Teodor-Traian STEFANUT

USER INTERFACE DESIGN

Laboratory guide

\;

UTPRESS
Cluj-Napoca, 2019
ISBN 978-606-737-382-0

Teodor-Traian STEFANUT

USER INTERFACE DESIGN

Laboratory guide

Editura UTPRESS
Cluj-Napoca, 2019
ISBN 978-606-737-382-0

Editura U.T.PRESS

Str. Observatorului nr. 34

C.P. 42, 0.P. 2, 400775 Cluj-Napoca
Tel.:0264-401.999

e-mail: utpress@biblio.utcluj.ro
http://biblioteca.utcluj.ro/editura

Director: Ing. Calin D. Cdmpean

Recenzia: Prof. dr. ing. Dorian GORGAN
Sl. dr. ing. Victor loan BACU

Copyright © 2019 Editura U.T.PRESS
Reproducerea integrala sau partiala a textului sau ilustratiilor din aceasta carte este posibila
numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-382-0

Preface

The development of interactive web and mobile applications has increasingly become a significant area
in software development activities. With multiple solutions competing over the same user needs and
challenges, providing a very similar set of functionalities, the aspects of usability and improved user
experience are becoming more important in the decision to use one app or another.

This publication groups together the support materials for the practical activities of the 4 year
students of Computer Science Department from Technical University of Cluj-Napoca, at the User
Interface Design discipline. At the same time, it aims to provide to any person interested in the basics
of web and mobile application development, the introductory notions required to implement a first,
basic application.

The material has been structured in two main sections: one dedicated to Web Technologies (HTML,
CSS and JavaScript) and one focused on mobile development using Android technology. Each of the
two sections has been organized in five topics (laboratories), that have been explored from both
theoretical and practical perspectives. Implementation considerations have also been added to each
guide providing debugging hints and best practices recommendations.

It is highly recommended for the beginners to follow strictly the order of the topics in each of the
sections, as this will have an important role in understanding theoretical notions and in improving
implementation efficiency. At the same time, more experienced developers can focus on particular
topics of choice, as long as the explaining terms are familiar.

The information included in this publication has been carefully selected to provide a condensed,
efficient and thorough start on the path of learning the described technologies. As searching for
solutions and understanding faced challenges is a very important part of the learning process, the
examples included are not complete tutorials, but rather key parts of the implementation process that
guides the learner on the right path to the solution.

Table of Contents

LABORATORY 1 = HTIML....cuuaueeeeeieeireiriieseesinscresiessessnssnssessssssessossossnssnsssssssssossassnssnssssssnsans 2
1.1 o o (1ot T N 2
00 N I o Yo T =1] VA o o] =T o1 £ |71 USRI 2

1.2 Theoretical coNSIderations.........ccvieiiiiiiiiiiiiiiiiiii e re e s senassessenassenees 2
O R I 1Y/ 1 =Y o =] £ SR 2

1.2.2 Most common attributes of HTML [GDeIS........ccciiiiiiiieiii ettt 5

13 Development coNSIAErationscocceeeceiiieeeiiiiieeiiirieeeirreneseesrenesesreenssessenesssssennsssssennns 6
14 EX@ICISES euuieiiiniiiniiieiiieiieeiiniiatientientiensiaseraserasessssssssasernsssnssssssenssosssnsssnsesnssssssasssnsesnsesnns 6
LABORATORY 2 — CSS fOrmatting..........ceeeueeeeucereeireenireeninreniesesseseesssesssssssssscssssessssssssssanns 8
2.1 Yo o (1ot T TN 8
2 I R -1 o Yo T =1 o Vi o] o] [Tt 4 V7T PR 8

2.2 Theoretical cONSIAErationsccccceeeiiiiiiiiiniiiiiiiiiinirrerssssssisesiresessseses 8

B A R O 1 =1 1= o S OO OO U PR PP PP PUPPRROPPPR 8
2.2.2 DEfiNING CSS ClaSSOS ...uutiiuiieiieiuiieieerite et ettt et et sa et esae e e sbe e sate e bt e s atesabeesatesabeesabeebeesneeebeesneesates 9
2.2.3 Rules for applying CSS specifications on HTML dOCUMENTSeeeeciiieiiiiieiiieeeeee e 10

2.3 Development conSIderationsccccieeiiieiiiieiiieciiieiereererenereneereseernssernssesensesensessnsens 11
2.4 T ol LY = RN 12
2.5 3= =T =T 4 Vo =T 13
LABORATORY 3 = JAVASCLIPL c.euuervveierreiirruiirisisirsnsirsusssssissssismsussrsssissssssssssssusssssssssssssssnss 14
3.1 0T 1 o Te [T 4 o o O RN 14
3.1.1 LabOoratory ODJECHIVES ...c..eiiiiiiie ittt ettt s b et e s n e b b e aeesare s 14

3.2 [1V KT o 411 Nt 14
3.2.1 Including the code directly into the HTML filecoooueriiiiiiiieee e 14

3.2.2 Including JavaScript code from and external filecccevevee e 14

3.2.3 Subset of JavaScript FUNCLIONSc..uiiiieecee et ettt ettt e e abe e eeaaaeeeannas 14

3.3 Development conSiderationsccceeueiiiereeiiiieieierieneierreneeseeneesseenessssennsssssennsssssennes 16
3.4 = o LY LN 17
LABORATORY 4 = JQUEIY liDIArYoeeueeeeniieerieieeiiieiniseisiseisissnsisseesissesissssssssasessassssssssssnns 19
4.1 1o Yo 11T 4 o o Y 19
ot I A 1= o To T = o] Vo] o] =Tt 4 1Y/ USRI 19

4.2 INtroduction t0 JQUENYcceuuiiiieiciirecerereseerere e s rene e s renasessenessssennsssssennssssnennssssnennns 19
4.2.1 IMPOIt JQUEIY OFary .o...veiceeeeeee ettt e e te e e e ta e e e ate e e e abeeeeabaeeeeasaeesaseseensaeaanns 19
4.2.2 USE JQUETY FUNCLIONS ...ttt sttt st sat e b e st b e s beesbe e st e e sneesatees 20
4.2.3 Manipulate HTML tags USING JQUETY ...cccueeriiirierieeitieeiieesieesieesieesteesieesateesstesseesssesseesseesasessseesasees 20
Ny O TN 1T oV Ao o =Tt £ PP PR 21
4.2.5 Manipulate HTML @I8MENTS ...coviiiiiiiiieiieeit ettt sttt sttt s be e b e st esneesarees 21
A R 10 1V I = 17T - | OO UROPSPRRP 24

Ny A 16 11V, o= Yo YT 1O - 4 o o SRS 25

4.2.8 Chaining fUNCHION CallS......ccuiiiiiiieeeee ettt et e e e et e e e tte e e e beeeebaeeeeaseeesaseeeensaeaanns 26
4.3 0 =T o 26
LABORATORY 5 = AJAX CQUIS «...eueeeeeeeeeeeeeereneetenieeeaeseeneseensssnaseseessssessssnsssssassssassssnssssnnns 28
5.1 [0 1 g o Te [T 4 o o RN 28
5.1.1 Laboratory ODJECHIVESeiiiiiiieiieeee ettt sttt et ettt st e s s b s r e saeesare s 28
5.2 AJAX calls using jquery library....cccccieciiiiiiiciiiiiicicrrcre e reeersnssssnsesennsssens 28
T R [11 1 ES Y=Y VT or- || LSRR 28
5.2.2 Call aNSWEr MANAZEMENTciiiiieiiiiiecieee ettt e e etre e et e e e tre e s te e e s teeeessreeesasaeesateeeassessnseeesssesesnsseesnnnes 31
5.2.3 Display received information in HTIMILc.ueiieiiiiiiiiiee ettt et et e 31
5.3 Development coNSIAErationsccceeeeiiieieeieieneeeireneeereenesesrennsesseenssesseensssssennsssssennes 32
5.3.1 Server COMMUNICAtION.ciiiiiiiiiiee ettt e ettt e e e s et e e e e s bttt e e e s e annereeeesenanreneeeesannes 32
5.3.2 Dedicated processing fUNCLIONScoouiiiiiiiiiiieiiee et s 33
5.4 EXEICISES ieuuiieniiieeeienniiinniiieeieienisieeserensssrasssensssrensssnssssesssssnsssenssssnssssssssssnssssnsssenssssnsanes 33
5.5 3 =T =T 4 o =T 34
LABORATORY 6 — Introduction in Android development...............ccccecevrvvuriirreveriirnenenisnnnns 36
6.1 L0 g o Te [¥ o1 4 o o T RN 36
6.1.1 Laboratory ODJECHIVESeeiiiiiee ittt sttt st b e st n e b b aeesare s 36
6.2 Theoretical coONSIiderations.......cccciiieeiiiiiiiiiiiiiiicicrrcrec e ree e sensssenssannssnens 36
6.2.1 Hardware CONFIGUIAtioNSciiiiiiiiiiie ettt st e st e e s be e e saaeessateeesnseeesanees 36
6.2.2 Basic notions for the development of Android applications adaptive to multiple resolutions........ 36
6.3 Development consSiderationsccccceiiieiiiiiiieiiiiicienineeeieneereeierneseseesesensesensessnsnens 37
6.3.1 Create a new Android apPliCatioNeeiiiiie i e 37
6.3.2 The generic structure of an Android applicationc.ccccciiiiiiee e e 40
6.3.3 Describing the USer iNTerfacec.ooioiiiiiiie e s s 41
6.4 Java aspects specific to Android applications......c.c.ceriieeieiiiriceireisecrrec e e eenaeeeees 41
6.4.1 ACCESS VISUAl BIEMEBNTES ..eieeiieeiie ettt sttt e e et e s ate e s st e e e s be e e saeeeesabeeesnseeesanees 42
6.4.2 Attach callbacks t0 USEr INtEraCtioNS.......ioiuiiiiiiii e e 42
6.5 = o LY LN 42
LABORATORY 7 — Android Ul and user interaction (1)eeeueeeeeeereneeeeeererenserennsesenserenns 44
7.1 Yo o (1ot T 44
7.1.1 LabOratory ODJECTIVESccccueieeiie ettt ettt e ete e e et e e e te e e s te e e e bt e e eeabaeesabeeeebaeeenasaeesateeeensseesanees 44
7.2 Theoretical coNSIAErationscccccciiiiiiiriuuisiiiiiiiirenresseiresessssses 44
7.2. 1 Creating CUSTOM IISES c.uviiiiiiiieiitee ittt sttt et re et e ste e st e e s e e e beeseeeebeesaaeenbeesnseenbeesnseenseesasens 44
7.2.2 Create a contextual menu and define user interactions With itccccccevvviiiniiiiiiie e, 45
7.3 Development consSiderationsccccicceiiieiiiiiiiieniiniiieniieiiiieiinereserenssensssnssns 45
7.3.1 Transition t0 anOther @CtiVItc.cueiiieiiiiiee et s s 45
7.3.2 Creating an AdaPLer Classeiuiiieiciiie e eciee et e et e st e st e e et e e e sata e e sareeeesaeesnteeesareeeerreeenees 46
7.3.3 Connect the ListView element and the Adapter ... e 46
7.3.4 Implementing the contextual MENUociiiiiiiii e e s 46

7.4 [(=] (ol EY =L 47

LABORATORY 8 — Android Ul and user interaction (2)eeeeeeeeueveeeeeeeerereeserennseeensesenns 49
8.1 LY 4o Yo VT AT o TP 49
<0 0 A IF=Y o Yo T - 1 o1 Vo] o Y=ot 1 V7RSSR 49
8.2 Theoretical conSiderations.........cciveiiiiiiiniiiiiiiiiiii s sesssssssessssses 49
L300 R ©] o T o T3 Y- PRSPPI 49
8.2.2 PrOBIESS DAl i iiiiiiiie ettt ettt e et e e et e e e et e e e e tae e e tbeeeeateeeebaae e taeeeaataeeabaeeabbeeeaaraeeatreeeateeaann 49
L0 T = 7Y@ (G o 10 o PSSP PSUPRPRPPPRRN 49
8.2.4 DiIAlOZ WINTOWS....ccuiieeeiiieeitee et e eeite e etee e stveeestteeessaeeeateeesssesesssaaeassseeessesesssseesnssesanssasenssesesnsenannes 50
T T 0 7Y K- OO P PP PP PPN 50
8.3 Development coNSIAErationsccceeeeiiieieeieieneeeireneeereenesesrennsesseenssesseensssssennsssssennes 50
8.3.1 DEfiNING @ HIMEI ettt et e e et e e e e te e e e bae e e bbe e s steseeasaeeenbbeeeeateeeasseseansaeaanns 50
8.3.2 Defining elements for the Options Barcooieeiiiiiiii e 50
8.3.3 Populate the OPtioNS DAr.......ccciii e e s e e e e eraeeenns 50
8.3.4 1dentify SEIECLEA OPTIONcceiii ettt ettt e ettt e e et e e e ta e e eeabeeeetaeeeebeeeenbeeesaseeaebaeaanns 50
8.3.5 DiSPIay @ TOASE MESSAEE ..eeeuvreieiurieiiiiteeiteeeitieeesteeesteeestteeessteeesseeeaseeessstesessseeesseeesssseeessseessnseeennns 51
8.3.6 Display @ dialog WINAOWeeeiiuiiiieiiicciee ettt e e te e st e e st e e e ate e s aseeesataeesssaeessseeeansaeennns 51
8.3.7 Customize the behavior of the Back BUTTON..........cociiiiiiiiii i 51
8.3.8 Pass data betWeeNn aCIVIIESc.eevveiiiiiieriee e e st 51
8.4 EXEICISES eeuuireuniieeiienniitinertneierenseteeserensssrasesenssssansssnssesenssssnsssensessnssssssssssnssssnsssensassnssnns 53
LABORATORY 9 — Android Ul and user interaction (3)ccceeeeueeveeereneeeevurerenserenssernnsesenes 54
9.1 Yo o (1ot o 54
9.1.1 Laboratory OBJECLIVESocciiee ettt ettt e e te e et e e e ta e e e ate e e s abeeesabaeeeearaeesnseeeensaeaanns 54
9.2 Theoretical conSiderationsccoviiiireiuciiiiiiiiiire s ssaeases 54
9.2.1 Reuse of Ul templates (elements of tyPe VIEW)cccuueiiiiieeeiii ettt esvee et 54
9.2.2 VieWHOIdEr teMPIate....ci ettt b e sre e s s 54
9.2.3 Notify the RecyclerView.Adapter on data model Updates.........ccceeeeviieeeiiricceee e 55
9.2.4 Customize list 1emMeNtS diSPIAY ...ccccueiieiiieiiieeecec et e e e e et r e e et e e e sareeeeabaeeenns 56
9.3 Development coNSIAErationsccccieeeiieeniieeniiieneiineiereeerenerenseereseeresserasserensessnsessnsenns 56
9.3.1 Adding required library for RecyclerView t0 the APPccciiiiieeiiie ettt 56
9.3.2 IMPIEMENT RECYCIEIVIEBW ..ottt ettt st sb e e saneas 56
9.3.3 Process the onltemClick event for a RecyclerView list elementccceccevevceeecciie e 58
9.3.4 Use different display templates in the Same liSt..........cocuieiiiiiiciiee e 58
9.4 0 T o 58
LABORATORY 10 — connect to a REST API from Androideeeueeeeuereeeneeeeneeeenceeenennan. 59
(0200 A 1o 1 o e [¥T o 4 ' o RN 59
10.1.1 Laboratory ODJECHIVES ...c...iiiiieeetee ettt st st e b e st e b e nne e 59
10.2 Retrofit lIBrary SETUPcceeee it rreee e s recae e s s e ee s e s s enasesseenasssssennssssnennns 59
10.2.1 Including required dePENAENCIES......ccovcuiiiiciee ettt e st sae e e rate e e sbeeesanees 59
10.2.2 (@1 7CT] o= g To Yo 1T ol = Y TSRS 60
10.2.3 [DI=Tol Y [a Yo o I N o T o 1T =Y d o] o [P URP 60
10.2.4 Register the APl interface with the Retrofit libraryc..cooceoiiiiiiininieeeee 61

10.2.5 Making calls to the APl @NdPOiNtS......ccccuiiiiiieeiiie ettt e e e e ere e sra e e rere e e ee e e eanes 62

10.3 Development coNSIdErationscccceiiiiieeiiiiieniiniieniiiniieeiiiesiessessessssesnes 63

10.3.1 Adding iNternet aCCeSS PEIMISSIONSeiiiciiieeirieeiieeesteeeerteeeraeeesteeeesreeessaeeesseeeassseesnnsneesnseeenn 63
J10.4 EXEICISES .ccuieuiieiiiniieniieniioeiaieieiisesieesisssiassesssenssessissstsssssssssssssssssssssssssssnssasssasssnsssnsssnsss 63
10.5 REFEIENCES ...ceeeeeciiiieeciiieiieiireeeesreeneesrrenesessrenssessrenssssrennssssrennsssssennsssssennssssrenssnssnennns 63

WEB TECHNOLOGIES FOR USER INTERFACE
DEVELOPMENT

LABORATORY 1 -HTML

1.1 Introduction

The development of professional WEB applications requires the implementation of a user interface
that looks and behaves identical on each and every browser that the application’s users might be
familiar with. The main technologies used are HTML, CSS and JavaScript.

1.1.1 Laboratory objectives

Present basic notions on HTML description language and describe the most common HTML tags . Apply
theoretical concepts in practical examples.

1.2 Theoretical considerations

HTML is the standard language for describing an organizing the content meant to be visualized through
a web browser.

The structure of a valid HTML document has the following components:

first line of the document — specifies the language version used by the document
header section — contains general information about the document and needs to be fully
loaded before starting the download for the document body; most of the information from
the header section is not visible into the document.

3. document body —the actual content

<IDOCTYPE html>
<HTML>
<HEAD>
KTITLE>My first HTML document</TITLE>
</HEAD>
<BODY>
<P>Hello world!</P>
</BODY>
</HTML>

1.2.1 HTML labels

Used for content layout and formatting inside the document (content section) or for attaching more
meta-information about the document (header section) like: external files, format specification,
information about authors etc. The entire structure of the document can be represented as a tree,
having <HTML> element as root. This tree representation of an HTML document is called DOM
(Document Object Model) and has an important role in allowing the browser to access and manage
elements, exposing them also to the various client-side scripting languages (ex. JavaScript).

According to the implicit display mode, visual HTML labels that are used to layout the content can be
grouped into:

e block labels — they add a vertical break to the content and use the entire horizontal space
available

e inline labels — displayed inline with the text content, they are influenced by the formatting
applied to text

Most common labels encountered in an HTML document are:

HTML label

TITLE

LINK

SCRIPT

STYLE

H1, H2,
H4, H5, H6

H3,

DIV

IMG

SPAN

FORM, INPUT,
LABEL

TABLE

Description

Label included into the header section, it specifies the title of the document. The
text here is used by the browser as a title for the window (tab) in which the
document is displayed.

Defines a link to an external document (ex. CSS, another HTML) that can be used
by the browser to visually format or manage the content of the document. This
label is also included into the header section.

Allows the integration of programming instructions inside the HTML document.
These instructions will be executed by the browser when the page is loaded or
upon different user interactions. The code itself can be loaded from an external
document referenced by the SCRIPT label or can be verbatim included into the
original file. Most common language used today is JavaScript.

Allows the integration of CSS formatting instructions inside the document. Best
practices in web development recommend the deprecation of this label in favor of
including all CSS specifications into an external file referenced in the header section
of the HTML document.

Block type labels that can be included only in the body section of the document.
They are used to structure the content into sections and sub-sections. Best
practices recommend to have only one H1 label in each document.

Block type label used to group the content into a rectangular section.
Block type label used to mark paragraphs into the text type content.

Inline type label that allows the specification of an external (to another document)
or internal (different section of the current document) link.

Label that has the implicit representation as an inline element and allows the
integration of images into the HTML document.

Inline type label used for specific formatting of text content.

Labels used to describe forms inside HTML documents:

e FORM - block type label that groups INPUT elements

e INPUT — generically describes the elements available to be included into a
form, the exact type of the element being specified through the TYPE
attribute

e LABEL — associates a title to the elements of type INPUT

Allows the integration of a table layout into an HTML document.

THEAD Visual and semantic element that highlights a section of a TABLE as a header / title

section.
TBODY Visual and semantic element that groups the actual content of a table.
TR, TD Labels that describe rows (TR) and cells (TD) into a table. The number of <TD> labels

contained by a <TR> label establishes the number of columns for that specific row,
that can be the same for the entire table or different for every row.

oL, UL Labels that allow the specification of ordered (OL) or unordered (UL) lists.

LI Describe a single element from a list, either ordered or unordered.

Labels added by the HTML 5 standard with the purpose of semantic organization of the content:

HTML label Description

HEADER Groups the graphical elements that are part of the visual header of the page (ex.
company name and logo, motto, picture, etc.)

SECTION Allows the partition of the content into logical sections.

FOOTER Describes the bottom section of the HTML document which usually presents
information about copyright, last page update, contact, etc.

NAV Includes the visual HTML labels that describe the main menu of the document and
other navigational information.

New content types natively embedded into HTML 5 through the definition of new labels:

HTML label Description

VIDEO Allows video content embedding and playback without the use of a third-party
technology (ex. Silverlight, Flash, etc.)

AUDIO Allows sound playback natively by the browser without the use of a third-party
technology (ex. Silverlight, Flash, etc.)

CANVAS Provides programmers with a bitmap formatted display zone that allows real time
display of images, animations etc.

1.2.2 Most common attributes of HTML labels

HTML label

id

class

Src

type

action

encoding

onfocus

onblur

onchange

onload

onkeydown

onkeyup

onkeypress

Description

Common attribute for most of the HTML labels. It’s value uniquely identifies the
HTML element in the entire document.

Common attribute for most of the HTML labels. It allows the specification of one
or more CSS classes for the current element, deciding the visual formatting for it
and for it’'s embedded elements.

Defines the path towards an external file of type script, image, etc. (depending on
the type of the label fir which it has been defined).

Specifies the type of the INPUT label that contains this attribute.

Attribute specific to the FORM label, indicates the path that will receive the
information gathered at form submission.

Attribute specific to the FORM label, indicates the encoding type used for the data
included into the form in order to ensure correct transmission to the server.

Allows the attachment of a JavaScript function that is called when the element
receives focus.

Allows the attachment of a JavaScript function that is called when the element
loses focus.

Allows the attachment of a JavaScript function that is called when the value of the
element (ex. content of INPUT label) has been changed.

Usually defined on the BODY element. Allows the attachment of a JavaScript
function that is called when the element for which it has been defined is
completely loaded and available for JavaScript access.

Specifies the JavaScript function that is called for each key press, if the element for
which it is defined has keyboard focus.

Specifies the JavaScript function that is called for each key release, if the element
for which it is defined has keyboard focus.

Specifies the JavaScript function that is called for each key stroke, if the element
for which it is defined has keyboard focus.

1.3 Development considerations

In order to write HTML code any text editor will do just fine (ex. Notepad). For more advanced features
(code auto-completion, code highlighting, etc.) you can use editors like Notepad++, Eclipse, Visual
Studio, Netbeans, Sublime, Brackets, etc.

In order to visualize the HTML structure interpreted by the browser you can use the development tools
provided by most of the current browsers, usually accessible on Windows platform by pressing F12
key.

@ @ @ My first HTML document x +

C @ http://HTMLExample.htm 2 B8 0 @

Hello world!

[w ﬂ Elements Console Sources Network Performance Memaory Application Security » X

Styles Computed »

htmi:

¥ <head Filter :hov .cls +
title=My first HTML document=/title element.style {
/head 3}
v <body p{ user agent stylesheet
p=Hello world!=/p> = %@ i r agent st hee

display: block;

—-block-start: lem;

-block-end: lem;
=

/body
Shtml

margin-inline-end: 8px;
i
Inherited from html

html { user agent stylesheet

html body p color: -internal-root-color;

Figure 1.1: Development tools example in Chrome under Mac OS X

In order to view the result of your code, files with .htm or .html extensions can be opened into the
browser directly from the local HDD. You should be able to use any browser of your choice available
on the development workstation (Microsoft Edge, Mozilla Firefox, Google Chrome, Opera etc.).

1.4 EXercises
Exercise 1. Create an HTML page for a tourism agency with the following minimum elements:

e one H1 label for the title of the page

e un unordered list of hyperlinks (A labels), that will be used as the main menu of the website,
having the following entries: Home, Cruises, Hiking, Swimming, Special offers

e 2900 x 350 px image that will have the role of a publicity banner

e one H2 label with the title About us

e two text paragraphs (P label) for the section About us

Exercise 2. Continue the development of the Web Page created at Exercise 1 by adding the following
elements:

e one H2 label with the text Special offers, that will mark a new section into the page
e three subsections, each of them containing the following elements (please see the image
below as example):

o one H3 label as a title
o one IMG label,
o one P label as containing description

Barcelona

i 1 1 Pt 1
ex. ¥

Ut elit odio, varius vel est vel, ti

1p quam pl mollis sapien in, laoreet mi.

LABORATORY 2 - CSS FORMATTING

2.1 Introduction

Style sheets represent a modular approach in defining the visual formatting of HTML documents, easy
to integrate directly at page or even website level. Best practices in web development recommend to
use external files having .css extension to group all the visual instructions that are later applied to the
HTMI document through the use of LINK label.

| <LINK rel="stylesheet" href="file_name.css" type="text/css"> |

2.1.1 Laboratory objectives

Present basic notions in defining CSS specifications, using CSS selectors (classes, id bases, DOM based)
and applying CSS formatting on HTML elements.

2.2 Theoretical considerations

Style instructions are mandatory grouped into CSS classes that are atomically applied to the HTML
elements they are connected to. It is not possible to apply only a subset of the directives from one
class, but it is allowed to overwrite specific instructions with the use of another class.

A CSS class has the following generic syntax, in which [class_name] can be any of the selectors
mentioned in section 2.3:

[class_name]

{
property_1: value_1;
property 2: value_2;

property_n: value_n;

}

2.2.1 CSSselectors

The link between CSS specifications and the HTML element to which these should be applied can be
defined in one of the following ways:

2.2.1.1 Using HTML label

The CSS classes that use a class_name an HTML label are automatically applied to all the elements of
that label type identified into the document. For example, the following instructions will be applied to
all DIV type elements, displaying a 1px thick, green color border around them.

div
{

border: 1px solid #0OFF00;
}

Consequently, it is recommended to use this type of selectors in order to define general display rules
for HTML element types, exceptions being defined through CSS classed with different, more specific
selectors.

2.2.1.2 Using CLASS attribute of the HTML label

In order to apply same formatting styles to a heterogeneous group of elements from the document it
is necessary to define a type-independent CSS class, using the syntax “.className”. For example:

.importantMessage

{
color: red;
font-style: italic;
font-weight: bold;

}

The link between the HTML element and the class definition is performed through the class attribute:

<ELEMENT class="classl [class2 class3 ...]">

<ELEMENT class="importantMessage">

2.2.1.3 Using the HTML element ID

The use of this selector is recommended only when the CSS instructions apply to only one HTML
element in the entire document. In this case the element must be uniquely identified through it’s ID
attribute:

| <ELEMENT id="errorMessage">

In CSS, the selector must be defined as #idElement. In our example:

#errorMessage

{
color: white;
font-weight: bold;
background-color: red;

}

2.2.1.4 Using the STYLE attribute of the HTML element

This approach has top priority in overwriting the CSS visual instructions applied to the element (see
section 2.5). However, best practices recommend avoiding this type of visual formatting, as the
specifications here cannot be reused anywhere else into the document (or in other documents) except
for the elements embedded into the formatted label.

| <ELEMENT style="css_property_1l:value_1; css_property_2:value 2; ...

2.2.2 Defining CSS classes

CSS classes that have common formatting instructions can be defined together, separating the
selectors through comas.

[class_name_1, class_name_2, class_name_3]

{
property_1: value_1;
property 2: value_2;

property_n: value_n;

}

The definition syntax presented above can be used with any selector types, the developer having the
possibility to mix them for the same definition. As mentioned above, CSS instructions of a class cannot
be applied only partially. The subtle differences from classes defined together can be overridden later
into the same document, redefining the new properties:

[class_name_2]

{
property_1: new_value;
new_property_1: new_value_1;
new_property_2: new_value_2;

new_property_n: new_value_n;

}

In any CSS specification, in the same file or in different files, a specific selector can be redefined
multiple times. The final form of the CSS class is obtained through the overridden of the definitions
encountered before, according to the positional rule: last value overrides previous values. When
multiple CSS files are used, the order in which they are parsed is the same with the order in which they
are included into the HTML document.

2.2.3 Rules for applying CSS specifications on HTML documents

Each of the HTML elements have multiple CSS rules applied, from different CSS classes. Some of these
rules are inherited from enclosing labels while others are directly applied to the element. Similar to
the CSS classes with multiple definitions, identical display instructions are overridden according to the
attachment order and to the selector specificity.

When the CSS specifications are attached to the HTML element through the same selector types,
similar to:

| <ELEMENT class="class_name_1 class_name_2 clas_name_3"> |

the properties from class3 will overwrite all the identical instructions from class1 and class2.

In order to establish the overridden order for CSS specifications attached through different selectors
(inherited from parent elements, HTML tag selectors, id based, etc.), the browser computes a number
called selector specificity, applying the following rules:

e formatting instructions defined in style attribute have highest priority (1,0,0,0 points)
e for each ID mentioned in selector, are awarded 0,1,0,0 points

e for each generic CSS selector (.className) are awarded 0,0,1,0 points

e for each selector based on HTML tags are awarded 0,0,0,1 points

See picture below for an illustration of specificity computation (picture taken from [1])

10

Stvile Class,
- D psuedo-class, Elements
attrioute attribute

" =1 " 1 P v | |

= J,L J,L J,L a4

Most
specificity
value

Figure 2.1: CSS rule specificity computation (taken from [1])

It is also important to mention that all the formatting instructions inherited from ancestor elements,
no matter how the applying selector has been defined, have the specificity 0,0,0,1.

2.3 Development considerations

CSS description does not need to be compiled before publishing. It can be written with any text editor
(ex. Notepad). For more advanced features (code auto-completion, code highlighting, etc.) you can use
editors like Notepad++, Eclipse, Visual Studio, Netbeans, Sublime, Brackets, etc.

In order to view the results of a CSS formatting it is necessary to link it with an HTML file and to apply
the rules on the HTML elements. When the connection between the HTML and CSS files is correct,
opening the former in any browser will trigger automated loading of the latter and updates on CSS
formatting for all the labels in the document. Applied styles can be easily checked in any browser using
Developer Tools section:

® O ® @ Myfirst HTML document X o+
C @ http://HTMLExample.htm a0 E 0@
Hello world!
x 4l Elements GConsole Sources Network Performance Memory Application Security » E ¢
Styles Computed »
html;
¥ <head Filter thov .cls +‘
title=My first HTML document=/title element.style {
/head }
¥ <body I e
R p{) user agent stylesheet

/body
Shiml

html body p

g ne-start: @px;
margin-inline-end: Bpx;

i

Inherited from html

html { user agent stylesheet
color: —internal-root—color;

Figure 2.2: Development tools example in Chrome under Mac OS X

11

2.4 Exercises

Exercise 1. Implement the design below using HTML and CSS technologies:

CalaTour - your travel agency

ABOUT US

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit odio, varius vel est vel, tincidunt malesuada ex. Phasellus vulputate quam placerat, mollis sapien in, laoreet
mi. Aliquam venenatis dui vitae quam feugiat accumsan. Aenean in aliquet libero. Mauris odio dui, placerat a efficitur et, pulvinar at quam. Phasellus auctor odio dui, ac
tincidunt ipsum ornare vitae. Mauris quis sapien scelerisque, consectetur diam ac, consequat augue. Cras hendrerit lectus non urna volutpat pulvinar. Etiam a pretium
nulla, ac condimentum dolor. Curabitur commodo accumsan lobortis. Duis sed justo eget mi dignissim volutpat. Donec imperdiet, odio et vulputate efficitur, purus neque
malesuada massa, rutrum elementum turpis dui vel enim. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus

Phasellus ornare erat ipsum, sed congue felis varius eget. Fusce erat ligula, faucibus sit amet magna a, imperdiet lacinia arcu. Duis tristique faucibus justo eget maximus.
Maecenas dictum pulvinar sem, sed efficitur augue interdum quis. Duis quis tellus est. Donec pretium nisl sed porttitor rutrum. Integer porttitor tellus quis velit convallis
pellentesque. Nullam hendrerit nec ex sit amet elementum. Quisque mauris justo, rutrum ut tellus vel, placerat ultrices velit. Vestibulum porta odio eu cursus lacinia. In
blandit turpis nec turpis tempus accumsan. Aenean sodales ultricies mauris id viverra

Proin eleifend malesuada volutpat. Donec ut nibh eget est volutpat suscipit. Aliquam erat volutpat. Suspendisse semper diam ut massa semper tincidunt. Sed ligula nisl,
efficitur sed velit sit amet, eleifend fringilla massa. Cras vestibulum commodo egestas. Sed sed ex dui. Ut at quam vulputate, pellentesque turpis nec, tincidunt arcu.

Implementation requirements:

title — font: Arial 24px bold, color: #800000; it is also a hyperlink to the first page (Home)
menu — background color: #DEB887, round corners of 10px radius
menu element — are of type A, font: Arial 12px, default color: #800000, hover color: #FFFFFF
section title — font: Arial 18px bold, color: #000000, margin: 10px top and bottom
regular text — font: Arial 12px, color: #666666, alignment: justified; spacing between
paragraphs: 10px
when creating the HTML structure you can use only the following tags: html, head, body, title,
header, section, footer, h1, h2, h3, div, p, span, ul, li, a, img, strong, em
when applying styles you must use only HTML based CSS selectors

o you should not use style attribute

o you should not include CSS description in the HTML document

o you are not allowed to use ID or CLASS attributes on the HTML tags

Exercise 2. Add a new section to the document created for Exercise 1 by implementing the design in
the picture below using HTML and CSS:

12

LAST MINUTE

Crete - 5 days Barcelona Montenegro

Ut elit odio, varius vel est vel, tincidunt malesuada Donec imperdiet, odio et vulputate efficitur, purus
ex. Phasellus vulputate quam placerat, mollis neque malesuada massa, rutrum elementum
sapien in, laoreet mi. turpis dui vel enim.

Implementation requirements:

e section title — font: Arial 18px bold, color: #000000, margin: 10px top and bottom
e subsection title — font: Arial 14px bold, color: #0000FF, background color: #7FFFD4, padding:
5px
e subsection — width: 33% of display width, spacing: 10px left and right
e image — with: 100% of subsection width, fixed height: 300px
e text —font: Arial 12px, color: #666666, alignment: justified, background color: #DEB887
e paragraph — margin: 10px top and bottom, padding: 10px
e when creating the HTML structure you can use only the following tags: html/, head, body, title,
header, section, footer, h1, h2, h3, div, p, span, ul, li, a, img, strong, em
e when applying styles you must use only HTML based CSS selectors
o you should not use style attribute
o you should not include CSS description in the HTML document
o you are not allowed to use ID or CLASS attributes on the HTML tags

2.5 References

[1] Chris Coyier, Specifics on CSS Specificity, 10 Mai 2010, http://css-tricks.com/specifics-on-css-
specificity/ [ONLINE, 10 May 2019]

13

http://css-tricks.com/specifics-on-css-%20specificity/
http://css-tricks.com/specifics-on-css-%20specificity/

LABORATORY 3 - JAVASCRIPT

3.1 Introduction

HTML and CSS are only descriptive languages, that can interact with the user only in a very limited and
static manner. More complex interactions required in today’s web applications (dynamic animations,
asynchronous content update from the server, data validations, etc.) are widely implemented in
JavaScript, a programming language that can be interpreted by the browser in real-time.

3.1.1 Laboratory objectives

Present basic notions on JavaScript programming: DOM manipulation and data validation. Apply
theoretical concepts in practical examples.

3.2 JavaScript

Through JavaScript the programmers have access to the DOM structure of the document and can
dynamically, at runtime, modify different properties of the HTML elements. It is important to
remember that the DOM structure is not available from the first second of document access. It
becomes accessible only after all the elements from between the <BODY> tag have been downloaded
and interpreted by the browser. At that moment, the event window.onload is triggered, which can be
used as an initiator for any JavaScript code that needs to run automatically on page load.

There are two main approaches in connecting the SCRIPT elements to an HTML document:

3.2.1 Including the code directly into the HTML file

Approach usually used when the JavaScript code is specific to the HTML file and will not occur
anywhere else into the website.

<SCRIPT type="text/javascript">
// JavaScript instructions
</SCRIPT>

In this case, the JavaScript code is inserted directly under the <HEAD> or <BODY> tags of the document.

3.2.2 Including JavaScript code from and external file

This is the recommended way of organizing active code for a website, as the same source code can be
in this way used in multiple HTML pages, without any alterations.

| <SCRIPT src="file name.js" type="text/javascript"></SCRIPT> |

In most of the cases (but not always) this use of the <SCRIPT> tag is encountered into the HEAD section
of the HTML document. Into the same document, this tag can be reused as many times as necessary,
allowing the inclusion of any number of external scripts.

3.2.3 Subset of JavaScript functions

In our laboratory implementation we will mostly use the following JavaScript functions:

14

window

window.onload

document

document.getElementByld("id_element")

document.getElementsByTagName("LABEL")

this

FORM.onsubmit

ELEMENT.onblur

ELEMENT.onclick

ELEMENT.getAttribute("attribute_name")

ELEMENT.setAttribute("attribute_name","value")

15

Keyword that returns a pointer to the DOM
entry that represents the browser window in
which the current script is running.

Event raised by the browser when the DOM
construction is finished and it becomes
available to the script.

Keyword that returns a pointer to the DOM
entry that represents the <BODY> tag.

Returns the DOM reference to the HTML
element that has the attribute ID =
"id_element".

Returns an array of DOM references to all the
HTML elements from the document that are of
the type LABEL.

Keyword that is a reference to the DOM
element for which the current script has been
called. For example:

elem.onblur = function()

{
formInputBlur(this);

}s

In the above script, when the anonymous
function is called, this = elem.

Event raised by the browser when a FORM
element from the current page is ready to be
sent to the server. In order to cancel the
submission, the attached callback function
needs to return false.

Event raised by the browser when ELEMENT is
losing focus.

Event raised by the browser when the
ELEMENT has been clicked.

Returns the value of the attribute_name
attribute of the ELEMENT.

Sets the value of the attribute_name attribute
to value for the ELEMENT.

ELEMENT.innerHTML

VARIABLE.length

STRING.indexOf(string)

Date.parse(string)

isNaN(object)

Returns the content of the ELEMENT label in
the form of HTML code. If a value is set on this
property, the content of ELEMENT will be
replaced

Returns the number of elements in VARIABLE:

e number of letters, if VARIABLE is a
STRING

e number of elements, if VARIABLE is an
ARRAY

Returns the index (count starting from 0) on
which the first occurrence of string in STRING
is found, or -1 otherwise.

Returns the number of milliseconds between
the valid date in string and 1% of January 1970.
If string is not a valid date, the result will be
NaN.

Returns true if object has value NaN.

In order to use regular expressions in JavaScript, one needs to first define the expression using
/expression/ construction and then use the test function over the verified element.

var re = /*(([*<>O NN 5 \s@\" T+ (N[O NN, 5 :\s/;5

re.test(string); // returns true if string matches the expression re

3.3 Development considerations

The same as for HTML and CSS, JavaScript code can be written in any text editor (ex. Notepad). For

more advanced features (code auto-completion, code highlighting, etc.) you should use editors like

Notepad++, Eclipse, Visual Studio, Netbeans, Sublime, Brackets, etc.

JavaScript code can be run only in a browser and only after it has been correctly integrated with an

HTML file. After loading in browser, you can debug the code using the development tools (provided by
most of the current browsers), usually accessible on Windows platform by pressing F12 key.

16

[E Elements Console Sources Network Performance Memory Application Security Audits NetBeans ¢

Page Filesystem > : [[4 scriptjs x B mn ve @O
v [top 1 window.onload = function() » Watch
| : 5
v O filed/ 3 for(i = @; i < document.getElementsByTagName("input").ler v Call Stack
v Users/stefanutt/Documents/ 4 i
) 5 var elem = document,getElementsByTagName("input")[i];
> images 6 if(elem.getAttribute("type") != “submit" && elem.getAtt v Scope
Project_1_UID_Contact.ht 7 elem.onblur = function() { formInputBlur(this) };
= S 8 else if(elem.getAttribute("type") == "submit") No
. script.js 9 elem.onclick = function() { validateAllData(); }
10 else v Breakpoints
| . e 11 elem.onclick = function() { reseteazaFormularul(); }
| 12 3} No breakpoints

14 document,getElementsByTagName("form") [@],onsubmit = funct *» XHR/fetch Breakpoints
} » DOM Breakpoints

17 function formInputBlur(elem) » Global Listeners

19 var val = elem.value; » Event Listener Breakpoints

20 war rarract — truas

{} Line1, Column 1

Figure 3.1: Development tools example in Chrome under Mac OS X

Related with the specifics of running JavaScript code it is important to mention that each page reload
in the browser will re-initialize all JavaScript execution (the previous state will be lost). Data persistence
using JavaScript can be achieved only through cookies, URL or using Local Storage functions.

3.4 Exercises

Exercise 1. Implement a contact form containing the following fields: Surname, First name, Address,
Birthdate, Phone number, Email, Favorite color. Add two buttons named Reset and Submit. Using
JavaScript, implement the following requirements:

e when the Reset button is pressed, all the fields in the form are reset to their initial state (no
content or initial value)

e when the Submit button is pressed, the form will be hidden and in its place the information
from the fields will be displayed as follows:

Surname: [surname_field_value]

First name: [first_name_field value]

Address: [address_field_value]

Birthdate: [birthdate_field_value]

Phone number: [phone_numer_field_value]

Email: clickable link to the email address from the Email field

Favorite color: 200 x 20px rectangle filled in with the selected color in the form

e all the above requirement will be implemented without page reloading

Exercise 2. Using the form created at Exercise 1, implement in JavaScript the following requirements:

e when the Submit button is pressed

o Surname must contain at least three alphanumeric characters

o First name must contain at least three alphanumeric characters

o Address should be at least three characters long and contain at least a digit. You
should make sure that the address does not contain any of the symbols: @#5$%"&*
birthdate should be filled in with a valid date in the format mm/dd/yyyy
phone number field should contain only digits and one - sign, in the format nnn-
nnnnnnnnn (3 - 9)

17

o email should also be verified to accept only syntactically valid addresses
e each time the Submit button is pressed the messages for all the identified errors, no matter
how many there are, will be displayed to the user through a single Alert window.

18

LABORATORY 4 - JQUERY LIBRARY

4.1 Introduction

JavaScript language is, in fact, a version of ECMAScript, and present some implementation differences
between browsers. Although sustained efforts are carried on with the purpose of reducing these
differences, JavaScript code created for production still needs to be tested extensively on the most
common browsers to ensure the same user experience.

As a response to these issues and on an attempt to reduce the testing effort, multiple cross-browser
JavaScript libraries have been implemented. They ensure code compatibility and functionality
consistence on all targeted browsers, providing also a higher level API for rich applications
development. One of the most popular libraries today is jQuery.

4.1.1 Laboratory objectives

Present basic aspects and functionalities of the jQuery library. Focus on HTML tags interaction and
DOM manipulation.

4.2 Introduction to jQuery

Itisimportant to understand that jQuery is not a programming language, but a library of functions that
is implemented in JavaScript and ensures cross-browser compatibility. In other words, it hides the
differences in JavaScript code execution and provides to the users an identical behavior of the web
application independent on the browser used to access it. This is achieved through the identification
of available native APIs and the call of browser-specific functions whenever deemed necessary.

4.2.1 Import jQuery library

In order to access the jQuery function from your own JavaScript code, it is first necessary to include it
in the HTML file. The statement is identical with the inclusion of any other external JavaScript file. As
it is written in JavaScript, jQuery is actually included directly as source-code and compiled at runtime
by the browser at each page load. The last available version of the library can be downloaded from:
http://iquery.com/download/

There are two main approaches on including jQuery library in the HTML file:

(1) download the source code on the application’s web server, next to other JS files that you have,
and include it in HTML as follows:

| <script type="text/javascript"” src="js/jquery.min.js"></script> |

(2) use a Content Delivery Network (CDN) to optimize delivery time and save bandwidth, by
loading the source code directly from the source

<script type="text/javascript”
src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js">
</script>

19

http://jquery.com/download/

4.2.2 Use JQuery functions

It is very important to note that jQuery functions can be invoked only after the library has been
downloaded by the browser, parsed and initialized. For this matter, any JavaScript code that relies on
jQuery should run only after the page is fully loaded and DOM elements become available.

It is thus recommended to make use of the window.onload event for starting your own code execution
only after all JavaScript resources have been downloaded, parsed and initialized. For these cases,
jQuery provides the following syntax:

$(document).ready(function() {
// code here will be executed when all DOM and JavaScript resources are available

1)

After jQuery library has been initialized, its functions can be accessed through two different syntactical
constructions that have identical results: jQuery and $. If there are no conflicts (ie. JavaScript code that
redefines the $ function), the exact same functions are called through any of the two mentioned
constructions. For example, the code above can be rewritten as:

jQuery(document).ready(function() {
// code here will be executed when all DOM and JavaScript resources are available

1)

Using any of the jQuery or $ symbols in any other JavaScript files (or directly in HTML, in <script>
sections) is accepted by the browser only if the reference to the jQuery library precedes these
occurrences in HTML. More details can be found at: http://learn.jquery.com/using-jquery-

core/document-ready/ .

4.2.3 Manipulate HTML tags using jQuery

Identical with plain JavaScript code, the first step in interacting with HTML tags is getting a reference
to the desired element’s representation in the DOM. In most cases, jQuery provides to developers a
broader approach than native JavaScript in searching for HTML tags, based on any valid CSS selector.

However, in all situations where jQuery selectors do not have a direct correspondence in native
JavaScript calls, the search of the elements is implemented through successive DOM queries which can
get time and resources consuming in the case of complex HTML documents.

In the following examples, the use of $ sign for the variables names is just a visual queue to indicate
that the returned references are actually jQuery objects (more details in the following section) and not
native DOM elements. Selectors examples:

// select element with a specific ID
var $element = $("#myId"); // Note: IDs must be unique per HTML document.

// select all elements that on execution time have a specific class attached
var $elements = $(".myClass");

// select all elements of a specific HTML type
var $elements = $("input");

// select all elements of a specific HTML type and attribute value
var $elements = $("input[name='first_name']");

// select all LI elements of the unordered Lists with class "people"
// that have 1in parents List the element with ID "contents"
var $elements = $("#contents ul.people 1i");

20

http://learn.jquery.com/using-jquery-core/document-ready/
http://learn.jquery.com/using-jquery-core/document-ready/

More examples of available selectors, including jQuery specific ones, are available at:
http://learn.jquery.com/using-jquery-core/selecting-elements/ .

4.2.4 jQuery objects

The result of each of the examples above is a jQuery object that encapsulate all the DOM elements
that match the selector used. Even if there is no match found, the result is not null but a jQuery object
that has no references encapsulated. Consequently, in order to verify if a selector has returned any
elements we cannot use:

| if ($elements == null) { } |

as this expression will always be false (the selectors are not returning null). The correct approach is to
verify the length of the returned jQuery object:

| if ($elements.length > 0) { }

There are situations in which we need a direct reference to the DOM element and not the jQuery
encapsulation. For these cases the function [jQueryObject].get(index) defined in jQuery can be used:

var jQuery element = $("#myElement");
var DOM_element = document.getElementById("myElement");

// this will print "true"
console.log(DOM_element == jQuery_element.get(©));

We can thus conclude that jQuery objects are maintaining a reference to the DOM elements that have
been matched by a specific selector. On these encapsulations we can apply all the functions defined in
the jQuery library (more details at: http://learn.jquery.com/using-jquery-core/jquery-object/).

4.2.5 Manipulate HTML elements

One of the important things to remember when working with jQuery library is that a jQuery object
hold the references to zero, one or several DOM elements. All the functions defined in jQuery that are
called on the object will be applied to all the referenced DOM entities. For example, in order to add
class “customized” to all the paragraphs from an HTML document, we will simply use the following
line:

| $("p").addClass("customized");

If used correctly, this can be very powerful and will allow complex implementations with few lines of
code. However, if used incorrectly, this can have undesired side-effects:

| $("p").html("Content that is meant for a single paragraph"); |

will change the content of each paragraph from the page to “Content that is meant for a single
paragraph”.

In order to complete the exercises proposed for this laboratory work you will need the following
functions from the jQuery library:

.html() https://api.jquery.com/html/

21

http://learn.jquery.com/using-jquery-core/selecting-elements/
http://learn.jquery.com/using-jquery-core/jquery-object/
https://api.jquery.com/html/

.html(htmlString)

text()

.text (plainText)

val()

.val(value)

.attr(attrName)

.attr(attrName, attrVal)

.addClass (className/s)

.removeClass (className/s)

returns the content of the DOM element as HTML

https://api.jguery.com/html/

sets the content of the DOM element to htmlString

I this function will parse the htmlString and will automatically
add to the DOM any tag found

I this function is vulnerable to JavaScript code injection
(through <script> elements)

https://api.jguery.com/text/

returns the content of the DOM element as plain text

https://api.jguery.com/text/

sets the content of the DOM element to plainText

I if plainText contains valid HTML code it will be ignored and
no DOM elements are created - the text will be displayed
exactly as provided

https://api.jquery.com/val/

returns the content of an INPUT element

https://api.jquery.com/val/

sets the content of an INPUT element

http://api.jquery.com/attr/

returns the value of the attrName attribute of the element

http://api.jquery.com/attr/

sets the value of the attrName attribute of the element

https://api.jguery.com/addClass/

applies to the element the CSS class (or CSS classes) from
className/s (the parameter can be a list of classes separated
through spaces)

https://api.jquery.com/removeClass/

22

https://api.jquery.com/html/
https://api.jquery.com/text/
https://api.jquery.com/text/
https://api.jquery.com/val/
https://api.jquery.com/val/
http://api.jquery.com/attr/
http://api.jquery.com/attr/
https://api.jquery.com/addClass/
https://api.jquery.com/removeClass/

.hide()

.show()

.on(eventString, handlerFunc)

.animate(prop, delta,
onCompletion)

removes from the list of applied CSS classes the class (or classes)
specified in className/s (the parameter can be a list of classes
separated through spaces)

I if this function is called without parameters it will remove
all the CSS classes applied on the element

https://api.jguery.com/hide/

instantaneous hiding of a visible HTML element by setting width
and height properties to Opx.

i. this function has multiple signatures enabling also an
animated transition between visible and invisible states

https://api.jguery.com/show/

instantaneous display of an HTML element previously hidden
using .hide(), by setting width and height properties to their initial
values

i. this function has multiple signatures enabling also an
animated transition between invisible and visible states

https://api.jguery.com/on/

allows registration of handlerFunc to be called when the
eventString event is raised; the handler function receives the
event parameter.

https://api.jguery.com/animate/

animates a visible DOM element by continuously updating the
properties mentioned in prop over the delta time interval, until
the desired values are set

e prop — JavaScript object that specifies the visual
properties that should be animated and the desired final
values; for example, in order to animate the size of an
object (width and height) from current_values to 250 px

300 px:
prop ={
height: 300px,
width: 250px
}

e delta — duration of animation in milliseconds
e onCompletion — function called when the animation is
complete

23

https://api.jquery.com/hide/
https://api.jquery.com/show/
https://api.jquery.com/on/
https://api.jquery.com/animate/

.delay (delta)

.queue (queuedFunction)

.dequeue()

426 DOM traversal

https://api.jquery.com/delay/

allows the delay in execution launching of functions applied to the
same HTML element in the same processing queue, for delta
milliseconds

e this is different in outcome compared to the native
JavaScript function setTimeout()

https://api.jquery.com/queue/

add a new function to the current processing queue of an HTML
element

I when queuedFunction has finished execution, .dequeue()
must be invoked or the processing queue will stall

https://api.jquery.com/dequeue/

launches the following function in the execution queue

When we have a reference to a DOM element, encapsulated in a jQuery object, we can use it as a

starting point for a DOM traversal in one of the following three directions: (more details and the

complete list of available functions can be found on: http://learn.jquery.com/using-jquery-
core/traversing/):

(1) towards the root of the DOM (searching through the ancestors of the current element), using
one of the following functions:

.parent([selector]) — https://api.jquery.com/parent/

returns the parent element if it matches the selector

.parents([selector]) — https://api.jquery.com/parents/

returns all the ancestor nodes (between the current element and the root of the

DOM), that match the selector.

(2) on the same level (HTLM elements having the same parent element), using one of the
following functions:

.prev([selector]) — https://api.jguery.com/prev/

returns the previous sibling, if it matches the selector

.prevAll([selector]) — https://api.jquery.com/prevall/
returns all the previous siblings that are a match for the selector

.next([selector]) — https://api.jquery.com/next/
returns the next sibling, if it matches the selector

.nextAll([selector]) — https://api.jguery.com/nextAll/
returns all the next siblings that are a match for the selector

.siblings([selector]) — https://api.jquery.com/siblings/
returns all the HTML elements that have the same parent (siblings) and are matching

the selector

24

https://api.jquery.com/delay/
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://api.jquery.com/queue/
https://api.jquery.com/dequeue/
http://learn.jquery.com/using-jquery-core/traversing/
http://learn.jquery.com/using-jquery-core/traversing/
https://api.jquery.com/parent/
https://api.jquery.com/parents/
https://api.jquery.com/prev/
https://api.jquery.com/prevall/
https://api.jquery.com/next/
https://api.jquery.com/nextAll/
https://api.jquery.com/siblings/

(3) towards the leaves of the DOM (searching through the child nodes), using one of the following
functions:
e _children([selector]) — https://api.jquery.com/children/
returns all the HTML elements that are direct children of the current element and

match the selector

o find([selector]) — https://api.jquery.com/find/
searches the DOM through all the children of the current node and returns the
elements that match the selector

4.2.7 DOM manipulation

In the Web 2.0 interactive applications it is often necessary to create, add, move or remove HTML
elements on the fly, as a response to user’s actions or according to data display requirements. jQuery
provides a set of functions for easy HTML nodes CRUD operations:

Sel.insertAfter(Starget) http://api.jquery.com/insertAfter/
insert all the HTML elements from $el after each element from
Starget

Sel.after(Scontent) http://api.jguery.com/after/

insert all the HTML elements from Scontent after each element from

Sel

Sel.insertBefore(Starget) http://api.jquery.com/insertBefore/

insert all the HTML elements from Sel before each element from
Starget

Sel.before(Scontent) http://api.jquery.com/before/

insert all the HTML elements from Scontent before each element
from Sel

Sel.appendTo(Starget) http://api.jquery.com/appendTo/

insert all the HTML elements from Sel as the last child elements of
each DOM element from Starget

Sel.append(Scontent) http://api.jquery.com/append/

insert all the HTML elements from Scontent as the last child elements
of each DOM element from Sel

Sel.prependTo() http://api.jquery.com/prependTo/

25

https://api.jquery.com/children/
https://api.jquery.com/find/
http://api.jquery.com/insertAfter/
http://api.jquery.com/after/
http://api.jquery.com/insertBefore/
http://api.jquery.com/before/
http://api.jquery.com/appendTo/
http://api.jquery.com/append/
http://api.jquery.com/prependTo/

insert all the HTML elements from Sel as the first child elements of
each DOM element from Starget

Sel.prepend() http://api.jquery.com/prepend/

insert all the HTML elements from Scontent as the first child
elements of each DOM element from Sel

4.2.8 Chaining function calls

One of the most useful particularities of the jQuery library is that almost all the functions return a
reference to the jQuery object they have been invoked on. This enables function calls chaining, which
allows developers to do a lot with very little code and to optimize resources (single DOM search for
multiple updates and no persistent references). For example, the following changes:

e remove class warning

e add class success

e update displayed message

o make sure the HTML element is visible

can be expressed through:

$("#myElement").removeClass("warning").addClass("success"
.text("Operation completed successfully").show();

4.3 Exercises
Exercise 1. Use jQuery library to create an HTML, CSS and JavaScript based component that has chat
functionality and the following properties:

e when the page is loaded

o the Chat component is hidden, only the following icon is visible: ®
o theicon has a fixed position on the left of the page, at 150px from the top
o thesize of the icon is 40 x 40 px
e when theicon is clicked, the component is displayed through a two stage animation, as
illustrated below; each animation will be 500 milliseconds long:

o o o

L & Chat with us ! x @ Chat with us ! %

ﬂ Authentication required

Authenticate

26

http://api.jquery.com/prepend/

e final display size of Chat component (step no. 3 above) is: 300 x 300 px

e when the X button is pressed, the component should be resized back to icon view through
reverse animations

Exercise 2. Continue the development of the Chat component from Exercise 1 by adding the following
Authentication functionality:

e when the Authenticate button is pressed
all the inputs from the form become disabled

o alooping animation and the "Processing ..." message are displayed for 3 seconds
o if authentication is successful, display a success message in a green color
o if authentication is not successful (see credentials below) display an error message in

red color
e the authentication result messages should be displayed above the input fields of the form
e the only accepted credentials are: admin / admin1234

27

LABORATORY 5 - AJAX CALLS

5.1 Introduction

Before Web 2.0, updating the information displayed in HTML pages was possible only through
synchronous calls to the server. Even if the updates represented a very small part of the data, it was
necessary to reload everything in order to present fresh information to the user.

Through the use of AJAX (Asynchronous JavaScript and XML) technology, which has been intensively
developed when Web 2.0 concepts and increased interactivity in web applications became popular,
we have the possibility to connect to the server in the background, retrieving new data without entire
page reloading. AJAX is in fact a set of technologies that are working together:

e HTML and CSS for information display

e DOM for dynamic updates of the content (modify display settings of existing elements, create
or remove new HTML elements on the fly)

e JSON or XML to encode the data exchanged between the client and the server

e XMLHttpRequest (XHR) — native APl provided by each browser to support background
asynchronous calls to the server

e JavaScript — the programming language that links all the above mentioned components

5.1.1 Laboratory objectives

Explain synchronous and asynchronous calls to a Web Server. Exercise these calls to an existing API
using AJAX technology.

5.2 AJAX calls using jquery library

The jQuery library provides high level functions that hide the native API XMLHttpRequest provided by
the browser. This approach insures cross-browser compatibility, a more succinct syntax and a better
integration with other jQuery functions.

5.2.1 Initiate server calls

In order to initiate an AJAX call using jQuery functions we can use the S$.ajax function
(http://api.jquery.com/jquery.ajax/):

$.ajax({
url: "web_address", // https://www.example.com/api.php
method: "http_method", // POST, GET ..
contentType: "sent_data_encoding", // "json", "text"
data: "data_to_be_sent",
dataType: "response_data_encoding", // "json", "text"

beforeSend: before_send_callback,
success: success_callback,

error: error_callback,

complete: call_complete_callback,
statusCode: status_codes_callbacks

)

In the example above the parameter meaning is the following:

web_address The URL from which the data will be loaded. It can be provided in
absolute or relative path:

28

http://api.jquery.com/jquery.ajax/

http_method

sent_data_encoding

data_to_be sent

response_data_encoding

before_send_callback

success_callback

e absolute: https://exemplu.com/read news/

e relative to the calling HTML page: read_news
e relative to the current domain: /read _news

Indicates the HTTP method [1] used to exchange information between
the server and the client. In our examples we will use: GET, POST, PUT,
DELETE, OPTIONS.

Indicates the encoding [2] used for the data sent by the client. In our
example we will use the encoding application/json.

Represents the information that will be sent to the server when the call
is performed. The data needs to be provided in the encoding indicated
by the parameter sent_data_encoding. For example, in order to
prepare a JavaScript object to be sent as a JSON encoded entity we will
use:

| JSON.stringify(JavaScript_object) |

Indicates the data encoding [2] expected by the client and that should
be used by the server when responding to the request. For JSON
encodings jQuery automates response processing by transforming the
data in JavaScript objects on the fly. Because of this, jQuery functions
are using non-standard [2] values for this parameter. In our example,
the value should be json.

Allows the developer to connect a callback function to the beforeSend
event of an AJAX call. Function signature is:

| function (requestReference) { } |

This approach is mainly used to set custom headers for the request. For
example, adding a security TOKEN according to oAuth standard we
should use a function similar to:

function (xhr) {
xhr.setRequestHeader('Authorization', 'Bearer ' + token);

}

As the AJAX calls are asynchronous, program execution does not wait
for the answer from the server. When the answer arrives, a specific
event is fired by the browser according to the result of the call: success
or error. In our implementation we will register a callback functions for
the success event using the following signature:

| function (data_from_server) { } |

29

https://exemplu.com/read_news/

call_complete_callback

call_complete_callback

status_codes_callbacks

This function is invoked when the AJAX call has been completed
successfully and data received from server is available. In our example,
data_from_server could be:

e unprocessed answer from the server in text format

e a JavaScript object with the information received from the
server, if the response_data_encoding value is set to a jQuery
recognized value, like json.

As the AJAX calls are asynchronous, program execution does not wait
for the answer from the server. When the answer arrives, a specific
event is fired by the browser according to the result of the call: success
or error. In our implementation we will register a callback functions for
the error event using the following signature:

| function (requestReference) { } |

This function is invoked when there has been an error registered in the
AJAX call (communication, server processing, data encoding/decoding
etc.). The parameter is populated with the native JavaScript object that
holds a reference to the call and allows access to:

e the error code received and its standardized message

e any content sent by the server with details on the processing
error

Example of error callback function:

function (xhr) {
// default error message (could be the standard one)
var message = "Generic error message.";
if(xhr.responseText) {
// details received from server - use these
// response expected as json
message = $.parselSON(xhr.responseText).message;

}

displayError(message);

As the AJAX calls are asynchronous, program execution does not wait
for the answer from the server. When the answer arrives, a success or
error event is fired, according to the result of the call. Immediately
after, a second event (complete) is fired (for all cases: success or error)
indicating the finish of the asynchronous call. For this event we can
register a callback function with the following signature:

| function () { }

This function will be called after the success or error callbacks.

When dedicated actions are necessary on the client according to the
response code, dedicated callback functions can be registered for each

30

code. This represents a convenient method to implement a refined
processing for specific success and error codes. For example:

{
200: function () {
displayMessage("Authentication successful");
3
403: function () {
displayMessage("Invalid username or password");
}
3

These code-specific callback functions are invoked after error_callback
and success_callback.

5.2.2 Call answer management

As mentioned before, client-server communication through AJAX calls is asynchronous, all the callback
functions registered for the success, error and complete events being invoked at some time (few
milliseconds or even seconds) after the call has been initiated.

CAUTION!! When multiple asynchronous calls are fired immediately one after the other (perceived
as "at the same time") the order of receiving responses is not necessarily the same with the calls
initiate order.

When the callback for the success event is called, data received from the server in text format is
automatically processed by jQuery and transformed according to the value set for the datatype
parameter. For example, if expected data is in json format, inside the success function we can treat
the answer as a regular JavaScript object:

Data example in json format: Matching success function to process the
response:

[{ function (data) {
"name"” : "Ann Smith", // it will display: Ann Smith
"institution”: "Boston University", console.log(data[@].name);
"email": "ann@bouniv.edu"

i) // it will display: jwhite@mit.com

{ console.log(data[l].email);
"name" : "John White", }
"institution": "MIT",
"email": "jwhite@mit.com"

|

5.2.3 Display received information in HTML

In order to display in HTML the information received through an AJAX call it is necessary to dynamically
modify the DOM structure. For example, assuming that the HTML element below already exists in the
page when the AJAX call is performed:

| <div id="authors-list"> </div> |

we can update its content with the example data from subtitle 2.2 in two different ways:

31

5.2.3.1 Making use of .html() function

Requires as a first step to create a string that contains a valid HTML description of all the HTML
elements, formatting information and data that should be displayed. When applying this string as a
content of an already existing DOM element, the browser will interpret the string and will
automatically create all the HTML elements described in it, adding them to the DOM and showing
them on the current page.

CAUTION!! This approach on data processing is vulnerable to JavaScript and HTML injection attacks,
as the browser will execute any code found in the string parameter between any <script> and
</script> tags.

function (data) {
var htmlString "y
$(data).each (function () {
htmlString += '<div><h3 class="author_name">' + this.name + '</h3>’;
htmlString += '<div class="author_affiliation">' + this.institution + '</div>’;
htmlString += '' + this.email + '</div>';
1)
$("#lista-autori").html(htmlString);

}

5.2.3.2 Making use of the DOM management capabilities

In this approach, all the required HTML elements are explicitly created through code (not implicitly by
the browser from a string). The content for each new element is set through the .text() function, which
automatically escapes all special characters, does not interpret any HTML code from the string
parameter and thus prevents any injection attacks.

function (data) {
$(data).each (function () {
$("<div>")
.append($("<h3>").addClass("author_name").text(this.name))
.append($("<div>").addClass("author_affiliation").text(this.institution));
.append($("").text(this.email));
.appendTo("#authors-1ist")
3
s

As can be seen in the example above, calls like: $("tag_html") automatically create an HTML element
of tag_html type (eg. div, p, td ...) which can be accessed and managed through ordinary DOM
functions and then inserted into the current page’s DOM.

5.3 Development considerations

5.3.1 Server communication

When calling a remotely located API from local files you will notice a supplemental call towards the
server, launched automatically by the browser just before the one you initiated. This is necessary
because the communication is considered to be cross-domain (from local domain to server domain)
and the browser verifies on the server what cross-domain data transfer policy is in place. When
connecting to ChatAPI [3], this behavior and the limit of maximum number of calls accepted from the
same IP address in a one second interval can lead to errors that should be separately diagnosed and
solved.

32

It is recommended to allow enough time between subsequent calls to the ChatAPI (for example read
messages each 3 seconds) and to prevent launching parallel asynchronous calls (by waiting for the
response, waiting for 3 seconds and then launching a new call).

5.3.2 Dedicated processing functions

Next to the jQuery and JavaScript functions already presented in the previous laboratories, for the
practical assignment today the following functions will also be necessary:

Library Function Description

JavaScript JSON.parse (string) Converts string from a valid json encoding to
native JavaScript objects [4]

JavaScript JSON.stringify (Javascript_object) Converts Javascript_object from native format
in valid json description (text format) [5]

JavaScript setTimeout (function_ref, milisec) Invokes function_ref after milisec have passed
since setTimeout has been called[6]

JavaScript new Date() Creates a new Date [7] object that provides
dedicated methods for the management of
date-related information. As this is a
constructor, it needs to be invoked with the
new operator.

jQuery S.parseJSON (string) Converts string from a valid json encoding in
text format to a native object in JavaScript. This
function encapsulates the native JavaScript
function JSON.parse (string) [4]

jQuery S ("html_tag") Creates and returns a jQuery object that
encapsulates a newly created DOM element of
html_tag type (details in section 3.3)

5.4 Exercises

Exercise 1: Use the jQuery library to connect to the https://cgisdev.utcluj.ro/moodle/chat-piu/ API [1].

Create a new account using https://cgisdev.utcluj.ro/moodle/chat-piu/register and use the chat

interface developed in the previous laboratories to interact with the server. Implement the
Authentication step using the newly created account and adjust the display of success and error
messages accordingly.

33

https://cgisdev.utcluj.ro/moodle/chat-piu/
https://cgisdev.utcluj.ro/moodle/chat-piu/register

® Chat with us ! x

& Welcome ChatUser_1 =

ChatUser_1: Buna ziua.
2017-10-28 13:56:40

ChatUser_2: Buna ziua! Cu ce va putem ajuta?
2017-10-28 13:56:47

ChatUser_1:
Aveti oferte last-minute pentru vacante de revelion in
Grecia?

2017-10-28 13:56:53

ChatUser_1:

As fi interesat de un sejur de 4 nopti cu masa de

revelion inclusa.
2017-10-28 13:56:59

type message Send

5.5 References

Exercise 2: Continue the development of the chat component
implemented in the previous laboratories by connecting to the
https://cgisdev.utcluj.ro/moodle/chat-piu/ APl [1]. Update the
existing Ul with elements similar to the image on the left and

connect them to the APl using jQuery AJAX calls.

When the implementation is complete, open two different browser
windows, load the chat on both of them and test the communication
by sending messages from one to the other.

[1] Complete list of HTTP methods: https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.ht

[2] Complete list of content types: https://www.iana.org/assignments/media-types/media-

types.xhtml

[3] Teodor Stefanut, ChatAPI Technical Specification, [Online]
https://cgisdev.utcluj.ro/moodle/chat-piu/ChatAP| specification.pdf (last access 10.02.2019)

[4] JSON.parse () function

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global Objects/JSON/parse

[5] JSON.stringify () function

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global Objects/JSON/stringify

[6] setTimeout () function

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout

[7] Date() object

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/Date

34

https://cgisdev.utcluj.ro/moodle/chat-piu/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.ht
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://cgisdev.utcluj.ro/moodle/chat-piu/ChatAPI_specification.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

USER INTERFACE DEVELOPMENT
IN ANDROID

35

LABORATORY 6 — INTRODUCTION IN
ANDROID DEVELOPMENT

6.1 Introduction

The process of developing Android applications involves the description of the user interface using an
XML based language that is specific to the Android platform, while the application’s logic is described
in Java. The main tools used in Android applications development are:

e Android SDK — for our laboratory applications we will use version: API 26: Android 8.0 (Oreo)
e Android Studio — the official IDE for the development of Android applications
6.1.1 Laboratory objectives
Introduction into the basic notions required for the development of an Android application, applied in
the creation of a basic, very simple app.
6.2 Theoretical considerations

One of the most important aspects of the devices that use Android operating system is represented
by their diversity, which manifests as

e hardware configuration (processor, memory, storage capacity, available sensors, etc.)
e available display resolutions
e hardware buttons number and functionality

A successful application must adapt as much as possible to most of the configurations available and
provide the same functionality through the best user experience available.

6.2.1 Hardware configurations

Android operating system is currently installed on a variety of devices: TVs, mobile phones, tablets,
smart watches, etc. A complete list of devices that are compatible with Google Play, updated
frequently, can be viewed at https://support.google.com/googleplay/ answer/1727131?hl=en-GB

6.2.2 Basic notions for the development of Android applications adaptive to multiple resolutions
e screen size — represents the physical dimension of the screen, measured on the diagonal and
usually expressed in inch. For simplicity, android screens can be grouped in small, normal, large

and extra-large.

e pixel density — indicates the number of physical pixels that are included in a surface unit. It is
usually expressed as dots-per-inch (dpi). For simplicity, Android groups pixel densities in low,
normal and high.

e orientation — represents the orientation of the device relative the user

o display resolution —indicates the total number of pixels available into the display

e density-independent pixel — defines a virtual pixel used in the design process of the user
interface, in order to ensure the independence next to the physical attributes of different
devices.

= 1dp =1 pxforascreen with density of 160 dpi
" px =dp * (dpi / 160)

36

https://developer.android.com/sdk/index.html
https://support.google.com/googleplay/answer/1727131?hl=en-GB

6.2.2.1 Tipuri de afisaje suportate de Android

In order to simplify applications development, Android makes use of the following generalized
densities:

e |dpi (low) ~120dpi

e mdpi (medium) ~160dpi

e hdpi (high) ~240dpi

e xhdpi (extra-high) ~320dpi

e xxhdpi (extra-extra-high) ~480dpi

e xxxhdpi (extra-extra-extra-high) ~640dpi

6.3 Development considerations

As mentioned before, in our laboratory activities we will use Android Studio, the official IDE for creating
Android applications.

6.3.1 Create a new Android application

In order to create a new application please follow the steps described below:

6.3.1.1 Create a new project

ZICH Edit View Navigate Code Analyze Refactor Build Run Tools

New Project...

Open... Import Project...
' Profile or Debug APK... Project from Version Control >
Open Recent >
Close Project New Module...
Import Module...)
Link C++ Project with Gradle Import Sample...

6.3.1.2 Define the directory where the APP sources should be stored and choose a name
for the software package that will contain your Java classes

o Application Name — the title of the APP as it will be shown on the phone

e Company Domain — used to automatically create a unique name for the package that will
group the APP’s dedicated Java classes

e Package Name — similar to other Java applications, developed classes are organized in
packages, that should have a unique name for the APP and organization. Initial value is
automatically created based on the Company Domain and Application Name, but it can be
further customized.

37

http://developer.android.com/guide/practices/screens_support.html#overview
http://developer.android.com/guide/practices/screens_support.html#overview
https://developer.android.com/sdk/index.html

[[] Create New Project

?u(Create Android Project

|
| Application name
|
!

CalaTour

Company domain

calatour.example.com

Project location

D:\\Student\CalaTour

Package name

com.example.calatour.calatour Edit

Include C++ support

Include Kotlin support

Cancel Previous Finish

6.3.1.3 Add information about targeted devices of your APP
e Phone and Tablet — we will develop our app only for these devices. Please make sure that all
the other options have been unchecked.
e Minimum Required SDK — indicates the minimum Android version required for the APP. When
selecting this option you need to consider that the available native functions for APP
development are the ones on the minimum SDK selected.

[] [] Create New Project

.7_,(Target Android Devices

Select the form factors and minimum SDK

Some devices require additional SDKs. Low API levels target more devices, but offer fewer API features.

|
|
I
|

Phone and Tablet
API 26: Android 8.0 (Oreo)
By targeting API 26 and later, your app will run on approximately 6.0% of devices. Help me choose

Include Android Instant App support

Wear 05

APl 24: Android 7.0 (Nougat) B
TV

API 24: Android 7.0 (Nougat) B

Android Auto
Android Things

APl 24: Android 7.0 (Nougat) B

Cancel Previous Next Finish

38

6.3.1.4 Indicate the initial activity type that should be automatically created by the

tutorial

e In our example application we will use: Empty Activity

Create New Project

H Add an Activity to Mobile

Add No Activity

Basic Activity Bottom Navigation Activity Empty Activity
€ i

cancel Previous ([N Finish

6.3.1.5 Provide a name for the first Activity and the connected layout file

Create New Project

Creates a new empty activity

Activity Name: MainActivity

Generate Layout File

Layout Name: activity_main

Backwards Compatibility (AppCompat)

The name of the activity class to create

Cancel Previous Next

39

6.3.2 The generic structure of an Android application

As you can see in the image on the right, section
A of the files and folders tree that describe the
Android application is very similar to other Java

applications, including:

the src folder where the source code files
are grouped into packages

references to external libraries (in our
example Android 4.4.2 and others)

the bin folder that holds the executable
version of the project

Section B contains a set of folders that are specific

to Android applications, named in predefined

patterns (that should not be modified) and having

the following meaning:

res — root folder of this; here, different
other types of resources can be also

included.
drawable-**** - folders that include
visual elements like images, visual

settings, etc. Using the predefined folder
structure, different versions of the same
graphic, optimized for different
resolutions can be included

layout —folder that includes the files that
describes the user interface for the
Android application, using the dedicated
XML based language

menu — folder that includes all the XML files that describe the structure of a menu into the app
values-v**** - folders that group XML files in which different static elements of the application
are defined: sizes, dimensions, styles, text constants, numeric constants, etc. The way the
application is using this data is the following: at each launch will use the values included in the
folder that has the “v” number smaller and closest to the running Android version (on which

the app is currently running). In other words:

o values-vl4 —is the first folder searched by the app when running on Android with API
>= 14. If the searched values are not found here, they will be further looked in the rest
of the directories, applying the same rule

[£ Package Explorer 5% = <;==f>

=

a2 BooksStoreApp

/

Y4

PRE:R
4 ff com.eample.booksstoreapp
. [J] Signin.java
. gen [Generated Java Files]
- = Android 4.4.2
. =, Android Private Libraries
G@ assets
- &= bin
- &2 libs
4 = res
- = drawable-hdpi
= drawable-Idpi
- = drawable-mdpi
- = drawable-xhdpi
- = drawable-echdpi
a [layout
<l activity_sign_in.xml
4 [~ menu
<) sign_inaxml
4 = values
< dimensxml
| strings.xml
| styles.xml
o = values-v1l
- = values-vld
- = values-wB20dp
< AndroidManifest.xml
B ic_launcher-web.png
= proguard-project.tat
project.properties

=

values-v11 —is the first folder searched by the Android versions with APl < 14

values — last of the searched folders, only if the searched values have not been found

in any of the previously searched folders

values-w820dp — folder dedicated to store the static values for the devices that have the with

display resolution >= 820dp

40

8

http://developer.android.com/guide/topics/resources/providing-resources.html#ResourceTypes
http://developer.android.com/guide/topics/resources/drawable-resource.html

e The file AndroidManifest.xml includes all the elements that describe the application and are
necessary to the device in order to install it, check compatibility and grant the required access
rights. Details about the information that can be included here and about the data structures
can be found on: http://developer.android.com/guide/topics/manifest/manifest-intro.html

6.3.3 Describing the user interface

The description of the user interface is performed in the XML files placed into the folder /src/layout/
and usually includes different visual elements stored into the drawable folders, menus described in
menu folder or constant values and styles defined in values folders. The visual layout of all these
graphic elements is described through invisible containers, that define different implicit rules to layout

the included visual components. According to the container type, different display attributes can also
be globally attached to all the child elements using XML language (eg: layout_alignLeft, layout_height).

In our example application we will user mainly two types of containers:

6.3.3.1 Linear Layout

All the included visual elements are placed one after the other, either vertically or horizontally, without
overlaps. A list of the specific XML attributes that can be attached to child components is available at:
http://developer.android.com/guide/topics/ui/layout/linear.html

6.3.3.2 Relative Layout

Allows the placing of the visual child elements through relative positioning according to their
neighbors. A list of the specific XML attributes that can be attached to child components is available
at: http://developer.android.com/guide/topics/ui/layout/relative.html

Good for LinearLayout i Good for Relativelayout

1 Imml
: (R—
Oor Oor
| |

6.4 Java aspects specific to Android applications

In order to create the necessary link between the data model and data display into an Android
application, it is necessary to write Java code. One of the most important aspects to note is the fact
that the /res/ folder and its entire structure is automatically mapped by the Android SDK into a Java
object structure named R, under the form of int resource types. Different elements are organized in
categories, as follows:

41

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/layout/linear.html
http://developer.android.com/guide/topics/ui/layout/relative.html

e each of the IDs defined inside
android:id="@+id/elemID" are accessible through R.id. elemID
e each of the graphical resources included in any of the drawable directories can be accessed

the

XML

through R.drawable.file_name_without_extension

layout files

using

constructs

like

e each of the interface files can be accessed through R.layout. file_name_without_extension

e etc.

In an Android application the R component is defined in two different packages. In order to access

resources included into the SDK, one will use:

| import android.R

In order to access resources added to the application, one will use:

| import com.

example.booksstoreapp.R;

6.4.1 Access visual elements

In order to access visual elements from Java code it is first necessary to parse the XML document

describing the Ul and transform it into a Java object representation. This is usually achieved inside the

onCreate function, using the Java instruction:

| setContentView (R.layout.activity_sign_in);

After the instruction is successfully executed, any visual element from the parsed XML file can be
access through a command similar with:

| ElementType variable = (ElementType) findViewById (R.1id.TVErrorPassword);

6.4.2 Attach callbacks to user interactions

In order to attach a callback to an onClick event triggered on a specific visual element, we can define

in the XML file the attribute android:onClick for that specific element:

<Button

android
android
android

android:
android:
android:
android:
:minWidth="300dip"

:onClick="SignInClick"
:text="Sign in" />

id="@+id/buttonl™
layout_width="match_parent”
layout_height="wrap_content"
layout_marginTop="100dp"

In the Java classes that will extend this layout, it is necessary to define the SignInClick function with

the following signature:

{
}

public void SignInClick (View view)

// function body

6.5 Exercises

Exercise 1: Create a new Android project and design an authentication screen with the following

elements:

42

e screen title — font: 20px, color: #0000FF, horizontally centered
e twoinput fields

o username — provided in email format

o password — with hidden typing
o labels for the input fields

o displayed above each corresponding field

o visual format — font: 14px, color: #FFFFFF, aligned to the left
e error messages for the input data

o displayed under each field

o visual format — font: 14px, color: #FF0000, aligned to the left
e abutton

o title: Authenticate

o visual format — width: 400px, horizontally centered
e vertical spacing

o 60px under the title

o 40px just above the labels for the input fields

o 20px over the Authenticate button

Exercise 2: When the Authenticate button is pressed:

e validate username
o cannot be empty
o should be a syntactically valid email address
e validate password
o cannot be empty
o should contain at least one upper case letter and a digit
o should be at least 5 characters long
e if the input values fail one of the above requirements
o under the specific field, display a custom error message for each requirement
e if the input values meet the above requirements
o compare the values with
= username: user@uid.com
= password: PasswOrd
o ifthevalues are identical, display the message “Authentication successful” in #00FFO0
color, placed under the Authenticate button
o if the values do not match, display the message “Wrong username or password” in
#FF0OO00O color, placed under the Authenticate button

43

mailto:user@uid.com

LABORATORY 7 — ANDROID Ul AND USER
INTERACTION (1)

7.1 Introduction

As in most of mobile technologies, Android uses very frequently list-based controls for data display. In
order to interact with elements displayed in a list, one can define a contextual menu, that is displayed
by the app upon a long-press action from the user.

7.1.1 Laboratory objectives

Use and customization of lists in Android applications. Define and interact with contextual menus.

7.2 Theoretical considerations

7.2.1 Creating custom lists

In order to create a list with customized elements in Android, it is necessary to complete the following
steps:

7.2.1.1 Describe the visual structure of a list element

The visual structure and appearance of each element of the list is described through an XML file that
resides in the res/layout/ folder.

7.2.1.2 Create a list adaptor

The link between the data model and the visual structure for each list element is created through a
specialized class named Adapter. Each time the structure of the list is modified through addition or
removal of new elements, the adapter needs to be updated and the list must be notified to refresh the
visual display.

The development of a custom Adapter class requires the implementation of a specific interface,
defined in the Android SDK as a virtual class. The most common approach for creating a custom
Adapter is to inherit from BaseAdapter class (or any of its more specialized versions) and to implement
the functions:

getCount returns the number of elements in the Adapter’s collection, which also represents
the total number of elements that should be displayed by the list

getltem return the element from the data model that can be found (is displayed) at a
specific position into the list

getltemid returns the ID of the element that is displayed at a specific position into the list

getView creates and returns the visual representation of a list element, customized with the
data from the model; if the list contains more elements that can fit onto the screen
at once, one of this function’s parameters will contain a reference towards already
existing list elements that could be reused (have been displayed but now have
become invisible — through list scroll), for a more efficient use of resources.

44

In development it is common to use ArrayAdapter<T> instead of the BaseAdapter class, because its
generic implementation provides list elements management and default code for getCount, getitem,
getltemld. In most cases, only the getView method needs to be overwritten in order to connect the
data model to the View elements included in the XML file.

7.2.2 Create a contextual menu and define user interactions with it

Creating a contextual menu, that is displayed upon long-press gesture on a list element, requires the
completion of the following steps:

7.2.2.1 Describe menu elements

The elements of the contextual menu are described in a XML file that should reside in res/menu/
directory. If the directory does not exist, create it from scratch. For each of the menu’s elements you
must add an item tag to the XML file:

<item
android:id="@+id/menu_item_id" // the unique id of the action
android:title="@string/menu_item_title"/> // displayed text

7.2.2.2 Register visual elements for the contextual menu

Visual elements that are responsive to the long-press gesture and can trigger the display of a
contextual menu must be first registered using a call of the function registerForContextMenu.
7.2.2.3 Display and customization of the contextual menu

In the Activity’s controller in which the contextual menu should be displayed, it is necessary to override
the method onCreateContextMenu, which is automatically called by the Android SDK when the

contextual menu needs to be displayed. In this method, you can decide which contextual menu (if
there are more than one available) should be displayed and which entries should be available,
according to the specific attributes of the element on which the long-press gesture occurred. This is
also the method responsible with loading the visual structure of the menu described into the XML file.

7.2.2.4 React when an item of the contextual menu has been selected

In order to capture and react to the selection of an item from the contextual menu, one must override
the method onContextitemSelected in the controller.

7.3 Development considerations

In the following examples we will consider that the visual structures of the list elements and contextual
menu have been described into the files res/layout/activity_books_list.xml and
res/menu/books_list_context.xml.

7.3.1 Transition to another activity

The transition to another activity (a new screen) in Android can be implemented using the following
instructions:

Intent intent = new Intent (this, new_activity_class);
startActivity (intent);

45

http://developer.android.com/reference/android/view/View.OnCreateContextMenuListener.html#onCreateContextMenu%28android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo%29
http://developer.android.com/reference/android/app/Activity.html#onContextItemSelected%28android.view.MenuItem%29

7.3.2 Creating an Adapter class

public class MyAdapter extends ArrayAdapter<T>
{
public MyAdapter(Context context, List<T> objects)
{
// reference of the objects List is sent to the super class which
implements getCount, getItem and getItemId methods
super(context, @, objects);
}
¥

7.3.2.1 Implementing getView function of the Adapter class

public View getView (int position, View convertView, ViewGroup parent)
{
// get a reference to the LayoutInflater service
LayoutInflater inflater =
(LayoutInflater) context.getSystemService (Context.LAYOUT_INFLATER_SERVICE);

// check if we can reuse a previously defined cell which now is not visible anymore
View myRow = (convertView == null) ?
inflater.inflate (R.layout.layout_name, parent, false) : convertView;

// get the visual elements and update them with the information from the model
return myRow;

7.3.3 Connect the ListView element and the Adapter

Connecting the Adapter and the ListView that displays the information is usually performed into the
onCreate method of the controller, using the following instructions:

MyAdapter myAdapter = new MyAdapter (list_items);
listViewReference.setAdapter (myAdapter);

7.3.3.1 Update list display when changes occur into the data model

When changes occur into the data model and the Adapter is updated, an automatic notification can
be sent to the ListView component that will notify the need for a display update. The registration for
the notification can be done using the instruction:

| myAdapter.notifyDataSetChanged();

7.3.4 Implementing the contextual menu

In order to be able to trigger the display of the contextual menu, the visual elements must register for
the event. Usually, the registration is performed in the onCreate method of the activity controller,
using the instruction:

| registerForContextMenu (view_reference);

7.3.4.1 Customize the display of the contextual menu

When a request to display the contextual menu is received, the Android system will call the method
onCreateContextMenu from the current activity controller. The following example demonstrates how
the appearance of the contextual menu can be customized, according to the item from the list that
has been selected. More detailed information about the list element for which the contextual menu

46

has been displayed can be accessed through the parameter of type ContextMenulnfo, according to the
following example.

public void onCreateContextMenu (ContextMenu menu, View v, ContextMenuInfo menulnfo)

{

super.onCreateContextMenu(menu, v, menulnfo);

// check if the display of the contextual menu has been triggered by the List
if (v.getId() == R.id.id_lista_vizata)
{

// identify selected element from the List
AdapterView.AdapterContextMenuInfo info =
(AdapterView.AdapterContextMenuInfo) menuInfo;

menu.setHeaderTitle (String valoare_specifica_elementului);

// Lload the visual structure of the contextual menu
getMenuInflater().inflate (R.menu.meniu_contextual, menu);

7.3.4.2 Identify selected item from the contextual menu
public boolean onContextItemSelected (MenuIltem item)

{

// access information attached to the contextual menu
AdapterView.AdapterContextMenuInfo info =
(AdapterView.AdapterContextMenuInfo) item.getMenuInfo();

// identify the item from the menu that has been selected, using the predefined IDs
if (item.getItemId() == R.id.id_item_1)

{

}

else if (item.getItemId() == R.id.id_item_2)

{

}

return super.onContextItemSelected (item);

7.4 EXxercises

" ELESE Exercise 1. Extend the application from the previous laboratory with a new
8 Offers list SIGN OUT

e activity that displays a list of vacation offers, similar to the image on the
Barcelona, 3 nights left. The user can access this section of the APP only after a successful

authentication on the first screen.

Implementation requirements:

Barcelona has manyyvenues for live
music and theatre, including the world-

fanonnad Gian,ieatis Cer Licatl opera ¢ the information about each offer is stored in a class that plays the role

Maldive, 7 nights - of a Model in the application
e thedatainthe listis loaded dynamically at runtime (not added at design

050 EUR time)

o
The first Maldivians did not leave any

archasological artifacta. Thelr bulldings e for the implementation you will use the ListView component

were probably built of wood, palm

47

http://developer.android.com/reference/android/widget/AdapterView.AdapterContextMenuInfo.html

Exercise 2: When a long-press gesture is performed on any element on the
list, a contextual menu will be displayed (see image on the left).

Implementation requirements:

e the contextual menu will display the title of the targeted vacation
e the menu will have two elements

Add offer o Add offer

Remove offer o Remove offer

48

LABORATORY 8 — ANDROID Ul AND USER
INTERACTION (2)

8.1 Introduction

Android applications are using an options bar, placed on the top of the screen, in order to display
general actions that can be performed on the current activity. This component must reflect at all times
the options available to the user.

When time consuming activities are performed (download, processing, etc.) the application must
inform the user on the progress, usually through a progress bar.

8.1.1 Laboratory objectives

Using and customizing the options bar, progress bar, toast, dialog window and Back button
components.

8.2 Theoretical considerations

8.2.1 Options bar

Depending on the App theme, it could include a back button that allows the user to return to the
previous activity (named parent activity) and a text that displays the current activity title. Both
elements are usually aligned to the left of the screen.

In the available space of the options bar, different actions that are specific to the current activity can
be displayed. These elements are defined into a menu resource type, and are connected to the activity
through the override of onCreateOptionsMenu function, in the activity controller. This function is
automatically called by the Android operating system when the activity is displayed. The different ways
available for displaying the options into the options bar can be controlled by the developer directly
from the XML file, through the parameter app:showAsAction.

8.2.2 Progress bar

When time or resource consuming activities are performed, it is recommended to inform the user on
the progress using a progress bar. The status of the progress bar component can be updated
periodically, either using a specific event provided by the performed processing (eg. download) or
using the CountDownTimer component, that enables the insertion of Ul updating instructions into the
main execution thread.

8.2.3 BACK button

Most of today’s Android devices provide a set of three physical buttons with predefined behaviors,
used to interact with the applications. One of these buttons implements the ,previous step”
functionality that allows the user to easily access a previous activity or even a previous app. However,
there are situations in which it is recommended to alter the default behavior of this button in order to
improve the app’s behavior. The alteration can be achieved through the overridden of onBackPressed
function in the controller of the activity.

49

8.2.4 Dialog windows

Dialog windows are used to ask for a confirmation from the user for actions that are destructive or
might be triggered by mistake. In Android, a dialog window is usually displayed using the
AlertDialog.Builder component.

8.25 TOASTs

In Android a TOAST represents a short message that is displayed to the user and automatically
dismissed without user interaction. These messages are created using the Toast component and most
of the time display informative alerts or confirmation for successfully completed actions. The message
is visible on the screen for a predefined time interval and then automatically hidden by the Android
operating system.

8.3 Development considerations

8.3.1 Defining a timer

progressTimer = new CountDownTimer (tick_time, maximum_execution_time)

{

@Override
public void onTick (long millisUntilFinished)

{
}

// code that will be executed repeatedly, after each tick_time

@Override
public void onFinish()

{

}
}.start();

// code that will be executed only once, after maximum_execution_time

8.3.2 Defining elements for the options bar

The list of options that will be included into the options bar will be defined in an XML file placed in the
resources folder named menu. The usual template for describing an element is presented below:

<item
android:id="@+id/1id_action_1" // the unique 1id of the action
android:showAsAction="always" // display settings
android:title="Action 1"/> // displayed text

8.3.3 Populate the options bar

public boolean onCreateOptionsMenu (Menu menu)

// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate (R.menu.fisier_xml_meniu, menu);
return true;

8.3.4 ldentify selected option

public boolean onOptionsItemSelected (MenuIltem item)

{

// Handle action bar item clicks here. The action bar will

// automatically handle clicks on the Home/Up button, so Llong
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId();

50

if (id == R.id.id_action_1)

// code for Optionl
return true;

else if (id == R.id.id_action_2)
// code for Option2
return true;

} else if .

return super.onOptionsItemSelected (item);

8.3.5 Display a Toast message
| Toast.makeText (this, "text_to_be_displayed", display_time_milisec).show();

8.3.6 Display a dialog window

In order to capture and respond to the events raised by the buttons of a dialog window it is necessary
to implement the OnClickListener interface. If the component that will handle these events is the
current activity, the interface must be added to the list of interfaces implement by the activity’s
controller.

AlertDialog.Builder myDialog = new AlertDialog.Builder (this);
logoutConfirmation
.setTitle ("dialog_title")
.setMessage ("dialog_message")
.setPositiveButton ("button_title", reference_implem_interf_ OnClicRListener)
.setNegativeButton ("button_title", reference_implem_interf_ OnClicRkListener)
.show();

8.3.7 Customize the behavior of the Back button

When the physical Back button is pressed, the Android operating system will call the function
onBackPressed on the current activity. Customizing the behavior can be achieved through the
overridden of the function:

public void onBackPressed()

{
¥

// code executed when the Back button is pressed

In order to allow the implicit behavior to take place, we need to call also the function defined in the
parent class: super.onBackPressed().

8.3.8 Pass data between activities

In Android development there are two main approaches in dealing with data necessary for application
runtime:

8.3.8.1 Defining a singleton class that acts as a data model for all the activities

Defining a singleton in Android is identical to defining a singleton in Java.

8.3.8.2 Passing the necessary data between activities

Passing data between activities could occur in two different situations:

51

e from the current activity to a newly created one (parent to child)
e from the current activity to the previous one (child to parent)
8.3.8.2.1 Passing data from the current activity to a newly created one (child activity)

When it is necessary to pass information from one activity to a newly created one, we can use the
Intent to package the data:

Intent intent = new Intent (this, new_activity _class);
intent.putExtra ("key_name", "value");
startActivity (intent);

On one Intent we can add as many extra parameters as necessary, as long as they have unique keys.

In the new activity we read received information inside onCreate function by getting a reference to
the Intent and extract the data based on the “key_name” values:

// gets the previously created intent
Intent myIntent = getIntent();

// will return the value of the "key _name" entry
String value = myIntent.getStringExtra ("key_name");

Depending on the type of data you should use specific functions for extracting values from intent:
getintExtra, getDoubleExtra, etc.

8.3.8.2.2 Passing data from the current activity to the parent activity

In the parent activity:

e use the function startActivityForResult to launch the new activity:

Intent intent = new Intent(this, new_activity class);
intent.putExtra ("key_name", "value");
startActivityForResult (intent, unique_int_identifier);

e override the function onActivityResult to process the response from the child activity:

protected void onActivityResult (int requestCode, int resultCode, Intent data)
{
if (requestCode == unique_int_identifier)
{
if (resultCode == Activity.RESULT_OK)
{
// extract the information from the Intent
String result = data.getStringExtra ("back_key_name_1");
}
if (resultCode == Activity.RESULT_CANCELED) {
// write your code 1if there's no result
}
}
¥

In the child activity:

e when there is data to return to the parent:

52

finish();

Intent returnIntent
returnIntent.putExtra ("back_key_name_1", "return_value_1");
returnIntent.putExtra ("back_key name_2", "return_value_2");
setResult (Activity.RESULT_OK, returnIntent);

= new Intent();

e when there is no data to return to the parent:

finish();

Intent returnIntent
setResult (Activity.RESULT_CANCELED, returnIntent);

= new Intent();

8.4 [Exercises

e “ 01247

1@ Offer details REMOVE FRO Avonnts

' Barcelona, 3 nights

Barcelona has many venues for live
music and theatre, including the world-
renowned Gran Teatre del Liceu opera
house, the Teatre Nacional de Catalunya,
the Teatre Lliure and the Palau de la
Musica Catalana concert hall. Barcelona
also is home to the Barcelona and
Catalonia National Symphonic Orchestra
(Orquestra Simfonica de Barcelona i
Nacional de Catalunya, usually known as

OBC), the chestra in
(St E) Added to favorites

Details page displayed: 1 times

Create a Details page that can be used to display detailed information
about the offers. The page should include: the offer title, full description,
image, price and the number of visualizations (how many times the
Details page has been displayed for each offer).

In the options bar, inform the user if the offer is in his/her favorites list,
by displaying one of the following options:

e ADD TO FAVORITES —if the offer is not yet in the favorites list
e REMOVE FROM FAVORITES — if the offer is already in the favorites list

When any of the above options is used, display a toast to confirm the
action.

The details page should be displayed when an offer from the list is
tapped.

53

LABORATORY 9 — ANDROID Ul AND USER
INTERACTION (3)

9.1 Introduction

The RecyclerView component is an alternative approach in displaying lists of elements, being more
optimized for large lists than ListView component. The implementation and functionality principle is
very similar in both approaches: (1) create the template of a single list element in an XML file and (2)
create the adaptor class that maps the date model over the Ul template. The advantages and
disadvantages of using RecyclerView are discussed later in this laboratory.

9.1.1 Laboratory objectives

Create, display and customize a list of elements using the RecyclerView component and an adaptor of
type RecyclerView.Adapter.

9.2 Theoretical considerations

RecyclerView is a component very similar with ListView, but requires a slightly different adapter to
connect to the data model. The type of this particular adapter is: RecyclerView.Adapter.
Consequently, in order to display some information from the model in a RecyclerView based list, we
will need to extend and customize the RecyclerView.Adapter.

9.2.1 Reuse of Ul templates (elements of type View)

Parsing XML template files and transforming them in Java objects is a costly process that requires a
significant amount of processing power an memory, especially for large lists. In the approach of using
an ArrayAdapter or BaseAdapter together with the ListView component, the reuse of already
processed visual components that have been removed from the field of view is entirely developer’s
responsibility. When preparing the display of a new element from the data model, the programmer
can choose to either recycle a currently unused visual template by updating the content or to create a
new one from scratch, based on the XML file.

The recycling process in an ArrayAdapter or BaseAdapter class is implemented through the following
line of code (more details in Laboratory 7):

View myRow = (convertView == null)
? inflater.inflate (R.layout.layout_name, parent, false)
. convertView;

When creating lists based on RecyclerView.Adapter the recycling of visual elements on list scroll is
automatically managed, without further intervention from the developer. This optimization is the main
advantage that RecyclerView approach has over the ListView approach.

9.2.2 ViewHolder template

The ViewHolder template is a dedicated class that holds the references to all the visual elements from
the parsed XML template of a list element. When the View is recycled, the costly search using
findViewByld of each visual item (TextView for title, ImageView for pictures etc.) is prevented by
reusing the attached ViewHolder (which already has these references). In practice, the ViewHolder

54

also implements a dedicated method (usually named bindViewHolder) that maps the model data over
the Ul elements.

The ViewHolder template can be used also with the ListView component, but the integration must be
explicitly implemented by the developer. As the required changes are not trivial (the getView method
of the adapter needs to be significantly redesigned), this approach is rarely used and the entire
RecyclerView paradigm is usually implemented instead.

Example of a ViewHolder class for a list of trip offers that displays for each offer: title, short description,
price and one image.

public class TripsViewHolder {

private TextView titleTextView;

private TextView descriptionTextView;

private TextView priceTextView;

private ImageView tripImageView;

public TripsViewHolder (View itemView)

{
// when the ViewHolder is created, get & store references to the visual elements
titleTextView = itemView.findViewById (R.id.title);
descriptionTextView = itemView.findViewById (R.id.description);
priceTextView = itemView.findViewById (R.id.price);
tripImageView = itemView.findViewById (R.id.image);

}

public void bindViewHolder (Trip trip)

{
// use the references 1in the recycling process to update the information
titleTextView.setText (trip.getTitle());
descriptionTextView.setText (trip.getDescription());
priceTextView.setText (trip.getPrice());
tripImageView.setImageResource (trip.getImageResourcelId());

}

¥

9.2.3 Notify the RecyclerView.Adapter on data model updates

In ListView based implementation, when the data model has changed it is necessary to invoke the
adapter’s method notifyDataSetChanged() in order to request the display update. This method
initiates the refresh for the entire list, no matter how many of the elements have been changes.
Consequently, invoking notifyDataSetChanged() is very resource intensive and should occur only when
the entire list (or, at least, most of it) needs to be updated. Unfortunately, ArrayAdapter and
BaseAdapter do not implement other changes notification methods and require entire list update
event for small changes (eg. for a single element).

The RecyclerView based implementation provides to the developer more flexibility through a list of
more focused update methods:

e notifylteminserted (int index) — invoked when a new element has been added to the list on
position index

e notifyltemRemoved (int index) — invoked when the element at position index has been
removed from the list

e notifyltemChanged (int index) — invoked when the element on position index has been
updated in any way and it needs to be redrawn

55

e notifyltemRangeChanged (int fromindex, int tolndex) — invoked when a range of grouped
elements in the list has been updated and it is required to be redrawn

e notifyDataSetChanges() — should be invoked ONLY when all the elements from the list need to
be redrawn

9.2.4 Customize list elements display

When using RecyclerView component to display a list it is mandatory to specify one of the available
layouts for list items display. With RecyclerView the developers have more predefined layout options
to organize list’s elements than when using ListView. For example, the list can be displayed horizontally
or vertically, on more than 1 columns or in a grid-like style. This is not possible out-of-the box with
ListView, which implements only the vertical layout by default.

In order to set the display mode of a list created with RecyclerView, we will use a LayoutManager
component:

e vertical display on a single column (similar with ListView)

| LinearLayoutManager linearLayoutManager = new LinearLayoutManager (context);

e horizontal display on a single row:

LinearLayoutManager linearLayoutManager = new LinearLayoutManager (context);
linearLayoutManager.setOrientation (LinearLayoutManager.HORIZONTAL);

e vertical display on two columns:

| LinearLayoutManager linearLayoutManager = new GridLayoutManager (this, 2);

9.3 Development considerations

9.3.1 Adding required library for RecyclerView to the APP

RecyclerView is not one of the core elements of the Android platform. It is provided in an external
support library that must be referenced as an entry to the app/build.gradle file in the section
dependencies:

| implementation 'com.android.support:recyclerview-v7:26.1.0" |

Although any available version can be included in the APP, it is recommended that all the external
libraries to have the same version.

9.3.2 Implement RecyclerView

9.3.2.1 C(reate the XML layout file

Adding a RecyclerView.Adapter<ViewHolder>component to the visual structure of an activity (or
fragment) starts in the layout file:

<android.support.v7.widget.RecyclerView
android:id = "@+id/idRecylerView"
android:layout_width = "match_parent”
android:layout_height = "match_parent" />

56

9.3.2.2 Update the Java code

As already mentioned, when a RecyclerView component is used it is mandatory to set the
LayoutManager and the Adapter. For this purpose, we first need a reference to the visual element
defined in the layout file.

recyclerView = findViewById (R.id.messagesRecyclerView);
recyclerView.setLayoutManager (new LinearLayoutManager (context));
recyclerView.setAdapter (adapter);

9.3.2.3 Create RecyclerView.Adapter and RecyclerView.ViewHolder

In order to benefit from the performance optimization of the RecyclerView based approach for
displaying lists, we need to create a new view holder (for example MyViewHolder) that inherits from
RecyclerView.ViewHolder. Also, a dedicated adapter (in our example MyAdapter) will be inherited
from RecyclerView.Adapter<ViewHolder> in order to map the model to the visual template:

public class MyAdapter extends RecyclerView.Adapter<MyViewHolder> {
private List objects;
private Context context;

public MyAdapter(Context context, List objects)
{

this.context = context;

this.objects = objects;

}

@0verride
public MyViewHolder onCreateViewHolder (ViewGroup viewGroup, int position)

{
LayoutInflater layoutInflater = LayoutInflater.from (context);

// interpret the XML file and create Java internal structure
View layout = layoutInflater.inflate (R.layout.layout _name, viewGroup, false);

// returns the view holder which is created from the view
return new MyViewHolder (layout);

}

@Override
public void onBindViewHolder (MyViewHolder viewHolder, int position)
{
// binds the view holder with the data; 1in that method, everything necessary
for displaying the correct object should be set
viewHolder.bindViewHolder (objects.get (position));

}

@Override

public int getItemCount()

{
// returns the number of objects from the List
return objects.size();

}

// override this method if you want different types of view for the elements
of the RecyclerView depending on their position (eg. odd or even position)

@Override

public int getItemViewType (int position)

// should return a code that will be used in method onCreateViewHolder
to determine which layout to inflate for this item

57

When creating the ViewHolder we will start from the code available in Section 2.2 of this guide, making
sure that we inherit from RecyclerView.ViewHolder class and that in the constructor we initialize the
parent by calling:

| super (itemView); |

9.3.3 Process the onltemClick event for a RecyclerView list element

As a major difference from ListView component, where we could use the OnltemClickListener method
of the list container to attach an onltemClick handler for all the list’s elements at once, when using
RecyclerView for list display we need to attach the event handler directly on the visual component of
each element (for example in the method bindViewHolder).

public void bindViewHolder (Message message)
{
itemView.setOnClickListener (new View.OnClickListener()
{
@Override
public void onClick (View v)
{
// add here the code to be executed when a List element is tapped
}
1)
b

9.3.4 Use different display templates in the same list

As exemplified in subsection 3.2.3 of this guide, the RecyclerView.Adapter enables the developers to
tap into the process of creating view holders and to customize even further the design of the list. For
example, if some elements should have a different design depending on the information displayed,
the developers can prepare the required number of different templates and then, by overwriting the
getitemViewType method, can decide (using a specific algorithm) to use for each element one or
another of the designs previously prepared.

The method getltemViewType should be explicitly invoked from the onCreateViewHolder method
before the layout is inflated.

9.4 Exercises

6o Create a chat interface with the design showcased in the left image.
@ CalaTour App H
{Username: Teodor Implementation requirements:
Send
| |

{rentor | e messages list is implemented using RecyclerView component
e s i e new messages will be displayed at the top of the list
| computer e every 3 seconds an automated message is generated and added to the
S list
e when a message is tapped

Teodor

o it will be marked as favorite and will showcase a yellow star
Computer

on the top-right side
pemm o a second time, it will be removed from the favorite list and

m the star will be hidden

58

LABORATORY 10— CONNECT TO A REST API
FROM ANDROID

10.1 Introduction
Making requests to a REST Web APl from Android can be implemented using different approaches:

e AsyncTask and HttpURLConnection: included by default in the Android framework
e Volley library - https://github.com/google/volley
e Retrofit library - http://square.github.io/retrofit/

Out of these we will concentrate in this laboratory on the Retrofit based approach, as it is one of the
most popular solutions currently used by developers.

10.1.1 Laboratory objectives

Present the necessary steps for integrating Retrofit library into an Android application and the methods
used to connect to a REST APL

10.2 Retrofit library setup

10.2.1 Including required dependencies

As it is not delivered with the Android SDK, in order to use the Retrofit library in and Android
application it is necessary to include a reference to it in the app/build.gradle file, section
dependencies. Before compiling, please make sure to use the “Sync now” feature after any update to
the build.gradle file.

o . o D ds/C:
o G X D O AR ¢ A Cmwo~ P 3 3 L8 3:A 7
Calatour app 2 build.grac!
g - 1~ @ Corstartsiove € TripsGererator iava
& o, Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly.
) manifests
. Yo dependencies(} ——1
Sincronizare
res 1 apply N z 2
2 Gradile Scripts 2 librarii
= 2 build.gradle -~— mivel proiect android {
= 2 build.gradle (Module: app) «— mivel modul “app™ « compileSdkVersion 24

gradle-wrapper.properties buildToolsVersion
& proguard-rules.pro & defaultConfig {
ot

minSdkVersion 19
targetSdkVersion 24

buildTypes {
release {
E false
proguardFiles getDefaultProguardFile

dependencies {
compile fileTree([l} .,
compile
androidTestCompile

exclude [, .

compile
compile
testCompile
* ompile -— adaugare dependinta Retrofit

dependencies {

compile 'com.squareup.retrofit2:converter-gson:2.3.0'

59

https://github.com/google/volley
http://square.github.io/retrofit/

10.2.2 Creating model classes

When making calls to a REST API using the Retrofit library it is necessary to convert sent information
and received data to local models. Depending on the content encoding used it is necessary to convert
the sent and received information to local models. Specialized libraries can be used for these
operations, like Gson for json content or Simple XML for XML encoded content.

The conversion will not work appropriately if the local defined models are not mapped correctly to the
server’s response. Consequently, for each of the called API it is necessary to analyze the response and
to define a Java class that can be automatically mapped to it, similar to the example below:

{ public class ClasaModel
"valuel": "some string value", {
"value2": 2 @SerializedName("valuel")
} private String valuel;

@SerializedName("value2")
private int value2;

10.2.3 Declaring HTTP operations

Retrofit library requires that each of the APl endpoints is declared as a method of a public interface,
where all the necessary information for creating the call is included (except actual data): the URL of
the endpoint, request headers (eg. Authorization), data encoding information (also as a header) and
data mapping rules (what data is encoded in the URL and what data is sent in the body of the request).

public interface UserService
{

// describe the HTTP method type (other values: @POST, @PUT, @DELETE)

// and the path of the endpoint relative to the root address of the API

@GET ("users/{id}")

// set the static header that specifies the encoding of the data transfer

@Header ("Content-Type: application/json")

// add information about the data mapping and return type

Call<User> getUser (@Header ("Authorization") String auth, @Path ("id") int id);
¥

10.2.3.1 Server answer type

The type of the answer expected from the server is specified as the return type of the end-point
method (Call<User> in our example). In this case, Retrofit will convert the json response from the
server to a User object, making use of the convertor provided by the developer at instantiation time
(please see section 2.4 for details).

10.2.3.2 Set request headers

The request headers, defined through the @Header notation, can be static (with predefined value for
all the calls) or dynamic (which are instantiated with runtime values). In our example, the Content-
Type header is static (as all the data transfer will use json encoding) while the Authorization header is
dynamic (because the token is received only after user authentication). Static headers should be
defined as method annotations while dynamic headers as method parameters.

60

10.2.3.3 Configure request body

For the HTTP methods POST and PUT most of the information from the client to the server is
transferred through the body of the request. In the APl interface, this can be defined as follows:

@PUT ("end_point_URL")
Call«Void> EndPointName (@Body ModelClass body);

When the call to the EndPointName is initiated, the content of the body parameter will be
automatically convert from ModelClass to json or XML representation, according to the Retrofit
settings for this specific API.

10.2.3.4 Define query parameters

Query parameters represent data included in the URL after the ? sign, encoded as key=value pairs and
separated through & signs. Example of URL with query parameters:

| http://example.com/users?page=3&order=ascending |

In Retrofit, these parameters can be declared using the @Query notation, as method parameters. For
example:

@GET("users/")
Call<List<User>> getUsers(@Query("page") String page, @Query("order") String order);

10.2.3.5 Map path parameters

In REST APIs is very common to include some of the necessary information for the call in the URL
structure, as a virtual path element and not as a query parameter. For example, the following URL
retrieves the offer with ID=3 created by the user with ID=1:

| http://example.com/user/1/offer/3/

In order to configure Retrofit library correctly, it is necessary to use the @Path notation for the
correspondent parameters of the endpoint description method:

@GET ("offers/{id}")
Call<Offer> getOffer (@Header ("Authorization") String auth, @Path ("id") int id);

10.2.4 Register the API interface with the Retrofit library

When all the support classes are ready (data models, API description interface), we need to create a
Retrofit instance providing as parameters:

e the root URL address of the API
e the data encoding convertor, that will be used for request data as well as for response data

Retrofit retrofit = new Retrofit.Builder()
.baseUrl ("base_url")
.addConverterFactory (GsonConverterFactory.create())
.build();

The next step is to register the interface describing the APl with this newly created Retrofit instance:

| UserService userService = retrofit.create (UserService.class);

61

10.2.5 Making calls to the API endpoints

All the Retrofit calls to the server are asynchronous. The response (on success) or errors (on failure)
are processed through callback functions that will be invoked by the operating system when the state
of the connection changes. In the functions description, we will pass the expected data model to be
received and a secondary parameter that represents a reference to the raw response (in case of
success) or to the thrown error (in case of failure). The headers of the functions are described in the
Callback<T> interface.

For the UserService examples describe above, a call can be performed as follows:

userService.getUser("auth_token", 1).enqueue(new Callback<User>()
{
@Override
public void onResponse(Call<User> call, Response<User> response)
{
// code to be executed on successful response from the server
}
@0verride
public void onFailure(Call<User> call, Throwable t)
{
// code to be executed on connection or processing failure
}
})s

10.2.5.1 onResponse

This method is invoked when a connection with the server has been successfully established and
information has been exchanged. The developers need to process here all server codes, no matter if
they indicate success (status code 200) or a processing error (status codes 400, 404, 500 ...).

response.isSuccessful() method can be used to easily test the outcome of the server’s processing. If
the return value is false, we can usually extract more information using the response.errorBody()
method.

@Override
public void onResponse(Call<T> call, Response<T> response)
{
if (response.isSuccessful())
{
// request 1s successful and response is mapped in responseBody
T responseBody = response.body();
}
else
{

// request is not successful (some error occurred on the server)
int errorStatusCode = response.code();

String errorMessage;

// verify if the server has sent more details about the error

try

{
errorMessage = response.errorBody().string();

}

catch (IOException e)

{
errorMessage = "Error message cannot be obtained!";
e.printStackTrace();

}

62

10.2.5.2 onFailure
This method is called in one of the following situations:

e internet error connection (cannot connect to the server) — this can be caused by
o missing internet connection on the device
o missing application permissions to access the internet
o server not responding

e error when converting request data from model to designated encoding

e error when converting the server response to the local model

10.3 Development considerations

10.3.1 Adding internet access permissions

In Android devices the access of the applications to the internet is subject to permissions granted by
the user. In order to register for these permissions, it is necessary to update the AndroidManifest.xml
file by adding a uses-permission tag:

<manifest package="com.app.example”
xmlns:android="http://schemas.android.com/apk/res/android">

<uses-permission android:name="android.permission.INTERNET" />
<application ... />

</manifest>

10.4 Exercises

Exercise 1: Implement the models and interfaces necessary to connect from an Android application to
the https://cgisdev.utcluj.ro/moodle/chat-piu/ API [1]. When the implementation is complete, use the
https://cgisdev.utcluj.ro/moodle/chat-piu/register and create a new account, then verify if you can
authenticate from the Android APP.

Exercise 2: Implement the models and interfaces necessary to connect from an Android application to
the https://cgisdev.utcluj.ro/moodle/chat-piu/ APl [1]. Test your implementation by running your
application on two emulators (or a device and an emulator) and sending messages from one instance
to the other.

10.5 References

[1] Teodor Stefanut, ChatAPI Technical Specification, [Online]
https://cgisdev.utcluj.ro/moodle/chat-piu/ChatAP| specification.pdf (last access 10.02.2019)

63

https://cgisdev.utcluj.ro/moodle/chat-piu/
https://cgisdev.utcluj.ro/moodle/chat-piu/register
https://cgisdev.utcluj.ro/moodle/chat-piu/
https://cgisdev.utcluj.ro/moodle/chat-piu/ChatAPI_specification.pdf

	User_interface_design_laboratory_guide.pdf
	LABORATORY 1 – HTML
	1.1 Introduction
	1.1.1 Laboratory objectives

	1.2 Theoretical considerations
	1.2.1 HTML labels
	1.2.2 Most common attributes of HTML labels

	1.3 Development considerations
	1.4 Exercises

	LABORATORY 2 – CSS formatting
	2.1 Introduction
	2.1.1 Laboratory objectives

	2.2 Theoretical considerations
	2.2.1 CSS selectors
	2.2.1.1 Using HTML label
	2.2.1.2 Using CLASS attribute of the HTML label
	2.2.1.3 Using the HTML element ID
	2.2.1.4 Using the STYLE attribute of the HTML element

	2.2.2 Defining CSS classes
	2.2.3 Rules for applying CSS specifications on HTML documents

	2.3 Development considerations
	2.4 Exercises
	2.5 References

	LABORATORY 3 – JavaScript
	3.1 Introduction
	3.1.1 Laboratory objectives

	3.2 JavaScript
	3.2.1 Including the code directly into the HTML file
	3.2.2 Including JavaScript code from and external file
	3.2.3 Subset of JavaScript functions

	3.3 Development considerations
	3.4 Exercises

	LABORATORY 4 – jQuery library
	4.1 Introduction
	4.1.1 Laboratory objectives

	4.2 Introduction to jQuery
	4.2.1 Import jQuery library
	4.2.2 Use jQuery functions
	4.2.3 Manipulate HTML tags using jQuery
	4.2.4 jQuery objects
	4.2.5 Manipulate HTML elements
	4.2.6 DOM traversal
	4.2.7 DOM manipulation
	4.2.8 Chaining function calls

	4.3 Exercises

	LABORATORY 5 – AJAX calls
	5.1 Introduction
	5.1.1 Laboratory objectives

	5.2 AJAX calls using jquery library
	5.2.1 Initiate server calls
	5.2.2 Call answer management
	5.2.3 Display received information in HTML
	5.2.3.1 Making use of .html() function
	5.2.3.2 Making use of the DOM management capabilities

	5.3 Development considerations
	5.3.1 Server communication
	5.3.2 Dedicated processing functions

	5.4 Exercises
	5.5 References

	LABORATORY 6 – Introduction in Android development
	6.1 Introduction
	6.1.1 Laboratory objectives

	6.2 Theoretical considerations
	6.2.1 Hardware configurations
	6.2.2 Basic notions for the development of Android applications adaptive to multiple resolutions
	6.2.2.1 Tipuri de afișaje suportate de Android

	6.3 Development considerations
	6.3.1 Create a new Android application
	6.3.1.1 Create a new project
	6.3.1.2 Define the directory where the APP sources should be stored and choose a name for the software package that will contain your Java classes
	6.3.1.3 Add information about targeted devices of your APP
	6.3.1.4 Indicate the initial activity type that should be automatically created by the tutorial
	6.3.1.5 Provide a name for the first Activity and the connected layout file

	6.3.2 The generic structure of an Android application
	6.3.3 Describing the user interface
	6.3.3.1 Linear Layout
	6.3.3.2 Relative Layout

	6.4 Java aspects specific to Android applications
	6.4.1 Access visual elements
	6.4.2 Attach callbacks to user interactions

	6.5 Exercises

	LABORATORY 7 – Android UI and user interaction (1)
	7.1 Introduction
	7.1.1 Laboratory objectives

	7.2 Theoretical considerations
	7.2.1 Creating custom lists
	7.2.1.1 Describe the visual structure of a list element
	7.2.1.2 Create a list adaptor

	7.2.2 Create a contextual menu and define user interactions with it
	7.2.2.1 Describe menu elements
	7.2.2.2 Register visual elements for the contextual menu
	7.2.2.3 Display and customization of the contextual menu
	7.2.2.4 React when an item of the contextual menu has been selected

	7.3 Development considerations
	7.3.1 Transition to another activity
	7.3.2 Creating an Adapter class
	7.3.2.1 Implementing getView function of the Adapter class

	7.3.3 Connect the ListView element and the Adapter
	7.3.3.1 Update list display when changes occur into the data model

	7.3.4 Implementing the contextual menu
	7.3.4.1 Customize the display of the contextual menu
	7.3.4.2 Identify selected item from the contextual menu

	7.4 Exercises

	LABORATORY 8 – Android UI and user interaction (2)
	8.1 Introduction
	8.1.1 Laboratory objectives

	8.2 Theoretical considerations
	8.2.1 Options bar
	8.2.2 Progress bar
	8.2.3 BACK button
	8.2.4 Dialog windows
	8.2.5 TOASTs

	8.3 Development considerations
	8.3.1 Defining a timer
	8.3.2 Defining elements for the options bar
	8.3.3 Populate the options bar
	8.3.4 Identify selected option
	8.3.5 Display a Toast message
	8.3.6 Display a dialog window
	8.3.7 Customize the behavior of the Back button
	8.3.8 Pass data between activities
	8.3.8.1 Defining a singleton class that acts as a data model for all the activities
	8.3.8.2 Passing the necessary data between activities
	8.3.8.2.1 Passing data from the current activity to a newly created one (child activity)
	8.3.8.2.2 Passing data from the current activity to the parent activity

	8.4 Exercises

	LABORATORY 9 – Android UI and user interaction (3)
	9.1 Introduction
	9.1.1 Laboratory objectives

	9.2 Theoretical considerations
	9.2.1 Reuse of UI templates (elements of type View)
	9.2.2 ViewHolder template
	9.2.3 Notify the RecyclerView.Adapter on data model updates
	9.2.4 Customize list elements display

	9.3 Development considerations
	9.3.1 Adding required library for RecyclerView to the APP
	9.3.2 Implement RecyclerView
	9.3.2.1 Create the XML layout file
	9.3.2.2 Update the Java code
	9.3.2.3 Create RecyclerView.Adapter and RecyclerView.ViewHolder

	9.3.3 Process the onItemClick event for a RecyclerView list element
	9.3.4 Use different display templates in the same list

	9.4 Exercises

	LABORATORY 10 – connect to a REST API from Android
	10.1 Introduction
	10.1.1 Laboratory objectives

	10.2 Retrofit library setup
	10.2.1 Including required dependencies
	10.2.2 Creating model classes
	10.2.3 Declaring HTTP operations
	10.2.3.1 Server answer type
	10.2.3.2 Set request headers
	10.2.3.3 Configure request body
	10.2.3.4 Define query parameters
	10.2.3.5 Map path parameters

	10.2.4 Register the API interface with the Retrofit library
	10.2.5 Making calls to the API endpoints
	10.2.5.1 onResponse
	10.2.5.2 onFailure

	10.3 Development considerations
	10.3.1 Adding internet access permissions

	10.4 Exercises
	10.5 References

