
UTPRESS
Cluj-Napoca, 2018

ISBN 978-606-737-337-0

 Editura U.T. PRESS

 Str. Observatorului nr. 34

 C.P. 42, O.P. 2, 400775 Cluj-Napoca

 Tel.:0264-401.999

 e-mail: utpress@biblio.utcluj.ro

 http://biblioteca.utcluj.ro/editura

 Director: Ing. Călin D. Câmpean

 Recenzia: Conf.dr.ing. Florin Oniga

 Prof.dr.ing. Sergiu Nedevschi

Copyright © 2018 Editura U.T.PRESS

Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este posibilă

numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-337-0

TABLE OF CONTENTS

Introduction..2

I. Laboratory 1 – Introduction to the Arduino boards...3

 1.1. First example: Using the Arduino development board...4

 1.2. 2-nd example: Digital input pins and the serial interface..6

 1.3. 3-rd example: The use of the LED Pmod as an output device. The use of ports……10

 1.4. Individual work...13

II. Laboratory 2 – Applications with simple I/O modules..14

 2.1. The 2x7 segment display...14

 2.2. The usage of microcontroller port for Input/Output operations..................................16

 2.3. Connecting the Seven Segments display to the Arduino board..................................17

 2.4. The Arduino Learning Shield..20

 2.5. Individual work...23

III. Laboratory 3 – Working with the LCD shield and the interrupt system...................24

 3.1. Working with the LCD shield ..24

 3.2. Working with the interrupt system..30

 3.3. Individual work...35

IV. Laboratory 4 – Usage of timers..36

 4.1. Timer based interrupts...36

 4.2. Tones generation...40

 4.3. PWM signal generation using Arduino...42

 4.4. Individual work...43

 Appendix A – Lab.4 (contents of „pitches.h” file)...44

V. Laboratory 5 – Communication Interfaces...46

 5.1. Individual work...56

VI. Laboratory 6 – Working with the AVR Assembly language.......................................57

 6.1. Assembly and C...57

 6.2. Using the Arduino IDE..62

 6.3. Using Atmel Studio...67

 6.4. Individual work...76

VII. Laboratory 7 – Analog signals processing...77

 7.1. Individual work...85

VIII. Laboratory 8 – Arduino and WiFi – IoT applications..86

 8.1. Individual work...90

IX. Laboratory 9 – Use of DC motors and servo motors. The experimental robot.........91

 9.1. DC motors...91

 9.2. Servo motors..94

 9.3. The experimental robot...95

 9.4. Example code..98

 9.5. Project activity rules..100

Appendix 1– Using the Processing IDE..102

Appendix 2 – Robotics Operating System (ROS) and Arduino…………...……………111

2

Introduction

The microprocessor is the central element of a modern computing system. It includes,

in a single integrated circuit, all the functions of a central processing unit (CPU). The CPU’s

main role is to execute programs, which are sequences of machine code instructions stored in

a memory. The execution of an instruction usually takes four steps: reading the instruction

from memory (fetch), decoding it (decode), arithmetic/logic execution (execute), and writing

the results (write back).

Although they are highly complex circuits, the microprocessors cannot work without

other essential systems, such as memories that store instructions and data, the input and

output data interfaces, or peripherals for sending and receiving data, all connected to the

microprocessor by means of buses. Together with the microprocessor, these components

form microprocessor based systems. Such a microprocessor based system is the PC

motherboard.

Unlike microprocessors, which are only tasked with executing instructions, the

microcontroller has its own memory for storing programs and data, ports for input and output

(GPIO - General Purpose Input/Output), and other components such as timers,

communication interfaces, converters, etc. The microcontroller is therefore a single chip

microprocessor based system, which can be used to control multiple processes or devices.

Due to the small size and low production cost, the microcontrollers are often used in

embedded systems, where reducing the resource demand is important.

The Design with Microprocessors subject, from the Computer Science 3rd year

curriculum, aims to acquaint the students with the specifics of the microprocessor based

systems. We also aim to provide the students, and all the interested learners, the knowledge

and skills needed to design and implement their own microprocessor or microcontroller based

systems.

This laboratory guide includes step by step tutorials for making the students familiar

with the AVR 8 bit microcontroller family, the Arduino Mega and Arduino Uno development

boards, the use of input/output ports and the use of serial interfaces, and also with the use of

multiple external modules for generating and displaying data, with the use of sensors and

actuators. For writing and debugging the programs the students will learn to use the software

development tools Arduino IDE, Atmel Studio and Processing.

We wish these laboratory works, which contain detailed explanations and examples,

will help the students assimilate the theoretical and practical notions of the subject, so that

they will get a good mark in the exam, but we also hope that the practical skills they acquire

will inspire them to turn their own original ideas into reality.

THE AUTHORS

Design with Microprocessors (DMP) – Lab. 1

3

I. Laboratory 1 – Introduction to the Arduino boards

 The set of Arduino development tools include C (microcontroller) boards, accessories

(peripheral modules, components etc.) and open source software tools which allows users to

implement projects using a high-level unified approach, which is C-model independent. The

Arduino boards are mainly equipped with AVR (Atmel) MicroController Units (MCUs), but

there are variants equipped with ARM or x86 MCUs. Besides the genuine versions of the

Arduino boards there are a lot of third party ones (XDRuino, Freeduino, Funduino etc.)

which are low cost and fully compatible (although their reliability could be questionable).

 The board used for the lab is Arduino Mega 2560, featuring the 8-bit Atmel ATMega

2560 MCU (8 bit due to the size of the internal registers). The board gives you access to 54

digital pins of the MCU for I/O operations and 16 pins for analog signals reading. Some pins

can have multiple functions (i.e. providing additional communication facilities: UART, SPI,

I2C etc.) – see the printed material on your desks. The MCU operates at a 16 MHz clock. The

board can be power through the USB interface (common usage) or through an external power
source at 7 … 12 DC V (minimum current of 0.25A). The second option is necessary to

power current hungry peripherals (i.e. motors, GSM shields etc.)

Fig.I.1 Arduino Mega pinout (source: http://electrobist.com/product/arduino-mega-2560-r3/)

Design with Microprocessors (DMP) – Lab. 1

4

 1.1. First example: Using the Arduino development board

 For a safer usage the board is mounted on an acrylic base along with the breadboard.

For the beginning you should load the most basic example “Blink”, available in the

installation directory of the Arduino IDE (usually C:\Program

Files\Arduino\examples\01.Basics\Blink). Copy the “Blink” folder in your working folder

(compulsory in D:\Studenti\Grupa30xxx, otherwise it will be periodically DELETED).

Check that after the copy operation you have for the “Blink” folder and its contained

“blink.ino” file write permissions! (not Read Only).

Rule: every Arduino project (even if it has only one source file) should be placed in a folder

with the same name as the source file (Ex:

D:\Studenti\Grupa30xxx\Nume_Prenume\Blink\Blink.ino).

 After these preparations are done, launch the Arduino IDE either by double-clicking on

the *.ino file or by launching the IDE from the start menu/shortcut followed by an explicit

Open operation on the *.ino file. The program window should look like this:

Fig.I.2. The Arduino IDE main window

 If the IDE does not start, the cause may be a missing association between the IDE and

the .ino file type. You can start the program from the Start Menu / Programs, and then use the

File  Open menu command to open the source file.

 At this point you can connect the Arduino Mega 2560 board to the PC through the USB

cable. The operating system may ask you for the installation of a driver (in that case specify

Design with Microprocessors (DMP) – Lab. 1

5

the following path: “C:\Program Files\Arduino\drivers”). If you encounter difficulties, or

you do not have enough user rights, ask the professor for help.

 If the driver is correctly installed and the board is functioning (a green LED on the board

is on) you can go ahead.

 Before programming the board, you should check if the IDE is configured properly in the

menu Tools  Board:

Fig.I.3. Selection of the development board type

 Alternatively, if you are using other development board (i.e. UNO you should make the

settings accordingly).

 Also the serial port use to communicate with the board should be properly configured.

The USB driver/interface of the board will install a virtual serial port (COMx). COM 1 and 2

are usually the serial ports of the PC. The virtual serial ports are assigned to higher numbers

(above 3).

Configure the serial port in the IDE Tools  Serial menu as in the figure below:

Design with Microprocessors (DMP) – Lab. 1

6

Fig.I.4. Selection of the serial port

After the configuration is complete, you can compile & upload the first example using the

button “Upload” (as shown in the figure below). If all the steps were completed successfully,

the binary program will run on the board by blinking the on-board LED (which is connected

to the digital pin 13.

Fig.I.4. The upload button

1.2. 2-nd example: Digital input pins and the serial interface

As basic input device we’ll use the button block shown below:

Fig.I.6. The button block

Design with Microprocessors (DMP) – Lab. 1

7

The module has 5 pins:

 - GND pin

 - 4 data pins (K1, K2, K3 and K4), indicating the button status (logic 0 = button pressed)

The button names appear on the pins and near each button.

 The general solutions for connecting a button to a microcontroller are shown below. The

first schematic shows the use of a Pull-Down resistor, and the second schematic shows the

use of a Pull-Up resistor.

Fig.I.7, Fig.I.8 – The use of pull-down and pull-up resistors (source:

https://de.wikibooks.org/wiki/Mikrocontroller/_Digitale_und_analoge_Signale)

 We shall focus on the use of Pull-Up resistors, as they are more common. The operation

principles for the two types of resistors are similar, the difference being that the Pull-Up

resistors are connected to 5V (VCC), while the Pull-Down resistors are connected to the

ground (GND). When using a Pull-Up resistor, and the button is not pressed, the value of the

input pin D is HIGH, or logic 1. A small current flows between VCC and the input pin. When

the button is pressed, the input pin is connected directly to the ground, and the current flows

through the resistor to the ground, while the input pin reads LOW, or logic 0. If no resistor is

used, pressing the button would connect VCC directly to GND, resulting in a short-circuit

(which is not desirable, and may be dangerous).

 The button block does not have Pull-Up (or Pull-Down) resistors. This means that, in

order to use it, we have to either:

- Attach external resistors to each button pin

- We use the Pull-Up resistors of the microcontroller

 In this lab work we’ll use the internal resistors of the microcontroller on the Arduino

board. These resistors are activated by using the INPUT_PULLUP pin configuration option.

 As visualization output, the serial interface will be used (allows to monitor the output of

the Arduino board on the PC). All the connections between the peripheral modules,

breadboard and MCu board will be done with the USB cable disconnected from the

PC !!!

 To connect the button block to the Arduino board, the breadboard will be used:

- The 4 data pins will be connected to the digital pins 4, 5, 6, 7 of the Arduino board

- GND pin of the button module will be connected to the GND of the Arduino board

Design with Microprocessors (DMP) – Lab. 1

8

 In order to avoid the situation of the wires breaking loose at every small move, leading to

a very unstable setup, we shall use the breadboard to strengthen the prototype.

 The breadboard has electrically connected pins in groups of 5 (a half column) as shown

in the figure below:

Fig.I.9. The electrical connections on a breadboard

 Place the button module above the breadboard, and press firmly so that the pins enter the

breadboard’s holes. Then, insert a wire into a hole of each half-column, corresponding to a

button block pin, as shown in the figure below. Use a black wire for the ground, and different

colors for each button pin (if possible).

Fig.I.10. Connecting the buttons to the breadboard

The other ends of the wires will be connected to the Arduino board:

 - The signal wires (for the button pins) to the digital pins 4, 5, 6, 7:

 - The black wire to the ground (GND)

Design with Microprocessors (DMP) – Lab. 1

9

Fig.I.11. Connecting the wires to the Arduino board

 Now the physical setup is ready. In the following, open the Arduino IDE and create a

new program (File  New), which will contain the following code:

// Read status of buttons and send it to the PC over the

//serial connection

// Variables for reading the status of the buttons connected

//to the digital pins 4, 5, 6, 7

int b1;

int b2;

int b3;

int b4;

// variable for the transmitted status (as a decimal number)

int stat = 0;

void setup() {

 // configure digital pins as inputs

 pinMode(4, INPUT_PULLUP);

 pinMode(5, INPUT_PULLUP);

 pinMode(6, INPUT_PULLUP);

 pinMode(7, INPUT_PULLUP);

 // activate serial communication for displaying the result

 // on the PC

 Serial.begin(9600);

}

void loop() {

 // read BTNs status

 b1 = digitalRead(4);

 b2 = digitalRead(5);

 b3 = digitalRead(6);

 b4 = digitalRead(7);

 // combine the bits in a decimal number (stat)

Design with Microprocessors (DMP) – Lab. 1

10

 stat = 10000 + b4 * 1000 + b3 * 100 + b2 * 10 + b1;

 //transmit status

 Serial.println(stat);

 // delay 0.5 sec

 delay(500);

}

 Connect the Arduino board to the PC and “Upload” the program. To visualize the result,

open the “Serial Monitor” utility from the Tools  Serial Monitor menu. At every 0.5 sec the

value of the stat variable will be displayed as a 5 digit number (1XXXX), the list significant 4

digits being the status of the buttons. When a button is pressed, its corresponding digit turns

from 1 to 0.

Fig.I.12. The output in the Serial Monitor

Attention: The Serial Monitor utility should be closed before disconnecting the Arduino

board form the PC. Otherwise, it is possible the hang the virtual serial port in a blocked

status and further communication with the board will be anymore possible only by

restarting the PC.

1.3. 3-rd example: The use of the LED Pmod as an output device. The use of ports.

For this example, we’ll use a block of LEDs. This module has 7 pins, one being the ground

and the other 6 are signals for the 6 LEDs (a logic 1 means the LED is lit). The LEDs have

current limiting resistors to prevent damage.

Fig.I.13. The LED block

Design with Microprocessors (DMP) – Lab. 1

11

 In order to control the LEDs faster, we will use the ports of the ATMega 2560

microcontroller.

 First, we have to prepare seven positions on the breadboard, for the 7 pins of the LED

block (D6… D1, GND). We’ll also need 7 wires.

 We’ll insert the LED block into the breadboard, as shown below. Press firmly, but non-

violently.

Fig.I.14. Connecting the LED block to the breadboard

We’ll connect the signal wires to the digital pins 22, 23, 24 25, 26 and 27 of the Arduino

board, which correspond to the bits PA5, PA4, PA3, PA2, PA1, and PA0 of port A, as shown

below:

Fig.I.15. Putting it all together

The correspondence between the Arduino board pins and the ATMega 2560 MCU pins

(ports) is described in the “ATmega2560-Arduino Pin Mapping” document

http://arduino.cc/en/Hacking/PinMapping2560 or in the first figure or in the printed

schematic). For port A, we have:

http://arduino.cc/en/Hacking/PinMapping2560

Design with Microprocessors (DMP) – Lab. 1

12

PA7 (AD7) Digital pin 29

PA6 (AD6) Digital pin 28

PA5 (AD5) Digital pin 27

PA4 (AD4) Digital pin 26

PA3 (AD3) Digital pin 25

PA2 (AD2) Digital pin 24

PA1 (AD1) Digital pin 23

PA0 (AD0) Digital pin 22

Fig.I.16. The correspondence between digital pins and the AVR ports

We shall also re-use the buttons set up in the previous example.

Note: In the future, when we may use multiple components, we will try to identify

common signals, and group them on the breadboard in a single column. In our example,

the ground signals for the two modules can be grouped, and a single ground wire used.

After creating the physical setup, create a new Arduino project and add the following code:

// Read status of buttons and display it on LEDs connected to

//PORTA

// Variables for reading the status of the buttons connected

//to the

// digital pins 4, 5, 6, 7

int b1;

int b2;

int b3;

int b4;

// variable for the LED status

unsigned char stat = 0;

void setup() {

 // configure digital pins as inputs

 pinMode(4, INPUT_PULLUP);

 pinMode(5, INPUT_PULLUP);

 pinMode(6, INPUT_PULLUP);

 pinMode(7, INPUT_PULLUP);

 // activate PORTA, as output,

 DDRA = 0b11111111;

}

void loop() {

 // read BTNs status

 b1 = digitalRead(4);

Design with Microprocessors (DMP) – Lab. 1

13

 b2 = digitalRead(5);

 b3 = digitalRead(6);

 b4 = digitalRead(7);

 // combine result: each LED is controlled by a button.

 //Some buttons are //duplicated

 stat = (b4<<5) | (b3<<4) | (b4<<3) | (b3<<2) | (b2<<1) |

 b1;

 // Display status on the LEDs connected to port A

 PORTA = stat;

 // delay 50 ms

 delay(50);

}

1.4. Individual work:

 1. Compute the value of the Pull-Up resistor, if you choose to use an external one, and

the maximum current intensity should be limited to 1 mA.

 2. Run examples 1 and 2.

 3. Modify example 2, in order to transmit to the PC various information according to the

pressed button. Ex: one button press will transmit the number of ms from the start of the

program (call milis() function), another button press you can transmit the number of sec

(millis()/1000), another button wil transmit a text etc.

 4. Run example 3.

 5. Modify example 3 in order to display some animations on the LEDs (1 walking LED

lit-on from right-left or left-right). The walking direction depends on the status of one button.

References:

1. Additional references:

http://users.utcluj.ro/~rdanescu/teaching_pmp.html

2.“ATmega2560-Arduino Pin Mapping” document :

https://www.arduino.cc/en/Hacking/PinMapping2560

http://users.utcluj.ro/~rdanescu/teaching_pmp.html
https://www.arduino.cc/en/Hacking/PinMapping2560

Design with Microprocessors (DMP) – Lab. 2

14

II. Laboratory 2 – Applications with simple I/O modules

 2.1. The 2x7 segment display

 The PmodSSD (Seven Segment Display) from the figure below provides the possibility

of displaying two characters. Each segment is a LED, which gives light if there is the right

combination of voltages on the segments anode and cathode (anode High, cathode LOW).

Fig.II.1. Seven segment display (SSD)

 In order to reduce the number of pins necessary, the two digits cannot be lit

simultaneously. The selection between the two digits is done by the CAT signal (the C on the

schema below). If this signal is 0 the segments corresponding to the unities are giving light

and if the CAT signal is 1 the segments corresponding to the digit on the left are lit.

Fig.II.2. The internal structure of the SSD (source: https://store.digilentinc.com/pmod-ssd-

seven-segment-display/)

The signs denoted by the letters AA…AC correspond to the anodes of the segment LEDs.

The correspondence of these signals is indicated by the figure below:

Design with Microprocessors (DMP) – Lab. 2

15

Fig.II.3. The internal structure of a digit (source: https://store.digilentinc.com/pmod-ssd-

seven-segment-display/)

As an example, for displaying the digit 3 we will need the segments to receive the following

logical levels:

G F E D C B A

1 0 0 1 1 1 1

Fig.II.4. Example of bit activation for displaying the digit ‘3’

In order to show a number of two digits we need to switch (multiplex) very fast between the

two blocks using the CAT signal. The following time diagram illustrates the process:

Fig.II.5. Timing diagram for the SSD refresh cycle (source:

https://store.digilentinc.com/pmod-ssd-seven-segment-display/)

Design with Microprocessors (DMP) – Lab. 2

16

To realize the functionality exemplified in the above diagram we use the following pseudo

code:

Loop:

 AA…AG = unit_digit_code

 CAT=0

 Delay()

 AA…AG=tens_digit_code

 CAT=1

 Delay()

Goto loop

 2.2. The usage of microcontroller port for Input / Output operations

 Arduino, through its digitalRead / digitalWrite functions, hides the mechanism through

which the microcontroller does these operations. Furthermore these functions induce delays

which may be significant when we need to transfer data on several bits.

 Any microcontroller is connected to the outside through ports of input / output. The AVR

Atmega 2560 is an 8-bit microcontroller on so it has its 8-bit ports. Each port is associated

with three registers (x will be replaced with A, B, C, D, ..., depending on the port used):

– DDRx – direction reister

– PINx – register for input data

– PORTx – output register

The direction register DDRx

 DDRx (Data Direction Register) configures the data direction of the port pins (if a bit of a

port will be used for input or output). A written on a bit of 0 makes the pin DDRx

port corresponding to the input pin, and a bit set to 1 makes the corresponding pin to be

output pin.

Examples:

• In order to configure all the bits port A as input pins

DDRA = 0b00000000;

• To configure all the bits of port A as output

DDRA = 0b11111111;

• To configure the lower half of port B as output and the upper half as input

DDRB = 0b00001111;

 The input register PINx

 PINx (Port IN) is used to read data from the set the set of pins configured as input. To

read data, these pins must be set as input pins, setting all of DDRx bits to zero.

Example: reading data from port A:

Design with Microprocessors (DMP) – Lab. 2

17

DDRA = 0;

char a = PINA;

The output register PORTx

 Register PORTx is used to transmit data to the microcontroller peripherals connected to

the port x pins. For data output to be visible, corresponding bits of DDRx register must be set

the direction of value 1.

Example: switching on half of the 8 LEDs connected to Port A

DDRA = 0xFF

PORTA = 0b10101010

 2.3. Connecting the Seven Segments display to the Arduino board

 The assembly is done with the board unplugged from the PC. The first step is the

introduction of the display into the breadboard, gently without hitting or damaging the

system. Then we will connect the power wires in the half-columns corresponding to GND

and VCC for the second connector (J2) of the display. The other end of the powering wires

will be connected to the 5V and GND pins of the Arduino board. We are not required to

apply extra voltage to the J1 connector.

 For the wires corresponding to the anodes of the display AA…AG and for the cathode

CAT, we will connect successively wires that we will introduce into Arduinos digital pins

starting from position 22, 23,…29, corresponding to bits 0…7 of port A.

The integral assembly:

Fig.II.6. The Arduino-SSD assembly

Design with Microprocessors (DMP) – Lab. 2

18

Details of how the wires are connected:

Fig.II.7. Connecting the wires with the SSD on the breadboard

The connection of the signal wires:

Fig.II.8. Connecting the SSD wires to Arduino

Please Note : The first two pins of the connector from the Arduino board are power

pins. The digital pins start from the second pair. Pay much attention of their position.

Create a new project (sketch) in Arduino, and copy the following code:

Design with Microprocessors (DMP) – Lab. 2

19

// Display on SSD

// connected at PORTA

// Table of values, or look up table (LUT) with the BCD codes

//for every digit from 0 to 9. Every bit corresponds to a LED,

//1 means the LED is lit and 0 means it is not giving light.

const unsigned char ssdlut[] = {0b00111111, 0b00000110,

0b01011011, 0b01001111, 0b01100110, 0b01101101, 0b01111101,

0b00000111, 0b01111111, 0b01101111};

// the size of the lut

const int lutsize = 10;

int cpos = 0; // current position

int cdigit = 0; // first digit from the two

unsigned char outvalue = 0;

void setup() {

 // setting port A as output

 DDRA = 0b11111111;

}

void loop() {

 outvalue = cdigit>0 ? 0x80 : 0;

 // which cathode are we choosing ? (00000000 sau 10000000)

 // the cathode is wired to bit7 from port A, through this

 //operation we are setting bit 7 on

 //logical 1 or

 //0, alternatively, the following bits will be attached

 //through a logical OR operation in the

 //following

 //line of code

 PORTA = (ssdlut[cpos] | outvalue); // we make an OR

 //between the value from the LUT

 // and the selected cathode

 cpos++; // we increment the current position

 if (cpos>=lutsize) { // if we reached the final position

 cpos = 0; // we come back at 0

 cdigit^=1; // if the previus digit was 0 we make it a

 //1 and vice versa

 }

 // wait 0.5 sec

 delay(500);

}

This small program will display the digits from 0 to 9 on the first element and then do the

same on the second.

Design with Microprocessors (DMP) – Lab. 2

20

 2.4. The Arduino Learning Shield

 The „shields” are PCBs (Printed Circuit Boards) that can be placed over the Arduino

boards, extending their capabilities. There is a large variety of shields, such as XBee shield,

SD-Shield, H-Bridge shield, etc. The mapping between the Arduino pins and the devices

present on the shields should be carefully taken into account in when programming for proper

mapping and conflicts avoidance (the pins provided/used by the shield are specified in the

product datasheet).

 In this lab work we will use a learning shield, as seen in the figure below. The shield

provides the following resources:

- 1 seven segment display, with 4 digits

- 3 buttons (+ one reset button)

- 4 Leds

- 1 potentiometer for generating an analog signal

- 1 sound generator (buzzer)

Fig.II.9, Fig.II.10 – The learning Shield and Arduino

The electric schematic for this shield can be downloaded from:

https://ardushop.ro/en/index.php?controller=attachment&id_attachment=40

 Accessing the shield’s resources:

 The buttons are connected to pins A1, A2 and A3. These buttons have Pull-Up

resistors on the shield, and therefore their released state will generate a logic 1, and the

pressed state will generate a logic 0. There is no need for internal Pull-Up resistor activation.

 The Leds are connected with the anode to VCC, and with the cathodes to pins 10, 11,

12 and 13. Thus, for lighting an LED a logic 0 must be written to the corresponding pin.

 The 4x7 segments display is organized in a common anode configuration, with

individual cathodes for each digit segment, unlike the PMod SSD, where the segments have a

common cathode and separate anodes. Therefore, for lighting a digit we need to set the digit’s

anode to logic 1, and the cathodes for the segments to be lit to zero.

https://ardushop.ro/en/index.php?controller=attachment&id_attachment=40

Design with Microprocessors (DMP) – Lab. 2

21

For driving the four digits we’ll thus need 4 signals for the anodes, and 8 signals for

the cathodes (7 segments and the dot). These signals are not available for the programmer,

but are connected to two shift registers, as shown in the schematic below. The shift registers

are connected in series, the output of the anode register being connected with the input for the

cathode register. As a consequence, for writing a full configuration (selection of active digit +

selection of segments to light), only three signals are needed:

- SDI – serial data in, connected to pin 8

- SFTCLK – shift clock, the clock signal for the data shifting, connected to pin 7

- LCHCLK – latch clock pin, the signal that allows reading the data, connected to pin

4.

Fig.II.11. The internal structure of the learning shield SSD system (source:

https://ardushop.ro/en/index.php?controller=attachment&id_attachment=40)

For writing a digit, first the 8 bit cathode configuration must be transmitted, followed by 8

bits for the anode configuration (with only one bit set to 1, for the active digit).

The following code is an example for using the 4x7 segment display:
int latchPin = 4;

int clockPin =7;

int dataPin = 8; // SSD pins

Design with Microprocessors (DMP) – Lab. 2

22

const unsigned char ssdlut[] = {0b00111111, 0b00000110,

0b01011011, 0b01001111, 0b01100110, 0b01101101, 0b01111101,

0b00000111, 0b01111111, 0b01101111};

const unsigned char anodelut[] = {0b00000001, 0b00000010,

0b00000100, 0b00001000};

const unsigned char digits[] = {1,2,3,4}; // The number to be

//displayed is 1234. You can change it.

void setup ()

{

 pinMode(latchPin,OUTPUT);

 pinMode(clockPin,OUTPUT);

 pinMode(dataPin,OUTPUT); // The three pins connected to

 // the shift register must be output pins

}

void loop()

{

 for(char i=0; i<=3; i++) // For each of the 4 digits

 {

 unsigned char digit = digits[i]; // the current digit

 unsigned char cathodes = ~ssdlut[digit]; // The

 //cathodes of the current digit, we’ll

 //negate the value from the original LUT

 digitalWrite(latchPin,LOW); // Activate the latch to

 //allow writing

 shiftOut(dataPin,clockPin,MSBFIRST, cathodes); //

 //shift out the cathode byte

 shiftOut(dataPin,clockPin,MSBFIRST, anodelut [i]);

 // shift out the anode byte

 digitalWrite(latchPin,HIGH); // De-activate the latch

 //signal

 delay(2); // Short wait

 }

}

Analyzing the code:

We will use the same LUT as in the previous example, but we have to complement the bits,

as now the bits activate the cathodes, on logic 0.

Arduino provides the function shiftOut, which transmits serially a byte on the dataPin,

generating a clock signal on clockPin. This function can be used with any two digital pins.

Design with Microprocessors (DMP) – Lab. 2

23

There are two ways of shifting out a byte: starting from bit 7 (MSBFIRST), or starting from

bit 0 (LSBFIRST). In our case, the MSBFIRST mode must be chosen, as it is important that

the bits of the cathodes correspond to the segments of the digits.

Fig.II.12. Results of running the program

 2.5. Individual Work

1. Build and run the first example from the document.

2. Fill in the LUT with the corresponding values for hexadecimal numbers (A,B,C,D,E).

Test the program with these kind of numbers.

3. Change the program so that you can show any number from 0 to 99 on the display, in

a decimal format. Take into account that it is not the same as its representation as

digits on half of byte (this thing is true in the case of hexadecimal numbers). For

example, the number 16 is represented binary as 00010000, which will lead to the

display of number 10. For correctly displaying the decimal numbers the following

steps will need to be realized:

-find the tens digit = the quotient from the division with 10

-find the unit digit = the remainder from the division with 10

CZ = nr div 10

 CU = nr mod 10 = nr – (CZ*10)

4. Run the second example, using the Learning Shield.

5. Change the second example, to display any 4-digit decimal number. The number is

provided as int, not as individual digits. Make the number increment periodically.

6. Use the buttons on the Learning Shield. Use one button to increment the displayed

number, and another to decrement it.

7. Use the 4 digit display, and the buttons (on the Learning Shield) to make a

chronometer that counts seconds (2 digits) and hundredths of seconds (2 digits). Use

one button for start, another for stop, and another for clear. Hint: use the function

millis()

Design with Microprocessors (DMP) – Lab. 3

24

III. Laboratory 3 – Working with the LCD shield and the interrupt system

 3.1. Working with the LCD shield

 The „shields” are PCBs (Printed Circuit Boards) that can be placed over the Arduino

boards, extending their capabilities. The mapping between the Arduino pins and the devices

present on the shields should be carefully taken into account in when programming for proper

mapping and conflicts avoidance (the pins provided/used by the shield are specified in the

product datasheet). In the figure below such shield examples are shown: an LCD shield, an

SD Card shield and a voice recognition EasyVR) shield.

Fig.III.1. Various shields

 Since the Arduino boards are very popular, many competitors are using the same design

layout (see the figure below: left - a Fez Domino board with ARM processor; right- a CipKit

board with PIC processor) being also able to use the Arduino compatible shields.

Fig.III.2. Multiple development boards with Arduino-like shape

In this laboratory an LCD (Liquid Crystal Display) shield will be used. It contains the display

and a potentiometer for tuning its brightness.

Design with Microprocessors (DMP) – Lab. 3

25

Fig.III.3, Fig.III.4 – The LCD shield

The shield is placed over the Arduino board in such a way that the longer pin bars (10 + 8)

correspond to the digital pins (see the figure below).

DO NOT remove the shield from the Arduino board (because you will damage its

pins) !!!

Fig.III.5. Connecting the LCD shield to Arduino

The LCD uses the digital pins 2 … 7: 7 – RS, 6 – En, 5 – DB4, 4 – Db5, 3 – DB6, 2 – DB7

(their mining is in the table below).

The shield uses the classic LCD controller Hitachi HD44780. One such controller can be

used for LCDs with max. 80 characters and 4 lines. The pinout of the shield is shown below:

Design with Microprocessors (DMP) – Lab. 3

26

Fig.III.6. The LCD pins (source: https://www.pantechsolutions.net/interface-cards-

tutorials/user-manual-for-lcd-interface-card)

Pin No. Name Description

1 VSS Power supply (GND)

2 VCC Power supply (+5V)

3 VEE Contrast adjust

4 RS Register Select: 0 = Instruction input; 1 = Data input

5 R/W 0 = Write to LCD module; 1 = Read from LCD module

6 EN Enable signal

7 D0 Data bus line 0 (LSB)

8 D1 Data bus line 1

9 D2 Data bus line 2

10 D3 Data bus line 3

11 D4 Data bus line 4

12 D5 Data bus line 5

13 D6 Data bus line 6

14 D7 Data bus line 7(MSB)

Fig.III.7. LCD pins description

 The HD44780 contains 2x 8 bits registers: a Data register and an Instruction register. The

instruction register is used to send command to the LCD (i.e. shift, clear etc.). The data

register is used to buffer the displayed data. When the EN signal is activated, the Data present

on the data pins are transferred firstly in the Data register and then moved in the DDRAM

(Display Data RAM) and displayed on the LCD. The Data register is used also to transfer

data to the CGRAM (Character Generator RAM) – the memory used to store the user defined

characters.

 The DDRAM (Display Data RAM) stores the data to be displayed, represented as 8 bit

characters. Its total capacity is 80x8 bits (80 characters). The remaining free DDRAM

memory can be used as a generic RAM (our LCD uses only 2x16=32 characters.

 The graphical shape of the characters is stored in the CGROM (Character Generator

Read Only Memory). This memory contains the matrices of points for every character (5x8

or 5x10 – depending on the device).

Design with Microprocessors (DMP) – Lab. 3

27

Fig.III.8. The character codes for 5 x 8 points chars (source:

https://www.sparkfun.com/datasheets/LCD/HD44780.pdf)

The shape of the characters with codes between 0x00 and 0x07 can be defined by the user.

For each character an 8 byte matrix will be specified (one byte for each row). The least

significant 5 bits from each row will specify which pixels will be turned on or off (see the

example below).

Fig.III.9. Example of a user defined character (source: https://omerk.github.io/lcdchargen/)

The LCD displays can communicate with the microcontroller on 8 or 4 bits. Usually the 8 bit

connection is preferred (to spare the number of pins). The LCD shield used in the lab is

configured (by default) with a 4 bit data interface (and uses only 7 pins from the Arduino

board).

https://omerk.github.io/lcdchargen/

Design with Microprocessors (DMP) – Lab. 3

28

Example: display character strings and numerical values on the LCD

In this first example a string of characters will be displayed on the first line of the LCD while

on the second line a number representing the elapsed time (seconds) from the program start

will be displayed.

//includes the LCD library

#include <LiquidCrystal.h>

/* LCD RS - pin 7

 * LCD Enable - pinl 6

 * LCD D4 - pin 5

 * LCD D5 - pin 4

 * LCD D6 - pin 3

* LCD D7 - pin 2

The 7-th pin of the LCD is connected to the display brightness

control potentiometer! */

// Init the LCD with the stated pin numbers

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

unsigned long time;

void setup()

{

 // Sets the no. of rows and columns of the LCD

 lcd.begin(16, 2);

}

void loop()

{

 // Read the number of elapsed seconds from the program

 //start

 time = millis() / 1000;

 // Set the cursor on col 0, row 0 (first row)

 lcd.setCursor(0, 0);

 // Write a string of characters

 lcd.print("Hello Children");

 // Move the cursor in the middle of the second row (row 1)

 lcd.setCursor(7, 1);

 // Display the elapsed time

 lcd.print(time);

}

Design with Microprocessors (DMP) – Lab. 3

29

In the figure below the result is shown:

Fig.III.10. The result of the display operation

Example: generation of user defined characters

This example shows the user defined character generation and usage procedure

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

// Character matrix for the first character: every line is a

//row of pixels of the character

byte happy[8] = {

 B00000,

 B11011,

 B11011,

 B00000,

 B00000,

 B10001,

 B01110,

};

// Matrix for the second character

byte sad[8] = {

 B00000,

 B11011,

 B11011,

 B00000,

 B00000,

 B01110,

 B10001,

};

void setup() {

 lcd.begin(16, 2);

 // The 2 character are stored in the CGROM, user defined

 //area, pos. 0 and 1

 lcd.createChar(0, happy);

 lcd.createChar(1, sad);

 // Display the first line: a string followed by the 1-

 //stuser defined char

Design with Microprocessors (DMP) – Lab. 3

30

 lcd.setCursor(0, 0);

 lcd.print("Happy ");

 lcd.write(byte(0)); // See the difference between print

 //and write

 /* When you are referring the “0” user defined char you

 must write a cast to the “byte”

type, otherwise the compiler throws an error. Exception

is the case when you are referring a varaiable:

 byte zero = 0;

 lcd.write(zero);

 */

 // Display the second line

 lcd.setCursor(0, 1);

 lcd.print("Sad ");

 lcd.write(1); // when you are referring other characters

 //then “0” it is not necessary to cast

}

void loop()

{ }

 3.2. Working with the interrupt system

 Interrupts are events that require immediate attention from the microcontroller. As a

response to such an event, the microcontroller stops its normal instruction execution sequence

and “serves” the interrupt (it executes am Interrupt Service Routine (ISR) – a routine attached

to that specific interrupt event). In order to respond to interrupt events, the microcontroller

should have the Global Interrupt Enable bit and the Interrupt specific bit enabled. The

following issues are essential in order to have proper interrupt system usage:

- The interrupt should be activated on its specific bit

- The Global Interrupt Enable bit (bit I in the Status Register – SREG) should be set

- The stack should be initialized (Arduino IDE does it by default)

- Every ISR ends with an RETI instruction (which resumes the normal program

execution flow) – added by default by the Arduino IDE compiler

Interrupts can by of 2 types: internal and external. The internal ones are associated with

events related to the microcontroller peripherals (ex. Timer/Counter, Analog Comparator

etc.). External interrupts are triggered on external pins (ex. Buttons connected to these pins).

 Each AVR MCU has an interrupt list which includes the type of the event that triggers

the interrupt. When the interrupts are enabled and such an event occurs, the microprocessor

will jump to a specific address in the program memory (referred by the entry in the Interrupt

Vector Table (IVT) corresponding to the interrupt number). By writing an ISR (Interrupt

Service Routine) and attaching its address in the IVT (Interrupt Vector Table) the system will

be determined to execute a specific action as a response to a particular interrupt event.

 In the first example external interrupts triggered by buttons will be used and

corresponding messages will be displayed on the LCD. To run this example you need the

Design with Microprocessors (DMP) – Lab. 3

31

ATmega 2560 board with the LCD shield and a PModBtn peripheral module. The ATmega

2560 has 6 external interrupt pins (the pin correspondence is available here:

http://arduino.cc/en/Hacking/PinMapping2560.

 The buttons will be connected to the pins corresponding to the interrupts INT0 and INT1

(digital pins 20 and 21). In the figure below are shown the necessary connections are shown

followed by the corresponding code.

Fig.III.11. Connections for the 1-st example

// Include the header for the avr interrupt system

#include "avr/interrupt.h"

// Include the LCD library

#include <LiquidCrystal.h>

// Init the LCD

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int buttonVariable; //public variable that can be

//modified by the ISR

void setup(void)

{

 buttonVariable = 0; // Init the variable shared between

 the ISR and the main program

 // Set the LCD row and col number

 lcd.begin(16, 2);

 lcd.print("Incepe experimentul");

 delay(1000); // perform a 1 sec delay to display this

 //massage on the LCD

 // Set pin 21 as input (the pin corresponding to INT0)

 pinMode(21 ,INPUT);

 // Set pin 20 as input (the pin corresponding to INT1)

 pinMode(20, INPUT);

 pinMode(13, OUTPUT); // Set pin 13 as output

http://arduino.cc/en/Hacking/PinMapping2560

Design with Microprocessors (DMP) – Lab. 3

32

 digitalWrite(13, HIGH); // Lit up the onboard LED

 delay(1000);

 EIMSK |= (1 << INT0); // Activate INT0

 EIMSK |= (1 << INT1); // Activate INT1

 EICRA |= (1 << ISC01); // Specify INT0 triggering

 //behavior: falling edge of the

 EICRA |= (1 << ISC11); // Same behavior for INT1

 sei(); // Global interrupt system activation

 digitalWrite(13, LOW); // Turn off the onboard LED

 lcd.clear(); // Erase the LCD screen

}

void loop()

{

 // If an interrupt was triggered/executed the LCD has to

 //be erased and the main massage

 //displayed

 if(buttonVariable == 1)

 {

 lcd.clear(); // Erase the LCD

 buttonVariable = 0; // Global variable re-initialized

 }

 delay(1000);

 lcd.setCursor(0,0); // Set the LCD cursor

 lcd.print("Liniste…"); // Display a message

}

// ISR for INT0 (“INT0_vect” is a predefined name (address)

//for INT0 ISR

ISR(INT0_vect)

{

 digitalWrite(13, !digitalRead(13)); // Change the status

 //of pin 13

 lcd.setCursor(0,0); // Move the LCD cursor in the top-left

 //corner

 lcd.print("Intrerupem");// Display message

 lcd.setCursor(0,1);

 lcd.print("ptr stirea zilei");

 buttonVariable = 1;

}

// ISR for INT1

ISR(INT1_vect)

{

 digitalWrite(13, !digitalRead(13));

 lcd.clear();

Design with Microprocessors (DMP) – Lab. 3

33

 lcd.setCursor(0,0);

 lcd.print("Stirea Doi");

 buttonVariable = 1;

}

 Delay() and millis() function does not work during an ISR (they are based on interrupts

but the interrupt system is deactivated during the execution of an ISR). In generally, during

the execution of an ISR the system does not respond to any other interrupt request. Therefore

it is recommended that the execution time of an ISR to be as short as possible.

 If a variable is modified inside an ISR and if you want to access its modified value

globally, declare the variable as volatile. Hence the compiler knows that the variable can be

modified any time, discarding any code optimization and placing the variable in the RAM.

 Arduino allows the usage of the interrupt system without microcontroller specific

knowledge by using generic functions. The first one is attachInterrupt(). It attaches an ISR

to an external interrupt, replacing any previous attachment:

 attachInterrupt(interrupt, ISR, mode)

 The first parameter is the interrupt number but does not match neither the external

interrupt number of the Atmega2560 nor the digital pin number of the board. It is a simple

index. The table below shows the difference between these numbers:

Fig.III.12. The interrupt numbers vs. pins (source: http://www.gammon.com.au/interrupts)

Therefore the use of the digitalPinToInterrupt(pin) function is recommended – it will return

the interrupt number attached to the digital pin (if exists):

The second parameter is the name (address) of the ISR.

The third parameter is the trigger response behavior: RISING edge, FALLING edge, LOW

level or HIGH level or level toggle (CHANGE).

Function noInterrupts() disables the interrupts. They can be reactivated using: interrupts().

The detachInterrupt(interrupt) function disables the interrupt with the number specified in

the parameter.

Design with Microprocessors (DMP) – Lab. 3

34

The previous example was implemented using the AVR configuration registers, being

dependent on the microcontroller specifications. In the following example the same

functionality can be achieved using Arduino specific functions:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7,6,5,4,3,2);

volatile int buttonVariable;

void setup()

{

 buttonVariable = 0;

 lcd.begin(16,2);

 lcd.print("A inceput");

 lcd.setCursor(0,1);

 lcd.print("din nou");

 delay(1000);

 // The 2 interrupt pins 21 and 20 declared as inputs with

 //pull-up resistors activated

 pinMode(20 ,INPUT);

 pinMode(21 ,INPUT);

 digitalWrite(20, HIGH);

 digitalWrite(21, HIGH);

 // Atach ISRs to the interrupts corresponding to pins 21

 //and 20 (INT0 and INT1)

 attachInterrupt(digitalPinToInterrupt(20), functieUnu,

 RISING);

 attachInterrupt(digitalPinToInterrupt(21), functieDoi,

 CHANGE);

}

void loop()

{

 // Insert here task for normal program flow ….

 lcd.print("Programul principal");

 delay(1000);

}

// First ISR function

void functieUnu()

{

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print("Functia Unu");

}

// 2-nd ISR function

void functieDoi()

{

 lcd.clear();

Design with Microprocessors (DMP) – Lab. 3

35

 lcd.setCursor(0,0);

 lcd.print("Functia Doi");

}

3.3. Individual Work

1. Run the presented examples.

2. Using the character generator, create an animation that indicates the time elapsed (a clock

with a rotating arm, an hourglass etc.).

3. Create a timer using the interrupts. One button starts/stops the timer while the other resets

the timer.

4. Combine 2 + 3: the animation runs as long the timer is running and is toped when the

timer is stopped.

5. Bonus: use an Arduino board for generating signals of different frequencies and duty

cycles (amount of time the signal is 1), by changing the state of a pin (using digitalWrite)

at regular time intervals, controlled by delay() or millis(). Use the external interrupts of

another board to measure the parameters of this signal, and display the parameters on the

LCD.

References:

1.https://www.arduino.cc/en/Reference/LiquidCrystal

2.https://www.arduino.cc/en/Reference/AttachInterrupt

https://www.arduino.cc/en/Reference/LiquidCrystal
https://www.arduino.cc/en/Reference/AttachInterrupt

Design with Microprocessors (DMP) – Lab. 4

36

IV. Laboratory 4 – Usage of timers

 4.1. Timer based interrupts

 Beside external interrupt, the MCU responds to internal ones which are triggered by

external events (on the external pins). The source of the internal interrupts are hardware

components inside the MCU (like the Timers).

 Using the timer/counter interrupts, you can trigger events at specific time intervals

(without using functions like delay and millis). Because these interrupts have an

asynchronous behavior, the main program flow can be executed normally and only when a
temporal threshold is reached a specific ISR is executed. The timer increments a counter

register, and when its maximum counting capacity is reached an overflow bit (flag) is set. The

flag can be manually checked or it can trigger an interrupt request. At the ISR execution the

fag is reset.

 Each timer needs a clock source, which most commonly is the development board’s

oscillator; its frequency can be divided by an auxiliary counter (prescaler).

 Arduino Mega has 5 counters (2 / 8 bits and 3 / 16bits). The Arduino UNO has 2 / 8 bits

and 1 / 16bits counters. To use the counters the configuration registers must be properly set.

Two of them are the Timer Counter Control Registers TCCRxA and TCCRxB (x denotes the

timer number). To start the timer the most important bits are those that set the clock

frequency division (prescaler) (and consequently the counting speed): CSn2, CSn1 and

CSn0.

Fig.IV.1. Timer 1 control registers (source: Atmega2560 datasheet)

Design with Microprocessors (DMP) – Lab. 4

37

Fig.IV.2. Clock source selection for Timer1 (source: source: Atmega2560 datasheet)

 By default CSx2, CSx1 and CSx0 are 0, meaning that the timer does not have a clock

signal and therefore is stopped. A valid configuration for the prescaler means starting the

timer. If the selected clock source is external, the timer will work only if such an external

source is connected to the board (which is not the case at the lab – such settings will be

avoided!!!).

Below is a summary of the most important registers used with the timers:

- TCCRx - Timer/Counter Control Register: here you can set the clock source.

- TCNTx - Timer/Counter Register: stores the current value of the timer’s counter.

- OCRx - Output Compare Register: value set by the user and compared with the

TCNTx to generate waveforms or trigger events.

- ICRx - Input Capture Register: used to measure time intervals between external

events (only for 16 bit timers).

- TIMSKx - Timer/Counter Interrupt Mask Register: to enable/disable timer interrupts.

- TIFRx - Timer/Counter Interrupt Flag Register: signals the existence of an interrupt

request.

In the following example we will increment a variable when TIMER1 overflows. The value

of the incremented variable will be displayed on the LCD.

#include <avr/io.h>

#include <avr/interrupt.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int myVar;

void setup()

{

 myVar = 0;

 //init Timer1

 cli(); // disable the global interrupts system in order to

Design with Microprocessors (DMP) – Lab. 4

38

 //setup the timers

 TCCR1A = 0; // SET TCCR1A and B to 0

 TCCR1B = 0; // timer set to Normal mode (WGMx3:0 = 0)

 TIMSK1 = (1 << TOIE1); //timer overflow interrupt enable

 //for timer 1

 //Set the prescaler to 1024

 // CPU freq. is 16 MHZ and Timer1 is on 16 bits

 // Counter increment at every dt = 1024 / (16 * 10^6) sec

 // Overflow event occurs at every: dt * 2^16 = 4.194 sec.

 TCCR1B |= (1 << CS10);

 TCCR1B |= (1 << CS12);

 lcd.begin(16, 2);

 lcd.print("Timers");

 sei(); // enable the global interrupts system

}

void loop()

{

 lcd.setCursor(0,1);

 lcd.print(myVar);

 lcd.setCursor(5, 1);

 lcd.print(TCNT1);

}

ISR(TIMER1_OVF_vect)

{

 myVar = myVar + 1;

}

 In order to trigger the timer interrupt at customized time intervals (not only on timer

overflow), the CTC (Clear Timer on Compare match) mode must be used. This way, the

value of the TCNTx register will be compared with the value of the OCRx register (set by the

user) and at equality the value of TCNTx is reset (becomes zero).

In order to obtain a T time interval between consecutive interrupt requests, the value pf

OCRx register must be set by the user:

OCRx + 1 = T / (P / (16 * 10^6)) (1)

Where:

T – the time interval between consecutive events (ex. 1 sec)

P – prescaler value (ex. 1024) (+ 1 is added to OCRx because the timer reset takes 1 clock

cycle)

Applying eq. 1 for T=1 sec, we get OCRx =15624.
#include <avr/io.h>

#include <avr/interrupt.h>

Design with Microprocessors (DMP) – Lab. 4

39

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int myVar;

void setup()

{

 // Initialize Timer1

cli();// disable the global interrupts system in order to

//setup the timers

 TCCR1A = 0; // SET TCCR1A and B to 0

 TCCR1B = 0;

 // Set the OCR1A with the desired value:

 OCR1A = 15624;

 // Active CTC mode:

 TCCR1B |= (1 << WGM12);

 // Set the prescaler to 1024:

 TCCR1B |= (1 << CS10);

 TCCR1B |= (1 << CS12);

// Enable the Output Compare interrupt (by setting the

//mask bit)

 TIMSK1 |= (1 << OCIE1A);

 lcd.begin(16, 2);

 lcd.print("Timere cu CTC");

 sei(); // enable global interrupts

}

void loop()

{

 lcd.setCursor(0,1);

 lcd.print(myVar);

 lcd.setCursor(5, 1);

 lcd.print(TCNT1);

}

ISR(TIMER1_COMPA_vect)

{

 myVar = myVar + 1;

}

 In contrast to the previous example, when the variable is incremented at overflow (about

every 4 seconds), in the current example we have more control over the incrementing period

of the variable (once per second).

 In the following a much simpler method for using the timers, based on the TimerOne

library, is presented. The TimerOne library can be downloaded from the following location:

http://playground.arduino.cc/Code/Timer1, where detailed installation and usage instructions

are given.

In the example below a routine is called every second:

http://playground.arduino.cc/Code/Timer1

Design with Microprocessors (DMP) – Lab. 4

40

#include <TimerOne.h>

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

volatile int myVar;

void setup(void)

{

 Timer1.initialize(1000000); // init the timing interval

 //for event triggering (1s = 10-6s)

 Timer1.attachInterrupt(ShowMessage); // The function is

 //called at the preset time interval

}

void ShowMessage(void)

{

 lcd.setCursor(0,0);

 lcd.print(myVar);

 myVar++;

}

void loop(void)

{

 // Do something else …

}

 4.2. Tones generation

 For that purpose Arduino offers the tone function, which generates specified frequency

pulses with 50% fill factor. To call the function the length of the signal must be specified

(otherwise the tone will be generated until the noTone() function is called. Minimum tone

frequency is 31 HZ. In order to generate tones on different pins, noTone() must be called

before switching the output pin.

The format of the tone function is:

tone (pin, frequency, duration)

or

tone (pin, frequency, duration)

In order to run the following example, the following connection must be made: connect the

red (signal) pin of the speaker to the digital pin 8 of the Arduino. The black pin of the

speaker must be connected to the ground (GND).

Afterwards, create a file named pitches.h. To create a new file inside a project, press the top-

right button from the IDE and select the “New Tab” option (see figure below):

Design with Microprocessors (DMP) – Lab. 4

41

Fig.IV.3. Creating a new file

Rename the new file pitches.h and insert the tones defined in “Appendix A”. Save the

document and go back to the principal tab, where enter the following code:

#include "pitches.h“ // contains the frequency values for all

//the notes

// notes in the melody – constant values defining frequency

for each used note

int melody[] = {

 NOTE_C4, NOTE_G3,NOTE_G3, NOTE_A3, NOTE_G3,0, NOTE_B3,

NOTE_C4};

// note durations: 4 = quarter note, 8 = eighth note, etc.:

int noteDurations[] = { 4,8,8,4,4,4,4,4 };

void setup()

{

 for (int thisNote = 0; thisNote < 8; thisNote++) {

 // iterate over the notes of the melody:

 // to calculate the note duration, take one second

 //divided by the note type.

 // e.g. quarter note = 1000 / 4, eighth note = 1000/8,

 //etc.

 int noteDuration = 1000/noteDurations[thisNote];

 tone(8, melody[thisNote],noteDuration);

 // to distinguish the notes, set a minimum time

 between them: note's duration + 30%

 int pauseBetweenNotes = noteDuration * 1.30;

 delay(pauseBetweenNotes);

 noTone(8); // stop the tone playing for current note

 }

}

void loop() { } // no need to repeat the melody

Design with Microprocessors (DMP) – Lab. 4

42

 4.3. PWM signal generation using Arduino

 PWM (Pulse Width Modulation) is a technique used to obtain an analog signal from a

digital one by alternating periodically the output between “1” and “0”. The fraction of time

for which the signal is high (“1”) is called duty cycle. With Arduino the PWM signal can be

generated in 3 ways:

- using the PWM working modes of the AVR timers

- using the analogWrite function

- by varying in software the amount of time at which a pin’s output is logic high

 In the following, the analogWrite(duty-cycle) function will be used. The possible values

for the parameter duty_cycle are between 0 .. 255 (0 means no signal is generated; 255 means

a continuous signal of 5 V is generated). Any value X in between means a signal with a duty

cycle of X/255. The figure below illustrates some examples:

Fig.IV.4. PWM signals with several duty cycles (source:

https://www.arduino.cc/en/Tutorial/PWM)

 In the following example we will generate a PWM signal for the piezoelectric speaker

and a PWM signal with the same duty cycle for the on-board LED. The signal pin of the

piezoelectric speaker is (red wire) is connected to digital pin 8 and the black wire to the

ground.

int buzerPin = 8; // pin for attaching the piezoelectric

//speaker

int puls = 0; // duty cycle, initially 0

int step = 10; // duty cycle increment step

int ledPin = 13; // on-board LED

void setup() {

 // Pin direction setup

 pinMode(buzerPin, OUTPUT);

 pinMode(ledPin, OUTPUT);

Design with Microprocessors (DMP) – Lab. 4

43

}

void loop() {

 // set the duty cycle for both the buzzer and the LED

 analogWrite(buzerPin, puls);

 analogWrite(ledPin, puls);

 // increment the duty cycle

 puls = puls + step;

 // change the increment direction at the end of the

 //interval

 if (puls <= 0 || puls >= 255) {

 step = -step ;

 }

 // small delay to sense the effects

 delay(30);

}

4.4. Individual work

1. Implement all the examples. Ask the teacher for any question related to theoretical or

practical aspects.

2. Using the interrupts, play the melody in the background while the main program displays

an animation on the LCD (ex. walking character). The animation speed should be variable

to demonstrate the asynchronous playing of the melody relative the main program.

3. Using the button block, implement a mini-piano with 4 notes. Be sure to end the sound

generation when the button is released.

4. Using the PWM technique and an LED block, implement an animation through which the

intensity of each LED is varied continuously

References:

1.Datasheet ATMega 2560 http://www.atmel.com/images/atmel-2549-8-bit-avr-

microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf

2. Timer 1 library http://playground.arduino.cc/Code/Timer1

3. analogWrite functions https://www.arduino.cc/en/Reference/AnalogWrite

4. Tones generation: https://www.arduino.cc/en/Reference/Tone

http://www.atmel.com/images/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/images/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
http://playground.arduino.cc/Code/Timer1
https://www.arduino.cc/en/Reference/AnalogWrite
https://www.arduino.cc/en/Reference/Tone

Appendix A – Lab. 4

44

Appendix A

(contents of “pitches.h” file, from: https://www.arduino.cc/en/Tutorial/toneMelody)

#define NOTE_B0 31

#define NOTE_C1 33

#define NOTE_CS1 35

#define NOTE_D1 37

#define NOTE_DS1 39

#define NOTE_E1 41

#define NOTE_F1 44

#define NOTE_FS1 46

#define NOTE_G1 49

#define NOTE_GS1 52

#define NOTE_A1 55

#define NOTE_AS1 58

#define NOTE_B1 62

#define NOTE_C2 65

#define NOTE_CS2 69

#define NOTE_D2 73

#define NOTE_DS2 78

#define NOTE_E2 82

#define NOTE_F2 87

#define NOTE_FS2 93

#define NOTE_G2 98

#define NOTE_GS2 104

#define NOTE_A2 110

#define NOTE_AS2 117

#define NOTE_B2 123

#define NOTE_C3 131

#define NOTE_CS3 139

#define NOTE_D3 147

#define NOTE_DS3 156

#define NOTE_E3 165

#define NOTE_F3 175

#define NOTE_FS3 185

#define NOTE_G3 196

#define NOTE_GS3 208

#define NOTE_A3 220

#define NOTE_AS3 233

#define NOTE_B3 247

#define NOTE_C4 262

#define NOTE_CS4 277

#define NOTE_D4 294

#define NOTE_DS4 311

#define NOTE_E4 330

#define NOTE_F4 349

#define NOTE_FS4 370

Appendix A – Lab. 4

45

#define NOTE_G4 392

#define NOTE_GS4 415

#define NOTE_A4 440

#define NOTE_AS4 466

#define NOTE_B4 494

#define NOTE_C5 523

#define NOTE_CS5 554

#define NOTE_D5 587

#define NOTE_DS5 622

#define NOTE_E5 659

#define NOTE_F5 698

#define NOTE_FS5 740

#define NOTE_G5 784

#define NOTE_GS5 831

#define NOTE_A5 880

#define NOTE_AS5 932

#define NOTE_B5 988

#define NOTE_C6 1047

#define NOTE_CS6 1109

#define NOTE_D6 1175

#define NOTE_DS6 1245

#define NOTE_E6 1319

#define NOTE_F6 1397

#define NOTE_FS6 1480

#define NOTE_G6 1568

#define NOTE_GS6 1661

#define NOTE_A6 1760

#define NOTE_AS6 1865

#define NOTE_B6 1976

#define NOTE_C7 2093

#define NOTE_CS7 2217

#define NOTE_D7 2349

#define NOTE_DS7 2489

#define NOTE_E7 2637

#define NOTE_F7 2794

#define NOTE_FS7 2960

#define NOTE_G7 3136

#define NOTE_GS7 3322

#define NOTE_A7 3520

#define NOTE_AS7 3729

#define NOTE_B7 3951

#define NOTE_C8 4186

#define NOTE_CS8 4435

#define NOTE_D8 4699

#define NOTE_DS8 4978

Design with Microprocessors (DMP) – Lab. 5

46

V. Laboratory 5 – Communication Interfaces

 Embedded electronics refers to the interconnection of circuits (micro-processors or other

integrated circuits) with the goal of creating a unified system. In order to transfer information,

these circuits need to have a common communication mechanism. These mechanics can be

categorized in two main classes: serial and parallel communication schemes.

 Parallel interfaces transfer more bits at a time. They usually require busses to transmit

over 8, 16 or more lines. The transmitted and received data represent massive flows of 1s and

0s. In figure V.1, one can observe a simple 8-bit data bus, controlled by a clock signal, that

can transmit one byte at each clock cycle (9 wires are used).

Fig.V.1. Parallel Transmission (source: https://learn.sparkfun.com/tutorials/serial-

communication/all)

Serial interfaces send the information bit by bit. These interfaces can operate on a single wire

and usually do not need more than 4 wires (minimum 1, maximum 4 wires).

Fig.V.2. Serial Transmission (source: https://learn.sparkfun.com/tutorials/serial-

communication/all)

 In Figure V.2, one can observe an example of a serial interface that transmits one bit at

each clock cycle (2 wires are used). Although the parallel interfaces have their strengths, they

require a large number of pins on the used development platform and taking into account that

the number of pins on the Arduino UNO/Mega is limited, we will focus on serial

communication interfaces.

 Another classification used for communication interfaces refers to the communication

mechanism: synchronous or asynchronous. A synchronous communication interface uses a

clock signal at both ends of the communication link (transmitter and receiver). This kind of

communication is usually faster, but it requires an extra wire between the communication

Design with Microprocessors (DMP) – Lab. 5

47

devices. Examples of such communications are SPI and I2C. Asynchronous communication

refers to the fact that data is being transferred without the support of a clock signal. In this

manner there is no need for a clock signal, but special attention should be given to the

synchronization of the transferred data.

 Rules of asynchronous serial transfer – UART

 Asynchronous serial transfer employs a mechanism to ensure a robust error free

transmission. This mechanism contains the following:

• Baud Rate or transfer rate

• The Data Packet (Data Frame)

• Data Bits – character (data chunk)

• Synchronization Bits

• Parity Bits

• Data line (in idle state has the logical level “1”)

 The critical part is to ensure that the devices that communicate using the serial bus obey

the same communication protocol.

 Baud Rate

 In serial communication Baud Rate defines how fast is the data transmitted over the

serial line. This is expressed in number of bits per second. Baud rate examples: 1200, 2400,

4800, 19200, 38400, 57600, 115200.

 Data Packet (Data Frame)

 Each block of data (usually a Byte) that is to be transmitted is embedded into a data

packet (frame). The data packet is formed by adding synchronization and parity bits to the

data that is to be transmitted. Figure V.3 illustrates the form of a data packet.

Fig.V.3. Data Packet – Data Frame (source: https://learn.sparkfun.com/tutorials/serial-

communication/all)

 Data chunk

 The most important part of each packet is represented by the data that a packet contains.

This part is also named the data chunk, since the data size is not always the same. It is usually

called a character. The data size can be between 5 and 9 bits – standard data size is 8 bits.

After the data size is chosen, the communication devices must also agree on the endianness

(which bit is transmitted first, the most significant bit MSB or the least significant bit LSB).

 Synchronization Bits

 The synchronization bits are special bits transmitted with every character. These are the

start and stop bits, marking the beginning and ending of a data packet. The start bit is always

0. There can exist more than one stop bit. The stop bit is always 1.

Design with Microprocessors (DMP) – Lab. 5

48

 Parity Bit

 The parity bit assures a very primitive error control mechanism. The parity bit can

represent odd parity, even parity, or it can be skipped from the data packet. For producing the

parity bit (Figure V.4) all the bits from the data chunk are aggregated using the “exclusive or”

operator. Parity checking is optional, not used so much in practice. It is useful to use the

parity bit when transmitting through noisy medium.

Fig.V.4. Parity bit Computation (source: https://learn.sparkfun.com/tutorials/serial-

communication/all)

 An asynchronous serial bus contains only 2 wires – one for transmitting the data and one

for receiving. So, the components that communicate in serial mode must have 2 pins: receive

pin (RX) and transmit pin (TX), as in Figure V.5.

Fig.V.5. Serial Connection Scheme (source: https://learn.sparkfun.com/tutorials/serial-

communication/all)

 All the Arduino development boards contain at least a Serial port (known as UART or

USART). Serial communication can be realized through pins 0 (RX) and 1 (TX), but also

through the USB interface (the USB interface uses pins 0 and 1 to communicate with the

microcontroller). This is why digital pins 0 and 1 must not be used for applications, because

losing control on this pins means losing control for board programming.

 The Arduino Mega development board contains 3 additional serial ports Serial1 – on pins

19 (RX) and 18 (TX), Serial2 – on pins 17 (RX) and 16 (TX) and Serial 3 – on pins 15 (RX)

and 14 (TX).

 In our first example in this laboratory we will implement the serial communication

between the Arduino board and the PC; displaying the received message on the PC. For this

example, we will use the LCD shield mounted on the development boards. The information is

sent from the PC and displayed on the LCD. There exist a variety of functions for serial data

manipulation. In the previous laboratories we have used a serial communication between the

Arduino board and the PC for showing the state of the pressed buttons. The most used serial

functions are shown in Figure V.6 (https://www.arduino.cc/en/Reference/Serial).

https://www.arduino.cc/en/Reference/Serial

Design with Microprocessors (DMP) – Lab. 5

49

Fig.V.6. Asynchronous Serial Communication Functions (source:

https://www.arduino.cc/en/Reference/Serial)

Functions print() and println() from the Serial class send data through the serial port. The

difference is that println() sends an additional new line character (‘\n’) and a “carriage return”

character (‘\r’) at the end of the transmitted message. For the transmitted numbers you can

also specify the format of the data (HEX, DEC, etc.).

Function begin() is used to initialize the baud rate of the serial communication. For serial

communication with the PC the following baud rates are usually used: 300, 600, 1200, 2400,

4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200. Optionally, you can add an

additional parameter for configuring the number of bits sent, parity and number of stop bits.

The following values are implicit: 8 data bits, no parity and 1 stop bit.

Function read() is used to read the date received from the serial interface. The syntax is the

following: IncomingByte = Serial.read();

Function write() sends a series of bytes over the serial line. For sending numbers it is

recommended to use the function print().

The flush() instruction waits for the serial transmission to complete.

Function available() returns the number of bytes that can be read from the serial port. These

data have already been received and are available in the serial receive buffer.

A useful function is serialEvent(). The function is defined by the user and will be

automatically called when new data is ready to be read from the serial receive buffer.

The following example illustrates receiving data from the serial monitor and displaying it on

the LCD.

//include LCD library

#include <LiquidCrystal.h>

String inputString = "";// create an empty string to hold the

//incoming serial data

Design with Microprocessors (DMP) – Lab. 5

50

// Boolean flag to test whether a complete string has been

//received (enter pressed in serial monitor)

boolean stringComplete = false;

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

void setup() {

 // initialize serial interface

 Serial.begin(9600); // implicit serial frame format

 //initialize lcd

 lcd.begin(16, 2);

 // reserve 200 bytes for the string

 inputString.reserve(200);

}

void loop() {

 // display the string when new line is received

 if (stringComplete) {

 lcd.setCursor(0, 0);

 lcd.print(inputString);

 Serial.println(inputString);

 // empty the string

 inputString = "";

 // reset the flag

 stringComplete = false;

 }

}

/*

SerialEvent is called when new data is received on the RX port

This function is automatically called when the loop is called.

If we add delays in loop we will also delay the showing of the

result. */

void serialEvent() {

 while (Serial.available()) {

 // read the new received byte

 char inChar = (char)Serial.read();

 // check if new line character has been received; if

 //not, add it to the string

 // we do not add new line in input string since it

 //will show an extra character in the LCD

 if (inChar != '\n')

 inputString += inChar;

 // dif the receive character is new line, set the flag

 //so that the loop will know to display

 //the received data

 if (inChar == '\n') {

 stringComplete = true;

 }

 }

}

Design with Microprocessors (DMP) – Lab. 5

51

For transmitting data to the Arduino board, use the Serial Monitor, opened from the Tools

menu.

Fig.V.7. Serial Data transmission in Serial Monitor

 Inter-Integrated Circuit (I2C) protocol

 The Inter Integrated Circuit (I2C) protocol was created for connecting more “slave”

integrated circuits with one or more “master” circuit. This communication protocol is

intended for short distance communications and similarly to the UART protocol or RS232

requires two wires for sending / receiving information.

 Unlike UART, I2C allows communication between more than two devices. One device

must be master, and it will communicate with a slave, but these roles can subsequently

change.

 The I2C bus is composed of 2 signals: SCL and SDA. SCL represents the clock signal;

SDA the data signal. The clock signal is always generated by the master. (Some slave

components can force the clock signal to low in order to signal the master to introduce a

delay in the data transmission – this is called clock stretching).

 Unlike other serial communication protocols, I2C is an “open drain” bus, that is a signal

line can be pulled to 0 logic level (“low”) but it cannot be pulled to 1 logical level (“high”).

In this manner “bus contentions” are eliminated – a device tries to pull a signal to “high”

while another devices tries to pull the signal to “low”. Each signal has a pull-up resistor in

order for the device to be able to set the signal to “high” when no other device is trying to

pull the signal to “low”.

Design with Microprocessors (DMP) – Lab. 5

52

Fig.V.8. I2C connection scheme. There is a resistor on each signal (source:

https://learn.sparkfun.com/tutorials/i2c/all)

The selection for the resistor varies with the devices that use the bus, but as a rule start with

4.7k resistors and decrease them if necessary.

Protocol Description:

Fig.V.9. I2C Transmission Protocol (source: https://learn.sparkfun.com/tutorials/i2c/all)

 I2C message are split in 2 types of frames: address frames (where the master selects the

slave to which the data will be sent) and data frames that contain 8 bits of data to be passes

from master to slave or from slave to master. The data are put on the SDA line after SCL is

“low” and are sampled when SCL reaches the “high” logical level.

 Start Condition

 In order to initiate the address frame, the master leaves SCL to high and pulls SDA low.

This prepares all the slaves for transmission. If 2 master devices want to send data over the

I2C bus, the one that pulls SDA low first is granted control of the bus.

 Address Frame

 The address frame is always the first in message in the I2C communication. The address

bits are transmitted first, MSB to LSB, followed by the R/W bit, showing if the operation is a

read (1) or a write (0). The 9th bit of the address frame is the NACK / ACK bit. After the first

8 bits of the address frame are transmitted the receiving device gets control of the SDA line.

Design with Microprocessors (DMP) – Lab. 5

53

If the receiving device does not pull the SDA line to 0 logic before the 9 th clock cycle, it can

be inferred that the receiving device either did not receive the message or did not correctly

interpret the message. In this case the communication is stopped and the master decides what

to do next.

 Data Frames

 After the address frame has been sent, the useful information can be transmitted on the

I2C bus. The master will continue to generate the clock signal, at a regular interval, and the

data will be set on the SDA line, either by the master or by the slave (bit R/W indicates if it is

a read or write operation). The number of data frames is arbitrary.

 Stop condition

 As soon as all the data frames have been transmitted, the master will generate a stop

conditions. Stop conditions are defined as transitions from low to high (0  1) on the SDA

line, after a 0  1 transition on SCL with SCL remaining high. During the write operations

the value on SDA should not change when SCL is high, in order to avoid false stop

conditions.

Example:

For testing the I2C protocol functionality recreate the mounting from Figure V.10 or Figure

V.11 (depending on the used boards).

Fig.V.10. Connecting 2 Arduino Uno Boards (source:

https://www.arduino.cc/en/Tutorial/MasterWriter)

Design with Microprocessors (DMP) – Lab. 5

54

Fig.V.11. Connecting an Arduino Mega Board with an Arduino Uno Board

If you are using an Arduino UNO / dumilanove / mini board connect pins A4 and A5 of one

board to the same pins on the other board. Also connect the GND signal from the two boards.

Do not connect the voltage pins from the two boards together and be sure the boards

are powered up at the same voltage level.

In order to write the code we will use the Wire library from Arduino environment

(https://www.arduino.cc/en/Reference/Wire).

In the following table you can see the I2C pin locations on different Arduino boards.

Board I2C

UNO, Ethernet A4 (SDA), A5 (SCL)

MEGA 2560 20 (SDA), 21 (SCL)

Leonardo 2 (SDA), 3 (SCL)

Due
20 (SDA), 21 (SCL), SDA1,

SCL1

Fig.V.12. Location of the I2C signals on different Arduino boards

Cod for the slave:

#include <LiquidCrystal.h>

// include I2C library

#include <Wire.h>

https://www.arduino.cc/en/Reference/Wire

Design with Microprocessors (DMP) – Lab. 5

55

int x = 0;

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

void setup() {

 // Start i2C slave at address 9

 Wire.begin(9);

 // attach a function to be called when we receive

 //something on the I2C bus

 Wire.onReceive(receiveEvent);

 lcd.begin(16,2);

 lcd.print("Slave");

}

void receiveEvent(int bytes) {

 x = Wire.read(); //read I2C received character

}

void loop() {

 lcd.setCursor(0,1); // display received character

 lcd.print(x);

}

Code for the master:

#include <LiquidCrystal.h>

// include I2C library

#include <Wire.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

int x = 0;

void setup() {

 // Open I2C bus as master

 Wire.begin();

 lcd.begin(16,2);

 lcd.print("Master");

}

void loop() {

 Wire.beginTransmission(9); // transmit to device #9

 Wire.write(x); // transmit x

 Wire.endTransmission(); // stop transmission

 lcd.setCursor(0,1); // display sent character on LCD

 lcd.print(x);

 x++; // increment x

Design with Microprocessors (DMP) – Lab. 5

56

 if (x > 5) x = 0; // reset x when it reaches 6

 delay(500);

}

5.1. Individual Work

1. Test the examples from the laboratory. Ask your TA if you have any problems in

connecting the wires.

2. Implement a communication system between 2 PCs by using the Arduino boards. The

boards are connecting to the PC via USB and between them through I2C. The text written in

Serial Monitor on the PC connected to the master will be written in the Serial Monitor of the

slave PC.

3. Implement the same setup as in problem 2, but bi-directional. For transmitting from slave

to master read: https://www.arduino.cc/en/Tutorial/MasterReader

4. Implement a network with one master and 2 slaves. The master is connected to the PC and

receives messages through the serial interface of the following type:

a. s1-hello

b. s2-goodbye

According to the number after the s character, the message after the ‘-’ will be sent to the

appropriate slave. The slave boards will display on LCD only the message addressed to them.

https://www.arduino.cc/en/Tutorial/MasterReader

Design with Microprocessors (DMP) – Lab. 6

57

VI. Laboratory 6 - Working with the AVR Assembly language

 6.1. Assembly and C

 Why work in Assembly?

 The assembly code directly translates into AVR instructions to be executed by the

microcontroller, without compiler or environment overhead. While performant C/C++ compilers

may sometimes produce very efficient code in terms of speed or memory requirements, the

assembly code gives the programmer full control over the binary code that is produced. Most of the

time the assembly code is smaller, faster, more predictable in terms of time and memory

requirements, and easier to debug.

 Assembly directives

 The assembly directives are not part of the assembly language (which is made by the opcodes

for the instructions that can be directly executed by the target microprocessor), but they instruct the

compiler in the process of code generation.

Examples of uses:

▪ adjust the location of the program in memory

▪ define macros

▪ initialize memory

Some examples:

.byte Reserve byte to a variable

.comm declares a common symbol

.data specifies the Data section of a program.

.ifdef tells the assembler to include the following code if the condition is satisfied.

.else tells the assembler to include the following code if the if condition is false

.include include supporting files

#include include supporting files

.file start of a new logical file

.text assemble what follows after this directive, defines the code section

.global defines or acknowledges a global variable or subroutine, often used with a variable

specified by .comm, if the variable is used in more than one file

.extern treats all undefined symbols as external

.space allocates space (for an array)

.equ define constants for use in a program

.set define (local) variables used in a program

Fig.VI.1. Example of assembly directives

Design with Microprocessors (DMP) – Lab. 6

58

 Remembering functions

 If we want to combine the C/C++ language with the assembly language, we can do this by

means of functions (procedures). Functions must be declared (in the function’s prototype) and

defined (in the function’s body). The functions may or may not have inputs or outputs. Generally, if

a variable is passed as an argument to a function, that variable is expected to remain unchanged

when the function is executed. Global Variables may be changed inside a function.

 Calling conventions determine where the arguments and the return values are stored. When a

function is called, it needs to know where to look for the arguments, and where to store the return

value.

 The CALL of a function pushes the return address onto the stack, and the arguments and the

return value are passed in accordance to the calling convention (in registers, on the stack, etc). If the

function uses global variables, they need to be declared as such, and initialized with the proper

values.

 After the function is executed, it finishes with the RET instruction, which pops the return

address off the stack.

Fig.VI.2. Values are passed based on GCC convention.

C functions can only “return” one value.

 Functions and the stack

 When a function is called, an activation record is “pushed” on the stack. When the function

returns, that activation record is “popped” from the stack Activation record is whatever data needed

to be remembered to resume the process when the function returns. It typically consists of local

variables (which are usually stored in registers) and the return address.

Stack is a memory area in SRAM pointed to by the 16 bit stack pointer (SP). At the AVR

microcontrollers, the stack pointer is decreased when data is pushed on the stack, and therefore the

stack must be initialized to the highest available data memory address (which at AtMega2560 is

0x21FF).

C

Program

ASM

Program

Design with Microprocessors (DMP) – Lab. 6

59

 Global variable use

 The global variables are accessible anywhere in your code, no matter if the code is C or

assembly.

 Global variables can be declared in the .ino file, but it is better to declare them in a header file.

The globals should have equivalents in the .S assembly file (declared with the assembly

directives .comm and .global).

Example declaration of the global variables in the .ino file, or in a header file:

extern "C" int8_t var8b;

extern "C" int16_t var16b;

extern "C" uint32_t var32b;

The declaration of these global variables in the assembly (.S) file:

.data

.comm var8b, 1

.global var8b

.comm var16b, 2

.global var16b

.comm var32b, 4

.global var32b

In C (Arduino) a global variable is just used as it is, whereas in ASM you may have to access one

byte at a time.

Example:

Arduino:

void setup()

{

 longvar = 0xAABBCCDD;

 func1();

}

Assembly:

.align 2

.comm longvar, 4

.global longvar

.text

.global func1 ;

func1:

lds r18, longvar

lds r19, longvar+1

lds r20, longvar+2

lds r21, longvar+3

...

ret

Design with Microprocessors (DMP) – Lab. 6

60

 When working with more than 1 byte variables, the C/C++ compiler usually expect them to be

aligned in memory. For example, a 2 byte variable must start at an address multiple of 2, while a 4

byte variable (such as the longvar above) must start at an address multiple of 4. The .align compiler

directive, which receives as argument a power of 2 (2^2 = 4 in the example above) , ensures the

alignment.

 Parameter calling convention

 The instructions call (two-word, jump farther) and rcall (one-word, jump shorter) cause the

content of the PC register to become the address of the function being called. A call instruction also

pushes the return address (the address of the next instruction after the call) on the stack. The

instruction ret pops the return address off the stack and places it into the PC. The function

parameters are stored in registers r25 … r8, the first byte being stored in r24. If the function has

more parameters, and these registers are not enough, they are placed on the stack before the call is

executed. The code inside the function must read them from the stack, and the caller code must

remove them from the stack after the procedure is executed.

Function Prototype

Fig.VI.3. The function prototype – register based parameter transfer and result return

 To access the parameters in the stack frame (activation record), you need to copy the stack

pointer SP to the Y pointer register:

in r28, SPL

in r29, SPH

 If we have a function with 11 1-byte arguments, the first nine will be passed in the even-

numbered registers from r24 down to r8, and the last two will be passed on the stack. If we use the

Y pointer for accessing these values, we must save it first, so the beginning of our function should

look like:

push r28

push r29

in r28, SPL

in r29, SPH

Design with Microprocessors (DMP) – Lab. 6

61

You can access arguments 10 and 11 by:
ldd r7, Y+5

ldd r7, Y+6

The use of registers inside functions

The 32 registers of the AVR microcontroller are given various roles and treatment by the gcc

compiler. If your project contains pure asm code, you can use the registers as you like. If you

combine asm and C, you have to follow the rules described in the following table:

0x00 R0 “free” register, can be changed freely without need of

restore

0x01 R1 Must always holds the value of 0, do not change.

0x02 R2 These must be left unchanged by a function or saved

and restored before return. … …

0x0D R13

0x0E R14

0x0F R15

0x10 R16

0x11 R17

0x12 R18 R18 to R27 are freely available for use in functions.

You are to expect their values to be changed in a

function.
… …

0x1A(XL) R26 The X pointer, freely available to use in functions, not

required to be saved. 0x1B(XH) R27

0x1C(YL) R28 Frame pointer, Y. Can be used inside a function, but

must be saved and restored before exiting. 0x1D(YH) R29

0x1E(ZL) R30 The Z pointer, freely available to use in functions, not

required to be saved. 0x1F(ZH) R31

Fig.VI.4. The use of registers inside functions

Return values

The return value is passed in r25-r18, depending on the size of the return value (maximum return

value size: 8 bytes). If the return value is 1 byte, it is placed in r24. r25 is either all 0’s (positive

return value) or all 1’s (negative return value).

Declared Output Output location

Byte, Boolean, int8_t, uint8_t r24 (r25 = 00,FF)

int, uint, short,

char, unsigned char

int16_t, uint16_t

r25:r24

long, ulong,

int32_t, uint23_t

r25:r22

Fig.VI.5. The return value types of the functions and their register use

Design with Microprocessors (DMP) – Lab. 6

62

Development tools

For developing assembly code that works with our Arduino Mega boards, we have the following

options:

1. Using the Arduino IDE

 a. “Inline” Assembly – small pieces of assembly code inserted in the C++ code

 b. Assembly source files containing functions called from the .ino main file

2. Using Atmel Studio IDE

In this lab we will explore solutions 1.b and 2.

6.2. Using the Arduino IDE

 a. A simple blink

 Combining assembly and C code using the Arduino IDE is pretty trivial. In the first example,

we’ll replicate the functionality of the first Arduino program, “Blink”, by using assembly language

functions for port bits manipulation.

Open the Arduino IDE and paste the following code:

extern "C" void setpin();

extern "C" void turnon();

extern "C" void turnoff();

void setup() {

 setpin();

}

void loop() {

 turnon();

 delay(1000);

 turnsoff(0);

 delay(1000);

}

 In the above code snippet, the functions setpin (which will configure pin 13 as output), turnon

(which will turn the LED on), and turnoff (turn LED off) will be implemented in assembly.

 To include assembly code, create a .S file by clicking in the upper right arrow in your IDE

window, name it as you like, but don’t forget to set its extension to “.S”. Use CAPITAL S, not

lowercase s, otherwise the compiler will not see the file.

Design with Microprocessors (DMP) – Lab. 6

63

Fig.VI.6. Creation of a new file

 Name this tab asm_functions.S. Paste the code snippet given below in this new file. The .S

and .ino files have to be in the same folder.

#include "avr/io.h"

.global setpin

setpin:

 sbi _SFR_IO_ADDR(DDRB), 7 ; sets bit 7 of DDRB to 1 - output

 ret

.global turnon

turnon:

 sbi _SFR_IO_ADDR(PORTB), 7 ; sets bit 7 of PORTB to 1

 ret

.global turnoff

turnoff:

 cbi _SFR_IO_ADDR(PORTB), 7 ; sets bit 7 of PORTB to 0

 ret

 The above code manipulates the value of bit 7 of port B, which is connected to digital pin 13 of

the Arduino Mega board (see https://www.arduino.cc/en/Hacking/PinMapping2560 for other pin to

port correspondences). First, the bit must be set to output by writing a ‘1’ to the corresponding

position in DDRB, and then its value will be set by changing the bit in PORTB.

Warning: the Arduino compiler assumes that each port name/symbol refers to the Data Memory

space address, and not to the I/O address. For example, for port B, we have from the datasheet two

addresses: 0x05 in the I/O space, and 0x25 in the Memory space. In order to make the compiler use

the I/O address, use the _SFR_IO_ADDR macro.

https://www.arduino.cc/en/Hacking/PinMapping2560

Design with Microprocessors (DMP) – Lab. 6

64

Fig.VI.7. Port B addressing (source: atmega256 datasheet)

Compile the program and upload it to the board. It should perform the blinking function.

 b. Using a function with parameters

 We’ll try to achieve the same behavior as in the first example, but instead of using two

functions, one for turning the LED on, and another for turning it off, we’ll use a single function and

have the LED state passed as a parameter.

The c++ code will be changed to this:

extern "C" void setpin();

extern "C" char turnspecified(char c);

void setup() {

 setpin();

}

void loop() {

 turnspecified(1);

 delay(1000);

 turnspecified(0);

 delay(1000);

}

And the assembly code to this:

#include "avr/io.h"

.global setpin

setpin:

 sbi _SFR_IO_ADDR(DDRB), 7 ; sets bit 7 of DDRB to 1 - output

 ret

.global turnspecified

turnspecified:

 tst r24 ; r24 will hold the parameter of the

 ;function, test it for zero

 breq set0 ; if zero, go set the pin to 0

 sbi _SFR_IO_ADDR(PORTB), 7 ; otherwise set it to 1

 rjmp finish

Design with Microprocessors (DMP) – Lab. 6

65

set0:

 cbi _SFR_IO_ADDR(PORTB), 7 ; set to zero

finish:

 ret

The parameters of an assembly function will be passed in registers r25 down to r8. A 8 bit

parameter will be passed in register r24, a 16 bit parameter in registers r25:r24, and so on.

 c. Using the serial interface in Assembly

 This example will display a message via the Serial interface. The message will be stored in the

program flash memory as a null-terminated string of characters.

The Arduino c++ code is the following:

extern "C" void Serial_Setup();

extern "C" void Print_Hello();

void setup() {

 Serial_Setup();

}

void loop() {

 Print_Hello();

 delay(500);

}

The assembly code is this:

#include "avr/io.h"

.global Serial_Setup

Serial_Setup:

 ; Configure the parameters of serial interface 0

 clr r0

 sts UCSR0A, r0

 ldi r24, 1<<RXEN0 | 1 << TXEN0 ; enable Rx & Tx

 sts UCSR0B, r24

 ldi r24, 1 << UCSZ00 | 1 << UCSZ01 ; asynchronous, no

 ;parity, 1 stop, 8 bits

 sts UBRR0H, r0

 ldi r24, 103

 sts UBRR0L, r24

 ret

.global Print_Hello

Print_Hello:

Design with Microprocessors (DMP) – Lab. 6

66

 ; load the starting address of the string in the Z pointer

 ldi ZL, lo8(the_message) ; r30

 ldi ZH, hi8(the_message) ; r31

 lpm r18, Z+ ; Load the first character of the

 ;string in r18

Loop:

 lds r17, UCSR0A

 sbrs r17, UDRE0 ; test the data buffer if data can be

 ;transmitted

 rjmp Loop

 sts UDR0, r18 ; send data contained in r18

 lpm r18, Z+ ; load the next character

 tst r18 ; check if 0 – the string ends

 brne Loop

 ret

the_message: ; the message itself, followed by LF and CR and 0

 .ascii "Assembly is fun"

 .byte 10, 13,0

 The first assembly function configures the parameters of the UART0 interface (the Serial

interface of Arduino), and the second function sends a message stored in the program memory via

this interface. Open the Serial Monitor tool to see the message being displayed.

Check the AVR ATMega2560 datasheet

(http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-

atmega640-1280-1281-2560-2561_datasheet.pdf) and the slides of Lecture 6, in order to

understand the settings and operation of the UART interface.

 d. Using C arrays in assembly functions

 In this example we will write a function in assembly that adds the elements of an array, which

is declared in the main Arduino file. The function is called form the Arduino code. Create three

files: sum_array.ino, external_functions.h, arsum.S. The contents of these files are detailed below.

.ino file

#include "external_functions.h"

void setup() {

 compute();

 uint8_t val = result;

 Serial.begin(9600);

 Serial.println(val);

}

void loop() { }

http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf

Design with Microprocessors (DMP) – Lab. 6

67

external_functions.h file

#include <stdint.h>

extern "C" uint8_t result;

extern "C" void compute(void);

extern "C" uint8_t myarray[10]={1, 30, 3, 4, 5, 6, 7, 8, 10, 11};

arsum.S file

.file "arsum.S"

.data

.comm result, 1

.global result

.text

.global compute

compute:

 ldi r30, lo8(myarray)

 ldi r31, hi8(myarray)

 ldi r18, 0

 ldi r21, 0

looptest:

 ld r22, z+

 add r21, r22

 inc r18

 cpi r18, 10

 brlo looptest

out:

 sts result, r21

 ret

 6.3. Using Atmel Studio

 Setting up Atmel Studio

 Atmel Studio 7 is the integrated development platform (IDP) for developing and debugging

multiple microcontroller applications (including AVR). The Atmel Studio 7 IDP gives you an easy-

to-use environment to write, build and debug your applications written in C/C++ or assembly code.

It also connects together the debuggers, programmers and development kits that support AVR

devices.

First of all, we have to set up the environment, in order to be able to upload the code on our

Atmega2560 board.

1. Open up Atmel Studio 7

2. Go to the Tools menu

3. Select External Tools

Design with Microprocessors (DMP) – Lab. 6

68

Fig.VI.8. The external tools menu

4. Click the Add button from the window

Fig.VI.9. Creation of a new external tool

5. A new entry will appear. Fill in the following data in the corresponding input text boxes.

Title: Send to Arduino Mega

Command : C:\Program Files (x86)\Arduino\hardware\tools\avr\bin\avrdude.exe

Arguments: -v -C"C:\Program Files (x86)\Arduino\hardware\tools\avr\etc\avrdude.conf" -p

atmega2560 -c wiring -P COM5 -b 115200 -D -U flash:w:$(TargetDir)$(TargetName).hex:i

Please take note that this setting assumes that the Arduino tools are installed in C:\Program Files

(x86). If Arduino is installed somewhere else, replace this folder with the correct path. If you have

installed Arduino as a Windows 10 app, uninstall it and install it normally, otherwise Atmel Studio

will not work with it.

Please note that in the Arguments string the COM port is written as a constant. Please check the port

of your ATMega board, and replace the above red highlighted text with the correct COM port.

Please ensure that the “Use Output Window” check box is checked, press Apply and Ok.

After completing the above steps, a menu option “Send to Arduino Mega” will appear in the Tools

menu.

Design with Microprocessors (DMP) – Lab. 6

69

Creating a project from an Arduino sketch

Atmel Studio allows us to transform an Arduino project (sketch) into a Studio project. You have to

perform the following steps:

1. In Atmel Studio click on new project.

2. Click on the Create project from Arduino sketch and fill in the desired name, location and

solution name.

Fig.VI.10. Creating a project from an Arduino sketch

3. In the new window browse to the location of your Arduino sketch, select the path of your IDE

and the development board used and press Ok.

Fig.VI.11. Configuring the new project.

Design with Microprocessors (DMP) – Lab. 6

70

In this example, we will use the second blink program written in assembly and c, which uses an asm

function to set the state of the LED pin 13.

After importing the Arduino sketch the solution tree looks like in the image below:

Fig.VI.12. The new project’s solution tree

If we will compile the program we will see that we get the following errors.

Fig.VI.13. Build errors

This happens due to the fact that Atmel Studio does not add automatically the references to any

external library. To solve this issue right click on the project name and select Add Existing Item

from the menu.

Design with Microprocessors (DMP) – Lab. 6

71

Fig.VI.14. Adding the missing dependencies

Browse to the location of the assembly file asm_functions.S in the Arduino folder where you have

created them, and add the file to the solution.

Rebuild the solution and observe that the build succeeds this time.

In order to upload the program to the board click on the Tools menu and select Send to Arduino

Mega. If you have implemented the above steps correctly the program should upload on the

Arduino mega board without any issue. You will see the following message in the output window in

case the program is uploaded successfully.

Fig.VI.15. Build success

Debugging using Atmel Studio

A powerful feature of Atmel Studio is the simulation-based debugger. This debugging mechanism

allows us to analyze the program behavior, monitor the registers, ports and memory, even without

having a development board near us.

To set up the debugging environment first select the Debug option from the roll down menu and the

ATmega2560 board from the main menu strip.

Design with Microprocessors (DMP) – Lab. 6

72

Fig.VI.16. Setting up the debugging target device

After pressing the ATmega2560 option, a new window will appear. Select the Tool option and from

the Select debugger / programmer option select the Simulator option.

Fig.VI.17. Setting up debugging options

 After setting up the specified options, come back to the main program by clicking the program

sketch tab. We can use the debugger to analyze the behavior of the blinking program that we have

already imported from Arduino. For debugging, it is recommended that you comment out the delays

in the code, as they will take a very long time in simulation.

 You can set breakpoints by clicking on the left gray part near the line where you want to

include the breakpoint or by positioning on a line and from the Debug window select the Toggle

Breakpoint option (or by pressing F9). You can set breakpoints in the c++ file, or in the assembly

file.

 To start debugging press the button near the Debug drop down menu or press the Alt+F5

button combination then press F5 once. To view the available AVR input/output registers (ports),

from the Debug menu select Windows and then I/O. From the same Debug/Windows menu you

can select to view other information, such as Registers (content of the 32 registers), Memory

(content of the program flash, data memories, EEPROM), Disassembly, and so on.

Fig.VI.18. Selecting the I/O information window

Design with Microprocessors (DMP) – Lab. 6

73

From the I/O window, select PORTB. You will see, at each step of the program, the contents of the

associated registers, DDRB, PORTB, and the input PINB.

Fig.VI.19. Displaying the state of PortB in the I/O window

Working with assembly-only projects

Atmel Studio allows you to write assembly-only solutions. From the File menu, select New

Project. When the New Project window opens, select from the left panel the “Assembler” option,

as shown in the figure below. Name your project, and click OK.

Fig.VI.20. Creating a new project using assembly language only

Design with Microprocessors (DMP) – Lab. 6

74

The environment will generate a main.asm file, with a dummy asm code. Replace this code with the

one below, which will send to the serial interface the message “Assembly is fun”:

; Main program

main:

 rcall asm_setup

main_loop:

 rcall asm_loop

 rjmp main_loop

asm_setup:

; Init the serial interface

 clr r0

 sts UCSR0A, r0

 ldi r24, 1<<RXEN0 | 1 << TXEN0 ; enable Rx & Tx

 sts UCSR0B, r24

 ldi r24, 1 << UCSZ00 | 1 << UCSZ01 ; asynchronous, no

 ;parity, 1 stop, 8 bits

 sts UBRR0H, r0

 ldi r24, 103

 sts UBRR0L, r24

 ret

asm_loop:

 ; print and wait

 rcall Print_Hello

 rcall wait

 ret

Print_Hello:

 ; loading address and size of array

 ldi ZL, LOW(2*array) ; r30

 ldi ZH, HIGH(2*array) ; r31

 lpm r16, Z+ ; Load the character pointed by Z

 ;registers (r30/r31)

Loop:

 lds r17, UCSR0A

 sbrs r17, UDRE0 ; test the data buffer if data can

 ;be transmitted

 rjmp Loop

 sts UDR0, r16 ; send data contained in r16

 lpm r16, Z+ ; point to the next character

 tst r16 ; check for string end - 0

 brne Loop

 ret

Design with Microprocessors (DMP) – Lab. 6

75

; simple function to wait for aprox 1 second by idle counting

wait:

 ldi R17, 0x53

 LOOP0: ldi R18, 0xFB

 LOOP1: ldi R19, 0xFF

 LOOP2: dec R19

 brne LOOP2

 dec R18

 brne LOOP1

 dec R17

 brne LOOP0

 ret

; string to be written, stored in the program memory

array:

.db "Assembly is fun",13,10,0

 Build your solution using the Build menu, and send it to the Arduino Mega board. For seeing

the serial output, you can use either the serial monitor of Arduino, or you can use the terminal of

Atmel Studio. For this, from the Tools menu, select Data Visualizer. From the left panel of the tool,

select Visualization/Terminal, and from the central panel select the serial port of your board and

click Connect. The terminal should open and display your message, as shown in the following

figure.

Fig.VI.21. The Atmel Studio terminal

You can also use the debugger to analyze the step by step execution of assembly programs. The

steps to be performed are the same as in the case of c/c++ projects.

Design with Microprocessors (DMP) – Lab. 6

76

6.4. Individual work:

1. Implement the examples provided in this lab. Use the debugger as often as possible, to see

the behavior of the program. Can you see the message string in the program flash memory?

2. Using the datasheet and the information contained in Lecture 6, write a document explaining

the settings and the operation of the serial interface as shown in the third example.

3. Write an assembly function that will return a value (the return values of functions start with

registers r25:r24). Write the .ino program that will call this function and use its output. Hint:

you can read a port.

4. Modify the example that displays the “Arduino is fun” message to display any string (char

array, null terminated) declared in the c++ program. Hint: the string is stored in the data

memory.

5. Analyze the assembly code for serial communication of the Arduino project, and compare it

to the assembly code of the pure assembly project. Describe the differences and similarities.

References:

1. https://docslide.us/documents/lecture-12-5600350816ac8.html

2. https://forum.arduino.cc/index.php?topic=490065.0

3. https://www.youtube.com/watch?v=8yAOTUY9t10

https://docslide.us/documents/lecture-12-5600350816ac8.html
https://forum.arduino.cc/index.php?topic=490065.0
https://www.youtube.com/watch?v=8yAOTUY9t10

Design with Microprocessors (DMP) – Lab. 7

77

 VII. Laboratory 7 – Analog signals processing

 An analog signals is variable voltage over time and is usually the output of a sensor that

monitors the environment. Such a signal can be processed and interpreted by a microcontroller

using an analog to digital converter (ADC), which is a device that converts a voltage into a digital

number that can be “understood” by the microcontroller.

 The pins of the Arduino boards that have ADC capabilities have the prefix “A”. In Figure VII.1

(Arduino Mega), the pins are highlighted with red color, while in Figure VII.2 they have the group

name “ANALOG IN”.

Fig.VII.1. Analog pins of Arduino Mega. (source: https://store.arduino.cc/arduino-mega-2560-

rev3)

Fig.VII.2. Arduino UNO and Mega pin layout

 ADCs can have different specifications among different microcontrollers. For example the

Mega has 10 bits resolution ADCs (can provide a digital value between 0 .. 210-1 / 0 .. 1023). There

are also ADCs with 8 bit or 16 bits resolution. The digital value provided by the ADC

(ADC_reading) can be computed with the formula below:

𝐕𝐫𝐞𝐟

𝟏𝟎𝟐𝟑
 =

𝐀𝐃𝐂_𝐫𝐞𝐚𝐝𝐢𝐧𝐠

𝐕𝐨𝐥𝐭𝐚𝐠𝐞_𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝
 (2)

Design with Microprocessors (DMP) – Lab. 7

78

The analog pins of the Arduino Board can be also used as GPIO pins (as any digital pin, having also

Pull-Up resistors).

To read the value provided by the ADC (ADC_reading) use the analogRead(pin_no) function.

It takes about 100 microseconds (0.0001 s) to read an analog input (max reading rate is therefore

10000 values / second).

If you must switch between readings from several analog inputs, use a short delay between the

switching (otherwise the reading from the next input is noisy).

Note: the function does not provide correct values if the pin is programmed as output or if the Pull-

Up logic is activated!!!

The value of the reference voltage Vref (2) can be configured using the function

analogReference(type) (i.e. the value used as the top of the input RANGE).

Type - reference to use:

• DEFAULT: the default analog reference of 5 volts (for UNO & MEGA)

• INTERNAL: a built-in reference, equal to 1.1 volts on UNO (not available on the Arduino

Mega)

• INTERNAL1V1: a built-in 1.1V reference (Arduino Mega only)

• INTERNAL2V56: a built-in 2.56V reference (Arduino Mega only)

• EXTERNAL: the voltage applied to the AREF pin (0 to 5V only) is used as the reference.

Notes:

1. After changing the analog reference, the first few readings from analogRead() may not be

accurate !!!

2. Don't use anything less than 0V or more than 5V for external reference voltage on the AREF pin!

If you're using an external reference on the AREF pin, you must set the analog reference to

EXTERNAL before calling analogRead(). Otherwise, you will short together the active reference

voltage (internally generated) and the AREF pin, possibly damaging the microcontroller on your

Arduino board !!!

Example 1: reading a potentiometer

In the following example, the value provided by a linear potentiometer will be read and displayed

on the LCD. The circuit is illustrated in Figure VII.3 (connect VCC and GND pins of the

potentiometer to +5V and GND pins of the board and the output signal/pin of the potentiometer to

an analog pin of the board – A1).

Design with Microprocessors (DMP) – Lab. 7

79

Fig.VII.3. Potentiometer interfacing example

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

void setup()

{

analogReference(DEFAULT); //set the reference voltage to the

//default value (optional)

 lcd.begin(16, 2); //init. LCD

 lcd.setCursor(0,0);

 lcd.print("Read sensor");

pinMode(A1, INPUT); // Set pin A1 as input (make sure that it

//was not set as output)

}

void loop()

{

 int val = analogRead(A1); //reading the analog value

 lcd.setCursor(0,1);

 lcd.print(val);

}

Note: If you cannot use the linear potentiometer (not enough potentiometers available), you can use

the Learning Shield. This shield has a rotary potentiometer connected to analog input A0. When

using the Learning Shield, you cannot use the LCD shield, but you can display the number on the

shield’s SSD (see Lab 2), or you can use the Serial interface.

Design with Microprocessors (DMP) – Lab. 7

80

Example 2: Reading the temperature

The used temperature sensor is LM50 http://www.ti.com/lit/ds/symlink/lm50.pdf

Fig.VII.4. The temperature sensor

Sensor specifications:

• Linear output: +10.0 mV/°C = 0.01V/°C

• Temperature range: −40°C ... +125°C

• +500 mV offset for negative temperatures reading

Fig.VII.5. Design layout for example 2

Example 2 – read temperature, performs an average of 10 consecutive readings and sends the result

to the PC over the serial connection. Connect the sensor (sensor output connected to A0 pin) and

test the code below:

float resolutionADC = .0049 ; // default ADC resolution for the 5V

//reference = 0.049 [V] / unit

float resolutionSensor = .01 ; // sensor resolution = 0.01V/°C

http://www.ti.com/lit/ds/symlink/lm50.pdf

Design with Microprocessors (DMP) – Lab. 7

81

void setup() {

 Serial.begin(9600);

}

void loop(){

 Serial.print("Temp [C]: ");

 float temp = readTempInCelsius(10, 0); // read temp. 10 times

 //and returns the average

 Serial.println(temp); // display the result

 delay(200);

}

float readTempInCelsius(int count, int pin) {

 // read temp. count times from the analog pin

 float sumTemp = 0;

 for (int i =0; i < count; i++) {

 int reading = analogRead(pin);

 float voltage = reading * resolutionADC;

 // subtract the DC offset and converts the value in

 //degrees (C)

 float tempCelsius = (voltage - 0.5) / resolutionSensor ;

 sumTemp = sumTemp + tempCelsius; // accumulates the

 //readings

 }

 return sumTemp / (float)count; // return the average value

}

Using the AVR’s ADC registers

The ATmega 2560 MCU contains a single 10 bits ADC with a maximum sampling frequency of

15kS/s at the maximum resolution. The sampling method used is the successive approximation.

The MCU offers the possibility to select among 16 input analog pins. A pin is selected through a

multiplexing process. Also, differential input voltages can be used on 4 independent differential

channels. A simplified schematic of the ADC is shown in Figure VII.6 :

Fig.VII.6. Simplified view of the ADC. (source:

https://bennthomsen.wordpress.com/arduino/peripherals/analogue-input/)

The ADC can be used in the following 3 modes:

1. Single conversion: started by writing a logic 1 to the start conversion bit

2. Triggered conversion: the conversion starts on the rising edge of the trigger signal

http://en.wikipedia.org/wiki/Successive_Approximation_ADC

Design with Microprocessors (DMP) – Lab. 7

82

3. Free running: next conversion starts after the current one is finished

Before using the ADC, the reference voltage and the clock freq. should be set. The options for the

reference voltage are shown in Figure VII.7 (they are set by bits 6 and 7 from the ADMUX register,

as shown in Figure VII.8):

Fig.VII.7. Reference voltage settings (source: atmega2560 datasheet)

To set the reference voltage to Vcc one must write: ADMUX = (1<<REFS0)

Fig.VII.8. ADMUX register. (source: atmega 2560 datasheet)

• Bit 5 – ADLAR – ADC Left Adjust Result – set to one to adjust left the result

• Bits 4:0 – MUX4:0 – Analog Channel and Gain Selection Bits – input channel select

The prescaler controls the input clock frequency of the ADC (usually between 50 and 200 kHz).

The conversion process requires 13-14 clock cycles. The prescaler options are shown in Figure

VII.9:

Fig.VII.9. Prescaler options. (source: atmega 2560 datasheet)

Design with Microprocessors (DMP) – Lab. 7

83

These bits can be set through the ADC Control and Status Register (ADCSRA) – see Fig. VII.10:

Fig.VII.10. ADCSRA Register. (source: atmega2560 datasheet)

Meaning of the ADCSRA bits:

• Bit 7 – ADEN – ADC Enable – Writing this bit to one enables the ADC. By writing it to

zero, the ADC is turned off (pins function become GPIO). Turning the ADC off while a

conversion is in progress, this will terminate the conversion.

• Bit 6 – ADSC – ADC Start Conversion – Write this bit to one starts the first conversion.

The first conversion will take 25 ADC clock cycles instead of the normal 13. This first

conversion performs initialization of the ADC. ADSC will read as one as long as a

conversion is in progress. When the conversion is complete, it returns to zero. Writing zero

to this bit has no effect.

• Bit 5 – ADATE – ADC Auto Trigger Enable – When this bit is written to one, Auto

Triggering of the ADC is enabled. The ADC will start a conversion on a positive edge of the

selected trigger signal. The trigger source is selected by setting the ADC Trigger Select bits,

ADTS in ADCSRB.

• Bit 4 – ADIF – ADC Interrupt Flag – This bit is set when an ADC conversion completes

and the Data Registers are updated. The ADC Conversion Complete Interrupt is executed if

the ADIE bit and the I-bit in SREG are set. ADIF is cleared by hardware when executing the

corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical

one to the flag.

• Bit 3 – ADIE – ADC Interrupt Enable – When this bit is written to one and the I-bit in

SREG is set, the ADC Conversion Complete Interrupt is activated.

• Bits 2:0 – ADPS2:0 – ADC Prescaler Select Bits – These bits determine the division factor

between the MCU frequency and the input clock to the ADC (Table 2).

ADCL and ADCH – ADC Data Registers

The conversion result is stored in these registers (Fig. VII.11). If ADLAR is set, the result is left

adjusted. If ADLAR is cleared (default), the result is right adjusted.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. If the result is left

adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,

ADCL must be read first, then ADCH.

The 2 registers combined can be referred by the ADCW name:

Design with Microprocessors (DMP) – Lab. 7

84

Fig.VII.11. ADCL, ADCH registers contents depending on the ADLAR bit. (source: atmega 2560

datasheet)

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

void setup()

{

 // set the ADC clock to 16MHz/128 = 125kHz

 ADCSRA |= ((1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0));

 ADMUX |= (1<<REFS0); //Set the ref. voltage to Vcc (5v)

 ADCSRA |= (1<<ADEN); //Activate the ADC

 ADCSRA |= (1<<ADSC);

}

void loop()

{

 int val = read_adc(0); //read the value

 lcd.setCursor(0,1);

 lcd.print(val);

}

uint16_t read_adc(uint8_t channel)

{

 ADMUX &= 0xE0; // delete MUX0-4 bits

 ADMUX |= channel&0x07; //Sets in MUX0-2 the value of the

 //new channel to be read

 ADCSRB = channel&(1<<3); // Set MUX5 value

 ADCSRA |= (1<<ADSC); // start conversion

 while(ADCSRA & (1<<ADSC)); //Wait for the conversion to

 //finish

 return ADCW;

}

Design with Microprocessors (DMP) – Lab. 7

85

 7.1. Individual work

1. Test the examples from the laboratory. Ask your TA if you have any problems in connecting

the wires.

2. Using a light sensor, implement a night light functionality: adjust the brightness of the LED

(using PWM), so that it increases when the ambient light decreases.

3. Using the micros() function, compare the conversion speed of the analogRead(0 function

and read_adc() given in example 3. Change prescaler values, using the ADPS bits, and

observe the effect on the measured time.

4. Measure the temperature using the analog sensor and the digital sensor from the previous

Lab. Using the digital sensor as a reference, make an automatic calibration procedure

(compute the offset between sensors), which will run continuously if a button is pressed.

When the button is released, the system will use the computed offset to correct the analog

value, and display it side by side with the digital one.

Design with Microprocessors (DMP) – Lab. 8

86

 VIII. Laboratory 8 - Arduino and WiFi - IoT applications

 IoT - Internet of Things is a recent trend that refers to connecting smart appliances and

electronics such as microcontrollers and sensors to the internet. In this laboratory we will be using

an Arduino and an ESP8266 WiFi module. We will control the built-in LED from Arduino directly

from a webpage that is hosted on the ESP8266 module. We will also be able to display data from

Arduino on the webpage.

ESP 8266 is a standalone WiFi module that can be programmed using the Arduino IDE. It can be

programmed via a FTDI programmer or by using an Arduino board with the ATMega328 chip

removed. In this laboratory we will be configuring the ESP8266 board using the serial

communication, by issuing AT commands.

Connecting the WiFi module

We will connect to the ESP board to Arduino by using the UART interface Serial1. Connect the RX

pin of the ESP8266 to pin 18 (TX1) on Arduino and the TX pin from ESP8266 to pin 19 (RX1) on

Arduino. Connect the GND pin to Arduino’s GND and the VCC/3V3 pin to the Arduino 3.3V pin.

You must also connect the EN pin of the ESP8266 to the 3.3V power source.

Consult the schematic below for connecting the WiFi module to Arduino:

Fig.VIII.1. Connecting the wifi module to Arduino via breadboard

Design with Microprocessors (DMP) – Lab. 8

87

 The Arduino program must issue AT commands to reset the WiFi module (“AT+RST”). The

next step is to configure it as an access point (“AT+CWMODE=2”). After that, we get the IP

address: 192.168.4.1 using the command: “AT+CIFSR” which also prints the MAC address of the

module. Then we query to get the SSID info (“AT+CWSAP?”): the actual WiFi network name

and password (default is not set) and then we configure for multiple connections

(“AT+CIPMUX=1”) and turn on the web server on port 80 (“AT+CIPSERVER=1,80”).

Each AT command must end with carriage return and newline (“\r\n”).

 More information regarding the ESP8266 AT commands can be found here:

https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf

and here: https://github.com/espressif/esp8266_at/wiki.

 The commands are sent via the serial interface that was setup from Arduino (“Serial1”), by

using the “print” method. The module’s response to an AT command is read and saved in a string,

and then displayed in the serial monitor of the connection between the PC and Arduino (“Serial”).

Please consult the “sendData()” method in the example below.

 In the loop we check if data is available on the Serial1 interface and check if this data is data

from the network (it will include the “+IPD” substring). We first read the connection id as it is

required when sending data using the command: “AT+CIPSEND”. A simple webpage is

constructed as a string and sent to the ESP8266 module. The webpage includes some text to

display, two buttons for user input, and below the buttons is another text for displaying data from

Arduino. After the AT command for the webpage is sent, we must close the connection by using:

“AT+CIPCLOSE”.

 The mechanism used for controlling the led on Arduino is built using the buttons on the

webpage and the URLs they point to. The first button points to “/l0” and the second one to “/l1”. By

clicking them, the webpage tries to redirect to those addresses and it issues a request on the

webserver. On Arduino, we will receive the request response by reading the ESP8266 response (in

“sendData()” method) and we check if it contains the “/l0” or “/l1” substrings in the response string

(ex: “response.indexOf("/l0") != -1“).

 Data from Arduino is displayed on the web page by adding the result from “readSensor()”

method to the webpage string and sending it using AT commands to the WiFi module. In the

example below the read sensor method will actually display the result of “millis()”.

ESP 8266 example code:

#define DEBUG true

void setup() {

 Serial.begin(115200);

 Serial1.begin(115200);

 pinMode(LED_BUILTIN, OUTPUT);

 digitalWrite(LED_BUILTIN, LOW);

 sendData("AT+RST\r\n", 2000, false); // reset module

 sendData("AT+CWMODE=2\r\n", 1000, false); // configure as

 //access point

 sendData("AT+CIFSR\r\n", 1000, DEBUG); // get ip address

 sendData("AT+CWSAP?\r\n", 2000, DEBUG); // get SSID info

https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
https://github.com/espressif/esp8266_at/wiki

Design with Microprocessors (DMP) – Lab. 8

88

 //(network name)

 sendData("AT+CIPMUX=1\r\n", 1000, false); // configure for

 //multiple connections

 sendData("AT+CIPSERVER=1,80\r\n", 1000, false); // turn on

 //server on port 80

}

void loop() {

 if (Serial1.available()) {

 if (Serial1.find("+IPD,")) {

 delay(500);

 int connectionId = Serial1.read() - 48; // read()

 //function returns

 // ASCII decimal value and 0 (the first decimal

 number) starts at 48

 String webpage = "<h1>Hello World!</h1><button>ON</button>";

 String cipSend = "AT+CIPSEND=";

 cipSend += connectionId;

 cipSend += ",";

 webpage += "<button>OFF</button>";

 if (readSensor() > 0) {

 webpage += "<h2>Millis:</h2>";

 webpage += readSensor();

 }

 cipSend += webpage.length();

 cipSend += "\r\n";

 sendData(cipSend, 100, DEBUG);

 sendData(webpage, 150, DEBUG);

 String closeCommand = "AT+CIPCLOSE=";

 closeCommand += connectionId; // append connection id

 closeCommand += "\r\n";

 sendData(closeCommand, 300, DEBUG);

 }

 }

}

String sendData(String command, const int timeout, boolean debug)

{

 String response = "";

 Serial1.print(command); // send command to the esp8266

 long int time = millis();

 while ((time + timeout) > millis()) {

 while (Serial1.available()) {

 char c = Serial1.read(); // read next char

 response += c;

 }

 }

Design with Microprocessors (DMP) – Lab. 8

89

 if (response.indexOf("/l0") != -1) {

 digitalWrite(LED_BUILTIN, HIGH);

 }

 if (response.indexOf("/l1") != -1) {

 digitalWrite(LED_BUILTIN, LOW);

 }

 if (debug) {

 Serial.print(response);

 }

 return response;

}

unsigned long readSensor() {

 return millis();

}

Running the program

Upload the code on Arduino. Make sure the ESP8266 module is powered on the 3.3V and that the

EN pin is also connected to the 3.3V power source!

Do not connect any of these pins to 5V, or the adapter will be destroyed!

For convenience, use your smartphone and scan for WiFi networks. You should find the network’s

name displayed on the Serial Monitor.

Fig.VIII.2. Looking up the network name

Do not forget to change the baud rate in serial monitor to 115200! As you can see, the network

name for this module is “AT-THINKER_3DC39D” - with no password. The same network should

be visible on your mobile device:

Design with Microprocessors (DMP) – Lab. 8

90

 Fig.VIII.3. Name of the module as wifi access point Fig.VIII.4. The web page

Note: Each adapter has its unique network name! Please connect only to your own network adapter,

not to your colleagues’ networks !

After you connect to the WiFi network, open a browser and enter the IP address of the web server:

192.168.4.1. See the above screenshot of the resulting webpage on the mobile browser.

8.1. Individual work:

1. Run the example. Make sure the connections to the WiFi module are correct and the module is

powered at 3.3 V.

2. Modify the example to display additional data in the web browser. Connect a sensor to Arduino

and use the webpage buttons to select between displaying the time (millis()) and the sensor data.

Make sure that the webpage tells the user what kind of information is displayed.

3. Using the WiFi module’s manual, change the settings of the wireless network: change the SSID,

add a password and an encryption mode.

Design with Microprocessors (DMP) – Lab. 9

91

IX. Laboratory 9 - Use of DC motors and servo motors. The experimental robot.

This lab work presents the use of DC motors, and the use of servo motors.

9.1. DC motors

Fig.IX.1. DC Motor with 1:48 rotation rate reduction (source:

https://ardushop.ro/en/electronics/64-dc-motor-3v-6v-gear-148.html)

 The classic DC motors convert electrical energy into mechanical work. The rotation rate of a

motor is proportional to the input voltage, and the rotation direction (clockwise or counter-

clockwise) depends on the polarity of the voltage (connecting the two wires of the motor to Vcc and

GND, or vice versa). The motors have a gear box (reduction mechanism) with a 1:48 reduction rate,

which means that for a complete rotation of the external shaft 48 rotations of the motor shaft are

needed. The reduction mechanism amplifies the force (torque), at the cost of speed.

 Due to the fact that the motors require a significant current intensity to produce movement, they

cannot be connected directly to the output pins of a microcontroller. A separation between the

command signals and the power circuit is required, and this is achieved by using H bridges. The H

bridged are circuits based on four switches (usually transistors), S1, S2, S3 and S4, as seen in

Figure IX.2.

Fig.IX.2. The H bridge: S1-S4 are the switches, and M is the motor (source:

https://en.wikipedia.org/wiki/H_bridge)

Design with Microprocessors (DMP) – Lab. 9

92

 The name of “H bridge” comes from the shape of the power circuit. The upper left and lower

right switches are usually connected to a common signal “A”, and the bottom left with the upper

right switches are connected to a common signal “B”. Signals A and B must be exclusive, each one

causing the motor to rotate in one direction. Activating both signals is forbidden, as it will short-

circuit the power source.

The two allowed states of the H bridge’s switches are shown in Figure IX.3:

Fig.IX.3. The allowed states of the switches (source: https://en.wikipedia.org/wiki/H_bridge)

By activating the switches S1 and S4 the motor will rotate in one direction, and by activating S2

and S3 the motor will rotate in the opposite direction.

In this laboratory we will use the double bridge L298N Dual H-Bridge, capable of driving two DC

motors in the same time.

Fig.IX.4. L298N Dual H-Bridge (source: https://ardushop.ro/en/electronics/84-dual-h-bridge-for-dc-

and-stepper-motors.html?search_query=L298&results=2)

Circuit specifications:

- The motor driving voltage (the pin marked +12V) Vs: 5~35V; If we want to use the same

source for powering the Arduino board, a voltage between 7 and 35V must be connected, to

allow the integrated voltage regulator to generate 5 V on the +5V pin.

- Maximum current for the motor driving circuit: 2A

Design with Microprocessors (DMP) – Lab. 9

93

- Logic circuit voltage (the pin marked +5V) Vss: 5 - 7V (can be connected to Arduino + 5V pin,

for powering the microcontroller board)

- Maximum current for the logic circuit: 36mA

- Logic control signal levels: logic 0, －0.3≤Vin≤1.5V, logic 1, 2.3V≤Vin≤Vss

- Maximum power: 20W

The schematic is presented in Figure IX.5:

Fig.IX.5. Schematic of the L298N driver circuit (source: L298 datasheet)

For each motor there are three control pins. The first motor is connected to pins EnA, In1 and In2

and the second motor to pins EnB, In3 and In4. The En pins are connected to logic 1 using jumpers,

and thus the user program will only control the In pins. The following combinations are available:

In1 In2 Effect

0 0 Motor 1 stopped (brake)

0 1 Motor 1 on – forward

1 0 Motor 1 on – reverse

1 1 Motor 1 stopped (brake)

In3 In4 Effect

0 0 Motor 2 stopped (brake)

0 1 Motor 2 on – forward

1 0 Motor 2 on – reverse

1 1 Motor 2 stop (brake)

Fig.IX.6. Motor commands

 The motors can be driven simultaneously. Do not change the motor’s direction of rotation

without stopping it first for several milliseconds.

Design with Microprocessors (DMP) – Lab. 9

94

 The rotation rate of a motor is controlled by the voltage applied to its power pins. Since a

microcontroller can only generate 0 or 5 V voltage levels, for changing the rotation rate a PWM

signal on pins In1, In2, In3 or In4 can be used.

 9.2. Servo motors

 Unlike the DC motors, which rotate continuously as long as they are connected to a power

source, the servo motors are used to achieve partial, stable and controlled rotations, for small

amplitude but high precision operations: locking mechanisms, positioning of sensors, gestures, etc.

Fig.IX.7. A servo motor (source: https://www.indiamart.com/proddetail/sg90-9g-servo-motor-

14077708788.html)

 The servo motors have three wires, of different colors (depending on the manufacturer). The

red color usually denotes Vcc (5V), while GND is usually black or brown. Besides the power wires,

the command wire is usually yellow, orange or white. Figure IX.8 shows several color schemes.

Fig.IX.8. Color schemes used for servo motor wires (source: http://www.pitch-play.nl/tips-and-

tricks/servo-wires/)

 The servo motor will not (usually) execute a complete rotation, but will deviate from a neutral

position with an angle controlled by the voltage applied to the signal pin. Using a PWM signal on

this pin, we can control the motor’s angle of rotation.

Design with Microprocessors (DMP) – Lab. 9

95

 The simplest way of controlling the servo motors is by the use of the Servo library. With this

library, up to 48 servos can be controlled by Arduino Mega. If more than 12 servos are used, the

library will disable PWM on pins 11 and 12. On Arduino Uno, this library will disable PWM on

pins 9 and 10, regardless of the number of servos used.

The methods of the Servo class are the following:

servo.attach(pin) / servo.attach(pin, min, max) – attaches the Servo object to pins

● servo: a Servo class object

● pin: number of digital pin for the servo control signal

● min (optional): width of the pulse, in microseconds, for the minimum angle (0 degrees) of

the servo motor (implicitly 544)

● max (optional): width of the pulse, in microseconds, for the maximum angle (180 degrees)

of the servo motor (implicitly 2400)

servo.detach() – detaches the Servo object from the pin.

boolean val servo.attached() – checks whether the Servo object is attached to a pin.

servo.write (angle) – writes a value (0 .. 180) to the servo, controlling its motion:

● For standard servos ⇒ sets the angle in degrees, causing the servo to orient in the specified

position.

● For continuously rotating servos ⇒ configures the rotation speed (0: maximum speed in one

direction; 180: maximum speed in the opposite direction; ≈ 90: stopped)

int val servo.read() – reads the current angle of the servo, set by the last call of write().

9.3. The experimental robot

For the project activities, experimental robots have been assembled, with the following components:

1. Arduino Uno compatible microcontroller board

2. L298N Dual H-Bridge motor driver

3. 2x DC Motor

4. 1 Servo motor

5. Battery case 4xAA (R6)

6. 2 wheels connected to the motors, 1 balance wheel

7. Acrylic support

8. 2x Breadboard

9. 1 sonar sensor (not connected)

Design with Microprocessors (DMP) – Lab. 9

96

Fig.IX.9. The experimental robot – top view – control elements

Fig.IX.10. The experimental robot – bottom view – power circuit

Design with Microprocessors (DMP) – Lab. 9

97

The schematic of the connections between the elements of the robot is shown in Figure IX.11:

Fig.IX.11. Electric schematic of the robot

Important features:

- The motors can be powered by batteries (not optimal, according to the L298N specifications,

but offers mobility), or by an external power supply connected to the Arduino jack power

connector. The Vin pin of Arduino is connected internally to the jack connector and also to the

+12V pin of L298N.

- Do not use an external power supply along with the batteries, as they will be exposes to the

voltage of this source!

- The +5V output of L298N is connected to the +5V power pin of the Arduino board. For saving

pins, the ICSP connector has been used.

- The control pins for the motors have been connected to Arduino pins 3 and 11 (Motor 1) and 5

and 6 (Motor 2), pins capable of PWM signal generation.

- The servo control pin is connected to Arduino pin 8.

Safety advice:

- Do not let the robot start its motors while connected to the PC via the programming cable. The

example program shown on the next page there is a built in warning time (the LED on pin 13

will blink, at first slower, then faster, before the motors are started). Program the robot, then

disconnect the USB cable and connect the external power supply, or the batteries.

- Check the polarity of the power supply connector (the positive electrode must be in the center of

the connector) and its set voltage (recommended 7.5V).

- Do not let the robot start the motors while the wheels are on the table! It will move suddenly,

and may cause breaking of cables, or it may fall from the table. Hold the robot in hand, or

Design with Microprocessors (DMP) – Lab. 9

98

mount it on a stand to keep the wheels away from the table. When you want to test the robot’s

motion, place it on the floor and leave enough space around it.

9.4. Example code

The following code is already programmed in the robot’s microcontroller. This code will test all

motors, after the execution of the warning code.

#include <Servo.h>

// Pins of motor 1

#define mpin00 5

#define mpin01 6

// Pins of motor 2

#define mpin10 3

#define mpin11 11

Servo srv;

void setup() {

 // configuration of motor pins as output, initially 0

 digitalWrite(mpin00, 0);

 digitalWrite(mpin01, 0);

 digitalWrite(mpin10, 0);

 digitalWrite(mpin11, 0);

 pinMode (mpin00, OUTPUT);

 pinMode (mpin01, OUTPUT);

 pinMode (mpin10, OUTPUT);

 pinMode (mpin11, OUTPUT);

 // LED pin

 pinMode(13, OUTPUT);

}

// Function to control a motor

// Input: pins m1 and m2, direction and speed

void StartMotor (int m1, int m2, int forward, int speed)

{

 if (speed==0) // stop

 {

 digitalWrite(m1, 0);

 digitalWrite(m2, 0);

 }

 else

 {

 if (forward)

 {

 digitalWrite(m2, 0);

 analogWrite(m1, speed); // use PWM

Design with Microprocessors (DMP) – Lab. 9

99

 }

 else

 {

 digitalWrite(m1, 0);

 analogWrite(m2, speed);

 }

 }

}

// Safety function

// Commands motors to stop, then delays

void delayStopped(int ms)

{

 StartMotor (mpin00, mpin01, 0, 0);

 StartMotor (mpin10, mpin11, 0, 0);

 delay(ms);

}

// Use of servo

// Set three angles

// When finished, the servo remains in the middle (90 degrees)

void playWithServo(int pin)

{

 srv.attach(pin);

 srv.write(0);

 delay(1000);

 srv.write(180);

 delay(1000);

 srv.write(90);

 delay(1000);

 srv.detach();

}

void loop() {

 // Warning code

 // Slow blink

 for (int i=0; i<10; i++)

 {

 digitalWrite(13, 1);

 delay(200);

 digitalWrite(13, 0);

 delay(200);

 }

 // Fast blink. Remove the USB cable!!!!

 for (int i=0; i<10; i++)

 {

 digitalWrite(13, 1);

 delay(100);

 digitalWrite(13, 0);

Design with Microprocessors (DMP) – Lab. 9

100

 delay(100);

 }

 digitalWrite(13, 1);

 // Start the servo motor

 playWithServo(8);

 // Now start the DC motors

 StartMotor (mpin00, mpin01, 0, 128);

 StartMotor (mpin10, mpin11, 0, 128);

 delay (500); // How long the motors are on

 delayStopped(500); // How long the motors are off

 StartMotor (mpin00, mpin01, 1, 128);

 StartMotor (mpin10, mpin11, 1, 128);

 delay (500);

 delayStopped(500);

 StartMotor (mpin00, mpin01, 0, 128);

 StartMotor (mpin10, mpin11, 1, 128);

 delay (500);

 delayStopped(500);

 StartMotor (mpin00, mpin01, 1, 128);

 StartMotor (mpin10, mpin11, 0, 128);

 delay (500);

 delayStopped(500);

}

9.5. Project activity rules:

1. Each team of students (1 or 2 students) will receive a robot. The lab assistant will write down in

the attendance sheet the number of the robot for each student. In the following weeks, the students

will use the same robot, if possible.

2. Check the connections for compliance with the documentation. Run the test program, check for

all motors to work correctly (each motor must perform rotations both ways). If defects are found,

they will be identified and you will attempt to fix them.

Step 2 is mandatory for each lab session!

3. The teams will add functions to the robot, by changing the program and adding components.

Avoid permanent changes, leave the robots in the same state as you found them.

4. Each team will keep their code confidential. Each student is responsible for ensuring that no code

remains on the workstation, and that their progress is securely saved.

5. In the last lab session, the project will be evaluated based on functionality, complexity and

originality. The students must hand out a short documentation (5-10 pages).

Design with Microprocessors (DMP) – Lab. 9

101

Each damaged component will be replaced by the person that damaged it!

Ideas for additional functions (may be cumulative):

- Implement a precise control of the motors to ensure movement in a straight line. Implies

measuring the rotation speed and tuning the PWM pulse to ensure equal rotation for both

motors.

- Detecting and avoiding obstacles. Implies using the sonar sensor along with the servo motor to

determine distance and angle to obstacles, and to compute free space.

- Mapping the environment. Implies detecting the obstacles and keeping track of the own

movement, for placing the obstacles on the map.

- Use of the EEPROM memory to remember a path previously traveled.

- Remote control, using the mobile phone. Implies using the WiFi module.

- Communication between robots using gestures.

- Following a leader robot.

It is possible that the additional functions may require additional hardware to be acquired. If the

components are acquired by the students, they remain in their property. It is recommended that each

team buys at least 4 alkaline batteries.

Recommendation: you can take advantage of the features of the Mega boards without removing the

UNO boards from the robot. Connect the boards by I2C, and use UNO only for motor control, and

Mega for the other functions. Connect together the 5V and GND pins of the two boards, for sharing

power.

Additional references:

1. Photoelectric sensor for using along with the code wheel, for measuring rotation speed:

https://ardushop.ro/ro/home/146-senzor-de-intrerupere-

infrarosu.html?search_query=fotoelectric&results=1

or

https://www.robofun.ro/senzor-ir-break-beam-led-3mm

2. Specifications of the sonar sensor for distance measurement:

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf

3. Using the Sharp distance sensors:

http://www.robotshop.com/letsmakerobots/files/IR_SHARP.doc

4. Use of the AVR built in EEPROM:

https://www.arduino.cc/en/Reference/EEPROM

https://ardushop.ro/ro/home/146-senzor-de-intrerupere-infrarosu.html?search_query=fotoelectric&results=1
https://ardushop.ro/ro/home/146-senzor-de-intrerupere-infrarosu.html?search_query=fotoelectric&results=1
https://www.robofun.ro/senzor-ir-break-beam-led-3mm
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
http://www.robotshop.com/letsmakerobots/files/IR_SHARP.doc
https://www.arduino.cc/en/Reference/EEPROM

Appendix 1 – Using the Processing IDE

102

Appendix 1 – Using the Processing IDE

 1. Introducing Processing

 For better visualization of the data sent by a microcontroller, data sent to the PC via the UART

serial interface, several software tools can be used. One of those products is Processing

(https://processing.org/). Using Processing we can create graphical user interfaces to display data as

graphs or tables.

Processing is an open source solution, like Arduino, having a very similar graphical user interface.

Fig.A1.1. Processing IDE

 In the text editor window we’ll write the programs. The “Message Area” and the “Console”

areas will provide feedback as the program is compiled or executed.

Similar to the Arduino programs, the Processing programs have an initialization section, and a loop

execution section. The initialization is achieved by executing the “setup()” function, and everything

contained in the “draw()” function is executed continuously (equivalent to the Arduino “loop()”

function).

https://processing.org/

Appendix 1 – Using the Processing IDE

103

Example 1 - Drawing a line and an ellipse in Processing:

void setup() {

 size(500, 300);

}

void draw() {

 line(15, 15, 15, 50);

 ellipse(150, 150, 80, 80);

}

Fig.A1.2. Drawing graphical primives in processing

 In “setup()” we’ll define the size of the window. In this example the window is 500 pixels

wide, and 300 pixels tall. The “draw()” function includes graphical commands that will draw inside

the window multiple graphical shapes: ellipse, rectangle, line, square, etc. The background color of

the window can be specified in the “setup()” function:

void setup() {

 size(500, 300);

 background(0, 0, 0);

}

The colors are defined by values between 0 and 255 for each color channel (Red, Green, Blue -

RGB), therefore for a window of white background we call background(255, 255, 255), or simply

background(255). The colors can be also specified by the web format: background(#ffffff).

The Processing coordinates system originates from the upper left corner. A line is defined by its

endpoints A(x1, y1) și B(x2, y2).

A rectangle is defined as: rect(x, y, width, height), where (x, y) is the position of the upper left

corner of the rectangle.

Appendix 1 – Using the Processing IDE

104

Fig.A1.3. Coordinates for drawing a rectangle.

(source: https://processing.org/tutorials/drawing/)

A rectangle’s position can also be specified by the position of its center, if rectMode(CENTER) is

called before drawing. Another way to specify the rectangle is to specify its upper left and lower

right corners, using the mode rectMode(CORNERS).

For more information and more examples, go to : https://processing.org/tutorials/drawing/.

2. Using sensor data with Processing

The data read by Arduino from sensors can be processed and displayed much easier using the

Processing IDE. We will use the temperature reading example from lab 7 (that you will modify to

send only the numerical value via the Serial port!) and we will send via the serial interface the

value of the temperature. In Processing we will read these values, and use them to generate a graph

of the temperature’s variation with time.

Example 2 - Reading data from the Serial interface using Processing.

import processing.serial.*;

Serial myPort;

int xPos = 1; // the index on the X axis of the graph

int lastxPos=1;

int lastheight=0;

void setup() {

 size(400, 300);

 println(Serial.list());

 int lastport = Serial.list().length;

 String portName = Serial.list()[lastport-1]; // last serial

 //port of the PC - the Arduino port

 myPort = new Serial(this, portName, 9600);

 myPort.bufferUntil(’\n’);

https://processing.org/tutorials/drawing/
https://processing.org/tutorials/drawing/

Appendix 1 – Using the Processing IDE

105

 background(0);

}

void draw() {

 String inString = myPort.readStringUntil(’\n’);

 if (inString != null) {

 inString = trim(inString);

 float inByte = float(inString);

 println(inString);

 inByte = map(inByte, -5, 45, 0, height); // map the

 //temperature range to the window height

 stroke(231, 76, 60); // line color (RGB color components)

 strokeWeight(2);// line thickness

 line(lastxPos, lastheight, xPos, height - inByte); // draw

 //line

 lastxPos= xPos;

 lastheight= int(height-inByte);

 xPos++;

 }

}

For reading the data we need to use the Serial library of Processing. The function “Serial.list()” will

return a list of all serial ports of the PC, and will help us in selecting the correct port in the “setup()”

phase.

The serial port is initialized for reading as:

myPort = new Serial(this, portName, 9600);

The data is read until the “newline” character is met:

myPort.bufferUntil(‘\n’);

We can read one string at the time by using:

myPort.readStringUntil(‘\n’);

If data is received, the string is converted to float, and the value is used to draw lines on the screen

so that we can generate a temperature graph:

Appendix 1 – Using the Processing IDE

106

Fig.A1.4. Ploting a graph from sensor data

The lines are drawn by connecting the current coordinates with the previous ones, so that the graph

will look continuous.

3. Writing data in in Processing

The serial communication library of Processing allows, besides reading data, to send data via the

serial interface. You can send characters by calling the write function.

import processing.serial.*;

Serial myPort;

// Display the available serial ports

printArray(Serial.list());

myPort = new Serial(this, Serial.list()[Serial.list().length-1],

9600);

// Write “A” on the last serial port

myPort.write(65);

Source: https://processing.org/reference/libraries/serial/Serial_write_.html

A character string can be sent by a single call of the write function:

myPort.write(“Hello”);

Appendix 1 – Using the Processing IDE

107

4. Reading the data sent by Processing in Arduino

The data sent by Processing can be read in Arduino using the serial interface and the Serial library.

Reading a string of characters can be done by calling:

 string dataFromSerial = Serial.readStringUntil(’\n’);

Example 3: reading data in Arduino – Arduino code:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 6, 5, 4, 3, 2);

String inputString = ""; // string for input data

boolean stringComplete = false; // indicates full string

void setup() {

 Serial.begin(9600);

 lcd.begin(16, 2);

 lcd.print("Read Processing:"); // display message on LCD

 inputString.reserve(16); // reserve 16 bytes for inputString

}

void loop() {

 if (stringComplete) {

 lcd.setCursor(0, 1);

 lcd.print(inputString);

 inputString = "";

 stringComplete = false;

 }

}

void serialEvent() {

 while (Serial.available()) {

 inputString = Serial.readStringUntil(’\n’);

 stringComplete = true;

 }

}

The above code uses the LCD shield to display the message read from the serial interface.

Appendix 1 – Using the Processing IDE

108

Fig.A1.5. Example of reading a character string sent by Processing using the serial interface)

In Processing we’ll create a simple interface, with a single button.

Fig.A1.6. The minimal Graphical Interface in Processing with a single button

Example 3 - Code for Processing:

import processing.serial.*;

int rectX, rectY;

int rWidth = 120;

Appendix 1 – Using the Processing IDE

109

int rHeight = 40;

color rectColor;

color rectHighlight;

boolean rectOver = false;

int c = 0;

Serial myPort;

void setup() {

 size(600, 400); // window size

 rectColor = color(0); // initial color of the button

 rectHighlight = color(51); // color of the button on mouse

 //hover

 // button position

 rectX = width/2-rWidth-10;

 rectY = height/2-rWidth/2;

 printArray(Serial.list());

 myPort = new Serial(this, Serial.list()[Serial.list().length-

 1], 9600);

}

void draw() {

 update(mouseX, mouseY); // for changing the button color

 // when mouse is over it

 // change the color of the button

 if (rectOver) {

 fill(rectHighlight);

 }

 else {

 fill(rectColor);

 }

 // draw the contour of the button

 stroke(255);

 rect(rectX, rectY, rWidth, rHeight);

 fill(255);

 text("SEND", rectX + rHeight + 5, rectY + rHeight/2 + 5);

}

void update(int x, int y) {

 rectOver = overRect(rectX, rectY, rWidth, rHeight);

}

// action when the mouse button is pressed

void mousePressed() {

 if (rectOver) {

 myPort.write("hello"+c);

 c++;

Appendix 1 – Using the Processing IDE

110

 }

}

// returns true if the mouse is above the button

boolean overRect(int x, int y, int width, int height) {

 if (mouseX >= x && mouseX <= x+width &&

 mouseY >= y && mouseY <= y+height) {

 return true;

 }

 else {

 return false;

 }

}

Individual work:

1. Run the examples in this lab work.

2. Change example 2 to reset the graph once the the end of the screen is reached.

3. Optional, instead of 2: change example 2 so that the graph will scroll continuously towards

the left when it becomes full.

4. Add the temperature graph text information. Use the function text (text_to_display, x, y),

where x is the horizontal coordinate, and y the vertical coordinate. Display the text

information at a time interval that will ensure the texts will not overlap.

5. Change Example 3 (Arduino and Processing code) in order to control the state of some

LEDs from the graphical user interface. Connect to Arduino a LED module. In Processing,

add four buttons to the graphical interface. When pressing a button in the Processing

program, the state of the corresponding LED connected to Arduino will change.

6. Use the “keyboard” functions of Processing to read keys. Display the pressed key in the

Processing console, but also on the Arduino LCD.

References:

1.https://www.arduino.cc/en/Reference/AnalogRead

2.https://www.arduino.cc/en/Reference/AnalogReference

3.https://processing.org/

4.https://processing.org/examples/keyboard.html

https://www.arduino.cc/en/Reference/AnalogRead
https://www.arduino.cc/en/Reference/AnalogReference
https://processing.org/
https://processing.org/examples/keyboard.html

Appendix 2 – Robotic Operating System (ROS) and Arduino

111

Appendix 2 - Robotic Operating System (ROS) and Arduino

 What is ROS and where can we use it

 ROS is not an actual operating system, but a collection of software development

frameworks designed with an architecture for inter-process / inter-machine communication.

This robotics middleware has a programming language and hardware independent

architecture which provides services such as hardware abstraction, low level device control,

message passing between processes, package management and others. ROS is not designed to

replace an actual operating system but work beside it. Mainly due to the fact that ROS uses a

lot of open source libraries the best software support is available for Linux based systems.

 The robotic operating system can be used in applications where distributing computing,

reuse and rapid testing are required. For example, in a distributed computing application

many different robots can rely on software that runs on different computers and spans on

different processes. ROS is a good option when one wants to reuse code that runs on a robot,

for example, functions regarding mapping or path planning.

Organization in ROS

The ROS file system is organized at two levels:

▪ Packages

They are the lowest level of organization and are intended for a single functionality.

There is also a file, called a manifest, that is responsible for two things: first it

contains the description of the package and then it defines dependencies between

packages.

▪ Stack

These are collections of packages forming higher level libraries. There is a manifest

file in the stack as well, having the same purpose as the one for packages

ROS communication platform

ROS nodes are responsible for specific computations. They represent processes distributed

across a ROS network that can give or get data from the network. Some examples of tasks

that can be performed by nodes are:

▪ Control robot wheels

▪ Acquire images from camera

▪ Provide graphical visualization of the system

ROS core is composed by three programs that are necessary for the ROS runtime:

1. ROS master

The ROS master is the core node of ROS and behaves like a DNS server. The ROS

master is a centralized RPC server that negotiates communication connections and

registers and looks up names for ROS graph resources.

It stores topics and services registration information for ROS nodes and makes

callbacks to nodes when registration information changes. This master node also

allows nodes to dynamically make connections as new nodes are run.

2. Parameter Server

Appendix 2 – Robotic Operating System (ROS) and Arduino

112

It runs in the ROS master and it is responsible for storing persistent configuration

parameters and other arbitrary data. While the core is running, data is stored in the

parameter server. This server is not designed for high performance and hence it is

better suited for configuration parameters. ROS naming convention prevents data

conflicts (by using namespaces).

3. Rosout

It is basically a network based standard out for human readable messages.

Fig.A2.1. Communication in ROS

Messages

Nodes communicate with each other by passing messages which are a data structure

consisting of a type field. Messages can be routed either by using topics or by using services.

Standard or primitive data types supported are: int, float, array[], etc.

Topics and services

Topics and services are methods of communication among nodes. Services rely on a query

made from the terminal or by a node, retrieving the response that is provided by another node

that is offering the service. Topics require a subscription to a node which will broadcast the

information. Another difference between topics and services is that topics are asynchronous

communication streams with multiple sources and destinations, while services are

synchronous single-source communication functions with multiple destinations.

Fig.A2.2. Services and Topics in ROS

Picture after the image provided in ROS Tutorial book, Robotics Operating System, Antonio

Marin-Hernandez, October 31, 2014

Get parameter (a)

Talker Listener

ROS master
Set parameter (a)

a

Node Node Service

Topic

Node

Node

Node

Node

Appendix 2 – Robotic Operating System (ROS) and Arduino

113

The publish subscribe model is a flexible paradigm where publishers and subscribers are

generally unaware of each others existance. A single node may publish and subscribe to

multiple topics. A node sends out a message by publishing it to a specific topic and a node

that needs a specific type of data must subscribe to an appropriate topic. The topic type is

defined by the message types that the nodes publish on it. For the publish – subscriber

“game” there is no order of execution required.

 Services can not use the publish – subscribe paradigm. They implement a request reply

functionality (by using a pair of message structures i.e. one for request and one for reply). In

general, there is a node provider which offers a service under a specific name. The client

node consumes the service by sending a request message and awaits the reply.

 In the following examples we will see three simple examples of programs using rosserial.

The version of ROS used was ROS Indigo Igloo (Indigo Igloo is the 8th official ROS

release). The microcontroller used was an atmega 2560. The setup for the IDE will not be

discussed since it can be found on the Internet.

 ROS environment quick setup guide

 To set up the ROS environment either refer to the official ROS website and follow the

step by step instructions or use a virtual machine with ROS preinstalled. We will use the

preinstalled ROS indigo version but we encourage the reader to also check the step by step

guide and explore even newer versions of the ROS framework.

 The link to the 32 and 64 bits VMs is given in reference number 7. The hypervisor we

have used is Virtual Box. For this hypervisor it is essential to download and install the

extension pack for the specific hypervisor version you use, so that the USB ports will also be

visible and available inside the virtual machine.

 Once VirtualBox is installed you need to make a few changes inside the virtual machine.

Click the settings button and navigate to the USB section. Check the check box “Enable USB

controller” and the check box “Enable USB 2.0 (EHCI) Controller”.

 An important step that has to be done if the host computer is also using Linux is to add

virtual box users to the host machine user group. This can be done using the command:

sudo adduser $USER vboxusers

To see whether the Arduino board is recognized by the host machine (under linux) open a

terminal and type lsusb. If the board is recognized you will see an entry with the name of the

Arduino board.

Fig.A2.3. USB port connected to the Arduino board

After the check boxes have been validated, the virtual box users are in the same group as the

host machine users and the Arduino board is recognized by the host computer, add a new

Appendix 2 – Robotic Operating System (ROS) and Arduino

114

USB filter with all the fields set to the values of the selected USB device attached to the host

PC. The steps mentioned above are depicted graphically in the figure below:

Fig.A2.4. Steps for visualizing the Arduino board in the ROS virtual machine

 Now, you can start the virtual machine by pressing the green arrow start. The default user

name and password is “viki”.

 After opening the virtual machine you need to install the Arduino IDE. Using the

rosserial_arduino package you can use ROS with Arduino. This package works over the

Arduino UART and it provides the a ROS communication considering Arduino a ROS node,

which can have the same functionality as any other ROS node. As any library the ros_lib has

to be copied into the Arduino libraries to be visible in the Arduino IDE.

To install the library on the ROS VM you need to use the following instructions:

sudo apt-get install ros-indigo-rosserial-arduino

sudo apt-get install ros-indigo-rosserial

This step creates the ros_lib which has to be copied into the Arduino build environment. You

have to delete libraries/ros_lib in order to regenerate as its existence causes an error. The

sketchbook is the directory where the Linux Arduino saves the sketches.

cd <sketchbook>/libraries

rm -rf ros_lib

rosrun rosserial_arduino make_libraries.py .

After these steps the ros_lib should appear in the examples section of the Arduino IDE.

Example 1: Publisher

In this program we will create a publisher on an atmega 2560 microcontroller and we will

show the messages that the AVR sends to a topic in a console window. For this first example

we will need an Arduino board and a USB cable to connect the board to the computer on

which ROS is installed.

Appendix 2 – Robotic Operating System (ROS) and Arduino

115

Fig.A2.5. Arduino board and USB cable

//In order to use the rosserial libraries in your own code you

//must first put ros.h heading

//prior to any other header file.

#include <ros.h>

#include <std_msgs/String.h>

//we need to instantiate the node handle, which allows our

//program to create publishers

// and subscribers. The node handle also takes care of serial

//port communications

ros::NodeHandle nodeHandle;

std_msgs::String msg;

//We need to instantiate the publishers and subscribers that

//we will be using.

//Here we instantiate a Publisher with a topic name of "

//warning ". The second

//parameter to Publisher is a reference to the message

//instance to be used.

ros::Publisher pub(“warning”, &msg);

char warning[26] = “This is your last warning!";

void setup() {

 //you then need to initialize your ROS node handle

 nodeHandle.initNode();

 // advertise any topics being published

 nodeHandle.advertise(pub);

}

void loop()

{

 //the node publishes the message "This is your last

 //warning!"

 msg.data= warning;

Appendix 2 – Robotic Operating System (ROS) and Arduino

116

 pub.publish(&msg);

 //we call the spinOnce() function where all of the ROS

 //communication callbacks are handled

 nodeHandle.spinOnce();

 delay(1000);

}

In the first two lines we include the important headers that we are going to use in our

program. The ros.h header must always be the first line. After this we will create our node

handler. With this handler we will create publishers and subscribers to our node.

(ros::NodeHandlenodeHandle). Next we create a publisher with a topic name of “warning”.

In the setup part we will advertise the topic we want to publish. The initNode initializes the

node handle. In the loop function the publisher publishes his message. On our Ubuntu

machine we launch 3 terminals. In the first terminal we start the roscore with the command

roscore. Next we run the rosserial client that forwards the messages to the rest of ROS

nodes. And finally we show the message published to the topic with the command rostopic

echo warning.

Fig.A2.6. Running the roscore command in the linux terminal

Fig.A2.7. Instruction for running a ROS client in linux

Appendix 2 – Robotic Operating System (ROS) and Arduino

117

Fig.A2.8. Displaying the message from a topic

Example 2: Subscriber

In the subscriber example we will make a simple subscriber example which will toggle a led

each time it will receive a message from a publisher. This example can also be found on the

official Arduino ROS website and in the examples of the ros_lib Arduino library.

#include <ros.h>

#include <std_msgs/Empty.h>

ros::NodeHandle nh;

//We create the callback function for our subscriber. The call

//back function must take a

//constant reference of a message as its argument. In our

//callback callbackFunction,

//the type of message is std_msgs::Empty and the message name

//will be toggle_msg.

void callbackFunction(const std_msgs::Empty& toggle_msg)

{

 digitalWrite(13, HIGH-digitalRead(13));

}

//Here we instantiate a Subscriber with a topic name of

//"interchange " and type

//std_msgs::Empty. With Subscribers, you must remember to

//template the subscriber

//upon the message. Its two arguments are the topic it will be

//subscribing to and the

//callback function it will be using.

ros::Subscriber<std_msgs::Empty> sub(“interchange”,

&callbackFunction);

void setup()

{

 pinMode(13, OUTPUT);

Appendix 2 – Robotic Operating System (ROS) and Arduino

118

 nh.initNode();

 //we subscribe to the topics we wish to listen to

 nh.subscribe(sub);

}

void loop()

{

 nh.spinOnce();

 delay(1);

}

A callback function is a function that is passed as an argument to another function. This

function will be automatically called when an event is triggered. This function can be called

from a low level software layer. The call back function must take a constant reference of a

message as its argument.

Fig.A2.9. Commands and result used in the subscriber example

Example 3: Publisher IR

In the last example we will attach a sharp IR distance sensor to our microcontroller and plot a

graph corresponding to the range using rqt_plot. For this project we will need a sharp IR

sensor, an Arduino board and an USB cable. This is a modified version of the usage example

of IR sensor from the ros_lib examples.

Fig.A2.10. Arduino board and IR distance sensor used in the publisher example

Appendix 2 – Robotic Operating System (ROS) and Arduino

119

//the code begins by including the appropriate message headers

and ros.h

//from the rosserial library and then instantiating the

publisher

#include <ros.h>

#include <ros/time.h>

#include <sensor_msgs/Range.h>

ros::NodeHandle node;

sensor_msgs::Range msg;

ros::Publisher pub_range(“Sharp", &range_msg);

const int analog_pin = 0;

unsigned long range_timer;

//we write a function that gets the distance from a Sharp

//sensor connected to an analog

//pin pin_num and then filters it, by making an average over

//the acquired number

//of measurements

float getRange(int pin_num)

{

 int count = 10;

 int sum = 0;

 for (int i = 0; i<count; i++)

 {

 float volts = analogRead(pin_num) * ((float) 5 /

1024);

 float distance = 65 * pow(volts, -1.10);

 sum = sum + distance;

 delay(5);

 }

 sum = (int) (sum/count);

 return (sum -1)/100;

}

//a global variable for the sensors frame id string. It is

//important to make this string

//global so it will be alive for as long as the message will

//be in use.

char frameid[] = "/ir_ranger";

void setup()

{

 //we initialize the node handle

 node.initNode();

 node.advertise(pub_range);

 //we fill in the message fields

 range_msg.radiation_type = sensor_msgs::Range::INFRARED;

 range_msg.header.frame_id = frameid;

 //sensor specification data

 range_msg.field_of_view = 0.8;

 range_msg.min_range = 1;

Appendix 2 – Robotic Operating System (ROS) and Arduino

120

 range_msg.max_range = 8;

}

void loop()

{

 //we publish the readings every 50 ms

 if ((millis()-range_timer) > 50)

 {

 range_msg.range = getRange(analog_pin);

 range_msg.header.stamp = node.now();

 pub_range.publish(&range_msg);

 range_timer = millis();

 }

 node.spinOnce();

}

The application is run as in the previous examples:

1. roscore

2. rosrun rosserial_python serial_node.py _port:=/dev/ttyACM0

We plot the data that we receive using the function rqt_plot:

rqt_plot Sharp/rang

In case there is no object in the sensors range the value from the sensor fluctuates very much

whereas if there is an object we get a smooth value in a range 0 and 1(the value we receive

from the sensor has been scaled). We have varied the distance to the sharp sensor, obtaining

the plot bellow.

Fig.A2.11. Graph ploted using the data from the IR sensor

Appendix 2 – Robotic Operating System (ROS) and Arduino

121

Individual Work

1. Test and run the examples provided

2. For more examples regarding the ROS library reffer to http://wiki.ros.org/ROS/Tutorials

3. Implement an intruder detection system by processing the information from the IR distance

sensor. The detector should be activated and de-activated from a publisher, and should

publish an alarm message when the intruder is detected.

Bibliography:

1. JasonM. O’Kane, “A Gentle Introduction to ROS”

2. Jonathan Bohren, “ROS Crash-Course (Part I) “, The Johns Hopkins University

3. Murilo Fernandes Martins, “PhD”, Department of Electrical Engineering, FEI University

Centre

4. Action and Perception (RAP) Group, “Robotics Operation System”, Universidad

Veracruzana, Research Center on Artificial Intelligence LAAS-CNRSRobotics

5. “ROS 0-60A Comprehensive tutorial ofthe Robot Operating System”

6.http://wiki.ros.org/

7.https://nootrix.com/downloads/?fbclid=IwAR18YLs05vOQ5OG4DZcDIMK5oSDASWb1

BtGlfhanjlKwICXBOaL3KGGt8p4#RosVM

8.http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/
https://nootrix.com/downloads/?fbclid=IwAR18YLs05vOQ5OG4DZcDIMK5oSDASWb1BtGlfhanjlKwICXBOaL3KGGt8p4#RosVM
https://nootrix.com/downloads/?fbclid=IwAR18YLs05vOQ5OG4DZcDIMK5oSDASWb1BtGlfhanjlKwICXBOaL3KGGt8p4#RosVM
http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup

122

	Design with Microprocessors

	TABLE OF CONTENTS
	Introduction
	I. Laboratory 1 – Introduction to the Arduino boards
	II. Laboratory 2 – Applications with simple I/O modules
	III. Laboratory 3 – Working with the LCD shield and the interrupt system
	IV. Laboratory 4 – Usage of timers
	V. Laboratory 5 – Communication Interfaces
	VI. Laboratory 6 - Working with the AVR Assembly language
	VII. Laboratory 7 – Analog signals processing
	VIII. Laboratory 8 - Arduino and WiFi - IoT applications
	IX. Laboratory 9 - Use of DC motors and servo motors. The experimental robot

