

Marcel ANTAL Claudia POP Dorin MOLDOVAN

Teodor PETRICAN Ciprian STAN Ioan SALOMIE

Tudor CIOARA Ionut ANGHEL

Distributed Systems
Laboratory Guide

Editura UTPRESS

Cluj-Napoca, 2018

ISBN 978-606-737-329-5

Distributed Systems – Laboratory Guide

 Editura U.T. PRESS

 Str. Observatorului nr. 34

 C.P. 42, O.P. 2, 400775 Cluj-Napoca

 Tel.:0264-401.999

 e-mail: utpress@biblio.utcluj.ro

 http://biblioteca.utcluj.ro/editura

 Director: Ing. Călin D. Câmpean

 Recenzia: Prof.dr.ing. Mihaela Dînşoreanu

 Conf.dr.ing. Viorica Chifu

Copyright © 2018 Editura U.T.PRESS

Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este posibilă numai

cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-329-5

Distributed Systems – Laboratory Guide

3

Contents
Preface .. 10

1. Prerequisites Installation and Configuration ... 12

1.1. Programming environment: Java ... 12

1.2. Integrated Development Environment (IDE): Eclipse .. 13

1.3. Relational database management system: MySQL ... 14

1.4. Web server: Apache Tomcat ... 15

1.5. Version control system: Git ... 16

1.6. Version control repository: Bitbucket ... 17

1.7. Configuring the lab working environment .. 18

2. Request-Reply and Sockets ... 21

2.1. Problem statement ... 21

2.2. Application analysis and design .. 21

2.2.1. Defining the message structure ... 22

2.2.2. Client request .. 22

2.2.3. Server response ... 23

2.3. Application structure and implementation .. 24

2.3.1. The client application .. 25

2.3.2. The server application ... 30

2.4. Building and running the example... 36

2.5. Laboratory work: web application using request – reply .. 36

2.5.1. Requirements .. 36

2.5.2. Deliverables .. 37

2.5.3. Evaluation ... 37

2.6. Bibliography .. 38

3. Remote Procedure Call and Distributed Objects .. 39

3.1. Problem statement ... 39

3.2. Application analysis and design .. 39

3.2.1. General architecture .. 40

3.2.2. Communication mechanism .. 40

3.3. Application structure and implementation .. 42

3.3.1. Client application .. 43

Distributed Systems – Laboratory Guide

4

3.3.2. RPC library ... 45

3.3.3. Common classes .. 49

3.3.4. Server application ... 50

3.3.5. Application sequence diagram .. 53

3.4. Building and running the example... 55

3.5. Laboratory work: RPC application using distributed objects .. 55

3.5.1. Requirements .. 55

3.5.2. Deliverables .. 56

3.5.3. Evaluation ... 56

3.6. Bibliography .. 57

4. Indirect Communication and Queues .. 58

4.1. Problem statement ... 58

4.2. Application analysis and design .. 58

4.3. Application structure and implementation .. 60

4.3.1. Producer client application ... 61

4.3.2. Consumer client application ... 63

4.3.3. Queue server application ... 66

4.3.4. Application sequence diagram .. 71

4.4. Building and running the example... 73

4.5. Laboratory work: asynchronous distributed system application ... 73

4.5.1. Requirements .. 73

4.5.2. Deliverables .. 74

4.5.3. Evaluation ... 74

4.6. Bibliography .. 75

5. XML based Communication and Web Services ... 76

5.1. Introduction ... 76

5.2. WSDL .. 79

5.3. SOAP ... 80

5.3. UDDI ... 81

5.4. Laboratory work: SOA web services ... 82

5.4.1. Requirements .. 82

5.4.2. Deliverables .. 83

5.4.3. Evaluation ... 84

Distributed Systems – Laboratory Guide

5

5.5. Bibliography .. 84

6. Server-side Frameworks: Spring for Developing REST Web Services 85

6.1. Introduction ... 85

6.2. Hands-on application ... 86

6.2.1. Application installation and configuration .. 86

6.2.2. Application conceptual architecture ... 89

6.2.3. Application implementation details .. 90

6.2.4. Testing the application .. 100

6.3. Laboratory work: Spring REST backend for a distributed application 101

6.3.1. Requirements .. 101

6.3.2. Deliverables .. 101

6.3.3. Evaluation ... 102

6.4. References ... 102

7. Client-side Frameworks: Angular for Developing Single-page Web GUIs 103

7.1. Introduction ... 103

7.2. Hands-on application ... 103

7.2.1. Application installation and configuration .. 103

7.2.2. Application conceptual architecture ... 105

7.2.3. Application implementation details .. 106

7.2.4. Testing the application .. 110

7.3. Laboratory work: Angular GUI for Chapter 6 Spring backend ... 111

7.3.1. Requirements .. 111

7.3.2. Deliverables .. 111

7.3.3. Evaluation ... 112

7.4. References ... 112

Distributed Systems – Laboratory Guide

6

List of Figures
Figure 1.1. JDK download options... 12

Figure 1.2. JRE installation .. 12

Figure 1.3. Eclipse IDE installation ... 13

Figure 1.4. MySQL install options ... 14

Figure 1.5. MySQL setup types ... 14

Figure 1.1.6. MySQL server and workbench tools setup ... 15

Figure 1.7. Apache Tomcat distributions ... 15

Figure 1.8. Setting the Apache Tomcat environment variable ... 16

Figure 1.9. Git download options ... 16

Figure 1.10. Git terminal emulator selection .. 17

Figure 1.11. Creating Bitbucket account .. 17

Figure 1.12. Eclipse menu configuration ... 18

Figure 1.13. Example of files ignored in commit operation .. 18

Figure 1.14. Maven settings file ... 20

Figure 2.1. Client-server software architecture .. 21

Figure 2.2. Application conceptual architecture .. 24

Figure 2.3. Client package diagram ... 24

Figure 2.4. Server package diagram ... 25

Figure 2.5. Communication protocol package diagram ... 25

Figure 2.6. Sequence diagram for client POST operation .. 26

Figure 2.7. Post action listener code snippet ... 27

Figure 2.8. Encode method code snippet ... 27

Figure 2.9. Serialize method code snippet ... 28

Figure 2.10. SendRequest method class code snippet .. 29

Figure 2.11. Decode method code snippet ... 30

Figure 2.12. Sequence diagram for server POST operation ... 30

Figure 2.13. Run method from Server class code snippet .. 31

Figure 2.14. Run method from Session class code snippet .. 32

Figure 2.15. AbstractServlet class code snippet ... 33

Figure 2.16. Method createServlet code snippet .. 33

Figure 2.17. StudentServlet class code snippet .. 34

Figure 2.18. StudentDAO class code snippet ... 35

Figure 3.1. RPC system communication flow .. 41

Figure 3.2. Application conceptual architecture .. 42

Figure 3.3. ClientStart class code snippet .. 44

Figure 3.4. ServerConnection class code snippet .. 44

Figure 3.5. Registry class code snippet .. 45

Distributed Systems – Laboratory Guide

7

Figure 3.6. Message class code snippet.. 46

Figure 3.7. Dispatcher class Code Snippet ... 47

Figure 3.8. Naming class code snippet ... 49

Figure 3.9. ITaxService interface code snippet .. 49

Figure 3.10. TaxService class code snippet ... 50

Figure 3.11. ServerStart class code snippet .. 51

Figure 3.12. Server class Code Snippet.. 51

Figure 3.13. Session class code snippet ... 53

Figure 3.14. Sequence diagram of a RPC call ... 54

Figure 4.1. MOM software architecture ... 59

Figure 4.2. Conceptual architecture ... 60

Figure 4.3. ClientStart class code snippet .. 61

Figure 4.4. QueueServerConnection class code snippet .. 63

Figure 4.5. ClientStart class code snippet .. 63

Figure 4.6. MailService class code snippet .. 65

Figure 4.7. QueueServerConnection class code snippet .. 66

Figure 4.8. ServerStart class code snippet .. 67

Figure 4.9. Queue class code snippet ... 67

Figure 4.10. Message class code snippet ... 68

Figure 4.11. Sever class Code Snippet ... 69

Figure 4.12. Session class code snippet ... 71

Figure 4.13. Sequence diagram for message insertion in queue (producer client) 72

Figure 4.14. Sequence diagram for message retrieval from queue (consumer client) 72

Figure 5.1. From distributed objects to services ... 76

Figure 5.2. SOA architecture overview .. 77

Figure 5.3. WSDL as a service Interface Description Language (IDL) .. 79

Figure 6.1. Maven install in Eclipse ... 87

Figure 6.2. Application execution in Eclipse ... 87

Figure 6.3. User table from the example project .. 88

Figure 6.4. Project structure in Eclipse .. 88

Figure 6.5. Project conceptual architecture .. 89

Figure 6.6. Sequence diagram for GET operation ... 90

Figure 6.7. Spring controller mapping ... 91

Figure 6.8. RequestMapping for UserController ... 91

Figure 6.9. RequestMapping for getting all the users .. 92

Figure 6.10. PathVariable annotation example .. 92

Figure 6.11. Model object annotation example .. 92

Figure 6.12. ModelAttribute annotation example .. 92

Figure 6.13. UserService example ... 93

Distributed Systems – Laboratory Guide

8

Figure 6.14. UserRepository definition .. 93

Figure 6.15. UserRepository interface ... 94

Figure 6.16. PersistenceConfig class .. 95

Figure 6.17. JpaRepository snippet .. 96

Figure 6.18. UserRepository interface ... 96

Figure 6.19. Custom defined queries ... 97

Figure 6.20. User entity .. 98

Figure 6.21. Creating a DTO .. 99

Figure 6.22. JSON with data from the DTO object ... 99

Figure 6.23. Response in the browser for a REST request .. 100

Figure 6.24. Example of using the Postman tool ... 100

Figure 7.1. Angular project structure ... 104

Figure 7.2. Hands-on example welcome page ... 105

Figure 7.3. Project conceptual architecture .. 105

Figure 7.4. Sequence diagram for retrieving all users .. 106

Figure 7.5. Snippet from index.html .. 107

Figure 7.6. Calling the method getUsers() ... 107

Figure 7.7. Snippet from header.component.ts .. 107

Figure 7.8. Snippet from HeaderComponent ... 108

Figure 7.9. Snippet from app.module.ts ... 108

Figure 7.10. Snippet from UserService .. 109

Figure 7.11. Snippet from user.service.ts ... 109

Figure 7.12. Snippet from UsersComponent .. 110

Figure 7.13. Snippet from app.module.ts ... 110

Figure 7.14. Angular GUI to display all the users ... 111

Distributed Systems – Laboratory Guide

9

 List of Tables
Table 2.1. Web application laboratory work grading details ... 38

Table 3.1. Relation between engine size and specific sum .. 39

Table 3.2. RPC laboratory work grading details .. 56

Table 4.1. Message types .. 68

Table 4.2. Asynchronous communication laboratory work grading details 74

Table 5.1. The main features of SOA architecture ... 78

Table 5.2. WSDL XML elements ... 79

Table 5.3. XML elements of a SOAP message .. 80

Table 5.4. UDDI pages ... 82

Table 5.5. SOA web services laboratory work grading details .. 84

Table 6.1. Project Component Description .. 89

Table 6.2. REST backend laboratory work grading details ... 102

Table 7.1. Project component description .. 106

Table 7.2. Angular GUI laboratory work grading details .. 112

Distributed Systems – Laboratory Guide

10

Preface
A distributed system is composed from multiple processing components deployed and executed

onto various computing nodes which communicate and coordinate their operation by exchanging

massages. Form a user perspective, the distribution of resources is transparent, and the

functionalities should be provided as if the system is a centralized one. Thus, the exchange of

messages is fundamental for distributed systems operation and provides the underling base of each

system level functionality implementation.

In this book we will provide an overview of the main types of inter-process communication used

in the development of distributed systems aiming to provide insights on how they are implemented

in lower architectural levels. These insights are usually transparent even for software developers

which are used to implement distributed systems leveraging on high levels frameworks or

middleware. Therefore, we have opted to let our students to first test and extend some lower level

communication software we have developed and then to ask them to implement similar

functionality using some higher-level frameworks. Also, in this book we will show how service

oriented distributed systems can be built using modern technologies by allowing students to work

with the two major architectural styles in this area, Service Oriented Architecture and REST

(Representational State Transfer).

Section 1 introduces the students into the distributed systems laboratory thematic providing

guidelines for the installation of the technological infrastructure stack they will use during a

semester.

Section 2 presents an implementation overview of the synchronous and direct communication

protocol focusing on the Request–Reply paradigm. We start by explaining the fundamentals behind

implementing such a communication protocol providing relevant examples from a hands-on

application we had developed which features web server functionalities. Then we ask our students

to implement a similar application using server-side technologies such as Java Servlets.

Section 3 addresses various aspects of the Remote Procedure Call (RPC) protocol used to request

a service/operation from a program/component located in a different processing node. We provide

a hands-on application in which this type of communication protocol implementation is detailed

up to the level of socket-based communication allowing the students to gain more in-depth details

of technical aspects such as remote references, serialization, the use of Java reflection, message

encoding, etc. At the same time, students are asked to implement an application with similar

functionality using a distributed objects framework such as Java RMI or .Net Remoting, allowing

them to observe and evaluate how much of the lower level implementation details are hidden for a

software developer.

Section 4 presents the indirect communication paradigm for distributed systems components,

which provides a higher decoupling leading to an improved performance, but a decrease in

Distributed Systems – Laboratory Guide

11

reliability in message delivery. We provide a hands-on implementation of such approach

leveraging on queues as intermediary resources between the components that are communicating.

In the second part of this section the students are asked to implement a similar communication

approach leveraging on existing state of the art open source frameworks and message brokers.

Section 5 provides insights on the XML based communication in distributed systems using Service

Oriented Architecture (SOA) web services. We present the main SOA components and the

technologies that are used to build these kind of web services: Web Services Description Language

(WSDL), Simple Object Access Protocol (SOAP) and Universal Description, Discovery, and

Integration (UDDI). Students are asked to implement an application using both JAVA and .NET

web services to highlight the most important aspect of SOA, platform interoperability.

Section 6 deals with the alternative technology to SOA, RESTfull web services for which data and

functionalities are considered resources which can be accessed by Uniform Resource Information

(URI). These resources can be accessed by a set of simple and well-defined operations. We provide

a hands-on implementation of a simple REST web service using the Spring framework. The

students are asked to implement a complex application that exposes multiple REST services

leveraging the hands-on example.

Section 7 addresses the development of dynamic single page web applications Graphical User

Interfaces (GUIs). We choose Angular framework for the development of the single-page

applications due to its popularity and versatility. We provide a hands-on implementation of a

simple Angular GUI detailing the main components, their interaction and the GUI connection with

business logic web services. The students are asked to use Angular to implement a modern GUI

for the previous chapter developed REST services.

The Authors,

November 2018

Distributed Systems – Laboratory Guide

12

1. Prerequisites Installation and

Configuration
1.1. Programming environment: Java

1) Access http://www.oracle.com/technetwork/java/javase/downloads/index.html

2) Click on the Java Development Kit (JDK) icon and you will be redirected to Java downloads.

Figure 1.1. JDK download options

3) Click on the Accept License Agreement link.

4) Click on the link which corresponds to your version of the Operating System. For example, if

the needed version corresponds to Windows x64 then the file is jdk-8u101-windows-x64.exe.

5) After the version is selected, a file with the same name will be downloaded.

6) Start the downloaded version of the installer.

7) You will be asked the next question: Do you want to allow the following program to make

changes to this computer? Click Yes.

8) Click Next. You will be asked where you want to install Java. Use the default location.

9) After the JDK is installed, you will be asked where you want to install the Java Runtime

Environment (JRE). Use the default location and click Next.

Figure 1.2. JRE installation

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Distributed Systems – Laboratory Guide

13

10) After the installation is completed click Close.

11) Set JAVA_HOME and JAVA_JRE variables by following the below steps:

 Click Start.

 Right-Click on Computer.

 Select Properties.

 Click on Advanced System Settings.

 Click on Environment Variables.

 Under System Variables click New.

 In the text field associated with the name of the variable insert JAVA_HOME and in the

field associated with the value of the variable insert C:\Program Files\Java\java_version;

 Click OK.

 Under System Variables click New again.

 In the text field associated with the name of the variable insert JRE_HOME and in the field

associated with the value of the variable insert C:\Program Files\Java\java_version;

 Click OK.

1.2. Integrated Development Environment (IDE): Eclipse

1) Access http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/mars2.

Figure 1.3. Eclipse IDE installation

2) In Package Solutions search for Eclipse IDE for Java EE Developers and click on the version

which is appropriate for your computer: 32-bit or 64-bit.

3) You will be redirected to a page where you will be asked to select a mirror. Click on Download.

4) You will obtain a file named eclipse-jee-mars-2-win32-x86_64.zip.

5) Open the archive eclipse-jee-mars-2-win32-x86_64.zip and extract it to C:\.

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/mars2

Distributed Systems – Laboratory Guide

14

6) You can open Eclipse by clicking on the file eclipse.exe which should be at the location

C:\eclipse\eclipse.exe.

1.3. Relational database management system: MySQL

1) Access the link: https://dev.mysql.com/downloads/windows/installer/.

Figure 1.4. MySQL install options

2) Click on the second Download button.

3) Click on No thanks, just start my download.

4) Click on the downloaded file mysql-installer-web-community8.0.12.0.msi.

5) Click Yes.

6) Click I accept the license terms and then Next.

7) You will be asked to select the Setup Type that suits your use case. Select Custom.

Figure 1.5. MySQL setup types

https://dev.mysql.com/downloads/windows/installer/

Distributed Systems – Laboratory Guide

15

8) You will be redirected to Select Products and Features. Select MySQL Server 8.0.12 – X64 and

MySQL Workbench 8.0.12 – X64 and click Next.

Figure 1.1.6. MySQL server and workbench tools setup

9) Click Next.

10) Click Execute.

11) Click Next and follow the steps for the configuration of the MySQL Server.

1.4. Web server: Apache Tomcat

1) Access the next link: https://tomcat.apache.org/download-80.cgi.

2) Under Binary Distributions look for Core and click on zip.

Figure 1.7. Apache Tomcat distributions

https://tomcat.apache.org/download-80.cgi

Distributed Systems – Laboratory Guide

16

3) A file called apache-tomcat-version.zip is downloaded.

4) Extract the content of this file on C:\. The file startup.bat should be at the location C:\apache-

tomcat-version\bin.

5) Set the CATALINA_HOME variable

 Click Start.

 Right-Click on Computer.

 Select Properties.

 Click on Advanced System Settings.

 Click on Environment Variables.

 Under System Variables click New.

 In the text field associated with the name of the variable insert CATALINA_HOME and in

the field associated with the value of the variable insert C:\apache-tomcat-version;

Figure 1.8. Setting the Apache Tomcat environment variable

 Click OK.

1.5. Version control system: Git

1) Access https://git-scm.com/downloads.

2) Select your operating system.

Figure 1.9. Git download options

https://git-scm.com/downloads

Distributed Systems – Laboratory Guide

17

3) If you select Windows, a file called Git-2.10.0-64-bit.exe should be downloaded. In the case

you select another operating system or if your system is on 32 bits then a file with a similar

name should be downloaded.

4) Click on this file and follow the default installation guidelines, except for the step where you

are asked which terminal emulator you want to use. Select the second option as illustrated in

the picture below.

Figure 1.10. Git terminal emulator selection

1.6. Version control repository: Bitbucket

1) Access https://bitbucket.org/.

2) Click on Get Started. You will be asked to fill your personal information.

Figure 1.11. Creating Bitbucket account

https://bitbucket.org/

Distributed Systems – Laboratory Guide

18

3) You will be asked to create a new repository. Choose Empty and give the name

DS_Group_LastName_FirstName to your new repository.

4) Click Done.

1.7. Configuring the lab working environment

The first step to create the laboratory working environment is to create a project from scratch by

following the below instructions:

1) Create the folder DS_Group_LastName_FirstName on D:\.

2) Right click on this folder and click Git Bash Here.

3) Execute the next commands to connect with the Bitbucket account:

a) git init

b) git remote add origin

https://dsuser@bitbucket.org/dsuser/ds_group_lastname_firstname.git

4) Open Eclipse, select File -> New -> Project… -> Maven -> Maven Project and click Next.

5) Instead of using the default Workspace location use this one:

D:\DS_Group_LastName_FirstName

6) Click Next.

7) Introduce the next parameters:

a) Group id: ds.demo

b) Artifact id: DemoProject

8) Click Finish.

9) In order to see the files of the form .filename click on View Menu -> Filters… and unselect

the option .* resources.

Figure 1.12. Eclipse menu configuration

10) Right click on the files .settings, target, .classpath, .project and select Team -> Ignore.

11) The file .gitignore will contain the files which will not be committed to the repository. You

can also edit this file manually.

Figure 1.13. Example of files ignored in commit operation

Distributed Systems – Laboratory Guide

19

12) Right click on the folder DS_Group_LastName_FirstName and introduce the next

commands:

a) git add .

b) git commit –a –m “initial commit”

c) git push –u origin master

To update the project contents please follow the steps below:

1) Create a new class named Main in the same package as the class App.

2) Right click on DS_Group_LastName_FirstName and select Git Bash

3) Insert the next commands:

a) git add .

b) git commit –a –m “add new class”

c) git pull origin master

d) git push –u origin master

4) You can always see the modification that were not committed yet by using: git status

In specific cases the Internet connection requires a proxy server (e.g. in the UTCN laboratories).

To make Git to work with a proxy server follow the steps:

1) Open Git Bash

2) Insert the following commands:

a) git config --global http.proxy http://proxy.utcluj.ro:3128

b) git config –global --get http.proxy

3) In order to unset the proxy, use the following command:

git config --global --unset http.proxy

Similarly, getting Maven1 to work with a proxy server is detailed below:

1) Go to Windows Explorer-> Drive C-> Users -> Your User -> .m2

2) Create the folder conf

3) Go to conf folder and create the file settings.xml with the Figure 1.14 content

4) Go back to folder .m2

5) Delete the folder repository

6) Open Eclipse

7) Go to Window->Preferences->Maven->User Settings

8) At the User Settings tab browse for the settings.xml file created at step 3

9) Click Apply and OK

10) Right click on your project, and go to Maven->Update Project

1 https://maven.apache.org/

https://maven.apache.org/

Distributed Systems – Laboratory Guide

20

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository/>
 <interactiveMode/>
 <usePluginRegistry/>
 <offline/>
 <pluginGroups/>
 <servers/>
 <mirrors/>
 <proxies>
 <proxy>
 <id>myproxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.utcluj.ro</host>
 <port>3128</port>
 <username></username>
 <password></password>
 <nonProxyHosts>localhost,127.0.0.1</nonProxyHosts>
 </proxy>
 </proxies>
 <profiles/>
 <activeProfiles/>
</settings>

Figure 1.14. Maven settings file

Distributed Systems – Laboratory Guide

21

2. Request-Reply and Sockets
2.1. Problem statement

Suppose we are requested to create a distributed application with the following requirements:

 A central database is located on a server.

 The database stores a table with students.

 The teachers (Remote Clients) must access the database to:

o add student information

o retrieve students by their Identifiers (IDs)

 The information retrieved form the central database is displayed for the users of the client

application in a user-friendly Graphical User Interface (GUI).

2.2. Application analysis and design

The problem can be decomposed into the following subsystems:

 Communication protocol

 The server application:

o Database

o Data access layer over the database

o Communication layer over the network

 The client application:

o Communication layer over the network

o GUI

We need to create a distributed application over the network. We choose a client-server software

architecture as depicted in Figure 2.1.

Figure 2.1. Client-server software architecture

Distributed Systems – Laboratory Guide

22

For the transport layer of the application we use sockets2 that assure a two-way communication

between the client and the server, thus allowing us to implement a synchronous request-reply

communication method.

2.2.1. Defining the message structure

Because we use sockets for communication, the messages are sent as a stream of bytes. We intend

sending strings as a stream of bytes through the sockets. Thus, all our messages will be encoded as

string.

We analyse the operations that we need to perform:

 OP1: Add a new student

o Parameters: Student.lastname, Student.firstname, Student.mail

o Return: success followed by the new student’s ID or fail

 OP2: Return a student by his/her ID

o Parameters: Student.ID

o Return: Student

Each operation sends several pieces of information to the server, as string. We choose to

concatenate these strings and separate the information from the message using “_” and “#“ tokens.

For executing each operation, two steps are involved: the client request and the server response.

2.2.2. Client request

We determine that the client needs to send to the server the following information:

 OP1: send data to store an entity with all its fields in the database (e.g. student)

 OP2: request a resource from the server by specifying a resource ID

To be able to perform these operations, the message that is passed from the client to the server

needs to contain the following information:

 Performed operation (send data to the server – POST method; request resource from the

server – GET method)

 The entity upon which the operation will be executed - the Uniform Resource Identifier

(URI) or Uniform Resource Locator (URL), in our case the Data Access Object - DAO

class that handles students

 Encode the data that needs to be passed to the server – method parameters already

described for OP1 and OP2. These parameters will be converted to string and

concatenated with “#“ separator

2 https://docs.oracle.com/javase/tutorial/networking/sockets/

https://docs.oracle.com/javase/tutorial/networking/sockets/

Distributed Systems – Laboratory Guide

23

By putting all this information in a string, we obtain a message of the following form:

 Method_URL_messageBody

e.g. OP1: POST_student_1#0George#Popescu#mail@mail.com

 OP2: GET_student_1

NOTES:

 Even if both operations can be performed using the same message structure, for the GET

operation we will adopt another encoding, because this operation has another semantic

meaning. When requesting a resource from the server, the client knows that resource

location (in this case the student located in the database with a given ID), thus we will

encode this information in the URL - OP2: GET_student?id=1_

 For a GET method the body of the sent message will be empty. That is because the URL

(the name of the entity) together with the integer (the database ID of the entity) forms the

resource identifier (i.e. it contains all the information needed by the server to identify the

resource and return it to the client).

 For a POST method, the URL will specify the entity that will be sent to the server. The

actual data will be encoded in the body of the message. These encoding will contain all the

fields of the entity in the order that they appear in the class.

2.2.3. Server response

We determine that the server needs to answer to the client request by specifying the following:

 OP1: return a code that represents the status of the operation. (e.g. 200 – the operation was

successful).

 OP2: return the resource requested by the client as a string encoded with the same rule as

the request. In case of an error, return the code corresponding to the encountered error (e.g.

404 if the resource was not found).

Based on this information we determine the following response message structure:

StatusCode_messageBody

The message_body contains the returned values as string separated by #.

e.g. OP1: 200_

 OP2: 200_1#George#20#Cluj#Romania

We define the following status codes for our operations:

 200 – the operation was successful

 400 – bad request

Distributed Systems – Laboratory Guide

24

 404 – if the resource was not found

 405 – operation not allowed

2.3. Application structure and implementation

The solution is implemented in 3 different modules (see Figure 2.2). Each architectural module is

detailed below.

Figure 2.2. Application conceptual architecture

 Client

Figure 2.3. Client package diagram

 Communication - package that contains

the classes responsible for the

communication

 Controllers - package that contains the

controller classes

 Entities - package that contains the entity

classes

 Start - package that contains the class that

starts the application

 Views - package that contains the GUI

class

Distributed Systems – Laboratory Guide

25

 Server

Figure 2.4. Server package diagram

 Communication - package that contains the

classes responsible to the communication

 DAO - package that contains the classes

responsible to the database access

 Entities - package that contains the entity

classes

 Servlets - package that contains the classes

that extend an abstract servlet class

 Start - package that contains the class that

starts the application

 Communication Protocol – library that contains the protocol definition

Figure 2.5. Communication protocol

package diagram

 Encoders - package that contains the

classes responsible with the serialization

and deserialization of objects

 Enums – package that contains

enumerations

 Messages – package that contains the

request and response message classes

 Servlets - package that contains an abstract

class with the definition of the servlet

In the next sub-sections, we will present the functionality of the client and server application by

means of sequence diagrams and code examples.

2.3.1. The client application

The client makes a request by pressing a button on the GUI, the CatalogView class. When pressing

the button, the action listener from the controller class, CatalogController, is called. There are two

Distributed Systems – Laboratory Guide

26

buttons on the GUI, each of them corresponding to one operation specified and has the

corresponding listeners (OP1- PostActionListener and OP2- GetActionListener).

Figure 2.6. Sequence diagram for client POST operation

We present the steps involved in performing the OP1 operation, POST a student (see Figure 2.6).

The action is similar for the OP2 operation (GET operation). To make a request and display the

response, the client application performs the following steps:

1. When the post button is pressed on the ClientView, it triggers the actionPerfomed method

from the corresponding PostActionListener class located in the ClientController class.

Lines 8-11 show how it takes the information from the ClientView and creates a Student

object. Furthermore, line 14 shows how a string containing the request for the server is

created using the encode method of the RequestMessageEncoder class.

1. class PostActionListener implements ActionListener {
2. @Override
3. public void actionPerformed(ActionEvent e) {
4. String firstname = catalogView.getFirstname();
5. String lastname = catalogView.getLastname();
6. String mail = catalogView.getMail();
7. if (!("".equals(firstname) || "".equals(lastname) || "".equals(mail))) {
8. Student student = new Student();
9. student.setFirstname(firstname);
10. student.setLastname(lastname);
11. student.setMail(mail);
12. try {
13. //encode request: POST request, URL "student", sending student object
14. String encodedRequest =

 RequestMessageEncoder.encode(ProtocolMethod.POST, "student", student);
15. String response = serverConnection.sendRequest(encodedRequest);
16. //decode the response from server
17. ResponseMessage decodedResponse =

Distributed Systems – Laboratory Guide

27

 ResponseMessageEncoder.decode(response);
18. //if server responded OK, operation was successful, else display error
19. if (decodedResponse.getStatusCode() == StatusCode.OK.getCode()) {
20. displayInfoMessage("Successfully inserted; id=" +

 decodedResponse.getSerializedObject());
21. } else {
22. displayErrorMessage("Status code " + decodedResponse.getStatusCode());
23. }
24. } catch (IOException ex) {
25. LOGGER.info(ex.getMessage());
26. displayErrorMessage(ex.getMessage());
27. }
28. }
29. else {
30. displayErrorMessage("Please fill all textboxes before submiting!");
31. }
32. }
33. }

Figure 2.7. Post action listener code snippet

2. The student is encoded by calling the encode method from the class

RequestMessageEncode (see Figure 2.8). A message is created by concatenating the request

method (GET or POST), the URL and the serialization of the object sent as parameter.

1. public static String encode(ProtocolMethod method, String url, Object o) {
2. String messageString = method + "_" + url + "_";
3. if (o != null) {
4. if (o instanceof String) {
5. messageString += o;
6. } else {
7. messageString += POJOSerializer.serialize(o);
8. }
9. }
10. return messageString;

11. }

Figure 2.8. Encode method code snippet

3. The POJOSerializer class implements the serialize method that receives as parameter a

generic Object (see Figure 2.9). Using reflection techniques, it gets the class of the object

(line 5), and the fields (line 7). Then, it iterates through the fields (line 8), sets the

accessibility of the fields to true so they can be read even if private and appends the values

of each field delimiting them by the special character “#” (line 12). Finally, it changes back

the accessibility of the field to private.

1 public static String serialize(Object o) {

2 String result = "";

3 try {

Distributed Systems – Laboratory Guide

28

4 //get the class type of the object

5 Class c = o.getClass();

6 //get the fields of that class

7 Field[] fields = c.getDeclaredFields();

8 for (Field f : fields) {

9 //set accessibility to true (can be read even if private)

10 f.setAccessible(true);

11 //append the field to the result

12 result += f.get(o) + "#";

13 f.setAccessible(false);

14 }

15 } catch (IllegalAccessException e) {

16 LOGGER.error("", e);

17 }

18 return result;

19 }

Figure 2.9. Serialize method code snippet

4. Step 4 from the sequence diagram returns the serialized student as a string to the encode

method of the RequestMessageEncoder object while step 5 returns the encoded request

from the RequestMessageEncoder to the ClientController.

5. Having the message encoded as a stream of bytes, the client application will send it to the

server. Because it is a synchronous communication, the client waits until the server sends

back the response. The method sendRequest from the ServerConnection class is called.

6. A socket connection to the server is opened (line 2). A set of output streams and input

streams are opened on the socket to communicate with the server (lines 3,4).

7. The serialized request created at step 4 is written as a stream on the socket and sent to the

server (line 5). Then, the client waits for a response (lines 6-12).

8. During this time, the client application is blocked waiting for the server response. After the

response is received from the server, the socket and the connections are closed (lines 13-

15) and the response is returned. The implemented behavior, synchronous (by waiting for

the server response) and stateless (by closing each connection after every request) mimics

the HTTP behavior.

9. The response is returned to the client application and stored in the response String.

1 public String sendRequest(String messageToSend) throws IOException {

2 Socket clientSocket = new Socket(host, port);

3 ObjectOutputStream outToServer =

 new ObjectOutputStream(clientSocket.getOutputStream());

4 ObjectInputStream inFromServer =

 new ObjectInputStream(clientSocket.getInputStream());

5 outToServer.writeObject(messageToSend);

6 String response;

Distributed Systems – Laboratory Guide

29

7 try {

8 response = (String)inFromServer.readObject();

9 } catch (ClassNotFoundException e) {

10 response = null;

11 LOGGER.error("", e);

12 }

13 outToServer.close();

14 inFromServer.close();

15 clientSocket.close();

16 return response;

17 }

Figure 2.10. SendRequest method class code snippet

10. The response message is de-serialized by decode method of the ResponseMessageEncoder

class and a ResponseMessage object is created (see Figure 2.11). The message received is

split by the separator character “_” (line 5). Each of the resulting substrings will represent

a part of the response message: method (GET or POST), URL (that can contain parameters,

checked in lines 9-17) and message body, that will be de-serialized.

1. public static RequestMessage decode(String m) {
2. RequestMessage requestMessage = null;
3. //split the encoded message by the separator _
4. //the splitMessage array should now contain at least 2 elements (METHOD and

 //URL) + optionally a third, BODY
5. String[] splitMessage = m.split("_");

6. if (splitMessage.length >= REQUEST_MIN_COMPONENTS_NUM) {
7. requestMessage = new RequestMessage();
8. //set the method field of the requestMessage to the value of

 //splitMessage[0] (METHOD)
9. requestMessage.setMethod(ProtocolMethod.valueOf(splitMessage[0]));

10. //split the url by separator ?, to check if there are parameters
11. String[] splitUrl = splitMessage[1].split("\\?");
12. //splitUrl[0] is the url, assign it to url field of requestMessage
13. requestMessage.setUrl(splitUrl[0]);

14. //check if there was ? in the url (2 strings generated by previous split)
15. if(splitUrl.length == METHOD_WITH_PARAMS_COMPONENTS_NUM) {
16. //further split by & keyword
17. String[] splitQuery = splitUrl[1].split("&");

18. //for each key=value pair, split in key and value
19. for (String s : splitQuery) {
20. String[] splitKeyValue = s.split("=");
21. requestMessage.getQueryValues().put(splitKeyValue[0],

Distributed Systems – Laboratory Guide

30

 splitKeyValue[1]);
22. }
23. }

24. //if there is a 3rd component to the request message (i.e. BODY), assign
 //it to serializedObject of requestMessage

25. if (splitMessage.length == REQUEST_ALL_COMPONENTS_NUM) {
26. requestMessage.setSerializedObject(

 splitMessage[REQUEST_ALL_COMPONENTS_NUM - 1]);
27. }
28. }
29. return requestMessage;
30. }

Figure 2.11. Decode method code snippet

11. Because it is a POST action, it will return only the status code of the operation. However,

we also return the ID of the student because it is auto-generated and would not be known

otherwise.

12. The information about the POST operation is displayed in the GUI.

2.3.2. The server application

The server responds to each client request. It has a thread that runs and listens for incoming

connections from clients, in the Server class. Each time a new client sends a request, it establishes

a connection to the client, creates a separate thread for that client (Session class), receives the

message, processes it and returns a reply to the client.

Figure 2.12. Sequence diagram for server POST operation

Below the processing on the server side when a POST message is received from a client is detailed:

1. The client initiates a connection. The thread from the Server class contains an infinite loop

that listens and accepts the incoming connections (see Figure 2.13).

Distributed Systems – Laboratory Guide

31

2. When a new connection appears (Line 6) a new thread contains a session for that connection

(line 7) is created and then started (line 8)

1. public void run() {
2. while (true) {
3. try {
4. synchronized (this) {
5. Socket clientSocket;
6. clientSocket = serverSocket.accept();
7. Session cThread = new Session(clientSocket);
8. cThread.start();
9. }
10. } catch (IOException e) {
11. LOGGER.error("", e);
12. }
13. }
14. }

Figure 2.13. Run method from Server class code snippet

2. The Session class extends the Thread class and overrides the run method implementing the

response behavior of a request-reply message. Using multiple instances of this class, the

server can handle multiple client connections simultaneously (see Figure 2.14). Line 6

saves the incoming message as a string read from the socket input stream connection. The

message is then decoded using the RequesMessageDecoder decode method already

explained in the upper section. Then, the request message is checked for validity (line 11).

If the message is not null, an AbstractServlet is instantiated based in the URL of the request

(line 16). If the URL was valid and a servlet has been created, the request is processed by

the doRequest method of the AbstractServlet. Finally, the request is sent back to the clients

(line 26), this thread closes connections (line 30) ends its execution.

3. The session receives a request from the client application, and the run method of the session

thread is executed.

4. The message is decoded (Figure 2.14 – line 8). This is performed by the

RequestMessageEncoder class already described above.

5. The RequestMessage is returned in line 8 from Figure 2.14, containing the method (POST

or GET), the URL of the resource, the URL parameters sent in a <key,value> map, and the

body in string format.

6. Based on the request URL the Session calls the ServletFactory to create the Servlet asked

by the client (line 13 from Figure 2.14).

1. @Override
2. public void run() {
3. String messageReceived;
4. try {
5. // Wait for message from client

Distributed Systems – Laboratory Guide

32

6. messageReceived = (String) inFromClient.readObject();
7. // Decode the request from the received message
8. RequestMessage decodedRequest =

 RequestMessageEncoder.decode(messageReceived);
9. String response;
10. // Prepare response
11. if (decodedRequest != null) {
12. // Attempt creating the servlet that handles the request for the URL
13. AbstractServlet abstractServlet =

 ServletFactory.createServlet(decodedRequest.getUrl());
14. // Servlet successfully created, actually process the request
15. if (abstractServlet != null) {
16. response = abstractServlet.doRequest(decodedRequest);
17. }
18. // Servlet could not be created for the URL, mapping not found
19. else {
20. response = ResponseMessageEncoder.encode(StatusCode.NOT_FOUND, null);
21. }
22. } else {
23. response = ResponseMessageEncoder.encode(StatusCode.BAD_REQUEST, null);
24. }
25. // Send encoded response
26. sendMessageToClient(response);
27. } catch (ClassNotFoundException | IOException e) {
28. LOGGER.error("", e);
29. }
30. closeAll();
31. }
32. }

Figure 2.14. Run method from Session class code snippet

7. In our implementation we consider that each URL is mapped to a resource named Servlet

derived from the base class AbstractServlet shown in Figure 2.15 that has implemented

methods for each request type (GET –line 19 or POST –line 18). If there is no Servlet for

an URL or the method is not implemented, then an exception is thrown. Furthermore, the

class also implements the doRequest method (lines 3-17) that contains a switch statement

which chooses the method to be executed by the RequestMessage method filed (line 5).

1. public abstract class AbstractServlet {
2. private static final Log LOGGER = LogFactory.getLog(AbstractServlet.class);
3. public String doRequest(RequestMessage message) {
4. try {
5. switch (message.getMethod()) {
6. case GET:
7. return doGet(message);
8. case POST:
9. return doPost(message);
10. default:
11. return

 ResponseMessageEncoder.encode(StatusCode.BAD_REQUEST);

Distributed Systems – Laboratory Guide

33

12. }
13. } catch (UnsupportedOperationException e) {
14. LOGGER.error("", e);
15. return ResponseMessageEncoder.encode(StatusCode.NOT_ALLOWED);
16. }
17. }
18. public abstract String doPost(RequestMessage message);
19. public abstract String doGet(RequestMessage message);
20. }

Figure 2.15. AbstractServlet class code snippet

7. The ServletFactory creates the Servlet mapped to the URL or throws an exception if no

servlet is found matching the given URL. It uses reflection to create an instance of an object

given its class name. The naming convention assumes that the servlets are located in the

package servlets and each servlet has the name in the format UrlServlet (e.g. for the url =

“Student” the class name will be servlets.StudentServlet). In Figure 2.16 lines 2-4 create a

string containing the servlet class name based on a given URL. An AbstractServlet is

declared to be instantiated (line 5). A class with the servlet name is searched in line 8, and

if not found null is returned (lines 10-11). Else, a constructor is returned for the given class

(line 13) and the AbtrsactServlet is instantiated with the given constructor (line 14).

1. public static AbstractServlet createServlet(String url) throws
 ClassNotFoundException {

2. String className = "ro.tuc.dsrl.ds.handson.assig.one.server.servlets.";
3. className +=

 url.replace(url.charAt(0),Character.toUpperCase(url.charAt(0)));
4. className += "Servlet";
5. AbstractServlet abstractServlet = null;
6. Class<?> clazz;
7. try {
8. clazz = Class.forName(className);
9.
10. if (clazz == null) {
11. return null;
12. }
13. Constructor<?> ctor = clazz.getConstructor();
14. abstractServlet = (AbstractServlet)ctor.newInstance();
15. } catch (InvocationTargetException | NoSuchMethodException |

 IllegalAccessException | InstantiationException |
 ClassNotFoundException e) {

16. LOGGER.error("", e);
17. }
18. return abstractServlet;
19. }

Figure 2.16. Method createServlet code snippet

Distributed Systems – Laboratory Guide

34

8. A Servlet class must extend the AbstractServlet class and override the two abstract methods

doGet and doPost. The StudentServlet class extends the AbstractServlet class and

implements the desired functionality for handling the request. The doPost method (lines 7-

17 from Figure 2.17) contains the code for inserting a student in the database. For this, a

StudentDAO object was declared in line 2.

1. public class StudentServlet extends AbstractServlet {
2. private StudentDAO studentDao;
3. public StudentServlet() {
4. studentDao = new StudentDAO(new

 Configuration().configure().buildSessionFactory());
5. }
6. @Override
7. public String doPost(RequestMessage message) {
8. String response;
9. Student student = message.getDeserializedObject(Student.class);
10. if (student != null) {
11. studentDao.addStudent(student);
12. response = ResponseMessageEncoder.encode(StatusCode.OK,

 String.valueOf(student.getId()));
13. } else {
14. response = ResponseMessageEncoder.encode(StatusCode.BAD_REQUEST);
15. }
16. return response;
17. }
18. @Override
19. public String doGet(RequestMessage message) {
20. String response;
21. String id = message.getQueryValues().get("id");
22. if (id != null) {
23. try {
24. Student student = studentDao.findStudent(Integer.parseInt(id));
25. if (student == null) {
26. response =

 ResponseMessageEncoder.encode(StatusCode.NOT_FOUND);
27. } else {
28. response = ResponseMessageEncoder.encode(StatusCode.OK,

 student);
29. }
30. } catch (NumberFormatException e) {
31. response =ResponseMessageEncoder.encode(StatusCode.BAD_REQUEST);
32. }
33. }
34. else {
35. response = ResponseMessageEncoder.encode(StatusCode.BAD_REQUEST);
36. }
37. return response;
38. }
39. }

Figure 2.17. StudentServlet class code snippet

Distributed Systems – Laboratory Guide

35

9. A Student object is created from the RequestMessage object by calling the

getDeserializedObject of the RequestMessage class (line 9 from Figure 2.17)

10. The actual message is decoded by reflection techniques by the POJOSerializer class.

11. A Student object is returned

12. The StudentServlet class calls the corresponding addStudent method from the StudentDAO

class (line 11 from Figure 2.17). This class is implemented using Hibernate3. A part of the

class is shown in Figure 2.18. The add method defined in lines 10-28 uses Hibernate

specific methods to access the database. Initially, a session is opened (line 12) and a

Transaction is defined (line 13) The Transaction is opened (line 15) and the save method is

callsed with the student parameter (line 16). Finally, the transaction commits (line 18) and

the session is closed (line 25).

1. public class StudentDAO {
2. private static final Log LOGGER = LogFactory.getLog(StudentDAO.class);
3.
4. private SessionFactory factory;
5.
6. public StudentDAO(SessionFactory factory) {
7. this.factory = factory;
8. }
9.
10. public Student addStudent(Student student) {
11. int studentId = -1;
12. Session session = factory.openSession();
13. Transaction tx = null;
14. try {
15. tx = session.beginTransaction();
16. studentId = (Integer) session.save(student);
17. student.setId(studentId);
18. tx.commit();
19. } catch (HibernateException e) {
20. if (tx != null) {
21. tx.rollback();
22. }
23. LOGGER.error("", e);
24. } finally {
25. session.close();
26. }
27. return student;
28. }

Figure 2.18. StudentDAO class code snippet

13. The inserted entity is returned

3 http://hibernate.org/orm/

http://hibernate.org/orm/

Distributed Systems – Laboratory Guide

36

14. If the operation succeeded, a return message with the status code OK and the ID of the

student is created by the ResponseMessageEncoder class

15. The string containing the encoded message is returned

16. The response is returned to the servlet

17. The response is send back to the client through the sockets. The session closes.

2.4. Building and running the example

1. Setup GIT and download the project from

https://bitbucket.org/utcn_dsrl/ds.handson.addignment-1/

 Create an empty local folder in the workspace on your computer

 Right-click in the folder and select Git Bash

 Execute commands:

o git init

o git remote add origin https://bitbucket.org/utcn_dsrl/ds.handson.addignment-1.git

o git pull origin master

2. Import the DB script assignment-one-db.sql in MySQL. You can use MySQL WorkBench, go

to Server -> Data Import -> Import.

3. Import the project into Eclipse: FILE-> Import->Maven-> Existing Maven Projects-> Browse

for project in the folder created at step 1

4. Modify the hibernate.cfg.xml file from the server module (main/src/resources/):

 Change the hibernate connection URL to localhost (the IP from line 16 to localhost)

 Set the username and password from your local MySQL server (line 19 and 22)

5. Run the project:

 Run the ServerStart class from the server module, package start

 Run the ClientStart class from the client module, package start

2.5. Laboratory work: web application using request – reply

2.5.1. Requirements

Design, implement and test a three-tiered distributed system to view and post flights for an airport.

The system consists of the following tiers: presentation, business layer and data access.

Functional requirements:

 Users log-in. Users are redirected to the page corresponding to their role (Client or

Administrator).

 Client role

o A client can view on his/her page all the flights in a list or in a table.

 Administrator role

https://bitbucket.org/utcn_dsrl/ds.handson.addignment-1/
https://bitbucket.org/utcn_dsrl/ds.handson.addignment-1.git

Distributed Systems – Laboratory Guide

37

o The administrator can perform CRUD (Create, Read, Update and Delete)

operations on flights

 Each flight consists of the following information: flight number, airplane type,

departure city, departure date and hour, arrival city, arrival date and hour (the local time

of the flight arrival at the destination cities is computed based on cities geographical

coordinates).

 Each city has associated its geographical coordinates: latitude and longitude.

 To display the local time, the geographical coordinates of the city are passed to an

external web service4 which will return the actual time values.

Implementation technologies: HTML, Java Servlets and Hibernate.

Non-functional requirements: Security - use authentication to restrict users access (cookies,

session, etc.). The client users will not be able to enter the administrator page (e.g. by log-in and

then copy-paste the admin URL to the browser).

2.5.2. Deliverables

 A solution description document (about 4 pages, Times New Roman, 10pt, single spacing)

containing:

o Conceptual architecture of the distributed system.

o DB design.

o UML Deployment diagram.

o Readme file containing build and execution considerations.

 Source files. The source files and the database dump will be uploaded on the personal

bitbucket account, following the steps:

o Create a repository on bitbucket with the exact name:

DS_Group_Name_Assigment_1

o Push the source code and the documentation (push the code not an archive with the

code or war files)

o Share the repository with the user utcn_dsrl

2.5.3. Evaluation

Table 2.1. shows how grading is performed for this assignment.

4 http://new.earthtools.org/webservices.htm

http://new.earthtools.org/webservices.htm

Distributed Systems – Laboratory Guide

38

Table 2.1. Web application laboratory work grading details

Points Requirements

5 p HTML page for presentation, Servlets for business logic and Hibernate for data

access

 DB

 Documentation

1 p Log-in with redirect (admin/clients)

1 p Call external web service

1p Minimum Security: the simple users will not be able to enter the administrator page

2p Correct answers to assignment related topics:

 URI and URL

 Web Clients and Web Servers

 HTTP protocol

 GET and POST HTTP methods

 HTML web forms

 Query strings

 Cookies

 Session

 Java Servlet

 Object-Relational Mapping (ORM)

2.6. Bibliography

[1] http://www.coned.utcluj.ro/~salomie/DS_Lic/

[2] Lab Book: I. Salomie, T. Cioara, I. Anghel, T.Salomie, Distributed Computing and Systems:

A practical approach, Albastra, Publish House, 2008, ISBN 978-973-650-234-7

[3] Hibernate:

a. http://www.tutorialspoint.com/hibernate/

b. http://www.javatpoint.com/hibernate-tutorial

c. http://www.javacodegeeks.com/2015/03/hibernate-tutorial.html

d. http://www.mkyong.com/tutorials/hibernate-tutorials/

[4] Maven: https://maven.apache.org/

[5] Servlets:

a. http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html

b. http://www.tutorialspoint.com/servlets/

c. http://www.javatpoint.com/servlet-tutorial

d. http://www.javacodegeeks.com/2014/12/java-servlet-tutorial.html

[6] HTML web forms – Servlets interaction: http://www.tutorialspoint.com/servlets/servlets-form-

data.htm

[7] JSP: http://www.tutorialspoint.com/jsp/

[8] JSF: http://www.tutorialspoint.com/jsf

http://www.coned.utcluj.ro/~salomie/DS_Lic/
http://www.tutorialspoint.com/hibernate/
http://www.javatpoint.com/hibernate-tutorial
http://www.javacodegeeks.com/2015/03/hibernate-tutorial.html
http://www.mkyong.com/tutorials/hibernate-tutorials/
https://maven.apache.org/
http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html
http://www.tutorialspoint.com/servlets/
http://www.javatpoint.com/servlet-tutorial
http://www.javacodegeeks.com/2014/12/java-servlet-tutorial.html
http://www.tutorialspoint.com/servlets/servlets-form-data.htm
http://www.tutorialspoint.com/servlets/servlets-form-data.htm
http://www.tutorialspoint.com/jsp/
http://www.tutorialspoint.com/jsf

Distributed Systems – Laboratory Guide

39

3. Remote Procedure Call and Distributed

Objects
3.1. Problem statement

Suppose we are requested to create a distributed application for computing a car pollution tax using

a computational expensive algorithm that cannot be run on any client machine. Thus, the algorithm

is run on a remote physical machine having more resources (the server). The customers (remote

clients) want to use the algorithm to compute the tax for their cars by sending data to the server

and receiving the computation results to be displayed.

The client application sends the data regarding the car to the server. The car contains the following

fields:

 int year – fabrication year

 int engineCapacity – engine size in cmc

Based on this data, the server will compute the tax value using the following formula:

 𝑡𝑎𝑥 = (
𝑒𝑛𝑔𝑖𝑛𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

200
) ∗ 𝑠𝑢𝑚 (1)

where sum depends on the engine size from Table 3.1.

Table 3.1. Relation between engine size and specific sum

Engine Size Sum

<1600 8

1601-2000 18

2001-2600 72

2601-3000 144

>3001 290

NOTE: The formula is a simple one for this tutorial purpose only. Usually, the method from the

server is a computational intensive calculus that requires more physical resources than are

available on the client.

3.2. Application analysis and design

From the problem requirements we notice an important aspect: the algorithm used to compute the

tax for the cars is computational intensive, thus being unsuited for the clients to run it locally on

Distributed Systems – Laboratory Guide

40

their physical machines. Consequently, the chosen solution will be a distributed application having

client-server architecture. The server, having more physical resources, will run the computational

intensive algorithm. The server will expose a method that must be executed remotely by the client,

leading to a remote procedure call technique.

The solution can be decomposed into the following subsystems:

 Communication protocol – remote method invocation between client and server

 The server application

o Algorithm

o Remote invocation

o Communication layer over the network

 The client application

o Communication layer over the network

o Remote invocation

3.2.1. General architecture

We need to create a distributed application over the network. We choose client-server software

architecture and a request-reply communication paradigm identical to the one from previous

chapter (Figure 2.1).

For the transport layer of the application we use sockets5 that assure a two-way communication

between the client and the server, thus allowing us to implement a synchronous request-reply

communication method.

3.2.2. Communication mechanism

This section defines the message structure that will allow a remote method invocation, or Remote

Procedure Call (RPC).

During the invocation of a method, the parameters are stored on the stack and the control is passed

to the code section located at the address mapped to the procedure name. What is important to

notice is that a procedure is defined by its name (that maps to an address in the memory where the

actual code is located) and its parameters.

In an Object-Oriented Programming (OOP) environment, we have a Remote Method Invocation

(RMI) technique that allows invoking a method from a remote object. In this case, we must know

the object address (or name), the method name and its parameters. Furthermore, in a distributed

environment, to identify a remote object, besides knowing the object name (and implicitly its

memory address) we must also know the address of the server where it is located.

5 https://docs.oracle.com/javase/tutorial/networking/sockets/

https://docs.oracle.com/javase/tutorial/networking/sockets/

Distributed Systems – Laboratory Guide

41

Basically, this RPC/RMI technique introduces an intermediate layer between the method call and

its actual execution, mainly because the method call happens on the client and the execution on the

server.

For the client to make the call, it must know the signature of the method (name, parameters and

return type). The signature of a method is defined in OOP languages in an interface. Thus, we

might assume that the methods from the server are defined in an interface. This client has also a

reference to this interface, thus knowing the method signature that will be called. Considering the

above aspects, the system communication flow is shown in Figure 3.1.

Figure 3.1. RPC system communication flow

The steps involved in calling a remote method are described below.

Client calls the method: The client application makes a call to a special proxy object that

implements the remote interface. The client handles this object as it was a local object

implementing the interface. The client calls the desired method.

Call forwarded to the proxy: The method call is forwarded to a proxy that has a special

implementation of the interface. Instead of implementing the functionality of the methods, this

proxy creates a communication mechanism that takes the method’s name and parameters and

serializes them to be sent over the network.

Data sent over the network: The data is packed and sent over the network. The following

information is serialized: remote object name (address space), remote object method and method

parameters.

Server receives data: The server receives the data, de-serializes it and sends it to the Dispatcher.

Server calls method: The Dispatcher is responsible for calling the method from the Skeleton that

is the interface exposed by the remote object.

Distributed Systems – Laboratory Guide

42

Server executes method: The server executes the method with the parameters send from the client.

It computes the return value of the method and serializes the result for the client.

Result returned to the client: The result is returned to the client, which de-serializes it and returns

it to the Stub as it has been computed locally.

3.3. Application structure and implementation

The solution is implemented in 4 different modules: Client application, Server application, RPC

package that contains the classes for remote communication and the Common Classes for both

client and server application. The relation between the modules is presented in Figure 3.2.

Figure 3.2. Application conceptual architecture

Each module has the following components:

 Client application - contains one package (Communication) with two classes:

o ClientStart - Class which contains the main method. Here, the remote object is

invoked after a reference is created.

o ServerConnection – class that contains the sockets connecting the client with the

server

 Server Application – contains two packages:

o Communication - contains the server-side communication

o Services – contains the implementation of the remote object

 Common Classes – contain two packages:

o Entities - contains the entities (Car)

o ServiceInterface - contains the definition of the interface exposed by the remote

object (Skeleton)

 RPC – library that contains the protocol definition. Contains one package with five classes:

Distributed Systems – Laboratory Guide

43

o Connection - interface specifying the connection of a client to the server. Such a

connection must provide a method to send a message to the server and retrieve the

message response.

o Dispatcher - dispatches the call received from the client. It interprets the given

Message, gets the correct object from the registry, calls the required method of that

object and then bundles and returns a response Message.

o Message - represents the object of communication between the client and the server.

It contains all the necessary fields for communication. For example, when the client

sends the message to the server, the message contains:

- the endpoint from the Registry, which is associated to the remote object

- the name of the method to be called

- the arguments of the method, in order

- when the server replies, it adds the result (return value of the method, or a

status message, or an exception) in the arguments array, on the first position.

o Naming - provides a static method to look up for a remote object on the server.

o Registry - provides a mapping of endpoint-object. It is used by the server to specify

which object can be remotely used by a client. The client must identify the object at

the endpoint.

3.3.1. Client application

The Client application consists of two components, the application domain component, represented

by the ClientStart class and remote method invocation mechanism represented by the

ServerConnection class.

The ClientStart class has the role pf starting the application and has the code presented in Figure

3.3. The main method (lines 5-16) declares an object reference of the remote object, on line 6.

Then, it calls the lookup method of the Naming service from the remote procedure call package to

instantiate the remote object reference (line 8). This call also uses as parameter an instance of the

ServerConnection class that contains the transport layer access methods. Using the remote object

reference newly instantiated, two calls for the remote methods are performed in lines 9 and 10, and

the results are printed in the console. Finally, the connection to the server is closed (line 14).

1. public class ClientStart {
2. private static final Log LOGGER = LogFactory.getLog(ClientStart.class);
3. private ClientStart() {
4. }
5. public static void main(String[] args) throws IOException {
6. ITaxService taxService = null;
7. try {
8. taxService = Naming.lookup(ITaxService.class,

 ServerConnection.getInstance());
9. System.out.println("Tax value: " + taxService.computeTax(new Car(2009,

 2000)));

Distributed Systems – Laboratory Guide

44

10. System.out.println(taxService.computeTax(new Car(2009, -100)));
11. ServerConnection.getInstance().closeAll();
12. } catch (Exception e) {
13. LOGGER.error("",e);
14. ServerConnection.getInstance().closeAll();
15. }
16. }
17. }

Figure 3.3. ClientStart class code snippet

The class ServerConnection assures the connection to a server and the communication with it via

messages (see Figure 3.4). It implements the Connection interface, specified in the RPC package,

which requires the implementation of the sendMessage() method.

1. public class ServerConnection implements Connection {
2. private static final Log LOGGER = LogFactory.getLog(ServerConnection.class);
3. private Socket clientSocket;
4. private ObjectOutputStream outToServer;
5. private ObjectInputStream inFromServer;
6. private static ServerConnection instance;
7. private static final String TERMINATE = "terminate";

8. private ServerConnection() throws IOException {
9. clientSocket = new Socket("localhost", 8889);
10. outToServer = new ObjectOutputStream(clientSocket.getOutputStream());
11. inFromServer = new ObjectInputStream(clientSocket.getInputStream());
12. }

13. public static ServerConnection getInstance() throws IOException {
14. if (instance == null) {
15. instance = new ServerConnection();
16. }
17. return instance;
18. }

19. public Message sendMessage(Message messageToSend) {
20. Message messageReceived = null;
21. try {
22. outToServer.writeObject(messageToSend);
23. messageReceived = (Message) inFromServer.readObject();
24. } catch (IOException | ClassNotFoundException e) {
25. LOGGER.error("", e);
26. }
27. return messageReceived;
28. }

29. public void closeAll() {…}
30. }

Figure 3.4. ServerConnection class code snippet

Distributed Systems – Laboratory Guide

45

The host and port of the server with which the socket communication is established is default set

here (localhost, 8887) in line 9. To establish connection to another location, these values should be

changed. A pair of input=output sockets is declared and opened in lines 10-11.

The ServerConnection uses the Singleton design pattern6 to assure that only one such instance is

used. The getInstance method defined in lines 13-18 checks if the class has already been

instantiated. If this already happened, it returns the previously instantiated object. Otherwise it calls

the constructor, which is defined to be private (lines 8-12). The sendMessage method (lines 19-27)

defines a synchronous communication with the server using sockets and data streams. A message

is sent to the socket, through the opened socket and receives a reply. The method waits for the

server reply and saves the received message in a variable. The final method of the class is the

closeAll method that closes the socket connection to the server and releases the resources.

3.3.2. RPC library

The RPC module contains the classes that allow the communication between the client application

and the server application, managing the distributed objects and dispatching the remote calls.

The Registry class defines a mapping between object names declared as strings and remote object

endpoints (see Figure 3.5. line 3).

1. public class Registry {
2. private static Registry ourInstance = new Registry();
3. private Map<String, Object> endPoints;
4.
5. private Registry() {
6. endPoints = new HashMap<String, Object>();
7. }
8.
9. public static Registry getInstance() {
10. return ourInstance;
11. }
12.
13. public void registerEndpoint(String endpointName, Object endpoint) {
14. endPoints.put(endpointName, endpoint);
15. }
16.
17. public Object getEndpoint(String endpointName) {
18. return endPoints.get(endpointName);
19. }
20. public void unregisterEndpoint(String endpointName) {
21. endPoints.remove(endpointName);
22. }
23. }

Figure 3.5. Registry class code snippet

6 https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

Distributed Systems – Laboratory Guide

46

Also, the Registry implements the Singleton design pattern, having declared a Registry field (line

2), a private constructor (line 5) and a getInstance method (line 9). It also contains two methods

for inserting new pairs of object names and endpoints (lines 13-15), for retrieving the endpoint for

an object name (lines 17-19) and for removing an endpoint (lines 20-22).

A Message object is defined for communicating with the server. It contains all the necessary fields

for communication. For example, when the client sends the message to the server, the message

contains: the endpoint (in the Registry, which is associated to the remote object), the name of the

method to be called and the arguments of the method, in their specific order. When the server

replies, it adds the result (return value of the method, or a status message, or an exception) in the

arguments array, on the first position.

1. public class Message implements Serializable {
2.
3. private static final long serialVersionUID = 1L;
4. private String endPoint;
5. private String methodName;
6. private Object[] arguments;
7. …
8. }

Figure 3.6. Message class code snippet

The Dispatcher class dispatches the call received from the client (see Figure 3.7.). It interprets the

given Message, gets the correct object from the registry, calls the required method of that object

and then bundles and returns a response Message.

The Dispatcher class also implements the Singleton design pattern. An instance on the Dispatcher

type is declared in line 5, a private constructor is defined (lines 7-9) and a getInstance method that

checks if the object was instantiated and creates the new object is defined in lines 10-12.

The main responsibility of the Dispatcher class is the execute method implemented in lines 13-34.

This method executes the operation requested in the Message argument, by interpreting the

message object received as parameter. At first, it gets from the registry the object from the required

endpoint by the name saved in the message (line 16). Then, it gets the arguments of the method to

be called from the argument array of the message (lines 17 - 21). The name of the method to be

called is taken from the method field of the message and the method is called by invoking the

invoke method of the reflection package on the method object, with parameters the object reference

taken from the registry and its parameters taken from the message argument list (line 25). The

result of the execution is saved in an array named responseArgs. Then, it is checked if an exception

occurred (lines 25-27) or was propagated through execution (line 28) and add the root exception

(the cause of InvocationTargetException) to response.

Finally, the return value of the method is added to the response Message or an exception is added

if the method threw an exception (lines 31-32).

Distributed Systems – Laboratory Guide

47

1. public class Dispatcher {
2. private static final Log LOGGER = LogFactory.getLog(Dispatcher.class);
3.
4. private Registry registry;
5. private static Dispatcher ourInstance = new Dispatcher();
6.
7. private Dispatcher() {
8. registry = Registry.getInstance();
9. }

10. public static Dispatcher getInstance() {
11. return ourInstance;
12. }

13. public synchronized Message execute(Message m) {
14. Message response = new Message();
15. Object[] responseArgs = new Object[1];
16. Object objectEndpoint = registry.getEndpoint(m.getEndPoint());
17. Class[] argTypes = new Class[m.getArguments().length];
18. int length = m.getArguments().length;
19. for (int i=0;i<length;i++) {
20. argTypes[i] = m.getArguments()[i].getClass();
21. }
22. try {
23. Method method =

 objectEndpoint.getClass().getMethod(m.getMethodName(),argTypes);
24. responseArgs[0] = method.invoke(objectEndpoint,m.getArguments());
25. } catch (NoSuchMethodException | IllegalAccessException e) {
26. LOGGER.error("",e);
27. } catch (InvocationTargetException e) {
28. responseArgs[0] = e.getCause();
29. }
30. response.setArguments(responseArgs);
31. response.setEndPoint(m.getEndPoint());
32. return response;
33. }
34. }

Figure 3.7. Dispatcher class Code Snippet

The Naming class, with the code presented in Figure 3.8, has the role of resolving the naming

issues: what happens when an object is called by its name. This is done by the lookup method, that

has the role of looking up on the server registry if there is any class published by the server which

implements the given interface. The method receives as parameters an interface of which

implementation is to be found on the server, the connection through which to communicate with

the server and if there is a remote object published with the interface given as parameter, it returns

a Proxy to the object else returns null.

Distributed Systems – Laboratory Guide

48

Initially, a special Message is composed (lines 6-8) to check is the endpoint is valid. The message

is sent in line 9, and a response message is saved. The first position in the arguments field of the

response Message contains the status of the endpoint verification.

1. public class Naming {
2. private Naming() {
3. }
4. public static <T> T lookup(Class<T> clazz, Connection connection) {
5. Message messageToSend;
6. messageToSend = new Message();
7. messageToSend.setEndPoint(clazz.getSimpleName());
8. messageToSend.setMethodName("checkendpoint");
9. Message messageReceived = connection.sendMessage(messageToSend);
10. Object object = messageReceived.getArguments()[0];
11. if (object != null) {
12. if (object instanceof String && "OK".equals(object))
13. {
14. return (T) Proxy.newProxyInstance(clazz.getClassLoader(),new

 Class[]{clazz},new ProxyCallHandler(connection));
15. }
16. else if (object instanceof String && "ERROR".equals(object)) {
17. System.out.println("There's no object on the provided endpoint: " +

 clazz.getSimpleName() + " !");
18. return null;
19. }
20. }
21. return null;
22. }

23. private static class ProxyCallHandler implements InvocationHandler {
24. private Connection connection;
25. public ProxyCallHandler(Connection connection) {
26. this.connection = connection;
27. }

28. public Object invoke(Object proxy, Method method, Object[] args) throws

 Throwable {
29. Message messageToSend = new Message();
30. messageToSend.setEndPoint(proxy.getClass().getInterfaces()[0]

 .getSimpleName());
31. messageToSend.setMethodName(method.getName());
32. messageToSend.setArguments(args);
33. Message messageReceived = connection.sendMessage(messageToSend);
34. Object result = messageReceived.getArguments()[0];
35. if (result instanceof Throwable) {
36. throw (Throwable) result;
37. }
38. return result;
39. }
40. }
41. }

Distributed Systems – Laboratory Guide

49

Figure 3.8. Naming class code snippet

If status is OK, i.e. endpoint is valid, a new Proxy, which implements the interface given as

parameter, is created in line 14. The Proxy has as parameter a ProxyCallHandler object. This is a

special object that implements the InvocationHandler interface from the Java reflection package.

It is similar to the ActionListener interface and is used to delegate the method calls on the Proxy

object to the interface’s invoke method, similar to the mechanism used in Swing when an action to

a button triggers the execution of the actionPerformed method of the corresponding ActionListener

If the status of the message is “ERROR” it means that no object with the given name has been

found and the lookup function will return null.

The ProxyCallHandler class is defined in lines 23-40 and implements a special interface of the

java.lang.reflect package, the InvocationHandler interface that defines the invoke method. The

defined class has a reference to a Connection object that defines the sendMessage method for

sending message between clients and servers.

The invoke method defined in lines 28-39 receives as parameters the proxy of the remote object,

the method to be executed remotely, and an array of objects representing the arguments of the

method. The body of the invoke method creates a message to be sent to the server (line 29), sets

the message endpoint the interface name of the distributed object (line 30) and the remote method

name will be set as the name of the method received as parameter (line 31). Next, the arguments

of the method are set in the message to be sent (line 32) and the message is sent to the server (line

33). The result is saved in a Message object, and the result of the operation is saved in the first

element of the argument array. If the result is an exception, it is thrown (line 35) otherwise the

method execution result is returned (line 38).

3.3.3. Common classes

The common class package contains the classes and interfaces that must belong to both server and

client applications. Basically, it contains the interfaces of the distributed objects, such as the

ITaxService presented in Figure 3.9 and the classes of the objects from the methods headers, such

as the Car class in this case. It is crucial that these classes appear in both applications, and any

modification of a class should be made on both client and server applications.

1. public interface ITaxService {
2. /**
3. * Computes the tax to be payed for a Car.
4. *
5. * @param c Car for which to compute the tax
6. * @return tax for the car
7. */
8. double computeTax(Car c);
9. }

Figure 3.9. ITaxService interface code snippet

Distributed Systems – Laboratory Guide

50

3.3.4. Server application

The Server application contains two components: the application domain related component, that

contains the distributed objects which implement the interfaces defined in the common class

package and the remote method invocation mechanism component that acts as a transparent broker

for the remote invocation.

Application Domain Component

The application domain of this example is the computation of the taxes for a car, performed by the

computeTax method defined in the ITaxService interface. The computeTax method defined in lines

3-15 implements the rules for computing the tax of a car.

This is only a didactic example. Usually, the computations performed by distributed objects are

either computationally intensive or require resources that are unavailable on clients (such as large

files, databases, etc).

1. public class TaxService implements ITaxService {
2.
3. public double computeTax(Car c) {
4. // Dummy formula
5. if (c.getEngineCapacity() <= 0) {
6. throw new IllegalArgumentException("Engine capacity must be

 positive.");
7. }
8. int sum = 8;
9. if(c.getEngineCapacity() > 1601) sum = 18;
10. if(c.getEngineCapacity() > 2001) sum = 72;
11. if(c.getEngineCapacity() > 2601) sum = 144;
12. if(c.getEngineCapacity() > 3001) sum = 290;
13. return c.getEngineCapacity() / 200.0 * sum;
14. }
15. }

Figure 3.10. TaxService class code snippet

Remote Method Invocation Mechanism

The remote method invocation mechanism on the server is composed of three classes: Server class

responsible for publishing the distributed objects in the Registry and waiting for client connections,

the ServerStart class responsible for starting the application and the Session class that creates a

Thread for each client remote method invocation.

The ServerStart class defined in Figure 3.11 defines the port onto which the server will listen for

incoming connections from clients, in this case 8889 (line 3). The main method, lines 9-14,

instantiates a Server object with the given port.

Distributed Systems – Laboratory Guide

51

1. public class ServerStart {
2. private static final Log LOGGER = LogFactory.getLog(ServerStart.class);
3. private static final int PORT = 8889;
4.
5. private ServerStart() {
6. }
7.
8. public static void main(String[] args) {
9. try {
10. new Server(PORT);
11. System.out.println("The server started.");
12. } catch (IOException e) {
13. LOGGER.error("",e);
14. }
15. }
16. }

Figure 3.11. ServerStart class code snippet

The Server object (Figure 3.12) implements the Runnable interface. It contains a ServerSocket for

the client connections. An important step is the registration of the distributed object with the name

ITaxService (line 6) and then the thread is started (line 7). The run method defined in lines 9-22,

contains an infinite loop that listens for client connections, and when a connection is accepted (line

14), a new session thread for handling the request is created (line 15) and started (line 16).

1. public class Server implements Runnable {
2. private static final Log LOGGER = LogFactory.getLog(Server.class);
3. private ServerSocket serverSocket;

4. public Server(int port) throws IOException {
5. serverSocket = new ServerSocket(port);
6. Registry.getInstance().registerEndpoint("ITaxService", new TaxService());
7. new Thread(this).start();
8. }

9. public void run() {
10. while (true) {
11. try {
12. synchronized (this) {
13. Socket clientSocket;
14. clientSocket = serverSocket.accept();
15. Session cThread = new Session(clientSocket);
16. cThread.start();
17. }
18. } catch (IOException e) {
19. LOGGER.error("",e);
20. }
21. }
22. }
23. }

Figure 3.12. Server class Code Snippet

Distributed Systems – Laboratory Guide

52

The Session class with the code shown in Figure 3.13 handles individually each remote method

invocation from the clients. Being a Thread, the Session executes its run method that contains a

while loop (lines 14-45). For each client request, it performs three possible operations: if the

message received from the client contains the TERMINATE message, it sets the loop condition

flag to false (lines 19-22), leading to finishing the thread execution and ending the session. If the

message received from the client contains the string “checkpoint”, then the checkEndpoint method

of the session is executed to determine if the endpoint is valid and there exists an object in the

registry which has associated the given endpoint (lines 24-28). Otherwise, the client request is a

normal remote method execution invocation that can be handled accordingly by calling the

Dispatcher in line 27.

The checkEndpoint method of the Session defined in lines 47-60 checks if there exists an object in

the registry mapped to the given endpoint. It creates a message (lines 48-50) and queries the registry

to determine if there is an object registered with the endpoint name (line 51). If the endpoint exists

it returns an “OK” message otherwise it returns an “ERROR” message (lines 52-59).

The Session class also contains the sendMessageToClient method for sending messages to the

clients through sockets and a method to close the connections when the thread terminates.

1. public class Session extends Thread {
2. private static final Log LOGGER = LogFactory.getLog(Session.class);

3. private Socket clientSocket;
4. private ObjectInputStream inFromClient;
5. private ObjectOutputStream outToClient;

6. private static final String TERMINATE = "terminate";

7. public Session(Socket cSocket) {
8. …
9. }
10.
11. @Override
12. public void run() {
13. boolean run = true;
14. while (run) {
15. Message messageReceived = null;
16. Message messageToSend;
17. try {
18. messageReceived = (Message) inFromClient.readObject();
19. if (TERMINATE.equals(messageReceived.getMethodName())) {
20. run = false;
21. messageToSend = new Message();
22. messageToSend.setMethodName(TERMINATE);
23. } else {
24. if ("checkendpoint".equals(messageReceived.getMethodName())) {
25. messageToSend = checkEndpoint(messageReceived);
26. } else {

Distributed Systems – Laboratory Guide

53

27. messageToSend = Dispatcher.getInstance().execute(messageReceived);
28. }
29. }
30. sendMessageToClient(messageToSend);
31. } catch (EOFException e) {
32. run = false;
33. } catch (SocketException e) {
34. run = false;
35. e.printStackTrace();
36. } catch (IOException e) {
37. LOGGER.error("", e);
38. closeAll();
39. break;
40. } catch (ClassNotFoundException e) {
41. LOGGER.error("", e);
42. }
43. }
44. closeAll();
45. }
46.
47. private Message checkEndpoint(Message messageReceived) {
48. Message messageToSend = new Message();
49. Object[] arguments = new Object[1];
50. String endpointName = messageReceived.getEndPoint();
51. if (Registry.getInstance().getEndpoint(endpointName) != null) {
52. arguments[0] = "OK";
53. } else {
54. arguments[0] = "ERROR";
55. }
56. messageToSend.setArguments(arguments);
57. messageToSend.setEndPoint(endpointName);
58. messageToSend.setMethodName(messageReceived.getMethodName());
59. return messageToSend;
60. }
61.
62. public void sendMessageToClient(Message messageToSend) {
63. …
64. }
65.
66. public void closeAll() {
67. …
68. }
69. }

Figure 3.13. Session class code snippet

3.3.5. Application sequence diagram

In this we present the functionality of the client and server applications by means of sequence

diagrams (see Figure 3.14).

Distributed Systems – Laboratory Guide

54

Figure 3.14. Sequence diagram of a RPC call

A RPC call has the following steps:

 The Server registers the new object in the Registry

 Client looks up for remote object by name

 The RPC Naming creates a special message that will check if there exists such an object on

the server

 The RPC Naming sends the message to the server using a ServerConnection

 The Server receives the message, and checks in the Registry if there exists such an object

 If an object exists, OK is returned, otherwise an exception is thrown

 The Naming creates dynamically a reference of the Remote object using only the interface

of the remote object, using the java.lang.reflect.Proxy class

 The client calls the remote method

 When the method is called the call is redirected automatically to the invoke method from

the static ProxyCallHandler class

 This method uses reflection to create a message containing the name and parameters of the

RPC (in this case the computeTax method with parameter Car)

 The ServerConnection sends the message to the server

 The Session receives the message and uses the Dispatcher to execute the call

Distributed Systems – Laboratory Guide

55

 The Dispatcher uses the Registry to return a reference of the remote object

 The Dispatcher returns a local reference of the remote object.

 The method is called using reflection and is executed in the local TaxService object

 The tax is returned, and the Dispatcher creates a response Message with the results

 The result is returned to the Session

 The message is returned to the client

 The message is returned to the ProxyHandler. The return value is stored in the arguments

array of the message, on the first position. It is extracted as an object and is converted

automatically to double by the Proxy.

 The tax is returned to the client

3.4. Building and running the example

1. Setup GIT and download the project from

https://bitbucket.org/utcn_dsrl/ds.handson.assignment2.git

 Create an empty local folder in the workspace on your computer

 Right-click in the folder and select Git Bash

 Execute commands:

o git init

o git remote add origin

https://bitbucket.org/utcn_dsrl/ds.handson.assignment2.git

o git pull origin master

2. Import the project into Eclipse: FILE-> Import->Maven-> Existing Maven Projects->

Browse for project in the folder created at step 1

3. Run the project:

 Run the ServerStart class from the server module, package communication

 Run the ClientStart class from the client module, package communication

3.5. Laboratory work: RPC application using distributed objects

3.5.1. Requirements

Design, implement and test a client-server distributed system that uses RPC to compute taxes and

selling prices for cars.

Functional requirements:

 Users can fill the information of their cars using a simple GUI (web or desktop):

o int year – fabrication year

o int engineSize – engine size

o double price - purchasing price

https://bitbucket.org/utcn_dsrl/ds.handson.assignment2.git

Distributed Systems – Laboratory Guide

56

 The application uses RPC to send the car information to the distributed object from the

server that computes two operations depending on the client request:

o Tax for a car using formula (1) and Table 3.1 (see Section 3.1)

o Selling price for a car using formula (2)

𝑝𝑟𝑖𝑐𝑒𝑠𝑒𝑙𝑙𝑖𝑛𝑔 =

{𝑝𝑟𝑖𝑐𝑒𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 −
𝑝𝑟𝑖𝑐𝑒𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔

7
∗ (2018 − 𝑦𝑒𝑎𝑟) 𝑖𝑓 2018 − 𝑦𝑒𝑎𝑟 < 7

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

 The result of the invoked operation, tax, respectively selling price, is displayed on the client

GUI.

Implementation technologies: Choose between JAVA RMI or .NET Remoting.

3.5.2. Deliverables

 A solution description document (about 4 pages, Times New Roman, 10pt, single spacing)

containing:

o Conceptual architecture of the distributed system.

o UML Deployment diagram.

o Readme file containing build and execution considerations.

 Source files. The source files will be uploaded on the personal bitbucket account following

the steps:

o Create a repository on bitbucket with the exact name:

DS_Group_FirstName_LastName_Assignment_2

o Push the source code and the documentation (push the code not an archive with the code

or war files)

o Share the repository with the user utcn_dsrl

3.5.3. Evaluation

Table 3.2. shows how grading is performed for this assignment.

Table 3.2. RPC laboratory work grading details

Points Requirements

5 p Client – Server application using Java RMI or .NET Remoting with one

distributed object and at least one method implemented (tax or price)

 Documentation

2 p Simple GUI (Desktop or Web)

Distributed Systems – Laboratory Guide

57

1 p Both methods (tax and price) implemented in a distributed object

2p Correct answers to assignment related topics:

 Distributed objects middleware components: Stub, Skeleton, Dispatcher, etc.

 JAVA RMI architecture or .NET Remoting architecture

 Distributed objects vs local objects

 Distributed objects problems: security, latency, life-cycle, etc.

3.6. Bibliography

[1] http://www.coned.utcluj.ro/~salomie/DS_Lic/

[2] Lab Book: I. Salomie, T. Cioara, I. Anghel, T.Salomie, Distributed Computing and Systems:

A practical approach, Albastra, Publish House, 2008, ISBN 978-973-650-234-7

[3] Java RMI: https://docs.oracle.com/javase/tutorial/rmi/

[4] .NET Remoting: http://www.codeproject.com/Articles/14791/NET-Remoting-with-an-easy-

example

http://www.coned.utcluj.ro/~salomie/DS_Lic/
https://docs.oracle.com/javase/tutorial/rmi/
http://www.codeproject.com/Articles/14791/NET-Remoting-with-an-easy-example
http://www.codeproject.com/Articles/14791/NET-Remoting-with-an-easy-example

Distributed Systems – Laboratory Guide

58

4. Indirect Communication and Queues
4.1. Problem statement

Suppose we are requested to create a distributed application with the following requirements:

 A client sends a message to a server

 The server may be offline or online when the message is being sent

 After the message was sent, the client must resume its processing without waiting for a

response from the server

 The message is processed by the server when it becomes available

Imagine a real-world system with the following requirements:

 The administrator of a web site that sells DVDs must access remotely the application that

manages the central database where he/she keeps the information about available stocks

 The administrator adds a new DVD to the database

 Each time a new DVD is added, the application must send automatically notification e-

mails to all the subscriber customers to notify them about the new item.

4.2. Application analysis and design

From the problem requirements we notice the following aspects:

 The information is stored in a central node that must be accessed remotely by clients.

Consequently, the chosen solution will be a distributed application having client-server

architecture.

 The client must continue its execution as soon as it sends the message, without waiting for

the server to respond. The standard client-server architecture with the response-reply

mechanism is not enough for fulfilling this requirement.

Consequently, the chosen solution will be a distributed application based on the message passing

inter-process communication paradigm. The application will be based on a Message Oriented

Middleware (MOM) which has 3 major components:

 Message Sender

 Message Repository

 Message Receiver

Each component communicates with the other using the basic synchronous request-reply

mechanism. However, by introducing the message repository component between the client and

the server, an asynchronous communication is created from two synchronous communication

mechanisms.

Distributed Systems – Laboratory Guide

59

We need to create a distributed application over the network based on the message passing inter-

process communication paradigm.

We start from the client-server software architecture and a request-reply communication paradigm

and add an intermediate component: the message repository. Thus, we have two client-server

request-reply communications:

 Sender – Message repository

 Message repository – Receiver

An asynchronous communication mechanism is developed:

1. The Sender uses a synchronous request-reply mechanism to send the message to the

Message Repository.

2. The Message Repository keeps the messages in the queue

3. The Receiver connects to the Message Repository using a synchronous request-reply

mechanism to ask for messages.

Figure 4.1. MOM software architecture

For the transport layer of the application we again use sockets that assure a two-way

communication between the client. This architecture can be mapped on the requirements from sub-

section 4.1 as follows:

 The sender is the client application used by the administrator to introduce data regarding

the DVDs

 The Message Repository is a special application where the sender connects to send the

message (the characteristic of the new DVD)

 The receiver is a server that connects to the Message Repository, takes the message (the

DVD) and starts sending e-mails to the subscribed customers

Distributed Systems – Laboratory Guide

60

4.3. Application structure and implementation

The solution is implemented in 3 different modules, as seen in the conceptual architecture from

Figure 4.2. There is a Producer Client, which has some data to process (in this case the message).

It sends the data to a Queue Server component which holds a queue with messages and can push

to/pop from the queue as required. The Consumer Client will request messages from the Queue

Server, to process them.

Figure 4.2. Conceptual architecture

Each module components are detailed below:

 Producer Client

o ClientStart – class which contains the main method. Here, a

QueueServerConnection instance is created and a loop sends some messages

through it.

o QueueServerConnection – class that contains the sockets connecting the client with

the server and methods for communicating with it.

 Consumer Client

o ClientStart – class which contains the main method. Here, a

QueueServerConnection instance is created; an infinite loop will run asking for

messages from the queue server and processing them when available.

o MailService – service class which provides a method for sending an email to a

specified address.

o QueueServerConnection – class that contains the sockets connecting the client with

the server and methods for communicating with it.

 Queue Server

o Communication – contains the classes dealing with the communication of the queue

server with clients: Server (waiting for incoming connections), Session (dealing

with one request) and Message (the class representing the exchange mechanism of

the communication).

o Queue – contains the Queue class, which is the underlying mechanism; it is a

BlockingQueue which allows for insertion and removal of elements to/from the

structure.

Distributed Systems – Laboratory Guide

61

o Start – contains the ServerStart class, which is the starting point of the component.

4.3.1. Producer client application

Producer client application has two components: ClientStart and QueueServerConnection.

The ClientStart class contains code for creating a connection with the queue server (line 9) using

the specified HOST and PORT values and it also contains code for sending messages to the server

(lines 12-14). The method main sends five messages to be inserted in the queue server.

1. public class ClientStart {
2. private static final String HOST = "localhost";
3. private static final int PORT = 8888;
4.
5. private ClientStart() {
6. }
7.
8. public static void main(String[] args) {
9. QueueServerConnection queue = new QueueServerConnection(HOST, PORT);
10.
11. try {
12. for (int i=0;i<5;i++) {
13. queue.writeMessage("this is email number "+i);
14. }
15. } catch (IOException e) {
16. e.printStackTrace();
17. }
18. }

19. }

Figure 4.3. ClientStart class code snippet

The QueueServerConnection component is responsible for serving the connection between the

client and the queue server. It contains two methods: (1) the first method (lines 17-36) sends

requests to the server to insert a message in the queue and (2) the second method (lines 46-67)

retrieves a message from the queue of the server.

1. public class QueueServerConnection {
2. private String host;
3. private int port;
4.
5. public QueueServerConnection(String host, int port) {
6. this.host = host;
7. this.port = port;
8. }
9.
10. /**
11. * Sends a request to the server to insert a message into the queue.
12. *
13. * @param messageToSend the message to be inserted into the queue
14. * @return the status of the operation (true == successful)

Distributed Systems – Laboratory Guide

62

15. * @throws IOException thrown if there is a problem with the connection
16. */
17. public boolean writeMessage(String messageToSend) throws IOException {
18. Socket clientSocket = new Socket(host, port);
19. ObjectOutputStream outToServer = new

 ObjectOutputStream(clientSocket.getOutputStream());
20. ObjectInputStream inFromServer = new

 ObjectInputStream(clientSocket.getInputStream());
21. outToServer.writeObject(new Message("SEND",messageToSend));
22.
23. Message response;
24. try {
25. response = (Message)inFromServer.readObject();
26. } catch (ClassNotFoundException e) {
27. response = null;
28. e.printStackTrace();
29. }
30.
31. outToServer.close();
32. inFromServer.close();
33. clientSocket.close();
34.
35. return (response!=null && response.getType().equals("ACK"));
36. }
37.
38. /**
39. * Retrieves a message from the queue of the server, by sending a "READ"

 request to it.
40. * If the queue is empty, this method will hang until the queue will get a

 message. In
41. * other words, this method will wait for the server to provide a message.
42. *
43. * @return the message from the queue, sent by the server
44. * @throws IOException thrown if there is a problem with the connection
45. */
46. public String readMessage() throws IOException {
47. Socket clientSocket = new Socket(host, port);
48. ObjectOutputStream outToServer = new

 ObjectOutputStream(clientSocket.getOutputStream());
49. ObjectInputStream inFromServer = new

 ObjectInputStream(clientSocket.getInputStream());
50. outToServer.writeObject(new Message("READ",null));
51.
52. Message response;
53. try {
54. response = (Message)inFromServer.readObject();
55. } catch (ClassNotFoundException e) {
56. response = null;
57. e.printStackTrace();
58. }
59.
60. outToServer.close();

Distributed Systems – Laboratory Guide

63

61. inFromServer.close();
62. clientSocket.close();
63.
64. if (response==null || !response.getType().equals("ACK")) return null;
65. return response.getContent();
66. }
67. }

Figure 4.4. QueueServerConnection class code snippet

4.3.2. Consumer client application

Consumer client application has three components: ClientStart, MailService and

QueueServerConnection.

ClientStart class contains the main (line 6) method which starts the application. The application

contains an infinite loop that retrieves messages from the queue server and then sends the e-mails

as they arrive. The line 16 should be uncommented and completed with the email address, the title

of the email and a string message that represents the body of the message.

1. public class ClientStart {
2.
3. private ClientStart() {
4. }
5.
6. public static void main(String[] args) {
7. QueueServerConnection queue = new

 QueueServerConnection("localhost",8888);
8.
9. MailService mailService = new

 MailService("your_account_here","your_password_here");
10. String message;
11.
12. while(true) {
13. try {
14. message = queue.readMessage();
15. System.out.println("Sending mail "+message);
16. //mailService.sendMail("to_mail_address","Dummy Mail

 //Title",message);
17. } catch (IOException e) {
18. e.printStackTrace();
19. }
20. }
21. }

22. }

Figure 4.5. ClientStart class code snippet

MailService class uses Gmail SMTP by default for sending emails but the properties can be

changed in the constructor if desired. The credentials must be the ones used for the connection to

the SMTP server. The constructor (line 14) takes as arguments the username and the password of

Distributed Systems – Laboratory Guide

64

the user and the method sendMail sends the actual email with the destination, subject and content

that are specified as parameters.

1. public class MailService {
2. final String username;
3. final String password;
4. final Properties props;
5.
6. /**
7. * Builds a mail service class, used for sending e-mails.
8. * The credentials provided should be the ones needed to
9. * autenthicate to the SMTP server (GMail by default).
10. *
11. * @param username username to log in to the smtp server
12. * @param password password to log in to the smtp server
13. */
14. public MailService(String username, String password) {
15. this.username = username;
16. this.password = password;
17.
18. props = new Properties();
19. props.put("mail.smtp.auth", "true");
20. props.put("mail.smtp.starttls.enable", "true");
21. props.put("mail.smtp.host", "smtp.gmail.com");
22. props.put("mail.smtp.port", "587");
23. }
24.
25.
26. /**
27. * Sends an email with the subject and content specified, to
28. * the address specified.
29. *
30. * @param to address to send email to
31. * @param subject subject of the email
32. * @param content content of the email
33. */
34. public void sendMail(String to, String subject, String content) {
35. Session session = Session.getInstance(props,
36. new javax.mail.Authenticator() {
37. protected PasswordAuthentication getPasswordAuthentication() {
38. return new PasswordAuthentication(username, password);
39. }
40. });
41.
42. try {
43.
44. Message message = new MimeMessage(session);
45. message.setFrom(new InternetAddress(username));
46. message.setRecipients(Message.RecipientType.TO,
47. InternetAddress.parse(to));
48. message.setSubject(subject);
49. message.setText(content);

Distributed Systems – Laboratory Guide

65

50.
51. Transport.send(message);
52.
53. System.out.println("Mail sent.");
54. } catch (MessagingException e) {
55. e.printStackTrace();
56. }
57. }
58. }

Figure 4.6. MailService class code snippet

QueueServerConnection class serves as the connection between the client and the queue server. It

contains two methods: (1) the first method (lines 17-36) allows the requests to be sent to the server

and (2) the second method (lines 46-67) retrieves a message from the queue of the server. The

constructor (lines 5-8) has two parameters: the host and the port.

1. public class QueueServerConnection {
2. private String host;
3. private int port;
4.
5. public QueueServerConnection(String host, int port) {
6. this.host = host;
7. this.port = port;
8. }
9.
10. /**
11. * Sends a request to the server to insert a message into the queue.
12. *
13. * @param messageToSend the message to be inserted into the queue
14. * @return the status of the operation (true == successful)
15. * @throws IOException thrown if there is a problem with the connection
16. */
17. public boolean writeMessage(String messageToSend) throws IOException {
18. Socket clientSocket = new Socket(host, port);
19. ObjectOutputStream outToServer = new

 ObjectOutputStream(clientSocket.getOutputStream());
20. ObjectInputStream inFromServer = new

 ObjectInputStream(clientSocket.getInputStream());
21. outToServer.writeObject(new Message("SEND",messageToSend));
22.
23. Message response;
24. try {
25. response = (Message)inFromServer.readObject();
26. } catch (ClassNotFoundException e) {
27. response = null;
28. e.printStackTrace();
29. }
30.
31. outToServer.close();
32. inFromServer.close();
33. clientSocket.close();

Distributed Systems – Laboratory Guide

66

34.
35. return (response!=null && response.getType().equals("ACK"));
36. }
37.
38. /**
39. * Retrieves a message from the queue of the server, by sending a "READ"

 request to it.
40. * If the queue is empty, this method will hang until the queue will get a

 message. In
41. * other words, this method will wait for the server to provide a message.
42. *
43. * @return the message from the queue, sent by the server
44. * @throws IOException thrown if there is a problem with the connection
45. */
46. public String readMessage() throws IOException {
47. Socket clientSocket = new Socket(host, port);
48. ObjectOutputStream outToServer = new

 ObjectOutputStream(clientSocket.getOutputStream());
49. ObjectInputStream inFromServer = new

 ObjectInputStream(clientSocket.getInputStream());
50. outToServer.writeObject(new Message("READ",null));
51.
52. Message response;
53. try {
54. response = (Message)inFromServer.readObject();
55. } catch (ClassNotFoundException e) {
56. response = null;
57. e.printStackTrace();
58. }
59.
60. outToServer.close();
61. inFromServer.close();
62. clientSocket.close();
63.
64. if (response==null || !response.getType().equals("ACK")) return null;
65.
66. return response.getContent();
67. }
68. }

Figure 4.7. QueueServerConnection class code snippet

4.3.3. Queue server application

Queue Server Application has three components: ServerStart, Queue and Queue Communication.

The ServerStart class contains a main method that creates a new Server object at the port that is

specified as a parameter. By default, the port is 8888.

Distributed Systems – Laboratory Guide

67

1. public class ServerStart {
2.
3. private static final int PORT = 8888;
4.
5. private ServerStart() {
6. }
7.
8. public static void main(String[] args) {
9. try {
10. new Server(PORT);
11. System.out.println("Queue server started.");
12. } catch (IOException e) {
13. e.printStackTrace();
14. }
15. }
16. }

Figure 4.8. ServerStart class code snippet

The Queue class is a wrapper for a queue and the underlying queue is a BlockingQueue. If there

are no elements in the queue, then this type of queue will block and will wait for elements to

retrieve. The first method (lines 14-16) inserts elements in the queue and the second method (lines

18-20) retrieves elements from the queue. The underlying mechanism is FIFO and it works in a

push and pop manner.

1. public class Queue {
2. private static Queue queueInstance;
3. private BlockingQueue<String> queue;
4.
5. private Queue() {
6. queue = new LinkedBlockingDeque<String>();
7. }
8.
9. public static Queue getInstance() {
10. if (queueInstance==null) queueInstance=new Queue();
11. return queueInstance;
12. }
13.
14. public void put(String message) throws InterruptedException {
15. queue.put(message);
16. }
17.
18. public String get() throws InterruptedException {
19. return queue.take();
20. }
21. }

Figure 4.9. Queue class code snippet

The queue communication part contains three classes: Message, Server and Session and is

responsible for the communication with the queue.

Distributed Systems – Laboratory Guide

68

The Message class contains a constructor (lines 5-8) that takes as parameters the type and the

content of the message and it also contains getters and setters. This class is used for communication

between the components and it represents an exchange mechanism between the queue server and

the clients.

1. public class Message implements Serializable {
2. private String type;
3. private String content;
4.
5. public Message(String type, String content) {
6. this.type = type;
7. this.content = content;
8. }
9.
10. public String getType() {
11. return type;
12. }
13.
14. public void setType(String type) {
15. this.type = type;
16. }
17.
18. public String getContent() {
19. return content;
20. }
21.
22. public void setContent(String content) {
23. this.content = content;
24. }

25. }

Figure 4.10. Message class code snippet

There are four types of messages which are illustrated in the table below and the message also has

an associated content.

Table 4.1. Message types

Message Type Description

SEND Inserts content into the queue.

READ Retrieves content from the queue.

ACK The operation is successful on the server side.

ERR The operation fails on the server side.

Distributed Systems – Laboratory Guide

69

The Server class has the following properties: (1) it creates socket that accepts connections and (2)

it creates a thread which deals with the communication with the client. The constructor (lines 9-

12) creates a socket object to listen to and accept connections. The run method (lines 17-30)

contains a while loop that runs continuously, accepts connections from the clients and it creates

and starts a new thread for dealing with the client messages.

1. public class Server implements Runnable {
2. private ServerSocket serverSocket;
3.
4. /**
5. * Create a socket object from the ServerSocket to listen to and accept

 connections
6. * @param port the port on which the ServerSocket will be bound to
7. * @throws IOException
8. */
9. public Server(int port) throws IOException {
10. serverSocket = new ServerSocket(port);
11. new Thread(this).start();
12. }
13.
14. /**
15. * Accepts connections from clients and assigns a thread to deal with the

 messages from and to the respective client.
16. */
17. public void run() {
18. while (true) {
19. try {
20. synchronized (this) {
21. Socket clientSocket;
22. clientSocket = serverSocket.accept();
23. Session cThread = new Session(clientSocket);
24. cThread.start();
25. }
26. } catch (IOException e) {
27. e.printStackTrace();
28. }
29. }
30. }
31.
32. }

Figure 4.11. Sever class Code Snippet

Session class deals with client connection processes: (1) receiving messages, (2) decoding

messages and (3) sending a response. The run method (lines 18-55) waits for a message from the

client and treats the message according to its type. If the message has the type SEND then it is

inserted in the queue and acknowledgement message with null body is sent to the client. Otherwise,

if the message has the type READ then a message is retrieved from the queue and an

acknowledgement message with the content of that message is sent to the client.

Distributed Systems – Laboratory Guide

70

1. public class Session extends Thread {
2.
3. private Socket clientSocket;
4. private ObjectInputStream inFromClient;
5. private ObjectOutputStream outToClient;
6.
7. public Session(Socket cSocket) {
8. this.clientSocket = cSocket;
9. try {
10. inFromClient = new ObjectInputStream(clientSocket.getInputStream());
11. outToClient = new ObjectOutputStream(clientSocket.getOutputStream());
12. } catch (IOException e) {
13. e.printStackTrace();
14. }
15. }
16.
17. @Override
18. public void run() {
19. Message messageReceived;
20.
21. try {
22. // Wait for message from client
23. messageReceived = (Message) inFromClient.readObject();
24.
25. // Treat messages according to the type of the message
26. switch (messageReceived.getType()){
27. case "SEND":
28. try {
29. //insert the message into the queue
30. Queue.getInstance().put(messageReceived.getContent());
31. sendMessageToClient(new Message("ACK", null));
32. } catch (InterruptedException e) {
33. e.printStackTrace();
34. sendMessageToClient(new Message("ERR", null));
35. }
36. break;
37. case "READ":
38. try {
39. //retrieve a message from the queue
40. //since the underlying queue is a

 //BlockingQueue, this method call will wait
 //if the queue is empty
41. String content = Queue.getInstance().get();
42. sendMessageToClient(new Message("ACK",content));
43. } catch (InterruptedException e) {
44. e.printStackTrace();
45. sendMessageToClient(new Message("ERR",null));
46. }
47. break;
48. }
49.
50. } catch (ClassNotFoundException | IOException e) {

Distributed Systems – Laboratory Guide

71

51. e.printStackTrace();
52. }
53.
54. closeAll();
55. }
56.
57. public void sendMessageToClient(Message messageToSend) {
58. try {
59. outToClient.writeObject(messageToSend);
60. } catch (IOException e) {
61. e.printStackTrace();
62. }
63. }
64.
65. public void closeAll() {
66. try {
67. // Close the input stream
68. if (inFromClient != null) {
69. inFromClient.close();
70. }
71. // Close the output stream
72. if (outToClient != null) {
73. outToClient.close();
74. }
75. // Close the socket
76. if (clientSocket != null) {
77. clientSocket.close();
78. }
79. } catch (IOException e) {
80. e.printStackTrace();
81. } finally {
82. inFromClient = null;
83. outToClient = null;
84. clientSocket = null;
85. }
86. }
87. }

Figure 4.12. Session class code snippet

4.3.4. Application sequence diagram

There are two major components that are running asynchronously with regards to one another (the

producer and the consumer). The queue server is the means of communication between them.

Therefore, two sequence diagrams will be presented, one with the interaction of the producer client

and the queue server (Figure 4.13), and one with the interaction of the consumer client and the

queue server (Figure 4.14.).

Distributed Systems – Laboratory Guide

72

Figure 4.13. Sequence diagram for message insertion in queue (producer client)

The sequence diagram from Figure 4.13. comprises of the following steps:

1. The client initiates a connection with the queue server.

2. The server creates a session (thread) to handle the client.

3. Client sends the actual request and the message to be inserted into the queue.

4. Server inserts the message into the queue

5. Insertion is executed successfully

6. Return an acknowledged message, notifying that the operation was successful.

Figure 4.14. Sequence diagram for message retrieval from queue (consumer client)

The next sequence diagram refers to the flow of the consumer client from Figure 4.14.:

1. The client has an infinite loop which executes readMessage (steps 1-7) -> processMessage

(steps 8-9).

2. The client initiates a connection with the queue server.

3. The server creates a session (thread) to handle the client.

4. Client sends the actual request (to retrieve a message from the queue).

5. Message is retrieved from the queue (popped, i.e. eliminated from the queue).

Distributed Systems – Laboratory Guide

73

6. Message is returned.

7. Reply to the client with the respective message.

8. Call the sendMail() method, to send a mail with the message (content) got from the queue.

9. Return to the client main function.

4.4. Building and running the example

1. Setup GIT and download the project from

https://bitbucket.org/utcn_dsrl/ds.handson.assignment3.git

 Create an empty local folder in the workspace on your computer

 Right-click in the folder and select Git Bash

 Write commands:

o git init

o git remote add origin

https://bitbucket.org/utcn_dsrl/ds.handson.assignment3.git

o git pull origin master

2. Import the project into Eclipse: FILE-> Import->Maven-> Existing Maven Projects->

Browse for project in the folder created at step 1

3. Run the project:

 Run the ServerStart class from the queue server module, package start

 Run the ClientStart class from the consumer client module, package start

 Run the ClientStart class from the producer client module, package start

4. The application will perform the following: the consumer client, once it receives elements

from the queue server, will process them (i.e. send mails with the messages). The producer

client will send messages to the queue server to be inserted in the queue (i.e. to be

processed).

5. By default, consumer client will only print to STDOUT the messages. To actually send

mails, a valid Gmail username and password will need to be specified in ClientStart class

from consumer client module. In this case access for less secure apps must be switched to

on for the Gmail account: https://www.google.com/settings/security/lesssecureapps

4.5. Laboratory work: asynchronous distributed system application

4.5.1. Requirements

Design, implement and test a distributed system that uses MOM to create an asynchronous

communication between the client (message producer) and the server (message consumer).

Functional requirements:

 The application is used by a DVD store administrator

https://bitbucket.org/utcn_dsrl/ds.handson.assignment3.git
https://www.google.com/settings/security/lesssecureapps

Distributed Systems – Laboratory Guide

74

 Each time new information about a DVD is added in the system by the administrator, the

application must

o send automatically notification e-mails to all the subscriber customers to notify them

about the new item.

o create automatically a text file and write the information about the DVD in it.

Implementation technologies:

 Use one of the following technologies:

o For message producer and consumer use Java or .NET

o For message queue:

- Java: JMS or RabbitMQ Java API

- .NET: MSMQ or RabbitMQ .NET API

4.5.2. Deliverables

 A solution description document (about 4 pages, Times New Roman, 10pt, Single Spacing)

containing:

o Conceptual architecture of the distributed system.

o UML Deployment diagram.

o DB design.

o Readme file containing build and execution considerations.

 Source files. The source files will be uploaded on the personal bitbucket account, following

the steps:

o Create a repository on bitbucket with the exact name:

DS_Group_FirstName_LastName_Assignment_3

o Push the source code and the documentation (push the code not an archive with the

code or war files)

o Share the repository with the user utcn_dsrl

4.5.3. Evaluation

Table 4.2. shows how grading is performed for this assignment.

Table 4.2. Asynchronous communication laboratory work grading details

Points Requirements

5 p Web page for filling information and creating new DVD

 Message Sender, Message Queue and Message Receiver

 Documentation

2 p Sending email from Message Receiver

Distributed Systems – Laboratory Guide

75

1 p Creating a text file from Message Receiver

2p Correct answers to assignment related topics:

 Types of communication: Point-to-Point vs Publish-Subscribe

 MOM concepts: Message, Message Producer, Message Consumer, Queue,

Topic, etc.

4.6. Bibliography

[1] http://www.coned.utcluj.ro/~salomie/DS_Lic/

[2] JMS, MSMQ: Lab Book: I. Salomie, T. Cioara, I. Anghel, T.Salomie, Distributed Computing

and Systems: A practical approach, Albastra, Publish House, 2008, ISBN 978-973-650-234-7

[3] RabbitMQ

a. https://www.rabbitmq.com/getstarted.html

b. https://dzone.com/articles/getting-started-rabbitmq-java

c. https://www.rabbitmq.com/install-windows.html

[4] Java EE tutorial, https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

http://www.coned.utcluj.ro/~salomie/DS_Lic_2015/
https://www.rabbitmq.com/getstarted.html
https://dzone.com/articles/getting-started-rabbitmq-java
https://www.rabbitmq.com/install-windows.html

Distributed Systems – Laboratory Guide

76

5. XML based Communication and Web

Services
5.1. Introduction

The web services are self-describing, platform-independent computational elements that execute a

specific business task. They can be seen as the next evolutionary step in software development

after distributed objects and aim to eliminate a major drawback of these, difficulties in cross

platform integration. The main reason behind this problem relies in fact that the remote interface

the distributed objects need to be exposed and described in a technology specific language in order

to be invoked. The services address the cross-platform code heterogeneity problem by relying on

a language that is interpreted in the same way in all existing technologies. Thus, on top of the

distributed objects architecture, an XML layer is added as presented in Figure 5.1.

Figure 5.1. From distributed objects to services

The new emerging architecture is called SOA (Service Oriented Architecture) and it is based on

three main communicating entities that are described and that collaborate using XML language

(see Figure 5.2):

 Service Consumer whose main task is to search and discover public services using Service

Brokers. The services that fulfill the requests of the consumer are used to develop new

applications.

Distributed Systems – Laboratory Guide

77

 Service Broker whose main task is to publish or expose the available services.

 Service Provider aiming to develop and publish loosely-coupled software services.

Figure 5.2. SOA architecture overview

The Service Provider creates a web service and publishes it into a Service Broker. The Service

Broker is a registry that makes the published web service available to any requestor (client). The

Service Consumer locates the web services in the broker registry and then binds to the Service

Provider to properly invoke the web service. The interactions between these three components are

made via operations like publish, lookup and bind.

The SOA web services are the solution to the technological heterogeneous application integration

because of their openness, achieved via XML (see Figure 5.2.):

 The Web Service is described using a Web Service Description Language (WSDL)

document, an XML standard format for describing the service interface;

 The Web Service is published and discovered using the Universal Discovery, Description

and Integration (UDDI) registry which enables applications to find Web Services at design

or run time;

 The Web Service invocation is achieved by using Simple Object Access Protocol (SOAP),

an XML based standard for message exchange.

Distributed Systems – Laboratory Guide

78

The adoption of XML language for description and communication bring many benefits to the web

services such as (more detailed outlook on SOA principles is provided in Table 5.1):

 Technology neutral – the services must be invoked from different technologies using

standardized invocation mechanisms

 Loosely coupled – the services shouldn’t know anything about the internal structure and

implementation of other services

 Location transparent - the information regarding the services’ location or description

must be stored in a registry. The clients will find and invoke the services without

knowing in advance their location.

Table 5.1. The main features of SOA architecture7

Architectural

Principle

Description

Service Encapsulation The services are exposed only through their interfaces and each

service implements a specific business activity that can be reused

Service Loose Coupling There should be a reduced number of inter-dependencies between

services and the clients / consumers invoking them.

Service Contract The services must be described using XML description documents

which provide an interface contract with the potential clients

Service Abstraction The services should hide their complex logic. Usually behind a well-

defined interface

Service Reusability

(Maximization of reuse)

Complex business logic is divided into simple business activities that

are mapped onto services with the intention of promoting reuse

Service Composition Collections of simple services can be coordinated and orchestrated to

form composite services

Service Autonomy The services have control over the business logic they encapsulate

Service Statelessness Service should be stateless and should not withhold information from

one state to the other

Service Discovery The services should be self-descriptive so that they can be found and

accessed via available discovery mechanisms

7 Service Oriented Architecture Principles, https://www.guru99.com/soa-principles.html

https://www.guru99.com/soa-principles.html

Distributed Systems – Laboratory Guide

79

5.2. WSDL

To be used and invokes the Web Services must expose information regarding their operational

capabilities or functionality in form of a XML interface. More over to automatize as much as

possible the software development the web services interface must also permit the reverse

engineering of code generating the main end points of the service. To achieve this goal, WSDL

describes the service syntactic information and its interface in XML (see Figure 5.3).

Figure 5.3. WSDL as a service Interface Description Language (IDL)

Following the WSDL specifications8, a WSDL document defines services as collections of network

endpoints or ports (see Table 5.2). WSDL makes a separation between the abstract definition of

endpoints and messages and their concrete network data format bindings. This separation makes

possible to reuse abstract definitions like messages (abstract descriptions of the data being

exchanged) or port types (abstract collections of operations). The concrete protocol and data format

specification for a particular port type forms a reusable binding.

Table 5.2. WSDL XML elements

XML Element Description

<types> Describes the data type definitions used by the web service

8 https://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/

https://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/

Distributed Systems – Laboratory Guide

80

<message> Data elements of each service defined operation. Describes the messages

that can be sent or received by the service. The message is identified by its

name and is usually defined based on an XML schema

<operation> Web method describing the basic functionality of the service. For an

operation, the input and the output messages must be defined

<portType> Describes the set of operations that are offered by the service and the

exchanged messages involved

<biding> A concrete protocol and data format specification each particular port type

5.3. SOAP

SOAP is the XML protocol for accessing web service operations by providing a simple mechanism

for information exchanging in a distributed environment based on XML. A SOAP message is an

ordinary XML document containing the elements described in Table 5.39.

Table 5.3. XML elements of a SOAP message

XML Element Description

soap:Envelope Identifies the XML document as a SOAP message. The SOAP Envelope

element is the root element of a SOAP message and acts like a container

for the information that must be delivered.

 xmlns:soap

namespace attribute

Should always have the value of:

http://www.w3.org/2003/05/soap-envelope/

soap:encodingStyle

attribute

Special SOAP construction which is used to define

the data types used in the document. This

construction may appear in any SOAP element

presented above and applies to the same element's

contents and to all its child elements. A SOAP

message has no default encoding. Example:

http://www.w3.org/2003/05/soap-encoding

soap:Header Optional element. An extension mechanism that provides a way to pass

general information to SOAP messages. If the Header element is present,

it must be the first child of the Envelope element. Contains application-

specific information (like authentication, payment, etc.) about the SOAP

message.

9 Simple Object Access Protocol, https://www.w3.org/TR/soap/

http://www.w3.org/2003/05/soap-envelope/
http://www.w3.org/2003/05/soap-encoding
https://www.w3.org/TR/soap/

Distributed Systems – Laboratory Guide

81

soap:Body The Body element (required) - contains the call or the response

information. The SOAP Body element contains the SOAP message

intended for the ultimate endpoint of the message.

soap:Fault Optional Element. Provides information about errors that occurred while

processing the message. It is used to carry error and status information

within a SOAP message. If present, the SOAP Fault element must appear

only once within the body element.

Faultcode – sub element A code for identifying the fault

Faultstring - sub element A human readable explanation of the fault

Faultactor - sub element Information about who caused the fault to

happen

Detail - sub element application specific error information

SOAP bindings are mechanisms which allow SOAP messages to be effectively exchanged using

a transport protocol such as HTTP.

The main advantages of using SOAP over the classical RPC / XML approach are mentioned below:

 provides an easier way to communicate behind proxies and firewalls than RPC technology

 allows the use of different transport protocols (HTTP – as default, TCP, SMTP etc.).

5.3. UDDI

UDDI is a service registry used to publish and locate web services, leveraging on XML-based

service descriptors. Each service descriptor contains the information needed by the service

requester to find and then bind to a particular web service.

Main functionalities provided:

 Service Publication. UDDI defines operations that allow organizations to expose their web

services.

 Service Finding. UDDI defines operations that allow consumers to extract information

about services published in the UDDI registry.

 Service Classification. UDDI defines operations that permit the classification of

businesses and services according to standard taxonomies.

In UDDI a service is described at different levels of abstractions using three types XML elements

called pages (see Table 5.4).

Distributed Systems – Laboratory Guide

82

Table 5.4. UDDI pages

UDDI Page Description

White Pages Contains the basic contact information for each company providing web

services.

Yellow Pages Contains more details about the company, and includes descriptions of the

services the company can offer to potential consumers

Green Pages Contains the Web Service binding information. It includes various

interfaces, URL locations, discovery information and similar data required

to find and invoke the Web Service

The descriptive sections of UDDI are called Listings and consist of the web service interface

descriptions that are created from WSDL and stored into a UDDI registry. UDDI will ultimately

allow registries to exchange listings with each other, so that it is possible to have the same listing

replicated to many UDDI registries.

The necessary steps for using the UDDI registry in the context of SOA architecture are:

 A web service Provider publishes information about the web service (taken from the WSDL

file) in the UDDI registry.

 A web service Consumer searches the UDDI to find a service that matches its business

requirements.

 The UDDI sends the description of the matching service to the web service Consumer.

 The Consumer connects to the web service Provider using the SOAP protocol and the

service web methods are invoked.

5.4. Laboratory work: SOA web services

5.4.1. Requirements

Design, implement and test a distributed application called “Online Tracking System” comprising

of a GUI (web or desktop) and of several web services that implement the actual business logic

that must be offered to the users.

Functional requirements:

 The application has two types of users: administrators and simple users (clients)

 If the user does not have an account, it can register and become a simple user

 After the login, the user is redirected to his/her corresponding page.

 The simple user can:

Distributed Systems – Laboratory Guide

83

o List all his/her packages

o Search specific packages

o Check the status of a package delivery

 The administrator can:

o Add/remove package. The package has the following characteristics: Sender (a

simple user), Receiver (a simple user), Name, Description, Sender City, Destination

City, Tracking (Boolean – initially false)

o Register package for tracking. The package becomes tracked, and a route is

associated to it. This route represents the path of the package to the destination, as

pairs of (City, Time).

o Package status updating. A new entry (City, Time) is introduced to the route

These functionalities will be exposed as 2 SOAP web services, each implementing the fowllowing

operations:

 WS1:

o Login and register

o Simple client operations

 WS2

o Administrator Operations

Implementation technologies:

 Develop one SOAP web service in .NET and the other one in JAVA

 Choose between .NET or JAVA for implementing the GUI (either web or desktop)

5.4.2. Deliverables

 A solution description document (about 4 pages, Times New Roman, 10pt, single spacing)

containing:

o Conceptual architecture of the distributed system.

o UML Deployment diagram.

o DB design

o Readme file containing build and execution considerations.

 Source files. The source files will be uploaded on the personal bitbucket account, following

the steps:

o Create a repository on bitbucket with the exact name:

DS_Group_FirstName_LastName_Assignment_4

o Push the source code and the documentation (push the code not an archive with the

code or war files)

o Share the repository with the user utcn_dsrl

Distributed Systems – Laboratory Guide

84

5.4.3. Evaluation

Table 5.5. shows how grading is performed for this assignment.

Table 5.5. SOA web services laboratory work grading details

Points Requirements

5 p Simple GUI (web or desktop)

 One SOAP web service (WS1 or WS2)

 DB

 Documentation

2 p Save and display routes for each package in a DB table containing the pairs (City,

Time)

2 p Both web services implemented for complete functionality (WS1 and WS2)

1 p Correct answers to assignment related topics:

 SOA architecture and its components: WSDL, UDDI, SOAP

 SOAP protocol

 WSDL components

 UDDI components

 How platform independence is assured for Web Services

5.5. Bibliography

[1] http://www.coned.utcluj.ro/~salomie/DS_Lic/

[2] Lab Book: I. Salomie, T. Cioara, I. Anghel, T.Salomie, Distributed Computing and Systems:

A practical approach, Albastra, Publish House, 2008, ISBN 978-973-650-234-7

[3] Java SOAP Web Services: https://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html

[4] .NET SOAP Web Services: https://msdn.microsoft.com/en-

us/library/t745kdsh%28v=vs.90%29.aspx

http://www.coned.utcluj.ro/~salomie/DS_Lic/
https://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html
https://msdn.microsoft.com/en-us/library/t745kdsh%28v=vs.90%29.aspx
https://msdn.microsoft.com/en-us/library/t745kdsh%28v=vs.90%29.aspx

Distributed Systems – Laboratory Guide

85

6. Server-side Frameworks: Spring for

Developing REST Web Services
6.1. Introduction

To be able to create an application that contains a set of micro-services, the user needs to use an

appropriate architectural style. REST, or REpresentational State Transfer, is an architectural style

used for providing standards between computer systems on the web, so that the communication

between systems becomes easier, but also to define some constraints and properties such as

performance and scalability. In this architectural style, data and functionalities are considered

resources which can be accessed by URI. These resources can be accessed by a set of simple and

well-defined operations.

As mentioned above, the REST architecture imposes some constraints for an application out from

which the most important are:

 Client-Server architecture – the principle behind this constraint is the total separation of

concerns. The user interface does not need to know information about data retrieve or any

other information that does not interest it directly, while the server does not have any

interest in knowing aspects of the interface. If this constraint is violated than the application

cannot be called a REST application. This separation allows the components to evolve

independently and become more portable.

 Statelessness – describe the fact that no information is restrained by either sender or

receiver, in our case client and server. Basically, they are agnostic of the state in which the

other is.

 Cacheability – this constraint imposers that the response of a request can be cached so that

the client will not receive inappropriate data in response. This improves scalability and

performance.

REST applications are considered fast and easy to use because of the following principles:

 The resources are identified by URI – a RESTful web service exposes a set of resources

which identifies the goals of their interaction with their clients. After URI identifies the

resources, it offers a global space for addressing and discovery of services and resources.

 Interface uniformity – the resources are manipulated by using exactly four types of

operations: create, read, update and delete.

 Descriptive Messages – the resources are decoupled from their actual form so that their

content can be accessed in multiple formats such as HTML, JSON, XML and others.

Distributed Systems – Laboratory Guide

86

6.2. Hands-on application

The Spring Framework is an application framework for the Java platform. The framework was first

released on the 1st October 2002 and was written by the Australian computer specialist Rod B.

Johnson. Due to its continuous enhancement and development the framework became widely used

in software companies nowadays. The hands-on example from this sub-section is a skeleton for a

Spring application that can be used to get the information form a database using RESTfull services.

6.2.1. Application installation and configuration

To download and configure the example follow the steps described below:

1. Setup GIT and download the project from https://bitbucket.org/utcn_dsrl/spring-demo.git

 Create an empty local folder in the workspace on your computer

 Right-click in the folder and select Git Bash

 Write the commands:

o git init

o git remote add origin https://bitbucket.org/utcn_dsrl/spring-demo.git

o git pull origin master

2. Create an empty schema in MySQL with the name spring-demo

3. Import the project in Eclipse

4. Check the application.properties file from src/main/resources and fill the username and

password of the local MySQL server.

5. Run Maven Clean Install for Eclipse as illustrated in Figures 6.1.

6. Go to MySQL Workbench and insert manually a user in the provided example DB

7. Run the application in Eclipse (see Figure 6.2.)

As an alternative you can run the application in the Apache Tomcat server installed locally. Copy

the generated spring-demo.war from the folder target at the location C:\apache-tomcat-

9.0.1\webapps and start the Apache Tomcat server using the instruction C:\apache-tomcat-

9.0.1\bin\startup.bat.

To test the implemented REST endpoints, access the following links:

 http://localhost:8081/spring-demo/user/all => retrieve all the users from the database

 http://localhost:8081/spring-demo/user/details/1 => retrieve the details of a user with the

given ID

https://bitbucket.org/utcn_dsrl/spring-demo.git
https://bitbucket.org/utcn_dsrl/spring-demo.git
http://localhost:8081/spring-demo/user/all
http://localhost:8081/spring-demo/user/details/1

Distributed Systems – Laboratory Guide

87

Figure 6.1. Maven install in Eclipse

Figure 6.2. Application execution in Eclipse

Distributed Systems – Laboratory Guide

88

The application is based on a single table database and aims at presenting the layers involved in

performing CRUD operations on the user table shown in Figure 6.3. When opened in Eclipse, the

project has the structure shown in Figure 6.4. All the components are detailed in next sub-section.

Figure 6.3. User table from the example project

Figure 6.4. Project structure in Eclipse

Distributed Systems – Laboratory Guide

89

6.2.2. Application conceptual architecture

The high level conceptual architecture of the system is presented in Figure 6.5.

Figure 6.5. Project conceptual architecture

Table 6.1 describes each architectural component.

Table 6.1. Project Component Description

Component Package Description

Repositories Spring.demo.repositories Package that contains the repositories,

classes that facilitate the DB access

Entities Spring.demo.entities An entity represents a table from the

relational database and each instance of the

entity corresponds to a row from the

database

Services Spring.demo.services This layer represents the business logic layer

of the Spring application. It translates the

DTOs into entities and back, also performing

more complex operations.

DTOs Spring.demo.dto A DTO is a special object exposed outside

the application (to the UI or APIs). It

contains only part of the underlying Entities.

Controller Spring.demo.controller The layer that exposes the application

functionality as an API able to handle HTTP

REST requests.

Distributed Systems – Laboratory Guide

90

6.2.3. Application implementation details

A simple sequence diagram involving the interactions between the components for a GET

operation is shown in Figure 6.6.

Figure 6.6. Sequence diagram for GET operation

The processing steps are described below.

1. Browser sends a HTTP request with the method GET to retrieve the user with id =1. This

happens by calling the URL: http://localhost:8081/spring-demo/user/details/1. This URL is

composed of the following parts:

 http: protocol used to communicate

 localhost: address of the server to communicate with. This can be either an URL

resolved by DNS to an IP address, or an IP address. (localhost or 127.0.0.1 in this case).

 808: the port on which the web server which will respond to the request is listening.

 spring-demo: the name of the application deployed in the web server

 user/details/1: The last part of the address is mapped to the resources within the

application by the web server. In this case, the application exposes a REST API through

its controllers. The mapping is done is three steps, as shown in the Figure 6.7.:

i. mapping to the controller at line 17,

ii. mapping to the method within the controller and defining the request type at line

23 and

iii. defining the parameters of the method at lines 23 and 24 (the name in the request

must correspond to the name within the @PathVariable tag. Inside the method,

the Java Parameter is used – int id).

http://localhost:8081/spring-demo/user/details/1

Distributed Systems – Laboratory Guide

91

Figure 6.7. Spring controller mapping

2. The Spring controller automatically instantiates a service due to the annotation @Autowired

(line 20). Using this UserService object, inside the getUserByID method it calls the

findUserById method, delegating the processing to the service layer.

Good to know

The Controllers Layer is a layer over the Services Layer and calls the methods which are

provided by the Services Layer.

a) How are the controllers defined?

The controllers are defined using the annotation @RestController. This annotation specifies the

fact that the corresponding annotated class can handle RESTful WEB Services.

b) How are the controllers mapped to the URLs?

The controllers are mapped to the URLs using the @RequestMapping annotation. This

annotation is used in two cases:

o For annotating the entire class – in this case the value of the @RequestMapping (line 17)

is a prefix for all the other URLs that are handled by the controller. In this example the

controller is accessed using the following URL: localhost:8080/spring-demo/user/all

Figure 6.8. RequestMapping for UserController

o For annotating a specific method – in this case the value of the @RequestMapping is a

suffix for the URL that corresponds to the method. The parameter value describes the

Distributed Systems – Laboratory Guide

92

location while the parameter method describes the type of the request method. There are

several types for the RequestMethod: GET, POST, PUT or DELETE.

Figure 6.9. RequestMapping for getting all the users

c) How are the Services Layer instances accessed?

The objects from the Services Layer are accessed using the @Autowired annotation.

d) What are the most common input parameters of the methods annotated with

@RequestMapping?

o A path variable – in this case the variable is a part of the path specified by the

@RequestMapping annotation

Figure 6.10. PathVariable annotation example

o A model – an interface which defines a holder for the model attributes; the model object

comes from the body of the method request

Figure 6.11. Model object annotation example

o A model attribute – the primary objective of this annotation is to bind the request

parameters to a model object from the body of the method request

Figure 6.12. ModelAttribute annotation example

3. The UserService object is called with the method findUserById. It uses the userRepository

object that was injected due to the @Autowired annotation to find the user in the DB.

Distributed Systems – Laboratory Guide

93

Good to know

The Services Layer is an intermediary layer between the Repositories Layer and the

Controllers Layer. The purpose of the Services Layer is to define methods that perform several

operations on a database in such a way that either all the operations execute successfully or none

of them is executed. In the second case the database rollbacks to the original state.

a) What are the services?

The services provide transactional operations for the business logic. A service method is the

smallest atomic operation that the application can perform on a database. A service method either

completes or the database rollbacks to the previous state.

b) How are the services defined?

The services are defined using the annotation @Component or the annotation @Service.

c) How are the objects defined in the Repositories Layer accessed?

The objects from the Repositories Layer are accessed using the annotation @Autowired (line

24). The purpose of this annotation is to auto wire beans.

Figure 6.13. UserService example

d) Why the Services Layer uses DTOs instead of entities?

Usually the DTOs reduce the overhead between the backend and the presentation. The optimized

DTOs contain only that information which is absolutely required.

4. The UserRepository method findById is called. This method uses an auto generated query

by the JpaRepository superclass to retrieve a user by its ID.

Figure 6.14. UserRepository definition

Distributed Systems – Laboratory Guide

94

Good to know

The Repositories Layer intermediates the communication between the Services Layer and the

Database.

a) How are the repositories defined?

The repositories are defined by extending the interface JpaRepository<T, ID extends

Serializable>. The first argument T describes the type of the entities used by the repositories

while the second argument ID describes the type of the id of the entities.

Figure 6.15. UserRepository interface

The UserRepository handles entities of the type User which have the id of the type Integer.

b) How are the repositories set in Spring?

The beans that are involved in the settings of the repositories are defined in the PersistenceConfig

class. The class is fully depicted in the Figure 6.16. and its contents are detailed below:

o DataSource bean (lines 71 – 79) – is used for the configuration of the access to the

relational database. It configures the following parameters:

 diver class name (line 74) – the name of the class of the driver used for the

communication with the database

 URL (line 75) – the address of the database

 username (line 76) – the username required to access the database

 password (line 77) – the password required to access the database

o DataSourceInitializer bean (lines 81 – 90) – uses the DataSource bean. It can use a

script to initialize the database

o LocalContainerEntityManagerFactoryBean bean (lines 45 – 64) – is the most powerful

setup option for the JPA (Java Persistence API). It produces a container-managed

EntityManagerFactory. It is a threadsafe object intended to be used by all the threads

of the application and it is created only once on the startup of the application.

Distributed Systems – Laboratory Guide

95

Figure 6.16. PersistenceConfig class

EntityManagerFactory has the following paramteres:

 dataSource (line 53) – the DataSource bean which is used for the

communication with the database

Distributed Systems – Laboratory Guide

96

 vendorAdapter (line 54) – sets the Hibernate implementation for the

EntityManager. The EntityManager is an interface used for the communication

with the persistence context

 packagesToScan (line 55) – specifies the packages in which the entities are

defined

 jpaProperties (line 59) – specifies additional properties such as the auto-

generation of the database

o PlatformTransactionManager bean (lines 39 – 43) – uses the singleton version of the

LocalContainerEntityManagerFactoryBean to create a JpaTransactionManager. The

JpaTransactionManager is appropriate for the applications that use a single JPA

EntityManagerFactory for the transactional data access

o HibernateExceptionTranslator (lines 66 – 69) – translates the HibernateExceptions to

DataAccessExceptions

c) How to access the database using the Spring repositories?

There are different ways to access the database:

o Use one of the methods declared by the JpaRepository. The CRUD operations are

implemented by default by the JpaRepository and it is not necessary to declare them

again in the interface that extends it

Figure 6.17. JpaRepository snippet

o Create methods based on the fields from the entity (e.g. findById, findByName, etc.). In

this case the name of the method is parsed and interpreted by the Spring framework in

order to execute the corresponding query. Also, there is the possibility to create queries

which are more complex with filters, join and so on (for more details see the

JpaRepostiory documentation)

Figure 6.18. UserRepository interface

Distributed Systems – Laboratory Guide

97

o Use custom defined queries – in the case of the custom defined queries the name of the

method is not parsed; the purpose of the @Param annotation is to specify the names of

the parameters which are used in the definition of the query

Figure 6.19. Custom defined queries

5. The UserRepository retrieves a user entity object instantiated with values from the DB.

Good to know

a) What are the entities?

An entity represents a table from the relational database and each instance of the entity

corresponds to a row from the database. An example of entity is shown in Figure 6.20.

b) What are the main requirements for the creation of the entities?

o The entity class must be annotated with the annotation @Entity

o The table, the id and the columns are mapped using the annotations @Table, @Id and

@Column

o The class must have one public/protected no-argument constructor

o In many cases the class must implement the Serializable interface

c) Which are the most common annotations used by the entities?

The most common annotations which are used in the mapping process are described below:

 @Entity – specifies the fact that the class which is annotated with this annotation is an

entity

 @Table – specifies the table to which the entity is mapped

 @Id – the annotated field is an ID of the table

 @Column – the annotated fields are columns of the table from the database

 @OneToOne – maps the one-to-one relationship between two tables

 @OneToMany – maps the one-to-many relationship between two tables

 @ManyToOne – maps the many-to-one relationship between two tables

 @ManyToMany – maps the many-to-many relationship between two tables

Distributed Systems – Laboratory Guide

98

Figure 6.20. User entity

6. A user entity is returned to the UserRepository.

7. A user entity is returned to the UserService.

8. The UserService converts the entity object to a DTO. The BUILDER Design Pattern is used

in this case to ease the adaptation between the two classes.

Good to know

a) What are the DTOs?

The DTOs (Data Transfer Objects) are objects that carry data between processes and are exposed

by the application to the UI or through an API.

b) What is the relation between the DTOs and the entities?

If the database changes then the mappings used by the entities must also change, but the objects

(DTOs) might remain unchanged.

c) Why are the DTOs used?

Distributed Systems – Laboratory Guide

99

The motivation for using the DTOs is represented by the fact that they reduce the cost of

communication between the processes. The DTOs aggregate in one call data that might be

transferred by several calls.

d) How are the entities mapped to DTOs?

One possibility to map the entities to the DTOs is to use a static class Builder which contains the

fields that are mapped from the entity to the DTOs. First a new instance of the Builder is created,

then the fields which are mapped are set and finally the Builder object calls the create method

which returns a DTO.

Figure 6.21. Creating a DTO

9. A UserDTO is returned to the controller.

10. Transparent to the programmer, the Spring framework calls the Jackson Converter to

convert the retrieved user DTO to a JSON object that will be sent to the browser.

1. {

2. "id": 1,

3. "firstname": "UTCN",

4. "surname": "DSRL",

5. "email": "dsrl@cs.utcluj.ro",

6. "address": "Baritiu 26",

7. "postcode": "305402",

8. "city": "Cluj-Napoca",

9. "country": "RO",

10. "telephone": "0345823823",

11. "iban": "3424959434594582"

12. }

Figure 6.22. JSON with data from the DTO object

11. The Data is then displayed in the browser:

Distributed Systems – Laboratory Guide

100

Figure 6.23. Response in the browser for a REST request

6.2.4. Testing the application

1. Insert several users in the table user from the spring-demo database

2. Configure the database properties from the src/main/resources/application.properties file

3. Run the project as: Click on Project > Run on Server (on the configured Tomcat Server)

4. Use a tool such as Postman10 to retrieve all the users from the database:

localhost:8080/spring-demo/user/all

Figure 6.24. Example of using the Postman tool

10 https://www.getpostman.com/

https://www.getpostman.com/

Distributed Systems – Laboratory Guide

101

6.3. Laboratory work: Spring REST backend for a distributed

application

6.3.1. Requirements

Design and implement the backend services for an application with a layered architecture. The

implemented functionality will be exposed as RESTfull services, thus enforcing interoperability

and portability of the system.

The functional requirements of the project will be defined by each student. As minimal complexity,

the projects should have:

 A DB of around 3-4 tables, at least two foreign key relationships (one-to-many, many-to-

many, etc.)

 CRUD operations implemented on the DB tables and exposed as REST functionality

 Login operation for specific types of users

 Two additional complex operations, such as reports with charts, mail sending to users,

shopping cart for online shop, reservation system for hotel management, etc.

The technologies that must be used for implementation are: Spring REST with ORM or .NET C#

WEB API with REST controllers.

6.3.2. Deliverables

Each student will deliver:

 A solution description document (about 4 pages, Times New Roman, 10pt, single spacing)

containing:

o General application description

o Functional requirements

o Non-functional requirements

o Main use-case diagrams describing the complex operations functionality

o DB design

 Source files. The Spring REST backend code that will be uploaded on the personal

bitbucket account, following the steps:

o Create a repository on bitbucket with the exact name:

DS_Group_FirstName_LastName_Spring_Backend

o Push the source code and the documentation (push the code not an archive with the

code or war files)

o Share the repository with the user utcn_dsrl

The students will have to show tests for most of the CRUD functionalities (integration tests) with

REST console applications (eg. Postman).

Distributed Systems – Laboratory Guide

102

6.3.3. Evaluation

Table 6.2. shows how grading is performed for this assignment.

Table 6.2. REST backend laboratory work grading details

Points Requirements

4 p CRUD operations on DB tables (minimum 3 tables)

4 p Two complex operations (rating, comments, shopping cart etc.)

1 p Log-in with session keys

1 p Code styling and good practices

6.4. References

[1] Spring framework tutorials, http://howtodoinjava.com/category/spring/spring-core/

[2] Spring framework documentation, http://docs.spring.io/spring/docs/current/spring-framework-

reference/html/overview.html

[3] Spring Boot features, http://docs.spring.io/spring-boot/docs/current/reference/html/boot-

features-messaging.html

[4] Intro to WebSockets with Spring, http://www.baeldung.com/websockets-spring

[5] Java EE Tutorial, http://docs.oracle.com/javaee/5/tutorial/doc/bnbqa.html

http://howtodoinjava.com/category/spring/spring-core/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html
http://www.baeldung.com/websockets-spring
http://docs.oracle.com/javaee/5/tutorial/doc/bnbqa.html

Distributed Systems – Laboratory Guide

103

7. Client-side Frameworks: Angular for

Developing Single-page Web GUIs
7.1. Introduction

Angular is an open-source front-end web applications framework and is based completely on

JavaScript.

The framework addresses the main challenges which are encountered in the development of the

web single-page applications such as duplication of code, dependency injection, business logic in

JavaScript and declarative templates.

The project example from this laboratory work is a skeleton for an Angular application that can be

used to communicate with the Spring hands-on application described in Chapter 6.

7.2. Hands-on application

7.2.1. Application installation and configuration

Install and configure the following resources:

 Node.js and Node Package Manager (NPM) – Install the last versions from

https://nodejs.org/ and check that Node and NPM are installed using the commands:

o node -v

o npm -v

 Angular CLI – install the last version from https://cli.angular.io/:

o npm install --save-dev @angular/cli@latest

 WebStorm – download WebStorm from https://www.jetbrains.com/webstorm/

 NGINX – download the stable version of NGINX from http://nginx.org/en/download.html

To download and configure the example follow the steps described below:

1. Setup GIT and download the project from

https://utcn_dsrl@bitbucket.org/utcn_dsrl/angular-demo.git

 Create an empty local folder in the workspace on your computer

 Right-click on the folder and select Git Bash

 Write the commands:

o git init

o git remote add origin https://utcn_dsrl@bitbucket.org/utcn_dsrl/angular-

demo.git

o git pull origin master

2. In WebStorm select File and Open…

3. Search for the location of the project on the disk, enter the name of the project angular-

demo and click OK.

4. When opened in WebStorm, the project has the structure from Figure 7.1.

https://nodejs.org/
https://cli.angular.io/
https://www.jetbrains.com/webstorm/
http://nginx.org/en/download.html
https://utcn_dsrl@bitbucket.org/utcn_dsrl/angular-demo.git
https://utcn_dsrl@bitbucket.org/utcn_dsrl/angular-demo.git
https://utcn_dsrl@bitbucket.org/utcn_dsrl/angular-demo.git

Distributed Systems – Laboratory Guide

104

Figure 7.1. Angular project structure

To properly run the project, follow the next steps

1. From WebStorm open the terminal using View, Tool Windows and Terminal.

2. Download the packages writing the following command in the terminal:

npm install

3. Build the project using the following command from terminal:

ng build --prod

4. Run the project using one of the following two alternatives:

Alternative 1 – Run the application in WebStorm: in the WebStorm terminal write the

command: ng serve --open

Alternative 2 – Run the application from NGINX: copy and paste the files from angular-

demo/dist/angular-demo to nginx-version/html and start the NGINX server using the

following command from a command line interface opened at the location nginx-version:

start nginx

5. Upon successful execution, you should access the angular-demo web application from

browser.

Distributed Systems – Laboratory Guide

105

Figure 7.2. Hands-on example welcome page

7.2.2. Application conceptual architecture

The conceptual architecture of the system is presented below. The Angular application

communicates with the Spring application through JSON (JavaScript Object Notation) objects.

JSON is a syntax which can be used to store and exchange data. The controllers execute complex

operations and communicate with the back-end. The views are html files and css files that use

services to display information or to send information. The model classes are written in JavaScript

and are used by the services and by the views. These components are detailed in Table 7.1.

Figure 7.3. Project conceptual architecture

Distributed Systems – Laboratory Guide

106

Table 7.1. Project component description

Architectural

Dimension

Files Description

Model Model classes located in model

folder.

Contains the model classes which are

used for the communication between

views and controllers. The classes are

written in JavaScript.

View Files ending in .html and .css. Contains the .html and .css pages of the

application. The JavaScript objects

populate the .html files.

Controller Files located in services folder

and files ending in .component.ts.

The services execute complex

operations, communicate with the back-

end spring-demo application through

JSON objects and use model classes for

displaying the information in the view

files.

7.2.3. Application implementation details

The flow of the operations which are required for the retrieval of all the users from the angular-

demo application using the spring-demo application is presented in Figure 7.4.

Figure 7.4. Sequence diagram for retrieving all users

Distributed Systems – Laboratory Guide

107

The processing steps are detailed next:

1. The user clicks on the Users button from the top-left corner of the application.

Good to know

What is the purpose of the <app-root> tag?

The <app-root> tag is written in index.html and this is how Angular knows how to determine

the component which corresponds to the tag, in this case the component AppComponent.

Figure 7.5. Snippet from index.html

2. The method which is specified by the attribute (click) (line 3) in the file

header.component.html is called.

Figure 7.6. Calling the method getUsers()

Good to know

What are the three main parts of an Angular component?

The three main parts of an Angular component are the selector, the template and the style. The

selector is a tag that is written in an html file and this is how the application knows how to

interpret that an Angular component should be used. The template is an html file in which the

component displays the information and the style describes how the content from the html file

should be displayed.

Figure 7.7. Snippet from header.component.ts

3. Navigate to users (line 18) which is associated with the UsersComponent. In the file

app.module.ts the path users corresponds to UsersComponent.

Distributed Systems – Laboratory Guide

108

Figure 7.8. Snippet from HeaderComponent

Good to know

How to connect the paths and the components?

The RouterModule from app.module.ts is used for connecting the paths and the components.

Each route has a path and a component. The path describes how the component can be accessed

in the application.

Figure 7.9. Snippet from app.module.ts

4. Call the getUsers() (lines 15-17) method from UserService.

Distributed Systems – Laboratory Guide

109

Figure 7.10. Snippet from UserService

5. The following HTTP request is sent to the spring-demo application:

http://localhost:8080/spring-demo/user/all

Good to know

How to create an HTTP request in Angular?

In Angular an HTTP request can be created using the class HttpClient from the library

@angular/common/http.

Figure 7.11. Snippet from user.service.ts

6. The spring-demo application returns the HTTP response and at this stage the objects are

in JSON format.

7. The objects in JSON format populate an array of objects of type User: User[].

8. The users object from UsersComponent is populated with User[] data (line 22).

Distributed Systems – Laboratory Guide

110

Figure 7.12. Snippet from UsersComponent

9. The users’ data is used for populating the table from users.component.html.

Good to know

What is Angular Material?

Angular Material is used for creating high-quality UI components using TypeScript and Angular.

Figure 7.13. Snippet from app.module.ts

10. The users table is displayed in the angular-demo application.

7.2.4. Testing the application

1. Insert several users in the table user from the spring-demo database.

2. Run the spring-demo application as presented in Chapter 6.

3. Run the angular-demo application as explained in the first section of this Hands-On.

4. Access the following link in the browser:

a. Alternative 1 (WebStorm): http://localhost:4200/

b. Alternative 2 (NGINX): http://localhost:80/

5. Click on the Users button located in the top-left corner of the web page. You should be able

to visualize the users that populate the user table from the spring-demo database.

http://localhost:4200/
http://localhost/

Distributed Systems – Laboratory Guide

111

Figure 7.14. Angular GUI to display all the users

7.3. Laboratory work: Angular GUI for Chapter 6 Spring backend

7.3.1. Requirements

Design and implement a proper web GUI for the Section 6.3 implemented Spring REST backend

services.

The design of the frontend will be defined by each student.

As minimal complexity, the frontend should interconnect with the already implemented Spring

REST services to:

 login for specific users

 access the CRUD operations on the DB

 access the defined complex operations, such as reports with charts, mail sending to users,

shopping cart for online shop, reservation system for hotel management, etc.

7.3.2. Deliverables

Each student will deliver:

 A solution description document (about 4 pages, Times New Roman, 10pt, single spacing)

containing:

o Conceptual architecture of the integrated distributed system.

o Sequence diagrams describing the complex operations functionality

o UML Deployment diagram.

o Readme file containing build and execution considerations.

 Source files. The Angular frontend code that will be uploaded on the personal bitbucket

account, following the steps:

Distributed Systems – Laboratory Guide

112

o Create a repository on bitbucket with the exact name:

DS_Group_FirstName_LastName_Angular_Frontend

o Push the source code and the documentation (push the code not an archive with the

code or war files)

o Share the repository with the user utcn_dsrl

The project will be executed, and the GUI functionality will be manually tested.

7.3.3. Evaluation

Table 7.2. shows how grading is performed for this assignment.

Table 7.2. Angular GUI laboratory work grading details

Points Requirements

4 p CRUD operations on DB tables

2 p Appropriate GUI for the complex operations

1 p Login functionality

1 p Error messages and error pages

1 p Code styling and good practices

1p Pretty view

7.4. References

[1] Angular framework, https://angular.io/

[2] CRUD functionality using Angular 5 with Bootstrap 4

https://medium.com/@mail.bahurudeen/simple-crud-functionality-using-angular-5-with-

bootstrap-4-f7baac0d2000

[3] An Angular 5 tutorial: step-by-step, https://go.tiny.cloud/blog/angular-5-tutorial-step-step-

guide-first-angular-5-app/

[4] Angular Material, https://material.angular.io/

https://angular.io/
https://medium.com/@mail.bahurudeen/simple-crud-functionality-using-angular-5-with-bootstrap-4-f7baac0d2000
https://medium.com/@mail.bahurudeen/simple-crud-functionality-using-angular-5-with-bootstrap-4-f7baac0d2000
https://go.tiny.cloud/blog/angular-5-tutorial-step-step-guide-first-angular-5-app/
https://go.tiny.cloud/blog/angular-5-tutorial-step-step-guide-first-angular-5-app/
https://material.angular.io/

	Distributed Systems
	Contents
	Preface
	1. Prerequisites Installation and Configuration
	2. Request-Reply and Sockets
	3. Remote Procedure Call and Distributed Objects
	4. Indirect Communication and Queues
	5. XML based Communication and Web Services
	6. Server-side Frameworks: Spring for Developing REST Web Services
	7. Client-side Frameworks: Angular for Developing Single-page Web GUIs

