

FUNDAMENTAL ALGORITHMS

Laboratory Assignments Guide

Tudor Mureşan

Rodica Potolea

Camelia Lemnaru

U.T. PRESS

Cluj-Napoca, 2018

ISBN 978-606-737-293-9

 2

Table of Contents
Introduction ... 3

Assignment No. 0: Introductory Session ... 7
Assignment No. 1: Analysis & Comparison of Direct Sorting Methods 18

Assignment No. 2: Analysis & Comparison of Bottom-up and Top-down Build Heap
Approaches .. 26

Assignment No. 3: Analysis & Comparison of Advanced Sorting Methods – Heapsort and
Quicksort. QuickSelect ... 29

Assignment No. 4: Merge k Ordered Lists Efficiently .. 33
Assignment No. 5: Search Operation in Hash Tables ... 36

Open Addressing with Quadratic Probing ... 36
Assignment No. 6: Dynamic Order Statistics ... 39

Assignment No. 7: Multi-way Trees .. 42
Assignment No. 8: Disjoint Sets ... 44

Assignment No. 9: Breadth-First Search .. 46
Assignment No. 10: Depth-First Search .. 48

Bibliography .. 51

 3

Introduction

 General Requirements

For this laboratory you are asked to implement and analyze (empirically) the correctness

and efficiency of a number of algorithms. The programming language(s) are C/C++, the style is
procedural. You are not allowed to use any additional libraries, containing existing
implementations of necessary data structures or algorithms. The programming environment
installed in the lab is Visual Studio, but you may use any environment you feel comfortable with
on your own notebook. You are encouraged to use the pseudo-code provided at the
course/seminar to implement the algorithms, and employ any information from your
course/seminar notes. Also, keep a copy of the Introduction to Algorithms book by Thomas
Cormen et al. close, since you will probably need to consult it often while trying to solve the
assignments. For language-related information, use the MSDN library or Google search. We will
be using moodle for this lab, so all the materials you need will be posted there. You will have to
enroll in the current year course in the first lab session (the teaching assistant will provide the
key and any other necessary information).

Assignments and Grading

Each assignment will be graded individually. At the end of the laboratory sessions (Week

14 probably), you will be given a quiz test consisting of a small number of questions from the
assignments. The final mark at the laboratory is based on the average of the individual
assignment grades. Starting from this average, a penalty can be applied for constant late delivery
(check the delivery extensions sub-section). How well you do on the final quiz may influence the
final laboratory grade by 1 point (+/-).

Assignment deliverables

• Pseudo-code on paper (your implementation should start from the pseudo-code)
• C/C++ procedural implementation, code should be commented
• The source file should have a header (block comments) containing:

o Personal identification information (name, group)
o Problem specification
o Start and end date
o Special evaluation requirements if necessary
o Conclusions and personal interpretations, running time, best/worst

cases, memory, etc
• Running example(s): You must give a running example of your

algorithm/procedures, on reasonably small-sized input(s)

 4

• Analysis: generation and interpretation of output charts/tables, according to the
individual assignment requirements

Assignment delivery

The majority of assignments are 1-week assignments. At the end of the session, you have

to present your code+analysis+interpretation to the teaching assistant. If your assignment is not
complete, you present what you have so far. You are allowed to continue working at your
assignment and deliver it later (check the section on delivery extensions). When you consider
that your assignment is complete, upload the C/C++ source file using the form provided on the
moodle.

If you have more than one source file for your algorithm (excluding the additional .h files
you will be provided as supporting material during the lab sessions), upload a .zip archive
containing all your source files. Do not include specific environment project files! Do not use
any other archiving method (only .zip is allowed).

Assignment grading

Each assignment is graded incrementally – the requirements are to be completed

incrementally. Each assignment has four grading thresholds: grades 5, 7, 9 and 10. The
requirements for each grade are assignment specific and are provided in the assignment
description.

Delivery extensions

The majority of assignments are 1-week assignments. If, however, you do not finish by

the end of the laboratory session, assignments may have the following extensions:
• Extension_1: the assignment can be delivered at the beginning of the following

laboratory session, at the beginning of the session
• Extension_2: For maximum grade 8, some assignments can be delivered at the

beginning of the second following the original deadline (not all assignments have
Extension_2)

Note:
 ! Constant delivery of assignments (>50%) at Extension_1 may be penalized with 1
point from the final mark.
!! Constant delivery of assignments (>50%) at Extension_2 may be penalized with 1
point at the final mark.

 5

Missing laboratory sessions

 All assignments have to be solved (to a certain extent). If, for some reason, you miss one
laboratory session, you may solve the corresponding assignment at home and present it at the
beginning of the following session. You must attend the laboratory with your group! (i.e. you are
not allowed to attend a laboratory session with another teaching assistant). If you want to switch
to another lab session, you must do it by the second week of school, with the approval of the
course instructor, the lab instructor of the session you want to switch from, and the lab instructor
of the session you want to switch to.
If you miss more than 1 laboratory session (but not more than 3!), you will be asked to solve
other assignments (and not the ones you have missed).

Coding Guidelines (the basics)

http://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
http://www.cs.swarthmore.edu/~newhall/unixhelp/c_codestyle.html
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Evaluation Tricks – how to evaluate the time complexity of your algorithms

For most assignments, you are asked to evaluate (perhaps comparatively), the running
time of 1/several algorithms in the average case (and, for some assignments, in the best and
worst case). You have to identify additional memory requirements also, and write such
observations in the header of your source code!
However, before you pass on to the evaluation, make sure your algorithms work correctly!!!
 Therefore, for each analysis case, you have to generate the according input data, of
varying size (the superior limit in usually 10.000, the increment 100 – but this may differ for
some assignments). For the average case, you have to repeat the measurement, at least 5 times,
and report the average of your measurements. When you are asked to compare algorithms, make
sure you test the algorithms in the same conditions! (same random input data for the average
case, or the correct corresponding data for the best/worst cases).
 What do you measure? When evaluating the running time, for each run of your
algorithm, you have to count the number of operations performed by your algorithms, i.e. the
number of assignments and the number of comparisons performed on the input structure, or on
corresponding auxiliary variables (i.e. for sorting, no operations on indices or flags should be
counted!!!). These measurements are saved, either in a file (usually .csv), or by using a library
which we provide, the Profiler (which is intended to support the algorithm input data and chart
generation process)

 6

How do you analyze? Use the recorded measurement data to generate required
charts/tables, which will help you interpret the results (use either a tool such as MS Excel, or the
Profiler, to so this). You may need, in some cases, to limit the Ox or Oy values on your charts,
for better visualization of certain characteristics (overlapping, behavior on small sized inputs,
asymptotic behavior, etc.)
Hint: feel free to be aggressively inquisitive with your charts, try to get as much out of them as
you can (of course, do not try to see something that is not there). You will be rewarded
accordingly for your efforts.
 Write all your observations regarding the analysis in the analysis part of the Header
section in your main source code file (provided you have more than 1 source files for your
assignment).

Example: Compare insertion sort and selection sort in the average case, for input
sequences of sizes 100->10.000 (using an increment of 100).
Thus, you have to generate a random sequence for each intermediate size (100, 200, …, 10000).
Then, apply both sorting methods (on the same sequence, independently) and count, for each, the
number of assignments and the number of comparisons. Since we are dealing with the average
case, repeat this 5 times, and write the average of the measurements in a .csv file, as you are
shown in the Introductory Laboratory session. Then, using the results in the .csv file, generate
three Excel scatter plots (you are shown how to do that in the Introductory Laboratory session as
well): 1 comparing the number of comparisons used by the two methods, 1 for the number of
assignments, and 1 for the overall number of operations performed by the two methods.
Don’t forget you also have to interpret the three charts (order of complexity, which method is
better for small/large sized inputs, etc.) – and add these observations to the header of your source
code file.

 7

Assignment No. 0: Introductory Session

First off, make sure you have read the guide to the laboratory sessions (available on the moodle
course page). In this introductory session, you will get used to working with Visual Studio by
writing a more complex Hello World C/C++ application. Also, you will see how to generate the
data to evaluate your algorithms and how to generate the required charts (either with MS Excel or
by using a framework written in C++). This assignment is not graded.

 Introduction to Visual C++

To create a new C/C++ project, using the wizard:
• File – New – Project... – Win32 – Win32 Console Application – Name: HelloWorld –

Location: ….choose… – OK – Next – Empty project – Finish;
• Solution Explorer – Source Files – Add – New Item – C++ File (.cpp) – Name:

HelloWorld – Add;
• Include stdio.h and conio.h, write your main function in which you print „Hello, world!”,

on the screen (use getch()) to keep the console from closing until you hit a key.
• Compile and run your application

Working with files

Now, to extend your application, do the following (use Google or MSDN library for help, or
ask the teaching assistant):

• Declare an array of integers of size MAX_SIZE – constant defined by you
• Read a sequence of n numbers from the keyboard, and store them in the array
• Print the n numbers in the array
• Create and open a file, write the numbers from the array in the file, and close the file

(check the file to see it worked)
• Now open the previous file, read the contents and print them on the screen (don’t forget

to close the file at the end)

Generating test cases for the algorithms (best, worst, average)

In order to test your algorithms, you have to generate a series of input sequences, such as:
a sorted array of integers (of given size), a random array of integers (of given size), etc.

Since generating an ordered sequence is straightforward, let us focus on generating a
random sequence of integers. We suggest two alternatives:

1. Using the Profiler Framework (available on the moodle course page)
2. Using the random number generator available in C/C++

1. How to use the Profiler Framework: check the profiler guide on the moodle course

page
2. How to use the random number generator available in C/C++:

• Read about rand(,)srand()functions and RAND_MAX constant:
• http://www.cplusplus.com/reference/cstdlib/rand/
• http://www.cplusplus.com/reference/cstdlib/srand/

 8

• http://www.cplusplus.com/reference/cstdlib/RAND_MAX/

• Write a sequence of code/function which:
• Generates n random numbers, using the rand() function alone, stores them

in an array, then prints them on the screen; what happens when you run
your program the second time?

• Change your sequence of code such that the sequence of n random
numbers differs between runs

Exercises:

1. Write a function which generates an array of n random integers between Low and High,
and returns the array; print the contents of the array in a file

2. Write a function which generates a sorted array of random integers; print the contents of
the array in a file

Generating charts for the analysis of algorithms

Again, you have two options for generating the evaluation charts:

1. Using the Profiler Framework, same as before: check the profiler guide on the
moodle course page

2. Use MS Excel
3.

1. How to use the Profiler Framework: check the profiler guide on the moodle course page
2. How to use MS Excel:

• First, from your program, you have to save your analysis data in a .csv (comma-
separated values) file. You are free to use your own format for the file. However, it is
a good idea to use the following format:

Size_of_problem, No_assignments, No_comparisons, No_assignments+No_comparisons

Figure 0.1 - .csv data

The figure above represents an example of how a .csv file might look like for one
analysis case – input size 100 to 500. You can choose to use the same file for all cases

 9

of an algorithm (best, average, and worst). How many columns will your .csv require
then?

• Importing data to MS Excel (version 2010): if your data is properly formatted and the

extension is .csv, Excel should recognize it and open it correctly:

Figure 0.2 - .csv data imported in MS Excel

However, if Excel places your values in the same column (probably you used a
different column separator than the one set in Excel), use the Data->Text to Columns
wizard to correct this (ask the teaching assistant for help). Also, you may import your
data in Excel by using the Data->Get External Data wizard (again, ask the teaching
assistant)

• Building the chart: select the data rows and columns; then go to Insert->Charts-

>Scatter and select the second type (connected points). For the above data, what you
get should look like Figure 3.
Note that the number of assignments, although linear, looks constant when placed on
the same chart with the number of comparisons or with the sum (both quadratic). As
a rule, whenever one curve cannot be visualized correctly because of the difference
in growth rate with the other curves, it is best to place it also on a separate chart, by
itself (try to do this by yourself).

 10

Figure 0.3 – Scatter plots in MS Excel

• Additionally, you can name your chart, label the axes, scale the axes – you may need
to perform scaling when comparing algorithms – on small inputs, for example. Try to
identify how these operations are performed in Excel (ask the teaching assistant for
help whenever you need guidance).

• ! Don’t forget you also have to interpret the charts, and place your comments in

comments at the beginning of your source code file

Exercise: Write a C/C++ program which writes in a file, for n starting from 100 to 10.000 (with
a 100 increment), the following values (for each value of n use a separate line):

n, log(n), n*log(n), n2, n3, 2n
Use the values in the file to build scatter plots for these functions, either by using MS Excel or
the Profiler Framework.

Below, you have several charts which exemplify the results you should observe for this exercise.
All charts have been generated using the Profiler. The initial group of charts have been generated
for small values of n (1 to 30):

Figure 0.4: Comparison of constant, logarithmic and linear growth, very small n

 11

What can you observe for the charts in figures 0.4-0.7? Perhaps the most striking observation is
the fact that, even for small sized inputs, a polynomial growth function (be it n2, n3) seems
constant in comparison to an exponential function. Also, the logarithmic function grows much
slower than the linear function, while O(nlogn) is closer to the linear curve than it is to a
quadratic one. You will see, in the following assignments, that an O(nlogn) growth can be easily

Figure 0.5: Comparison of logarithmic, linear, linearithmic (nlogn) and quadratic (O(n2)) growth,
very small n

Figure 0.6: Comparison of quadratic (O(n2)) and exponential growth, very small n

Figure 0.7: Comparison of polynomial (O(n3)) and exponential growth, very small n

 12

mistaken as a linear growth. You can check, however, the numbers (divide the entire range of
values to n, or to nlogn, respectively, to see which “fits” better).

The following group of charts consider a slightly larger value of n (1 to 100):

Figure 0.8: Comparison of constant, logarithmic and linear growth, n<100

Figure 0.9: Comparison of logarithmic, linear, linearithmic (nlogn) and quadratic (O(n2)) growth, n<100

Figure 0.10: Comparison of quadratic (O(n2)) and exponential growth, n<100

 13

Figure 0.11: Comparison of polynomial (O(n3)) and exponential growth, n<100

For the charts in figures 0.8-0.11, we can observe, first of all, that the values for the exponential
function produce an overflow at values 231. As expected, the growth of any polynomial function
is undetectable at this size either.
Moreover, the difference between logarithmic and linear functions, and linearithmic and
quadratic functions becomes more significant at this size also. Keep in mind that we are still at
relatively small values of n.

In the next group of charts, we further increase n to 1000:

Figure 0.12: Comparison of constant, logarithmic and linear growth, n<1000

 14

Figure 0.13: Comparison of logarithmic, linear, linearithmic (nlogn) and quadratic (O(n2)) growth, n<1000

Figure 0.14: Comparison of quadratic (O(n2)) and exponential growth, n<1000

Figure 0.15: Comparison of polynomial (O(n3)) and exponential growth, n<1000

 15

As expected, when n increases further, the difference between the faster growing functions and
the smaller growing functions is accentuated. For n going up to 1000, however, the only
difference which is still small enough to consider at this point is that between a linear and a
linearithmic growth, which can be observed below, in figure 0.18:

Figure 0.18: Comparison of linear and linearithmic (nlogn) growth, n<1000

Figure 0.16: Comparison of constant, logarithmic and linear growth, n<10000

Figure 0.17: Comparison of logarithmic, linear, linearithmic (nlogn) and quadratic (O(n2)) growth, n<10000

 16

We can observe that both curves seem to have the same shape – visually, they both look linear,
but with different constants. However, by checking the effectively how the values grow, one can
see the difference between the two functions.

The last group of figures show the same charts as before, but for n going up to 10000. We have
eliminated the exponential growth from this group of charts, since it is evident that they did not
differ that much from their versions for n<1000.

Figure 0.19: Comparison of linear and linearithmic (nlogn) growth, n<10000

Figure 0.19 depicts the comparison between a linear and a linearithmic growth, for n<10000. We
can see that the gap between the two seems to increase, however there is still no apparent visual
difference. Which means that for these two growths one must always also check the numbers, to
make sure which one applies.

The charts presented so far will help you accurately identify the shape of the curves you get for
your algorithms, but they were also meant to make you observe the immense difference between
different complexity classes.

Perhaps a more concrete example is necessary for this also. Table 0.1 on the next page presents
the expected running times for different complexity levels, for an input of varying sizes.

 17

Table 0.1: time taken by algorithms having different complexity classes, for different sizes
of the input problem (assume time to execute a constant running time algorithm to be 10-7
seconds)1

Complexity Class N = 10 N = 100 N = 1,000 N = 10,000 ... N = 1,000,000

O(1) 1x10-7
seconds

1x10-7
seconds

1x10-7
seconds

1x10-7
seconds ... 1x10-7

seconds

O(log2N) 3.3x10-7
seconds

6.6x10-7
seconds

10x10-7
seconds

13.3x10-7
seconds ... 20x10-7

seconds

O(N) 1x10-7
seconds

1x10-6
seconds

1x10-5
seconds

1x10-4
seconds ... 1x10-2

seconds

O(Nlog2N) 3.3x10-7
seconds

6.6x10-6
seconds

10x10-5
seconds

13.3x10-4
seconds ... 20x10-3

seconds

O(N2) 1x10-6
seconds

1x10-4
seconds

1x10-2
seconds

1
second ... 2.7

hours

O(N3) 1x10-5
seconds

1x10-2
seconds

10
seconds

2.7
hours ... 3x103

years

O(2N) 1x10-5
seconds

4x1021
centuries

Forget
about it

Forget
about it ... Forget

about it

1 Inspired from: http://www.cs.cmu.edu/~pattis/15-1XX/15-200/lectures/aa/

 18

Assignment No. 1: Analysis & Comparison of Direct Sorting
Methods

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently 3 direct sorting methods (Bubble Sort,
Insertion Sort – using either linear or binary insertion and Selection Sort)

Input: sequence of numbers < x#, x%, … , x' >
Output: an ordered permutation of the input sequence < x#) ≤ x%) ≤ ⋯ ≤ x') >

You may find any necessary information and pseudo-code in your Seminar no. 1 notes (Insertion
Sort is also presented in the book2 – Section 2.1). Make sure that, for each of the required sorting
methods, you select its efficient version (whenever more than one version has been provided to
you).

Thresholds

Threshold Requirements

5
Implement 1 direct sorting method, exemplify correctness and evaluate it (at least in
the average case) – at least 1 chart

7
Compare 2 direct sorting methods (best, average and worst case), i.e.
implementation, exemplify correctness and analysis (charts)

9
Compare 3 direct sorting methods (best, average and worst case), i.e.
implementation, exemplify correctness and analysis (charts)

10 Discussion, interpretations, efficiency, compare, stability

2 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to Algorithms

 19

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! You will have to prove your algorithm(s) work, so you should also prepare a demo on
a small-sized input (which may be hard-coded in your main function).

1. You are required to compare the three sorting algorithms, in the best, average and worst
cases. Remember that for the average case you have to repeat the measurements m times
(m=5 should suffice) and report their average; also for the average case, make sure you
always use the same input sequence for all three sorting methods – to make the
comparison fair; make sure you know how to generate the best/worst case input
sequences for all three methods.

2. This is how the analysis should be performed for a sorting method, in any of the three
cases (best, average and worst):

- vary the dimension of the input array (n) between [100…10000], with an increment
of maximum 500 (we suggest 100);
- for each dimension, generate the appropriate input sequence for the sorting method;
run the sorting method counting the operations (i.e. number of assignments, number
of comparisons and their sum).

! Only the assignments („=”) and comparisons („<”,”==”,”>”,”!=”) which are
performed on the input structure and its corresponding auxiliary variables matter.

3. For each analysis case (best, average and worst), generate charts which compare the

three methods; use different charts for the number of comparisons, number of
assignments and total number of operations. If one of the curves cannot be visualized
correctly because the others have a larger growth rate (e.g. a linear function might seem
constant when placed on the same chart with a quadratic function), place that curve on a
separate chart as well. Name your charts and the curves on each chart appropriately.

4. Interpret the charts and write your observations in the header (block comments) section at

the beginning of your main .cpp file.

The charts below exemplify the form of the growth curves you should get.
! The absolute values might differ, the shape counts.

 20

Average Case Charts

Figure 1.1: Average case assignments, binary insertion, linear insertion and bubble sort

Figure 1.2: Average case assignments, selection sort

Figure 1.3: Average case comparisons, selection, linear insertion and bubble sort

 21

Figure 1.4: Average case comparisons binary insertion sort

Figure 1.5: Average total number of operations, all sorts

The charts in figures 1.1 – 1.5 present the expected shapes for the complexity measurements
obtained in the average analysis case, by several direct sorting methods. You should try to
compare the shapes of the curves obtained by your implementations to the shapes depicted here.

 22

Best Case Charts

Figure 1.6: Best case assignments, binary insertion sort

Figure 1.7: Best case assignments, linear insertion sort

Figure 1.8: Best case comparisons, selection and bubble sort

 23

Figure 1.9: Best case comparisons binary and linear insertion sort

Figure 1.10: Best case total operations, binary and linear insertion sort

For the best case analysis, (figures 1.6-1.10) you should get 0 assignments for the bubble sort
and selection sort algorithms. Therefore, the growth curves for the total number of operations for
these algorithms coincide with the ones in figure 1.8. Also, it is possible to implement a slightly
improved version of bubble sort, which makes a linear number of comparisons in the best case.
What is the shape for the number of comparisons of binary insertion in this analysis case?

 24

Worst Case Charts

Figure 1.11: Worst case assignments, binary insertion, linear insertion and bubble sort

Figure 1.12: Worst case assignments, selection sort

Figure 1.13: Worst case comparisons, selection, linear insertion and bubble sort

 25

Figure 1.14: Worst case comparisons, binary insertion sort

Figure 1.15: Worst case total number of operations, all sorts

 26

Assignment No. 2: Analysis & Comparison of Bottom-up
and Top-down Build Heap Approaches

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently two methods for building a heap,
namely the bottom-up and the top-down strategies. Additionally, you have to implement
heapsort.

You may find any necessary information and pseudo-code in your course notes, or in the book:

• Bottom-up: section 6.3 (Building a heap)
• Heapsort: section 6.4 (The Heapsort algorithm)
• Top-down: section 6.5 (Priority queues) and problem 6-1 (Building a heap using

insertion)

Thresholds

Threshold Requirements

5 Implement and exemplify correctness of bottom-up build heap procedure

6 Implement and exemplify correctness of heapsort

7 Implement and exemplify correctness of top-down build heap procedure

9 Comparative analysis of the two build heap methods, in the average case

10 Interpretations, advantages/disadvantages of each approach

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! You will have to prove your algorithm(s) work on a small-sized input.

1. You are required to compare the two build heap procedures in the average case.
Remember that for the average case you have to repeat the measurements m times (m=5)

 27

and report their average; also for the average case, make sure you always use the same
input sequence for the two methods – to make the comparison fair.

2. This is how the analysis should be performed:
- vary the dimension of the input array (n) between [100…10000], with an increment
of maximum 500 (we suggest 100).
- for each dimension, generate the appropriate input sequence for the method; run the
method, counting the operations (assignments and comparisons, may be counted
together for this assignment).

! Only the assignments and comparisons performed on the input structure and its
corresponding auxiliary variables matter.

3. Generate a chart which compares the two methods under the total number of operations,

in the average case. If one of the curves cannot be visualized correctly because the other
has a larger growth rate, place that curve on a separate chart as well. Name your chart and
the curves on it appropriately.

4. Interpret the chart and write your observations in the header (block comments) section at
the beginning of your main .cpp file.

5. Only the correctness of heapsort is demonstrated, the analysis is not necessary.

6. (extra – for extra credit) Try to compare the two build heap procedures in the worst case.
What do you observe?

Example Charts

Figure 2.1: Total number of operations for the two build heap strategies, average case analysis

 28

Figure 2.2: Total number of operations for the two build heap strategies, best case analysis

Figure 2.3: Total number of operations for the two build heap strategies, worst case analysis

The charts in figures 2.1-2.3 exemplify the shapes you should obtain. We have also provided the
best case behavior. The actual values you get might differ, but the growth should be the same,
and so is the relative ordering of the two algorithms’ complexities.

 29

Assignment No. 3: Analysis & Comparison of Advanced
Sorting Methods – Heapsort and Quicksort. QuickSelect

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently Quicksort and Quick-Select
(Randomized-Select). You are also required to analyze the complexity of Quicksort and Heapsort
(Implemented in Assignment No. 2) comparatively.

You may find any necessary information and pseudo-code in your course notes, or in the book:

• Heapsort: Chapter 6 (Heapsort)
• Quicksort: Chapter 7 (Quicksort)
• Randomized-Select: Chapter 9

Thresholds

Threshold Requirements

5 QuickSort: implementation, exemplify correctness and average case analysis

7 QuickSelect (Randomized-Select): implementation and exemplify correctness

9 Comparative analysis of the Quicksort and Heapsort

10 Generate and evaluate best and worst case for QuickSort; interpretations, efficiency

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! You will have to prove your algorithm(s) work on a small-sized input.

1. You are required to compare the two sorting procedures in the average case. Remember
that for the average case you have to repeat the measurements m times (m=5) and report
their average; also for the average case, make sure you always use the same input
sequence for the two methods – to make the comparison fair.

 30

2. This is how the analysis should be performed:

- vary the dimension of the input array (n) between [100…10000], with an increment
of maximum 500 (we suggest 100).
- for each dimension, generate the appropriate input sequence for the method; run the
method, counting the operations (assignments and comparisons, may be counted
together).

! Only the assignments and comparisons performed on the input structure and its
corresponding auxiliary variables matter.

3. Generate a chart which compares the two methods under the total number of operations,

in the average case. If one of the curves cannot be visualized correctly because the other
has a larger growth rate, place that curve on a separate chart as well. Name your chart and
the curves on it appropriately.

4. Interpret the charts and write your observations in the header (block comments) section at
the beginning of your main .cpp file.

5. Evaluate Quicksort in the best and worst cases also – total number of operations.
Compare the performance of Quicksort in the three analysis cases. Interpret the results.

6. For QuickSelect (Randomized-Select) no explicit complexity analysis needs to be
performed, only the correctness needs to be demonstrated on sample inputs.

Example Charts

Figure 3.1: Total number of operations for Heapsort and Quicksort, average case analysis

 31

Figure 3.2: Comparison of Quicksort behavior, average and best case

Figure 3.3: Quicksort behavior, worst case

Figure 3.3: Quick-select behavior, average case

 32

These are the shapes you should obtain for the curves. We have also included Quick-select
average case analysis. The absolute values you get may differ. What are the shapes of the growth
curves. Verify that the curves you obtain have the same growth.

 33

Assignment No. 4: Merge k Ordered Lists Efficiently

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently an O(nlogk) method for merging k
sorted sequences, where n is the total number of elements. (Hint: use a heap, see seminar no. 2
notes).

Implementation requirements:

• Use linked lists to represent the k sorted sequences and the output sequence

Input: k lists of numbers >,

Output: a permutation of the union of the input sequences: <

>

Thresholds

Threshold Requirements

5 Generate k random sorted lists, having n elements in total (n and k given as
parameters); merge 2 lists

7 Adapt heap operations to work on new structure (list_index, key); use min-HEAP

9 Correct and complete algorithm implementation, with demo on a small-sized input

10 Evaluation, interpretations, discussion

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! You will have to show your algorithm works on a small-sized input (e.g. k=4, n=20).

We will make the average case analysis of the algorithm. Remember that, in the average case,
you have to repeat the measurements several times. Since both k and n may vary, we will make
each analysis in turn:

 34

1. Choose, in turn, 3 constant values for k (k1=5, k2=10, k3=100); generate k random sorted

lists for each value of k so that the combined number of elements in all the lists (n) varies
between 100 and 10000, with a maximum increment of 400 (we suggest 100); run the
algorithm for all values of n (for each value of k); generate a chart that represents the sum
of assignments and comparisons done by the merging algorithm for each value of k as a
curve (total 3 curves).

2. Set n = 10.000; the value of k must vary between 10 and 500 with an increment of 10;
generate k random sorted lists for each value of k so that the combined number of
elements in all the lists is 10000; test the merging algorithm for each value of k and
generate a chart that represents the sum of assignments and comparisons as a curve.

3. Interpret your charts.

Example Charts

The charts in figures 4.1 and 4.2 illustrate the shapes you should obtain for this analysis.
Absolute values may differ slightly.

Figure 4.1: Total number of operations for the k-way merge heap-based algorithm, average case analysis,
using 3 different values for k (5,10,100) and varying n between 100 and 10000

 35

Figure 4.2: Total number of operations for the k-way merge heap-based algorithm, average case analysis,

for n=10000, and varying k between 10 and 500

 36

Assignment No. 5: Search Operation in Hash Tables

Open Addressing with Quadratic Probing

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently the insert and search operations in a
hash table using open addressing and quadratic probing.

You may find any necessary information and pseudo-code in your course notes, or in the book,
in section 11.4 Open addressing.

The use of closed and open specifies if it is mandatory to use a certain position or data structure.

Hashing (refers to the hash table)

• Open Hashing
o Free to leave the hash table to hold more elements at a certain index e.g. chaining

• Closed Hashing
o Not more than one element can be stored at a certain index e.g. linear/quadratic

probing

Addressing (refers to the final position of the element with respect to its initial position)

• Open Addressing
o The final address is not completely determined by the hash code, it also depends

on the elements which are already in the hash table e.g linear/quadratic probing
• Closed Addressing

o The final address is always the one initially calculated (there is no probing) e.g.
chaining

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! You will have to prove your algorithm(s) work on a small-sized input.

 37

You are required to evaluate the search operation for hash tables using open addressing and
quadratic probing, in the average case (remember to perform 5 runs for this). You will do this in
the following manner:

1. Select N, the size of your hash table, as a prime number around 10000 (e.g. 9973, or
10007);

2. For each of several values for the filling factor α∈{0.8, 0.85, 0.9, 0.95, 0.99}, do:

a. Insert n random elements, such that you reach the required value for α (α = n/N)

b. Search, in each case, m random elements (m ~ 3000), such that approximately half
of the searched elements will be found in the table, and the rest will not be found
(in the table). Make sure that you sample uniformly the elements in the found
category, i.e. you should search elements which have been inserted at different
moments with equal probability (there are several ways in which you could ensure
this – it is up to you to figure this out)

c. Count the operations performed by the search procedure (i.e. the number of cells

accessed during the search)

3. Output a table of the form:

Filling
factor

Avg. Effort
found

Max. Effort
found

Avg. Effort not-
found

Max. Effort not-
found

0.8
0.85
...
0.99

Avg. Effort = Total effort / Number of elements
Max. Effort = Maximum number of accesses performed by a single search operation

4. Interpret your results.

Example Results

The chart below exemplifies the values you should obtain when evaluating the average effort of
the search operation. The results are averaged over 5 independent runs.

 38

Alpha| Avg Found | Avg Not Found | Avg Max Found | Avg Max Not Found
--
0.80 | 1.89 | 5.31 | 18.4 | 28
--
0.85 | 2.15 | 7.26 | 28.8 | 44
--
0.9 | 2.4 | 11.18 | 41.4 | 88
--
0.95 | 3.01 | 22.15 | 70.6 | 129
--
0.99 | 4.41 | 102.82 | 237.4 | 841

 39

Assignment No. 6: Dynamic Order Statistics

Allocated time: 4 hours

Implementation

You are required to implement correctly and efficiently the management operations of an order
statistics tree (chapter 14.1 from the book). Dynamic order statistics algorithms perform
searches according the order of elements. Elements are searched by their position in the sorted
sequence, which is called the rank of the element.

In this assignment you see a structure which can implement such operations efficiently and
analyze empirically the complexity of dynamic order statistics operations. You have to use a
balanced, augmented Binary Search Tree. Each node in the tree holds, besides the necessary
information, also the size field (i.e. the size of the sub-tree rooted at the node).

The management operations of an order statistics tree are:

• BUILD_TREE(n)
o builds a balanced BST containing the keys 1,2,...n (hint: use a divide and conquer

approach)
o make sure you initialize the size field in each tree node

• OS-SELECT(tree, i)

o selects the element with the ith smallest key (having rank i)
o the pseudo-code is available in chapter 14.1 from the book

• OS-DELETE(tree, i)

o you may use the deletion from a BST, without increasing the height of the tree
(why don’t you need to rebalance the tree?)

o keep the size information consistent after subsequent deletes
o there are several alternatives to update the size field without increasing the

complexity of the algorithm (it is up to you to figure this out).

Does OS-SELECT resemble anything you studied this semester?

 40

Thresholds

Threshold Requirements

5 BUILD_TREE - correct and efficient implementation; demo for n=11,

7 OS_SELECT & OS_DELETE - correct and efficient implementation, demo

9 Management operations evaluation

10 Interpretations, discussion

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! You will have to prove your algorithm(s) work on a small-sized input (11) i.e. pretty-
print the initially built tree and, for a few elements (3), OS-SELECT by a randomly selected
index and pretty-print the tree after its OS-DELETE).

Once you are sure your program works correctly:

• vary n from 100 to 10000 with step 100;
• for each n (don’t forget to repeat 5 times),

o build a tree with elements from 1 to n
o perform n sequences of OS-SELECT and OS-DELETE operations using a

randomly selected index based on the remaining number of elements in the BST

Evaluate the computational effort as the sum of the comparisons and assignments performed by
each individual operation.

Example Chart

The chart in figure 6.1 shows the shape you should obtain by performing the analysis of the
ensemble of algorithms presented in this assignment, in the average case. Absolute values may
differ slightly.

What order of magnitude doe the curve have?

 41

Figure 6.1: Total number of operations for the dynamic order statistics algorithms (build tree, insert, OS-

SELECT), average case analysis, for n between 100 and 10000

 42

Assignment No. 7: Multi-way Trees
Transformations between different representations

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently linear time transformations between
three different representations for a multi-way tree:

• R1: parent representation: for each key you are given the parent key, in a vector.

• R2: multi-way tree representation: for each node you have the key and a list (e.g. vector,
linked list) of children nodes

• R3: binary tree representation: for each node, you have the key, and two pointers: one to

the first child node, and one to the brother on the right (i.e. the next brother node)

Also, you are required to write a pretty print procedure on R3, which performs a preorder
traversal on the binary representation and outputs the tree in a friendly manner (see the image on
the next page for an example).

Therefore, you are given as input a multi-way tree in the parent representation (R1). You are
required to implement T1, which transforms the tree to a multi-way representation (R2), then T2,
which transforms from the multi-way representation to the binary representation (R3). Then, on
the binary representation, you are asked to write a pretty print procedure (using a pre-order
traversal).

You should be able to design the necessary data structures by yourselves. You may use
intermediate structures (i.e. additional memory).

Evaluation

You should run your algorithms on a sample input tree (you may use the one in the example
provided on the next page). Output (in a readable manner) the tree in each of the three
representations (for R1 simply print the parent vector; for R3 it is enough to call the pretty print
procedure).

Explain what data structures you employed for the R2 and R3 representations. You should assess
the efficiency of your methods: i.e. do your transformations run in O(n)? Also, explain the
necessity for any additional memory employed by your algorithms.

 43

 44

Assignment No. 8: Disjoint Sets

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently the base operations for disjoint set
(Section 21.1 from the book) and the Kruskal’s algorithm (searching for the minimum spanning
tree) using disjoint sets.

You have to use a tree as the representation of a disjoint set. Each tree holds, besides the
necessary information, also the rank field (i.e. the height of the tree).

The base operations on disjoints sets are:

• MAKE_SET (x)
o creates a set with the element x

• UNION (x, y)

o makes the union between the set that contains the element x and the set that
contains the element y

o the heuristic union by rank takes into account the height of the two trees so as to
make the union

o the pseudo-code can be found in the chapter 21.3 from the book

• FIND_SET (x)
o searches for the set that contains the element x
o the heuristic path compression links all nodes that were found on the path to x to

the root node

Thresholds

Grade Requirements

5 Correct implementation for: MAKE_SET, UNION and FIND_SET + demo

7 Correct and efficient implementation for: Kruskal’s algorithm

9 Evaluate the disjoint sets operations using Kruskal’s algorithm

10 Interpretations, discussion

 45

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! The correctness of the algorithm must be proved on a small-sized input (i.e. create 10
initial sets and execute the sequence: UNION and FIND_SET for 5 pairs of objects; print the
contents of the resulting sets).

Once you are sure your program works correctly:

• vary n from 100 to 10000 with step 100;
• for each n

o build a random graph with random weights on edges (n nodes, n*4 edges)
o find the minimum spanning tree using Kruskal’s algorithm

Evaluate the computational effort as the sum of the comparisons and assignments performed by
each individual base operation on disjoint sets.

Example Chart

Figure 8.1: Total number of calls made to disjoint set operations (MAKE-SET, FIND-SET, UNION) in the
Kruskal algorithm, as a function of n (the total number of MAKE-SET operations), average case analysis, for n

between 100 and 10000

 46

Assignment No. 9: Breadth-First Search

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently the Breadth-First Search (BFS) graph
algorithm (Section 22.2 from the book). For graph representation, you should use adjacency lists.
You are also required to pretty-print the resulting tree/forest of trees (use Assignment 8 to
achieve this) – only for the demo.

Thresholds

Grade Requirements

5 Correct and efficient implementation of BFS

7 Correct and efficient implementation for the pretty print strategy

9 Evaluation

10 Interpretations, discussion

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! You will have to prove your algorithm works on a small-sized graph (which you may
hardcode in your main function), i.e. for a small-sized graph, print the BFS tree/forest of trees.

Since, for a graph, both |V| and |E| may vary, and the running time of BFS depends on both
(how?), we will make each analysis in turn:

1. Set |V| = 100 and vary |E| between 1000 and 5000, using a 100 increment. Generate the
input graphs randomly – make sure you don’t generate the same edge twice for the same
graph. Run the BFS algorithm for each pair value and count the number of operations
performed; generate the corresponding chart (i.e. the variation of the number of
operations with |E|).

 47

2. Set |E| = 9000 and vary |V| between 100 and 200, using an increment equal to 10. Repeat
the procedure above to generate the chart which gives the variation of the number of
operations with |V|.

3. Interpret your charts.

Example Charts

Figure 9.1: Total number of performed by the BFS algorithm, average case analysis, for E between
100 and 5000, and V=100

Figure 9.2: Total number of performed by the BFS algorithm, average case analysis, for E =9000 and
V between 100 and 200

 48

Assignment No. 10: Depth-First Search

Allocated time: 2 hours

Implementation

You are required to implement correctly and efficiently the Depth-First Search (DFS) graph
algorithm (Section 22.3 from the book). For graph representation, you should use adjacency lists.
You are also required to:

• Implement Tarjan’s algorithm for detecting strongly connected components, on a directed
graph
(https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm)

• Implement topological sorting (described in Section 22.4)

Thresholds

Grade Requirements

5 Correct and efficient implementation of DFS

8 Correct and efficient implementation of Tarjan and topological sort on a directed
graph

9 Evaluation

10 Interpretations, discussion

Evaluation

! Before you start to work on the algorithms evaluation code, make sure you have a correct
algorithm! Exemplify the correctness of your algorithm/implementation by running it on a
smaller graph:

• Print the initial graph (the adjacency lists)
• Print all strongly connected components of the graph
• A list of nodes sorted topologically (should this list be nonempty? if empty, why so?)

 49

Since, for a graph, both |V| and |E| may vary, and the running time of DFS depends on both
(how?), we will make each analysis in turn:

1. Set |V| = 100 and vary |E| between 1000 and 5000, using a 100 increment. Generate the
input graphs randomly – make sure you don’t generate the same edge twice for the same
graph. Run the DFS algorithm for each <|V|, |E|> pair value and count the number of
operations performed; generate the corresponding chart (i.e. the variation of the number
of operations with |E|).

2. Set |E| = 9000 and vary |V| between 100 and 200, using an increment equal to 10. Repeat
the procedure above to generate the chart which gives the variation of the number of
operations with |V|.

3. Interpret your charts.

Example Charts

Figure 10.1: Total number of performed by the DFS algorithm, average case analysis, for E between
100 and 5000, and V=100

 50

Figure 10.2: Total number of performed by the DFS algorithm, average case analysis, for E =9000 and V
between 100 and 200

The charts in figures 10.1 and 10.2 indicate the expected growth pattern you should obtain for
your curves.

 51

Bibliography
[1] Thomas H. Cormen. Charles E. Leiserson. Ronald L. Rivest. Clifford Stein. Introduction to
Algorithms. Third Edition. The MIT Press. Cambridge, Massachusetts London, England, 2009

	FUNDAMENTAL ALGORITHMS
	Table of Contents
	Introduction
	Assignment No. 0: Introductory Session
	Assignment No. 1: Analysis & Comparison of Direct SortingMethods
	Assignment No. 2: Analysis & Comparison of Bottom-upand Top-down Build Heap Approaches
	Assignment No. 3: Analysis & Comparison of AdvancedSorting Methods – Heapsort and Quicksort. QuickSelect
	Assignment No. 4: Merge k Ordered Lists Efficiently
	Assignment No. 5: Search Operation in Hash Tables
	Assignment No. 6: Dynamic Order Statistics
	Assignment No. 7: Multi-way Trees
	Assignment No. 8: Disjoint Sets
	Assignment No. 9: Breadth-First Search
	Assignment No. 10: Depth-First Search
	Bibliography

