ~ MyTool = \WObj:=wobjo ~

| Selection Level = Snap Mode ~ | Ucs: station [[1378.90 8924 D.00

Figure 2.18. RobotStudio® — Change the orientation of the tool

47

Workshop 3: Define Targets and Paths
(trajectories)

48

3.1. Aim of the workshop

The aim of this workshop is for the students to start learning how to program
a robot to move in ABB RobotStudio®.

3.2. Robot Targets

In order to make a robot move in RobotStudio®, firstly, it has to know which
points must be reached. The points that must be reached are called targets.
In the next steps, you will learn how to define the target points. These points
represent the base for the robot’s paths.

You can create a new target manually, either by entering the position for the
target in the Create Target dialog box, or by clicking in the graphics’ window.
The target will be created in the active workobject.

A workobject is a coordinate system used to describe the position of a work
piece. The workobject consists of two frames: a user frame and an object
frame. All programmed positions will be related to the object frame, which is
related to the user frame, which is related to the world coordinate system.

A path is a sequence of targets (Figure 3.1) with move instructions that the
robot follows. An empty path will be created in the active task.

If the work piece has curves or contours that correspond to the path to be
created, you can create the paths automatically. The create the path from
curve’s command generate paths, complete it with targets and instructions
along existing curves. The path will be created in the active task. The
orientation of the targets that will be created will be according to the settings
of the approach/travel vectors in the Options dialog box. To create a path
from a curve, the curve must first be created in the station.

The points are created in relation to workobject_1 (Figure 3.2) by following
the steps.

49

‘ Home | Modeling Simulation Controller RAPID Add-Ins =

& ABE Library ~ @i Import Geometry - |@ Target =

Teach Target System1 T_ROB1 - =} Local 1 @ ®

il - - - Y -
< Import Library = T Frame — synchronize | & S Graphics ¥
I Robot System - 3 For creating a target. . T @% el Tools k-
Build Station ‘ ings | Controller ‘ Freehand ‘ Graphics ‘
Create Jointtarget =
_Layout) PathsaTar .| Tags |7 x| /s @ For creating a target by specifying the s
EJ station_ positions of the robot axes. o
» [Station Elements Create Targets on Edge g~
% For creating targefs along edges of
4 B system surfaces
4 J7y T_ROB1
4 (i Tooldata
f}_j MyTool
1] toold
4 [I@ Workobjects & Targets &
4 wobj0
wobj0_of
4 Workobject 1
| [§] Workebject_1_of
X
Output ‘ > %
Show messages from All messages - Time »
(i) Saved station station_successfully. [3] 22/12/2013 18:00:0
(i) Created workabject ("Workobject_1") 22/12/2013 18583
v
<

Movel * * v1000 * z100 * MyTool * \WObji=Workohject 1 ~ U Selection Level ~ Snap Mode ~ | UCS: Station | 1114.08 379,29 0.00

Figure 3.1. RobotStudio® - Create a target

| Home | Modeling Simulation Controller RAPID Add-Ins =
& ABB Library - @ Import Geometry - (& Target - @Teach Target System1 T_ROB1 - =] Local - @ m
i - = ¢ - BTe truct @ : 3 i N
=& Import Library 1 Frame ,QPa(h Te:ucr' Instruction Waorkobject_1 e R e Graphics o
JwRobot System - | Other ~ 3% MultiMove MyTool - - @% ah & Toos k-
Build Station | Path Programming [F Settings ‘ Controller ‘ Freehand ‘ Graphics ‘
Create Target X station1_:Viewl XW =0
Reference

World v =

["] Align Targetwith closest Part

Position (mm)
131462~ 221649~ 2000 2

Orientation (deg)
R

WG

[y

Points
Point 1 A
Point 2
Paint 3
Point4
Paint5 v
‘ Clear H Create H Close ‘

Paths&Tar..l Tags [+ X
I station?_ ~ ||/ Output T x

I [_] Station Elements Show messages from All messages = Time A
4 [system1 (1) Saved station station1_ successfully. [3] 290122013 18:00.0
4 IS T_ROB1 (i) Created workobject ("Workobject_1") 22/12/2013 18583
N ~
4 [§] Tooldata ol
=

‘ Movel * * v1000 ~ z100 * MyTool * \WObj:=Workobject 1 ~ | Selection Level * Snap Mode

UCS: station |[1314.62 21649 0.00 |

Figure 3.2. RobotStudio® - The frame in which the points are chosen

50

Build Station | Path Programming r Settings | Controller IiFreehand | Graphics

Create Target = %||/ station1_:View1 x| <o

Reference

World v H

[] Align Targetwith closest Part

Position (mm)

134055~ 5141177 5000 5
Orientation (deg)

0.00 =|0.00 =/0.00 =

Points plocity

Point 5 A
Point &
<Add new>

<<less
Target name
Target_10
Task
T_ROB1 (System1) v

Workobject
Workobject_1 v

[] Insert Move Instructions in

Clear @ Close

Z
E’Y
s pavina 2 |7 %

E station1_ ~ Output T

s ~
[Station Elements Show messages from All messages Time

Figure 3.3. RobotStudio® - Select the targets

Now, it becomes easy to move the workobject_1 with the associated target
points.

& ABB Library - 3 Import Geometry - (@& Target - [Teach Target System1 T_ROB1 - é -zl @ =
< Import Library - T Frame - «SPath - [Teach Instruction Workobject 1 - Synchmmze TS £~ 24
J Robot System ~ [other ~ 5Z MultiMove MyTool - B - Tools k-
Build Station | Path Programming il Settings | Controller | Freehand | Graphics |
Create Target = x|| /station1 :View1 x| so
Reference

Warld v = @I BONMNMNMNSLIR /A

[] Align Targetwith closestPart

Position (mm)

0.00 <lo.oo <000 S
Orientation (deg)

0.00 =|0.00 </0.00 S

Points Ak

Paths&(Tar . s x
[station_ o)
[Station Elements
1 system1
4 EA T_ROB1
4[] Tooldata
] MyTool
[if] tooi0
4 (1 Workobjects & Targels
4 [wobjo

z
- e i Y
% |j Workobject 1
3 Workobiget. e
@ Target_10

(@ Target 20 " Output s x

Figure 3.4. RobotStudio® - Correlation between working frame and targets

51

Home | Modeling Simulation Controller RAPID Add-Ins Modify
o ABB Library ~ © Import Geometry ~ (& Target - [Teach Target T_ROB1(System1) - a World v @ 3
: . - 2 - Teach 5 m =~ : 2
< Import Library ~ % Frame o Path B Teact Workobject_1 Synechronize ?E Graphics <4
B Robot System ~ & Other ~ 5% MultiMove MyTool - - Y R Tools k-
Build Station Path Programming 1 Settings Controller | Freehand Graphics
" Layout | Paths&Tar..| Tags |+ X||/ station1_:Viewl X} Jog Linear

For jogging within the

Esiatiom_* o
M i ! J}’a ug; k24 @ \\ \ \f coordinate system defined by

Mechanisms i Nt
the active tool.

b IRB140.6 81.C 02
b & MyTool % @ Press F1 for more help.

Figure 3.5. RobotStudio® - Move the robot in the desired position

Home Modeling Simulation Controller RAPID Add-Ins =
& ABB Library - igaiImport Geometry ~ (@ Target - [Teach Target T_ROB1(System1) - Eg world 1@ o
i - - o - ach Instructi j H § o -
<& Import Library L Frame &5 Path BB Teach instruction ‘Workobject_1 T 5 0 T o
Jm Robot System - [Other -~ 3 MultiMove wohjo - @@u@ & Toos k-
Build Station | Path Programming | | Workobject 1 | Controller | Freehand | Graphics |
~0

Paths&Tar..| Tags | x|/ station1 :Viewl x|
I station_"
4 [station Elements H}:‘:::’»«:C::}":'FE @\\\("@k—%’"‘: »f.:
| Default Task
4 [Tooldata
[if] toolo
4 [t Workobjects & Targets
P wobj0
Paths
4 [system1
4 L T_ROB1
4 (7] Tooldata
E MyTool
[if] toold
4 [L3 Workobijects & Targets
4 wobij0
wobj0_of
4 |§ Workobject 1
Pl Waorkobject_1_of
(@ Target_10
(@) Target 20
(@) Target 30
() Target 40
(@) Target 50
(@ Target 60
Paths

Figure 3.6. RobotStudio® - Select the workobject on which the robot is supposed to work

Answer yes (Figure 3.7) and the target is created (Figure 3.8):

52

VW H92--F- 5 station1_ - ABB RobotStudio 5.60 (64-bit) =
m Home Modeling Simulation Controller RAPID Add-Ins s @
& ABE Library - @ Import Geometry - (@ Target - I T_ROB1(System1) - € world M) =
- - 2 - 3 -
s Import Library = & Frame « Path wobjo Synéchmm T q Graphics ¥
B Robot System - MyTool - - legeh £ Tools k-
Build Station | Path Programmi 5| Settings | controller | Freehand | Graphics |
~0

station1 _:Viewl x|

_Lzyout) Paths&Tar.. = x
I station_~

4 [Station Elements
4 T Default Task
4 [i7] Tooldata

[i] tool0

4 [t Workobjects & Targets

I [l wobjo

[Paths
4 E System1
4 T4 T_ROB1
4 (i Tooldsta Default wobj0' is aboutto be used. Itis recommended to change this value
Do youwantto continue with the operation?
[@] MyTool

[i] tool0

4 [t Workobjects & Targets;
4 [wobjo
[wobjo_of
4 iﬁ ject_1
4 [l§ Workobject 1_of
(@) Target 10
@ Target_20
@ Target_30 7
(@) Target 40
@ Target_50
@ Target_60
[Paths

[] Don'tshow message aboutthis again

Home Modeling Simulation Controller RAPID Add-Ins Modify =
& ABBLibrary - @ Import Geometry - @ Target - [Teach Target T_ROB1(System1) - o World) i
- -] + B Teach Instruct o -
=& Import Library T Frame o' Path & Teach Instructi wobj0 e - E Graphics o
B Robot System ~ [Other - 3 MultiMove MyTocl - - oo A Tools k-
Build Station | Path Programming | Settings | Controller | Freehand | Graphics |

Paths&Tar .| Tags |= x|| /station1 View! x| o
E station1_*
4[] Station Elements H
4 T Default Task
4 [} Tooldata
[if) 10010
4 (13 Workobjects & Targets
b [wobio
[Paths
4 [systeml
4 Iy T_ROB1
4 [7] Tooldata
lﬂ MyTool

[if) 1000

4 (13 Workobjects & Targets

Figure 3.8. RobotStudio® - Save a target and the location where it is saved according to the
chosen frame

At this moment, we don’t have information on whether the robot can
effectively reach the defined targets or not. However, in most of the robot
53

applications/ programs we usually define a home position for the robot in
relation to the base of the robot, which in this case is wobj0. Therefore, you
can move the robot to a desired home position (Figure 3.5), after selecting a
target (Figure 3.3) and correlating the working frames to the targets (Figure
3.4).

Afterwards, create another type of target, a Teach Target in relation to wobj0
or another defined workobject (Figure 3.6). This creates a target according to
the current position of the robot.

After this, we are going to check if the robot reaches or not the previously
defined target point, starting with the following tool: MyTool (Figure 3.9).

It can easily be observed that the tool has the wrong orientation (Figure 3.10)
and the robot is not able to reach that point with the desired orientation
(Figure 3.12). The robot remains in the initial position until the orientation of
the target point (Figure 3.13) is changed until a robot configuration is found,
to allow the robot to reach the defined target point (Figure 3.14).

da- 0= station_ - ABB RobotStudio 5.60 (64-bit) — T
File Home Modeling Simulation Controller RAPID Add-Ins Modify = 0

o ABB Library - © Import Geometry - @ Target - [Teach Target T_ROB1(system1) - =} ‘World - @) b

- e -
Synchronize TN Graphics <
M M Shlegeh £~ Tools k-
Build Station Path Programming [Settings Controller Freehand Graphics
Layout) Paths&Tar..] Tags | = || /station1_:View1 x| o
I staton_* A
4 |] Station Elements
4 T Default Task
4 [7] Tooldata
) tool0
4 (1@ Workobjects & Targets
I E wobj0
[Paths
Pl E System1
4 ZJ T_ROB1
4 [if] Tooldata
Lﬁ MyTool | & | Addiopat »
[#] tool0 '® | Copy to Workobject »
4 [Warkobjects & | %y | Move to workobject b
52
Ea
2

= Import Library - & Frame - &% Path - wobjo

Jw Robot System - | Other - 3E MultiMove MyTool

Inline

£ | Add to new path

P)
2] é"b'“ 23 | Copy Ctri+C

4 wobj0_o’ _

@ Targ B | Copy Orfntztion

4[5 Workobject
4 [Ig Workobj view 3

¥ | Setas UCS

2 91“®) view Iool at Target 3
#®) Targ

@ Targ
@) Targ
(@) Tara

Figure 3.9. RobotStudio® - Check if the robot reaches the target

Jump To Target

©
®
B | view rRobot at Target
1)
£

T | Reachability

54

Home Modeling Simulation Controller RAPID Add-Ins Modify @
' ABB Library - & Import Geometry - @ Target ~ [Teach Target T_ROB1(System1) - =] World - @ =
- - 2 - R Tead t 0 T3 -
ws Import Library L Frame o'b Path [Teach Inst wobjo Synchronize b _h Graphics (4
Jm Robot System ~ &) Other - 3T MultiMove MyTool - - egeh £ Tools k-
Build Station | Path Programming (] Settings | Controller | Freehand | Graphics |
o

E stationl_*
4 |] Station Elements
4 T Default Task
4 [i7] Tocldata

[tool0

3 B waobjl
| Paths
4 [system1
4 Iy T_ROB1
4 [j7] Tooldata
@ MyTool

] tocl0

4 i wobjo
4 B wobj0_of
(%) Target 70
4 [l workobject 1

(@) Target 10

@ Target 20
@ Tamat 30

| tayout) PathséTar. [Tags |7 x

4 [13] Workobjects & Targets

4 (13 Workobjects & Targets

4 [l Workobject_1_of

station1_:Viewl x}

Figure 3.10. RobotStudio® - Check if the robot reaches the target (position of the tool)

Home Modeling Simulation Controller RAPID Add-Ins Maodify =
& ABB Library - i Import Geometry - (@ Target - [Teach Target T_ROBI1(System1) - =] world @ b}
. = 2 - B Teach Inst o =
«¢ Import Library = L Frame o4 Path BB Teach Instn wobj0 SrErara - \i T =)
Jim Robot System ~ | Other ~ 5Z MultiMove MyTool - - Siegeh £- Toos k-
Build Station | Path Programming rl Settings | Controller | Freehand | Graphics |
so

T station1_*

4 |] Station Elements
4 JT Defaut Task
4 (|7 Tooldata

[{] too0

b [g wobjp
[Paths

| Lzyout) Paths&Tar.. s x

4 [1@ Workobiects & Targets

station1_Viewl x|

4 [systemi
4 Iy T_ROB1
4 (|7 Tooldata
Iﬂ MyTool
[{] tooi0
4 (13 Workobjects &
4 [wobij0
4 (I wobj0_t
(%) Targ
A H Workobject
4 [Workob,
@) Targ
@®) Targ
(@) Targ
@#) Targ
@ Targ

@ Tag <

RS

&

B P

Inline

Add to new path

o path

Copy to Workobject
Move to Workobject
Copy ctrl+c

Copy Crientation

Apply Or "
View

Set as UCS

View Tool at Target

View Robot at Target

»

»

»

Jump To TE'# For illustrating robot orientation, i

Reachability

Figure 3.11. RobotStudio® - The position of the robot in the target

55

Layout
Iy station1_*
4 [Station Elements
4 I Default Task
4[] Tooldata

] tooin

b g wobj0
[Paths
4 B System1
4 Ty T ROB1
4 (i Tooldata
[{] MyTool

\ﬂ tooll

4 [§ wobj0

Paths&Tar..{ Tags |+ X

4 [i@ Workobiects & Targets

Pl [ﬂ Workobjects & Targets

4 Q wobj0_of
(&) Target_70

4 | Workobject_1
4 [l Workobject 1_of

station1_:Viewl x

(#) Target 10
@) Targel 20
@ Target 30
(@) Target 40
(#) Target 50
(@) Target 60
| Paths
- Qutput s X
Show m essages - Time [
lmna\ axis values, stored robot configuration 25/12/2013 18220
<. 1 Target Target_10 is out of reach. [3] 25/12/2013 18:415
v
< >
MAeint v & LARAR + <IAA + AR Tl v VARG kA v | e ki] v e hdede - ieticiio e = la1nnac anocn nnn | SNSRI

Figure 3.12. RobotStudio® - Robot cannot reach thatwr;éint —an error in the Output window

Layout
E station1_*

4 |_] Station Elements

4TI Defaut Task

4 7] Tooldata

\ﬂ toal0

[E wabj0
[Paths
4 [system1
4 Iy T_ROB1
4 [7] Tooldata
\ﬁ MyTool
\ﬂ tool
4 [L3 Workobjects
4 [wobjo

4 I wobj0

4 I Work
@ Tq
® T4
@ Tq
® T4
® T4
@ Tq

[Paths

Movel ~ = v1000 ~ z1

G)Ta)

4 Workobje

Paths&Tar...[Tags [¥ X

4 13 Workobjects & Targets

station1_:Viewl x

o
o

.

@ @ -

I

I

&

h @

L

View 3

View Robot at Target

Inling

Add to new path

Copy to Workchject »
Move to Workobject »
Copy Ctri+C

Copy Orientation

Apply Or on

Set as UCS

View Tool at Target »

Jump To Target

is listed

Reachability
Modify Target P| % | SetPosition.
5 x
Configurations... X | Offset Position...
Reset Configuration ¥ Rotate.. Time "
ed robot 25{12/2013 18:22.0
Modify External Axis... L Place | For rotating an item. k 25/12/201318:415
Tags » Set Normal to Surface 4
Delete Del Align Target Orientation 4
. : Workobject 1 |[1100.15 23550 0.00 || ESRECIETEEREI -
Rename Align Frame Orie n —

Figure 3.13. RobotStudio® - Changing the orientation of the tool

56

Farget Tools

File ‘ Home ‘ Modeling Simulation Controller RAPID Add-Ins Modify s @

o ABB Library ~ @ Import Geometry ~ @ Target - [Teach Target | T_ROB1(System1) - i | world @]
< Import Library ~ % Frame - oS Path - [Teach Instruction | | wobjo - o wQ Grophics i~ 23
Jw Robot System ~ | Other - 5T MultiMove | MyTool - Dened & Tools k-
Build Station Path Programming o Settings \ Controller Freehand Graphics
Rotate: Target_10 = x||/station1 :View1 x| so
Reference
|Local vl J ‘»_:3 Y 0SS o Pl

Rotate around x. y.z

L

000 2jooo 200 2
Axis end pointx.y.z

4[] Station Elements
4] Default Task

Workobjects & Target
b wobj0
(A Paths
4 1 systeml
4 I T_ROB1
4 Tooldata

4 Workobjects & Target.

4 wobj0
4 wobj0_of
(¥) Taraet 70 Ve =

Figure 3.14. RobotStudio® - Changing the orientation of the tool according to Y axis

Target Tools
File Home Modeling Simulation Controller RAPID Add-Ins. Moadify L ?
o ABB Library ~ @aImport Geometry - (@ Target - [Teach Target T_ROB1(System1) - nl | world - ()] b}
g Import Library ~ s Frame - o8 Path ~ [Teach Instruction | | wobjo spETm T qQ s =2
B Robot System - & other - 3 MutiMove MyTool - ‘ - ﬁe@ £ Tools k-
Build Station Path Programming 5 Settings | controller Freehand Graphics

Rotate: Target 10 = x|/ station1_:View1 x| <o

Reference . -
|Local Y| B G W] W] ONNMYE LR A
Rotate around x, y, z \./

0.00 %000 2lo.oo B
Axis end pointx, y. z

oo Zfpoo sfomo 3]
Rotation (deg)

Ox@vOz

Paths&Tar..[T2 | iniine
I [wobjo %8 | Add to new path
|4 Paths +* | Add to path 4
4 ©1 system % | Copy to Workobject b
4 [T_ROB1 - i
® | Move to Workobject »
Tooldata D EEE——
B2 | copy ctri+C
3 Copy Orientation -
B | 4eply Of gy copying the orientation of an object. . l
Lk " View 3
A wobj0_of
i0s W | setas ucs

(%) Targe|_

- |
4 | Workobject ® | view Iool at Target

4 Workabje

@) Taige
(@) Targel

@ Targel Modify Target

Figure 3.15. RobotStudio® - Copy the actual orientation of the tool

View Robot at Target

Jump To Target

N2

Reachability

57

d -0 station1_ - ABB RobotStudio 5.60 (64-bit) m — B .
File Home Modeling Simulation Controller RAPID Add-Ins Modify - 0

& ABB Library - @ Import Geometry - (@ Target - [Teach Target T_ROB1(System1) = (=) World - @ B
- - 9 path - e = = .
=« Import Library & Frame o Path wobjo e Rt Graphics 7
B Robot System ~ |#] Other -~ 3 MyTool - - Thenleh £ Toos k-
Build Station Path Programming [Settings Contraller Freehand Graphics
Rotate: (Multiple Selection) |~ x|| / station1_:Viewl x ~o
Reference
v
Local v =
Rotate around x, y. z
0,00 =10.00 <000 = \
Axis end pointx. y.z
.00 [o.00 <[ooo S >
Rotation (deg) -
10,00 < O x@®vO 7
Apply Close { |
Layout) PathsaTar .| T4 Inline b
> [@ wobjo %8 Add to new path 3
(4 Paths 8 | add to path R
e — ¥
4 B system1 % Copyto Workobject b '
4 T T_ROB1 N 4 =
® | Move to Workobject b ~
4 ({7 Tooldata —_
i) MyTool Ea | Copy ctri+C } a
[o0 2 | Copy Orientation C
4 (i@ Workobjects & 1@ Apply Orientation
4 [wobjo iew .
4 E wobj0_of| For applying the orientation copied from another object. i
@ Targd
4 |55 Workobiect ® view Iool at Target 3
4 [Workobi | view Robot at Target
) Targe © o Target
#) Targe & Reachability
(#) Targe Modifv Taraer »
. Y . . .
Figure 3.16. RobotStudio® - Copy the actual orientation of the tool in that target to the

other targets

It can be observed nothing is happening (Figure 3.11) because the robot is not
able to reach such a position. This way, RobotStudio® is giving us a warning.
In order to fix this problem, we have to change the orientation of the tool:
MyTool in that target point. The change is done for Target_10, but the other
targets have the same problem. We can copy the orientation of this target
(Figure 3.15) and apply that orientation to all the other targets. Select the
other target points and apply orientation (Figure 3.16).

Now, by clicking on the targets we can see whether the robot reaches or not
that targets. If the robot does not reach a target, we have to change that
target point (position or orientation) using the command Set Position or
Rotate.

Paths

Now the target points can be connected in order to create a working path
(Figure 3.17) for the robot.

58

Modeling

[rie [

o ABB Library -
=g Import Library - L& Frame -
JmRobot System -

Build Station

Layout) Paths&Tar..] Tags |7 x|
E station1_

I [] Station Elements
4 [C] systemi
4 T T_ROB1
4 [7] Tooldata
Jﬁ MyTool
[i] tool
4 (L3 Workobjects & Targets
4 [wobjo
4 [wobj0_of
(%) Target_70
4 Workobject 1
4 [l Workobject_1_of
@ Target_10
@ Target 20
@ Target 30
@ Target 40
@ Target 50
@ Target 60
Paths

5

Simulation

@i Import Geometry - @ Target - [Teach Target

Controller RAPID Add-Ins

T_ROB1(System1)

o8 Path [z| [Teach Instruction | | wobjo
Empty Path
| @"ﬁ For creating a new path that is empty of
instructions.
AutoPath

G

.
complete with targets and instructions.

Maodify

- |
- =] world @]
T Y
Synchronize LA Graphics v
- Seyep B | Toos k-
| Controller | Freehand | Graphics |
o

For generating a path from a curve or edges,

7

Y

Figure 3.17. RobotStudio® - Create an empty path

And select Movel (straight line motion between targets) (Figure 3.18).

“ |ig woup_on
@ Target 70

4 Workobject_1

4 Workebject_1_of

@ Target 10
@ Target 20
@ Target 30
@ Target 40
@ Target 50

@ Target 60

2
o Path_10

Advanced

Instruction Template

Movel (Move : Default)
MoveAbs) (MoveAbs : Defaulf)

MoveExt) (MoveEsxt : Default)

Instruction Template Manager..

[7‘ Move) (Move : Default) /

A

v

X

ages ©
tomatic mode confirmed
tors OFF state

Time

26/12/201321:49.01
2612/201321:49.01
26/12/2013 215927

‘ Move) 7| * v1000 ~ z100 ~ MyTool ™ \WObji=wobjo *

Selection Level * Snap Mode ~

Figure 3.18. RobotStudio® - Type of motion between targets

Category
Eventlog
Eventlog
General

>

A

v

es: staton | 169789 242.75 000 | |COMROIeRSERSIN

59

4 H wobj0_of
@ Target 70
4 Q WorkobjeQt 1
4 E Workofject_1_of

@ Tarjet_10
@ Target 20
@ Target 30
@ Tardet 40
@ Tardet 50

@ Ty
4 [4 Pats
ath_10
ﬂ MoveJ Target_70

(]

j —

| A\

Show messages from All messages v Time Category A
(i) Path created (Path_10) 2612/2013220622 General
(i) 1move instruction(s) created 26/12/2013221215 General

v
< >

1 move instruction(s) crea Move) T = v1000 ¥ z100 ™ MyTool ¥ \WObj:=wobj0 ~ ‘ Selection Level ™ Snap Mode ™ | UCS; Station ‘]697.89 24275 0,00 | _ r

Figure 3.19. RobotStudio® - Create the path with drag and drop targets associated to wobj0

—
4 [Tooldata
1] MyTool
] to00
4 [g Workobjects & Targets
4 [wobj0
4 Q wobj0_of
(¥ Target 70
4 H Workobject_1

i) Target 20
(@) Target 30
@ Target_40

ROB1/CalibData/Workobject_1>

i3 MoveJ Target 20
u MoveJ Target 30 ||
B} Moved Target 40 ||
3 MoveJ Target 50
ﬁ Move. Target_60,

Output | s x
how messages fom All messages - Time Category A
i) 1 move instruction(s) created 26/12/20132212.15 General
1) 6 move instruction(s) created 26/12/2013 221448 General

< >
6 move instructionis) crea | Movel * * v1000 * 2100 * MyTool = \WObj=wobj0 * || Selection Level = Snap Mode * | UCS: Station |[1697.69 24275 0.00 | | EERNOIMSGREIN
- W

Figure 3.20. RobotStudio® - Create the path with drag and drop targets associated to
workobject_1

After having created Path_10, drag the targets to Path_10in the desired order
(Figure 3.19, Figure 3.20). Having the targets connected, in order to eliminate
the warnings, we have to define the robot configuration for each one. This is

60

happening because there are different ways to achieve the same position and
orientation for the robot’s tool (Figure 3.21).

The software is able to auto-configure the defined path (Figure 3.22). Or we
are able to check and define the configuration for each target (Figure 3.23)

e 5 Confi Target 10 s x = 5
Target 10 | x| ‘ | Tagetlo | x| [Configurations: Target 10 s x
Configurations Configurations Configurations e
2 cig1 0-1.00)] tiol (0100) Cfgl (0-1,0.0)
C2 0121) L3 Cio2(0.1:2.1) ez
Cig3 (21-14) Cig3 (21-14))14
Clg (2-115) Cigh(2-115)
[Include Tums [include Tums [Include Turns [Include Turns
Joint Values Joint Values Joint Values Joint Values
Previous Current Previous Jcl‘”;';‘g BErs @IED Previous Current
113078 P 114922 4e22
24543 2o 12 107.10 210710
J3-1961 131961 31961
J4:-66.83 L T 11291 46709
57225
57225 5 10808 J5:-108.08
66386 é?g"(;ﬁ “2‘]) 7% 617210
Cig (0-100) 12 e (2114) Cig (2-1.15)
Apply Close
Apply || Close Aoply Close Apply | | Close

Figure 3.21. RobotStudio® - Configurations of a robot in the same point (Target_10)

s
= R R station1_ - ABB RobotStudio 5.60 (64-bit) @ - Y
Home Modeling Simulation Controller RAPID Add-Ins Madify E?)
4 ABB Library - @ Import Geometry - @& Target - [Teach Target T_ROBI(System1) - Eg world 1@ O
- - 2 - - " -
«s Import Library - & Frame &% Path B8 Teach Instruction wobjo Syerante - Graphics)
Jm Robot System - | Other - 3 MultiMove MyTool - Hered L | Toos k-
Build Station Path Programming) Settings Controller Freehand Graphics
| Layout) PathsaTar..| Tags | x|| station1_:view1 x| o

) Figure 3.22. RobotStudio® - Auto-configuration of the robot

T station1_
I [Station Elements m
4 1 systeml
4 T3 T_ROB1
4 [} Tooldata
[i] MyTool
[if] tool0
4 [i@ Workobjects & Targets
4 I3 wobj CIE
Set as active
4 i wol
® Bl | synchronize to ¥C...
4 E] Worko! Insert Move Instruction.
4 g wo Insert Action Instruction,
@y o Cirl+x
® 3 | Copy cirl+C
g '
®" ’
® 2 Ctrl+v
4 [7 Paths View 3
° T —
4|g" Path_| 1o y1oue Along Path
Mo) .
B Mo & Reachability
i3 Mo ;
ﬂl Mo Configurations ¥ | %= Auto Configuration
) Mo path Reset Configurations
ﬁ Mo Modify External Axis... Verify Configuration:

61

Configurations: Movel Tar...|% x|/ station_Viewl x| s

Copfiguratio)

fg1(0.0.1.0)
Cfg2 (0-2-1.1)
Cig3 (2-2.1.6)

/ Cfg4 (-2.0.-1.7)

[Include Tumns
Insert Move Instruction

Joint Values

Insert Action Instruction...

517 #f cut Ctrl+x

Previous Current
\ J2:-1.86

J3:-5.26
J4:-6.43

5: 53,70
11.98
CIN-1-1.0.0)

[

7 — B
Layout / Paths&Tar..| Tag:

4 [Paths &

4 Path_10 H

i) Moved Target

) Moved Targeti g, o ostrucrion

3] Movel Target

= m Configurations... =
3] Moved TargSd o = x
ﬂ Move Target For sefﬂw i guration of a single target. | Time 2

3 Move Target Modify External Axis. luccesstully. [2] 26/12/2013 22:27-4¢
Path_10 26/12/2013 22:32.5¢

Modify Position

) Move Target
= v

= . P # | SetColor..

- -] >
Movel = * vi000 ~ 3 &{ | Locate Target Selection Level - Snap Mode = | UCS: Station ||1687.89 242.75 0.00 || |iCOntolenst@ausil ..

Figure 3.23. RobotStudio® - Select the configuration of the robot manually

Besides creating paths, there are several movements a robot can follow:
reversing paths, rotating paths, translating paths etc. This section of the
workshop will focus on defining and explaining some of them.

Reversing a path — changing the sequence of targets in which the robot
moves, from last to first. One can reverse the entire motion process or just
the target sequence.

Rotating a path — rotate the entire paths and move the targets that are used
by the paths in accordance. Targets will lose their axis configuration if one
was assigned. Before starting the rotate path command there must exist a
frame or target to be able to rotate around.

Translating a path — move a path and all included targets.

Compensating paths for tool radius — compensate by offsetting a path.
Targets will lose their axis configuration if one was assigned.

Interpolating a path —reorients the targets in order to have even distribution
between the difference in orientation at start and end targets with the in-
between ones. The interpolation can be either linear or absolute. The linear
one assigns the difference in orientation equally, taking into consideration the
targets’ positions along the length of the path, while the absolute

62

interpolation assigns the difference in orientation equally, taking into
consideration the targets’ sequence in the path.

Simulation

It is time to simulate the robot movements based on the program we created.
First, synchronize with the robot’s virtual controller (VC) - this means that we
have to upload the created program into the robot’s controller (Figure 3.24,
Figure 3.25).

Modeling Simulation Controller RAPID Add-Ine Moddy
o ABB Library - & Import Geometry « @ Target + [Teach Target T_ROB1(System1) M € World @ '
v - - 2 - ", " -
= Import Library = % Frame o5 Path B8 Teach Instruction wobj0 Synchittnze |12 (v} Graphis ¥
B Robot System - & Other - 52 MultiMove MyTool - oo B Toos k-
Build Station Path Frogramming & Settings Controller Frashand Graphics
_Layow Paths&Tar..| Tags |~ x| /stationl_Viewl x| Synchronize o VC sa
By station1_ For synchronizing an open
I [Station Elements {Z station 10 3 virtual controller
4] systemt @ Press F1 for more help.
4 T3 T._ROBI N ————

4 [Tooldata
[{] MyTool
iﬂ 00l0
4 |3 Workobjects & Targets
4 [wobjo
4 [wobjo_of
@ Target 70
4 [§ Workobject 1
4 g Workobject 1_cf
(® Target_10
(® Target 20
(%) Target 30
@ Targel40
(®) Target 50
(®) Target 60

I
4 (] Paths] 2 / —\
4 " path_10 i

Figure 3.24. RobotStudio® - Synchronization with virtual controller (VC)

Synchronize to VC

Mama Synchronize Module Local Slarage class Inline
1 syzamt e
4 Ly Rom v
4 (i Teolbals =
@ MyTzal v CalibDats PERS +
a4 [WorkOjact v
B workesjee 1 = CalibData ~ TASKPERS ~
4 J Paths & Targets "2
I g Path 10 v Meduie] »
0K Cancal

Figure 3.25. RobotStudio® - Synchronization with VC — select the equipment

63

Next, select what paths to simulate (Figure 3.26). In this case, we have only
Path_10 to simulate.

VHI -

station1_ - ABB RobotStudio 5.60 (64-bit) - B
Home Modeling ‘ Simulation | Controller RAPID Add-Ins Q 0
Simulation Setup P Bl Pause 1/O Simulator] Enabled] 84 simulation
- 5 i’ 5 W Resat
— &, Station Logi Play [stop i Monitor signal {4 Signal Setup — =1 — #ldReset
Collision Set | #f Activate Meffhanical Units - [MReset - | {J3stopwatch Analyzer [History Simulation B Recording
Collisions | Confil | Simulation Control = | Monitor | Signal Analyzer | Record Movie | Conveyor Tra..

~ Layout / Pathsaar..| T4

stationd -Viewl x|

E station_

o

I [] Station Elements

Sequence

Main Sequence T_ROB1:

wailable dures;
‘ - [E Path_10
®
*
+
Continuous
Single Cycle Entry point. ‘
4
Lok | cancel | oapy [
Figure 3.26. RobotStudio® - Select the desired path to be simulated

Home

Modeling

Simulation

Controller RAPID Add-Ins
[simulation Setup piPause [@]VO Simulator [E | Enabled 1] 8% simulation
i i | @ sto) i 3 7 Si M Reset
it I station Logic [Pay | M stop 9 Monitor signal B4Signal Setwp oo =] air

Collision Set | 4 A chanical Units - | M Reset - | i} Stopwatch Analyzer [History Simulation B Rec

Collisions = Configure l;\ Simulation Control = Monitor | Signal Analyzer | Record Movie 1| Conveyor Tra...’s |
/ Layout) Paths&Tar.. stat Play h =]
E station1_

For starting the simulation.
This will start all RAPID
programs configured in the
Simulation Setup.

b [Station Elements
4 u System1
4 ﬁ T_ROB1
4 [Tooldata
] MyTool
m tool0
4 |13 Workobjects & Targets
4 [wobjo
4 E wobj0_of
@ Target 70
4 E Workobject_1

@ Press F1 for more help.

4 Q Workobject_1_of / 7
(® Target_10 ’“\
(%) Target 20 4\ = 7\
(®) Target 30 / 7\
(%) Target 40
@ Target 50

Figure 3.27. RobotStudio® - Run the simulation

64

And after that, select the Play button to start the simulation (the robot will
follow the selected path (ex. Path_10) according to the generated program)
(Figure 3.27).

After simulation, if you observe that something needs to be changed, like a
target (orientation or position) for example, follow the explanation in Figure
3.28.

After taking this step, you have to synchronize again with the virtual
controller. Sometimes, during simulation it is useful to view the angles of each
joint of the robot (Figure 3.29).

If you want to save the robotic station (or robotic cell) you can do it in the
usual way or by using “Pack and Go” function (Figure 3.30). This last option
saves the entire project in a folder, so that you can open it on another
computer.

g my
i.(j 1ok}
4 L5 Workobjecls & Targels
4 B wobil
4 | wobj0_of
(®) Targat, 8 | add to new path
i H wg;-mhim ¥ add to path 3
d H Waodobjed B | Copy o Workebjed b
(%) Targel % hbove to Workohjert b

inliny

E) Targt 53 | Copy Orientation
(%) Target| "8
EJ Targal] Wiew 3
4 7] Pahs B Setas Ucs “\
]
44 Path_10 B | View Teol at Target] \’\.
= h
ﬂ Movel T2 B | viewRobot at Targat l--,
F Movel Ta 1 o 1
ij Moved Ta | Jurp To Target -\\
i:n] Move) Ta & | Reachabiliy \
ﬂ Moved Ta Modify Target F| W Sel Posibon.. I T x
| Moved Ta anfic M & | Ffeet
'_3 B | confguratons X ofssd For setting the position of an object relative to a specified coardinate 1','1'..=r'.r
B Moved s gocet confguration. |3 | otate., l.un[z] 2122013 22531
ﬂ Move. Ta Madify External Ass... de | Blare b 200322 542

Figure 3.28. RobotStudio® - Changing the position of a known target

65

Controller

RAPID

Mechanism Tools

Add-Ins.

Modify

B

s & PR

Disconnect Library

C 02

&

Ba

o | Save As Library...
E 4

E3 Copy Crientation
&

Apply Orientation

Unexamine

Show Work Envelope
Setas UCS

Modify Mechanism...
Remove Geometry
Detectable by Sensors

Mechanism Joint Jog

Set Position...

Mechanism Lnd £o jogging the joints of a mechansim.
Jump Home

[simulation setup P bl Pause [/0 Simulator g Enabled @ i 8% simulation
. - - : - 1
Creste I, Station Logic Play M stop () Monitor S B Signal Setup Recard =] View 8 Reset
Collision Set | # Activate Mechanical Units - [MReset ~ | i3 Stopwatch Analyzer [B History Simulation B} Recording
Collisions Configure | Simulation Control = Monitor Signal Analyzer Record Movie 5| Conveyor Tra..
Layout Palhs&Tar... T x station1_:View1 xl -0
E station1_*
e a PR
Mechanisms D EE L. - - " 1
b IRB140_6_81_ r
4 Y MyTool cut ctri+x
b Links Copy cirl+C
b [Lg Frames

Joint jog: IRB140 6... [0

180 | 517 180 < | =
90 [-1.86 10 < | >
I-230 52500 < | >
200 643 200(< | >
I-115 5370 115 < | =
400 1198 400| < | =
CFG: | -1-100

TCP: 1610.67-77.37924.3
step s

Figure 3.29. RobotStudio® - Activate the Joint Jog window for angles in joints

Home Modeling
i save
& save s
[Open ‘
[Close k
Info
Recent il g
New
Print h"
m
|
Online @
Help
|22 Oontione

Simulation Controller

Share data with other people

Pack and Go

Creates a package of the active
station including virtual
controllers, libraries and
additional option mediapeols.

Unpack and Work

Unpacks Pack and Go files,
starts and restores the virtual
controllers and opens the station.

Save Station as Viewer
Packages the station and any
recorded simulations for viewing
on computers that do not have
RobotStudio installed.

Content Sharing

Access RobotStudio libraries,
Add-Ins and more from the
community. Share content with
others.

RAPID

Mechanism Tools

Add-Ins

Modify

Figure 3.30. RobotStudio® - Pack and Go function

66

Workshop 4: Collision Control & Create
a mechanism

Necessary knowledge

Workshop 3 completed.

Workshop 4 summary

At the end of this workshop, the students should know how to:

Define and simulate a collision

Import geometric parts (import 3D objects from another software
application like solidworks, CATIA, etc.)

Create and define a tool mechanism (create links, joints and
define the tool)

Save the created mechanism into Robotstudio® Library

Define the TCP (Tool Center Point)

67

4.1. Aim of the workshop

The aim of this workshop is for the students to know the importance of
collision study when referring to a robot programming. Furthermore, they
must know how to create a mechanism for a tool in case they need a specific
tool for their own application and they want to define it, in order to be
recognized by the robot controller.

4.2. Collision Control

Sometimes, when a robotic cell is implemented, the fact that around the
robot there are both other objects and an operator has to be taken into
consideration. All these are considered obstacles and the contact between
the robot and one of them is called a collision. This can be simulated in
RobotStudio®. In the simulation tab press the Create Collision button (Figure
4.1).

Open the collision object and drag the tool to Objects A and the work pieces
to Objects B. The software analyses collisions between objects, type A and B
(Figure 4.2).

qﬁ\ Home Modeling Simulation Controller RAPID Add-Ins @ 0

'v"n b= Simulation Setup I/ s E LP :) _l Enabled @ i} 5_5

Create ‘i;n SR Play Vo] Monitor Stopwatch ~ Signal g signal Setup Record a8
lision 9fft | 4 Activate anical Unit = Reset - | Simulator Analyzer H Simulation Ed Re

Collisions 1 Configure x| Simulation Control = Monitor Signal Analyzer Record Movie | Conveyor T...

| Create Collision Set |~ X||/ station2 :View1 X‘ ==

For setting up collision =
detection between moving V{‘ k
objects.

@ Press F1 for more help.

@V table1
b g@P WP1

14 CollisionSet 1 \ //
\\.

Figure 4.1. RobotStudio® - Create Collision
68

m Home Modeling Simulation Controller RAPID
& ABB Library ~ @ Import Geometry ~ (@ Target - [Teach Target
s Import Library ~ % Frame - oS Path - [Teach Instruction
Jm Robot System ~ & Other ~ 52 MultiMove
Build Station Path Programming [F1

Add-Ins

T_ROB1(System2) v
Workobject_1

AW_Gun -

Settings

=]
Synchronize ‘

Controller

World
@

Dok

Freehand

o 0]
M) (3 New View
Graphics &/ Show/Hide ~

Tools & Frame Size ~

Graphics

/ station2 :View1 X!

/ 'I.ayout /Paths&Targets v X

&] station2_*

& AW_Gun_PSF 25
& IRB140_6_81.C_02
Compone
@ tablel
@ wpi
& wP12
Co

Co
4 4P CollisionSet_1
4 | g ObjectsA
& <AW_Gun_PSF_25>
4 | g ObjectsB

ﬁ <WP1>

GP <wP12>

Figure 4.2. RobotStudio® - Specify the tool and the obstacle for collision

Modeling Simulation Controller RAPID

Add-Ins

L |

b & AW_Gun_PSF_25
b IRB140_6.81.C 02

@ tablel
b @@ WP

Col ts

4| 4¥ CollisionSet_1 |

“@ Ob;ecHJ}v || Active
&af <AVIS¥ Modify Collision set...
4 [Objects 5 | 7 0 :
? <WFJ X | Delete Del
P <Wh
| =5 | Rename

3

o ABB Library ~ i Import Geometry ~ (@ Target - [Teach Target T_ROB1(System2) - =) World M) [New View
. > 2 . i ject 1 [y ide -
=« Import Library & Frame ot Path B8 Teach Instruction Workobject_ Sypdeon = Giaphics & Show/Hide
B Robot System ~ [# Other ~ 5T MultiMove AW_Gun - - theyed & Tools k Frame Size -
Build Station Path Programming 7 Settings Controller Freehand Graphics
" Layout [Paths&Targets ¥ X|| / station2_:Viewl x[so
§] station2_*
Mect S

e

Figure 4.3. RobotStudio® - Modify Collision options

69

Layout | Paths&Targets X 4statinn2_:View1 XW =
ﬁj station2_*
Mechanisms
b &f AW_Gun_PSF_25
; IRB140_6_81_C_02

Components

@ tablel
b @@ wpi
& wpi 2
Collision Sets
4 ¥¥ ColisionSet_1
4 |] ObjectsA
& <AW_Gun_PSF_25>
4 | ObjectsB

Eﬂ <WP1>

5? <WP1_2>

Medify Collision set: Collisi...| ¥ X
Active

Near miss L
o] e

Y
Highlight colliding objects

Collision color -
Near miss color |:|

Apply Close }/Output 1
Chmiermmmmmmnn o RN = Pt A

Figure 4.4. RobotStudio® - Set a certain collision distance

Al
%

Also, we are able to modify the defined collision scenario (Figure 4.3) or to
change the collision distance (Figure 4.4). Afterwards, we are able to simulate
the collision and to analyse the results, as in Figure 4.5.

M Home Modeling Simulation Controller RAPID Add-Ins

[Simulation Setup |1 Step [1/0 Simulator pae: Enabled 113
F— B station Logic - @ stop () Monitor E— B4 Signal Setup — =]
Collision Set | #f Activate Mechanical Units - M Reset - | {8 Stopwatch Analyzer [History simulation E¥ Recording
Collisions Configure | Simulation Control = Monitor Signal Analyzer Record Movie | Conveyor Tracking
Layout [Paths&Targets v X||/ station2 V| gy o
ﬁj station2_*

For pausing and stepping the

Mechanisms simulation.

I &f AW_Gun_PSF_25
b Ji IRB140.6.81_C_02

Components

@7 tablel
b P we
& wei2

Collision Sets
4 ‘/L.' CollisionSet_1
4 [ObjecisA
& <AW_Gun_PSF_25>
4 |] ObjectsB

Eﬁ <WP1s

ﬁﬂ <WP1_2>

Figure 4.5. RobotStudio® - Simulate collision

70

4.3. Tool mechanism

To create and define a tool mechanism, all the 3D parts that form the tool are
needed, with the *.sat extension, created in CAD software.

ABB RobotStudio 6.02.01 (64-bit)

File Home Modeling Simulation Controller RAPID Add-ins
| . s)
Stations Solution with Empty Station
[
& open T Soltion with Emply Station Solution Name-
Creates a solution file structure containing an empty station [Sotutiontd]
i
- Solution with Station and Robot Controller Location
Infi _’j] lution containing a station and a robot controller. Available [en
are listed 10 the right
Recent Empty Station
EB Greates an empiy station
New
. Files
Print
0] RAPID Module File
Share LE| Crectes 5 RAPID moduie fis and opens itin the sitor
i) Contraller Configuration File
(el $4E| Creates a standalone configuration file and opens i in the editor.
Help
73+ Optians.
(>3
Create
. s ® .
Figure 4.6. RobotStudio® - Create an empty station
VE9-e-g- Solution12 - ABB RobotStudio 6.02.01 (64-bit)
M| tore | Modeing simuaton Comroler RAPD Addes
. « 2] Task Default | @ - New View
® @ fo B L FLHT L D] & == et -
ABE import Robot IMPOR " Frame Target Path Other o i e @ Poyep g Ophcs
Library - Ubrary - System - | Geomery -+ o 4 O Bve a Tool o0l ROl Crook \framesie -
i 7 —— 3| Path Programming . settings Controtler Freehand Graphics
Layout 2 » %5
3 solion12 s
@ Browse for Geometry.. CulvG
W CAD G For copying
k:l
X
Output |
Show messages from All messages - Time Catagory
i)Pack & Go: Pack & Go succeeded 21032016 135140 General
IRB_52_120m (Station)- 10230 - Backup step ready 21032016135140 Eventlog
1)IRB_52_1 20m (Station) 10231 - Backup step ready 21032016 1351:40 EventLog
IRB_52_120m (Stabon) 10232-Backup step ready 2103206135140 EventLog
) Imported E_Cursuril UTCN| DoctoratActivitatiLaborator_RF_IRF_L_3\gripper_part_1 SAT 2103201614172 General
 Undo: Freehand Rotate gripper_par_1 2032016142448 General
) Closed staton. 21032016 14.36:36 General
) New staton created 2032016144747 General

Figure 4.7. RobotStudio® - Import parts in RobotStudio®

71

Once all these 3D parts are created, in a specialized software application (ex.
SolidWorks, Catia, etc.), they can be imported in RobotStudio® in order to
make the tool and start defining it.

The first step is to create a new empty station (Figure 4.6). Once it is created,
the 3D parts of the tool will be imported one by one (Figure 4.7). After we
access the Geometry folder, the parts that form the gripper should be
selected.

a9- & - = Solution12 - ABB RobotStudio 6.02.01 (64-bit) "

Figure 4.8. RobotStudio® - Positioning of the part which represent the base (rotatiovn and
translation)

Select the first 3D part, ex. gripper_part_1 from the left list (Figure 4.7) and,
instantly, the Modify menu is available. The 3D part is imported and displayed
in the working window, like in Figure 4.8. The Rotation option is available and
the position and the orientation of the gripper_part_1 could be changed and
so the base position of the gripper is changed (for exemplification, set 90°
rotation according with X axis and with Z axis). PAY ATTENTION to the
Reference system (cartesian system) according which the position of the
gripper base is done. When you want to rotate or position it, it has to be done
in accordance with the cartesian system established as Reference. In this case
the position and orientation changes are done according to World Frame
System (Figure 4.9).

72

From the Offset/ Set Position, set 20 mm along Z axis. After the desired
position is achieved, the Apply button must be selected once and, the window
can be closed. Also, from Modify menu, from Set Local Origin, one can set the
origin of the gripper’s base. Initially, the values are those that we used to set
the position we wanted (Figure 4.10).

It can be noticed that the position of the gripper’s base has not been
modified.

Ll ? - = Solution1 - ABB Robotstudio 6.02.01 (64-bit) [

[- I
=
2
ey = el
3 Sosont®
= | P
2
tqv
=
NRF_L_3igripper_part_1.SAT 30032016 115106
_RF_NRF_L_Jigripper_pan_1 SAT 30032016 115134
,,,,, T T e
i i0® - Set the desired iti f the gri b
Figure 4.9. RobotStudio® - Set the desired position of the gripper base
O H & - & solution24 - ABB RobotStudio 6.02.01 (64-bit) [
[1B 0 wroler RipD Addons | oct AP
t_‘i ¥ visib

Tima
0032016105439
_RF_IRF_L Sgrpper_par 1SAT 30032016 105727
0032016105349
' RF_IRF_L_Jgrpper_pa 1SAT 30032016 110007
0032016 110449
0032016113221
30032016 113226
0m206 13232

y
1
|
|
|
|
1
|

L 7= V1000 = 2100 ~ toolD) * \WObji=wobj0 * || Selecton Level * Snap Mode * | UCS: Staion 62564 -220.13 0.00

Figure 4.10. RobotStudio® - Set the origin of the gripper

73

The next step is to import, from the Browse for Geometry menu, the “fingers”
of the gripper (in this case, the 4 fingers). From the Modify menu, each finger
must be placed at the end of each “bar”, symmetrically, like in the Figure 4.11.

®d & -+ Solution24 - ABB RobotStudio 6.02.01 (64-bit) TR -
Simulation Controller RAPD Addns Modify - @
= o 7 Task oetain] ® (o
\:_ E ©) O J; " Workobiect wobjo I
ot rape Taga Pah O - > : 2
ot rogramming s setings Conroter | prasrana

= [[viewt =] s
&]

<lesoo

Layout | PstheaTargets | Tags
3 Soluior2d

& orpperpar !
& groperpar2

Time
0032016 105949
30032016 110007
1032016 110449
032016113221
1032016 113226
02016 113232
1032016 114306
03201611433

Obiect positoned Movel * = ¥1000 * 2100 ~ 1000 ~ \WOBj=Wobj0 * | Selection Level * Snap Made | UCS: Siaion 69493 24501 000

Figure 4.11. RobotStudio® - Set position of one finger

B
»

®d . - Solution1 - ABB RobotStudio 6.02.01 (64-bit) o X
BEN o | voses smision Comotr mav0 saain ‘o
o .} Task efault W ew
@ :
e
e

Layout | parsaa
5 Solson

& opepan 2t
& arvperpan 25

Time
30032016 120259
30032016 120310
UTCN\ DoctoratActvistilsborator_RF_IRF L 3\grpper_pat 2SAT[4] 30032016 120325
30032016 120540
30032016 120545
30032016 120611
sul_UTCN| DoctoratAcvistLaborator_RF_IRF_L Sgnpper_pat 2SAT 30032016 120625
30032016 120637

Object positoned Movel. * ¥1000 2100 * foolD. * \WOBj=wob0 * | Selection Level.* Snap Mode | UCS: Station [0.00 0,00 000

Figure 4.12. RobotStudio® - The result using the given values to set the position of each
finger

One can use the below values for orientation and position the four fingers of
the gripper:
74

Tx =100, Ty=270, Tz = 65; Rx = 90°, Ry = 0°, Rz = 90°

Tx =-100, Ty=270, Tz = 65; Rx = 90°, Ry = 0°, Rz = -90°
Tx =100, Ty=-270, Tz = 65; Rx =90°, Ry = 0°, Rz = 90°
Tx =-100, Ty=-270, Tz = 65; Rx = 90°, Ry = 0°, Rz = -90°

The result of using these values can be seen in Figure 4.12. When all the parts
are in the desired position, in order to function, a mechanism must be
created. This it is done using the Modeling menu, Create Mechanism option
(Figure 4.13).

® W - Solution1 - ABB Robotstudio 6.02.01 (64-bit)

Figure 4.13. RobotStudio® - Create Mechanism option

After you click on Create Mechanism, a window will appear. In this window,
you have to establish the name of the mechanism (should be an intuitive one:
ex. Welding_gun), to set the type of the mechanism (tool, conveyor, etc.), in
this case will be a mechanism Tool type. The next steps are to create joints
between parts that are moving and to define the tool. Further on, define each
part as a link: right click on Links and Add Link.

A new window (Figure 4.14) will be opened. In this window, each part (each
finger) is defined as a link. The link’s name is given automatically. The part you
want to define must be set and then add it to the Added Parts list. Make sure

75

that the part: gripper_part_1; is Set as BaseLink. The other parts, like fingers,
have to be defined like “Link” not as a BaseLink. After all the parts are defined,
close the window.

Create Link

Link Name Added Parts
L1 | gripper_part_1
Selected Part P

gripper_part_2_2 e

Set as Baselink

0.00

4F
[=]
[
=
4k
=]
[=]
=]

4k

0.00

4k
[=]
[
(=1
4 b
[=]
[=]
=]
4k

OK Cancel Apply

Figure 4.14. RobotStudio® - Set the links

The next step is to create the Joints between the parts, so right click on Joints
and Add Joint and the window from Figure 4.15 will appear. The name is given
automatically. The type of joint in this example is prismatic, for all the joints
(be careful to set the Joint Type as Prismatic) and all joints are between the
base and each “finger” (that changes each time from Child Link).

Based on the given example, regarding prismatic joints, the displacement
length of the prismatic link will be set: for Second Position on X (red cell) on
100 [mm] value; Joints Limits: Min Limit will be 0 and Max Limit will be 100.
The only value that changes for the 4 joints is the Second Position, which is
100 mm or -100 mm, depends on each of the four fingers is defined. To check
if the fingers are moving in the right and logic position, use the slide from Jog
Axis (Figure 4.15).

76

If everything is correct, based on the logic function of the gripper, set Apply
and automatically go to the next joint. After all the joints are defined, click
Cancel and the window closed.

Create Joint

Joint Name Parent Link
|.J‘| L1 (Baselink)
Joint Type Child Link
() Rotational L2 ™
(@) Prismatic Active
Joint Axis
First Position (mm)
0.00 S < 0.00 -

Second Position (mm)

-

100.00 -~ 0.00

L

0.00

LI

Jog Axis

Limit Type

Constant Y

Joint Limits
Min Limit (rmm) Max Limit (mm)
0.00 100.00

4k
4k

OK Cancel Apply

Figure 4.15. RobotStudio® - Create joints

Afterwards, the tool must be defined, precisely to set the Mass, the Center of
Gravity and the Moments of Inertia. To set these, right click on Tooldata and
Add Tooldata. The window from Figure 4.16 will open. The values that must
be set, for our example, are presented in Figure 4.16. Make sure you set the
base in the cell Belongs to Link.

The next step is to create dependencies between links. For this, right click on
Dependencies and Add Dependency. The window from Figure 4.17 will
appear. First dependency is between J2 and J1 (LeadJoint), then between J4
and J1 (LeadJoint) and, lastly, between J3 and J1 (LeadJoint). In all cases the
Factor is 1. After all these dependencies have been created, click OK.

77

On the right side of the screen, notice that all the characteristics are indicated
in green, highlighted in blue (Figure 4.18). The next step is to Compile
Mechanism (Figure 4.18).

Create Tooldata

Tooldata name:

|grip_‘|

Belongs to Link:
L1 (Baselink)

Position (mm)

0.00 =0.00 = 0.00

Orientation (deg)

0.00 =0.00 = 0.00

4

»

[] selectvalues from Target/Frame

<Select Frame=
Tooldata
Mass (kg)
2033 S

Center of Gravity (mm)

-

0,00 <2813 < 0,00

Moment of Inertia Ix, ly, |z (kgm?)
017 =115 ={1.03

Figure 4.16. RobotStudio® - Define

the tool

Cancel

4k

4k

Create Dependency

Joint

J2 v

(@ Use LeadJoint and factor

LeadJoint
J1 w

Factor
.00 -

() Use Formula

QoK Cancel

Figure 4.17. RobotStudio® - Create
dependencies

Once the Compile Mechanism button is pushed, a new window appears. In
that window, if in Joint Mapping the values are correct, select Set. At Poses
establish the position of the gripper’s fingers and give them specific names.
To create a new one click, Add, to modify one click Edit and if you want to
erase it, click Remove. Click on Add and create a HomePose and an Open
position (see Figure 4.19 and Figure 4.20).

78

Mechanism Model Name

4l

| Create Mechanism

grip |
Mechanism Model Name
|g|‘ip Mechanism Type
Tool ~
Mechanism Type
Jiocl | =9 grie
7@ Links
- —— - @ Joints
“¥ arip 7@ Tooldata
[H-&@ Links i@ Calibration
- Joints i@ Dependencies
=] Tooldata
i@ Calibration

“.i@ Dependencie
P Joint Mapping

1T 2 83 e B 6 =

Set
Poses
Pose Ma.. PoseValues
SyncPose [0.00.0,00;0,00; ..
‘ HomePose [0.00:0.00;0.00; ...
L
Add Edit Remove

Set Transition Time:

Compile Mechanism Close

Compile Mechanism Close

Figure 4.18. RobotStudio® - Compile Figure 4.19. RobotStudio® - Joint Mapping and
Mechanism Poses

Mechanism Model Name:

Mecharism Type
Tool

Poses.

PoseNa_ Pose Values

SyncPose [0.00: 0.00:0.00:
HomePose [0.00: 0.00:0.00:

Figure 4.20. RobotStudio® - Values for Open position
79

Once all these are set, click on Set Transition Times and click OK and then
Close. On the left side of the window, at Layout, the mechanism that was
created can be seen.

Right click on its name and set Mechanism Joint Jog. Further slide bars are
opened and if you move just the first one, which corresponds to the first joint,
one can notice that all the fingers are moving at the same time. If the gripper
is in Open position, then right click on its name and set Jump Home.

The next step is to learn how to save the mechanism in the RobotStudio®
Library. For this, right click on the mechanism that was created, in the left list
found on the screen and select Save As Library. Give it a name and Save it. To
see if the mechanism has been saved, Import Library and User Library.

TCP definition

To set the TCP of a tool, follow these steps:

e click on Create Target,
e select the top of the tool,
e click Create and then Close.

If the tool has a mechanism like the one created in the above section, the TCP
must be set at the center of the gripper (in-between the fingers) in a zone
where the target point can be defined. To create/define a tool follow these
aproach: Modeling -> Create Tool. Make sure to create a tool that is formed
of a single body. If there are any other bodies, make just one using Union
option from Modeling menu. Once the Create Tool option is activated, the
window from Figure 4.21 will open.

Step 1: write a name for the tool

Step 2: at Select Part: Use Existing

Step 3: Center of Gravity is picked with Snap Center, then click Next
Step 4: Select TCP name (Figure 4.22)

Step 5: Select the TCP as being the Target_10 (Layout list) and then add it to
TCP(s)

Step 6: Done

80

Create Tool x

Tool Information (Step 1 of 2)
Enter name and select the part associated with your tool.

Tool Name:

MyT ool

Select Part:

@ Use Existing) Use Dummmy

Part 5 v

Mass (kg) Center of Gravity (mm)

1.00 = |00 =l0.00 123000 =
Moment of Inertia x, ly, Iz (kgm?)
0.00 +10.00 +10.00 =

Help Cancel <Back Mext >
Figure 4.21. RobotStudio® - Set/define the TCP
Create Tool *

TCP Information (Step 2 of 2)
Name and position your TCP(s).

TCP Mame: TCP(s):
MyTool TCP) MyTool TCP

Values from Target/Frame
|DefauItTaskaarget_1{] w |

=

Position {mm)
0.00 =000 + 280,00

4k

Orientation (deg)
0.00 20,00 ={0.00

4y 4

Delete Edit

Help Cancel < Back Done

Figure 4.22. RobotStudio® - Set the TCP — attach the Target_10

Save the tool: right click on the mechanism that was created, in the left list of
the screen and select Save As Library. Give it a name and Save. To see if the

81

mechanism has been saved, Import Library and User Library. If you followed
the steps presented before, the tool must be there. To check if the tool is well
defined, import an ABB robot, attach the tool and do like in Workshop 3 -
Targets and Trajectories.

Note: For this section of the workshop, you can practice on the station found
in the folder called “tool.rsstn”.

82

Workshop 5: Create the Conveyor’s
Mechanism and Programming
MultiMove systems

83

5.1. Aim of the workshop

The aim of this workshop is for the students to learn how to create a
conveyor, which is a mechanism used to transfer the objects that are
manipulated by the robots, from one point to another.

5.2. Create Conveyor Mechanism

Nowadays, the technology is at a high level. Because of this, more and more
domains are automated or robotized. The time, as a resource, became even
more appreciated by the companies, alongside with the quality of the
products. Therefore, companies must manage these resources more
efficiently and effectively.

A robot’s working area is clearly defined in their data sheets even in their
construction phase. Nevertheless, for some applications, this working area is
too small and, therefore, must be extended. Both the extension of the
working area and the improving of the production time can be done using
conveyors or creating external axis for the robots.

Taking all these into consideration, the aim of this workshop is to create a
conveyor mechanism in RobotStudio® to complete a virtual simulation of
industrial robots in different situations. The first part of the workshop
presents the theoretical part, while in the second part an application is
conveyed.

In order to define the mechanism of a conveyor in RobotStudio® it is
necessary to create an empty station. For this exercise, a box will be
considered the conveyor. To create it, from Modeling menu, use the Solid
option > Box. The box will have the following dimensions: length 5000 mm,
width 400 mm and height 100 mm; for position, with y =-200 mm. Afterward,
press Create and Close (Figure 5.1).

Like in the case of the defining a tool, a mechanism will also be created here,
but the type of the mechanism will be different. From the Modeling menu,
choose Create Mechanism (number 1 marked with red). Give a certain and
intuitive name for the mechanism and at the Mechanism Type option select
Conveyor (Figure 5.2).

84

D~ -Q- =

[Unsaved Station] - ABB RobotStudio 5.61.01.01 (64-bit)

Show messages fom Al messages
1)Sckd crested Pat_4)

Figure 5.1. RobotStudio® - Create a box that will be considered the conveyor

Y,

Output |
Show messages fom Al messages
1) Schd crested Pt 5)

Figure 5.2. RobotStudio® - Define the conveyor mechanism

[Unsaved Station)] - ABB RobotStudio 5.61.01.01 (64-bit)

an 000 2om
‘Oertaton (deg)

0 om0
ComvuyorLegh

Anactiret Poees

Pach mm)

100090 Adg
Count

200 Ramon

At Selected Part (2) choose the create box, chose a starting position and an
end position). Choose a Pitch and a count and then Add (number 3 marked
with red); data from the video’s start position = -500 mm, end position 5000

mm, pitch 1000 mm and count = 2 (Figure 5.2).

85

[Unsaved Station] - ABB RobotStudio 5.61.01.01 (64-bit)

Gl oaw
"

odity poine D Dameter
Curve = to Point b M
Me:

ez @ mersect [Exaru
e @Subtract 6
@unon e

face

Layout | Modeling | Tags
B (unsaved Staton]*

i ONY

-2 .Dar'.

Figure 5.3. RobotStudio® - Save As Library

After all this data has been introduced, click on Compile Mechanism (number
4 marked with red) and your mechanism can be found in list on the left of the
screen, in Layout (number 5 marked with red). From there you have to save
it using Save As Library, where you have to choose a name (Figure 5.3). If all
the steps have been correctly executed, the mechanism can be found in
Import Library and User Library.

5.3. Programming/Setting up/Testing MultiMove systems

Programming MultiMove systems

If you want to develop or optimize programs for MultiMove systems you use
MultiMove functions. This subchapter details the main workflow to program
MultiMove systems with the help of RobotStudio®.

In oder to be able to use the MultiMove functions, one must possess the
following [2]:

e Avirtual controller that can run a MultiMove system
e The tools used by the system

e All coordinate systems
86

e All the paths the tool will move onward (these paths will be created in
a workobject that pertain to a tool robot and that adhere to the work

piece robot

If you want to create MultiMove programs utilizing the MultiMove function,
you must complete the steps shown in Table 5.1.

Table 5.1. Typical and additional workflow for creating MultiMove programs [2]

Typical Action

Description

Set up the MultiMove

Select the robots and paths to use in the
program

Test the MultiMove

Execute the motion instructions along the
paths

Tune the motion
behavior

Tune motion behavior, such as tolerances and
constraints for TCP motions

Create the program

Generate the tasks for the robots

Additional Action

Description

Create Tasklists and
Syncidents

The tasks and paths that shall be synchronized
with each other

Add and update ID
arguments to the
instructions to
synchronize

Add and update IDs for instructions in paths
that already are synchronized.

Add IDs to instructions in paths that have not
yet been

synchronized.

Add and adjust Sync
instructions to the
paths.

Add SyncMoveon/Off or WaitSyncTask
instructions

to the paths to synchronize and set their
tasklist and

Syncident parameters

Teach MultiMove
instructions

It is also possible to jog all robots to the desired
positions and then teach instructions to new
synchronized paths.

Setting up MultiMove systems

In order to select the robots and paths in the station, that will be utilized for
the MultiMove program, it is mandatory to make sure that all the robots of

87

the MultiMove program belong to the same system. After completing this
step, follow items 1-10 shown below [2]:

1. Home tab - MultiMove - Setup tab below the MutliMove
work area

2. In the work area, press System config bar to expand the system
configuration section

3. Select System box = select the system that contains the robots to
program. The robots of the selected system are now displayed in the
System grid (below the Select system box)

4. Select the check box in the Enable column (for each robot that will be
used in the program)

5. For each robot specify whether it carries the tool or the work piece
using the options in the Carrier column

6. Click the Path config bar for expanding the path configuration section
(in the work area)

7. Select the Enable check box (for the tool robot) = press the expand
button in order to display the robot’s paths

8. Using Path name column select the order of the paths that are to be
executed

9. Select the check box in the Enable column for each path that will be
included in the program

10. Continue testing the MultiMove and, if necessary, tune the motion

properties

Testing the MultiMove systems

This section refers to the motion instructions along the paths in accordance
with the current setting on the setup of the MultiMove.

Basically, it refers to setting the robot’s start position and testing its
movements along the path.

In order to test the paths, one must [2]:

Jog the robots to a good start position

Home tab - MultiMove - Test tab (bottom of the MultiMove work

area) — displays the test area
88

e (If wanted) press the Stop at end check box (this ensure that the
simulation stop subsequently to moving along the paths). If the Stop
and end is not pressed, the simulation will loopingly continue until
clicking Pause

e In order to simulate the motions along the paths, click Play. If the
motions are satisfactory, advance developing multimove paths.
However, if the motions are not satisfactory, choose to do one of the
following actions (Table 5.2):

Table 5.2. Actions to adjust motions [2]

Action Description

Examine the robots’
positions for critical
targets

Press Pause and use the arrow buttons to
move to one target at a time

The cause of changed motions are new start
positions. Taking this into consideration, please
avoid positions near the robots’ joint limits

Jog the robots to new
start positions

Go to the Motion For the motion properties, the default setting
Behavior tab and is no constraints. If this has changed, there
remove constraints might exist limited motions.

89

Workshop 6: Create a smart component
tool

90

6.1. Aim of the workshop

The aim of this workshop is for the students to know what a smart component
is, how to define and how to use it. Furthermore, they will learn how to work
with signals in RobotStudio® and how to make the connections between the
tool’s elements in order for them to work as a real tool.

6.2. The smart component’s definition

Nowadays, more and more persons are interested in the new developed
technology and is eager to know everything it has to offer. This interest also
manifests itself in wanting to understand how each new device and newly
developed gadget works. Therefore, this workshop aims to teach students
how to program a tool in order for it to work as it does in reality. It aims at
teaching how to connect all the tool’s elements and how to define the
necessary sensors.

This workshop has the aim to define a tool as a smart component that is
working with vacuum. In the beginning, an industrial robot and the tool that
will be defined are imported. One of the important aspects is for the tool to
be saved as library.

The next step is to create the smart component. The Smart Component
option can be found in the Modeling menu. Once the option is accessed, a
window will open (Figure 6.1). In the Layout menu (indicated with red in
Figure 6.1), using drag and drop, place the imported tool in the smart
component object.

Once the tool is set to be a smart component, in the right window of the
screen it can be seen as a Child component (Figure 6.2). Right click on the
smart component and select Set as Role.

91

® W9~ &~ 5 [Unsaved Station] - ABB.

-

Modeling | Smulation Co

RobotStudio 5.61.01.01 (64

ntroller RAPID add-ns

Modity

B & & o L 0 a [::) E‘. (8 Border around Bodles @B intersect [Exrude Surface CJ A angle) S N
Component Empty Smart import Frame Tags | Scid Surfsce Curve B 2OTder around surface | @subract € Brude Cuve Modlty | Poin) Dlameter - Creste Create
Group Pan Component Geomery® - B E = - @ Border from Points @Union e Line from Normal Curve - | to Roint B Minimum Distance %2 Oveh &- | o 1oy
Create CAD Operations Measure Freehand Mechanism
 Properties: SmartComponent 1 = x||view VsmareComponent 1 x|
Apply | Close ﬁ SmartComponent_1 [Descripton
 Layout " Modeling | Tags = || Compose Properties and Bindings Signals and Connsctions Design
I Unsaved Station)* Child components Addcompanent Edlitparent
mponeats
4 SmartComponent 1
Saved States
[Name Date Description
Save CuneniState Restore Selacted State Detais Delete
Assets
[[Assetiame Original Source
Add Assel Setlcon Updale All Assets View Save Delete
 Output
Show messages fom All messages - Time Category
D I ¥ Tool_testrsib 12052016 124002 General
i) Closed staton 1205206124048 General
i) New stabon created 12052016 124050 General
Q) PersistenceService-L oad]) Geometry (ACIS) enror 80005 'save fle is from a later version of Acis' 12052016 124054 General
0] |_testrslib 1205206124054 General
[LSslection Level.T_snep
- - ® .
Figure 6.1. RobotStudio® - Smart Component option
® W9~ [Unsaved Station] - ABB RobotStudio 5.61.01.01 (64-..
| Home | modeling Simulation Controller RAPID Add-ns
@ & s‘u ir) t¢ @ a':g @ [Teach Target Task (De@um B a o O @ |miNer view
488 mport | Robot | import frame | Target Path Other | B TERNINSUUCiOn o | Workobject [wobjo Synchronize | __ | Graphics | P Showide -
Library ~ Library = | System - | Geometry - - - - ~ Tool to0l0 TR BB R oo | L Frame sie -
Build Station | Path Programming 5| Settings | controller | Frechand | Graphics
Properties: SC piesa | = x||/views Vscpiesa x|
Apply @ SC piesa Description
~Layout | pathsaTargets | Tags = x|| Compose Properties and Bindings ~Signals and Connections Design
T [Unsaved Station]* Child components Addcomponent Editparent
Components Gther piesa
4 @ sC_piess Editchild Delete Disconnectfrom Library
I g piesa|
Edit
Delete
Show in Browser
Set as Role
Properties
Saved States
[Name Date Description
Save CurentSizte Restore Selected State Details Delete
Assets
[AssetName Original Source
AddAssel Setlcon Updale All Assels View Save Delete
" Output
Showmessages from All messages - Time Category
(i) Imported C:\UsersSandalDocuments\RobotStudiolLibrariesiMy Tool_testrsiib 2052016124002 General
12052016 124048 General
(&) Newstation created 12052016 124050 General
O PersistenceService:Load(): Geometry (ACIS) error 60005: 'save fle is fom a later version of Acis' 12052016 124054 General
(i) Imported C:\Users\SandalDocuments\RobotStudioiLibrariesiMy Tool_testrsiib 12052016 124084 General
[MoveL * = ¥1000 ~ 2100~ 10010 * \WObj=wobjo * || selection L

Figure

6.2. RobotStudio® - The Smart Component’s definition

92

The next step is to add to the tool (that actually is an object) different
components, in order for it to be defined as a smart component. The first
component is called Line Sensor (click on Add component > sensors; see
Figure 6.3). It is added in order to define a sensor inside the object, that will
later be programmed. It is not enough to add it, you must also define it (Figure
6.4). Afterwards, click Apply.

Properties: SC_piesa = x|[“view VsCpiesa x

Close L.e_{ SC_piesa Descnption
Layout | PatheATargets. [Tags % x|| Compose |Propertias and Bindings Signals and Connactions | Design

B [Unsaved Station]* Child components Add componen! (R ecently used

4 @ sC_piesa .
D posa ¥ pieso

Sensors

[1%

(3%

L

1]

Original Source: -

AddAsset Setlcon Update All Asssts View Save Delete

Output
Show messages from All messages

i} Imported L e StudiolLibrariesiMyTool_testrslis

i) Closed station

i) New ststion created

Q PersistenceSenvice:Load() Geomeny (ACIS) emor 61005: 'save fle is fom a Iater version of Acis’ (5
i} Imported C:| \Documents) ol L testrsii 12052016 124054 General

Category
General
General

General

General

Movel * V100D * 2100 * to0l0 * \WObjswobj0 ~

Figure 6.3. RobotStudio® - Add a Line Sensor

This tool is using the vacuum technology. This is why it needs to have the
attach and detach functions. Taking this into consideration, the next steps are
to add the two components, Attacher and Detacher. These two components
can be found in the Add component menu, in Actions (Figure 6.5). The only
option that must be set here, is for the Parent to be set from the tool list as a
smart component. Then click Apply.

Attach function will work if it is connected to the sensor. In this case, the next
step is to create a connection between the attach function and the Line
sensor from Properties and Binding (Figure 6.5). Select Add Binding (Figure
6.6) and then set the characteristics market with blue and click OK. This
connection can be observed in Property Bindings.

93

Properties: LineSensor | 5 x| /view)'sCpiesa x|
Properties = @ SC pi 5 =
esciiption
Start (mm) Spiesa £
- - -
o S0 10000 2 || compose Properties and Bindings Signals and Connections Design
End (mm) Child Add Editp:
it parent
looo oo 220000 | .
Role LineSensor
‘Rad‘“s () B Detects ifany object intersects a line between twa points
100 = f piesa Editchild Delete Disconnectfrom Library
SensedPart
‘ v‘ Smart Components Propertes
. LineSensor Start (Vector3) - Startpoint
SensedPoint (mm) - " Detects ifany objectintersects a line b. End (Vector3) - End point
looo |00 l000 | Radius (Double) - Sensor radius
" SensedPart (Parl) - Contains the part closestlo the startpoint
Signals B SensedPoint (Vector3) - Contains the point where the line intersects the closest part
[Adive Q| s
‘ SensorOut @‘ Active (Digital) - Setto 1to activate the sensor
Apply Outputs
SensorOut (Digtal) - Goes high (1) when an objectintersects the line
/Layout | PathstiTargets | Tags s x
T [Unsaved Station]”
Components
4 q SC_piesa

1] LineSensor

by piesa

Saved Stales

[Name Date Description

Save CurentState Restore Selected State Detalls Delete

Assets

[AssetName Original Source

AddAssel Setlcon UpdaleAllAssels View Save Delels

 Output

Show messages from All messages . Time Category
(i) Closed station 12052016 12:40:48 General
(i) New station created 12052016 124080 General
@ PersistenceService:Load(: Geomelry (ACIS) error 60005 'save fle is fom a later version of Acis' 1205206124054 General
(i) Imported C:\U lyTool_testrslib 12052016 12:40:54 General
(i) Impotted C\Program Fies (x8)\ABB Industial IT\Rabotics IT\RoboiStudio 5 61\ABB LibraryCom.. 1205206125622 General

Imported C:\Program Files (x&6)\ABB Industrial IT\Robotics I

5.61\ABB Librar\C

r.rslib

Figure 6.4. RobotStudio® - Define a Line Sensor

‘ Movel ™ = v1000 ~ 2100 ~ tool0 ~ \WObj:=wobj0 ~

s]

,’WTI,

/ Viewl /' SC piesa X|

E [Unsaved Station]”
c 5}
a 4 SC_piesa
d LineSensor

b y piesa

@ SC_piesa

Description

Compose Properties and Bindings Signals and Connactions Design

Child components

‘Add component: Recently used

Role

? piesa

Smart Components

LineSensor
-+ ¥ Detects ifany objectintersects aline b...

Saved Stales

LineSensor
E Detects if any object intersects a line
between two points

poinis

Signals znd Properties »
Parametric Primitives 3
Sensors »
Actions. »
Manipulators » %J
Other »

@ Empty Smart Component);\k.

= Import Library...

@ Import Geometry...

R ®

‘ Name

Date

Attacher
Attaches an object

Detacher
Detaches an attached object

Source
Creates 2 copy of a GraphicCompenent

Sink
Removes a GraphicComponent

Show
Makes an object visible in the graphics

=)

- L
Save CunentState Restore Selectled State Details Delele

Hide

Assels m Makes an object invisible in the
‘ AssetName Original Source: grzphics
AddAsset Setlcon Update AllAssels View Save Delete ;‘f SetParent

L sets the parent of 2 graphic component

Time:

Showmessages from All messages r

Category

Figure 6.5. RobotStudio® - Attach and Detach components

94

Layout | Paths&Targets | Tags = %||/View) 'sC_piesa x|

Unsaved Station]* .
B! ! a SC_piesa Description
Components —
4 @] SC_piesa Compose Properties and Bindings Signals and Connections Design
Dynamic Propertes
(& LineSensor Name Type Value
b g piesa

Add Binding

Add Dynamic Property ~ Expose Child Property ~ Edit| TargetProperty

Property Bindings
rty Bindi [Allow cyelic binding
Source Object

[ok]| camcel || Help

AddBinding Add Expression Binding Edit Delete

Figure 6.6. RobotStudio® - Add a binding for the attach function

Once the attach function was defined, the next step is to define de detach
function, too. As already mentioned, the detach function will be created from
the Compose window, Add component, and, in Actions, the component
Detacher will be selected. Also, for this component a binding will be created.
The characteristics are presented in Figure 6.7.

Properties: Detacher | = x|| /view:)'scpiesa x|
Properties =] A =
o a SCip|esa Description
“‘ Compose Properties and Bindings Signals and Connections Design
KeepPosition Dynamic Properties
Signals g [Name Type Value
[Execule |
" Layout | PathsaTargets }Tags = x Add Binding
I Unsaved Station]”
Components Source Object |Attacher
4 @ sC_piesa Source Property |child
(4 Attacher
Target Object |Detacher
54 LineSansor Add Dynamic Property Expose Child Property Edi| TargetPropery [child
b &7 piesa P Bindi
& rty Bindings O yelic binding

Source Object

[ok] cancel |

AddBinding Add Expression Binding Edit Delete

Figure 6.7. RobotStudio® - Add a binding for the detach function

The functions are needed to be defined. The next step is to create a link
between the Line Sensor and these functions. For this, from the Signals and
Connections menu, the needed signals will be added, in the beginning a digital

95

input signal (Figure 6.8) and then a digital output signal (Figure 6.14). From
the Add I/O Connection menu the connections between the elements will be
made (Figure 6.9, Figure 6.10). The steps are presented in the next figures.

Properties: Detacher = x|| /viewt /'SCpiesa |
&t Pruperlles = a SC_Piesa Description
‘ V| Compose Properiies and Bindings Signals and Connections Design
KeepPosition 1O Signals
Signals B | Name Signal Type
\ Execte |
Add /0 Signals
/ Layout [PathsélTargets | Tags v X Type of Signal Number of Signals
i s Owwwa
Components
4 “ SC_piesa Signal Base Name Start Index Step
@ Attacher |dul\1tach\ | ‘O ‘1
Signal Value Minimum Maximum
m LineSensor Add l/0 Signals Expose Child Signal Edit |0 | ‘OOO ‘000
by piesa /O Connections
Source Object Description
[] Hidden [read-only
ok || cancel | Hep
Add /0 Connection Edit Managel/0 Connections Delete
Figure 6.8. RobotStudio® - Add a digital input signal
Add I/0 Connection
Source Object ‘SC_piesa v ‘
Source Signal ‘diAﬂach V‘
Target Object ‘LineSemr M ‘
Target Signal ‘A{:ﬁve v ‘
[] Allow cyclic connection
0K Cancel Help

Figure 6.9. RobotStudio® - Connection between the tool that will be a smart component
and the line sensor

96

Add 1/0 Connection

Source Object LineSensor v
Source Signal SensorOut v
Target Object Attacher S
Target Signal Execute v

[] Allow cyclic connection

0K Cancel Help

Figure 6.10. RobotStudio® - Connection between the line sensor and the attach function

From the Compose menu, a Logic Gate will be added. This can be found in the
Add component menu, in Signals and Properties. This is a logic function that
has certain properties shown in Figure 6.11. Once this option is defined,
continue with defining the connections between the elements (Figures 6.12,
6.13, 6.1, 6.15, 6.16, 6.17).

Properties: LogicGate [NOT] | v X
Properties =
Operator
NOT >
Delay (s)
0.0 -
Signals [
InputA @
Output @
Apply Close

Figure 6.11. RobotStudio® - Logic Gate properties

97

Add /0 Connection

Source Object SC_piesa w
Source Signal diAttach W
Target Object LogicGate [NOT] v
Target Signal InputA W

[] Allow cyclic connection

OK Cancel Help

Figure 6.12. RobotStudio® - Connection between the tool and Logic Gate

Add I/0O Connection

Source Object LogicGate [NOT] v
Source Signal Output v
Target Object Detacher 2
Target Signal Execute v

[] Allow cyclic connection

Figure 6.13. RobotStudio® - Connection between Logic Gate and the detach function

Add I/O Signals

Type of Signal MNumber of Signals
DigitalQutput ~ [] Auto-reset 1 =

Signal Base Name

|d0Attached | 0 - 1 s
Signal Value

o | 0.00 2 0.00 2
Description

| | [] Hidden [] Read-only

Figure 6.14. RobotStudio® - Add a digital output signal

It is a known fact that a sensor must be reset before any other operation
starts. Knowing this, a logic component to set the reset will be added. This it
is added from the Compose menu, Add component, Signals and Properties.
This component is called LogicSRLatch. The connections’ definitions are
shown in the next figures.

Add [/O Connection

Source Object Aftacher W
Source Signal Executed ~
Target Object LogicSRLatch ™
Target Signal Set w

[] Allow cyclic connection

Cancel Help

Figure 6.15. RobotStudio® - Connection between the attach function and LogicSRLatch

Add /O Connection

Source Object Detacher W
Source Signal Executed W
Target Object LogicSRLatch b
Target Signal Reset W

[] Allow cyclic connection

OK Cancel Help

Figure 6.16. RobotStudio® - Connection between the detach function and LogicSRLatch

99

Add I/O Connection

Source Object LogicSRLatch W
Source Signal Output W
Target Object SC_piesa b
Target Signal doAttached W

[] Allow cyclic connection

OK Cancel Help

Figure 6.17. RobotStudio® - Connection between LogicSRLatch and the tool that will be a
smart component

In the Smart Component window, in View/Design, all the connections that
have been made between the created components and signals can be seen.

To check if the tool is well defined, go to the View window of Robot Studio,
attach the tool to the robot, import or create a box from the Modeling menu
and check if the vacuum function of the tool is working. With Jog Linear and
Jog Reorient (Home menu, Freehand), position the robot with the tool on the
object and on the left side of the window, in signals, set de digital input signal
to make sure it is active. Once this is active, having the 1 value, the digital
output signal also has the 1 value. This signifies that the tool has been well
defined as a smart component and it can be used further on, in other
applications.

Remember, this example of a smart component’s definition is a particular
example used just to define a vacuum gripper.

100

Workshop 7: Create a path from a curve

101

7.1. Aim of the workshop

One of the aims of this workshop is for the students know how to easily create
a path that contains lines and curves. Furthermore, the student learns how to
edit an already created program in RobotStudio®.

7.2. Defining an Auto path

For this application, it is necessary to create a station. This station must
contain a robot, a tool to perform the operation and a part, an object on
which the robot will work on. The first step is to select the surface and to
create a border around that surface, that will serve as a trajectory to follow
by the robot. These two steps are presented in Figure 7.1 and 7.2. Once the
surface is selected, click Create the “Border around the Surface”.

VE9-v-@- 5 [Unsaved Station] - ABB RobotStudio 5.61.01.01 (64-bit)
M Home Modeling Simulation Controller RAPID Add-Ins
® @ k U L & o2 ﬂ B g Task (Defaulf & [Vord 1 @ | [Newview
ABE Import | Robot | Import Frame Target Path Other | B N el Wi Ul s _ ., . Grephics @ oiie:
Ubrary = Lbrary = System~ Geometry~ - - - - Tool toolo TRRBADR | o0 | L Frame size -
Build Station Path Programming 5 Settings Controller Freehand Graphics
/Layout | pathsatargets | Tags | = x||/ View x|
I [Unsaved Station]* —
Mechanisms 2 é

b 5 IRB1600_10_145__01 Surface Selection

\
& MyTool For selecting on surface level.
Components

P Curve_thing

. A

Figure 7.1. RobotStudio® - Surface selection

102

O |3 9- - - F[Unsaved Station] - ABB RobotStudio 5.61.01.01 (64-.

n Home | Modeing | Simusfon Contolr RAPD Addns Modiy
ﬁ § Qﬂ c E, 0 @ @ E\{]wcs»ammsomes @intersect P Extrude Surface {lngle Worid @ 3
T - - Extrude Cu Diamet
Component Empty Smart Import ame Tags Solid Surface Curve @orcer around Suface. @Subvact Exrcde Cune Modify Point @ Diameter 2 ° Create Create
Goup Part Component Geometry . 7. . Broderfompos @Unon @elinefromNommal quve topoint MMinmumDstence TR BRBAL i 100
Create CAD Operations. Measure Freehand Mechanism
Creste Border Around Surface | 5 ||/ View! x Bordir around Sevfecn
oy - | Foresting curve dlong tre
|| v hﬁ border of a surface.
Clear Close

/Layout | Modeling | Tags
E [Unsaved Staton]"

J were00_10.145_01

& WyTool

P Geve g

o suface

Figure 7.2. RobotStudio® - Border around surface

|/ hutabath | * x|/ Viewl x|

Edge 1

Edge 2]
Edge 3 h‘ ’\{
Edge 4

Edge 8

Edge 8

L] Reverse Reence Suace

Remove (Face)- Curve_thing

Start Ofset (mm) End Offset (mm)

1 = 10 :

Appronmaton Parameters

() Linear (@) Cicular () Constant

Min Distance (m) MaxRadius [mm)

100 = A0 B

Tolerance (mm)

E .

Mora >»
Clear Close
jout) PethshTargets | Tags | Tx

T [Unsaved stz
4 |] Stetion Elements
4 T Defaul Task
!] Tooldata

Figure 7.3. RobotStudio® - AutoPath function

103

ﬂ tome | Modelg Smision Comole R#D

& e 10_145_01
& Witoal

P Cuve ting
o suface

Time
TBEMEHNL G
TAISAG 13342
A
TG 13T

130508 139128

i impored C s] IT\Riohotics [T 261 130NE13IEM General

Movel * VIODD - 2100~ ool ~ \WOBj=wakil - | Seecion Level - Srap Mode Uc: Saon 7235 3656 78535 | conolk s 00

Figure 7.4. RobotStudio® - Frames of the targets that form the path

On the left part of the window, in the Layout menu a new part that represents
the selected surface will be created. The next step is to create the path that
will be automatically followed by the robot. This can be performed from the
Home menu, Path, AutoPath. A new window will open (Figure 7.3). The
trajectory that the robot will follow is also presented in this window. Once all
the characteristics have been set, click Create. Once the path has been
created, for each point that forms the path, its own reference frame will
appear (Figure 7.4).

The next steps refer to the targets. These steps have been presented in the
2" workshop and are in reference to position and orient the targets and
defining their configurations or autoconfiguration.

7.3. Edit a RAPID program in RobotStudio®

RobotStudio® is the software through which offline programming for ABB
robots can be performed. The program language used is called RAPID.

104

@R -Aa-0 %\ ¥)5 RobotStudio [technology preview] B
Home Modeling Simulation Offline Online Add-Ins Screen Maker @

[5; % E;g\ @ /‘b D E m CRRapidTasks 2% NewModde | [3)SetTask Frames Load Parameters D Virtual FlexPendant

- = O Restart @ Load Module (=) System Configuration Save System Parameters Run Mode ~

Synchronze Synchronze) System
tostaton | tove | COWP Evems o Inputs/Oupss i (@) shutdown- | [Load Progam || T Configuration Edtor - [control panel
Synchronize Controller Tools RAPD Configuration Virtual Controller
~Offine | ¥ X || PalletDemoDebugiewt, IRB660_L T_ROB1, A O X ||~ IRB660_Even! ignals | v x
etDemoDebug_Pack3Go| o6 e B 0 [& rickList Completeword Select System:
1RBE60_EventDemo on '§ 28 SetDO doGrip, 0: = |IRBB60_EventDemo v/
@ Corfiguration 23 WaitTime 0.5; Fiter
€8 Event Log 30 nXoffset:=0; — — EHTLists
@ /0 System 31 nYoffset:=0; (Boad M| L
H rRAPID 32 nZoffset:=0; Board 1O Range
= 2y T_ROB1 (Progran 33 nPalletCount:=0; [aBB v [015 ;J
= “g Program Mody 34 strNumProd:= NumToStr (nPalletCount,0); s - ==
“aayl sebmoce [opus |
[it 36/ PROC Pick() - i
& Pk 37 Moved pPick 10,v1000, fine, tGripper\WObj :=obCav; [diGriptomePos @[diGripPickpos @)
Place) 38 WaitDI diSackInPos,1;
® °g SyaE Modul 39 Movel pPick_20,v1000,210, tGripper\WObj:=obCnv; diSackinPos o
40 Movel pPick_30,v200, fine, tGripper\WObj:=obCnv;
41 Movel pPick_40,v1000,2100, tGripper\WObj:=obCnv;
42| - ENDPROC -
43i7) PROC Place() | doEmptyPallet 0” doGrip °|
44 Movel pPlace_10,v1000,2z100, tGripper\WObj:=obPallet;
45 Movel pPlace 20,v1000, fine, tGripper\WObj:=obPallet;
26 Movel pPlace_30,v1000,2100, tGripper\WObj : =obPallet;
47 Movel pPlace_40,v1000,2z100, tGripper\WObj:=obPallet;
ENDPROC
A\
e |
/Output. | Find Results | RAPID Watch Offine. | s x
Show messages from: Al messages 2 Time
() Check program started: Alltasks in system SE-L-ATMAD006. 2008-04-10 19:20:34
@O\ecked SE-L-ATMAQQ0S. 0 syntax emors, 0 semantic emors. 2008-04-10 19:20:34
(3)IRB660_EventDemo: Synchronization to VC started. 2008-04-10 19:20:44
< | 5 || @) 1RB660_EventDemo: Synchronization to VC compited. 2008-04-10 19:20:44
MoveL~ * v1000 > 2100 ~ tGripper~ \WObj:=obPallet~ UCS: Station 0.00 0.00 0.00 | [Controlierstatusiill

Figure 7.5. RobotStudio® - RAPID editor — example

It is very easy to program a robot, if you know the programming language.
The programs can be written using the virtual teach pendant or the RAPID
editor. Furthermore, you can edit any program you want to modify with it
(Figure 7.5).

105

Workshop 8: Virtual FlexPendant from
RobotStudio®

106

8.1. Aim of the workshop

The aim of this workshop is for the students to know how to use virtual
FlexPendant from the RobotStudio®. Furthermore, the students will
familiarise themselves with the virtual FlexPendant menus.

8.2. Virtual FlexPendant in RobotStudio®

ABB calls the teach pendant as FlexPendant. RobotStudio® provides us a
virtual teach pendant. We are able to use the virtual FlexPendant in
RobotStrudio® after defining a robotic system (robot arm and active
controller). To launch the ABB virtual FlexPendant (Figure 8.2 and 8.3) go to
Controller menu and select FlexPendant (Figure 8.1).

D9 s Solution3 - ABB RobotStudio 6.05

Figure 8.1. RobotStudio® - Launching the virtual FlexPendant in RobotStudio®

107

—_— @Q Auto Motors On
— \/
o = DESKTOP-MM2GVEC Stopped (Speed 100%)

. Power and productivity

AL IR R
FREIPEP o vetter woria™

Z
—

X

Hold To'Run

Auto Motors On 3

= G‘]& DESKTOP-MM2GVEC Stopped (Speed 100%)
IA‘- HotEdit g Backup and Restore N \
é Inputs and Outputs [wd Calibration [g
Jogging Control Panel ; Enable
2 g \
= Production Window @ Event Log i K 1 »
% Program Editor [(5) FlexPendant Explorer W ~{H=-
= |
% Program Data % System Info N 4 l >
‘. Hold To'Run
f Log Off Default User @ Restart
g

Figure 8.3. RobotStudio® - The FlexPendant menus illustration

HotEdit menu

HotEdit (Figure 8.4 and 8.5) is a function for tuning programmed positions.
This can be done in all operating modes, even while the program is running.
Both coordinates and orientation can be tuned. HotEdit can only be used for
named positions of the defined robtarget. The functions available in HotEdit
may be restricted by the user’s authorization system (UAS).

108

f— @ Manual
—laa
— hich DESKTOP-MM2GVEC

F HotEdit for task T_ROB1

Guard Stop
Stopped (Speed 100%)

° Target_10 (MyTool, wobj0)

| © Target 20 (MyTool, wobi0) (=]

° Target_30 (MyTool, wobj0)
° Target_40 (MyTool, wobj0)

[SO d targets Selected targets

o MainModule Targets Offset
@ Module1 Target_20 0.0
@ Path_10

<< Tune Targets

-~
File Baseline Apply
ROB_I,\
“n B

delta X: 7—| 0 mm +

delta Y: —

f— Manual Guard Stop
= v @& DESKTOP-MM2GVEC Stopped (Speed 100%) x
¥ HotEdit for task T_ROB1
— Progr d targets Selected targets
Targets Offset
i 3 i v
Tuning mode Linear Target_20 0.0
Coord System: Work object W
Increment: 1mm v

Tune Targets >>

delta Z: EI Omm El

File Baseline Apply
ROB_I,_\
/3 £..

,(l\!

Hold To'Run

Enable

'\T}'

-y

Hold To'Run

Figure 8.5. RobotStudio® - The HotEdit menu details — Tune Targets

The functions available in HotEdit menu are presented in Table 8.1.

Table 8.1. Functions in HotEdit

Target selections

Lists all named positions in a tree view. Select positions and add
them to the section by tapping the arrow. Note that if a position
is used in more than one routine, it will appear in all places used
and any changes made to the offset will be the same for
everywhere it is used.

109

Selected targets

Lists all selected positions and their current offset. Tap the trash
can to the right of the position name to remove them from the
selection

File You can save and load selections of often used positions using
the File menu. If your system uses UAS, this may be the only way
to select positions for editing.

Baseline The baseline menu is used to apply or reject changes to the

baseline.

Tune targets

Tap Tune targets to display icons for editing the offset values
(coordinates and orientation).

APPLY

Tap APPLY to apply changes made in the Tune targets menu.
Note: that this does not change the original values for the
positions!

Inputs and outputs, I/O menu

Inputs and outputs, I/O, are signals used in the robot system. An 1/0 signal is
the logical software representation of an I/O signal located on a fieldbus unit
that is connected to a fieldbus within the controller. By specifying a signal, a
logical representation of the real I/O signal is created. The signal configuration
defines the specific system parameters for the signal that will control the
behavior of the signal (Figure 8.6).

::3_' System7

=10l x|

|| (1 || Manual Motors OFf |
L,"l‘l == == Q‘Q System7{SE¥ST-W-0000853) Stopped {Speed 100%) E]g][x)
= Inputs and Dutputs
All Signals
Select an I/0 Signal from the list.
Name Value J Type ‘ Simulated 1 to 10 of 10
USERDI1 0 DI False
USERDI2 0 DI False
USERDIZ 0 DI False
USERDI4 0 DI False
USERDIS 0 DI False
USERDI6 0 DI False
USERDI7 0 DI False
USERDIS 0 DI False
USERDO1 0 Do False
USERDO2 0 Do False
-~
Filter View
Ee) ()

Figure 8.6. RobotStudio® - Inputs and outputs used in the robot system

110

Jogging menu

The Jogging functions are found in the Jogging window (Figure 8.7 and 8.8).
The most commonly used are also available under the Quickset menu.

Figure 8.7. RobotStudio® - The Jogging menu illustration

The functions available in Jogging menu are presented below:

e Auto Motors On =3
=V Q& DESKTOP-MM2GVEC Stopped (Speed 100%) X
£ Jogging
— Tap a property to change it Position ‘
Mechanical unit: ROB_1... 1: 0.00 ©
Absolute accuracy: Off 2 0.00 ©
3: 0.00 ° ==
Motion mode: Axis 1 - 3... 4: 0.00 ° =
: . 5: 0.00 °
Coordinate system: World... 6: 0.00 © x T 2
Tool: toolo... E © e
Work object: wobjo0... Position Format... v " % /
Payload: loado... I . o
— Joystick directions ——— e
Joystick lock: None... PR
Increment: None... 2 1 3
Align... Go To... Activate...
[Y- %

Table 8.2. Functions in Jogging menu

Mechanical unit

Select active mechanical unit

Absolute accuracy

Absolute Accuracy: Off is default. If the robot has the Absolute
accuracy option, then Absolute Accuracy: On is displayed.

Motion mode
(Figure 8.xz)

Select motion mode, described in section

Coordinate system

Select coordinate system

Tool

Select tool

Work object Select work object

Payload Select payload

Joystick lock Select locking joystick directions,

Increment Select movement increments,

Position Displays each axis position in relation to the selected coordinate

system.

Position format

Select position format

Joystick directions

Displays current joystick directions, depending on setting in
Motion mode.

111

Align... Align the current tool to a coordinate system
GoTo... Move the robot to a selected position/target.
Activate... Activate a mechanical unit.

— Manual Guard Stop
=V @& DESKTOP-MM2GVEC Stopped (Speed 100%) X

& Jogging - Motion Mode

Current selection: Axis1-3

Select motion mode.

% U ©

Axis 4- 6 Linear Reorient

OK Cancel

T_ROB1 ROB_1

Figure 8.8. RobotStudio® - The Jogging menu — Motion Mode

Production window

The Production window (Figure 8.9) is used to view the program code while
the program is running.

— Auto Motors On
= \/ E]& DESKTOP-MM2GVEC Stopped (Speed 100%) .
@ Production Window : <No named program> in T_ROB1/modRobotStudio/main
42 ENDPROC
43
44 PROC main ()
E- MoveJ RelTool (pTurnTablePosROB2,0,0,-100) ,v20
46 nZoffset:=0;
47 WHILE TRUE DO
48 PickPanel; /
49 IF diPlaceCellInBuffer=1 THEN o ~0H -
50 PlacePanelInControlBuffer; e ' Z %X/
s1 ELSE : /4
52 PlacePanelOnOutFeeder; ——- Ld Tt
53 ENDIF
54 ENDWHILE
55 ENDPROC
|L,°r:;'mm_" PP to Main Debug

EE %

Figure 8.9. RobotStudio® - The Production menu illustration

112

The functions available in Production menu are presented below:

Table 8.3. Functions in Production menu

Load Program... load a new program.
Move PP to Main move the program pointer to the routine main
Debug * Modify Position

¢ Show Motion Pointer

¢ Show Program Pointer

¢ Edit Program.

Debug is only available in manual mode.

Program editor

The Program editor (Figure 8.10) is where you create or modify programs. You
can open more than one window of the Program editor, which can be useful
when working with multitasking programs, for instance. The Program editor
button in the task bar displays the name of the task.

— @Q Motors Off 5 x
=V ¥\ | DESKTOP-MM2GVEC Stopped (Speed 100%)

.UE <No named program> in T_ROB1/Module1/Path_10

Tasks and Programs v‘ Modules

9

CONST robtarget Target 20 —[%ﬁ&

CONST robtarget Target 30:=[[

CONST robtarget Target 40:=[[525.424,-18 .
PROC Path 10() e

1
L
Movel. Target_lO,leOO,leO,MyTool\%‘f. -0ty H
MoveL Target_20,leOO,leO,MyToW b ‘

»
MoveL Target 30,v1000,z100,MyTool\W v

10 MoveL Target 40,v1000,z100,MyTool\W \ Hold To Run
11 ENDPROC
—
12 |ENDMODULE
Add - A A Modify Hide
Instruction Edit Debuyg Position Dedlarations

2

Production

Figure 8.10. RobotStudio® - The Program Editor menu illustration

The functions available in Program Editor window are presented below:

113

Table 8.4. Functions in Editor window

Tasks and programs

Menu for program operations

Modules

Lists all modules,

Routines

Lists all routines,

Add instruction

Opens instruction menu,

Edit

Opens edit menu,

Debug

Functions for moving the program pointer,

Modify position

Modifying positions by jogging the robot to the new position

Hide declarations

Hide, for example, constant or variable declaration

Program data

The Program data view (Figure 8.11) contains functions for viewing and
working with data types and instances. You can open more than one window
of the Program data, which can be useful when working with many instances

or data types.

— Manual Guard Stop
=V Q‘) DESKTOP-MM2GVEC st 9
aa) opped (Speed 100%)
& Program Data - Used Data Types
Select a data type from the list.
Scope: RAPID/T_ROB1
cdock loaddata num B Enable
robtarget string tooldata
wobjdata
Show Data

Production T_ROB1
[@ Window [»U—:| modRob...]

Program
Data

Figure 8.11. RobotStudio® - The Program Data menu illustration

The functions available in Program Data window are presented below:

114

Table 8.5. Functions in Program Data window

Change scope changes scope of data types in the list
Show data shows all instances of the selected data type
View shows all or only used data types.

The Quickset menu

The QuickSet menu (Figure 8.12) provides a quicker way to change among
other things jog properties rather than using the Jogging view. Each item of
the menu uses a symbol to display the currently selected property value or
setting. Tap the Quickset button to display available property values.

— @ Manual Guard Stop
=V & DESKTOP-MM2GVEC Stopped (Speed 100%)

-V

Hold To'Run

A
Figure 8.12. RobotStudio® - The buttons in the Quickset menu

The table 8.1 describes the buttons in the Quickset menu.

Table 8.6. The buttons in the QuickSet menu

@ Mechanical unit, @ Step Mode,
@ Increment, @ Speed,
@ Run Mode, @ Tasks (to stop and Start)

115

Workshop 9: Creating a robotic station
using RobotStudio®

116

9.1. Aim of the workshop

The aim of this workshop is for the students to know how to develop and
simulate a robotic cell/ system with one or more industrial ABB robots using
RobotStudio®.

9.2. Creating a robotic station using RobotStudio®

When following the next steps, a person will be able to develop and simulate
a robotic system using RobotStudio®:

Step 1: Select and integrate a robot from the RobotStudio® database and
integrate it in the scene

Step 2: Select a tool (from the RobotStudio® database or a user defined tool)
and attach it to the robot

Step 3: Import the needed auxiliary equipment (ex. the conveyor defined
within the workshop 5 or a part positioner or other mechanism)

Step 4: Define the controller for the integrated robot and auxiliary
equipment

Step 5: Generate some 3D models that will be used as workobjects within
the robotic system using RobotStudio ® facility (ex. 3D cubes)

Step 6: Define the target points (position and orientation of the tool in the
targets) that the robot has to “touch”

Step 6: Orient the tool in each targetpoint and find a suitable configuration
of the robot’s structure within each targetpoint

Step 7: Generate the path(s) that the robot has to “follow”
Step 8: Simulate the movement of the robot along the generated path(s)
Step 9: View the generated RAPID program

Each of the eight above steps will be detailed by a set of figures (captured
from RobotStudio®) for exemplification and better understanding.

117

Step 1: Select and integrate a robot from the RobotStudio® database and
integrate it in the scene

VA9 [Unsaved Station] - ABB RobotStudia 6.05 - a =

3 2 @ .
e s Qg Pevab O | o |

110

00 050 060

Figure 9.1. RobotStudio® - Select and integrate a robot in the scene

118

Step 2: Select a tool (from the RobotStudio® database or a user defined tool)

and attach it to the robot

9Pd2-0- 3 [Unsaved Station] - ABB RobotStudio 6.05

B o | oo seen Courte e
? @ e G L FLE :; - e
482 UWmGGA Robot | mpor Frame Twgst it e 2
Ubrary + Ubraty . System - Geometry FE B

5 suth Programmeg sengs

L ol

ANGIPSEZS Bres WHASSD

Detauty

Trsining Objects

Curve Thing myToo propele

propelis table

T License irfoematon: School Edton
1) New stabon crested.

1 Impord CProge

Selecion Level = Saap Mode = UcS: sation 000 000 000

Figure 9.2. RobotStudio® - Select a tool for the robot

&
)
F e view
B e .
Y 5 O; o showmas
TAT RO TEE | pamese
Cormalee Freshang Gtk
Tx
Time Camgony A
S15/2017 83746 AM General
EBATETAN Genesl
61,6021 GERTERTAN Geneea ;

MOseL = * Y1000, 2100 * 1000 * \WOBJ=Wot0 =

B @9t s [Unsaved Station] - ABS RobotStudio 6.05 - a8 x
N o | voong seuwon cowoie mew adde -9
; = o @ | T Ostaut [V] E i oo view
L - ockry. = syehmn+ | Goomsetry <1 0 PP Ol e Tool oolo AT Pk T mamesae -
suid taicn sath rogramming setirg: Conrolr Freshand araphis
[Corout [petratargets [Tag5| = x| View! x -
I (unsaved Sbor”
I Fets00 6 1m_0 E
i7 MyToo!
& o CirkeX
W Copy crleC
]
% | Dsconnec Lbrary
«
4 Link
e
e
N ke
& e
L
[» —K
| nere Showmessages fom Al messages Time Cagory ~
L 1) MyTool detached fom Links: 152017 84516AM General
1) Undln: My Tocl detached from LinkG 15201784521 AM General
615201784526 AM. General

1) MyTool detached hom Lkt

MiToal detathed frem Links

Selection Level * Saap Mode * | UCS: Station. 9302 5973 000

Figure 9.3. RobotStudio® - Attach the tool to the robot

Mavel. ~ * 41000 * 2100 * Iooll * {WOkj=wotyl ©

119

Step 3: Import the needed auxiliary equipment (ex. the conveyor defined
within the workshop 5 or a part positioner or other mechanism)

L EILEE saved Statlon) - ABB RobotStudo 605 .
i Add - @
] @ @
h , auaphics | ¥
oo g Basa T L
s

W | i fobot | mpon e Tager ean e 2
a2 e 3420

e 3200 8 580

LLA L=,
VR e

W\z¢\§¢\f¢ﬁy
-

5
Figure 9.4. RobotStudio® - Import a part positioner form the ABB library

[Unsaved Station] - ABB RobotStudio 6.05

Selecion Leve fewp Mode.© UCS: Sadon | 2606 31 25059 000 Y1600, 2100 * 1000, ° \WObj Wb

Figure 9.5. RobotStudio® - Import a workobject form the library

120

Step 4: Define the controller for the integrated robot and auxiliary
equipment

5 (Unsaved Sison’
I reo6 i
& Woa

&P tsble_and ot o

% ’;'j.f"“.'“ o

o S

[Unsaved Station] - ABB RobotStudio 6.05

JABB ndstial IT\Rcbobes ITRobosStudio
JABE nchatisl ITRcbobes TRobosS

S\ABE Library PostcnersREP AURBP_A2S
JABE Library\Trasning Objectsipropaer_tabl_ 6/15/2017

Selacnon Lowl * Sran Mods * | e Statian

20631 25063 000

Create System From Layout

System Options
Configure the system options

Edit
Options.. TaskFrame(s) aligned with

IRB1600_6_120__02

Summary

System Name: System&
Using Media:
Media:
Mame: ABEB Robotware
Version: 6.05.0129
Options:
RobotWare Base
English
Drive System IRB 120/140/260/360/9105C/1200/1400/1520/1600/16601D
ADU-T90A in position X3
ADU-790A in position Y3
ADU-T90A in position 23
Axis Calibration
IRB 1600-6/1.2

Help Cancel <Back

FEinish

MaweL + % ¥1000.* 2100 * toD * \WOBLsweb0 *

Figure 9.6. RobotStudio® - Define the controller for the integrated robot and auxiliary

equipment

121

Step 5: Generate some 3D models that will be used as workobjects within
the robotic system using RobotStudio ® facility (ex. 3D cubes)

Wa-

LA LR

[Unsaved Station] - ABB RobotStudio 6.05

SLs
Cuve - 1o Foint M4

a1 MAcbobes TRobos

ste Med
S
o 6 05AB8 LisarPosonasIREP AJRBP_A
=l Shoio 6 0AB0 Liany
] Selecton Lo+ Srap Mods.* | UCS: Stabon| 260531 26065 000 Controller g 01
View!
@00
000
Goar || Cuame || Clote

(o | Modeling [Tagn [s |+
I anon

2 x| view x

L.

Figure 9.7. RobotStudio® - Generate two 3D models - a cube and a cylinder using
RobotStudio facility

122

Step 6: Define the target points (position and orientation of the tool in the
targets) that the robot has to “touch”

[Unsaved Station] - ABB Robotstudio 6.05

5 (Unsaved Stsonr

I reons im_w "

&7 WyTool g o rmentan
&Pt =
P a2

&P tsble_snd_btue_140

| output

Show messages hom Al messages Canagory
i) Sysims (Saco) 10000 Program aced Eventtog
1 Sold resed P Geneal
1) Sel creoed P 2 WSTIVEAN Genersl
Eop—— Soacicn o rup Moda. | UGS saben 17716 2%0% 0 [T —— |
v o = [Unsaved Station] - ABB Robotstudio 6.05 =
BN e | raosieg -9
L4 40 R . workg
oy - Lty o EQa Bana
Gt Target
[
wons
] Ak Torgwih csestPon
Posuanney
O)

Onentaton (dag)
00 2o

& reons 1m0
& Wo

& Pas

& P2
&P mbio_and_bawe_140

| Outpunt
o m———— > T Caregory -
1Sy (Siton) 10040 Program oaced Eettog
Sotd crested PocL.1 General
el cestad Pt 2 Genera 5
Sokchon v rap Mode | Ucs satan 41 72 14652 3000 PR E— |

Lot | PataTurgets | Tagn = x| view x
X jod Staten]

3
4 5
4 4 108
2 Tooan
4 X Weobiuch & Twgets
4 L wonio
4 g wobfo,of
@ Tape10
® Tou 20 —
@ Tope 0
@ TapeLa0
() Pothe & Proceduees

Figure 9.8. RobotStudio® - Define the robot targets points

123

Step 6: Orient the tool in each target point and find a suitable configuration
of the robot structure within each target point

V-5 [Unsaved Station] - ABB RobotStudio 6.05 o N
B o | tocking seuon cowole mwn sk =9
< ;2 @
G L FALABE
mpot frame Twget Puh Ot

R Topet 16 =] Vi %
Reece
tocl

Rotate around x.y.2
oo B
s endpointx y.2

Rotaton (deg)
=

[Aoply | | Closw
Loyt | PathaaTargets | Tacs = x|
I UnawvedStoton)

[Sston Elaments
4 2 Sysems

+ 4 TROBY

2 Tookdats

4 4 Woaodject & Tages
4t wobio
4 1 wobof
D Tagm0

Targe 40
(@ Pathe & Procadass

[oot
Fe————
5ot o P 2
o e i bt

) Object rotated 8]

Otyectromed seecicn vl o Mods | Ucs stton (84172 14652 30000 Mol 1000 = 2100+ ayroos - wobewcor - |

va [Unsaved Station] - ABB RobotStudio 605 FERETS

[[_ —_— ‘ o .0
Bresonr

&P [scect Rovor Configurstion
A

[®

999 o Al massages
—r
o entemal ans vaives.

) Onjoctotated [13)

e 10 Torgen T soecaon ol svop Nods = | Ucs: staven (54172 19652 30850 Mo =+ ¥1000 = 3100 - Myloat = \wob-venr - |
Loyt | PatlTargets | Togs = x| Viewl x s
J (unsaved Staton)
23 Staton Elaments
4 Spsams
4 g TROBY
1 Tooian
4 G Wosabject & Targess
+ T wob
4 T wobjl_of
@ Tage10
@ Tage2
@ Taget 30
@ Tageso
@ Paths & Procedes

Figure 9.9. RobotStudio® - Define the orientation of the tool in each target point and the
robot configuration

124

Step 7: Generate the path(s) that the robot has to “follow”

3 Teach Target

W 7each structon

Layest | Paths&Targets | 1
I tunssvedstaton)
[Staton Elements
4+ 6 Syatems
4 44 T.ROBI
3 Tookata
4 4@ Woskobjects & Targets
4 L wobj
4 1 wobi_of
@ TargeL0
@ Targe 20
@ Taet %0
® Tops 20
4/, Paths & Proceduess

¢ Moved Target 30
w0 Moved Target 40

View Robot at Target

[Unsaved Station] - ABB RobotStudio 6.05

worky

SyrhEnze e 17 JhOy O &

freehand

@ Tivewver
o

@ showhice

‘Show messages flom Al messages
) Syssems (Staton) 10151 - Program stared
1) Systems (Staton} 10122 - Program sopped
{)MyTool atached to FB1600_6_120_02

MyToo) atiached to RB1600.6.120_02

Va9 ® [Unsaved Station] - ABB RobotStudio 6.05
= T
o G b FeE T
100yt | ot | gt |t o |
el b S L e T A e N e
P ra s

Time

61520179348 AN
1520179408 AN
615201793746 A0

Selacion Lewl * Srp Mods *

T T ADBISptomS g o
B werkcbjee wobin :
Mubowe | T © swdvnze w7 Poyeh -
Sefings Controlier Freetand

UGS Statian 47261 47429 000

> x|

Category
Eventlog
Eventlog
General

Mt 0080 * 21 ° Myt wotgevoys * RN

- @
@ | Tvenvw
Graghics | & TOuME
Tooks |l Framesae -
Gaphics

[Layout | PatruTargess
' tunsavodiaion]
.3 SistonElemeris
4 1 Sysiems
4 4i T_ROBY
(&l Tookian
4 8 Viwobjecs 8 Targets
4 1 wobio
4 T wabilLol
@ Tagst10
@ Togei20
@ Tapel30
@ Tapet0
4 () Paths 8 Procedires
7 panto
= MoveL Target 10
= Movel Tagel 20
= Mouel Target 30
= MousL Target 40

L.

Output
‘Show messages fom Al massages

1 Confiueaten assigned to Target 40
1) Path cresied [Path_10}

14 mave nswuctions) reated

4 mave insruciions) created

Time
15201792616 AM
15201792824 AM
15201782831 AW

Seection Level * Srup Mode ©

CS: Station (68166 50337 000

=
Category ~
General
General
General

Mavel * 1000 * 2100 * MyTeol ~ \Wot=ucoy - [IAROISRBRNEIN

Figure 9.10. RobotStudio®

- Define one or more path (trajectory) for the robot

125

Step 8: Simulate the movement of the robot along the generated path(s)

Seacson el Smap Mode = | Ucs Staan 65155 G437 600 [FEEEITeEErTT e —— |

Synchronize to RAPID

Name Synchronize Module Local Storageclass Inline
4 E Systemb
4 43 T _ROB1
4 | 1] Paths & Targets
I o Path_10 Modul [
4 |7 ToolData
4 MyTool Calibl [PERS ~
[£3 WorkObject

Figure 9.11. RobotStudio® - Simulate the movement of the robot along the generated
path(s)

126

Step 9: View the generated RAPID program

[Unsaved Station] - ABE RobotStudi 6.05

“ Wome ModHing P
mom L e

| a0 Tasks step in B 3
[— A @ mEee g D5 ® @ -4 @ [©
e Formet. Ouing 5 nd/ compare sust cted Snt rack Srognn Breskport
chims OTNE Bad i | Sepet @ (D) negi - Dprogram - otargess Tasks - 00 stem e Progrn Rt T prome -
sccess. e - et Cantrater Testand Db
Contretler | Fiss | = x| vier | Systems tstation) x|
Cuent Staon | | 7 ROB1 Modulet x|
4 B Sysenss 1 PEOULE Moduler |
[HomE D5 CONST robtarget Target_10:=[[839.54,-139.807,304.862] , [0.130526192,0, -0, 991484861,0] [-1,8, -1,0], [9E+09, 9609, 9E 429, 5E+09, 9E 09, 96409) | ;
b 1 Cougurnion 3 CONST robtorget Target_20:=[[943.769, -125,313.282],[8.138526192,0, 0.091424861,8], (1,8, -1,8] , [3E+83, OF+89, 9E 109, 96 480, 9E 109, 96489 | ;
- CONST robtargat Tanget_30:=[[942.558,123.744,3231,(0.130526192,0, -0.991444861,0], [0, -1,0,0], [9E+09, 96409, 9405, 56409, 96 409, 9540911
& Everelog CONST robtorget Tangot_43:=[[841.718,146.917, 3081 [8.139516152,0, -6. 99144485181, [8, -1,0, 8], [SE+99, 9E+89, 96499, 3£ 199, 9E+89, 96+03]
I 0 Sysiem ¢ PROC Path_10()
4 T rwen Movel Target_10,v1809, 100, My Tool \HObj : =wobiie;
+ % T RoBY] Pove) Target_ 26,1000, 160, My Teol \HOb] : =uobio;
grom Moskes s Mowa) Target_30,v1000, 109, My Tool \Wobi
3 cowoss 10 Move] Target_a8, v1863, 1164, My Tool \WDb:
. 1 ENDPROC
S vt 12 EHoAODULE
] Mode
&) Base

Comiole Sus | Owiput | AP Wtch | Seich Acsls | Simlason watch | RAPE Col Sick | RAPD Breskpors |
‘Show masszgas fom Al messages .

Tima Casgory
) Sysmam [Stateny: 10053 - Regain raacy 15201793408 AM [——
1 Sysher (Staton] 10751 - Program staried 15201783908 AN EventLog
1Sy (Staton] 10122 Program smoped 15201703408 AM Evertlog

Figure 9.12. RobotStudio® - View the generated RAPID program

127

Workshop 10: Examples of robotic cells
and RAPID programmes developed in
RobotStudio®

10.1. Arc welding one robot cell overview

Demo AW Station - ABB RobotStudio 6.05

Figure 10.1. RobotStudio® - Arc welding one robot cell — view 1

Demo AW Station - ABB RobotStudio 6.05

Figure 10.2. RobotStudio® - Arc welding one robot cell — view 2

128

10.2. RAPID program of the arc welding one robot cell

MODULE mPart_1

Examples of defining constants, targets and variables at the beginning of
the program application - RAPID program

CONST jointtarget jt_1:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST jointtarget jt_2:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST jointtarget jt_1_2:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST jointtarget jt_2_2:=[[0,-40,0,0,30,0],[9E9,0,0,9E9,9E9,9E9]];
CONST robtarget p3:=[[153.054345246,19.898332596,243.218173048],
[0,0,-0.707106781,0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9]];
CONST robtarget p5:=[[230.532452302,19.898332596,279.670326794],
[0,0,-0.707106781,0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9]];
CONST robtarget p6:=[[308.054345246,19.898332596,194.999919243],
[0,0,0.707106781,-0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9];
CONST robtarget p7:=[[261.673155788,19.898332596,119.279463141],
[0,0,-0.707106781,0.707106781],[-1,0,-1,0],[9E9,-90,-90,9E9,9E9,9E9]];

Examples of robot moving instructions (ex. MoveJ, MoveAbsJ) and
welding parameters (ex. ArcLStart, ArcCEnd) - RAPID program procedure
PROC Part_1_Pth_1()

ActUnit STN1;

MoveAbs) jt_1,vmax,fine,tool0\WObj:=wobj0;

Movel p1,v1000,z10,tWeldGun\WObj:=Workobject_1;

ArclLStart p2,v1000,sm1,wd1,fine,tWeldGun\WObj:=Workobject_1\

SeamName:="Part_1 _Pth_1 Weld_1";

ArcL p3,v100,sm1,wd1,z1,tWeldGun\WObj:=Workobject_1;

ArcC p5,p6,v100,sm1,wd1,z1,tWeldGun\WObj:=Workobject_1;

ArcCEnd p7,p8,v100,sm1,wd1l,fine,tWeldGun\WObj:=Workobject_1;

Movel p4,v1000,z10,tWeldGun\WODbj:=Workobject_1;

Movel p17,v1000,z10,tWeldGun\WObj:=Workobject_1;

ENDPROC

Examples of activating and deactivating the part positioner procedure —
RAPID program procedure

129

PROC Intch_Pth_2()
DeactUnit STN2;
ActUnit INTERCH;
MoveAbs) jt_5,vmax,fine,tWeldGun\WObj:=wobj0;
MoveAbs) jt_6,vmax,fine,tWeldGun\WObj:=wobj0;
DeactUnit INTERCH;
ENDPROC

Examples of calling different procedures (ex. Intch_Pth_1) — RAPID
program procedure

PROC Intch()
Intch_Pth_1;
Intch_Pth_2;

ENDPROC

ENDMODULE

10.3. Arc welding two robots cell overview

O ERUR Demo Exhaust Pipe - ABB Robotstudio 6.5 - a8 x
B o oy sruses oot | wioo | adtn .9
Gl o : o
¢ ¢ N R i B o
v °
it
Controller | Fies % x| Derwo Exhaust PpeView] x | 1316030 AW (Sston)
CurentSiion
4 1 RE16000_AW ;}‘
[HOME

1§ Costiquation

Shon

rom e
) IRSP_K300_D1000-L2000_M2003_RE! 69217 33826PM

1 IREP_K300_D1000-L2000_M2008_REV? 01 7 ystem val 8201733826
IRSP_K300_D1000-L2000_M2003_REV1_O1: The kit of ot vatem R I3826PU Geoeral

Figure 10.3. RobotStudio® - Arc welding two robots cell - view 1

130

Demo Exhaust Pipe - ABB RobotStudio 6.05

Figure 10.4. RobotStudio® - Arc welding two robots cell - view 2

10.4. RAPID program of the two robots arc welding cell

MODULE mPart_1

Examples of defining constants work object: constants, targets and
variables definitions
CONST jointtarget jt_1:=[[0,-30,0,0,30,0],[9E+09,9E+09,9E+09,9E+0Q9,
9E+09,9E+09]];
CONST jointtarget jt_2:=[[30.221811228,40.422424714,-36.801483469,-
12.474192193,81.143214245,44.495178556],[9E+09,9E+09,9E+09,9E+09,
9E+09,9E+09]];
CONST jointtarget jt_3:=[[30.221811228,40.422424714,-36.801483469,-
12.474192193,81.143214245,44.495178556],[9E+09,9E+09,9E+09,9E+09,
9E+09,9E+09]];
CONST jointtarget jt_4:=[[0,-30,0,0,30,0],[9E+09,9E+09,9E+09,9E+Q9,
9E+09,9E+09]];

VAR syncident s1;

VAR syncident s2;

VAR syncident s3;

VAR syncident s4;

VAR syncident s5;

131

VAR syncident s6;
VAR syncident s7;

Examples of calling different procedures (ex. Intch_Pth_1) — RAPID
program procedure

PROC Part_1()
Part_1 Pth_1;
Part_1 Pth_ 2;
ENDPROC

Examples of defining the arc welding parameters — RAPID program

procedure

MODULE ProcessData

PERS tasks rir2p1{3}:=[["T_ROB1"],["T_ROB2"],['T_POS1"]];
TASK PERS seamdata sm1:=[0.2,0.05,[0,0,0,0,0,0,0,0,0],0,0,0,0,0,

[0,0,0,0,0,0,0,0,0],0,0,(0,0,0,0,0,0,0,0,0],0.1,0,(0,0,0,0,0,0,0,0,0],0.

05];
TASK PERS welddata wd1:=[20,10,[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0]];

ENDMODULE

Examples of robot moving instructions (ex. Movel, MoveAbsJ) and

welding parameters (ex. ArcLStart, ArcCEnd) - RAPID program procedure

PROC Part_1_Pth_1()
MoveAbs) jt_1,v1000,fine,tool0\WObj:=wobj0;
SyncMoveOn s1,rlr2p1l;
MovelJ p1\ID:=10,vmax,z10,tWeldGun\WObj:=r1_s1;

ArcLStart p2\ID:=20,v1000,sm1,wd1,fine,tWeldGun\WObj:=rl1_si;

ArcC p4,p3\ID:=30,v100,sm1,wd1,z1,tWeldGun\WObj:=r1_s1;
ArcC p6,p5\ID:=40,v100,sm1,wd1,z1,tWeldGun\WObj:=r1_s1;
ArcC p8,p7\ID:=50,v100,sm1,wd1,z1,tWeldGun\WObj:=r1_s1;

ArcCEnd p10,p9\ID:=60,v100,sm1,wd1,fine,tWeldGun\
WObj:=rl_s1;

Movel p11\ID:=70,v1000,fine,tWeldGun\WObj:=rl1_s1;
SyncMoveOff s2;

MoveAbs) jt_2,vmax,fine,tWeldGun\WODbj:=wobj0;
WaitSyncTask s3,r1r2p1;

MoveAbs) jt_3,vmax,fine,tWeldGun\WObj:=wobj0;

132

SyncMoveOn s4,rlr2pl;

MovelJ p12\ID:=10,vmax,z10,tWeldGun\WObj:=r1_s1;
ArcLStart p13\ID:=20,v1000,sm1,wd1,fine,tWeldGun\
WObj:=r1_s1\SeamName:="Part_1 Pth_1 Weld_2";

ArcLEnd p14\ID:=30,v100,sm1,wd1,fine,tWeldGun\WObj:=r1_s1;

Movel p15\ID:=40,v1000,fine,tWeldGun\WObj:=r1_si;
SyncMoveOff s5;
MoveAbs) jt_4,vmax,fine,tWeldGun\WObj:=wobj0;
WaitSyncTask s6,rlr2p1;

ENDPROC

ENDMODULE

10.5. Arc welding four robots cell overview

D@9-0-= Demo FlexLoader - ABB RobotStudio 6.05 8 X
ome | Modding Smulston Colle RPD Addns -9
2 E Teach Targ o T T.ROB(Flex . e Vi
@® @ Xﬂ ot @ g,g g B each Target R = RO Fedoader) ; o | @ Eveve
ABB Impot Robot mpont T A | i B Teach Istruction “;‘M Workobject wobj s Gaghs showHice -
Cheary - Gy - Spem - Geomey - | o O BvewnobotatTaget ™ ool w000 S| Sz ¢ QF PR | TS | ranesar -
auld Suton PithFrogramming 5 setings Cortroler Freehand Gaphics
[Layout | utwazarges [Tags | = || Demo FlesosderView! x|
Jf DemoFexoader

Mechanisms
& o606 15_R
5 we006 145_R3
& Re1600.6 145_Rs
¢ § wesmo_17s 05_R1
& P_S00_5_ 2001 _R2
& PHI_S00_d_M200_R3
o PHI_500_d_ 2001 _Rd
& Tscan
@ balk
B Fence
& FeCohama
& Foor
IRCS DrveNdodue_1
P IRCS Drwetdodule 2
P IRCS Doveldoduie 3
IRCS Drvellodie 4

¥ IROS. FlexConmoler 1
B LightGuard
& Roborstand 2
& RobofStand 3
§ Frame 1 z
Y Frame 2
& Frame 5
LR Y
R
oL
N ™ Output
Showmessages fom Al messages . Tme Categoy A
1) Fiedoader (Staton) 10017- Automatc mode confimed GHANT40UPK Evertlog
) Finboadsr (Siton) 1010-okors OFF sate ST UPH Evertlog
1) Flexdoader (Staion) 10011 - Motors ON state SAN1742020PM Evertlog
v
Fledoader (Sutoni; 10011 - Motors ON state Selecton Level ~ Snap Mode * LiCS: Stabon. 000 000 00 Mol * 1100 * 2100 oot * \WObgewco -

Figure 10.5. RobotStudio® - Arc welding four robots cell — view 1

133

o M-

=

5
Wy » U

Layout | PathsATars
J§ DemoFedasder

J w006 4s_R
J rens s m
& Re1600.6_145_R4
& IRBETN_175_305_R1
& ProL500_6 aoo R
o) PS03 Ma001_R3
&) PHLE0_8 20T R
& TScan

& bak
B Fen

& FoColamn

& Foor

¥ IRCS Doveldodue_1
P IRCS DrveNloduke 2
P IRCS Devetdoduie 3
P IRCS Doveldodie 4
& IRCS FloComole, |
B LightGuard

& Robotstand 2

& Robortand 3

% Frame_1
& Frame_2
4 Frme 5
el
oR
o
LR

Demo FlexLoader - ABB RobotStudio 6.05

8 e
e ¢ Q paod: TR

Tme
AN UPM Eventl
A4 14PU Evertlog
69201742020PM Evertlag

v
Fexioader (Statiris 10011 - Motors ON sate Seecion el * Snap Mode | LS Staton (000 000 000 Moset * * ¥1030 * 2120 * 100l * \WOkj=woo * (RIS

Figure 10.6. RobotStudio® - Arc welding four robots cell — view 2

10.6. RAPID program of the four robots arc welding cell

MODULE Modulel

Examples of defining constants work object: constants, targets and
variables definitions

VAR syncident ident1;
PERS tasks

task1{4}:=[["T_ROB1"],["T_ROB2"],["T_ROB3"],["T_ROB4"]];

VAR syncident ident2;

VAR syncident ident3;

VAR syncident ident4;

VAR syncident ident5;

VAR syncident ident6;

PERS tasks task4{3}:=[["T_ROB1"],["T_ROB2"],["T_ROB3"]];
VAR syncident ident7;

VAR syncident ident8;

VAR syncident ident9;

CONST robtarget pHome:=[[1369.51290546514,

37.4666443316968,1010.78350359101],[0.745592277204196,0.01481977

134

93186134,0.66466353261722,0.0457702820966485],(0,-1,0,1],
[9E9,9E9,9E9,9E9,9E9,9E9]];

CONST robtarget pOver:=[[2078.6090717597,35.5392515079451,
1357.92304563372],[0.636059946803591,-0.0273127221326822,
0.771147462664317,-0.00365378000185044],[0,-
1,0,1],[9E9,9E9,9E9,9E9,9E9,9E9]];

CONST robtarget pLoad:=[[-1606.02370263678,-
38.0457751002972,675.609388963257],[0.133106755464876,-
0.0305372750704237,-0.990630939577537,0.000638774305297796],[0,-
1,0,7],[9E9,9E9,9E9,9E9,9E9,9E9]];

CONST robtarget pUnder:=[[2026.43017232093,
41.7456192089369,1534.29951708203],[0.91945264701403,-
0.0277764081076071,0.392048066563009,0.0115591762569867],(0,-
1,0,1],[9E9,9E9,9E9,9E9,9E9, 9E9][;

CONST robtarget pFront:=[[2530.56390764596,
41.3940929579109,1569.72454292973],[0.492426348032876,0.00122286
152930768,0.870261854609902,0.012613515910265],[0,0,0,0],[9E9,9E9,
9E9,9E9,9E9,9E9]];

Examples of calling different procedures (ex. Intch_Pth_1) — RAPID
program procedure

PROC main()
ToHome;
Over;
WaitSyncTask ident1,taskl;
WaitSyncTask ident2,task1;
Under;
WaitSyncTask ident3,taskl;
WaitSyncTask ident4,taskl;
WaitSyncTask ident5,task1;
Front;
WaitSyncTask ident6,taskl;
WaitSyncTask ident7,taskl;
FlipToBackside;
WaitSyncTask ident8,task1;
WaitSyncTask ident9,task1;
FlipToFrontside;
Toload;

135

ENDPROC

Examples of robot moving instructions (ex. Movel) - RAPID program
procedure
PROC FlipToBackside()
Movel pFlip_01,v1000,z100,tool0\WObj:=wobj0;
Movel pFlip_02,v1000,z100,tool0\WObj:=wobj0;
Movel pFlip_03,v1000,fine,tool0\WObj:=wobj0;
ENDPROC

Examples of robot moving instructions (ex. Movel) - RAPID program
procedure
PROC FlipToFrontside()
Movel pFlip_02,v1000,z100,to0l0\WObj:=wobj0;
Movel pFlip_01,v1000,z100,tool0\WObj:=wobj0;
Movel pHome,v1000,z100,tool0\WObj:=wobj0;
ENDPROC

ENDMODULE

10.7. Assembly two robots cell overview

E s Demo Solar Simulation - ABB RobotStudio 6.05

26!

Figure 10.7. RobotStudio® - Assembly two robots cell — view 1

136

Demo Solar Simulation - ABB RobotStudio 6.05

8 e @

oo TR OF T S

ot 13194 100630 400 [P —
Figure 10.8. RobotStudio® - Assembly two robots cell — view 2

ize the hepe does ot resoe to.a v | Selecton Level * Srap Mode taton

10.8. RAPID program of the two robots assembly cell

MODULE modRobotStudio

Examples of defining constants work object: constants, targets and
variables definitions

CONST robtarget pTurnTablePosROB2:=[[0,4.89842541528954E-16,4],[-
6.12303176911189E-17,1,-1.61279309130843E-
47,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]];

CONST robtarget pOutFeederPos:=[[200.016009205003,
399.937244742038,6.99993896484363],[-2.01362528565985E-
22,0.999999999994593,3.28860826072754E-06,-6.12303176907878E-
171,[1,0,1,0],[9E9,9E9,9E9,9E9,9E9,9E9]];

CONST robtarget pBufferPosROB2:=[[224.500035230801,
100.00001157408,166.454416191376],[4.32963728535968E-
17,0.707106781186547,0.707106781186548, 4.32963728535968E-17],[-
1,0,-1,0],[9E9,9E9,9E9,9E9,9E9,9E9]];

PERS num nZoffset:=-4;

137

Examples of robot moving instructions (ex. Movel), conditional
expressions (ex. IF, ELSE) and signals (ex. SetDO)- RAPID program
procedure

PROC PlacePanellnControlBuffer()
Movel RelTool(pBufferPosROB2,0,0,-
100),v1000,z10,tGripper\WObj:=wobjBuffer;
Movel RelTool(pBufferPosROB2,0,0,nZoffset),v100,fine,tGripper\
WObj:=wobjBuffer;
IF diBufferFull=1 THEN
nZoffset:=0;
ELSE
nZoffset:=nZoffset-4;
ENDIF
SetDO doVacuumOn,0;
WaitDI diVacuum,0;
Movel RelTool(pBufferPosROB2,0,0,-
100),v1000,z10,tGripper\WObj:=wobjBuffer;
ENDPROC

Examples of robot moving instructions (ex. Movel) and signals (ex.
SetDO)- RAPID program procedure

PROC PlacePanelOnOutFeeder()
Movel RelTool(pOutFeederPos,0,0,-
100),v1000,z10,tGripper\WObj:=wobjOutFeeder;
Movel pOutFeederPos,v200,fine,tGripper\WObj:=wobjOutFeeder;
SetDO doVacuumOn,0;
WaitDI diVacuum,0;
Movel RelTool(pOutFeederPos,0,0,-
100),v1000,z10,tGripper\WObj:=wobjOutFeeder;
ENDPROC

Examples of robot moving instructions (ex. Movel) and conditional
expressions (ex. IF, ELSE) - RAPID program procedure

PROC main()
Movel RelTool(pTurnTablePosROB2,0,0,-
100),v200,fine,tGripper\WObj:=wobjTurnTableROB2;
nZoffset:=0;
WHILE TRUE DO
PickPanel;
IF diPlaceCellinBuffer=1 THEN

138

PlacePanellnControlBuffer;
ELSE
PlacePanelOnOutFeeder;
ENDIF
ENDWHILE
ENDPROC

ENDMODULE

139

Bibliography

[1] ABB, Technical reference manual RAPID Instructions, Functions and Data
type, 3HAC 16581-1, 2017

[2] ABB, Operating Manual RoboStudio 6.05, 3HAC032104-001 Revision: T,
2017

[3] ABB, Operating Manual RoboStudio 5.61, 3HAC032101-001 Revision: T,
2016

[4] RobotStudio® Help 6.05

[5] RobotStudio® software application versions 5.60, 5.61, 6.05

140

	RobotStudio
	Table of Contents
	Workshop 1: Getting started with RobotStudio
	1.1. Introduction
	1.2. RobotStudio® - terms and concepts
	1.3. RobotWare
	1.4. RAPID concepts
	1.5. Programming concepts
	1.6. Paths and targets
	1.7. Coordinate systems
	1.8. MultiMove Coordinated systems
	1.9. Robot axis configurations
	1.10. Installing and licensing RobotStudio

	Workshop 2: Introduction in RobotStudio® environment
	2.1. Aim of the workshop
	2.2. Theoretical notions

	Workshop 3: Define Targets and Paths (trajectories)
	3.1. Aim of the workshop
	3.2. Robot Targets

	Workshop 4: Collision Control & Create a mechanism
	4.1. Aim of the workshop
	4.2. Collision Control
	4.3. Tool mechanism

	Workshop 5: Create the Conveyor’s Mechanism and Programming MultiMove systems
	5.1. Aim of the workshop
	5.2. Create Conveyor Mechanism
	5.3. Programming/Setting up/Testing MultiMove systems

	Workshop 6: Create a smart component tool
	6.1. Aim of the workshop
	6.2. The smart component’s definition

	Workshop 7: Create a path from a curve
	7.1. Aim of the workshop
	7.2. Defining an Auto path
	7.3. Edit a RAPID program in RobotStudio

	Workshop 8: Virtual FlexPendant from RobotStudio
	8.1. Aim of the workshop
	8.2. Virtual FlexPendant in RobotStudio

	Workshop 9: Creating a robotic station using RobotStudio
	9.1. Aim of the workshop
	9.2. Creating a robotic station using RobotStudio

	Workshop 10: Examples of robotic cells and RAPID programmes developed in RobotStudio
	10.1. Arc welding one robot cell overview
	10.2. RAPID program of the arc welding one robot cell
	10.3. Arc welding two robots cell overview
	10.4. RAPID program of the two robots arc welding cell
	10.5. Arc welding four robots cell overview
	10.6. RAPID program of the four robots arc welding cell
	10.7. Assembly two robots cell overview
	10.8. RAPID program of the two robots assembly cell

	Bibliography

