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Preface

This book is intended to highlight the fact that the path towards

fully autonomous driving is becoming a huge struggle in the research

communities, especially due to the limitation of sensors in perceiving

the outside environment of the vehicle, but also due to the challenging

and constant changing driving, environmental and weather conditions.

The book is based on the research I have started during my PhD thesis

[1] and continued throughout the years.

For being able to write this book I would like to offer special thanks,

all my gratitude and love to my wife and daughter for their constant

patience, trust and support. I would like to express my gratitude to

my PhD adviser, Professor Dr. Eng. Sergiu Nedevschi. His guidance

and constant push towards achieving the best possible results during

these past years were very inspiring. His patience and objective opin-

ions had an important role in fulfilling and improving the scientific

contributions of this book. Special thanks go to my colleagues from

the Image Processing and Pattern Recognition Group for their support

and good advices. Being part of such a renowned research group is an

important opportunity in one’s academic carrier. Last but not least,

my thanks go towards Professor Dr. Math. Ioan Radu Peter for his

contributions to some of the mathematical aspects related to my PhD

thesis and also this book.

The book is structured in five chapters. The first chapter consists in

a brief introduction of the autonomous driving aspects and challenges.

The second part introduces the fog meteorological phenomenon and

presents why this phenomenon is dangerous for driving scenarios to-
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Preface

gether with the effects of fog on vision systems. Image based fog detec-

tion techniques are described in chapter 3 with an overview of the fog

categories present in traffic scenes. The next chapter deals with con-

trast restoration of fog degraded images or image defogging. The state

of the art methods are presented together with our assessment and

contributions to foggy image enhancement. Furthermore, we present

an embedded solution for image defogging, suitable for advanced driv-

ing assistance and autonomous driving. The last chapter presents the

conclusions and further discussions for achieving autonomous vehicle

navigation in fog conditions.

I wish you a pleasant reading!
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Chapter 1

Introduction

The future trend in the vehicle manufacturing industry is to build

fully autonomous vehicles, i.e. vehicles capable of driving by them-

selves on the road, with no human intervention. This trend has started

more than a decade ago with the introduction, inside the vehicle, of

several sensors, systems and different functions not only for increasing

road safety and for helping with the driving process, but also to intro-

duce comfort inside the vehicle. These functions are grouped in sev-

eral categories: passive safety sensors and systems (seat belts, airbags

and airbag control units, pedestrian protection), active safety systems

(anti-lock braking system – ABS, traction control system – TCS, elec-

tronic stability program – ESP R©) and driver assistance systems.

The driving assistance functions that are deployed today in modern

vehicles, are designed based on the information provided by different

sensors, such as: radars, ultrasound sensors, monocular and stereo

cameras, laser scanners, etc. The driving safety systems can be fur-

ther grouped in two main classes: systems that monitor the inside

environment of a vehicle with a focus on the driver and his attention

to the road and traffic conditions (driver behavior monitoring, driver

fatigue detection systems, etc.) and systems that monitor the outside

traffic environment and try to provide a degree of comfort and safety

for the driving process (automatic cruise control – ACC, intelligent

headlight control, parking aid and park assist, blind spot assist, rear

7



CHAPTER 1. INTRODUCTION

Figure 1.1: Sensors and the functions they will be used for in future
autonomous vehicles [2]

view systems, lane assist and lane departure warning, collision avoid-

ance, predictive pedestrian protection, automatic emergency braking,

traffic jam assistance, etc.). Since in the future there will be no driver

inside the vehicle, the industry focuses heavily on understanding and

monitoring the whole 360◦area surrounding the vehicle. The future

placement of the sensors for achieving this task is depicted in figure

1.1.

According to the World Health Organization [3] road injuries have

become the 9th cause of death in the world in 2009. It was estimated

that 1 million people died in road accidents in 2000, while in 2012 this

figure rose to 1.3 million people, that is a 30% growth in twelve years.

This number has not changed in the recent years. Moreover, up to 50

million people are injured every year due to numerous accidents. Every

day nearly 3500 people die in car accidents, with 600 people more than

in 2000. If this trend continues, it is highly likely that road accidents

will become the 7th cause of death in the world by 2030.

A detailed classification of the causes of road accidents is presented

in [4]. Poor or bad driving behavior is the cause of about 90% of road

accidents (distracted driving, speeding, drunk driving, reckless driving,

running red lights, running stop signs, teenage drivers, night driving,

unsafe lane changes, wrong-way driving, improper turns, tailgating,

8



CHAPTER 1. INTRODUCTION

driving under the influence of drugs, road rage, drowsy driving, deadly

curves, street racing). Other causes of traffic accidents are related

to weather conditions (rain, ice, snow and fog), defects of the road

surface or vehicles (potholes, tire blowouts, design defects) or stray

animals (animals crossing the road). This great variety of causes for

traffic accident, together with the wide range and complexity of traffic

scenarios rises the need of new and improved automotive safety sys-

tems and advanced driving assistance applications that are capable to

address all these difficult situations.

The aim of the automotive industry today is to prevent traffic acci-

dents, to diminish the costs of such accidents and in the end to develop

fully autonomous vehicles that are capable of driving in any scenar-

ios. Another important aspect to consider is the comfort provided by

an autonomous vehicle, i.e. the traffic participants can relax, read, or

work during their journey with no stress induced by the traffic condi-

tions.

The five levels of Autonomous Driving.

• Level 0 – No Automation. The driver is in full control of the ve-

hicle, even if there exist several warning or intervention systems.

• Level 1 – Driver Assistance. There exist one or more driving as-

sistance functions or modes that can provide assistance (in cer-

tain scenarios) for steering or acceleration / deceleration based

on information about the driving environment. The driver must

perform all other aspects of the driving task.

• Level 2 – Partial Automation. Both steering and acceleration /

deceleration can be performed by a driving assistance system in

certain scenarios. The driver must perform all other aspects of

the driving task.

• Level 3 – Conditional Automation. The driving task is performed

by an Autonomous Driving System. The human driver is not

9



CHAPTER 1. INTRODUCTION

Figure 1.2: The 5 stages of vehicle’s autonomy [5]

required to monitor the driving environment, but is expected to

respond promptly at a request to intervene.

• Level 4 – High Automation. The driving task is performed by

an Autonomous Driving System in all aspects, even if the human

driver does not rapidly respond at a request.

• Level 5 – Full Automation. The full-time driving task is per-

formed by an Automated Driving System under all roadway, en-

vironment and weather conditions, that can be managed by a

human driver.

In the reminder of this book we present some aspects and systems

based on monocular and stereo cameras used in driving assistance ap-

plications in adverse weather conditions. An important part of com-

puter vision is the environment perception and scene understanding.

This perception can suffer in the case of different or challenging illu-

mination scenarios and can affect the quality of the observed scene

in images. Traditional camera functions like automatic exposure and

gain control are slow and do not cope well with the variety of lighting

conditions changes when the camera (vehicle) is moving on the road,

or in adverse weather conditions. In order for computer vision algo-

rithms to be able to perform at high standards, the captured images

must provide a high quality of the observed scene; the objects and

artifacts must be clearly visible. Since the quality of the acquired im-
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CHAPTER 1. INTRODUCTION

ages depends on many external factors, such as weather (sun, clouds,

rain, snow, fog, mist) and lighting conditions changes (entering and go-

ing out of tunnels, shadows from trees or buildings, cars headlights) a

methodology to obtain good quality images must be defined. The high

dynamic range of the imaging sensor and the provided image resolution

are also important factors to consider since the performance capability

of a computer inside the vehicle or of a vision embedded system are

limited. If the acquired images are poor all the other image processing

functions will not perform well (3D reconstruction, lane detection and

identification, obstacle detection and classification, semantic segmen-

tation, etc.).

Weather conditions that also affect the image acquisition pipeline,

such as fog, haze or mist, are very dangerous for driving. In these

situations not only the visibility distance of the driver is greatly di-

minished, but also the image presents artifacts that induce noise in the

scene reconstruction and object recognition processes. Fog is one of the

most deadly weather phenomena for driving; a lot of fatalities happen

in chain reaction accidents, because drivers tend to overestimate the

visibility distance while traveling in fog conditions and drive with ex-

cessive speeds [6]. Fog produces accidents because a driver cannot see

as far ahead. The presence of fog affects our perceptual judgment of

speed and distance [7]. Humans tend to observe objects and perceive

the distance to objects in the scene not by their absolute brightness or

darkness, but based on their difference between the object’s brightness

and the background. This distinction between foreground objects and

background is hard in fog conditions, because objects become fainter

as fog density increases. Furthermore, the scattering effect of the fog

makes people perceive objects which are low contrasted and indistinct

as being farther away; humans judge the motion of objects to be slower

than their real velocity. In extreme fog conditions humans are inca-

pable to distinguish between motion and motion-less objects. So an

important factor to be considered by advanced driving assistance sys-

tems and autonomous vehicles is this dangerous weather phenomenon.

The images captured in fog conditions have degraded contrast, that

11



CHAPTER 1. INTRODUCTION

makes current image processing applications sensitive and error prone

[1]. First one has to identify the fog situation, i.e. to detect the fog

in the acquired images, then to estimate the visibility distance. For

performing some reasoning or for understanding the scene in which the

car is driving a contrast restoration procedure is suitable to be applied

on the foggy image in order to obtain a fog free representation of the

driving environment and to ensure that the image based perception

functions work well in all situations. In driving assistance applications,

the driver has to be informed about the fog scenario and advised about

the maximum recommended speed in the given situation. In both

driving assistance and autonomous driving, the effort of providing high

quality reasoning in fog conditions is present throughout the whole

image processing pipeline, from image acquisition to object detection

and classification, lane identification, semantic scene understanding,

and so on.
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Chapter 2

Fog Meteorological

Phenomenon

In this chapter we introduce the reader with the causes that lead to

the formation of the fog meteorological phenomena: how is it formed

and in what conditions. Then we briefly present why fog is one of

the most dangerous weather phenomena for driving. Since the acci-

dents that happen in fog conditions leave a lot of casualties and ma-

terial damages, the research community in intelligent transportation

systems has given a lot of attention for assisting the drivers in fog

conditions. Additionally, we also introduce in this chapter the effects

of this meteorological phenomenon in images, how it can be modeled

mathematically and what are the particularities that can be exploited,

by knowing the position and orientation of the camera in the vehicle

environment.

2.1 Fog Meteorological Phenomenon

In some cases, when the environment’s temperature is below the

dew point, it is relatively cold and humid outside, the meteorological

phenomenon that forms is called fog. The dew point is the temperature

at which the air becomes saturated, it condenses into water droplets,

which humans perceive as fog. Fog is actually a cloud formed or lying

13



CHAPTER 2. FOG METEOROLOGICAL PHENOMENON

Figure 2.1: Example of images taken in different fog conditions

on the ground surface and is associated with a visibility distance less

than 1000 meters. According to [8], in order for fog to appear in the

atmosphere, there are two atmospheric criteria that must be met. The

first one is humidity, i.e. the amount of water vapors present in the

atmosphere must be high. If the air is very dry it is highly unlikely

that fog is present. This is one of the reasons why fog forms after a

rain or during rainy periods of time. The second one is the fact that

the air mass must be almost saturated with respect to its humidity and

temperature [8]. Only when saturated, water vapors change their form

into liquid water droplets that comprise the fog as seen by the human

eye. These droplets are very small in diameter; their size is from 1 to

20 µm. This is why fog and clouds are suspended in the air. But when

there exist a slight warming of the air or the air is mixed with dryer

air, the liquid water droplets will return very fast to vapor state and

fog will quickly dissipate. This is why fog disappears quickly in the

mornings when the sun raises on the sky or when there is a change in

atmospheric pressure and the airs start to move (forming mild winds).

The human’s visibility distance is the factor that distinguishes fog

from other similar meteorological phenomena, such as haze or mist.

Fog reduces visibility to less than 1000 meters, whereas the visibility in

case of mist is between 1000 to 5000 meters. Some examples of images

14



CHAPTER 2. FOG METEOROLOGICAL PHENOMENON

captured in different fog situations are presented in figure 2.1. The first

two images present fog that appears in driving scenarios (urban and

highway scenario, respectively). The next two images present foggy

images captured during the winter season (ice fog and freezing fog).

Fog can be classified according to the mechanisms that lead to its

formation [9], but several condensation mechanisms may simultane-

ously occur in the fog formation process. In the following we present

the various types of fog and where and when are they formed.

Radiation Fog

Radiation fog is a type of fog that forms mainly during the nights

with calm winds and clear skies. The heat that is absorbed by the sur-

face of the earth during daytime, is radiated into space. The radiation

fog may vary in depth from 1 meter to 300 meters. This type of fog is is

stationary and is always formed at ground level. It can reduce a driver’s

visibility to near 0 meters as the density of water droplets present in

the air increases, thus making it very difficult for driving. Radiation

fog is mostly formed during autumn and early winter months, in cities

and in rural and suburban zones. In cities is rather shallow, because

a city produces and retains heat much better than more open spaces

or vegetated suburbs, and thus it dissipates faster. But it can get very

dense in surrounding rural and suburban zones, making driving and

autonomous driving very hazardous.

Figure 2.2: Radiation Fog [10]
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CHAPTER 2. FOG METEOROLOGICAL PHENOMENON

Advection Fog

Advection fog forms due to the horizontal movement of air that is

warmer and more moist over a colder ground surface. The difference

from radiation fog is that advection fog can form even when there are

winds and cloudy skies. Fogs formed at see level are an example of

advection fogs. Advection fog may also form when warm maritime

air drifts over a colder mainland area. The warmer air will be cooled

due to the influence of the colder ground surface. When this air cools

the temperature drops towards the dew point. If the relative humidity

of air reaches 100%, the condensation of water droplets will produce

fog. After forming, this kind of fog can be very persistent because the

weather situation that forms it can last for a longer periods of time,

even up to one day or more.

Figure 2.3: Advection Fog [10]

Precipitation Fog

Precipitation fog forms during rains through colder air and light

winds, when warm raindrops reach the ground and then evaporate into

a cooler drier layer of air near the ground. When enough rain drops

have evaporated into the layer of cool surface, the relative humidity of

this air reaches 100% and fog forms.

Up-slope or Hill Fog

Up-slope fog forms when the air moving in hilly terrain cools to

condensation. A light wind can push warm air up a hill to a level where

16



CHAPTER 2. FOG METEOROLOGICAL PHENOMENON

Figure 2.4: Precipitation Fog [10]

the air becomes saturated and condenses. This type of fog usually

covers large areas.

Figure 2.5: Up-slope Fog [10]

Valley Fog

Valley fog forms especially during the winter in mountain valleys.

The formed fog is similar to the radiation fog, but limited by local

topography. It can last for several days if the atmospheric conditions

do not change. When the air at higher elevations cools down, this

cold air drains down into the valley and thus deep fog forms inside

the valley. This form of fog is also called Tule fog (in California is the

leading cause of accidents caused by weather phenomenons).

Evaporation Fog or Steam Fog

Evaporation Fog or Steam Fog forms when a large quantity of water

17
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Figure 2.6: Valley Fog [10]

vapor evaporates and mixes with cooler and drier air. There are two

types of evaporation fog: steam fog and frontal fog. Steam fog forms

when cold air moves over warm water, usually over lakes in the autumn

season. When the cool air mixes with the warm moist air over the

water, the moist air cools until its relative humidity reaches 100% and

fog forms. This type of fog takes on the appearance of wisps of smoke

rising off the surface of the water. Steam fog does not become very

dense. Frontal fog forms when warm raindrops evaporate into a cooler

drier layer of air near the ground. Once enough rain has evaporated

into the layer of cool surface, the humidity of this air reaches saturation

and fog forms. An example is the steam evaporating from the top of a

forest after a heavy rain fall.

Figure 2.7: Evaporation Fog [10]

18



CHAPTER 2. FOG METEOROLOGICAL PHENOMENON

Ice Fog

Ice fog forms in cold areas (polar and arctic) when the temperature

is well below freezing temperature. Generally this kind of fog requires

temperatures between −10◦ C to −35◦ C. It consists entirely of very

small ice crystals that are suspended in the air.

Freezing Fog

Freezing fog usually occurs at mountain tops that are exposed to

low clouds, when the water droplets are supercooled. These droplets

remain in the liquid state until they come into contact with an object’s

surface upon which they can freeze. As a result, any object the freezing

fog comes into contact with will become coated with ice. The same

thing happens with freezing rain or drizzle.

The most important type of fog present in driving situations is the

radiation fog. As a precaution drivers should always slow down and pay

more attention to the road when traveling in fog. Even autonomous

vehicles should take different measures or behave differently (on an

algorithmic level) when driving in fog conditions. Fog affects a drivers

perception in four ways [4]:

1. Fog distorts a driver’s perception of speed. Due to the lowered

contrast present in the atmosphere, humans might think that an

object is traveling slower than its real velocity. This also applies

to their own vehicle’s speed, as one is not able to correctly judge

his own speed based on the surroundings. Sometimes one cannot

even see the surroundings! This is also true for image processing

task. In heavy fog conditions the speed of detected objects is

estimated wrong.

2. People have a hard time distinguishing between a stationary ob-

ject and a moving one. More specifically, people have difficulties

determining between parked cars and driving cars (both up com-

ing and on going traffic). This easily results in a traffic accident.

19
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3. People misjudge distance when driving in fog conditions. Hu-

mans instinctively judge that blurry objects are further away

than clear ones. With fog reducing contrast and clouding the

viewpoint, humans are more likely to misjudge just how far away

another car or stationary object is, making car accidents far more

likely. This is also true for a stereo vision system. In fog condi-

tions the distance to an object is erroneously reported as being

bigger than in normal conditions.

4. Faulty logic in fog conditions can increase the driving hazard.

When driving at night in fog conditions some people use their

high beams. Instead of increasing visibility, like one would ex-

pect, using the high beams will only make the situation more

difficult, because more light will be scattered back to the driver.

This will make driving conditions even worse.

When driving in fog conditions drivers must always use the low

beams and the fog lamps (if their vehicle is equipped with fog lamps).

The vehicle must proceed at a lower speed, even slower than the speed

limit. By slowing down the vehicle, one allows an increase in the

distance between the ego vehicle and the vehicles in front that could

not be seen due to the fog’s thickness. The high beams are never to

be used in fog situations, because a large amount of light from the

headlights will be back scattered by the fog droplets and back into the

driver’s eyes or into the cameras. This will reduce visibility even more

and make it much more difficult to see or detect the objects on the

road in front of the vehicle and along the side of the road.

2.2 The Effects of Fog on Vision

In day time fog scenarios the visible light, having a wavelength be-

tween 390 and 700 nanometers [11], must travel through the fog cloud

in order to reach a human observer or a camera system. During its

trajectory the light particles are attenuated by the large number of

water droplets that form the fog cloud. This results in an absorption
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and diffusion phenomena that is characteristic for the fog meteorolog-

ical phenomenon. In reality, the absorption phenomenon is negligible

in this type of aerosol [12], so only the diffusion phenomenon is pre-

dominant in fog situations. The diffusion or multiple scattering of the

light is a physical process where light deviates from its original straight

trajectory by one or more paths due to some localized non-uniformities

in the medium through which the light particles travel. This deviation

also includes the deviation of the reflected light from the angle pre-

dicted by the laws of reflection. In our situation the scattering effect is

caused by the large amount of water droplets present in the fog cloud.

Figure 2.8: The effects of the daylight scattering on fog or haze illu-
mination. The light coming directly from the sun and scattered by
atmospheric particles (water droplets) toward the vehicle’s camera is
the air light (A). The light coming from the object (R) is attenuated
by the same particles along the line of sight and is perceived as direct
transmission T .

Figure 2.8 illustrates the scattering effect in fog or haze conditions.

When observing an object (blue car) through fog the light that comes

from that object, i.e. the object’s radiance (R), is attenuated by the

the water droplets that form the fog cloud along the line of sight and

is perceived as direct transmission (T ). The light coming from the sun

is scattered, by the same water droplets when entering the fog cloud,
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and is perceived as air light (A) at the observing vehicle. The direct

transmission decreases with the distance, while the air light increases

with the distance between the object and the observer.

2.2.1 Koschmieder’s Law

In 1924, Koschmieder [13] studied the attenuation of luminance

through the atmosphere and proposed a relationship between the at-

tenuation of an object’s luminance L at distance d and the luminance

L0 close to the object:

L = L0 · e−βd + L∞ · (1− e−βd) (2.1)

L∞ is the atmospheric luminance and β is the extinction coefficient (the

sum of the absorption and diffusion coefficients). This equation states

that the luminance of an object seen through fog is attenuated with

an exponential factor e−βd; the atmospheric veil, or fog addendum,

obtained from daylight scattered by fog between the object and the

observer is expressed by L∞(1− e−βd).
When dealing with images, the response function of a digital camera

can be applied to the Koschmieder’s equation in order to model the

mapping from scene luminance to image intensity. Thus, the intensity

perceived in the image is the result of a function (f) applied to equation

(2.1).

I = f(L) = f(T + A) (2.2)

Since equation (2.2) represents a linear mapping and assuming that:

f(T ) = f(L0e
−βd) = f(L0)e−βd

f(A) = f(L∞(1− e−βd)) = f(L∞)(1− e−βd)
(2.3)

We obtain the following:

I = f(T ) + f(A) = Re−βd + A∞(1− e−βd) (2.4)
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where R represents the intrinsic pixel intensity of the image without fog

(object radiance in figure 2.8) and A∞ is the intensity of the sky in fog

conditions (the air light from figure 2.8). Thus, the pixel intensity of an

object seen through fog is attenuated with the distance of the object to

the camera (e−βd). The atmospheric light (A∞) also contributes to the

perceived intensity in the image. The distance d from equation (2.4)

is a function of image coordinates and the term e−βd can be regarded

as a transmission map of the medium, i.e. the proportion of light that

travels towards the camera without any scattering.

Another property of the Koschmieder’s law was derived by Duntley

[13]. By rearranging the terms of equation (2.1) we obtain the following

equation:

L− L∞ = (L0 − L∞) · (e−βd) (2.5)

By dividing equation (2.5) with L∞ one obtaines Duntley’s atenu-

ation law [13] which states that an object having the contrast C0 with

the background is perceived at distance d with contrast C:

L− L∞
L∞

=
L0 − L∞
L∞

· (e−βd) (2.6)

C = C0 · (e−βd) (2.7)

This law can be applied only in day light uniform illumination con-

ditions. From this expression the meteorological visibility distance is

defined as: “the greatest distance at which a black object, having con-

trast C0 (C0 = 1), of a suitable dimension can be seen in the sky on

the horizon [14]”. In order for an object to be barely visible, the In-

ternational Commission on Illumination [14] has adapted a threshold

for the contrast, i.e. 5%. This value was chosen because 5% is consid-

ered as the minimum visual contrast required to recognize an object

against its background. Having this constant in mind, i.e. C = 5%

and knowing that C0 = 1, one is able to solve equation (2.7).

e−βd = 0.05 (2.8)
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By solving equation (2.8) the International Commission on Illumi-

nation has defined the “meteorological visibility distance” (dvis) as:

dvis =
−1

β
· log(0.05) ' 3

β
(2.9)

Hence, the meteorological visibility is in fact a more intuitive ex-

pression of the extinction coefficient β. If we are able to estimate

the extinction coefficient in fog conditions than we can determine an

approximation of the visibility distance for those driving conditions.

2.2.2 Camera Model in the Vehicle Environment

Usually the sensors used for image based advanced driving as-

sistance systems and the front cameras for autonomous vehicles are

mounted inside the vehicle behind the windshield, near (or embedded

in) the rear view mirror. The main objectives of image processing al-

gorithms are not only to detect and classify objects and other relevant

traffic information from the observed scene but also to reliably estimate

the distance to them. In the case of a stereo vision camera sensor it is

possible to compute directly the distance to the camera of each point

in the scene. In the case of a single camera system or monocular vision

it is only possible to directly approximate the distance to a line in the

image if the world in front of the camera is considered to be flat. This

assumption is called the flat world hypothesis and is valid only for road

scenes, where a large part of an image is formed by the road surface,

which can be assumed to be planar [15]. However it is possible to infer

the optical flow (the apparent movement) in the scene and derive the

distance from the optical flow field. The approximated distance in this

later scenario is more erroneous than in the stereo vision case.

In order to understand the next sections we briefly revise the main

parameters of the pin hole camera model and its coordinate system.

Figure 2.9 presents the camera coordinate system used for the camera

calibration procedure. The camera parameters are:

• The position of a pixel in the image plane is given by its (u, v)
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Figure 2.9: Camera Coordinate System [16].

coordinates

• The position of the optical center C is given by the (u0, v0) co-

ordinates

• f represents the focal length of the camera

• the horizontal pixel size tpu

• the vertical pixel size tpv

Nowadays, cameras usually have square pixels, so the horizontal pixel

size tpu is equal to the vertical pixel size tpv, (tpu = tpv = tp), and thus

the focal lengths in the x and y direction fx and fy are also equal. A

point M = [XC , YC , ZC ]T in the coordinate system associated to the

camera system will be projected in point m = [x, y,−f ]T in the camera

coordinate system, respectively in the point [u, v]T ] in the image coor-

dinate system. Writing the projection equations of the pinhole camera
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model, one obtains:[
x

y

]
= f ·

[
XC/ZC
YC/ZC

]
= f ·

[
xN
yN

]
(2.10)

Where [xN , yN ]T represent the normalized coordinates of point M

with 1/ZC . The projection equation of the point M in the image plane

is written as: uv
1

 = A ·

xNyN
1

 (2.11)

Where A is the internal camera matrix:

A =

fx 0 u0

0 fy v0

0 0 1

 (2.12)

When analyzing figure 2.10 and by using the perspective camera

model [17] we can deduce the following:

u− u0

fx
=
x

z
(2.13)

v − v0

fy
=
y

z
(2.14)

Since fx = fy = f , let us introduce introduce a new constant

denoted by α = f
tp

in order to express the value of the focal length

in pixels. From the perspective camera model [17] and equations 2.13

and 2.14 we can derive that:
u = u0 + αx

z

v = v0 + α y
z

(2.15)

Figure 2.11 presents a typical camera system mounted inside a
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Figure 2.10: Point projection on the image.

vehicle. Usualy, the camera is mounted at height H relative to the

S(X, Y, Z) coordinate system and θ represents the pitch angle, i.e. the

angle between the optical axis of the camera and the horizontal. In

figure 2.11 we can observe that the horizontal line (vh) passing through

the optical center makes an angle θ with the Z axis [18]. Therefore it

can be expressed as:

vh = v0 − α tan θ (2.16)

By using equation 2.16 and the expression of v from equation (2.15)
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Figure 2.11: Camera system in the vehicle environment.

we obtain the following:

v − vh
α

=
y

z
+ tan θ (2.17)

Considering the S(X, Y, Z) coordinate system relative to the scene,

equation (2.17) becomes:

v − vh
α

=
Y +H

Z
+ tan θ (2.18)

Taking into account that a point M , belonging to the road at dis-

tance d from the origin S is given by:

M ·

XY
Z

 = M ·

 X

−d sin θ

d cos θ

 (2.19)

one can deduce that:

v − vh
α

=
H

d cos θ
(2.20)

Finally, the distance d of an image line v, can be expressed as
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follows:

d =

 λ
v−vh

if v < vh

∞ otherwise
(2.21)

where λ = αH
cos θ

is a constant that depends only on the parameters of

the used camera and vh is the position of the horizon line in the image.

The value of d expressed by equation (2.21) can be used in image

processing applications in order to estimate the visibility distance in

fog conditions.

2.3 Conclusions

This chapter has introduced the fog meteorological phenomenon,

how and when does fog appear and why it is dangerous for driving.

The most important type of fog present in driving scenarios is the

radiation fog. This is the only type of fog that touches the road surface

and thus reducing the visibility distance of the driver. Nevertheless

other types of fog can also affect the driver’s or a camera’s perception

in fog conditions, for example when driving over bridges, that cross

over water. When driving in fog conditions people misjudge distance.

Even in images, acquired with a camera inside the vehicle, it is hard

to distinguish between stationary and moving objects and obstacles.

The objects that are located further away are not correctly perceived,

and the direct effect is driving with excessive speeds. All these facts

constitute the reason why advanced driving assistance applications and

autonomous vehicles must take into account the weather information,

especially fog. The fact that the drivers are warned about the fog’s

density, the visibility distance and a safe driving speed can drastically

reduce the accidents that happen in fog conditions.

The last parts of these chapter introduced the mathematical back-

ground that is required for the reader in order to understand the re-

maining of this book. Section 2.2 presented the effects of the light

scattering produced in fog condition over the images. A brief intro-
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duction in Koschmieder’s law and the background mathematical equa-

tions of the perspective camera model in the vehicle environment are

also included in this section. In order to be able to compute the me-

teorological visibility distance, one has to know how to compute the

distance to a point located on the ground when using a single camera

system. For autonomous vehicles other sensors can also be used to

asses this distance, but at this point in time these sensors are rather

expensive, and their deployment in future vehicles is not certain.
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Chapter 3

Fog Detection in Traffic

Scenarios

As we have presented in the previous chapter, fog can have nega-

tive effects on driving, not only because the number of high accidents

that happen in fog situations, but also because it reduces the visibility

distance of a human driver, it hardens the distinction between sta-

tionary and moving objects or obstacles. In the end it induces stress

on the driver because of the diminish perception capability. This also

happens in the case of image processing functions in fog situations.

So advanced driving assistance and autonomous vehicles need to learn

how to cope when driving in fog conditions.

This chapter introduces some algorithmic approaches for detecting

fog in traffic scenarios using the sensors equipped in today’s vehicles.

We first briefly study the state of the art in this field in section 3.1

and then present our theoretical and applicative contributions for fog

detection in day time traffic scenarios. We analyze both urban and

rural scenarios and we describe an original and robust solution for fog

detection. Our algorithm works on both gray scale and color images,

it is scalable and is able to first asses the presence of fog in the scene,

then provide the driver with information about the density of the fog,

i.e. the fog category, estimate the visibility distance and compute a

safe speed for traveling on the given road segment. Section 3.2 presents
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the mathematical methodology behind the estimation of the visibility

distance. The next section focuses on our algorithm for fog detection.

Section 3.4 presents the overall fog detection framework and finally the

last section draws the conclusions of this chapter.

3.1 Fog Detection in Traffic Scenarios

Accidents that happen in fog conditions represent an important

concern for the road authorities around the world, because this acci-

dents leave a lot of casualties and material damages. In the United

States, The California Department of Transportation (Caltrans) [19]

has developed a fog detection and warning system in California Central

Valley area on Highway 99. This region is well known for its dense kind

of fog, called “Thule fog”. This fog usually forms during the winter

season and it reduces visibility to less than 200 m, and in some cases

to nearly zero. The fog detection and warning system is based on an

array of PWD10 forward scatter sensors, to detect fog. These sensors

are installed every half mile in both directions of the highway, see figure

3.1. In addition specialized radar spot speed sensors were also deployed

for measuring traffic volume, classification, speed and lane occupancy.

The data from these sensors is used to asses the visibility conditions,

infer the fog density and inform the drivers about the maximum speed

that they should travel. All the necessary information for the drivers is

displayed on Changeable Message Signs. All the sensors are connected

in a wireless sensor network such that the fog information is collected

and transmitted to a regional server. Traffic Message Channel (TMC)

technology is also implemented by means of a Verizon wireless modem,

so other drivers can be immediately notified about the weather con-

ditions when they are approaching the target foggy area. Although it

is a very expensive system the fact that the drivers are informed of

the weather conditions and speed limits reduced drastically the num-

ber of accidents on this highway. So a system that alerts the driver

about the visibility conditions and maximum safe driving speed would

be a very good solution for advanced driving assistance systems. In
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addition such a system deployed on today’s vehicles would be a more

convenient and cost effective solution than deploying such a big array

of sensors on every highway and national road.

Figure 3.1: CalTrans Fog Detection and Warning System [19].

Cameras and radar systems, that are already deployed in today

vehicles for various driving assistance functions can provide more cost

convenient solutions that can also be used for assessing the visibility

conditions in traffic scenarios. One of the first systems able to estimate

the visibility distance was the RALPH system [20]. RALPH (Rapidly

Adapting Lateral Position Handler) was an image processing based

driving assistance system able to determine the road curvature, the

lateral offset of the vehicle relative to the lane center and provide a

steering command to the vehicle. In [21] Dean Pomerleau presents

a solution for visibility estimation by using the RALPH system. In

this work the visibility is computed by measuring the attenuation of

contrast between consistent road features (road markings) at various

distances in front of the vehicle. The assumption is that the visibility

distance is considered to be the furthest distance at which a target

can be reliably detected. The RALPH system utilizes a variety of

road features that are visible on the road surface (lane markings, road

boundaries, tracks left by other vehicles, oil stripes, etc.). But the

absence of such features or if the field of view of the camera is blocked
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by a vehicle in front of the ego vehicle, makes the visibility distance

estimation error prone.

There exist three main approaches for detecting fog in day time

images: stereo vision based methods, monocular vision based

methods and the fusion between monocular vision and radar.

Fog detection systems based on stereo vision are presented in [22],

[23] and [24]. The authors try to build a depth map of the vehicle

environment in fog conditions, using edge based stereo reconstruction.

This depth map may contain numerous false matches, so by using the

“V-disparity” method some of the false matches can be removed. In

addition the authors perform an evaluation of the visibility distance

and introduce the concept of mobilized visibility distance (vmob), as

being the distance to the most distant object existing on the road sur-

face having enough contrast with respect to the background. Figure 3.2

presents a simplified road environment with road markings. The most

distant visible object is the extremity of the last road markings. By

comparison the meteorological visibility distance (vmax) is the greatest

distance at which an image element from the road surface is visible.

The authors propose to measure the mobilized visibility distance, by

estimating the distance to the most distant road feature that has a

contrast above 5%. The contrast measurement is based on Kohler’s

thresholding technique [25]. This scheme is able to find the threshold

that maximizes the mean contrast between two parts of the image. The

mobilized visibility distance is considered to be the distance associated

with the disparity of the pixel that has a contrast above 5%. The

problem with these methods is given by the errors induced by the fog

in the 3D reconstruction process. Some of these reconstruction errors

are proven in the next chapters. Since these errors cannot be quanti-

fied, the obtained mobilized visibility distance is error prone and the

drivers can over speed in fog conditions. Furthermore, the mobilized

visibility distance is always smaller than the meteorological visibility

distance (vmob ≤ vmax ' dvis). When no road features are visible in the

foggy image the system is not able to estimate the mobilized visibility

distance.
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Figure 3.2: Examples of mobilized and meteorological visibility dis-
tances.

The authors in [26] and [27] fuse the information from an in-vehicle

camera with a millimeter wave radar (mm −W ) in order to classify

the fog density and estimate the visibility range. The advantage of a

millimeter wave radar is that it is not influenced by weather conditions,

unlike the laser scanners or supersonic wave radar that are disturbed

by the particle scattering, especially in fog conditions. Their method

is based on the assumption made by Cavallo et. al. [28]: “under foggy

conditions the distance between a preceding vehicle’s tail lamp is per-

ceived as being 60% further away than under fair driving conditions”.

The first method [26] determines the fog’s density by extracting a

visibility feature from an image of a preceding vehicle and then classi-

fies the fog’s density into three levels based on the distance provided

by the millimeter wave radar. First the preceding vehicle is detected

by referring to the distance obtained by the millimeter wave radar.

The position and size of the vehicle are detected by template matching

in the candidate area. The authors claim that since contrast in im-

ages captured under fog conditions becomes low, the amount of high
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frequency energy also decreases in the frequency representation of the

foggy image. So the image of the preceding vehicle is re-sized to a lower

resolution of 32 x 32 pixels by linear interpolation and then it is con-

verted into frequency domain by applying a discrete cosine transform

(DCT) procedure. An indicator value was computed for the visibility

of the preceding vehicle. The authors prove that as the preceding vehi-

cle becomes indistinguishable the indicator decreases. The algorithm

steps are depicted in figure 3.3. The problem with this method is the

fact that the authors use only one preceding vehicle in the dictionary

image, so the method is error prone in real traffic situations. Another

concern is, that the authors are not able to categorize the fog conditions

in case there is no preceding vehicle available. The fog classification

is not done based on the visibility distance, but rather on the value of

the visibility indicator.

Figure 3.3: Fog density estimation method from [26].

The second method [27] tries to improve the fog classification by
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computing the value of the extinction coefficient from both visibility

and distance information of the preceding vehicle and then use the

computed extinction coefficient for fog density classification. In order

to evaluate the visibility of the preceding vehicle, the authors use the

variance of brightness as a metric. The image area of the detected pre-

ceding vehicle is compared with a fog free reference image (of the same

vehicle). Then the distance obtained between the original image and

the fog free image is used together with the distance measured by the

millimeter wave radar in order to compute Koschmieder’s atmospheric

extinction coefficient. The main drawback of this method is the fact

that the authors are not able to estimate the visibility distance of the

driver; they provide only three classes of fog: light, moderate and high.

In addition the method is not robust if the preceding vehicle’s brake

lamps are lit. Another drawback of that the vehicle used as a template

image is also the vehicle used in the testing phase, which is not good

for any template matching algorithm; not only that the training set

and the test set should be different, but also the training set should be

significantly large enough to cover all types and colors of vehicles. The

accuracy of the method strongly depends on the computed distance

between the original and the fog free reference image. Finally the fog

conditions can not be inferred, when there is no vehicle in front of the

ego vehicle.

A more reliable fusion approach for an in-vehicle camera and a 77

GHz radar is presented in [29]. The authors try to distinguish between

two scenarios in order to determine the visibility range of the driver:

an oncoming vehicle and a preceding vehicle. Figure 3.4 presents these

two scenarios. Approaching vehicles allow for instant determination

of the visibility range, while in the preceding vehicle case the camera

measurements need to be constantly updated.

Their system works on-top of a multi-sensor fusion system described

in [30]. A monocular camera with a vehicle detector [31] is fused with

a radar sensor for distances input. The data from these two sensors

is fused by a joint probabilistic data association (JIPDA) filter, that

not only estimates the position of the vehicles, but also their existence
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Figure 3.4: The two scenarios presented in [29]. To correctly deter-
mine the visibility range the authors try to distinguish between an
approaching vehicle and a preceding one.

probability. Once a camera region of interest (ROI) is associated to

a tracked vehicle, the visibility range can be estimated to be equal to

the distance of the detected vehicle. As mentioned before, the system

makes a distinction between on-coming and preceding vehicles. In the

case of an approaching vehicle the visibility distance is considered to

be the distance to the vehicle when it was first “seen” by the vehicle

detector, while in the preceding vehicle case the detected vehicle needs

to be monitored and the visibility distance is considered to be distance

just before the tracked vehicle does not receive any measurement up-

dates from the camera’s vehicle detector. In real driving scenarios there

are more situations than approaching and preceding vehicles. What

happens if the ego vehicle and the preceding vehicle travel at the same

speed over a highway (where there is no approaching vehicle)? Then

the visibility range will be falsely estimated. Another weakness of this

method is the fluctuation in the vehicle detector system. Darker ap-

proaching vehicles will be detected earlier, at greater distances, in fog

38



CHAPTER 3. FOG DETECTION IN TRAFFIC SCENARIOS

situations than vehicles with brighter colors, thus the visibility range

estimation will also be erroneous.

The last approach for detecting the presence of fog in the scene is

by using monocular vision, monochrome or color images. Some ap-

proaches try to estimate the visibility distance of the driver by using

only single image vision algorithms together with an a priori knowledge

of the camera parameters in the vehicle’s environment (pixel size, focal

length, camera optical center, camera height, etc.). Other approaches

are suited mainly for traffic surveillance systems [32]. The work pre-

sented in [15] tries to compute the visibility distance by estimating the

position of the inflection point of the fog in images. Thus the visibil-

ity distance will be computed based on equation (2.21). The position

of the horizon line in the image is considered to be known from the

camera calibration parameters. The position of the inflection point in

the image, i.e. the line in the image where fog ends, can be computed

from the Koschmieder’s law. By rewriting (2.1) and using the value of

d from equation (2.21) one obtains:

L = L0 − (L0 − L∞)(1− e−β
λ

v−vh ) (3.1)

By taking the derivative of equation (3.1) with respect to the dis-

tance d the following is obtained:

∂L

∂d
=
βλ(L0 − L∞)

(v − vh)2
e
−β λ

v−vh (3.2)

As fog density increases, the objects appear less visible in the scene,

they are dimmed by the fog; moreover the maximum of the derivative

decreases more significantly and deviates from the horizon line. So,

the second order derivative of equation (3.1) is computed as:

∂2L

∂d2
=
βλ(L0 − L∞)

(v − vh)3
e
−β λ

v−vh

(
βλ

v − vh
− 2

)
(3.3)

The equation ∂2L
∂d2

= 0 has two possible solutions. The first one

would be β = 0 which means there is no fog in the image and hence is

of no interest for fog related scenarios. So the only valuable solution
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of equation (3.2) would be:

βλ

v − vh
− 2 = 0 (3.4)

which leads to

β =
2(vi − vh)

λ
=

2

di
(3.5)

where vi represents the position of the inflection point in the image

and di represents the distance of the inflection point to the camera.

An interesting observation is the following:

lim
vi→vh

β = 0 (3.6)

This can be used to detect fog in the image. If vi is greater than vh
than fog will be detected in the image; otherwise no fog is present in

the scene. Considering equations (3.5) and (2.9) the authors introduce

the meteorological visibility distance dvis as:

dvis =
3λ

2(vi − vh)
(3.7)

If one considers that vv is the line in the image that represents the

visibility distance, we can write from equation (2.9) that:

dvis =
λ

vv − vh
(3.8)

so finally, it can be deduced that the position in the image that desig-

nates the line of the visibility distance is given by:

vv =
2vi + vh

3
(3.9)

Their conclusion is that by finding the inflection point in the image,

by using the second order derivative of the Koschmieder’s law, the

authors are able to determine the value of the extinction coefficient β

that characterizes the density of the fog.

The determination of the position of the inflection point in the im-
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age becomes a problem of knowing which is a suitable object where the

luminance variation can be measured. In the specific case of driving

scenarios, the most specific object is the road surface, since it rep-

resents a dark object which is always present in the scene and is an

interface between the road and the sky. The authors propose to seek

a surface area in the image that presents small line to line variations

in luminance. Since the road blends into the fog, the surface consid-

ered includes parts of the road and of the sky. So a bottom-up region

growing algorithm is employed on the image. Inside this region a mea-

surement bandwidth is considered for computing the inflection point.

If the region does not cross the image from top to bottom the algo-

rithm is not capable to measure the luminance variation, otherwise a

vertical bandwidth is chosen in this region that crosses the image from

top to bottom. Once the limits of this vertical band are found the me-

dian values of the pixels that belong to a line in the band is computed.

This yields a function whose local maximum positions represent the

possible positions of the inflection point. The position of the global

inflection point is the one that minimizes the squared error between

the issued model and the measured curve. Figure 3.5 presents some

results of using this method. The first row in figure 3.5 represent the

edge detection output of some foggy scenes. The second row is the

output of the region growing algorithm while the third row presents

vertical band where the position of the inflection point is computed;

the white line is the final result, i.e. the inflection point line that is

used to asses the visibility distance in the scene. Figure 3.6 shows

the evolution of the visibility distance computation on three separate

image sequences, each having 150 frames. It can be seen that the visi-

bility distance varies across a sequence, since there are situations when

the visibility distance cannot be computed: the field of view of the

camera is blocked by preceding vehicles, the existence of road signs,

etc.

One other benefit of such an algorithm is the possibility to infer the

free space in front of the ego vehicle, directly from the region growing

process. Such an approach is presented in [33]. Figure 3.7 presents the
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Figure 3.5: Visibility distance estimation [15]. First row represents
edge images, second row region growing, third row the white line rep-
resents an estimation of the visibility distance.

Figure 3.6: Visibility distance measurement on three sequences[15]

results of inferring the vertical objects present in the foggy scene. A

drawback of this method is the fact that it can only be used to detect

the drivable road surface and the vertical obstacles in the scene. A

more reliable solution should be design in order to detect more artifacts
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in the scene, such as: curb stones, sidewalks, pedestrians, traffic signs,

poles, vehicles, etc.

Figure 3.7: Free-space detection of foggy road scenes [33].

Another approach for detecting the presence of fog in images is

presented in [34]. The authors rely on the fact that foggy images

are blurrier and have lower contrast than images captured in normal

weather conditions. Based on this assumption the authors scale the

input image to a lower resolution of 320 x 240 pixels and perform

a shallow image classification based on the Sobel edge detector [35].

The outcome is a binary classifier: sunny or foggy/cloudy scene. The

steps of the algorithm are presented in figure 3.8. In case the image

is categorized as being foggy the vanishing point is computed in the

scene in order to compute the position of the horizon line.

In this work the road lines are filtered and only two relevant lines are

used for the computation of the vanishing point. After the vanishing

point is found a sky-road segmentation process in performed. When

the image is foggy a portion of the road will be segmented as sky, so the

difference between the location of the vanishing point and the location

of the sky-road limit will be used to characterize the fog conditions,

see figure 3.9. The visibility distance is then estimated by using the
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Figure 3.8: The fog detection steps presented in [34].

Figure 3.9: Segmented foggy images to find the sky / road boundary
[34].

perspective camera’s projection equations. The authors use only three

fog categories: when the visibility distance is over 300 meters, low fog

or sunny; moderate fog when the visibility distance is between 100
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and 300 meters and high fog when the visibility distance is below 100

meters. However, this approach presents some problems: it is not able

to differentiate between very sunny weather and fog conditions because

of the road-sky segmentation process used or when more vehicles are

present on the road and the algorithm is not able to perform the road-

sky segmentation process; the edge based classification done in the first

step of the algorithm is erroneous, since, in real scenarios, one can not

estimate the amount of edges present in the top half of the image in

order to classify the image as foggy or sunny / not foggy. In some

scenarios where there are trees or buildings on the side of the road

more edges could appear in the top of the image, so this assumption

is erroneous.

Fog detection in night time driving environments was studied in [36]

and [37]. The visual effects of night fog are analyzed and the authors

propose two methods to detect the presence of fog by detecting the back

scattered veil induced by the ego vehicle’s own lights and by detecting

the halos around different light sources present in the considered scene.

The first approach is suitable when the vehicle is alone on the street

and no public lighting is available, while the second method is suitable

in the cases where there exist road traffic or public lighting on the road.

In the case of night fog, if a vehicle is alone on the road the fog can

only be noticed by the back scattered veil from the ego vehicle’s light.

If the vehicle meets other vehicles on the road or when there exists

public lighting, the back scattered veil is no longer observable, but the

fog situation can still be identified due to the presence of halos around

these light sources. Images in bad weather conditions that contain

light sources were analyzed in [38], [39] and [40]. But this methods

use only static cameras, they were not designed for advanced driving

assistance systems. Other methods rely on the back scattered light

of the ego vehicle’s headlights in order detect the presence of fog [41].

The drawback of these methods is the fact that they cannot cope with

situations where there are more light sources in the scene. In order

to compute the back scattered veil from the vehicle’s own lights the

authors compare the obtained image in fog conditions with reference
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images by means of an image correlation technique: SAD (Sum of

Absolute Differences), ZSAD (Zero mean Sum of Absolute Differences),

SSD (Sum of Squared Differences), ZNSSD (Zero mean Normalized

Sum of Squared Differences), etc. The presence of fog in images is

assessed by using a similarity threshold on the correlation score. A

high correlation score implies that fog is present in the image, while a

low correlation score corresponds to a fog free image. Several reference

images are used and the highest correlation score obtained is used for

fog detection. When other light sources are present in the scene the

authors analyze the halo effect around these light sources. First the

light sources need to be detected in the image. This is done by an image

thresholding technique at high intensity levels (close to the maximum

pixel value). The geometric properties of the resulting components are

computed in order to exclude road markings and other bright features

in the image that do not correspond to light sources. The remaining

components in the image are then selected for further analysis and a

tree of these components is built knowing the geometrical properties

of each potential node. A segmented component must contain a light

source and a large part of the light source’s halo. The intensity of the

halo must decrease smoothly when fog is present as compared to a fog

free scene. This characteristic is used in order to detect the presence

of fog. The main drawback of this method is that it cannot be used

to asses the visibility distance of the driver, only a coarse classification

can be made into fog or fog free scene.

A more different approach for fog detection and classification is used

in [42] and [43]. Their algorithm is based on computing global image

descriptors (Gabor filters at different frequency, scales and orienta-

tions) and a classification procedure in order to distinguish between fog

and fog free scenarios. The images captured in fog conditions provide

a power spectrum concentrated around the zero frequency, while im-

age captured in normal (fog-free) weather conditions have much more

high frequency components. Figure 3.10 present a result of this anal-

ysis. Similar observation can also be made in night-time foggy scenes.

Figure 3.11 present such analysis in night time scenes. Based on this
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Figure 3.10: Example images of fog and fog-free scenes with their
corresponding power spectra. The power spectra are displayed in loga-
rithmic unit, with zero frequency in the middle of the image and higher
frequencies at the border. The above images present clear differences in
the spectra between similar scenes. While in fog scenes the frequency
components are concentrated at the origin, in fog-free scenes they are
broadly spread. [43]

Figure 3.11: Examples of clear and fog images during night time. The
first row presents camera images during night, the second row their
corresponding power spectra. From left to right: No fog scene, fog
scene, no fog scene with high beam and fog scene with high beam [43].

assumption the authors compute the power spectrum of each image,

after a normalization step has been carried out, and perform a feature

extraction on this power spectrum. Afterward, a two-stage feature

reduction procedure is employed, which consists in sampling the spec-

trum in the frequency domain and subsequent feature selection based

on Principal Components Analysis (PCA). A Gabor feature vector is

obtained which is used in a classification procedure: Support Vector

Machine (SVM) in [42] and a linear classifier based on Fisher’s Linear

Discriminant Analysis (LDA). The output of this learning process is

depicted in figure 3.12. The algorithm uses images captured in highway

driving scenarios. A training set was manually labeled in the following

47



CHAPTER 3. FOG DETECTION IN TRAFFIC SCENARIOS

Figure 3.12: Threshold result after the training phase based on the
Fisher LDA, from [43]. The plot presents the histogram of fog-free
scenes in cyan and the histogram of fog scenes in red. The correspond-
ing normal distributions are drawn in blue and green. The threshold
corresponds with the intersection of the two normal distributions.

categories: Excluded, No Fog, Low Fog, Fog and Dense Fog. The al-

gorithm assumes a planar road and the categorization was done based

on the computed perspective projection from the known camera setup.

A strength of this method is the fact that it is able to work in both

day time and night time driving situations. On the other hand, only

a coarse classification can be provided to the driver. The algorithm is

not able to compute the visibility distance, nor it is able to work when

there is an incoming or a preceding vehicle in the image.

3.2 Visibility Distance Estimation

In order to detect the presence of fog in a driving scenario one must

estimate the visibility distance in the scene. Based on the computed

visibility distance the algorithm should be able to classify the fog,

present in the surrounding environment, into five different categories

presented in table 3.1.

Taking into account Koschmieder’s law presented in chapter 2, sec-

tion 2.2.1 and applying this law in the image domain one obtains the
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Visibility Distance
Fog Category

Min Max
1000 m ∞ m No Fog
300 m 1000 m Low Fog
100 m 300 m Moderate Fog
50 m 100 m Dense Fog
0 m 50 m Very Dense Fog

Table 3.1: Fog Categories [6]

following mathematical representation of the image (I) captured in fog

conditions:

I = Re−βd + A∞(1− e−βd) (3.10)

where β represents the extinction coefficient of the medium in front of

the ego vehicle, R represents the fog free image and A∞ represent the

sky intensity. This equation is the foundation of any fog detection algo-

rithm and it states that the image captured in fog conditions is altered

by an exponential factor e−βd according to the distance. The second

term of this equation (3.10), A∞(1 − e−βd), represents the fog adden-

dum in the image or, in other words, the atmospheric veil obtained

from the light scattered by fog between the scene and the observer (in

our case the camera mounted inside the vehicle).

For detecting the presence of fog in the scene we have to detect the

value of the extinction coefficient β. If β = 0 it means that there is no

fog in the scene, while if a value larger than zero can be found β > 0

it means that fog is present in the outside environment.

Starting from equation (3.10) and replacing the expression of the

distance to an image line from equation (2.21) we obtain the following

equation:

I = Re
− βλ
v−vh + A∞(1− e−

βλ
v−vh ) (3.11)

where λ = αH
cos θ

is a constant that depends only on the camera pa-

rameters (H is the height at which the camera is mounted inside the
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vehicle, α is the focal length expressed in pixels and θ is the pitch angle

of the camera), v denotes an image line and vh is the position of the

horizon line in the image, see figure 2.11 for an explanation of all these

parameters. A prior calibration of the camera system is required in

order to compute the value of the λ parameter. In real scenarios, when

the camera is mounted in a production vehicle, an online calibration

procedure should be implemented, in order to estimate the pitch angle

θ and the camera height on a frame by frame basis. The value for the

horizon line vh can also be computed at calibration time, but a more

robust approach would be to estimate the horizon line each frame and

track / filter the position of the horizon line over time. An important

observation is that fog is not uniform in all the image, it starts from

the top of the image and at one point in the bottom of the image fog

is no longer visible(the fog is very shallow or not existent in the close

vicinity of the camera). This point is called the inflection point of the

fog in the image. If we are able to detect such an inflection point in the

image then we can asses the value of the extinction coefficient β and

infer the fog conditions in the scene. This inflection point is found in

the place where the second order derivative of the function I presented

in equation (3.11) is equal to zero [15]. By taking the derivative of

equation (3.11) with respect to v, we obtain the following:

∂I

∂v
=

βλ

(v − vh)2
(R− A∞)e

− βλ
v−vh (3.12)

From a qualitative point of view, when fog density increases, the

objects appear less visible in the scene, they get obscured more quickly

by the luminance emanating from the sky, they tend to disappear more

quickly inside the fog. Moreover, the maximum derivative decreases

significantly and deviates more substantially from the horizon line [15].

By computing again the derivative of I with respect to v, we obtain

the following equation:

∂2I

∂v2
=

βλ

(v − vh)3
(R− A∞)e

− βλ
v−vh

[
βλ

v − vh
− 2

]
(3.13)
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The inflection point in the scene can be found where equation (3.13)

equals zero, i.e. ∂2I
∂v2

= 0. In this point we can compute the value of the

β parameter. There are two possible solutions to this equation. The

first on β = 0 is of no interest to us, since this implies that there is no

fog in the scene. So the solution can be found in the second part of

the equation:

βλ

v − vh
− 2 = 0 (3.14)

This implies that

β =
2(vi − vh)

λ
=

2

di
(3.15)

In equation (3.15) vi represents the position of the inflection point

in the image and di represents its distance to the camera, according

to equation (2.21). By examining equation (3.15) we can observe that

limvi→vh β = 0, so we can infer the fog conditions. Indeed, once the

positions in the image of the inflection point line vi and of the horizontal

line vh are found, the computation of the extinction coefficient β of the

Koschmieder’s law is straightforward. If vi is greater than vh fog will

be detected in the image, otherwise we conclude that there is no fog

in the scene. Considering equations (2.9) and (3.15) we are able to

estimate the visibility distance in the image:

dvis =
3di
2

=
3λ

2(vi − vh)
(3.16)

Based on the obtained visibility distance we can classify the fog

conditions according to intervals presented in table 3.1. For estimating

the rest of the Koschmieder’s law parameters we use Ii and ∂I
∂v
|v=vi ,

which represent the values of the function I and its derivative in v = vi
[44].

Rroad = Ii − (1− e−βdi) v−vh
2e−βdi

∂I
∂v

∣∣∣
v=vi

(3.17)
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A∞ = Ii + vi−vh
2

∂I
∂v

∣∣∣
v=vi

(3.18)

A∞ is the sky’s intensity and Rroad represents the intensity of the

road surface. Only the intensity of the road surface can be correctly

estimated by using this method, due to the flat world hypothesis.

3.3 Our Method for Fog Detection in Road

Scene Images

The overall architecture of our fog detection [6] framework is pre-

sented in Figure 3.13. The main contributions of our work are in the

blue highlighted areas. Our method can use both gray scale or color

images as input and is able to provide information about the presence

of fog in the image and to estimate the maximum speed on the given

road segment. As presented in the previous section, in order to detect

if fog is present in the scene we must first detect the vertical position of

the horizon line and inflection point line in the image. The existence

of an inflection point in the image will provide the basis of our fog

detection solution.

The first step of our algorithm is to apply a Canny-Deriche [45]

edge detector on the input image. Then we estimate the horizon line

and the inflection point in order to assess whether fog is present in

the image. If fog is present in the image, i.e. (vi > vh) then we

perform the estimation of the visibility distance and based on this

visibility distance we are able to classify the fog and to perform a

recommendation about the safe speed on the given road segment. The

methodology for computing the horizon line, inflection point line and

the visibility distance are detailed in the following sections.

3.3.1 Horizon Line Estimation

Several methods can be employed for computing the horizon line in

the image. The first one relies on using a simple calibration procedure
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Figure 3.13: Fog detection System Architecture [6]

to compute the pitch angle of the camera [15]. An alternative, our

choice, is to estimate the horizon line based on the image features. This

will ensure a better result for the horizon line estimation in different

traffic situations, but it does require the vehicle to be driven, at least

for a small distance on a road with visible road margins and/or lane

markings.

The horizon line in the image will be detected by finding the vanish-

ing point of the painted quasi-linear and parallel (in 3D) road features

such as lane markings. In [34] only the two longest lines are considered

for finding the vanishing point. We employ a more statistical approach

that uses more lines and was previously used to find the vanishing point

of the 3D parallel lines from pedestrian crossings [46], with the goal of

detecting the crossing. The following three main steps are applied for

the detection of the vanishing point:

1. The first step involves selecting a set of relevant lines in the half

lower part of the image (mostly road). The Hough accumulator
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was built from the edge points present in the interest area. The

highest m peaks were selected from the accumulator, and those

that were having at least n votes were validated as the relevant

lines.

2. A RANdom SAmple Consensus (RANSAC) [47] approach is ap-

plied to find the largest subset of relevant lines that pass through

the same image point. A number of K (=48 for a success proba-

bility p=0.99 and percentage of good lines w=0.3) random sam-

ples of two relevant lines are selected. For each sample the in-

tersection P of the two lines is computed and consensus set is

determined as the subset of relevant lines that pass through P

(within a small circle around P). The sample having the largest

consensus set is selected.

3. The intersection points of each distinct pair of lines from the

largest consensus set are computed. Finally, the vanishing point

is computed as the center of mass of the intersection points.

Figure 3.14 presents the results of applying the horizon line de-

tection process. The bottom image presents only the detected Hough

lines that form the consensus set and their intersection points in green

color.

Using this RANSAC approach for computing the vanishing point

provides an additional benefit. The consensus score of the best pair

of lines can be used to measure how good the current frame’s vanish-

ing point is in comparison to previous frames. A temporal filtering

approach is then implemented in order to deal with scenes that lack

painted lane markings: the vanishing point with the highest consensus

score is selected from the last N frames. N can be chosen large enough

to ensure the car has traveled along multiple road segments (hundreds

or thousands of frames). This scheme would make the system cope

with offline movements (even online after at least N frames pass) of

the camera system, due to camera mounting/un-mounting, static un-

even loads of the car, or uneven tire pressure. In addition this temporal

integration makes the horizon line detection algorithm more stable.
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Original Image Edge Image Hough Image

Figure 3.14: Horizon Line estimation algorithm based on Random
Sample Consensus. The Hough Image also displays the intersection
points of the consensus lines.

3.3.2 Region growing

The region growing procedure is required in order to estimate the

position of the inflection point in the image. In order to achieve this we

must first find an object whose luminance variation must be measured.

In our scenarios this object is the road surface on which the vehicle

travels. The reasons why the road is chosen is because it is always

present in the scene and it is somehow homogenous in color, being a

dark gray surface (almost black). In order to assure consistency with

Koschmieder’s law that assumes a dark object seen through fog, we

assume that the road is homogenous in color and its luminance is only

affected by the fog atmospheric phenomenon present in the scene.

The region growing employed follows the guidelines presented in

[15]. The objective is to find a homogenous surface within the image,

between the sky and the road surface, that displays minimal row to

row gradient variation. The algorithm starts from a row in the bottom

of the image whose pixels belong to the road surface. By tacking

into account the geometry and position of the camera, the majority of

pixels in this line belong to the road surface layer. A pixel from this
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row is considered to be a seeded pixel only if its intensity is close to

the median of the gray levels on this row. The majority of pixels on

this line are from the road surface, so they should be similar in gray

levels. Only road pixels are taken into account, avoiding the region’s

increase in certain seeds on road markings and other objects from the

road surface. Starting from a seed point only the three pixels above

the current pixel are added to the region R. By using this approach

one is able to “circumvent” the objects that must not be part of the

region, such as cars, pedestrian, bicyclists and other vertical objects in

the scene. The vertical objects usually present a lot of edge points, so

this means that if a pixels belongs to the set of edge points E it must

not be added to the region.

A pixel P (i, j) is aggregated to the region R if it satisfies the fol-

lowing constraints:

• The pixel does not belong to the region:

P (i, j) /∈ R (3.19)

Only new pixels are incorporated into the region.

• The pixel is not an edge point:

P (i, j) /∈ E (3.20)

Usually edge points belong to vertical objects on the road surface,

lane markings or other painted road objects, that need to be

disregarded.

• The pixel is similar to the one located just below. This similarity

is based on a Nagao type filter [48]. For this reason the follow-

ing notation is used [49], Gj that corresponds to the distances

between the current pixel P (i, j) and the pixels just above the

current pixel, where j ∈ {−1, 0, 1}. These distances must satisfy
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the following constraints:

G−1 = G1 ≤ G0 (3.21)

By imposing such a constraint one is able to sustain a minimum

line to line gradient in order to satisfy the Koschmieder’s law.

Different thresholds are applied in the angle directions in order to

allow the vertical movement for the region expansion algorithm.

The typical values for this thresholds lie in the [4, 8] interval. The

values used for the Gj thresholds in the algorithm are {5, 8, 5}.
Figure 3.15 illustrate the aggregation of a an image pixel to the

region for this constraint.

• The pixel presents a certain similarity with the seed. if the seed

is denoted by Pg the similarity is evaluated by computing the

difference in gray levels between the investigated pixel and the

seed.

P (i, j)− Pg ≤ ρnr min
j∈−1,0,1

Gj (3.22)

where 0 < ρ < 1 and nr is the number of lines between the seed

Pg and the current pixel P (i, j). In our work we have used the

following values: ρ = 0.8, and minj∈−1,0,1 G
j = 5. This constraint

ensures that pixels with very different intensities from the seed

are not aggregated to the target region. If we do not impose

this constraint the black and white pixels could be added to the

region in fewer than 32 iterations.

The algorithm ends when the top of the image is reached. The

region detected by this algorithm contains both portions of the road

and the sky, thus it suitable for the detection of the inflection point in

the image. Figure 3.16 presents the results of our region growing pro-

cedure. The first column represents the original foggy image obtained

in fog conditions, the second column represents the edge image, while

the third column depicts the results of region growing. One can notice
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Figure 3.15: The forth condition for aggregation to target region R for
a pixel P (i, j)

that in the cases when the field of view of the camera is not blocked by

other vehicles or when there are fewer road marking, the algorithm is

able to provide a region for inflection point detection, otherwise we are

not able to obtain such a region, which means that we are not always

able to infer the fog conditions.

3.3.3 Fog Detection and Classification

In this section we are dealing with the detection and classification

of the fog from images. The idea is to analyze the previously obtained

region and try to find the place where the fog and the road meet, i.e.

the line in the image (on the road surface) where there is a sudden

change in the fog’s intensity. If we are able to find such a line then we

can infer the fog conditions in the scene, otherwise we cannot estimate

the visibility distance of the driver and the fog’s density.

In order to compute the inflection point vi we must first find the

maximum band that crosses the region from top to bottom [15]. If we

cannot find such a band, then we can conclude that the region growing

procedure is not successful and we can assume that there is no fog in

the image or that the algorithm s not able to make a prediction for the

current frame. If the region growing algorithm was successful, then we

compute the median value for each line of this band and we smooth
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Original Image Edge Image Region Growing

Figure 3.16: The results of the region growing algorithm on traffic
images

these values such that the obtained function is strictly decreasing. Next

we extract the local maxima of the derivative of this function and

compute the values for β, R and A∞ for these maxima. The point

that minimizes the square error between the model and the measured

curve is considered to be the global inflection point vi of the image.

Another approach of finding the inflection point is to find the function

that best fits our inflection point curve and deduce the inflection point

of this function.

Once the horizon line vh and inflection point vi are computed, we

can detect the presence of fog in the image and we can estimate the

visibility distance dvis from equation (3.16). If the position of the

inflection point line is greater than the vertical position of the horizon

line we are able to detect fog in the image. Based on the visibility

distance estimation we are able to classify fog into the five different
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Original Result Original Result

Original Result Original Result

Figure 3.17: Fog detection results on traffic images [6]. The blue hor-
izontal line represents the horizon line, the pink line represents the
inflection point line and the two vertical blue lines delimit the vertical
band. The black curve represents the smoothed median values from
the vertical band. The visibility distance is displayed in green on the
resulting image.

categories presented in table 3.1. Figure 3.17 present the results of the

fog detection algorithm. The two vertical blue lines delimit the vertical

band in the image, where the inflection point is computed. The black

curve represents the value of the median intensities on each line from

the vertical band (smoothed values). The position of the horizon line

and the inflection point line are highlighted with blue and pink colors,

respectively. The visibility distance is displayed with green color on

the resulting image. We present four scenarios, from the city of Cluj-

Napoca, corresponding to the four fog categories identified in table

3.1.

3.3.4 Speed Warning Recommendation

Many accidents that happen during fog conditions are caused by

excessive driving. For this reason a lot of efforts have been made

so that advanced driving assistance systems will be able to provide

good maximum speeds for driving. A method for determining vari-
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able speed limits taking into account the geometry of the road, sight

distance, tire-road friction and vehicle characteristics is presented in

[50]. They construct an Intelligent Speed Adaptation (ISA) system

based on a very detailed digital map. Although a lot of information is

implemented in the ISA, the system is expensive and hard to retrofit

on older vehicles. In order to avoid any accidents in fog conditions

we consider that a “zero risk” approach would be more cautious [51].

Thus we consider the total stopping distance to be equal to the dis-

tance traveled during the reaction time and the breaking distance. So,

for providing the driver with a good recommendation of safe driving

speed we consider that the visibility distance dvis computed by our

method is given by the following equation:

dvis = Rtvr +
v2
r

2gf
(3.23)

The first term of equation (3.13) represents the distance traveled

during the safety time margin (including the reaction time of the

driver), and the second term is the braking distance. This is a generic

case formula and does not take into account the mass of the vehicle

and the performance of the vehicle’s breaking and tire system. The

terms are of the equation are described below:

• Rt is a time interval that includes the reaction time of the driver

and several seconds before a possible accident may occur. NHTSA

considers that the majority of accidents due to distracted drivers

happen because of 3 seconds of driver inattention. Because we

are aiming to obtain a cost effective solution for warning drivers

about the speed that they should travel during fog conditions

and because we do not take into account the geometry of the

road since we do not use an augmented digital map, we have

considered this interval to be equal to 5 seconds. This covers the

interval of distracted drivers’ inattention for most of the danger-

ous events that might occur during fog conditions.

• g is the gravitational acceleration constant, 9.8m/s2
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• f is the friction coefficient. We know that during foggy weather

the asphalt is not dry. For this reason we consider a reasonable

value for f to be between [0.3, 0.4]

• vr denotes the recommended driving speed.

Figure 3.18: Braking distance on dry and wet asphalt. These val-
ues were computed with the following friction coefficients: 0.7 for dry
asphalt and 0.35 for wet asphalt.

By solving equation (3.23) we obtain the following positive solution

for vr:

vr = −gfRt +
√
g2f 2R2

t + 2gfdvis (3.24)

Figure 3.18 represents a plot of the braking distances on wet and

dry asphalt according to the speed of traveling. The friction coefficient

for dry asphalt was set to 0.7 and for wet asphalt to 0.35 [52].

Table 3.2 presents some maximum recommended speeds according

to the fog density and the visibility distance measured by our algo-

rithm. In addition we show the braking distances on wet asphalt.

According to our model of computing the recommended speed, the

driver has enough time in order to react and to break the vehicle in

case of an emergency or hazardous event.
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Visibility
Maximum

Braking
Distance

Recommended Speed
Distance

m/s km/h
20 m 3.61 m/s 13 km/h 1.90 m
50 m 8.09 m/s 29 km/h 9.54 m

100 m 14.15 m/s 51 km/h 29.21 m
150 m 19.22 m/s 69 km/h 53.87 m
200 m 23.66 m/s 85 km/h 81.65 m
300 m 31.34 m/s 113 km/h 143.25 m

Table 3.2: Speed Recommendations under Fog Conditions [53]

3.3.5 Fog Detection Results

In order to assess our method we have synthetically generated road

traffic images using the GLSCENEINT framework [54]. Then we were

able to add fog into these images using the Koschmieder’s equation,

by considering A∞ = 255 and by varying β from 0.01 to 0.15. Figure

3.19 presents three scenarios for synthetic images. The first scenarios

includes only the road, the second one includes the road and road side

trees, while the third scenarios also includes vehicles in front of the ego

vehicle. For β = 0.03 (moderate fog in the image) we can observe that

in the first two scenarios the results are similar: visibility distance

is of 202 meters and the maximum recommended speed is about 85

km/h. However, for the third scenario we are not able to compute the

inflection point for β = 0.03, due to the presence of the vehicles on the

road (we are not able to find a vertical band after the region growing

process). In the dense fog scenario (β = 0.06) we are able to estimate

the inflection point in all three scenarios (we present the result only for

the first and third scenario). The visibility distance is approximately 82

meters and the maximum recommended speed is below 45 km/h (43.76

km/h). For β = 0.09 (dense fog situation), we show the results for the

second and third scenario. The visibility distance is approximately 55

meters and the recommended speed is 31.81 km/h. For larger values of

k the images look very similar, almost no difference exists between the

three scenarios. In order to limit the oscillation due to driving scenarios
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Original β = 0.03 Result β = 0.06 Result

Original β = 0.03 Result β = 0.06 Result

Original β = 0.03 Result β = 0.06 Result

Figure 3.19: Results obtained on synthetic images. The blue horizontal
line represents the horizon line, the pink line represents the inflection
point line and the two vertical blue lines delimit the vertical band. The
black curve represents the smoothed median values from the vertical
band. The visibility distance is displayed in green on the resulting
image.

we have limited the maximum recommended speed in fog condition to

90 km/h, and in order to provide a more driver friendly recommended

speed we provide this speed in multiples of 5 km/h. The same applies

to the visibility distance. Figure 3.20 present the results of our fog

detection framework on real traffic images. These images were acquired

with a vehicle equipped with JAI-A10-CL cameras during different fog

conditions, in the city of Cluj-Napoca. From top to bottom we present

different fog situations in accordance to the fog categories presented in

Table 3.1. The first row presents two low fog scenarios: the visibility

distance is of 300 meters and the maximum recommended speed is

approximately 90 km/h. The second row shows moderate fog scenarios.

The visibility distance is 140 and 150 meters, respectively and the

maximum recommended speed is 85 km/h and 75 km/h. The third

scenario represents a dense fog situation the visibility distance is below
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Original Result Original Result

Original Result Original Result

Original Result Original Result

Original Result Original Result

Figure 3.20: Results obtained on real traffic images. The visibility
distance and the maximum recommended speed are written on the
resulting images.

100 meters (75 m) and the recommended speed is 40 km/h. And

finally, the forth row presents two images captured in very dense fog;

the estimated visibility distance is under 50 meters (40 and 35 meters

respectively) and the maximum speed is of 25 and 20 km/h.

Table 3.3 presents the braking distances and the necessary time for

braking in the above four scenarios. Form this table we can observe

that the recommended speed is accurate enough in order for the driver

to reduce the speed of the vehicle or even come to a complete stop so as

to avoid any collisions with other vehicle or other traffic participants.
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Fog Scenario
Maximum Braking Braking

Speed Distance Time
km/h m/s m s

1. Low Fog 90.00 25.00 91.10 3.64
2. Moderate Fog 70.00 19.44 55.11 2.83
3. Dense Fog 40.00 11.11 17.99 1.62
4. Very Dense Fog 25.00 6.94 7.02 1.01

Table 3.3: Braking distance in the presented scenarios

Our fog detection algorithm was implemented in C++ and was tested

on an i7 based PC running Windows operating system. The synthetic

images have a resolution of 688 x 515 pixels and the average processing

time is of 21 ms. The real traffic images were obtained with a JAI CV-

A10CL camera. Their resolution is 512 x 383 pixels and the average

processing time on one image is 18 ms.

3.4 Driving Assistance in Fog Conditions

In this section we describe the architecture of our fog assistance so-

lution ported onto Android based smart mobile platforms [55]. Nowa-

days smart mobile devices, such as smart phones or tablets have be-

come a trend even for driving assistance applications. Recently there

is a growing interest in developing and deploying economically efficient

safety functions for all types of vehicles; these functions are able to be

retrofitted to older models as well, whereas the most advanced driving

assistance systems that are today in production are dependent on ex-

pensive hardware, which is usually difficult, if not impossible, to deploy

on older vehicles. Since the capabilities and processing power of smart

mobile devices is continuously increasing, they can be easily integrated

in today’s vehicles. Due to the various driving scenarios and weather

conditions, advanced driving assistance systems must cope with this

diversity and must be able to perform well in any traffic condition.

Their main focus is to detect and prevent any hazardous situation and

to inform the driver about its occurrence. Examples of such driving
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assistance functions ported to smart mobile devices are: lane depar-

ture warning system implemented on a smart mobile device [56], [57];

monocular vision based obstacle detection [58]; stereo vision based ob-

stacle detection [59], [60], [61]; pedestrian detection on android based

smart mobile devices [62].

The functional architecture of our fog assistance solution ported

onto android based smart mobile devices [55] is presented in figure 3.21.

Figure 3.21: Functional Architecture for Fog Assistance [55]
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The hierarchical architecture illustrates the possible data flow in the

system: from local level (the vehicle) to regional level (the central ITS

servers) and back. From the point of view of the fog assistance solution

the aim is to have the fog information (resulted from image processing

algorithms) transmitted from vehicle (local) level to central (regional)

level, where this information can be collected, and then disseminate

the information to other interested traffic participants. The functional

architecture consists of the following service levels: data acquisition,

communication, management and information collection and diffusion.

The hardware infrastructure corresponding to the data acquisition

layer consists in the stations placed on-board the vehicle, which are:

a smart mobile device and a GSM/GPS tracker, which is an embed-

ded device used here for communicating the fog information from the

smart mobile device to the central ITS servers. The software solutions

responsible for image acquisition and image processing for fog detection

and fog removal are implemented on the smart mobile device.

The communication layer is responsible for assuring the inter-station

communication. The communication between the on-board stations is

achieved via Bluetooth, and the communication between the on-board

stations and the central ITS servers is done via 3G/GPRS.

The central level is composed by two layers: (i) the management

layer, a central fleet management server, responsible for collecting,

storing and analyzing the data received from fleet and regular vehicles.

It hosts an extended digital map that is capable of storing the fog in-

formation, (ii) the information collection and diffusion layer, (a central

ITS server), which is responsible for collecting weather data from the

central fleet management server, such as fog information, for perform-

ing various statistics. This information can then be disseminated to

interested parties.

Figure 3.22 illustrates the in-vehicle on-board unit diagram and its

communication means with the central ITS servers. The on-board unit

is composed of the Android based smart mobile device endowed with

a camera, and the GSM/GPS tracker, which for the fog application is

used only as a communication mean, with the central ITS servers. As
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Figure 3.22: On-board unit diagram and communication protocol for
fog assistance

illustrated in the system architecture, the fog assistance solution offers

both local assistance, as well as remote assistance. The local assistance

consists in two main functions: the fog detection solution that has

been previously described in this chapter and a fog removal (image

enhancement or contrast restoration) algorithm which will be detailed

in the next chapter. The system alerts the driver about fog situations

and displays the fog category and visibility distance, as well as the

recommended speed on the given road segment in fog situations. The

remote assistance consists in the dissemination of the fog information

to a regional traffic information system server. This fog information

can then be further transmitted to other drivers in order to warn them

about the hazardous situation on the road.

Our android based fog assistance solutions has been implemented

and tested on an Asus Transformer Pad with the following character-

istics: Quad Core 1.2 GHz Cortex-A9 CPU, 1GB RAM, Android 4.2

OS, NVIDIA Tegra 3 chipset, 8MP auto-focus camera. The image

processing algorithms have been implemented in native code making

use of Android NDK and JNI; OpenCV library for Android has been

used only for basic image processing functions. The execution time of

the fog detection and fog removal algorithms are 80 and 60 ms, respec-

tively, so the fog assistance solution is appropriate to run on a mobile

69



CHAPTER 3. FOG DETECTION IN TRAFFIC SCENARIOS

device since the fog detection algorithm does not need to run continu-

ously, but rather every 5 – 10 seconds, while the image enhancement

solution can run on a frame-by-frame basis.

3.5 Conclusions

This chapter presented the most relevant approaches for detecting

fog in day time and night time driving scenarios. The state of the

art fog detection methods and approaches were presents in section 3.1.

After investigating all these algorithms and implemented an tested

some of them we can conclude that:

• Fog detection systems based on stereo-vision are not reliable due

to the stereo reconstruction errors that occur because of the pres-

ence of fog. A more robust solution would be to remove the effects

of fog from images and then perform stereo reconstruction.

• The fusion between camera and radar is not always a good so-

lution for detecting the visibility distance because if there is no

vehicle in front of the ego vehicle it means that the algorithm will

not work. In addition, if the ego vehicle and the vehicle in front

travel at the same speed, it does not mean that the perceived visi-

bility distance by the radar sensor is the actual visibility distance

of the driver in the current foggy scene.

• A fog detection algorithm must be able to provide the driver with

some information about the density of the fog, to estimate the

visibility distance of the driver and in addition to compute a safe

driving speed for the given road segment under fog conditions.

• The most promising results for fog detection are based on monoc-

ular vision. There are two main approaches: one that works in

the frequency domain and one that tries to estimate some visi-

bility features in the image. The problem with the first approach

is that although these methods are able to detect and classify
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fog they are not able to compute the visibility distance of the

driver. The second approach seems more robust and mathemati-

cally sound: the fog detection is based on the computation of the

inflection point of the fog in the image and when such inflection

point is found the computation of the meteorological visibility

distance is possible by taking into the account the flat world

assumption.

• The road sky segmentation approach is not so robust and it can

give false results in very sunny weather or when more vehicles

are present on the road in front of the ego vehicle.

Based on the above conclusions we have described our improve-

ments to the algorithms form the state of the art and we have a de-

signed a complete solution for day time fog detection, visibility distance

estimation and driving assistance in fog conditions. A new framework

for fog detection from images acquired from a moving vehicle was de-

signed and implemented. The goal of this framework is to provide the

driver with the necessary information about the fog’s density and the

maximum visibility distance on the given road segment. Furthermore

the framework assists the driver with a safe driving speed recommen-

dation in order to avoid any collisions with other traffic participants.

In order to detect the presence of fog we must first estimate the

horizon line and the inflection point in the image. Based on these

two parameters we are able to infer whether the images are “plagued”

with fog, to compute the extinction coefficient (β), to estimate the

visibility distance and the density of the fog based on our fog categories

presented in table 3.1.

The results are very good on roads that are not very crowded or

when the field of view of the ego vehicle’s camera is not occluded by

other vehicles. One of our main contributions is the continuous es-

timation of the horizon line by using the RANSAC method and the

temporal integration based on the consensus score. This approach

proves to be very stable and provides accurate results when comparing

to the estimation of the horizon line by using only the camera param-
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eters (obtained during the offline calibration). By using the temporal

filtering based on the consensus score, we are able to detect the horizon

line even in tough scenarios where the lane markings are not visible,

during curves, when the vehicle passes over speed bumps or even in

situation where the road is not flat. Another important contribution is

the temporal integration of the inflection point line. This provides us

with the mean of estimating the density of the fog even in the situa-

tions where we are not able to detect the vertical band after the region

growing process. Thus we are still able to provide the driver with some

information about the fog density and the maximum safe speed on the

given road segment. The algorithm used to estimate the maximum

speed in fog situations proves to be accurate enough in order for the

driver to reduce the driving speed as to avoid any collision with other

traffic participants.

Since our method performs in real time, the fog assistance solution

was also ported to an android based smart mobile device. Our system

is able to detect fog by using the smart mobile device’s camera, to es-

timate the visibility distance and to provide the driver with additional

information like the fog’s category and the recommended safe driv-

ing speed. In addition the fog information is sent to a regional traffic

information system that can aggregate this and inform other traffic

participants about the hazardous location on the road, where fog is

present. This solution is a very convenient one that can be retrofitted

on older vehicles in order to provide driving assistance functions in fog

conditions.

In the future, we will focus on the robustness of this solution and

the optimization of the fog detection algorithm, one important problem

being the fix and rigid mounting of the smart mobile device inside the

vehicle. Another method that we will investigate, considering that

our target platform is a smart phone, is the use of the smart phone’s

accelerometer to compute the pitch angle. This alternative will require

no offline calibration or additional time spent for horizon line detection.

In order to improve the speed estimation during fog conditions we

consider using the speed limits imposed by the national authorities in
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order not to recommend speeds that are higher than the imposed speed

limits. This can happen in low fog situations when the vehicle is driven

in a city and the speed recommendation exceeds the speed limit. Other

future works include the integration of the fog detection system in a

fixed traffic surveillance system in order to inform the drivers about

the density of the fog and the safe speed on the given road.

For vehicles that are equipped with level 2 and 3 automation level,

the ability to warn the driver in case of fog conditions, when the system

cannot cope with the understanding of the vehicle surroundings at the

required performance level, is crucial. In such situations the driver

must be able to take over the driving process. For vehicles that are

equipped with level 4 and 5 automation, performing only fog detection

is not enough since the driver is no longer needed in level 5. For such

autonomous systems it is crucial that the vehicle can travel even in

the presence of fog, so other algorithms are also necessary in order for

the vehicle to be able to perceive the surroundings even in tough fog

situations. Such algorithms are described in the next chapter.
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Chapter 4

Contrast Restoration of

Foggy Images

Different natural phenomena can reduce the quality of images and

diminish the visibility distance. Such natural phenomena are rain,

haze, mist, fog and others. In these situations the driver’s or the

camera’s visibility distance is decreased because of the absorption and

scattering of light by the atmospheric particles, i.e. the light that is

reflected from objects in the observed environment is attenuated by

scattering along the line of sight of the camera.

In this chapter we present the state of art methods for restoring

the contrast and enhancing the quality of the images captured in fog

conditions. A complete driving assistance function in fog conditions or

a highly autonomous vehicle, must also be able to understand the sur-

rounding environment in adverse weather conditions, and this can be

achieved by performing an image defogging technique, thus enabling

other image processing applications and functions to perform well. In

this book, the terms contrast restoration, image enhancement and im-

age defogging are used interchangeably to refer to the same algorithmic

procedure, that is to remove the effects of the fog condition form an

input image and obtain a fog free representation of the observed scene.

Contrast restoration techniques can be used in wide range of ap-

plications starting from the computational photography field. If the
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restoration algorithm performs in real time, then image enhancement

can also be applied as a pre-processing step for real time computer

vision applications such as: basic image defogging, traffic surveillance,

driving assistance (stereo reconstruction, object detection and recog-

nition, etc.) and for autonomous vehicles.

4.1 Image Enhancement

Images taken in day time fog conditions usually present a white,

light blur over the objects that are present in the scene. This blur

varies with the thickness of the fog, i.e. the denser the fog is the bigger

is the blur. Thus the quality of these images is drastically degraded.

This weather phenomenon is especially dangerous in driving situations,

because drivers tend to overestimate the visibility distance while trav-

eling in fog conditions and drive with excessive speeds [28], [6]. Due

to the presence of fog, the visibility distance decreases exponentially

according to Koschmieder’s law presented in the previous chapter, thus

making fog one of the most dangerous weather condition for driving.

Some of the negative effects of fog on the quality of the image

are the loss of contrast and the alteration of the natural colors from

the image. In addition the scattering effect of the transmitted light

causes additional lightness in some parts of the image [63]. These

effect is called air-light or atmospheric veil. In order to overcome these

impediments we must either try to change the operating parameters

of the camera (exposure time, amplification gain, focus, etc.) or try to

detect the presence of fog and remove its effects from the images.

There are several methodologies for performing image enhance-

ment. The first one is to obtain two or more images of the same

scene through polarizing filters with different degrees of polarization

[64], [65]. The problem with these methods is the fact that they cannot

be applied in a dynamic environment in which the changes in the scene

are much faster than the (manual) rotation of the polarizing filters. A

second class of methods uses images of the same scene taken in different

weather and lighting conditions [66], [67], [68]. These methods exploit
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the differences between the obtained images of the scene, but even if

their performance can better restore the contrast of the original fog free

images, they cannot be applied until the user is able to capture images

in these different weather environments. The third approach is to use

only a single image of the environment and try to approximate or infer

the fog addendum in the image. The term single image enhancement

or defogging describes any method that removes the fog’s effects by

using only a single image, i.e. no other information is provided for the

algorithm. Several single image based methods were proposed in liter-

ature for restoring the contrast of foggy images. These methods can be

categorized in two groups: model and non-model based enhancement

techniques. The next two sections focus on the single image enhance-

ment algorithms and compare their utility and performance for driving

assistance applications and autonomous driving.

4.2 Non-Model Based Image Enhancement

Methods

Non-model based methods perform image enhancement relying only

on the information obtained from the image; such as histogram equal-

ization or adaptive histogram equalization [69], approaches based on

Retinex theory [70]. Unfortunately, these methods do not maintain

color fidelity and are not suitable for real time computer vision.

The authors in [69] are the ones to introduce the term of Contrast

Limited Adaptive Histogram Equalization (CLAHE). This method can

locally enhance the contrast of an image. CLAHE divides the images

into several tiles (usually 8 x 8 regions of the image) and enhances the

contrast of each tile such that the output of the histogram of the tile

approximately matches a flat histogram. The method also requires the

use of a bi-linear interpolation procedure to combine the neighboring

tiles in order to eliminate artificially introduce boundaries. The main

problem of such methods is the introduction of noise and texture in

images. A similar method is presented in [71]. Their idea is to use a
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cumulative function to generate a gray level mapping of the local his-

tograms. By modeling different cumulative functions the authors can

achieve better results. The authors propose two types of cumulative

functions: signed power-law accumulation and local mean replacement.

First an estimate of the histogram is found by spatial smoothing and

then the cumulative function converts this histogram into the map-

ping. However the results are not satisfactory on images captured in

fog conditions.

Histogram equalization techniques can also be applied to color im-

ages. In such a case the adaptive histogram equalization procedure

can be applied separately for each R, G and B color channel. This can

lead to changes in the hue of the image. Better results are obtained

in [72] where the image is first converted to Hue, Saturation, Intensity

color space and the histogram equalization procedure is applied only

for the Intensity component. However, even if the noise is reduced in

the final image the color fidelity will not be maintained.

Retinex theory is investigated in [73], [70]. The multi-scale retinex

(MSR) represents a non linear enhancement algorithm used to brighten

up areas that have a poor contrast/brightness. The multi-scale retinex

output is the sum of the outputs of several single scale retinex (SSR)

by using different scales. Each color component or chanel of an image

is separately processed in the case of single scale retinex. The basic

form of a (SSR) for an image I is given by:

Rk(x, y)) = log I(x, y)− log[Fk(x, y) ∗ I(x, y)] (4.1)

where Rk(x, y) is the single scale retinex output, Fk(x, y) represents the

kth surround function, and ∗ represents the convolution operator. The

surround functions is represented by a normalized Gaussian function:

Fk(x, y) = κke
−(x2+y2)/σ2

k (4.2)

where σk is the Gaussian surround space constant and κk is selected

such that ∫∫
Fk(x, y)dxdy = 1 (4.3)

78



CHAPTER 4. CONTRAST RESTORATION OF FOGGY IMAGES

The final multi-scale retinex output is given by the weighted sum

of the outputs of different single scale retinex functions. This is math-

ematically described by the following equation:

R(x, y) =
K∑
k=1

WkRk(x, y) (4.4)

where Wk is the weight associated to Fk(x, y) and K is the number

of scales. The authors have chosen three scales for representing nar-

row, medium and wide surround functions that are sufficient enough

in order to provide dynamic range compression. The values for these

parameters are: K = 3, σ1 = 15, σ2 = 80, σ3 = 250 and equal weights

for the surround functions i.e. Wk = 1/3 for k = 1, 2, 3. Although

the results are good for the enhancement of natural scenes acquired in

poor lighting conditions, in the case of foggy road images the results

tend to be very dark. Furthermore, the method can only remove fog of

constant thickness from an image, which is not the case of road images

and there is a slight dilution of color consistency.

A Wavelet based method is presented in [74]. The authors try to

combine multiple images of the same scene in order to remove the

blurring effects of the fog from images. Because wavelets capture edge

information at multiple resolutions in an image the authors consider

that by maximizing this edge information at each level of resolution a

sharpened version of the initial image can be obtained. One problem

of such methods is the enhancement of the noise present in images

since maximizing edge information also maximizes the noise. This can

be tackled by a soft thresholding procedure over the image with the

effect of first removing the noise. The results are not so promising

since a very dark representation of the environment is obtained so this

type of methods are not suitable for driving assistance applications.

Furthermore the resulting enhanced images exhibit a lot of noise and

the color fidelity is not maintained.

Due to their nature, all these non-model based contrast restoration

techniques are not suitable for the enhancement of images acquired
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in daytime fog in driving scenarios because on the one hand they in-

troduce noise in images and on the other hand they are not able to

maintain the color fidelity between images of the same scene with and

without fog. Furthermore, they represent methods that are applied

uniformly over the whole image and are not trying to infer the shape

and thickness of the fog present in the acquired images.

4.3 Model based Image Enhancement Meth-

ods

Model based contrast restoration techniques can be divided in two

categories: with given depth and unknown depth. When the depth is

supposed to be known, this information can be used to restore the orig-

inal contrast of the image. The authors in [75], [76] and [77] studied

different haze removal approaches based on given depth information.

The depth is inferred by using the altitude, tilt and position of the

camera [75], through the manual approximation of the sky area and

vanishing point in the captured image [76] or by approximating the ge-

ometrical model of the analyzed image scene [77]. Because the depth

information is provided by the user in all these above mentioned ap-

proaches and because the obtained depth information is erroneous and

unreliable, these methods are not feasible for real world applications.

Methods for restoring contrast without depth information are pre-

sented in [63], [78], [79] and [80]. They are based on a single image

for performing image enhancement and a mathematical model that

describes the fog in the image.

Oakley and Bu [63] assume that the distance between the camera

and the points in the scene is approximately constant, such that the

air-light on the whole image is constant and uniform. They model the

obtained image in fog conditions as:

x′ = x+ c (4.5)

where x is the original pixel value, x′ is the modified pixel value and
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Figure 4.1: Results of the Oakley-Bu algorithm [63]. The right side of
the images represents the original foggy scene and the left part is the
obtained images after image enhancement.

c is the air-light. They propose to correct the simple contrast loss in

foggy images by using the following equation:

y = m(x′ − λ) (4.6)

at each pixel of the image, where x′ denotes the distorted pixel value,

λ is an estimate of the air-light in the image, m represents a scaling

parameter and y is the modified pixel value. The authors propose to

take into account each color channel separately and thus to compute

different values for the λ parameter for each red, green and blue color

channel. For estimating the value of the air-light the methods attempts

to minimize a global cost function on the whole image. This cost

function is a scaled version of the standard deviation of the normalized

brightness in the image. No image segmentation procedure is required

in order to obtain the value of this air-light. This approach is only

suitable for simple contrast loss correction of broadcast images, when

the distance of objects present in the scene and the camera is rather

constant, and fails in scenes where the distance to the scene points is

not constant, such as driving scenarios. The results of applying this

method to broadcast television images are presented in figure 4.1

The method proposed by Tan in [78] restores the contrast of the

original image (only for color images) by using a cost function in

Markov Random Fields setting for estimating the air-light. The au-

thors start from the Lambert-Beer law for transparent objects that
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states that the light traveling through a material is attenuated expo-

nentially:

I(x) = L∞ρ(x)e−βd(x) + L∞(1− e−βd(x)) (4.7)

The first term of equation (4.7) represents the direct attenuation and

the second term represents the air-light.

• L∞ represents the atmospheric light

• d represents the distance between an object from the scene and

the observer (camera)

• β is the atmospheric attenuation coefficient

• ρ represents the reflectance of an object in the image

The authors introduce the notation of image chromaticity σc, where c

represents the color channel (r, g, b) :

σc =
Ic

Ir + Ig + Ib
(4.8)

When assuming that an object is situated at an infinite distance

from the camera (d =∞) the image chromaticity will depend only on

the atmospheric light (L∞). In this situation e−βd = 0 and the air-light

chromaticity is defined as:

αc =
L∞c

L∞r + L∞g + L∞b
(4.9)

On the other hand, if there is no effect of scattering in the medium,

i.e. there is no haze or fog in the atmosphere (e−βd = 1) it results

that the light chromaticity will depend only on the direct attenuation.

Thus, the authors introduce the notion of object chromaticity:

γc =
L∞cρc

L∞rρr + L∞gρg + L∞bρb
(4.10)
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and equation (4.7) becomes:

I(x) = D(x)e−βd(x)γ(x) + A(x)α (4.11)

where:

D(x) = L∞rρr(x) + L∞gρg(x) + L∞bρb(x) (4.12)

A(x) = (L∞r + L∞g + L∞b)(1− e−βd(x)) (4.13)

γ and α represent normalized color vectors while D and A represent

scalar values. Furthermore, from the definitions of the chromaticity

functions we know that:∑
σc = σr + σg + σb = 1∑
αc = αr + αg + αb = 1∑
γc = γr + γg + γb = 1

(4.14)

Usually the global value of L∞ in the image can be obtained from

the pixels that have the highest intensity in the input image. If one

assumes that the sky can be seen in the image and that the image is

not saturated, than the value of L∞ can be obtained and thus the value

of the light chromaticity α for each color channel can be immediately

computed. A normalization procedure must be further applied in order

to transform the color of the atmospheric light into pure white color,

by dividing each color channel of the image intensity Ic by the obtained

αc and obtain the following equations:

I ′c(x) =
Ic
αc

(4.15)

I ′c(x) = D(x)e−βd(x) γc(x)

αc(x)
+ A(x) = D(x)e−βd(x)γ′c + A(x) (4.16)

where I ′c represents the normalized input image and γ′c is the normal-

ized object chromaticity.
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The vector form of equation (4.16) thus becomes:

I ′(x) = D(x)γ′(x)e−βd(x) + A(x)

1

1

1

 (4.17)

Tan [75] then considers the vector representation from equation

(4.17) and by assuming that the value of L∞ is known, it results that

image enhancement becomes the estimation of D(x)γ′(x) for the whole

image in order to obtain an image that is not affected by the scattering

effect induced by the fog. The problem of this estimation is straight

forward. Since a single image is used to perform image enhancement

and the depth is unknown, the authors infer the value of e−βd(x) from

equation (4.13) as:

e−βd(x) =

∑
c L∞c − A(x)∑

c L∞c
(4.18)

D(x)γ′(x) = (I ′(x)− A(x)

1

1

1

)eβd(x) (4.19)

Thus, the problem becomes one of estimating the value of A at

each pixel in the input image, which is easier to compute because it

is independent of the reflectance of the objects present in the scene.

An observation here is that the obtained image must have a better

contrast than the original image captured in haze conditions and the

variation of A must be smooth. By taking into account the smooth-

ness constraint the authors model the air-light using Markov Random

Fields. Unfortunately, this is an iterative process resulting in huge

computation time (for an image of 600 x 400 pixels the computation

time is between five to seven minutes).

Figures 4.2 and 4.3 present the results of this algorithm on an image

obtained in fog conditions. The proposed method can produce halos at

depth discontinuities due to the employed smoothness constrained. In

addition the method can introduce several artifacts in the input image

84



CHAPTER 4. CONTRAST RESTORATION OF FOGGY IMAGES

Figure 4.2: A foggy image is displayed in the left and the result of
image enhancement with Tan’s method [78] is displayed on the right.

and the processing time is not real time. The output images tend to

have larger saturation values because the authors are focused on the

visibility enhancement and they do not try to recover the original ra-

diance in the scene. Although these observations prevent this method

to be applied for real time advanced driving assistance functions or au-

tonomous driving tasks, this method presents several key mathematical

formulas that are used by all later image defogging methods.

In [81] and [79] the authors introduce the dark channel prior (DCP)

terminology, which states that in most of non-sky scenes at least one

color channel has very low intensity at some pixels. The authors as-

sume that in a hazy or foggy image the intensity of the dark pixels in

the dark channel is mainly contributed by the air-light. By combining

this assumption with a mathematical model (Lambertian) that defines

the haze or fog in the image and a soft matting interpolation method

the authors are able to obtain a haze free image and produce an ap-

proximation of the depth map in the image. The authors start from

the following mathematical Lambertian model for describing an image
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Figure 4.3: Top: input image, middle: the result obtained by Tan’s
method [75], bottom: the air light. Images taken from [75]

captured in haze or fog conditions:

I(x) = J(x)t(x) + A(1− t(x)) (4.20)

where:

• I(x) represents the observed image

• J(x) is the scene radiance

• t(x) is the medium transmission

• A is the atmospheric light
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Similar with the previous presented paper [78] the first term of

equation 4.20 (J(x)t(x)) constitutes the direct attenuation of the air-

light and the second term (A(1 − t(x)) represents the air-light com-

ponent. The direct attenuation in the scene describes the scene ra-

diance, while the air-light results from the scattering of light effect

present in haze or fog conditions. In homogenous atmospheric con-

ditions (t(x) = e−βd(x), where β is the scattering coefficient of the

atmosphere), the dark channel of an image is simply defined as:

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

J c(y)) (4.21)

where Ω(x) is a local patch in the image centered at x, c represents the

color channel (c ∈ {r, g, b}). If J is a haze free image than Jdark has

very low intensities and tends to be equal to zero. These low intensities

in Jdark belong to shadows of cars, buildings or the inside of windows,

dark objects or surfaces, or colorful objects in the scene. The dark

channel prior is supported by a very wide statistical analysis made by

the authors, which resulted that more than 90% of the intensities in

a dark channel of a haze free image are below 25 (in image intensity

values for an 8-bit image). On the other hand, when assessing this

dark channel for an image acquired in haze or fog conditions (where

the value of t(x) is low) one can observe that the intensities in this

dark channel are higher in the regions with denser haze or fog.

Taking into account the dark channel of an image captured in fog

conditions, the authors estimate the transmission map (t(x)) in hazy

images, considering that the transmission in a local patch is constant

and that the transmission and surface shading are locally uncorrelated.

For estimating the transmission map (t(x)) in a patch of the input

image the minimum of equation (4.20) is considered:

min
y∈Ω(x)

Ic(y) = t̃(x) min
y∈Ω(x)

J c(y) + (1− t̃(x))Ac (4.22)

and by dividing with the value of Ac and taking the minimum operation
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along each color channel the following equation is obtained:

min
c

( min
y∈Ω(x)

Ic(y)

Ac
) = t̃(x) min

c
( min
y∈Ω(x)

J c(y)

Ac
) + (1− t̃(x)) (4.23)

Considering that the dark channel prior (DCP) of a fog free image

J(x) is zero and that the air-light Ac is always positive:

Jdark(x) = min
c

( min
y∈Ω(x)

J c(y)) = 0 (4.24)

The transmission in a patch is given by the following equation:

t̃(x) = 1−min
c

( min
y∈Ω(x)

Ic(y)

Ac
) (4.25)

This equation can handle the patches across the hole image, even in

the sky regions. In order not to distort the haze free image the authors

introduce a constant parameter w (0 < w < 1) into equation (4.25).

This value is fixed at 0.95. The equation for computing the

t̃(x) = 1− wmin
c

( min
y∈Ω(x)

Ic(y)

Ac
) (4.26)

The value of the atmospheric light Ac can be computed as the max-

imum intensity in the image. The authors use the dark channel prior

to improve this estimation of the atmospheric light. The top 0.1% of

the brightest pixel in the dark channel are chosen and the pixel with

the highest intensity in the input image is selected as the atmospheric

light. In order to smooth the transmission map across the whole foggy

image the authors use a soft matting procedure considering a Mat-

ting Laplacian matrix and a regularization parameter. The refined

transmission map (t(x)) is obtained by minimizing the following cost

function:

E(t) = tTLt+ λ(t− t̃)T (t− t̃) (4.27)

where L is the Matting Laplacian matrix and λ is the regularization
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Figure 4.4: The results of haze removal using the method of He et. al.
[79]. From left to right we present the input hazy image, the restoration
result and the approximation of the recovered depth map.

parameter.

The recovering of scene radiance J c is straightforward from equa-

tion (4.20). However when the transmission is close to zero the direct

attenuation term is also close to zero. Therefore the transmission map

is limited to a lower bound t0 such that a small amount of haze is still

present in the recovered scene:

J(x) =
I(x)− A

max(t(x)− t0)
+ A (4.28)

Figure 4.4 presents the results of using this method together with

an approximation of the depth map in the scene. One drawback of this

method is the fact that it cannot deal with gray scale images. Although

the results look good in the lower part of the image the top part is not

correctly restored. Figure 4.5 presents the results of He’s algorithm

with and without the soft matting refinement of the transmission map.

It can be clearly seen that the soft matting refinement leads to the

removal of several artifacts present in the reconstructed images. This

approach is very costly from the processing time point of view, because

of the used soft matting procedure.
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Figure 4.5: The results of haze removal using the method of He et.
al. [79]. From left to right we present the input hazy image, esti-
mated transmission map before soft matting, estimated transmission
map after soft matting, restoration result without soft matting and
restoration result with soft matting.

The main disadvantage of the two methods presented in [78] and

[79] is the fact that these methods are not performing in real time (5

to 7 minutes and 10 to 20 seconds respectively for an image with a

resolution of 600 x 400 pixels). This problem can be tackled by using

more fast approaches that we will present in the next paragraphs and

sections.

The authors in [24] start from the classical Koschmieder law [13]

for restoring the original contrast. The basic idea is to recover the

parameters of the Koschmieder’s law and then use these parameters in

order to compute the fog free representation of the input image.

I = Re−βd + A∞(1− e−βd) (4.29)

This law was described in chapter 2. The restored image R or the

fog free image is obtained in the following manner:

R = Ieβd + A∞(1− eβd) (4.30)

An approximation of the βd parameter is used, i.e. βd = svi−vh
v−vh

. A∞
is considered to be the highest intensity in the image.
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Figure 4.6: The results of contrast restoration by using the method
proposed in [24]

The results of using this method are presented in figure 4.6. It can

be seen that by using this method only the contrast of the road can be

correctly restored, since the vertical objects present in the scene tend

to be very dark (black objects). A somehow different methodology for

modeling the scene depth is presented in [82], but there is no obvious

improvement in the contrast restoration results. The vertical objects

are still very dark, due to the fact that estimation of depth (trans-

mission map) of the scene is erroneous. However, the authors try to

turn this flaw into an advantage. In [83] the flat world assumption is

used and only the contrast of the road can be reconstructed. Since the

contrast of the vertical objects is falsely restored, being black and thus

having an intensity close to zero, the authors use this in order to com-

pute the free space in front of the vehicle by searching for the largest

connected components in the scene. This process is called free space

segmentation and it’s results are presented in figure 4.7. Several appli-

cations of this contrast restoration algorithm, for assisting drivers in

fog conditions are presented in [44]. These include the improvements

to the extraction of road marking features, the detection of vertical

obstacles and road traffic signs.

In [80] the authors try to infer the atmospheric veil (i.e. the fog

addendum in the image) present in foggy images and use this atmo-

spheric veil to obtain the fog free representation of the original scene.
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Figure 4.7: The results of using free space segmentation [83] after
contrast restoration.

The atmospheric veil is described as:

V = A∞(1− e−βd) (4.31)

Using the above notation for the atmospheric veil (V ) the following

representation of the fog free image can be obtained ((x, y) denote the

pixel position in the image):

R(x, y) =
I(x, y)− V (x, y)

1− V (x,y)
A∞

(4.32)

Certain constraints are imposed on this atmospheric veil:

• The atmospheric veil should be greater or equal to zero: 0 ≤
V (x, y)

• The atmospheric veil cannot be higher than the minimum of

each color channel of the input image V (x, y) ≤ W (x, y), where

W (x, y) = min(I(x, y))

• The atmospheric veil must be a smooth function, except in the

places were there exist depth discontinuities.

The authors propose to infer the atmospheric veil as a percentage

(p) of the difference between the local average of W (x, y) and of the

local standard deviation of W (x, y). Since the average filter does not
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Figure 4.8: The results of contrast restoration with the method de-
scribed in [80] on natural scenes.

preserve the edges in the image the authors use a median of median

along the lines of the image. This median filter is than applied on the

difference between W and the obtained median filtered image. Finally

the authors introduce the factor p to control the strength of the image

restoration process. The final version of the veil is presented in the

following equations:

A(x, y) = mediansv(W (x, y)) (4.33)

B(x, y) = A(x, y)−mediansv(|W − A|(x, y)) (4.34)

V (x, y) = max(min(pB(x, y),W (x, y)), 0) (4.35)

This method contains only two parameters, i.e. the size of the me-

dian filter sv and the percentage p of image enhancement process. Fig-

ure 4.8 presents the results of applying this method on natural images

while figure 4.9 presents the results with different parameters on traffic

images (gray scale). The result seem good, the road is darkened and

depending on the used parameter a better representation is obtained.

The higher the sv parameter the better the quality but a worse pro-

cessing time is achieved. This method is also called in literature the

no-black pixel constraint (NBPC) image enhancement.

The method is compared to other relevant contrast restoration
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Figure 4.9: The results of contrast restoration with the method de-
scribed in [80] on traffic scenes with different parameters. From left
to right the original foggy image and the results with: p = 0.7 and
sv = 61, p = 0.9 and sv = 61, p = 0.98 and sv = 61, p = 0.90 and
sv = 21

methods and obtains similar or better results. The used metrics are

the rate of new visible edges, the percentage of pixels that become

completely black or completely white after restoration and the ratio of

gradients at visible edges. These will be used in the next sections for

comparing the contrast restoration results of different methods.

A new constraint over the atmospheric veil, called the planar as-

sumption constraint is introduced in [84] and [85]. This constraint

prevents the over estimation in the bottom of the image. The name of

the method is no-black pixel constraint with planar assumption (NBPC

+ PA). The constraint equation is presented below:

V (u, v) ≤ A∞(1− e
ln(0.05)λ

dmin(v−vh) ) (4.36)

where A∞ is the intensity of the sky in fog conditions, λ is a coefficient

that depends only on the camera parameters, v is an image line and

vh represent the position of the horizon line in the image. The planar

road constraint assumes that the road is a plane until a certain distance

and the authors set this distance dmin = 50m. Having this constraint

in mind, if the meteorological visibility distance is lower than 50m,

the image enhancement will be partial at short distances, even if the

percentage of restoration is p = 100%. The restoration results with this

new constraint added are superior than the ones previously presented,

in the case of road images, see figure 4.10 for more details.

Another problem with this constraint is that the computation of

the atmospheric veil does not yield a smooth function over the entire
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Figure 4.10: Contrast restoration with the method described in [85].
From left to right the original synthetic image without fog, the image
with fog, the images enhanced using multi-scale retinex, adaptive his-
togram equalization, dark channel prior, free-space segmentation, no-
black-pixel constraint and no-black-pixel constraint with planar scene
assumption. The images are taken from the FRIDA data-set [86].

input foggy image. The function depicted in equation 4.36 present a

cutoff around the position of the horizon line (vh).

The authors introduce a new metric for image enhancement: the

average absolute difference between the synthetic image without fog

and the image obtained after restoration. In order to accomplish this

they introduce the Foggy Road Image DAtabase (FRIDA) [86], which

is a data set of synthetic images of traffic scenes. The FRIDA data
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set contains eighteen synthetic images that try to simulate real traffic

scenes; The FRIDA2 data set contains 66 images of traffic scenes. The

resolution of these images is 640 × 480 pixels. Four different types of

fog were added to these images:

• homogenous (uniform) fog: Koschmieder’s law applied directly

on the input image with a meteorological visibility distance of 80

meters.

• heterogeneous β fog: Koschmieder’s law applied with different

values of β depending on the pixel’s position, A∞ is kept con-

stant. These values are were obtained by using a Perlin’s noise

[87], [88] between 0 and 1. The average meteorological visibility

distance was set around 80 meters.

• cloudy homogeneous fog: Koschmieder’s law applied with β kept

constant for a meteorological visibility distance of 80 meters and

different values for A∞. The Perlin’s noise in this case is used for

the sky’s intensity thus producing a cloudy sky.

• cloudy heterogeneous fog: Koschmieder’s law applied with dif-

ferent values for both β and A∞. In this case two independent

Perlin’s noises are used and the average meteorological visibility

distance is also 80 meters. For more information on this data

set, please refer to [85] and [86].

The restoration assessment is carried out over these types of fog

and on the entire data set.

4.4 Contrast Restoration based on

Koschmieder’s Law

Our method for contrast restoration starts from the well known

Koschmieder’s law [13]. In order to model the fog in an image Koschmieder

equation is applied directly to the response function of a camera, in
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order to model a mapping from the scene luminance to image inten-

sity (see chapter 2, section 2.2.1 for more details). So, the following

representation of the input image (I) is obtained:

I = Re−βd + A∞(1− e−βd) (4.37)

where:

• R represents the pixel intensity of the image without fog, i.e. the

fog free representation of the analyzed scene

• A∞ is the intensity of the sky in fog conditions

• β is the extinction coefficient of the medium

• d is the distance to the camera (for each pixel)

The first term of the equation states that an image captured in fog

conditions is altered by an exponential factor e−βd according to the

distance. The second term of the equation, A∞(1 − e−βd), represents

the atmospheric veil obtained from the light scattered by fog between

the scene and the camera sensor, or in other words the fog addendum

in the image.

By using a single image we are not able to compute the depth at ev-

ery pixel in the scene, only an estimation to an image line that belongs

to the road can be made (planar road assumption). Other methods

for computing the depth from a single image, like structure from mo-

tion based on optical flow, also fail in case of foggy scene. Hence, we

introduce the notion of atmospheric veil [80] (V ) as (similarly to [80]:

V = A∞(1− e−βd). (4.38)

This veil represents the fog addendum in an image. Our approach is

to estimate the atmospheric veil and then to use it in order to compute

the original fog free image.

The veil equation (4.38) implies that e−βd = 1− V
A∞

, so by substi-

tuting in equation (4.37) one obtains the following representation for
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the input image:

I = R(1− V

A∞
) + V. (4.39)

At this moment we are able to compute the original fog free repre-

sentation of the input image as:

R =
I − V

1− V
A∞

. (4.40)

The above equations demonstrate that one approach to obtain the

fog free image, without knowing the depth of the scene, is to estimate

the atmospheric veil. The intensity of the sky (A∞) is considered to

be equal to 255 (for an 8-bit input image), or it can be inferred as the

maximum intensity in the image. Another approach [79] is to use a

rectangle in the top of the image and to compute the average intensity

inside this rectangle as the sky’s intensity.

4.4.1 Inferring the Atmospheric Veil

Usually, a visibility enhancement method must be able to work with

both gray scale and color images. In order to compute the atmospheric

veil for color images, the used input of our algorithm is a gray level

image W that consists in the minimum of each color channel (R,G,B).

This image is called the dark channel prior (DCP) of a color image and

is computed similarly to method presented in [79]. The obtained veil

V provides the amount of white that must be subtracted from each

color channel. In case of gray scale images, the W image is equal to

the input foggy image.

W =

{
min(R,G,B) , for color images

I , for monochrome images
(4.41)

In order to infer the atmospheric veil we must first examine some

properties that it must have. First, the photometric constraint must
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be introduced [78], V must be higher or equal to zero and V must be

lower then W:

0 ≤ V ≤ W (4.42)

Another property of the atmospheric veil is that V must be a

smooth function (in most of the cases). In [84] a new constraint is

considered, the no black pixel constraint. This constraint states that

the local standard deviation of the enhanced pixels around a given

pixel position must be lower than it’s local average. If we consider

that in the vicinity of a pixel the scene depth is constant and the fog

is homogenous than it results that the local averages of the original

and enhanced images are related. The same applies for the standard

deviation of these images. Thus we can infer that the veil is smaller or

equal to the difference between the average and the standard deviation

of the input image W :

V ≤ Average(W )− std(W ) (4.43)

The problem concerning the local average filter is that it does not

preserve edges. A better approach is to use a median filter, not only

because it preserves edges, but it also removes noise from the input

image. Thus a median filter with a variable size (k) will be applied on

the W image instead of using the classical average.

M = mediank(W ) (4.44)

For computing the standard deviation on the obtained W image

we use the classical standard deviation computed in each pixel of the

image, rather than computing the median on the absolute difference

between the W image and the previously computed average, as in [80].

Std =

√√√√ 1

N

N∑
i=1

(Wi − µ)2 (4.45)

By tacking all these constraints into account, we consider that only
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a percentage p will be used to calculate the value for the atmospheric

veil in each pixel. This percentage is used to control the strength of

the restoration process. The usual values for p are set from 85% to

99%. A lower value for p is used for gray scale images, while a higher

value is used for color images. Thus, in order to satisfy the constraint

from equation (4.42) the equation for computing the atmospheric veil

becomes:

V = max(min(p|M − Std|,W ), 0) (4.46)

Once the atmospheric veil is computed we can derive the fog free

representation of the input image simply by applying equation (4.40)

for every pixel in the image. Figure 4.11 presents the general archi-

tecture of our image enhancement system. The presented algorithm is

able to enhance both gray scale and color images.

The last step in the enhancement process is to perform a normal-

ization on each color channel of the restored image, for obtaining an

image having natural colors.

4.4.2 Median Filters for Image Defogging

In order to find the best solution for single image defogging, a short

analysis of three median filters was carried out, and after this analysis

we have deduced which is the most suited filter that can be applied

for contrast restoration of foggy images [89]. In figure 4.12 we present

the atmospheric veil obtained using three median filters: the classic

square median filter (M), a median filter applied only along the lines

of the image (ML) and a median filter applied only along the columns

of the image (MC). All filters have the same kernel size k = 39, a

square kernel for the classic median filter ([k, k]) and two vectors for

the median filter along lines ([k, 1]) and median filter along columns

([1, k]). As one can observe the most consistent veil image with a fog

representation is the median filter along columns of the image. One

would expect that fog is more present in the top part of the image and

tends to disappear in the bottom part of the image which is closer to
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Figure 4.11: The General Architecture of the Image Enhancement Al-
gorithm

the camera. This is true especially for road images, when the camera

mounted inside a vehicle captures images from the small vicinity in

front of the vehicle up to infinity. For this reason it is natural to

introduce another constraint for obtaining the atmospheric veil which

should prevent overestimation of the veil at small distances in front of

the camera. In addition the median filter applied on the columns of

the image makes the atmospheric veil adaptable according to the fog’s

density.

In order to evaluate our image enhancement algorithm we require

images of the same scene with and without fog. Such images are very

hard to acquire in practice: first, the camera has to be mounted in

exactly the same position; second, the camera must have exactly the

same configuration and orientation in both scenarios and third, the illu-
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Original Image Veil - Median Veil - MedianL Veil - MedianC

Figure 4.12: From left to right, the original image, atmospheric veil
obtained using the classic median filter, median filter along lines and
median filter along columns (the parameters used are k = 39, p = 95%)

mination and environment conditions must be the same in both scenes

(with and without fog). Taking into account all these reasons, we will

first present the results on synthetic images from the FRIDA (Foggy

Road Image DAtabase) data set [85], and then we will investigate the

restoration results on natural scenes and real traffic images.

Figure 4.13 presents eight images from this data set that were en-

hanced with our algorithm, using the three methods for computing the

atmospheric veil. The columns represent the original images without

fog, the image with added fog and the three enhanced images with the

proposed algorithm by using the classical median filter (M), the me-
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Figure 4.13: Image Enhancement Results on Synthetic Images. Form
left to right, the original image without fog, the original image with
synthetically added fog and the three images enhanced with the pro-
posed algorithm by using the squared median filter, the median filter
along lines and the median filter along columns. The used parameters
are k = 51 and p = 0.95%
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Cloudy Cloudy All Types
Algorithm Hom. Fog Het. Fog

Hom. Fog Het. Fog of Fog

No 74.8± 11.2 53.2± 10.8 60.8± 10.4 42.1± 10.2 57.73± 10.6
M 48.3± 8.4 40.9± 8.5 56.3± 11.8 52.3± 9.1 49.45± 9.4

ML 48.5± 8.3 41.2± 8.5 56.3± 11.4 52.4± 8.7 49.60± 9.2
MC 47.6± 8.3 40.3± 8.2 53.6± 11.5 51.7± 8.8 48.30± 9.2

Table 4.1: Average absolute difference between the original synthetic
images without fog and the enhanced images for the three compared
algorithms, for the four types of synthetic fog (Homogeneous, Hetero-
geneous, Cloudy Homogeneous and Cloudy Heterogeneous Fog) and
for the whole data set.

dian filter along lines (ML) and the median filter along columns (MC),

respectively. On the lines from figure 4.13 we have chosen two images

for each kind of fog (homogenous fog, heterogeneous β fog, cloudy ho-

mogenous fog and cloudy heterogeneous fog). Some object that could

not be seen in the original foggy images can be clearly identified in the

enhanced images. By carrying out a first visual analysis, it can be seen

that the results using the median filter applied on columns have a sig-

nificantly improved contrast than the ones using the classical median

filter and the median filter on lines, especially in the regions where we

have details (for example on traffic signs, on cars and on buildings). A

first quantitative comparison is presented in table 4.1 and consists in

computing the average absolute difference between the original images

without fog and the enhanced images using the three above mentioned

methods. In order to asses the enhancement improvements we also

present the average absolute difference between the initial images and

the foggy images and compare this to the obtained results. The results

in table 4.1 show that the enhancement results by using the median

filter along columns are better than the ones obtained by using the

normal median filter and the median filter along lines. In the cloudy

homogenous and heterogeneous cases the average enhancement results

are larger because we have taken into account the whole restored image

that also includes the cloudy sky region, which is not present in the

original fog free scenes, and thus cannot be restored.

In the next paragraphs we perform an evaluation on both natural-
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Figure 4.14: Image Enhancement Results on Real World Images. From
Left to right, the original image captured in fog conditions, and the
three images enhanced with the proposed method by using the squared
median filter, the median filter along lines and the median filter along
columns.

istic scenes and images obtained from an in-vehicle camera.

• Natural images: Natural images (see figure 4.14) were obtained

using a Nikon D80 DSLR camera with 12-24 lens during different

fog conditions. We have chosen to enhance the natural images in

order to verify the algorithm on foggy scenes that were acquired

with a high quality camera and lens system and with adequate

exposure time, ISO and gain settings. A visual evaluation of the

results in figure 4.14 show that our algorithm is also suitable to

be applied in the computational photography domain.
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• Traffic images: The images presented in figure 4.15 were obtained

in driving scenarios in the neighborhood of Cluj-Napoca by using

a CV-A10-CL monochrome camera. Although the original im-

ages are in gray scale the results obtained demonstrate that the

enhanced images provide a more detailed and consistent in depth

scene. Thus, the image enhancement algorithm is also suitable

to be applied for driving assistance systems.

Figure 4.15: Image Enhancement Results on Traffic Images. From
Left to right, the original image captured in fog conditions, and the
three images enhanced with the proposed method by using the squared
median filter, the median filter along lines and the median filter along
columns.

Table 4.2 presents the average absolute difference between the ac-

quired foggy images and the enhanced images, in natural scenes and

traffic scenarios. The enhanced images that have the greatest absolute

difference represent the ones where the captured scene is more clear. It
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is obvious the this average differences are much larger for the color im-

ages (natural scenes) than for the gray scale images (traffic scenarios);

and that the image enhancement using the median filter on columns

provides the best results.

Restoration Natural Traffic
Algorithm Images Images

Median 59.5± 17.2 19.03± 12.6
Median Lines 59.4± 16.6 19.08± 12.6

Median Columns 60.5± 16.2 19.29± 12.6

Table 4.2: Average absolute difference between the enhanced images
and the foggy images for our restoration algorithm, by using the three
types of median filters, for the natural images and for the real traffic
images

In order to assess the quality of restoration, Hautiere et al. propose

in [90] to compute the rate of new visible edges in the enhanced image

e:

e =
nr − no
no

(4.47)

Since computing the enhanced images implies subtracting the at-

mospheric veil from the original foggy image another interesting metric

for image enhancement is σ, the percentage of pixels that become com-

pletely black or completely white after restoration [90]:

σ =
ns
N
∗ 100 (4.48)

where ns represents the total number of pixels that become completely

black or completely white after image enhancement and N represent

the total number of pixels in the image.

Table 4.3 presents the average enhancement results for this two

metrics on the images from the FRIDA data-set, the natural scenes

and traffic images. It can be observed (Table 4.3.a) that the algorithm

using the median filter applied on the columns of the image produces

more edge points than the other two algorithms, which means that
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the enhanced image will present more fine details than the other two

enhanced images (The same Canny edge detector [17] was applied to

all outputs and the number of edge points was counted for each im-

age). For the synthetic images we have presented the average of these

metrics for all four types of fog. The number of edge points in the

natural images are much higher than in the other cases because these

images are not saturated (they were acquired with correct exposure

time, ISO and gain settings) nor underexposed, so they can be recon-

structed such that the results resemble a naturalistic scene. In Table

4.3.b it can be seen that our algorithm produces a very small number

of underexposed or saturated pixels. Indeed the algorithm using the

median along columns produces the smallest amount of bad pixels.

a: Mean values for e
e M ML MC
Synthetic Images 0.42 0.40 0.43
Natural Images 1.21 1.22 1.27
Traffic Images 0.11 0.14 0.22

b: Mean values for σ
σ M ML MC
Synthetic Images 0.0022 0.0019 0.0018
Natural Images 0 0 0
Traffic Images 0.0541 0.0545 0.0505

Table 4.3: Mean values for the e and σ indicators, produced by the
three compared methods on the three tested scenarios: synthetic im-
ages from the FRIDA data set, natural scenes and traffic images.

Up to this point we have not considered the shape of the fog present

in images especially in traffic scenarios. The algorithm assumes that

the veil is constant on all image lines. In the next section we are going

to model the exponential decay of the fog by a mathematical model

that exploits the variation of the fog’s density with the distance to the

camera.
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4.4.3 Exponential Inference of the Atmospheric

Veil

The atmospheric veil is not uniform on the whole image, especially

in real traffic images where there exists a great variation in the fog

density with the distance. Since Koschmieder’s law was originally in-

tended to measure the visibility distance of a black object seen in fog

having a contrast of only 5%, the contrast restoration based on this

law is very good to be applied on scenes that are captured from a cer-

tain distance, i.e. where all the objects appear far from the camera.

The atmospheric veil computed with this method is over compensated

in the bottom part of the image (figure 4.15), thus resulting in very

dark restored images (figures 4.13 and 4.15 ). So this method is not

well suited for traffic scenes. Therefore, there is a need for a smooth

exponential function that can model the atmospheric veil in traffic sce-

narios according to the shape of the fog in scene. For this reason we

will model a smooth exponential filter on the atmospheric veil such

that this exponential function decreases inversely with the distance.

In order to apply such an exponential function over the atmospheric

veil, we must first investigate some properties of real world images in

fog conditions [91]:

• Fog has a very high density in the sky regions. Restoration must

be maximum (100%).

• Fog has a very low density, close to zero in the near vicinity of

the camera. Restoration must be minimum (0%).

• Fog has an exponential decay between the sky region and un-

til the vicinity of the camera. There must exist an exponential

restoration mechanism (percentages between 0% and 100% ac-

cording to the distance.

Our exponential filter is inspired by the functions which appear in

partition of unity in differential geometry field [92], [93]. The reason for

modeling this filter with such kind of functions is their monotonicity
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and smooth shape in relationship with the consistence of fog. The

decreasing of these functions on the interval of interest is monotonous,

not abrupt as the one presented in [85]. In the previous mentioned

paper an exponential decay is introduced in the veil’s computation that

introduces another constraint for computing the atmospheric veil: the

planar assumption (NBPC + PA). Our approach is somehow different

in the sense that we treat the whole atmospheric veil as an exponential

function. For this reason we construct an exponential filter which will

be applied on the whole atmospheric veil, rather than the approach

presented in [85]. The final formula for computing the atmospheric

veil is:

Vfinal = V ·G (4.49)

where G is an exponential function with values between 0 and 1. In

the reminder of this section we will focus on modeling the function G

according to the above mentioned properties.

We start from two exponential functions from the partition of unity;

we will call them squared and modulus partition of unity functions

(figure 4.16).

Let fso : [−a, a]→ [0, 1] (squared) and fmo : [−a, a]→ [0, 1] (mod-

ulus) having the following form:

fso(x) = e
− 1

(x−a)2
− 1

(x+a)2 (4.50)

fmo(x) = e−
1

|x−a|−
1

|x+a| (4.51)

For using the functions fso and fmo in image processing, we must

modify them such that they are defined in the image domain and take

values in the [0, 1] interval. For this reason the variable x will denote

the image lines.

Hence, we obtain two new exponential functions fs : [0, H − 1] →
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(a) fso graph for a = 1

(b) fmo graph for a = 1

Figure 4.16: The two original partition of unity functions

[0, 1] and fm : [0, H − 1]→ [0, 1], (figure 4.17) with the following form:

fs(x) =
e
− 1

(ax
H
−a)2

− 1
(ax
H

+a)2

fso(0)
(4.52)

fm(x) =
e
− 1
|ax
H
−a|−

1
|ax
H

+a|

fmo(0)
(4.53)

where H is the height of the image (the number of lines in the image).

The denominator in the above equations is used in order to scale the
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(a) fs graph for a = 1

(b) fm graph for a = 1

Figure 4.17: The two modified partition of unity functions

values for our exponential functions fs and fm in the [0, 1] interval.

Taking into account the previous presented properties of foggy im-

ages, means that our exponential function must have the maximum

value (1) in the sky regions (above the horizon line) and it must have a

minimum value in the near vicinity of the camera, up to a certain dis-

tance. Thus, a translation of our modified exponential functions (along

the x axis from figure 4.17) has to be applied. A linear isomorphism
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Figure 4.18: Segment for translation of the final exponential functions

A : [vh,Max]→ [0, H − 1] is used for this purpose:

A(x) = ax+ b (4.54)

having the following properties:{
A(vh) = 0

A(Max) = H − 1
(4.55)

such that by composing the modified partition of unity functions with

the function A we obtain our desired exponential functions.

Figure 4.18 presents a line segment for translating our exponential

functions. The values on this line segment represent image lines. H is

the height of the image, vh and Max can be arbitrarily chosen such

that our functions will be defined on three intervals([0, vh], (vh,Max),

[Max,H − 1]). For example we could assign one third of the image

lines for each interval. A more robust solution would be to take into

account the position of the horizon line (vh) and the thickness of the

fog in the scene.

By solving the system of equations presented in equation (4.55) the

final exponential function becomes:

Gs(x) =


1 if x ≤ vh

fs(c(x− vh)) if x ∈ (vh,Max)

0 otherwise

where c = H−1
Max−vh . Depending on the value chosen for the Max pa-

rameter a new translation will be obtained. Typical values are 1
4
, 1

2
, 3

4

of the [vh,H−1] interval or even the maximum value (Max = H−1).

Figure 4.19 presents the final allure of our translated exponential func-

tions. A similar function Gm is obtained by using fm instead of fs.

113



CHAPTER 4. CONTRAST RESTORATION OF FOGGY IMAGES

(a) Gs graph for a = 1

(b) Gm graph for a = 1

Figure 4.19: The two translated exponential functions. Used values
are H = 480, vh = 200, Max = H − 1.

In figure 4.20 we present the atmospheric veils obtained by using

our approach. The first column represents the original image from

the FRIDA data set [85]. The second column represents the image

with homogenous fog added, while the next columns present different

atmospheric veils for the following algorithms: modified no black pixel

constraint (NBPC) with no exponential function used, modified no

black pixel constraint with planar assumption (NBPC+PA) [85] and

our algorithm with the following exponential functions: fs and fm
exponential functions and Gs and Gm translated exponential functions.
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Orignal
Image

Foggy
Image

NBPC NBPC
+PA

NBPC
+fs

NBPC
+fm

NBPC
+Gs

NBPC
+Gm

Figure 4.20: Obtained atmospheric veil. From left to right, the original
image without fog, the original image with synthetically added fog and
the atmospheric veil obtained using the filtering along columns for the
following algorithms: NBPC, NBPC+PA, NBPC + fs, NBPC + fm,
NBPC + Gs and NBPC + Gm (the used parameters are k = 15,
p = 95%, a = 3).

The contrast restoration results are presented in the next section.

4.4.4 Contrast Restoration Results

In this section we perform a quantitative and qualitative evaluation

of our image defogging algorithm on both synthetic and real camera

images. Furthermore, a comparison of our algorithm with the method

presented in [85] is also performed.

The synthetic images used in our evaluation come from the FRIDA

data set [85]. This data set contains synthetic images that try to

simulate real traffic scene. Four different types of fog were added to

these images: homogenous fog, heterogeneous fog, cloudy homogeneous

fog and cloudy heterogeneous fog. We have presented the highlights of

this data set in section 4.3 of this chapter.
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Original
Image

Foggy
Image

NBPC NBPC
+PA

NBPC
+fs

NBPC
+fm

NBPC
+Gs

NBPC
+Gm

Figure 4.21: Contrast restoration results on synthetic images. Form
left to right, the original image without fog, the original image with
synthetically added fog and the restoration results with the following
algorithms: NBPC, NBPC+PA [85], NBPC + fs, NBPC + fm, NBPC
+ Gs and NBPC + Gm.The used parameters are k = 15, p = 0.99%
and a = 3.5
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Figure 4.21 presents twelve images from this data set that were en-

hanced by using our image enhancement algorithm, using six methods

for computing the atmospheric veil. The columns represent the orig-

inal image without fog, the original image with synthetically added

fog and the six enhanced images by using the following algorithms:

modified no black pixel constraint (NBPC), no black pixel constraint

with planar assumption (NBPC+PA) [85], no black pixel constraint

with the squared exponential function (NBPC+fs), no black pixel

constraint with the modulus exponential function (NBPC+fm), no

black pixel constraint with the translated squared exponential func-

tion (NBPC+Gs) and no black pixel constraint with the translated

modulus exponential function (NBPC+Gm). All the above mentioned

algorithms use the filtering method applied on the columns of the im-

age. On the lines from figure 4.21 we have chosen four images for

the homogeneous and heterogeneous fog scenarios and two images for

cloudy homogeneous and cloudy heterogeneous fog scenarios. By carry-

ing out a first visual analysis it can be seen that all the above methods

are suitable for image enhancement. The first method, NBPC (column

3) yields a very dark image when comparing to the original image with-

out fog. The idea behind contrast restoration is to remove the fog from

the foggy image such that more features are visible in the enhanced

image. So, objects that could not be seen in the original foggy images

can be clearly identified in the enhanced images. The second method,

(NBPC+PA) [85], gives good results in the vicinity of the camera, but

it cannot restore the contrast at medium to great distances. Some

objects are not visible in the enhanced image: traffic signs, cars, etc.

Another problem of this method is that the restoration is not smooth,

it can be seen that a portion of the image is not correctly restored.

The methods using the squared and modulus exponential functions

(NBPC+fs and NBPC+fm) are smooth and can restore the image

very good up to a certain distance. The last two methods (NBPC+Gs

and NBPC+Gm) give the best results. The restoration is smooth on

all the image and the enhancement is resolved even at great distances

from the camera.
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Cloudy Cloudy All Types
Algorithm Hom. Fog Het. Fog

Hom. Fog Het. Fog of Fog

No 71.83±10.23 50.84±10.36 58.02±10.53 39.98± 9.84 55.16±10.24
NBPC 49.54± 6.35 47.55± 6.94 84.32±21.32 82.43±21.26 65.96±13.96
NBPC+PA 35.99± 8.52 30.74± 7.56 65.35±23.25 63.31±20.48 48.84±14.95
NBPC+fs 40.16± 8.18 27.57± 5.16 57.26±14.28 49.58±16.12 43.64±10.93
NBPC+fm 37.13± 7.35 26.94± 4.68 53.98±15.06 48.88±15.19 41.73±10.57
NBPC+Gs 32.40± 5.79 30.38± 6.32 66.02±21.63 64.75±20.52 48.38±13.56
NBPC+Gm 32.31± 5.94 31.06± 6.02 65.93±21.84 65.48±20.45 48.69±13.56

Table 4.4: Average absolute difference between the original synthetic
images without fog and the enhanced images for the four types of
synthetic fog (Homogeneous, Hetero- geneous, Cloudy Homogeneous
and Cloudy Heterogeneous Fog) and for the whole data set

Algorithm
Cloudy Cloudy All Types

Hom. Fog Het. Fog
Hom. Fog Het. Fog of Fog

e σ e σ e σ e σ e σ
NBPC 37.23 0.0005 19.45 0.0003 77.51 0.0019 48.63 0.0014 45.71 0.0010
NBPC+PA 27.68 0.0016 15.47 0.0003 67.10 0.0025 44.69 0.0014 38.73 0.0014
NBPC+fs 24.89 0.0000 12.64 0.0000 61.97 0.0026 40.39 0.0011 34.97 0.0009
NBPC+fm 27.24 0.0002 13.68 0.0001 64.03 0.0023 40.81 0.0011 36.44 0.0009
NBPC+Gs 34.16 0.0013 17.34 0.0002 74.34 0.0024 46.55 0.0013 43.09 0.0013
NBPC+Gm 34.69 0.0012 17.58 0.0002 74.71 0.0024 46.89 0.0013 43.46 0.0012

Table 4.5: Mean value produced by the e and σ metrics for the syn-
thetic foggy images and the enhanced images, for the four types of
fog (Homogeneous, Heterogeneous, Cloudy Homogeneous and Cloudy
Heterogeneous Fog) and for the whole data set

One quantitative comparison of these algorithms is presented in

table 4.4 and consists in computing the average absolute difference

between the original images without fog and the enhanced images [84].

In order to asses the enhancement improvements we also present the

average absolute difference between the initial images and the foggy

images and compare this to the obtained results. By carrying out

an analysis of table 4.4 it would result that the algorithm using the

modulus exponential function gives the best results, but this is not

the case, since a part of the image is still foggy. In our opinion some

of the algorithms preserve a good reconstruction at small distances

(road surface) (NBPC+PA [85], NBPC+fs and NBPC+fm) but are

not able to enhance the portions of the image that are located at
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greater distances. This problem is resolved by the last two algorithms

(NBPC+Gs and NBPC+Gm). They perform better at medium and

great distances, being able to enhance more features such as traffic

signs, cars, details on buildings, etc, but the image is a little darker

than the original image without fog. This is the reason why we do not

obtain the best result by using this metric (average absolute difference)

for our translated exponential functions.

In the previous section we have presented two other metrics for

image enhancement: rate of new visible edges in the enhanced images

e and the percentage of pixels that become completely black or com-

pletely white after restoration σ. These two metrics are more relevant

for assessing the quality of restoration. It can be seen in table 4.5 that

the image enhancement using the translated exponential functions Gs

and Gm are able to produce the greatest number of new visible edges,

maintaining a very small percent (0.0012%) of bad pixels (underex-

posed or saturated pixels), thus providing a very good enhancement

rate.

In figure 4.22 we present the results of image enhancement on real

traffic images obtained in different driving scenarios in fog conditions in

the neighborhood of Cluj-Napoca. Although the original images are in

gray scale the results obtained demonstrate that the enhanced images

provide a more detailed and consistent view of the analyzed scene.

Table 4.6 presents the average enhancement results for the e and σ

metrics on the traffic images. It can be observed that the algorithms

using the translated exponential functions produce the greatest number

of new edges in the enhanced images, while providing the smallest

number of underexposed or saturated pixels.

We have acquired stereo images using two CV-A10-CL monochrome

cameras and performed a dense stereo reconstruction on the foggy

images using the SORT-SGM algorithm; a GPU based implementation

presented in [94]. After performing the image enhancement of the foggy

images using all the previous presented algorithms we have repeated

the stereo reconstruction process for each method. In our work we have

focused on four different test cases having the following parameters:
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Figure 4.22: Image Enhancement Results on Traffic Images. From
Left to right, the original image captured in fog conditions, and the
enhanced images with the following algorithms: NBPC, NBPC+PA
[85], NBPC + fs, NBPC + fm, NBPC + Gs and NBPC + Gm. All
the presented algorithms use the median filtering along the columns of
the image (the used parameters are k = 15, p = 0.95% and a = 3.5)

• 1: k = 05, p = 0.95%, a = 3.5 and Max = H+vh
2

• 2: k = 05, p = 0.95%, a = 3.5 and Max = H − 1

• 3: k = 15, p = 0.95%, a = 3.5 and Max = H+vh
2

• 4: k = 15, p = 0.95%, a = 3.5 and Max = H − 1

The differences between these test cases appear only for the en-

hancement algorithms using the translated exponential functions. We

can observe a boost in the number of 3D points in the cases where the

Max parameter is considered to be in the middle of the [vh,H − 1]
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interval. The odd lines form figure 4.22 present the left images, while

the even lines present the right ones. The percentage of new 3D points

obtained through image enhancement, with each method is presented

in table 4.7 and the average number of 3D points obtained through

stereo reconstruction for test case 3 is presented in figure 4.23. We

can observe that the methods using the squared and modulus expo-

nential functions are able to provide more 3D points than all the other

methods.

Algorithm
Left Right

e σ e σ
NBPC 63.68 0.0006 66.97 0.0066
NBPC+PA 63.67 0.0006 66.86 0.0066
NBPC+fs 53.61 0.0035 59.10 0.0064
NBPC+fm 54.69 0.0016 59.44 0.0064
NBPC+Gs 65.18 0.0006 65.29 0.0064
NBPC+Gm 65.33 0.0006 65.07 0.0064

Table 4.6: Mean values for e and σ metrics, for stereo traffic images.

Algorithm Case 1 Case 2 Case 3 Case 4
NBPC −4.06 −4.06 1.87 1.87
NBPC+PA −8.42 −8.42 0.44 0.44
NBPC+fs 4.89 4.89 5.57 5.57
NBPC+fm 4.38 4.38 5.80 5.79
NBPC+Gs 3.33 2.20 5.05 4.48
NBPC+Gm 3.29 1.89 5.04 4.34

Table 4.7: Average Percent of new 3D points in the enhanced traffic
images for the four test cases

The used stereo reconstruction algorithm [94] is able to perform

3D reconstruction up to 40 meters with an average error of 3%. Since

we cannot estimate the reconstruction errors in fog conditions we pro-

pose to evaluate the accuracy of our image enhancement algorithms

not only by performing 3D reconstruction on stereo images, but also

by performing object detection and classification in fog conditions. In
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Figure 4.23: Average Number of 3D Reconstructed Points

Original
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Foggy
Image

NBPC
+PA

NBPC
+fs

NBPC
+fm

NBPC
+Gs

NBPC
+Gm

Figure 4.24: Object classification results on enhanced images. From
left to right, the original image, the image with added homoge-
neous fog, and the enhanced images with the following algorithms:
NBPC+PA [85], NBPC + fs, NBPC + fm, NBPC + Gs and NBPC
+ Gm (the used parameters are k = 15, p = 0.95% and a = 3.5).

order to achieve this, we have added fog to a stereo image sequence

(visibility distance below 15 meters) and performed stereo reconstruc-
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tion on the original fog free images, on the images with added fog and

on the enhanced images. Next we perform object detection and clas-

sification in all these scenarios. The target object used in our tests

is a vehicle (displayed with a red box). The results are presented in

figure 4.24. At small distances (< 10) m all the algorithms are able to

correctly classify the car in front of the ego vehicle and to accurately

estimate it’s distance, but the algorithm using NBPC+PA is not able

to detect the second vehicle. As the distance increases the objects tend

to disappear in the fog until they are no longer detected and classified.

The detection and classification error increases with the distance; for

example in the second image the detected vehicle is situated at 11.2 m

and is perceived as being 0.4 m further in the foggy image than in the

original one, in the third case 1.5 m further, while in the fourth the

object is no longer detected and classified. Table 4.8 presents the ob-

tained distances to the target vehicle after performing object detection

and classification in the above presented scenarios. By analyzing the

object detection and classification results presented in figure 4.24 we

can state that the image enhancement algorithms using the translated

exponential functions are the ones that yield the best results, very close

to the fog free scenarios; the average detection errors are below 5.5%

in the cases where the target vehicle are located beyond the visibility

distance.

Algorithm Case 1 Case 2 Case 3 Case 4 Case 5

Original 4.9 11.2 17.0 20.0 12.9
Fog 5.0 11.6 18.5 no 13.2
NBPC+PA 5.0 11.4 17.4 22.7 12.9
NBPC+fs 5.0 11.4 17.9 21.7 13.2
NBPC+fm 5.0 11.4 17.7 22.5 12.9
NBPC+Gs 5.0 11.4 17.3 21.7 12.9
NBPC+Gm 5.0 11.4 17.3 21.7 12.9

Table 4.8: Distance to Target Vehicle obtained after object detection
and classification
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Our exponential functions use 3 parameters: the position of the

horizon line in the image vh, max represents the line from which the

translated exponential function has the value 0 and a is the parameter

that models the shape of the exponential function. The value of vh
can be estimated from the camera parameters or it can be computed

with the algorithm described in [6], max = H−1 since our exponential

function decreases asymptotically towards zero, and the a parameter is

chosen accordingly to the thickness of the fog in the scene. By applying

a fog detection on the input images we can estimate the fog category

based on the visibility distance obtained from the images [6]. If the

visibility distance is below 50m, very dense fog scenario, we have used

a = 4.5 in the evaluation of the distances to the target vehicle based

on stereo reconstruction. When the visibility is between 50 and 100m

we have chosen a = 3.5. Thus, a look up table based approach can be

employed for choosing the value of this parameter. If there is no fog

in the scene by selecting a = 0 the exponential function will have the

value 0, and thus the estimated atmospheric veil will be null.

Another important factor for image enhancement is the processing

time. Our method is robust and scalable, and the complexity of the

presented algorithm varies linearly with the dimension of the input im-

age. The method was implemented and tested in C++ on an i7-based

PC. Table 4.9 presents the average processing time of our algorithm on

the three test sets: synthetic images, natural images and traffic scenes.

We can observe that the processing time is below 25 milliseconds in

the real traffic scenarios, so we are able to process at least 30 frames

per second, which makes our algorithm suitable for real time image

processing.

4.4.5 Optimizing Contrast Restoration on Embed-

ded Hardware

A big issue for vision based advanced driving assistance functions

or for fully automated vehicles is the ability to run image processing

based algorithms on embedded low power devices. This is due to the
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Image Image Image Processing
Resolution Type Color Time (ms)

640 x 480 Synthetic RGB 32.4
604 x 404 Natural RGB 17.9
512 x 383 Traffic GRAY 24.2

Table 4.9: The average processing time of our algorithm on the three
tested scenarios: synthetic images from the frida data set, natural
images and traffic images.

high demand of computational resources needed by such applications.

For this purpose we have chosen to deploy our contrast restoration

solution on an Xilinx Zynq FPGA embedded platform [95]. In this

section we present the methodology for reaching this goal and the

increase in performance that can be achieved with an FPGA device

when comparing to the solution implemented on an ordinary off the

shelf processor. The ZYNQ Programmable System on Chip (SoC)

is a Xilinx FPGA device, that not only provides a powerful FPGA

(Artix-7/Kintex-7) but also a 1.2 GHz ARM dual core processor. In

addition, such a SoC combines the flexibility of writing code in a high

level programming language (C/C++) with the massive parallelism

and computational power obtained inside an FPGA device. This SoC

provides multiple advantages:

• performance – the performance gain that can be achieved by

exploiting the full capabilities of the SoC is very high. Our em-

bedded solution is more than 10 times faster than the PC based

one.

• cost – the embedded solution proves to be not only faster than

other solutions, but it is also more cost effective.

• form factor – the solution is run on a SoC that can easily be

integrated inside a vehicle’s embedded camera.

• power consumption – the power consumption of such a Xilinx

SoC is in the range of a few Watts ( < 10 W).
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Figure 4.25: Global processing diagram for embedded contrast restora-
tion on Xilinx ZYNQ FPGA [95].

All these characteristics make the Xilinx ZYNQ architecture ideal

for real time embedded image processing in automotive applications.
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The prototype / test board used in these experiments (Digilent ZYBO

board) is equipped with a ZYNQ Z-7010 SoC and has a 512 MB DDR

Memory. The hardware version of our contrast restoration design is

spread in both the Programmable Logic (FPGA) and the Processing

System (ARM CPU). The Xilinx ZYNQ architecture provides multi-

ple ports that facilitate the communication between these two main

components - AXI Protocol [96]. This protocol proposed by ARM is

part of the AMBA specification and incorporates interfaces like AXI

Lite, AXI4 and AXI Stream each suited for specific use cases, facilitat-

ing the communication between the FPGA and the ARM processor.

A high level view of this SoC and the the cores implemented in the

programmable logic are depicted in figure 4.25.

The image enhancement algorithm presented in the previous sec-

tions was the basis for our FPGA based implementation. Given the

hybrid nature of the Xilinx ZYNQ embedded platform we have exper-

imented with different hardware implementations of this algorithm.

Taking into account the layout of the development board used, the

images were loaded inside the ZYNQ platform through an Ethernet

interface. So the connection between the PC and the FPGA SoC is

made via the Ethernet interface, which in the SoC is interfaced di-

rectly in the ARM processor. This approach made the image acquisi-

tion a very simple process; it is done by the ARM CPU. The images

coming from the PC are stored in the DDR memory available on the

development board. For displaying the results, a monitor is connected

directly to the development board through an HDMI interface. Since

the HDMI interface pins are connected to the programmable logic in

the FPGA, we have designed a custom HDMI controller for displaying

the enhanced images. In order to put as little pressure as possible on

the CPU we used one of the DMA engines available on the board, the

Video Direct Memory Access IP (VDMA) provided by Xilinx. After

the foggy images are processed and stored in the external DDR mem-

ory we have serialized the defogged images, using AXI Stream to the

programmable logic. We have used a VTC (Video Timing Controller)

IP for synchronizing the stream and then converted it the RGB24 for-
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mat. Using a custom VHDL based VIDHDMI core, the pixel data is

encoded as well as serialized according to the HDMI specification and

finally connected to the output ports.

Full Software Approach

The first approach when porting an algorithm to embedded hardware

is first to implement it only in software. So the entire defogging algo-

rithm was ported in C and run on the ARM CPU, using the FPGA

just for the displaying the results through the HDMI interface. Al-

though the resulting images are good, these first results were poor

from the performance point of view. The processing of one frame

took around 1 second, which was nowhere near the desired through-

put. However, after further software optimizations we managed to get

that number down to around 180 ms per frame. This proves to be

the most straightforward and accessible method, but unfortunately it

poses some problems when it comes to its effectiveness in real-time sys-

tems even after extensive software optimizations. The ARM CPU on

our ZYNQ works at a frequency of only 650 MHz and it should come

as no surprise that the performance is nowhere near a conventional

high performance PC with clock frequencies in the 3–4 GHz range. In

addition, the throughput offered by this approach is not usable in a

real world situations, yielding only about 5 frames per second. Figure

4.26 present the hardware architecture for the full software solution.

Hybrid Approach

The second step in our optimization strategy was to take advantage

of the parallelization and pipelining abilities of the FPGA device and

thus to harness its capabilities. The performance gains that can be ob-

tained in the programmable logic, especially when it comes to image

processing are considerable. The downside of this is that code written

for the hardware is harder to develop and more difficult to maintain,

but it makes up for that in terms of the customization and control one

has on the entire process. As such, we decided to first port our compu-

tationally intensive tasks to the programmable logic. More specifically

we targeted the median and the standard deviation filters used in the

defogging process, equation (4.46). These filters are implemented in
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Figure 4.26: Full software solution. The image defogging algorithm
is implemented completely on the ARM processor from the ZYNQ
embedded platform [95]

the FPGA using Vivado HLS with modified hardware orientated C

code. While Vivado HLS provides a high level language in which to

develop our Image Processing Core, the standard sequential C mindset

proves ineffective. In this environment we must always keep in mind

the consequences of our code in terms of used area, parallelization

and pipelining potential. Using these three principles we obtained a

faster and efficient hardware design of the image defogging algorithm.

The transfer of the foggy image from the DDR memory through the

Filter Core (median and std deviation) is done with minimum CPU

utilization, using the DMA Engine which operates on the High Perfor-

mance AXI Ports residing between the two integrated components of

the ZYNQ SoC. The image is serialized using an AXI Stream interface

through our pipelined Filter Core and back into main memory where

the subsequent contrast restoration steps are performed. Only by mov-

ing these performance critical parts into the FPGA logic yielded more

than double the performance when comparing to the pure CPU one,

giving us around 70 ms for the defogging of one frame. However, what

is truly notable here is the fact that the operations done in the pro-

grammable logic part of the SoC only took around 4 ms, including the

transfer. This incredible performance was achieved due to the proper
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pipelining of the algorithm.

Full Hardware Approach

Figure 4.27: Full Hardware solution. The image defogging algorithm
is implemented entirely in the FPGA logic of the ZYNQ embedded
platform [95]

Taking into account this amazing potential of our pipeline solution,

we have then decided to move the entire algorithm in the FPGA logic.

Working with a modest ZYNQ Z-7010 SoC we are very limited in terms

of logic area. Even so, we managed to optimize our code and make the

algorithm fit with room to spare, keeping the cost advantage. Figure

4.27 presents the top-level architecture of the full hardware solution.

Some decisions had to be made in order to save up some area for the

complete hardware solution:

• We have used a look-up-table for storing the values of the trans-

lated exponential function Gs and Gm, equations (4.52 and 4.53).

• In order to free up resources and to be able to fit the whole design

in the FPGA programmable logic, we have used single precision

floating point calculations instead of double precision floating

point (Vivado HLS uses different Cores for float and double).

• We took full advantage of the DSPs cores available in the FPGA

device.
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Results on the embedded FPGA platform

The used embedded FPGA platform is the ZYNQ Z-7010 SoC from

Xilinx. This SoC has the following hardware configuration: only 28.000

Logic Cells, 2.1 Mb Block Ram and 80 DSP slices. It is the entry level

configuration for the ZYNQ platforms. As in the previous sections we

have used the FRIDA (Foggy Road Image Database) data set [86] for

assessing the contrast restoration results on this embedded platform.

As in the previous sections, we present the contrast restoration re-

sults with our defogging algorithm on the ZYNQ embedded device in

figure 4.28. The first column presents synthetic images without fog

from the FRIDA data set [86]. The second column presents the same

images with added homogenous fog, while next two columns present

our restoration results in the full software, full hardware implemen-

tations when using the translated exponential function Gs. The pa-

rameters used for the image restoration process are: k= 3 (size of

the median filter), p = 99% (percent from equation (4.46)), a = 3.5,

vh = 260, Max = H−1 (H = 480 — image height). By carrying out a

visual analysis of the results in Figure 4.28, it can be seen that all the

presented implementations are good candidates from the results qual-

ity point of view. The images in the full software approach and the full

hardware implementation are very similar. The average absolute dif-

ference between these images is less than 2% due to the optimizations

required in order to be able to fit the full hardware design on our test

board. The restoration results are significant, superior to other state of

the art algorithms, as it was presented in [91] and [97]. The visibility

distance in the scene is drastically increased, such that a driver can

actually see the obstacles that are in front of the vehicle even in very

dense fog conditions.

When programming for such an embedded FPGA device, an impor-

tant assessment contains the device utilization for the obtained hard-

ware architectures. In the full software configuration (the whole de-

fogging algorithm runs on the ARM CPU) only the HDMI display

component is implemented in the programmable logic. When compar-

ing the hybrid and full hardware solutions only the number of DSP
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Original Image Foggy ARM Restored ARM Restored FPGA

Figure 4.28: Comparison of contrast restoration results between the PC
/ ARM implementation and the embedded ZYNQ FPGA implemen-
tation. Form left to right, the original image without fog, the original
image with synthetically added homogeneous fog and the restoration
results with the algorithm run on Intel or ARM processor and the
FPGA implementation. The used parameters are k = 15, p = 0.99%
and a = 3.5

slices and LUTs (Look Up Tables) is greatly increased, due to the fact

that in the full hardware implementation we use a LUT for the ex-

ponential function of the atmospheric veil and have also moved the

final computation of the restored image, equation 4.40, in the FPGA

logic. Figure 4.29 presents the resource utilization for the most rel-
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Figure 4.29: ZYNQ FPGA Resources used for Image Defogging

evant implementation – the full hardware one. We present here the

actual utilization for each type of hardware component present in the

FPGA fabric. It is worth mentioning that more than 50% of the used

logic belongs to the embedded contrast restoration algorithm.

The final assessment carried out in this section is the performance

evaluation. In the figure below we present the average processing time

and the maximum number of frames per second that can be achieved

by our three implementations on the ZYNQ embedded platform and

we compare the performance of these embedded implementations to

the reference PC implementation (standard PC equipped with an Intel

Run-time evaluation Number of frames per second

Figure 4.30: Performance Analysis of the three embedded solutions
and the reference PC one.
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i7 3770K processor). In the PC based implementation the defogging

algorithm is able to obtain a maximum throughput of about 15frames

per second [97] while our full hardware solution is almost 5 times faster,

making it a very good candidate to be embedded directly in the camera

hardware. Having obtained such results on an entry level FPGA based

SoC, we have proved that an embedded image processing solution can

outperform a PC based solution, not only in terms of performance but

also in terms of cost effectiveness.

4.5 Conclusions

This chapter presented the most relevant methods used for con-

trast restoration of fog degraded images. We have categorized these

methods into the following three classes: non-model based methods

and model based methods with and without depth information. The

non-model based methods usually achieve poor results, because they

try to change the image histogram’s shape by only using image re-

lated information and thus introduce noise in the resulting images or

create different artifacts that were originally not present in the ana-

lyzed scene. Other non-model based methods use either the wavelet

transform or multi-scale retinex and they require multiple frames of

the same scene. This is not possible in dynamic traffic scenes, so these

methods are not suitable for advanced driving assistance functions.

The model based methods with given depth information would be able

to provide satisfactory results, heavily relying on the accuracy of the

depth information. Since for the images captured in fog conditions it

is very hard to obtain a reliable depth map all these methods try to

approximate it, but the results of these approximations are not math-

ematically solid. Furthermore such approximations are not possible

in real time driving situations when the observed scene is constantly

changing.

The last category of methods, the model based contrast restoration

methods without depth information try to use a single image in or-
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der to obtain the fog free representation of the input scene. All these

methods use a mathematical model of the observed scene in fog condi-

tions. Some methods are only suited for restoring the contrast of the

images when the depth is rather constant, failing to correctly enhance

images of road scenes. Other methods try to infer a transmission map

or an approximation of the depth in the scene and subtract it from

the original foggy image. These methods achieve better enhancement

results, but the processing time is rather high, so they are not good

candidates for real time driving assistance applications or autonomous

driving. Methods based on Koschmieder’s law try to restore the con-

trast of images by inferring the atmospheric veil or the fog addendum

in the image. The results are quite good on natural images. For traf-

fic images, new constraints can be added: planar road constraint or

to take into account the exponential decay of the fog. The planar

road constraint has some drawbacks: it does not produce a smooth

atmospheric veil over the whole image (there exists a cut off of the

atmospheric veil, which yields poor results for objects that are further

away from the camera. Our solution for image defogging is modeling

the exponential decay of the fog by using two mathematical functions

inspired from the partition of unity in the differential geometry field

[93],[92]. Our algorithm not only produces better visual results but

it also performs in real time. It is based on the median filtering and

standard deviation computed on the columns of the input image (which

makes these filters consistent with the presence of fog in the scene),

and makes an exponential inference of the atmospheric veil or fog ad-

dendum in the image. The results are better especially in the distance

since our algorithm can adapt to the density of the fog present in the

scene.

We have also tested the quantitative results of several image de-

fogging solutions. We mention here: the rate of new visible edges, the

percentage of pixels that become completely black or completely white

after restoration, the ratio of gradients at visible edges and the average

absolute difference between the images without fog and the restored

images (this metric can only be used for synthetic images); other met-
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rics specific for stereo systems: the number of 3D reconstructed points

and the distance estimation of the object detection and classification

in fog conditions.

Another important aspect to consider for autonomous driving or

advanced driving assistance functions is the ability to perform image

processing functions on specialized embedded hardware. In this chap-

ter we have presented a very robust solution for deploying our state

of the art image defogging algorithm to an FPGA based embedded

system – the Xilinx ZYNQ SoC. The obtained results were remark-

able, the run-time gain was 5 times faster than the original PC based

solution with the same accuracy.
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Conclusions

This book presents the authors view about how an image process-

ing based advanced driving assistance function or a fully autonomous

vehicle must cope with one of the most severe weather phenomenon

that can severely affect the perception task in driving situations. This

last chapter presents the main conclusions that can be drawn from the

book, together with some general guidelines to be considered for de-

signing autonomous vehicles that should also be capable of driving in

fog conditions (even in extreme foggy conditions at reduced speed).

For advanced driving assistance functions or autonomous vehicles

the camera, or several cameras, will be one of the main sensors used for

the perception task, i.e. to understand what happens in the vehicle’s

surroundings. For achieving this, several image processing functions

are mandatory in order to be able to assess whether the image pro-

cessing tasks are able to perform with reasonable performance, due to

the weather and environment conditions. If this is not the case then

the camera must signal that is inoperable.

One of the most dangerous weather phenomena for driving scenar-

ios is fog. So an autonomous vehicle must be able to cope and perform

well in such driving situations. A first task that must be performed in

an autonomous vehicle is to detect the presence of fog in the scene. A

good fog detection algorithm has to provide some relevant information

like: the presence of the fog in the scene, the type or category of the fog
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(the fog’s density), an estimation of the visibility distance in the scene,

i.e. how far away is the camera able to perceive objects. The majority

of the fog detection algorithms for driving assistance are based on the

well known Koschmieder law. A fog detection solution must be stable,

with as minimum oscillations as possible, providing accurate results.

Temporal filtering and integration must also be added to increase the

robustness of the fog detection solution. In addition, a good solution in

fog conditions should also incorporate the reliable computation of the

maximum safe traveling speed on the given road segment. If this is not

possible than the autonomous vehicle must rely on other sensors, like

radars or laser scanners, in or to proceed. Furthermore, the detected

information can be uploaded in the cloud, or sent to regional traffic

information system, in order to aid in high level navigation functions

that are also necessary in autonomous driving.

The next task to be performed by an autonomous vehicle in fog sce-

narios is to infer the fog free representation of the scene, i.e. to perform

an image enhancement algorithm or image defogging. An important

aspect in image defogging is to consider a model based algorithm, since

the depth in fog conditions cannot be reliably inferred by a monocu-

lar or stereo vision system. In this book, we have presented a state

of the art algorithm based on Koschmieder’s law and a mathematical

model for inferring the atmospheric veil that also takes into account

the exponential decay of the fog present in traffic scenes. The derived

exponential functions were designed to be applied in the image do-

main and they provide superior restoration results and higher quality

images. The clarity of the reconstructed scene is higher especially in

the regions of the image with many details, such as traffic signs, cars

and buildings. Furthermore, our algorithm is able to provide increased

clarity, even for objects that are further away in the scene. Recent

approaches in literature try to reliably perform semantic semantic seg-

mentation tasks directly on the foggy images, and provide pixel wise

segmentation of the scene in front of the vehicle [98]. These approaches

are new and can be considered as a redundant image processing path

for an autonomous vehicle. Nevertheless, these approaches must also
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be tested on real world traffic scenarios.

Safety is an important issue, not only in autonomous vehicles, but

also in advanced driving assistance functions. For this reason the auto-

motive community is considering not only a redundancy in sensors, but

also an algorithmic redundancy. This implies that also image process-

ing functions must be dual and a fusion of the output of several image

processing algorithms must be performed, together with the fusion of

information provided by all relevant sensors in the vehicle (cameras,

laser scanners, radars, etc.). This is crucial for achieving automotive

safety.

Last but not least, a robust, real time, complete, embedded and low

power solution is needed that must incorporate all the above mentioned

ideas. In this book, we have presented our algorithmic variants for

performing real time image processing on embedded platforms: the

fog detection algorithm and driving assistance in fog conditions was

successfully ported on an embedded ARM processor, while the image

defogging solutions was ported to a Xilinx ZYNQ SoC.
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