
UTPRESS
Cluj-Napoca, 2019

ISBN 978-606-737-377-6

Victor Ioan BÂCU

ELEMENTS OF COMPUTER

ASSISTED GRAPHICS

Laboratory works

Editura UTPRESS

Cluj-Napoca, 2019
ISBN 978-606-737-377-6

 Editura U.T.PRESS

 Str. Observatorului nr. 34

 C.P. 42, O.P. 2, 400775 Cluj-Napoca

 Tel.:0264-401.999

 e-mail: utpress@biblio.utcluj.ro

 http://biblioteca.utcluj.ro/editura

 Director: Ing. Călin D. Câmpean

 Recenzia: Prof. dr. ing. Dorian GORGAN

 Șl. dr. ing. Teodor Traian ȘTEFĂNUȚ

Copyright © 2019 Editura U.T.PRESS

Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este posibilă

numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-377-6

Preface

This book contains 12 laboratory works related to the computer graphics domain. Its main focus

are the students from the second year of Computer Science department from the Computer

Science and Automation faculty, Technical University of Cluj-Napoca, but it can be used by any

engineer interested in this domain.

The content follows the structure of the Elements of Computer Assisted Graphics course taught

at Technical University of Cluj-Napoca.

Each laboratory work is structured into three main sections. The first section presents the

objectives and what is supposed to be learnt by students, the second section offers an overview

of the theoretical background supporting the presented material. The last sections contains

some assignments.

Cluj-Napoca, Author

04.06.2019

Table of content

Laboratory work 1 – SDL Introduction .. 4

1 Objectives ... 4

2 Theoretical background ... 4

3 Assignments .. 7

Laboratory work 2 - Vectors ... 8

1 Objectives ... 8

2 Theoretical background ... 8

3 Assignments .. 10

Laboratory work 3 - Matrices ... 11

1 Objectives ... 11

2 Theoretical background ... 11

3 Assignments .. 15

Laboratory work 4 - Transformations ... 16

1 Objectives ... 16

2 Theoretical background ... 16

3 Assignments .. 20

Laboratory work 5 – Applied transformations .. 21

1 Objectives ... 21

2 Theoretical background ... 21

3 Assignments .. 22

Laboratory work 6 – Bresenham algorithm .. 23

1 Objectives ... 23

2 Theoretical background ... 23

3 Assignments .. 30

Laboratory work 7 – Line clipping algorithms ... 31

1 Objectives ... 31

2 Theoretical background ... 31

3 Assignments .. 35

Laboratory work 8 – Rasterization pipeline .. 36

1 Objectives ... 36

2 Theoretical background ... 36

3 Assignments .. 41

Laboratory work 9 – Triangle rasterization algorithm... 42

1 Objectives ... 42

2 Theoretical background ... 42

3 Assignments .. 44

Laboratory work 10 – Z-buffer algorithm .. 45

1 Objectives ... 45

2 Theoretical background ... 45

3 Assignments .. 48

Laboratory work 11 – Polygon clipping algorithms ... 49

1 Objectives ... 49

3 Assignment ... 54

Laboratory work 12 – Bezier curves .. 56

1 Objectives ... 56

2 Theoretical background ... 56

3 Assignments .. 57

References ... 58

Laboratory work 1 – SDL Introduction

1 Objectives
The objective of this laboratory is to describe briefly the SDL library and to exemplify the

development of a basic SDL based application.

2 Theoretical background

2.1 Create a window using SDL
SDL (Simple DirectMedia Layer) library manages the access to graphics hardware (via OpenGL

and Direct3D libraries) and also to audio, keyboard and mouse (independent on the underlying

operating system). It supports Windows, Mac OS X and Linux and various other platforms.

During this laboratory we will be using the C++ programming language but there are available

bindings to other languages (such as C# or Python).

In order to create an SDL window the following steps are required:

1. Initialize the SDL library by calling the SDL_Init() function with SDL_INIT_VIDEO as

argument because we are using only the video subsystem of the SDL.

SDL_Init(SDL_INIT_VIDEO);

2. Create the window using the SDL_CreateWindow() function. The arguments are the

window title, position, width, height and some flags (for example to create a fullscreen

window or a resizable window).

SDL_CreateWindow("SDL Hello World Example", SDL_WINDOWPOS_UNDEFINED,
SDL_WINDOWPOS_UNDEFINED, WINDOW_WIDTH, WINDOW_HEIGHT,
SDL_WINDOW_SHOWN | SDL_WINDOW_ALLOW_HIGHDPI);

Before closing the application we need to deallocate all the resources we created:

1. Destroy the window by calling the SDL_DestroyWindow() function and passing as the

argument the pointer to the window.

SDL_DestroyWindow(window);

2. Call the SDL_Quit() function that is responsible to clean up all initialized subsystems (for

our example we are using only the video subsystem).

https://wiki.libsdl.org/SDL_Init
https://wiki.libsdl.org/SDL_CreateWindow
https://wiki.libsdl.org/SDL_DestroyWindow
https://wiki.libsdl.org/SDL_Quit

SDL_Quit();

2.2 SDL Surface
In order to draw something onto the screen we need a canvas. In SDL the canvas can be

represented by SDL_Surface or SDL_Texture. SDL_Surface is used in software rendering, instead

SDL_Texture is used in hardware rendering, the main difference being the location of data

(pixel) buffers. In this laboratory we will be using SDL_Surface because we will implement the

graphics pipeline from scratch.

In SDL a surface is a structure containing a collection of pixels. Each window has attached such a

surface and in addition we can create new surfaces and apply some operations on them (for

instance we can load an image in a surface and copy the content to the window). The

SDL_Surface stores the format of the pixels, the dimension (width and height), a pointer to the

actual pixel data and other relevant information. We will use a 32-bit pixel representation, in

this situation we store 1 byte per channel (red, green, blue and alpha).

If we want to draw a rectangle we need to specify the starting position of the rectangle (the x

and y coordinates) and the dimension (width and height). In order to specify the color we are

using the SDL_MapRGB() function using the pixel format of the surface and the Red, Green and

Blue values. The SDL_FillRect() function will update the surface with the specified rectangle and

color.

SDL_Rect rectangleCoordinates = {100, 100, 200, 200};
Uint32 rectagleColor = SDL_MapRGB(windowSurface->format, 255, 0, 0);

SDL_FillRect(windowSurface, &rectangleCoordinates, rectagleColor);

For each color channel we specify the values between 0 and 255. Look at the following table for

some color channel values, by combining the channel values we get different colors.

Color
name

Red
channel

Green
channel

Blue channel Color

White 255 255 255

Red 255 0 0

Green 0 255 0

Blue 0 0 255
Yellow 255 255 0

Black 0 0 0

2.3 Process events
In SDL the events could be things like pressing a keyboard key or mouse motion. All the events

are stored in a queue in the order in which they occurred. By using the SDL_WaitEvent()

function we get the next event from the queue.

https://wiki.libsdl.org/SDL_Surface
https://wiki.libsdl.org/SDL_WaitEvent

2.3.1 Mouse pressed event

We can check if the left mouse button is pressed using the following piece of code, first we

check the event type to be SDL_MOUSEBUTTONDOWN and the pressed button to be

SDL_BUTTON_LEFT. The SDL_GetMouseState() function gets the coordinates of the mouse

current position (x and y).

if(currentEvent.type == SDL_MOUSEBUTTONDOWN)
 if(currentEvent.button.button == SDL_BUTTON_LEFT)
 SDL_GetMouseState(&mouseX, &mouseY);

2.3.2 Mouse move event

We can check if the left mouse button is pressed while the mouse is moving using the following

piece of code, first we check the event type to be SDL_MOUSEMOTION and the pressed button

to be SDL_BUTTON_LEFT.

if(currentEvent.type == SDL_MOUSEMOTION)
 if(currentEvent.button.button == SDL_BUTTON_LEFT)

 SDL_GetMouseState(&mouseX, &mouseY);

2.3.3 Keyboard event

We can get the key pressed by using the following piece of code, first we check the event type

to be SDL_KEYDOWN and then we process the desired keys.

if(currentEvent.type == SDL_KEYDOWN)
 switch(currentEvent.key.keysym.sym)
 {
 case SDLK_UP:

 //process UP key
 break;

 case SDLK_r:
 //process R key

 break;

 ...
 default:
 //default process

 break;
 }

2.4 Further reading
• Setting up SDL on various platforms –

http://lazyfoo.net/SDL_tutorials/lesson01/index.php

• SDL Tutorials - http://lazyfoo.net/SDL_tutorials/

3 Assignments
Download and run the application from the laboratory website. Try to understand the basic

example and then extend the application with the following functionality:

• Change the rectangle color by selecting the color channel using the R (for red), G (for

green) and B (for blue) keys and by selecting the channel value by pressing the UP and

DOWN keys.

• Interactively display a rectangle, the first set of coordinates is retrieved at left mouse

button down event and the second set of coordinate is retrieved at every mouse move

event (but only if the left button is still pressed).

Laboratory work 2 - Vectors

1 Objectives
The objective of this laboratory is to implement specific C++ classes for handling vectors.

2 Theoretical background

2.1 Vectors
In the field of computer graphics vectors are used to determine the angle between edges, the

orientation of surfaces, the relative position of a point to a surface, in the computation of

lighting models, and many other things.

We represent vectors by a list of numbers and graphically in a Cartesian coordinate system. We

represent vectors as arrows and we name them by using bold letters. Geometrically a vector is

described by direction and length. In 2D, a vector can be written as a combination of two not

parallel vectors (with a length different from 0). A vector v is represented by 𝒗 = 𝑣𝑥𝒙 + 𝑣𝑦𝒚,

where 𝑣𝑥, 𝑣𝑦 are the Cartesian coordinates of the vector. We can write vectors horizontally and

call them row vectors or we can write them vertically and call them column vectors. For the

previous example we can write: 𝒗 = [
𝑣𝑥

𝑣𝑦
], or 𝒗𝑇 = [𝑣𝑥 𝑣𝑦].

In computer graphics we are interested in 2D, 3D and 4D vectors and we refer to vector

elements by:

• x, y (in 2D)

• x, y, z (in 3D)

• x, y, z, w (in 4D)

Vectors can be used to store displacement (the offset between two points) or locations

(represented as displacement from a well known origin). Note however that locations are not

vectors (we cannot add “Cluj” to “Bucharest”).

The difference between two points is a vector (𝒗 = 𝑄 − 𝑃), and the sum

between a point and a vector is a point (𝒗 + 𝑃 = 𝑄).

2.2 Operations

2.2.1 Basic operations

If two vectors have the same length and direction than they are equals.

The length is denoted by ‖𝒗‖ and equals the square root of the sum of the square of vector

elements. In the 2D case the length is ‖𝒗‖ = √𝑣𝑥
2 + 𝑣𝑦

2.

A unit vector is a vector with length equal to 1. The zero vector has the

length equal to 0 (in this case the direction is undefined). We can

normalize any nonzero vector by dividing the vector by its length (the new

length equals 1).

We can sum two vectors by the parallelogram rule. This operation is

commutative: 𝒖 + 𝒗 = 𝒗 + 𝒖

We can represent also the subtraction of two vectors by a parallelogram.

The scalar multiplication is another operation which can be performed on

vectors.

2.2.2 Dot product

The dot product of two vectors returns a scalar value related to the

vectors’ length and the angle between them.

𝒖 ∙ 𝒗 = ‖𝒖‖‖𝒗‖𝑐𝑜𝑠𝜃

If two vectors u and v are represented in Cartesian coordinate then 𝒖 ∙

𝒗 = 𝒖𝑥𝒗𝑥 + 𝒖𝑦𝒗𝑦 . Similar in 3D the dot product is 𝒖 ∙ 𝒗 = 𝒖𝑥𝒗𝑥 +

𝒖𝑦𝒗𝑦 + 𝒖𝑧𝒗𝑧.

2.2.3 Cross product

In computer graphics we are mainly using this product only on 3D vectors,

but the product can be generalized. The result is a vector perpendicular to

the two vector. The length of the resulting vector is ‖𝒗 × 𝒘‖ =

‖𝒗‖‖𝒘‖𝑠𝑖𝑛𝜃 . The direction of the vector generates a right-handed

coordinate system.

 𝒗 × 𝒘 = [

𝒗𝑦𝒘𝑧 − 𝒗𝑧𝒘𝑦

𝒗𝑧𝒘𝑥 − 𝒗𝑥𝒘𝑧

𝒗𝑥𝒘𝑦 − 𝒗𝑦𝒘𝑥

]

3 Assignments
Download the source code from the web repository. You have to implement the methods inside

the source files (vec2.cpp, vec3.cpp, and vec4.cpp). The header files contain the definition of

classes and the methods that should be implemented.

Laboratory work 3 - Matrices

1 Objectives
The objective of this laboratory is to implement specific C++ classes for handling matrices.

2 Theoretical background

2.1 Matrix
A matrix is a collection of numbers arranged into rows and columns. In computer graphics we

are using matrices to represent spatial transformations. The number of rows and columns are

equal in this case, denoting a square matrix. In this laboratory we are using 3x3 and 4x4

matrices.

2.2 Identity matrix
The identity matrix is the matrix that has 1 on the diagonal and 0 elsewhere. For example, the

3x3 identity matrix is:

𝐈 = [
1 0 0
0 1 0
0 0 1

]

2.3 Matrix operations

2.3.1 Multiplication with a scalar

By multiplying a matrix M with a scalar k we multiply each element of the matrix with the scalar

value.

k𝐌 = 𝑘 [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

] = [

𝑘𝑚11 𝑘𝑚12 𝑘𝑚13

𝑘𝑚21 𝑘𝑚22 𝑘𝑚23

𝑘𝑚31 𝑘𝑚32 𝑘𝑚33

]

2.3.2 Addition of matrices

The matrices addition is done element by element, like in this example:

𝐌 + 𝐍 = [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

] + [

𝑛11 𝑛12 𝑛13

𝑛21 𝑛22 𝑛23

𝑛31 𝑛32 𝑛33

]

= [
𝑚11 + 𝑛11 𝑚12 + 𝑛12 𝑚13 + 𝑛13

𝑚21 + 𝑛21 𝑚22 + 𝑛22 𝑚23 + 𝑛23

𝑚31 + 𝑛31 𝑚32 + 𝑛32 𝑚33 + 𝑛33

]

2.3.3 Multiplication with another matrix

In order to multiply two matrices, the number of columns in the first matrix must be the same

with the number of rows of the second matrix.

The element pij is equal to:

𝑝𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯+ 𝑎𝑖𝑚𝑏𝑚𝑗

Matrix multiplication is not commutative (𝐌𝟏𝐌𝟐 ≠ 𝐌𝟐𝐌𝟏), but is associative and

distributive:

(𝐀𝐁)𝐂 = 𝐀(𝐁𝐂)

(𝐀 + 𝐁)𝐂 = 𝐀𝐂 + 𝐁𝐂

2.3.4 Multiplication with a column vector

This operation is a particular case of the multiplication of two matrices operation.

The element pi1 is equal to:

𝑝𝑖1 = 𝑎𝑖1𝑏11 + 𝑎𝑖2𝑏21 + ⋯+ 𝑎𝑖𝑚𝑏𝑚1

2.3.5 Transposition

The transpose of a matrix (denoted as MT) is the matrix where the columns and rows are

switched. For example, for a 3x3 matrix:

[
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

]

𝐓

= [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

]

The transpose of two matrices product is (𝐀𝐁)T = 𝐁T𝐀T.

2.3.6 Determinant of a matrix

For a 2x2 matrix the determinant is:

|𝐌| = |[
𝑚11 𝑚12

𝑚21 𝑚22
]| = 𝑚11𝑚22 − 𝑚12𝑚21

In order to compute the determinant, we have to find the cofactors of the matrix elements. The

cofactor of each element of a square matrix is the determinant of a matrix (obtained by

removing from the original matrix the row and column in which the element is in) multiplied by

minus one in some cases. The sign of the cofactor can be determined by the following pattern:

[

+ − + ⋯
− + − ⋯
+
⋮

−
⋮

+ ⋯
⋮ ⋱

]

For a 4x4 matrix:

𝐌 = [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22
𝑚23 𝑚24

𝑚31

𝑚41

𝑚32

𝑚42

𝑚33 𝑚34

𝑚43 𝑚44

]

the cofactor for the first row are

𝑚11
𝑐 = |[

𝑚22 𝑚23 𝑚24

𝑚32 𝑚33 𝑚34

𝑚42 𝑚43 𝑚44

]|

𝑚13
𝑐 = |[

𝑚21 𝑚22 𝑚24

𝑚31 𝑚32 𝑚34

𝑚41 𝑚42 𝑚44

]|

𝑚12
𝑐 = − |[

𝑚21 𝑚23 𝑚24

𝑚31 𝑚33 𝑚34

𝑚41 𝑚43 𝑚44

]|

𝑚14
𝑐 = − |[

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

𝑚41 𝑚42 𝑚43

]|

The determinant equals the sum of the products of the elements (of any row or column) with

their cofactors.

For a 3x3 matrix the determinant is:

|𝐌| = |[

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

]|

= 𝑚11 |[
𝑚22 𝑚23

𝑚32 𝑚33
]| − 𝑚12 |[

𝑚21 𝑚23

𝑚31 𝑚33
]| + 𝑚13 |[

𝑚21 𝑚22

𝑚31 𝑚32
]|

Similar, the determinant for a 4x4 matrix is:

|𝐌| = |[

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31

𝑚41

𝑚32

𝑚42

𝑚33 𝑚34

𝑚43 𝑚44

]| = 𝑚11 |[

𝑚22 𝑚23 𝑚24

𝑚32 𝑚33 𝑚34

𝑚42 𝑚43 𝑚44

]| −

𝑚12 |[

𝑚21 𝑚23 𝑚24

𝑚31 𝑚33 𝑚34

𝑚41 𝑚43 𝑚44

]| + 𝑚13 |[

𝑚21 𝑚22 𝑚24

𝑚31 𝑚32 𝑚34

𝑚41 𝑚42 𝑚44

]| −

𝑚14 |[

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

𝑚41 𝑚42 𝑚43

]|

2.3.7 Inverse of a matrix

The inverse matrix (denoted as 𝐀−1) is the matrix for which 𝐀𝐀−1 = 𝐀−1𝐀 = 𝐈. The inverse of

two matrices product is (𝐀𝐁)−1 = 𝐁−1𝐀−1.

For a 4x4 matrix the inverse is:

M−𝟏 =
1

|𝐌|

[

𝑚11

𝑐 𝑚21
𝑐 𝑚31

𝑐 𝑚41
𝑐

𝑚12
𝑐 𝑚22

𝑐 𝑚32
𝑐 𝑚42

𝑐

𝑚13
𝑐

𝑚14
𝑐

𝑚23
𝑐

𝑚24
𝑐

𝑚33
𝑐 𝑚43

𝑐

𝑚34
𝑐 𝑚44

𝑐]

3 Assignments
Download the source code from the web repository. You have to implement the methods inside

the source files (mat3.cpp and mat4.cpp). The header files contain the definition of classes and

the methods that should be implemented.

Laboratory work 4 - Transformations

1 Objectives

This laboratory presents the key notions on 2D and 3D transformations (translation, scale,
rotation).

2 Theoretical background

2.1 Defining 2D and 3D points

A 2D point is defined in a homogenous coordinate system by (x*w, y*w, w). For simplicity in bi-
dimensional systems the w parameter is set to 1. Therefore, the point definition is (x, y, 1).

Another representation for the point is the following: 𝑃 = [
𝑥
𝑦
1
].

Similar in 3D we define points as (x*w, y*w, z*w, w) and we represent the point as a column
vector:

𝑃 = [

𝑥
𝑦
𝑧
1

]

2.2 Transformations

2.2.1 2D Translation

The translation transformation is used to move an object (point) by a given amount.

The matrix for the translation operation is the following:

𝑇 = [
1 0 𝑇𝑥
0 1 𝑇𝑦
0 0 1

]

where Tx and Ty represent the translation factors on x and y axes. If we apply the
transformation to the 2D point, 𝑃′ = 𝑇 ∗ 𝑃, we obtain the new coordinates for that point:

𝑥′ = 𝑥 + 𝑇𝑥

𝑦′ = 𝑦 + 𝑇𝑦
The matrix for the inverse transformation is the following:

𝑇 = [
1 0 −𝑇𝑥
0 1 −𝑇𝑦
0 0 1

]

2.2.2 3D Translation

The only difference from the 2D case is that here we have one more coordinate and the

transformation matrix will be 4x4.

𝑇 = [

1 0 0 𝑇𝑥
0 1 0 𝑇𝑦
0
0

0
0

1
0

𝑇𝑧
1

]

Ty

Tx

y

x

2.2.3 2D Scale

The scale transformation enlarges or reduces an object. The transformation is relative to the
origin.

The matrix for the scale operation is the following:

𝑆 = [
𝑆𝑥 0 0
0 𝑆𝑦 0
0 0 1

]

where Sx and Sy represent the scale factors on x and y axes. If the Sx and Sy factors are equal
then the scaling transformation is uniform. If the Sx and Sy factors are not equal then the scaling
transformation is non-uniform. If we apply the transformation to the 2D point, P′ = S ∗ P, we
obtain the new coordinates for that point:

𝑥′ = 𝑥 ∗ 𝑆𝑥

𝑦′ = 𝑦 ∗ 𝑆𝑦

If you set the scaling factors to +/- 1 then you can reflect the original shape.

The matrix for the inverse transformation is the following:

𝑆 = [
1/𝑆𝑥 0 0

0 1/𝑆𝑦 0
0 0 1

]

2.2.4 3D Scale

The 3D matrix representation of the scale transformation is the following:

y

x

𝑆 = [

𝑆𝑥 0 0 0
0 𝑆𝑦 0 0
0
0

0
0

𝑆𝑧
0

0
1

]

2.2.5 2D Rotation

This transformation rotates an object with a given angle. This transformation is also relative to
the origin.

The matrix for the rotation operation is the following:

𝑅 = [
cos ∝ − sin ∝ 0
sin ∝ cos ∝ 0

0 0 1
]

where∝ represents the rotation angle. If we apply the transformation to the 2D point, P′ = P ∗
R, we obtain the new coordinates for that point:

𝑥′ = 𝑥 ∗ cos ∝ − 𝑦 ∗ sin ∝

𝑦′ = 𝑥 ∗ sin ∝ + 𝑦 ∗ cos ∝

The matrix for the inverse transformation is the following:

𝑅 = [
cos ∝ sin ∝ 0

−sin ∝ cos ∝ 0
0 0 1

]

2.2.6 3D Rotation

We specify rotation in the 3D space independently on the x, y, and z axis. Rotation around the z

axis is similar to the rotation in 2D (the z coordinate remains unchanged).

angle

y

x

𝑅𝑧 = [

cos ∝ − sin ∝ 0 0
sin ∝ cos ∝ 0 0

0
0

0
0

1
0

0
1

]

𝑅𝑥 = [

1 0 0 0
0 cos ∝ − sin ∝ 0
0
0

sin ∝
0

cos ∝
0

0
1

]

𝑅𝑦 = [

cos ∝ 0 sin ∝ 0
0 1 0 0

− sin ∝
0

0
0

cos ∝
0

0
1

]

3 Assignments
Download the source code from the web repository. You have to implement the methods inside

the source file (transform.cpp). The header file (transform.h) contains the definition of methods

that should be implemented.

Laboratory work 5 – Applied
transformations

1 Objectives
The objective of this laboratory is to use the vectors and matrixes operations defined in

previous laboratories, together with the transformation matrixes, in order to perform different

transformations over a 2D figure.

2 Theoretical background

2.1 Using SDL application
In order to exemplify graphically the 2D transformations, we will use an application very similar

to the one from Laboratory 1, based on the SDL (Simple DirectMedia Layer) library.

2.2 SDL Renderer
SDL_Renderer is a struct that handles all rendering. It is tied to a SDL_Window so it can only

render within that SDL_Window. It also keeps track of the settings related to the rendering.

In order to create a renderer related to the application window, we will use the following code:

SDL_Renderer *windowRenderer;
windowRenderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED);

There are several important functions tied to the SDL_Renderer:

1. SDL_SetRenderDrawColor sets the color that will be used in all drawing operations, until

another call to the function is performed.

SDL_SetRenderDrawColor(renderer, r, g, b, a);

2. SDL_RenderClear clears the entire window display area using the current active color,

previously set with SDL_SetRenderDrawColor function.

SDL_RenderClear(renderer);

3. SDL_RenderPresent will display everything drawn in the renderer to the screen. Until

this function is called, all the drawing takes place in a hidden buffer that is not visible to

the user. The call to SDL_RenderPresent should be made only once, after all the drawing

functions have been called.

SDL_RenderPresent(renderer);

2.3 Drawing a line
Drawing a line using SDL Renderer requires the following steps:

1. Define the color that will be used (example: blue)

SDL_SetRenderDrawColor(renderer, 0, 0, 255, 255);

2. Define the start and end points of the line. For this we will use vec3 variables:

vec3 P1(100, 100, 1), P2(400, 100, 1);

3. Draw the line in the renderer

SDL_RenderDrawLine(windowRenderer, P1.x, P1.y, P2.x, P2.y);

4. Display the content of the renderer on the screen

SDL_RenderPresent(renderer);

3 Assignments
Download and run the application from the laboratory website. Try to understand the basic

example and then extend the application with the following functionality:

• Include into the application your implementation files (.cpp).

• Define an initial rectangle with the top-left corner in P1(100, 100) and bottom-right

corner in P2(400, 200).

• Rotate the rectangle around its center (diagonals intersection) by 10 degrees clockwise

when RIGHT_ARROW is pressed and 10 degrees counterclockwise when LEFT_ARROW is

pressed.

• Scale the rectangle having the top-left corner as a reference, using UP_ARROW and

DOWN_ARROW keys.

Laboratory work 6 – Bresenham
algorithm

1 Objectives

This laboratory highlights the Bresenham algorithms used for rendering some of the graphical
primitives on a computer display. This paper begins by presenting some generic information
about the algorithms and then exemplifies them for line and circle rasterization.

2 Theoretical background

The Bresenham algorithm for drawing lines onto a bi-dimensional space (like a computer
display) is a fundamental method used in computer graphics discipline. The algorithm’s
efficiency makes it one of the most required methods for drawing continuous lines, circles or
other graphical primitives. This process is called rasterization.

Each line, circle or other graphical primitives will be plotted pixel by pixel. Each pixel is described
by a fixed),(yx position in the bi-dimensional XOY space. The algorithm approximates the real

line by computing each one of the line’s pixel’s position. Since the pixels are the smallest
addressable screen elements in a display device, the algorithm approximation is good enough to
"trick" the human eyes and to get the illusion of a real line. Figure 1a and Figure 1b shows the
real line and the approximated line drawn over the pixel grid.

Before moving on, it is worth to mention that both the line (1) and circle (2) can be
mathematically described using the following equations:

cxmy += (1)

with
12

12

xx

yy
m

−

−
=

222)()(Rbyax =−+− (2)

Figure 1a. Real line Figure 1b. Approximated line

where:

- m is the line’s slope;
-),(),,(2121 yyxx are the two endpoints of the line segment;

-),(ba represents the coordinates of the circle’s center;

2.1 Bresenham’s algorithm for line

For simplicity we will take into account a line segment with the slope from 0 to 1. Suppose the

two endpoints of the line are),(11 yxA and),(22 yxB . At this point we have to choose an initial

point to start the algorithm. We can choose this point (),(ii yxP) to be either A or B. Based on

the starting position, we have eight possible choices to draw the next pixel of the line. This is

due to the fact that each pixel is surrounded by 8 adjacent pixels.

Our example will consider only the case where we have two choice alternatives for the next

pixel position (in other words this example will work only for the first octant of the

trigonometric circle). For example, for the current point P we have the following drawing

possibilities:),(1 ii yxT + or),(11 ++ ii yxS .

The decision criterion (Figure 2) for Bresenham’s algorithm is based on the distance between

the current point, P, and the real line segment. So the closest point (T or S) to the line segment

will be chosen.

The following paragraphs will describe the general steps of the Bresenham’s algorithm in

natural language rather than a programmatically one, because it is easier to understand.

Figure 2. Decision criterion to choose the next line

pixel that will plot on the screen display

a. Let us assume that we have to draw a line segment with the endpoints represented by

),(11 yxA and),(22 yxB . We translate the line segment with),(11 yx −− to place it on

the XOY system origin.

b. Let
12 xxdx −= ,

12 yydy −= . The line that needs to be drawn can be described as

x
dy

dx
y = .

c. In this step we intend to compute the next line pixel, using the criterion mentioned

above. From Figure 2, we can deduce that the closest point to the real line value is

),(1 ii yxT + . Based on this observation we could say that),(11
dx

dy
xxM ii ++ (3).

In other words

−=

−=

+ mi

im

yys

yyt

1

 122 −−=− im yyst (4).

Taking into account (3) and (4) we obtain dxydxxdystdx ii −−=− + 22)(1 . If the x

coordinates of the line segment endpoints are in 21 xx relationship, then the sign of

st− will coincide with the sign of)(stdx − .

d. We can obtain the following recurrence relationship:)(22 11 ++ −−+= iiii yydxdydd if

we consider that 1)(+=− idstdx .

The initial value of dxdydi −=2 is obtained for 00 =x and 00 =y . We can conclude

that:

- If 0id 0)(− st and the closest point to the real line segment is),(11 ++ ii yxS .

Based on this observations we find that id value can be computed as

)(21 dxdydd ii −+=+ .

- If 0id 0)(− st and the closest point to the real line segment is),(1 ii yxT + .

Then the recurrence formula to compute id is dydd ii 21 +=+ .

The pseudo code for the Bresenham algorithm is described in the following paragraph, and it is

based on the mathematical observations mentioned above.

//draw a line in the first octant
Algorithm Bresenham_line()
{
 //Initialize increments
 dx = abs(x2-x1);
 dy = abs(y2-y1);
 d = 2*dy-dx;
 inc1 = 2*dy;
 inc2 = 2*(dy-dx);

2.2 Bresenham’s algorithm for circle
Let's say we want to scan-convert a circle centered at)0,0(with an integer radius R (Figure 3).

We'll see that the ideas we previously used for line scan-conversion can also be used for this
task. First of all, notice that the interior of the circle is characterized by the inequality

0:),(222 −+ RyxyxD .

We'll use),(yxD

to derive our decision variable.

 //Set the starting point, end point and current point
 startX = x1;
 startY = y1;
 endX = x2;
 endY = y2;
 currentX = x1;
 currentY = y1;

 //Draw each pixel of the line
 while (currentX < endX) {

 //Draw the current pixel
 DrawPixel(currentX, currentY);
 increment currentX;

 if (d < 0) then {
 increment d using inc1;
 }
 else {
 increment currentY;
 increment d using inc2;
 }
 }
}

Following the same approach as for the line segment representation, we’ll first present the
Bresenham’s algorithm for the circle in natural language, describing for each step the general
ideas behind it.

a. First, let's think how to plot pixels close to the 1/8 of the circle marked red in Figure 3.

The range of the x coordinate for such pixels is from 0 to 2R . We'll go over vertical
scanlines through the centers of the pixels and, for each such scanline, compute the
pixel on that line which is the closest to the scanline-circle intersection point (black dots
in Figure 4). All such pixels will be plotted by our procedure.

b. Notice that each time we move to the next scanline, the y-coordinate of the plotted
point either stays the same or decreases by 1 (the slope of the circle is between -1 and
0). To decide what needs to be done, we'll use the decision variable, which will be the

Figure 3. A circle and the description of its interior
 and exterior as two quadratic inequalities

s.

Figure 4. A circle and the description of its interior
 and exterior as two quadratic inequalities

value of),(yxD

evaluated at the blue square (e.g. the midpoint between the plotted

pixel and the pixel immediately below).
c. The first pixel plotted is),0(R and therefore the initial value of the decision variable

should be

RRRRD −=−−=− 25.0)5.0()5.0,0(22

The y variable, holding the second coordinates of the plotted pixels, will be initialized to

R. Let's think now at what happens after a point),(yx is plotted. First, we'll pretend that

we need to move the plotted point to the right (no change in y) and check if this keeps

the decision variable negative (we don't want any blue squares outside the circle). If
),(yx

is the last plotted point, the decision variable is)5.0,(−yxD . After we move to

the right, it becomes)5.0,1(−+ yxD . Simple arithmetic shows that it increases by

)5.0,1(−+ yxD -)5.0,(−yxD = 12 +x . If this increase makes it positive, we'd better

move down by 1 pixel. This puts the blue square at)5.1,1(−+ yx and means that we

need to increase the decision value by the previous 12 +x

plus

yyxDyxD 22)5.0,1()5.1,1(−=−+−−+ .

d. Clearly, to make the decision variable integer, we need to scale it by a factor of 4. Eight-

way symmetry is used to go from 1/8-the of the circle to the full circle.

The pseudo code for the Bresenham’s algorithm for circle is described below, based on the
earlier made observations.

Algorithm Bresenham_circle ()
{
 currentY = R;
 d = 1/4 − R;

 //Go only one eighth of a circle
 for x = 0 to ceil(R/sqrt(2)) do {

 plot_points(currentX,currentY);
 increment the decision variable by 2x + 1;

 if (d > 0) then
 {
 increment the decision variable by 2 − 2y;
 decrement currentY;
 }
 }
}

You can find the plot_points function definition below:

Function plot_points (x, y)
{
 DrawPixel (x,y);
 DrawPixel (x,−y);
 DrawPixel (−x,y);
 DrawPixel (−x,−y);
 DrawPixel (y,x);
 DrawPixel (−y,x);
 DrawPixel (y,−x);
 DrawPixel (−y,−x);
}

2.3 Geometry rendering using SDL’s API
The SDL 2.0 library provides a hardware accelerated rendering API for basic shapes such as

rectangles, lines or points.

In order to use hardware accelerated rendering, we have to create a new SDL_Renderer for our

SDL window.

//The window renderer
SDL_Renderer* renderer = NULL;
...
//Create renderer for window
renderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED);

To select a rendering color and to clear the window we can use SDL_SetRenderDrawColor and

SDL_RenderClear.

//Clear screen
SDL_SetRenderDrawColor(renderer, 0xFF, 0xFF, 0xFF, 0xFF);
SDL_RenderClear(renderer);

Whenever a primitive is drawn, its color is the currently selected rendering color. To render

points (pixels) we can use SDL_RenderDrawPoint.

//Draw current point
SDL_RenderDrawPoint(renderer, tmpCurrentX, tmpCurrentY);

3 Assignments

• Explore the implementation of Bresenham’s algorithm for drawing lines provided in the
laboratory’s resources folder.

• Extend Bresenham’s algorithm implementation for drawing lines to work in all octants of
the trigonometric circle. The algorithm presented in this document, as well as the
sample code cover only the first octant. Note: Be careful when implementing
Bresenham’s algorithm. The SDL system of coordinates is different from the Cartesian
system of coordinates.

• Implement the function to draw circles using Bresenham’s algorithm in the provided
sample code.

Laboratory work 7 – Line clipping
algorithms

1 Objectives
This laboratory presents the topic of clipping algorithms for graphical primitives. Two algorithms

for line clipping are discussed, Cyrus-Beck and Cohen-Sutherland.

2 Theoretical background

2.1 Line clipping algorithms
Clipping algorithms are used to eliminate out-of-range values, meaning parts of segments or

polygons which are outside the display area. In most cases the display area is defined as a

rectangle and is called the clipping window. Relative to this clipping window the primitive

(point, line or polygon) can be in the following relationship:

• Entirely inside the clipping window – no need to clip the primitive, continue to rasterize

it.

• Entirely outside the clipping window – no need to clip the primitive, discard it.

• Intersects the clipping window – compute the intersection points and update the

primitive, continue to rasterize it.

2.2 Cyrus-Beck algorithm
The Cyrus-Beck algorithm is used to clip a

line segment against a convex polygon.

The line segment is defined

parametrically as:

𝑃(𝑡) = 𝑃0 + (𝑃1 − 𝑃0)𝑡, where 𝑡 ∈ [0, 1]

For each edge Ei we compute the normal

vector in such a way it points outward

(see the figure on the right). From each

edge we pick a point PEi. By computing

the dot product 𝑁𝑖 ∙ (𝑃(𝑡) − 𝑃𝐸𝑖) we can

find the relative position of every point

on the line segment (defined for a particular value of the t parameter):

• if the value is negative the point lies in the inside halfplane

• if the value is positive the point lies in the outside halfplane

• if the value is zero the point is on the edge.

We are interested in the value of t for which 𝑁𝑖 ∙ (𝑃(𝑡) − 𝑃𝐸𝑖) = 0.

First we substitute P(t) and we regroup some terms:

𝑁𝑖 ∙ (𝑃0 + (𝑃1 − 𝑃0)𝑡 − 𝑃𝐸𝑖) = 0

𝑁𝑖 ∙ (𝑃0 − 𝑃𝐸𝑖) + 𝑁𝑖 ∙ (𝑃1 − 𝑃0)𝑡 = 0

Let 𝐷 = 𝑃1 − 𝑃0 be the vector from point P0 to point P1. Then we can compute t as:

𝑡 =
𝑁𝑖 ∙ (𝑃0 − 𝑃𝐸𝑖)

−𝑁𝑖 ∙ 𝐷

We need to compute the value of t (for the intersection point) for each edge of the clipping

window. The values of t outside the interval [0, 1] are discarded. Each intersection is

characterized by computing the angle between P0P1 and Ni as:

• “potentially entering” (PE) – the angle > 90o

• “potentially leaving” (PL) – the angle < 90o

2.2.1 Pseudocode

precalculate Ni and select a PEi for each edge;
if (P1 = P0)
 line degenerates to a point, so clip as a point;

else
 tE = 0; tL = 1;
 for (each candidate compute intersection with a clipping edge){

 if (Ni * D != 0){
 calculate t;
 use sign of Ni * D to categorize as PE (potentially entering) or PL (potentially leaving);

 if (PE)
 tE = max(tE, t);
 if (PL)

 tL = min(tL, t);
 }
 }
 if (tE > tL)

 return -1
 else
 return P(tE) and P(tL) as true clip intersections

2.3 Cohen-Sutherland clipping algorithm

2.3.1 Determine if a point P(x,y) is visible

Considering P1(xmin, ymin), and P2(xmax, Ymax) the defining points of the visible area rectangle,

the point P(x,y) is visible only if the following conditions are met:

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

2.3.2 Determine if a segment is visible

In order to determine if a line segment is visible, we need slightly more complex algorithms.

One idea would be to test the visibility of each point of the segment, before displaying it on the

screen. But this method will require a lot of time and very many computations. The method can

be easily improved by testing first the heads of the segment. If both these points are in the

visible area, the entire segment will be visible. This case is called “simple acceptance”. On the

same logic, if both points are outside and on the same side of the visible area, no part of the

segment will be visible. This case is called “simple rejection”. In all the other cases we must use

other algorithms to establish which part of the segment (if any) is visible.

If a line segment cannot be included either in “simple acceptance” or “simple rejection” cases,

then we have to compute its intersection points with the following lines:

y = ymax, x = xmax, y = ymin, x = xmin

and to eliminate the segments that are placed outside the visible area. As a result, we will

obtain a new line segment. The algorithm is repeated until the resulted segment can be

included in one of the “simple acceptance” or “simple rejection” cases.

The Cohen-Sutherland algorithm

uses a four digits code to describe

each head of the segment. The

code has the following structure:

• the first digit is 1 if the

point is above the visible

area; otherwise is 0

• second digit is 1 if the point

is under the visible area;

otherwise is 0

• third digit is 1 if the point is

on the right of the visible

area; otherwise is 0

• fourth digit is 1 if the point

is on the left side of the visible area; otherwise is 0

2.3.3 Pseudocode

repeat until FINISHED = TRUE
{
 COD1 = computeCScode(x1, y1) //compute the 4 digits code for P(x1, y1)
 COD2 = computeCScode(x2, y2) // compute the 4 digits code for P(x2, y2)
 RESPINS = SimpleRejection(COD1, COD2) //test for simple rejection case
 if RESPINS = TRUE
 FINISHED = TRUE
 else
 {
 DISPLAY = SimpleAcceptance(COD1, COD2) //test for simple acceptance case
 if DISPLAY = TRUE
 FINISHED = true
 else
 {
 if(P(x1, y1) is inside the display area)
 invert(x1,y1,x2,y2,COD1,COD2) //if P(x1, y1) is inside the display area, invert P(x1, y1) and P(x2,

y2) together with their 4 digits CS codes

 if(COD1[1] = 1) and (y2 <> y1) //eliminate the segment above the display area
 {
 x1 = x1+(x2-x1)*(Ymax-y1)/(y2-y1)
 y1 = Ymax

 }
 elseif(COD1[2] = 1) and (y2 <> y1) //eliminate the segment under the display area
 {
 x1 = x1+(x2-x1)*(Ymin-y1)/(y2-y1)
 y1 = Ymin
 }
 elseif(COD1[3] = 1) and (x2 <> x1) //eliminate the segment on the right of the display area
 {
 y1 = y1+(y2-y1)*(Xmax-x1)/(x2-x1)
 x1 = Xmax
 }
 elseif(COD1[4] = 1) and (x2 <> x1) //eliminate the segment on the left of the display area
 {
 y1 = y1+(y2-y1)*(Xmin-x1)/(x2-x1)
 x1 = Xmin
 }
 }
 }
}

3 Assignments
• Implement the Cyrus-Beck algorithm

• Implement the Cohen-Sutherland algorithm

• Implement (using SDL) an interactive demonstration of the algorithms. Define using the

mouse the clipping window (a rectangle or a convex polygon) and a line segment.

Laboratory work 8 – Rasterization
pipeline

1 Objectives
This laboratory presents the topic of viewing transformations used to map 3D locations

(specified by x, y, and z coordinates) to 2D coordinates (specified by pixel coordinates).

2 Theoretical background

2.1 Visualization transformations
In order to map 3D coordinates to 2D coordinates we use a sequence of three transformations:

• Camera transformation

o Used to place the camera at the origin and reposition all the other objects

relative to the camera

o This transformation depends only on the position and orientation of the camera

• Projection transformation

o Used to project points from camera space

o After the transformation all visible points will be in the range [−1, 1]

o This transformation depends only on the type of projection (perspective or

orthogonal)

• Viewport transformation

o Used to map the unit image rectangle to the desired rectangle in pixel

coordinates

o This transformation depends only on the size and position of the output image

During these transformations we change the coordinate systems in which we specify the

objects. Camera transformation changes coordinates from world space to camera space. The

projection transformation moves points from camera space to the canonical view volume (here

clipping is performed more efficiently). The last transformation, the viewport transformation

maps the canonical view volume to screen space.

2.2 Viewport transformation
This transformation is used to map points from the canonical view volume (where the values are

in the interval [-1, 1]) to the screen space (defined by the width and height of the resulting

image). It is composed of several transformations, including translation, scale and reflection.

The origin of the image is considered the top-left corner. For other specification of image space,

the transformations could be different. The pixel center is considered to be at integer value plus

0.5 (both on x and y-axis).

2.3 Camera transformation
A virtual camera is defined by a set of attributes and parameters such as: Camera position,

Orientation, Field of view, Type of projection (perspective of parallel projection), Depth of field,

Focal distance, Tilt and offset of the camera lens relative to the camera body. For a basic camera

we need to specify at least the position of the camera, its orientation and the field of view.

The camera is specified in world coordinates by the following parameters: eye position e,

gaze direction g, view-up vector t. From these parameters we need to define a coordinate

system uvw.

We need to align the two different coordinate systems (u, v, w axes with the x, y, z axes)

using the following transformation matrix:

2.4 Projection transformation
Two types of projections are discussed in this

document, perspective and parallel projections.

Perspective projection:

• Projection rays converge into the center of

projection (location of the viewer)

• Objects appear smaller with the increase of

distance from the center of projection (eye

of observer)

• Lines parallel to the projection plane remain

parallel

• Lines which are not parallel to the projection

plane converge to a single point (vanishing

point)

Parallel projection:

• Parallel projection rays

• Convergence point at infinity

• Viewer’s position at infinity

• Parallel lines remain parallel

Before displaying the vertices, we need to perform an operation called perspective divide.

The near and far planes are defined in

camera coordinates. Because the camera is

location in origin and is oriented in the

negative z direction than the near and far

values should be negative, with n > f.

2.5 Combining transformations
construct Mvp

construct Mper

construct Mcam

M = Mvp * Mper * Mcam

for each line segment(ai,bi) do

 p = Mai

 q = Mbi

 drawline(xp/wp,yp/wp,xq/wq,yq/wq)

2.6 Compute and display the normal vector of a triangle

In order to compute the normal vector, we can use

the following formula, based on the cross product

between two vectors. The last step is to normalize

the resulting vector in order to get a normalized

vector.

The pseudocode for displaying the normal vector:

displayNormalVector()

 centerPoint = compute the center point of triangle

 normalVector = compute the normal vector

 secondPoint = centerPoint + normalVector * offset

 drawLine(centerPoint, secondPoint)

2.7 Back-face culling
Depending on the relative position of the camera to the

object’s triangles we can identify the visible triangles.

Relative position of a point P (camera position) against a

plane (triangle):

• θ > 90˚ then P is in front of the plane

• θ = 90˚ then P is on the plane

• θ < 90˚ then P is on back of the plane

The angle can be computed using the dot product between the two vectors, v and n.

2.8 Basic clipping in homogeneous coordinates
We can clip the points based on the following clipping planes:

-P.w <= P.x <= P.w
-P.w <= P.y <= P.w
-P.w <= P.z <= P.w

3 Assignments
• Download the source code and implement the specified methods in order to be able to

display a 3D object, cull back-faces and display normal vector.

Laboratory work 9 – Triangle
rasterization algorithm

1 Objectives
This laboratory presents the topic of triangle rasterization using barycentric coordinates.

2 Theoretical background

2.1 Triangle definitions
We define each triangle by edges and we compute the edge
equations such that the negative halfplane to be on the
triangle’s exterior. We start from the general implicit form of
a line (in 2D) 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. The implicit form of a line
passing through points A(xa, ya) and B(xb, yb) is: (𝑦𝑎 − 𝑦𝑏)𝑥 +
(𝑥𝑏 − 𝑥𝑎)𝑦 + 𝑥𝑎𝑦𝑏 − 𝑥𝑏𝑦𝑎 = 0.

For a triangle define by vertices a(xa, ya), b(xb, yb) and c(xc, yc)
we have the following edge equations:

𝐹𝑎𝑏 = (𝑦𝑎 − 𝑦𝑏)𝑥 + (𝑥𝑏 − 𝑥𝑎)𝑦 + 𝑥𝑎𝑦𝑏 − 𝑥𝑏𝑦𝑎 = 0

𝐹𝑏𝑐 = (𝑦𝑏 − 𝑦𝑐)𝑥 + (𝑥𝑐 − 𝑥𝑏)𝑦 + 𝑥𝑏𝑦𝑐 − 𝑥𝑐𝑦𝑏 = 0

𝐹𝑐𝑎 = (𝑦𝑐 − 𝑦𝑎)𝑥 + (𝑥𝑎 − 𝑥𝑐)𝑦 + 𝑥𝑐𝑦𝑎 − 𝑥𝑎𝑦𝑐 = 0

2.2 Barycentric coordinates
Any point p is a linear combination of points P, Q, and

R:

𝑝 = 𝑃 + 𝛽(𝑄 − 𝑃) + 𝛾(𝑅 − 𝑃)

= (1 − 𝛽 − 𝛾)𝑃 + 𝛽𝑄 + 𝛾𝑅

= 𝛼𝑃 + 𝛽𝑄 + 𝛾𝑅

For triangles we need that:

𝛽 + 𝛾 ≤ 1

𝛽 ≥ 0

𝛾 ≥ 0

𝜶, 𝜷, 𝜸 are called the barycentric coordinates.

Barycentric coordinates describe a point p as an affine combination of the triangle vertices:

𝑝 = 𝛼𝑃 + 𝛽𝑄 + 𝛾𝑅, where 𝛼 + 𝛽 + 𝛾 = 1

For any point p inside the triangle specified by vertices a, b, and c:

0 < 𝛼 < 1

0 < 𝛽 < 1

0 < 𝛾 < 1

A point is on an edge if one barycentric coordinate is

0, and a point is on a vertex if two barycentric

coordinates are 0.

For a triangle the barycentric coordinates for point p

are:

𝛼 =
𝐹𝑏𝑐(𝑥, 𝑦)

𝐹𝑏𝑐(𝑥𝑎, 𝑦𝑎)

𝛽 =
𝐹𝑎𝑐(𝑥, 𝑦)

𝐹𝑎𝑐(𝑥𝑏, 𝑦𝑏)

𝛾 = 1 − 𝛼 − 𝛽

2.3 Triangle rasterization pseudocode

void triangleRasterization(vertices v[3]){
 bbox b = findBoundingBox(v);
 foreach pixel(x, y) in b
 {

 compute alpha, beta, gamma;
 if(0 < alpha < 1 and

 0 < beta < 1 and

 0 < gamma < 1)
 {
 color = color_a * alpha + color_b * beta + color_c * gamma;

 drawPixel(x, y) with color;
 }
 }

}

3 Assignments
• Extend the implementation from the previous laboratory to add the functionality of

displaying the 3D object filled with color.

Laboratory work 10 – Z-buffer
algorithm

1 Objectives
This laboratory work highlights a technique for hidden surface removal using the z-buffer

algorithm.

2 Theoretical background
Determining which surfaces are visible and which are hidden is a fundamental problem in

Computer Graphics. Usually, it is highly inefficient to process objects that will never appear in

the final image.

We have already seen a technique for removing hidden surfaces in Laboratory work 8, namely

Back Face Culling, which removes primitives on the back of opaque objects from the graphics

pipeline. The z-buffer algorithm removes primitives that would appear behind other opaque

objects.

The z-buffer, also known as the depth-buffer, is a 2D array having the same dimensions as the

framebuffer (the final raster image) that keeps, for each pixel, the distance from the center of

projection to the surface that gave the pixel’s final color. Figure 1 shows an example of the

contents of the frame-buffer and the z-buffer when drawing a red triangle parallel with the Z

axis and situated at a depth of 𝑧 = −5.

Figure 1 – Frame-buffer and z-buffer for drawing a red triangle with 𝒛 = −𝟓

When a new primitive is rasterized, each of its resulting candidate pixels’ depth is compared

with the existing depth value in the z-buffer. The final pixel is updated only if the candidate pixel

is closer to the center of projection than the value already in the buffer. If the pixel is updated,

the existing depth value in the z-buffer is replaced by the new pixel’s depth.

For example, when drawing a yellow triangle parallel with the Z axis and situated at a depth of

𝑧 = −7, if there are no previously processed primitives, the resulting frame-buffer and z-buffer

are the ones illustrated in Figure 2.

Figure 2 - Frame-buffer and z-buffer for drawing a yellow triangle with 𝒛 = −𝟕

However, if the yellow triangle is rasterized after the red triangle, then the contents of the

frame-buffer and the z-buffer are as illustrated in Figure 3.

Figure 3 - Frame-buffer and z-buffer for drawing a red triangle with 𝒛 = −𝟓 and a yellow triangle with 𝒛 = −𝟕

The second processed primitive only updates the frame-buffer on the pixel positions for which

the candidate depth is closer to the center of projection than the existing depth. The other

positions remain unchanged.

2.1 Coloring the bunny based on depth
In order to obtain a better visual understanding of the importance of hidden surface removal,

we will use a depth-based coloring scheme on the bunny from Laboratory work 9. The algorithm

will compute each vertex’ color based on its original Z coordinate (in object space) using the

formula:

𝐶𝑜𝑙𝑜𝑟𝑅𝐺𝐵 = (𝑑𝑒𝑝𝑡ℎ𝐶𝑜𝑒𝑓𝑓, 𝑑𝑒𝑝𝑡ℎ𝐶𝑜𝑒𝑓𝑓, 𝑑𝑒𝑝𝑡ℎ𝐶𝑜𝑒𝑓𝑓),

where

𝑑𝑒𝑝𝑡ℎ𝐶𝑜𝑒𝑓𝑓 = 255 ∗ (1 −
𝑣𝑒𝑟𝑡𝑒𝑥𝑧 − 𝑚𝑖𝑛𝑧

𝑚𝑎𝑥𝑧 − 𝑚𝑖𝑛𝑧
)

𝑉𝑒𝑟𝑡𝑒𝑥𝑧 is the current vertex’ Z coordinate, 𝑚𝑎𝑥𝑧 and 𝑚𝑖𝑛𝑧 are the maximum and the

minimum Z values among all of the bunny’s vertices.

The result should resemble the image in Figure 4.

Figure 4 - Depth-based coloring

3 Assignments

• Apply the depth-based coloring scheme to the rasterized bunny from Laboratory work
10.

• Extend the triangle rasterization function from Laboratory work 9 to include a z-buffer
hidden surface removal algorithm.

• Interactively switch between rasterizing with / without z-buffer, using the keyboard. To
see the full impact of the algorithm, make sure to turn off Back Face Culling.

Laboratory work 11 – Polygon clipping
algorithms

1 Objectives

Study, implement and evaluate the Sutherland-Hodgman and Weiler-Atherton clipping
algorithms for polygons, in 2D object coordinate system.

2 Theoretical background

There are two main types of clipping algorithms against the margins of a display window,
according to the coordinate space where we compute the operations:

a) Raster algorithms, which operate in video memory. With these algorithms the clipping is
computed for each pixel. Even if the algorithms themselves are pretty simple their
implementation requires a large number of accesses to the video memory.

b) Vectorial algorithms, which operate with the nodes describing the polygon. These clipping
algorithms work directly with the data structure describing the polygons and will result in
one or more new polygons described through a list of nodes.

The second types of algorithms involve more complex computations which are executed in the
main system memory but their results is compatible with any graphical system as is described
generally through a list of points. Two of the vectorial algorithms are very often used:
Sutherland-Hodgman and Weiler-Atherton.

2.1 Sutherland-Hodgman clipping algorithm

Sutherland-Hodgman algorithm considers that the initial polygon is defined through a list of
nodes inv[] = {v1, v2, …, vn}. A conventional direction of nodes inspection is determined, for
example: v1v2, v2v3, …, vnv1. The clipping of the polygon is finalized in four steps. At each step,
all the edges of the polygon are clipped against one side of the working area. In the end, we will

obtain a list of points outv[]={v1’, v2’ ,…, vp’} that describe the clipped polygon.

Figure 1: Relationships between the margins of the display area and one edge of a polygon

We can identify four different relationships between the margins of the display area and any
edge of a polygon (see Figure 1). We will consider s to be the initial node and p the final node of
the edge. The four cases are:

1) Both nodes s and p are inside the display area. Node p will be added to the list of clipped
nodes: outv[] <- p.

2) Node s is inside the display area while p is outside. We have to compute the intersection
point i between the margin of the display area and the edge described by s and p. Node i
will be added to the list of clipped nodes: outv[] <- i.

3) Both nodes s and p are outside the display area. Nothing will be added to the list of
clipped nodes.

4) Node s is outside the display area while p is inside. We have to compute the intersection
point between the margin of the display area and the edge described by s and p. We will
add both p and i to the list of clipped nodes: outv[] <- p, outv[] <- i.

2.2 Sutherland-Hodgman algorithm pseudo-code description

Clipping SH(nodesList: inv, outv; displayAreaMargins: margine_dec[4])
{
 for j=0,4
 {
 ClipMarginSH(inv, outv, margine_dec[j]);
 inv = outv; //update the current nodes list
 }
}

ClipMarginSH(nodesList: inv, outv; displayAreaMargin: margine_dec)
{
 node i, p, s;
 s = last node from inv;
 for p=each node in inv
 {
 if(InDisplayArea(p, margine_dec)) //cases A and D
 {
 if(InDisplayArea(s, margine_dec)) //case A
 {
 add p to outv
 }
 else //case D
 {
 i = IntersectionPoint(s, p, margine_dec);
 add i to outv
 add p to outv
 }
 }

As you can see, the algorithm eliminates from the display list the parts of the polygons which
are placed into the exterior half-plane determined by the display area margin.

Figure 2: The checking order for the display area margins

The function InDisplayArea(node: p; displayAreaMargin: margine_dec) returns true if point p is
in the same half-plane with the display area related to the line described by margine_dec. For
simplicity we will consider a conventional direction for testing margins of the display area. Let
this be the trigonometric direction. While we keep the same order into the display area margins
list we can check the position of p according to Figure 2. This way, the function can be
described:

2.3 Weiler-Atherton clipping algorithm

Weiler-Atherton algorithm considers that the initial polygon is defined through a list of nodes
inv[] = {v1, v2, …, vn}. After the clipping algorithm is applied we will obtain zero, one or more
polygons, each defined through a list of nodes outvk[] = {vk1’, vk2’, …, vkp’}.

 else if(InDisplayArea(s, margine_dec)) //case B
 {
 i = IntersectionPoint(s, p, margine_dec);
 add i to outv
 } //we do nothing for case C
 s = p; //update the starting point
 }
}

InDisplayArea(node: p; displayAreaMargin: margine_dec)
{
 switch(margine_dec)
 {
 case right_margin: if(xp < xmargine_dec) return true; break;
 case top_margin: if(yp < ymargine_dec) return true; break;
 case left_margin: if(xp > xmargine_dec) return true; break;
 case bottom_margin: if(yp > ymargine_dec) return true; break;
 }
}

If the initial polygon intersects the margins of the display area, the result polygon will contain at
least a portion of an edge of the initial polygon and portions from the display area margins. If
the polygon is entirely outside of the display area, the result will be empty.

2.4 General description of the algorithm

The algorithm starts from one node of the polygon. Let us consider the polygon from Figure 3

and v1 as the starting node. We will use i to count the resulting polygons. For the beginning, i =

1.

Figure 3: Weiler-Atherton - example of polygon clipping

1. We go through all the polygon’s nodes in a conventional order, for example v1v2, v2v3….

As v1 in inside the display area we add it to the results nodes list for the first polygon

outv[1][] <- v1.

2. We continue to check all the nodes of the initial polygon, in the previously established

conventional order, until we get out of the display area. We add all these nodes to the

outv[1][] list.

3. If we consider M1 to be the exit point on the v1v2 edge, we add M1 to outv[1][].

4. We will continue to check the margin of the display area which is inside the polygon,

until we meet the first intersection with the initial polygon. We add this intersection

point (M4 in Figure 3) to the outv[1][] list, as it represents the entry point of the polygon

into the display area.

5. We then continue to check the nodes of the initial polygon which are inside the display

area until we get back again to v1 or we get out again, in which case we go back to step 3

of the algorithm.

6. If v1 has been reached, we will obtain the first result polygon. For our example: outv[1][]

= v1, M1, M4 (,v1).

7. We can go further to the next polygon: i = i + 1. Our new starting point will be M1.

8. We go through all the polygon nodes, in the conventional order, until we discover the

first entry point (M2 in our example).

9. Starting with M2 we begin to construct a new polygon outv[2][]. In our example outv[2][]

= M2, v4, M3, F1 (, M2).

2.5 Weiler-Atherton algorithm implementation example

One possible implementation of the Weiler-Atherton algorithm could be:

1. Create a list (Ipp) with the nodes of the initial polygon.

2. Create another list (Ipf) that contains the corners of the display area.

3. Compute the intersection point of each polygon edge with the margins of the display

area and add the resulting nodes to the Ipp and Ipf lists.

4. Add to the Ipf the nodes of the polygon which reside on the margins of the display area.

5. Create the list of polygon’s edges (ILp) which will keep for each edge a reference to two

consecutive nodes of the polygon.

6. We check each edge from ILp to determine if it is:

a. Inside the display area

b. Outside the display area

c. On one of the margins of the display area

7. For each point in Ipp we determine if it is placed:

a. Inside the display area

b. Outside the display area

c. On one of the margins of the display area

8. For each point in Ipf we determine if it is placed:

a. Inside the polygon

b. Outside the polygon

c. On one of the edges of the polygon

9. We determine the computation order of the points in Ipf list, keeping the result in var

sens.

a. sens = LEFT, the next element is ->urm

b. sens = RIGHT, the next element is -> pred

c. sens = NEDEF

10. if sens = NEDEF then

if(polygon inside the window) //q0 is the list of result polygons

q0 = ILp //each polygon is represented by a list of

edges

else

 q0 = null

 else

 for(each element of ILp) do

 Atherton(current_element of ILp);

 current_element = current_element -> urm;

11. Stop.

Atherton (latura: elem)
{
 if (elem is outside the window)
 {
 if(newp = true) secventa();
 }
 else if(elem is inside the window)
 {
 if(newp = false)
 {
 newp = true;
 add elem to q0; //q0 is the list of result polygons
 }
 else
 {
 add elem to q0;
 if(elem->urm is inside the window) secventa();
 }
 }
 else //the point is on one margin of the display
area
 {
 if(newp = true) secventa();
 }
}

The function secventa() should:

1. Locate in Ipf the node that represents the beginning of the segment that is being
analyzed.

2. Go through Ipf in the conventional chosen direction until identifies a common point with
Ipp, adding to q0 each new edge from two consecutive points from Ipf

3. if(the last point is the same with the starting point in q0)
then newp = false; //newp is true while we are building on the same polygon

3 Assignment

• Define a display area and mark it with a rectangle. Display a polygon and clip it
against the display area previously defined using:

o Sutherland-Hodgman algorithm

o Weiler-Atherton algorithm
• Extend the above request by allowing the user to define the display area using the

mouse.

Laboratory work 12 – Bezier curves

1 Objectives

This laboratory presents the key notions on Bezier curves.

2 Theoretical background

2.1 Bezier curves

A Bezier curve is a parametric curve, used in computer graphics and other related fields, used to
model smooth curves that can be scaled indefinitely. Another applicability of the Bezier curves is
in animations where an object movement can be defined by using a Bezier curve, modifying in
this way the velocity of the object.

2.2 Cubic Bezier curves

In order to define a cubic Bezier curve we need 4 points. The curve will pass through P0 and P3,
which are the starting point and the ending point of the curve. The curve will not pass through
P1 and P3 which are control points and are used to provide directional information.

𝑩(𝑡) = (1 − 𝑡)3𝑷0 + 3(1 − 𝑡)2𝑡𝑷1 + 3(1 − 𝑡)𝑡2𝑷2 + 𝑡3𝑷3 , 𝑡 ∈ [0,1]

2.3 Generalization

The Bezier curve of degree n can be generalized in this way:

Fig. 1: Example of a Bezier curve with 4 points

𝐵(𝑡) = ∑(
𝑛

𝑖
) (1 − 𝑡)𝑛−𝑖𝑡𝑖𝑃𝑖

𝑛

𝑖=0

For example, for n = 5:

𝐵(𝑡) = (1 − 𝑡)5𝑃0 + 5𝑡(1 − 𝑡)4𝑃1 + 10𝑡2(1 − 𝑡)3𝑃2 + 10𝑡3(1 − 𝑡)2𝑃3 + 5𝑡4(1 − 𝑡)𝑃4

+ 𝑡5𝑃5 ,

𝑡 ∈ [0,1]

Recursively the formula can be expressed as follows:

𝐵(𝑡) = 𝐵𝑃0𝑃1…𝑃𝑛(𝑡) = (1 − 𝑡)𝐵𝑃0𝑃1…𝑃𝑛−1(𝑡) + 𝑡𝐵𝑃1𝑃2…𝑃𝑛(𝑡)

3 Assignments

• Create an application to exemplify the Bezier curves.

References

1. Computer Graphics: Principles and Practice, John F. Hughes, Andries van Dam, James D.

Foley, Morgan McGuire, Steven K. Feiner, David F. Sklar, Addison-Wesley, 2014

2. Fundamentals of Computer Graphics 4th Edition, Steve Marschner, Peter Shirley, A K

Peters/CRC Press; 4 edition, 2015

3. Computer Graphics: Principles and Practice in C 2nd Edition, James D. Foley, Andries van

Dam, Steven K. Feiner, John F. Hughes, Addison-Wesley Professional, 1995

4. Interactive Computer Graphics: A Top-Down Approach with Shader-Based OpenGL 6th

Edition, Edward Angel and Dave Shreiner, Addison-Wesley, 2012

5. 3D Computer Graphics (3rd Edition), Allan Watt, Addison-Wesley, 2013

6. Mathematics for 3D Game Programming and Computer Graphics 3rd Edition, Eric

Lengyel, Course Technology PTR, 2012

7. Foundations of 3D Computer Graphics, Steven J. Gortler, The MIT Press, 2012

8. Graphics and Visualization: Principles & Algorithms, T. Theoharis, A K Peters/CRC Press,

2008

9. Mathematics for Computer Graphics, John Vince, Springer; 5th ed., 2017

	1 Objectives
	2 Theoretical background
	2.1 Create a window using SDL
	2.2 SDL Surface
	2.3 Process events
	2.3.1 Mouse pressed event
	2.3.2 Mouse move event
	2.3.3 Keyboard event

	2.4 Further reading

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Vectors
	2.2 Operations
	2.2.1 Basic operations
	2.2.2 Dot product
	2.2.3 Cross product

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Matrix
	2.2 Identity matrix
	2.3 Matrix operations
	2.3.1 Multiplication with a scalar
	2.3.2 Addition of matrices
	2.3.3 Multiplication with another matrix
	2.3.4 Multiplication with a column vector
	2.3.5 Transposition
	2.3.6 Determinant of a matrix
	2.3.7 Inverse of a matrix

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Defining 2D and 3D points
	2.2 Transformations
	2.2.1 2D Translation
	2.2.2 3D Translation
	2.2.3 2D Scale
	2.2.4 3D Scale
	2.2.5 2D Rotation
	2.2.6 3D Rotation

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Using SDL application
	2.2 SDL Renderer
	2.3 Drawing a line

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Bresenham’s algorithm for line
	2.2 Bresenham’s algorithm for circle
	2.3 Geometry rendering using SDL’s API

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Line clipping algorithms
	2.2 Cyrus-Beck algorithm
	2.2.1 Pseudocode

	2.3 Cohen-Sutherland clipping algorithm
	2.3.1 Determine if a point P(x,y) is visible
	2.3.2 Determine if a segment is visible
	2.3.3 Pseudocode

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Visualization transformations
	2.2 Viewport transformation
	2.3 Camera transformation
	2.4 Projection transformation
	2.5 Combining transformations
	2.6 Compute and display the normal vector of a triangle
	2.7 Back-face culling
	2.8 Basic clipping in homogeneous coordinates

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Triangle definitions
	2.2 Barycentric coordinates
	2.3 Triangle rasterization pseudocode

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Coloring the bunny based on depth

	3 Assignments
	1 Objectives
	2 Theoretical background
	2.1 Sutherland-Hodgman clipping algorithm
	2.2 Sutherland-Hodgman algorithm pseudo-code description
	2.3 Weiler-Atherton clipping algorithm
	2.4 General description of the algorithm
	2.5 Weiler-Atherton algorithm implementation example

	3 Assignment
	1 Objectives
	2 Theoretical background
	2.1 Bezier curves
	2.2 Cubic Bezier curves
	2.3 Generalization

	3 Assignments
	377-6 coperta.pdf
	Page 1

