
Lia-Anca HÂNGAN

CONTRIBUTIONS TO THE 

DEVELOPMENT OF PARALLEL 

AND DISTRIBUTED 
REAL-TIME SYSTEMS

UTPRESS
Cluj-Napoca, 2020

ISBN 978-606-737-444-5



 Lia-Anca HÂNGAN 

 
 
 
 

 
 

 CONTRIBUTIONS TO THE 
DEVELOPMENT OF PARALLEL AND 

DISTRIBUTED REAL-TIME 
SYSTEMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UTPRESS 
Cluj - Napoca, 2020 

ISBN 978-606-737-444-5 



 

  Editura U.T.PRESS 
  Str. Observatorului nr. 34 
  C.P. 42, O.P. 2, 400775 Cluj-Napoca 
  Tel.:0264-401.999 
  e-mail: utpress@biblio.utcluj.ro 
  http://biblioteca.utcluj.ro/editura 
 
 
  Director: ing. Călin Câmpean 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2020 Editura U.T.PRESS 
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este 
posibilă numai cu acordul prealabil scris al editurii U.T.PRESS. 
 
ISBN  978-606-737-444-5 
Bun de tipar: 02.04.2020 

 



Preface | 2 

 

Preface 

Goal  

Real-time systems have a wide application domain that includes industrial process control, avionics, 

military and automotive. For such applications, satisfying timing and performance requirements is 

critical and sometimes exceeding deadlines can cause catastrophic results. Therefore, the designer must 

guarantee the fulfillment of time requirements before system start. In many cases, system designers have 

been using special purpose hardware and networking infrastructures to guarantee a deterministic 

behavior of real-time systems. However, there has been an increasing interest for using general-purpose 

platforms instead of dedicated ones and as well for implementing real-time systems on parallel and 

distributed architectures.  

In this context, a set of research problems needed to be analyzed and addressed. This book presents 

theoretical models and solutions for multiprocessor scheduling of real-time tasks, for the transmission 

predictability of real-time data on general-purpose networks and for the simulation and performance 

evaluation of real-time systems.  

Multiprocessor scheduling of real-time tasks is not a new subject, but research in this direction 

recently intensified because of the large-scale use of parallel and distributed systems, including the 

multicore processors. However, current models do not cope with the complexity introduced by the 

current real-time applications requirements. On the other hand, the schedulability problem needs more 

investigation since preliminary theoretical results showed that in some cases multiprocessor systems 

does not behave better than a uniprocessor system. Moreover, many scheduling solutions have poor 

performances.  

For real-time distributed systems, one of the main concerns is to ensure transmission predictability of 

real-time data and to find mechanisms that make possible the coexistence of real-time and best-effort 

data transmission in the same network. There is need for solutions that guarantee a deterministic data 

transmission using state-of-the-art QoS mechanisms implemented on general-purpose communication 

infrastructures (e.g. switched Ethernet and IP networks).  

Last but not least, the real-time community has recently acknowledged the lack of standard 

methodologies and tools for the performance evaluation of new research results in the domain of real-

time systems. There is need for common metrics and common evaluation methods to be able to make a 

relevant comparison between similar research results. 

This book presents theoretical and pragmatic solutions for multiprocessor real-time systems, 

extracted from the author’s PhD thesis. The contributions presented here spread over several sub-

domains that cover the most important problems of parallel and distributed real-time systems: system 

models, communication issues in distributed systems, scheduling on multiprocessors, performance 

evaluation of scheduling techniques and of parallel programming languages, tools for simulation and 

performance evaluation. 
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Audience 

This book is addressed to computer science students that are in their senior year or pursuing a Master’s 

degree. This book assumes that the reader has reasonable knowledge in the areas of parallel and 

distributed systems, as well as in computer networks.  

Outline 

This book is organized as follows.  

Chapter 1 is a brief introduction to the area of real-time systems that includes an analysis of the status 

of research and identifies a set of open problems. 

Chapter 2 contains a presentation of the most representative theoretical models used in real-time 

systems research. Starting from these models, directions that need attention from the research point of 

view are identified. Finally, a general model for parallel and distributed real-time systems is proposed. 

In Chapter 3 describes a model for the availability of open network segments that allow the 

transmission of real-time traffic at the same time with non-real-time traffic and a method for network 

bandwidth estimation in the context of a reservation-based communication architecture.  

Chapter 4 presents multiprocessor scheduling techniques for real-time transactions.  

Chapters 5 and 6 present performance evaluation tools, methods and results in the area of 

multiprocessor scheduling. First, the design and implementation of a simulation environment that is used 

as support for the evaluation of multiprocessor real-time systems theoretical models and algorithms is 

described. Then, the methodology for the analysis of real-time multiprocessor systems based on 

simulation is presented. Finally, experiments are shown, to validate the simulation-based methodology. 
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Chapter 1.  Real-time systems  

1. Introduction 

In most cases, it is expected that a computer system will produce a correct result in an acceptable time 

frame, approximately proportional to the volume of computation required. If you read an online journal, 

the accepted time to complete loading of the website is less than 20 seconds. But if you want to simulate 

the biochemical interactions between molecules, a period of up to several days can be accepted to 

produce results, because the volume of data and computation is very high. In previous cases, the users 

are satisfied if the system produces a correct result, with no errors and, even if the web page takes longer 

than 20 seconds to load, only the user's patience is affected. The correctness and the usefulness of the 

result are not affected. 

However, there are situations when it is very important that the system response is generated without 

errors and within a specified time interval. There are critical cases in which exceeding the time limit 

causes negative (sometimes catastrophic) unwanted effects, such as most of the industrial control 

systems, avionics, military systems and other similar systems. In other cases, the response time has to 

be situated inside a specified interval for the system to be useable. Multimedia streaming or 

teleconferencing applications have such time constraints. For these applications, the Quality of Service 

(QoS) the user perceives is influenced by the end-to-end packet delay and by the standard deviation of 

packet delay (jitter). QoS must be high for these applications to be usable.  

A system is real-time if its correct functioning depends on meeting certain time constraints. More 

specifically, a real-time computing system can be defined as a system that when subjected to external 

stimuli, generates a response within a limited time interval. H. Kopetz gives the following definition in 

[1]:   

"A real-time computer system is a computer system in which the correctness of the system behavior 

depends not only on the logical results of the computations, but also on the physical instant at which 

these results are produced." 

Real-time systems usually respond to events that take place in the environment in which they operate 

and they often have direct effects on it. Therefore, their response time, defined as the time between the 

occurrence of an event and the corresponding response, should be correlated to the timing characteristics 

of the environment. For example, in the case of an industrial process, if the time between the occurrence 

of an alarm due to high pressure in a boiler and the time a valve opens resulting in lowering the pressure 

must be under 10 seconds, the response time of the system that controls this process must be adapted to 

this timing requirement, otherwise the boiler can explode. Teleconferencing applications are another 

example. In this case, even if extreme values are admitted, it is very important that average data 

transmission delays be undetectable to human hearing and vision; moreover, the transmission delay jitter 

must be low. If these timing requirements are not met, the users will not understand what their 

interlocutors are saying, and will not be able to see them. 
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Real-time systems can be classified from different points of view. For example, some classifications 

can be done by taking into consideration only the characteristics of the applications that are executed on 

the system. Other classifications can be made by taking into account platform characteristics, resource 

availability or characteristics of the operational environment. Some of these classifications are presented 

below. 

Hard and soft systems  

A very important classification of real-time systems is made considering only the timing constraints 

of real-time applications. According to this classification, real-time systems are either hard or soft. 

A real-time application is composed of multiple tasks (units of work that are scheduled and executed 

by the system). Each task has a deadline, defined as the instant in time by which its execution has to be 

completed. The characteristics taken into consideration when choosing a category for an application 

(hard or soft) are linked to the quantification of deadline misses and the effects generated by deadline 

misses [2]:  

• The total number of deadline misses 

• The usefulness of the results in case of deadline misses 

• The effects of deadline misses on the users and the environment 

A real-time application is hard if: 

• The total number of deadline misses is zero or close to zero 

• The usefulness of the results is zero or close to zero in the case of deadline misses 

• Deadline misses have serious, sometimes catastrophic effects on users and the environment 

(e.g. a boiler explosion; a robot crushes into an obstacle) 

For hard real-time applications, deadline misses are not accepted. Moreover, the developer has to 

guarantee that deadlines are always met by using some proved analytical methods or validation 

algorithms.  

A real-time system is hard if it contains mainly hard real-time applications. To guarantee that in a 

hard system all timing constraints are satisfied, applications and the platform (hardware and software) 

on which they execute must have deterministic behaviors. In this way, the validation of the entire system 

can be done before system start, or, for dynamic systems, during execution.  

A real-time application is soft if: 

• Occasional deadline misses are accepted. The deadline can even be specified as a 

probabilistic parameter. 

• The results are still useful if the application experiences a small number of deadline misses, 

but their usefulness decreases with the increase of deadline misses. The relation between 

the number of deadline misses and the usefulness of the results is specific for each 

application. 
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• Deadline misses cause only the degradation of service quality 

The avoidance of occasional deadline misses is of little importance for soft real-time applications 

because they do not cause serious effects. It is more important that these applications have good average 

response times.  

A soft real-time system contains mainly soft real-time applications. These systems do not need such 

rigorous validation as in the case of hard systems. Even if exact quantification of deadline misses is not 

required, the validation of the average case timing behavior is desirable.  

Event-triggered and time-triggered systems 

Another classification is based on the type of mechanism that triggers real-time applications activities, 

such as the execution of a job or the transmission of a message [1].  

If the activities are triggered by the occurrence of an event other than the clock tick, the real-time 

system is event-triggered. An intelligent sensor that reports a significant change in the value of a 

measured environment parameter (e.g. temperature) is event-triggered. Event-triggered activities are 

usually modeled as asynchronous or sporadic tasks that require dynamic execution schedulers. 

When activities are initiated in predetermined points in time, the real-time system is time-triggered. 

Time-triggered activities are usually modeled as periodic tasks and execution scheduling is 

predetermined. These systems are more predictable than event-triggered systems, but can overlook the 

occurrence of some events. Let’s presume that the intelligent sensor mentioned before is part of a time-

triggered system. To obtain information about the state of the environment, the system will poll the 

sensor from time to time. If the state change occurs between two consecutive polls, the sensor has to 

save the observed state until the system asks for an update, or the observation will be lost. 

Resource-adequate and resource-inadequate systems 

Real-time systems, in which there are enough computing resources available to handle all presumed 

scenarios, are resource-adequate [1]. Even if it is too expensive to have systems that have enough 

resources to handle all possible situations, many hard and safety-critical systems have designs based on 

the resource-adequacy principle. 

On the other hand, in many cases, it is hard or even impossible to provide enough resources to cover 

all possible scenarios. These systems are consequently built on the resource-inadequacy principle. 

Embedded and mobile systems have limited resources that have to be managed in order to provide the 

best performance. Recently, extensive work has been done in the area of accommodating real-time 

applications on shared platforms. In this case, applications have to dynamically adapt to the fluctuating 

resource availability in order to maintain timing constraints. 

Single-node and distributed systems 
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Depending on the characteristics of the underlying platform, a real-time system can be single-node or 

distributed [3]. A single-node real-time system consists of one computer and its I/O devices. The single-

node system receives an input, performs some processing locally and then, it generates the result.  

A distributed real-time system consists of multiple computers (nodes) that communicate through a 

computer network. Each node of the distributed system may have its own I/O devices and can process 

inputs received from another node. Applications have distributed components. The validation of timing 

constraints must take into consideration end-to-end execution, which consist of processing time 

(measured in the nodes) and data transmission time (measured in the communication network).  

Some of the advantages of implementing real-time applications on distributed environments are: 

• Reliability 

• Resource sharing 

• Scalability 

 Reliability is usually obtained trough replication. If a node fails, other nodes can resume its activity. 

If nodes have limited computing resources, resource sharing can help overcome this problem. Moreover, 

a distributed system can be easily extended by adding more processing nodes. 

Uniprocessor and multiprocessor systems 

Another classification criterion can be the number of CPUs of the underlying platform. Consequently, 

real-time systems can be uniprocessor or multiprocessor. Uniprocessor systems contain only one CPU. 

Multiprocessor systems contain more than one CPU.   

Even if many real-time systems contain more than one CPU, a great number of research models and 

analysis techniques are focused on platforms with only one CPU. However, recent studies tend to 

address multiprocessor environments and their problems, such as task assignment, task synchronization 

and the heterogeneity of the CPUs. 

Multiprocessor systems and distributed systems resemble in the sense that each system contains more 

than one CPU [2]. The difference between the two is that multiprocessor systems are tightly coupled 

and CPUs may have a shared memory, and, in contrast, distributed systems are loosely coupled and each 

CPU has its own, private memory. As consequence of these characteristics: 

• It is much easier to keep global status and workload information up to date on 

multiprocessor systems.  

• Scheduling and synchronization algorithms that are suitable for multiprocessor systems may 

not work as well for distributed systems.   

Many real-time applications, which are developed for uniprocessor systems, are single threaded. If 

these applications are to be deployed on multiprocessor systems, the easiest solution is to assign the 

application to only one CPU. But to fully take advantage of multiprocessor systems, we need to find 

ways to parallelize real-time applications.  
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Open and closed systems 

In [4], the authors classify real-time systems as closed and open systems based on the characteristics 

of their operating environment.  

Closed real-time systems have the following characteristics: 

• The set of real-time applications that coexist in the system is known and does not change in 

time 

• Applications are developed and validated together 

• Detailed timing attributes of all real-time applications on each processor are known 

• The schedulability of the system in all predicted scenarios is determined beforehand 

In contrast with closed systems, open real-time systems have the following characteristics: 

• The set of real-time applications that coexist in the system may change in time; at run-time, 

the user can request the start of another application, which was not part of the initial 

application set 

• Applications may be developed and validated independently 

• If an application is validated to meet its timing constraints when executing in isolation, the 

system that accepts its  access to the shared platform at runtime, has to guarantee that the 

application’s timing constraints are met on the shared platform 

• The system may accept applications with different timing requirements, even non-real-time 

applications 

The design and implementation of open real-time system has lately received much attention from the 

real-time research community. Recent work has been done in the direction of integrating these systems 

with complex platforms (many shared resources, not just a single processor) [5]. 

After analyzing the classifications presented above, the main aspects that differentiate them can be 

highlighted:  

• Classification criteria 

• System layer from which the criteria is selected 

• The model components influenced by the selected criteria 

Table 1 shows these aspects. 

Table 1. Comparison between different classifications of real-time systems 

Classification Layer Criteria Influence 

Closed 

Open 

Environment Environment dynamics Workload model 

Resource model 

Scheduling 
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Hard 

Soft 

Application Timing constraints (deadline) Workload model 

Scheduling 

Event-triggered 

Time-triggered 

Application Activity triggering mechanism 

(implementation) 

Workload model 

Resource-adequate 

Resource-inadequate 

Platform Resource availability Resource model 

Single-node 

Distributed 

Platform Number of computing nodes Resource model 

Scheduling 

Uniprocessor 

Multiprocessor 

Platform Number of CPUs Workload model 

Resource model 

Scheduling 

2. Status of real-time systems research 

Real-time systems have a well defined application domain that includes industrial process control, 

avionics, military and signal processing applications. The environment in which these systems function 

is controlled, closed and predictable. For these applications, timing and performance requirements have 

to be guaranteed before system start. Parameters whose values can’t be known or predicted before 

system start can generate great issues. In this context, to guarantee a deterministic behavior of the real-

time system, designers use special purpose and many times expensive hardware, networking 

infrastructures, protocols and operating systems. 

The recent evolution of the real-time domain creates new trends in research and development (see 

Table 2). These trends are partially generated due to the expansion of the application domain to online 

multimedia applications (audio and video streaming, teleconferencing, Internet phone), real-time online 

transactions, real-time web (social networks, real-time search), mobile applications, home automation, 

sensor networks, and more. On the other hand, the constantly increasing performances and low costs of 

common use off-the-shelf hardware and networking infrastructures encouraged researchers to find 

solutions for their use in real-time systems.  

Table 2. Current trends in real-time systems research 

Level Classic approach Current trends 

Hardware and 

communication 

platforms 

To insure determinism, special purpose 

real-time hardware, special purpose 

networks and real-time communication 

protocols are used. 

Use commercial off-the-shelf hardware 

and networking technologies for real-time 

systems. E.g. multicore, switched 

Ethernet, IP networks, etc. 
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Operating systems 

and resource 

management 

Real-time operating systems, real-time 

resource management and execution 

scheduling. 

Manage real-time applications in common 

use operating systems (E.g. Linux). 

Develop virtualization technologies for 

real-time systems.  

Applications Relatively small application domain: 

industrial process control, avionics, 

military, signal processing. 

Diversification of application domain: 

multimedia (audio and video streaming, 

teleconferencing, Internet phone), online 

real-time transactions, real-time web 

(real-time search, social networks), 

mobile applications, home automation, 

sensor networks, etc. 

Environment The environment is closed and 

controlled. 

In restrictive cases, real-time 

applications do not share resources with 

other applications. 

Resources are shared only between real-

time applications.  

The environment is open and dynamic. 

Real-time applications can share 

resources with non-real-time applications. 

 

  

Fig.1 shows some current points of interest for real-time systems research that emerge as the effect 

of the two factors we identified: 

• Real-time systems application domain diversification 

• Evolution of common hardware and communication infrastructures 

An important research direction has the objective of implementing real-time systems on 

multiprocessors (parallel and distributed infrastructures). Multiprocessor scheduling of real-time tasks 

is not a new research subject [6]. However, because it raises complex problems [7], researchers are still 

looking for improved solutions. Moreover, research in this direction intensified because of the large-

scale production of multicore microprocessors. There are several topics of interest in this direction, such 

as: 

• Multiprocessor scheduling [8][9],   

• Multiprocessor/Multicore processor timing analysis [10][11],  

• Development of technologies and tools for analyzing the worst case execution behavior on 

multiprocessors/multicores [12],  

• Parallel or multicore-aware programming languages for real-time applications [13] 
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Figure 1. Some current points of interest for real-time systems research 

Many research groups investigate major problems of multiprocessor real-time systems such as 

scheduling, timing analysis and worst case execution behavior analysis. Even though there are many 

results in these directions, there are still important issues that need to be solved. There are several optimal 

scheduling algorithms for multiprocessors [23][24], but they don’t have any practical relevance due to 

the prohibitively high overheads introduced by migrations and context switches. The schedulability 

problem (proving that tasks meet their deadlines) needs more investigation since theoretical results show 

that multiprocessors can in some cases handle task utilizations not much larger than uniprocessors 

[6][25]. Moreover, schedulability tests are very restrictive [26] and there are many situations when tasks 

can’t be included in the “schedulable” or “not schedulable” groups. A third important problem that, to 

our knowledge, doesn’t have a solution until now is the identification of the worst case execution 

behavior on multiprocessors [7]. In our opinion, multiprocessor real-time systems research problems 

need solutions that are more pragmatic and can be used beyond the research lab. 

Increased performances of common use communication infrastructures (switched Ethernet and IP 

networks) and the development of QoS mechanisms were the cause for new research initiatives. 

Researchers aim to find solutions to use these communication infrastructures and QoS mechanisms in 

real-time distributed systems. The main concerns of this research direction are: 

• To ensure transmission predictability of real-time data [14]  

• To find mechanisms that make possible the coexistence of real-time and best-effort data 

flows in the same network [15] 

Real-time systems (RTS) 
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Evolution of common 
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RT technologies for 
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Resource 
management in open 

RTS 

RT applications in 
non-RT operating 

systems 

Virtualization 
techniques for RTS 

Evaluation 
methodologies and 

tools  

Multiprocessors RT 
scheduling 

RTS artificial data 
set automatic 

generation 
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For many modern real-time systems the computational load and resource availability cannot be 

determined or predicted a priori, because of the open and dynamic environment in which they operate. 

Furthermore, resource availability and application resource requests can fluctuate in an unpredictable 

manner. Embedded and mobile devices, present in many real-time applications, have limited resources 

that need to be managed efficiently to maximize performance. Many current real-time systems must 

manage concurrent activities with different restrictions of time and QoS and that require access to shared 

resources. In these cases, the main challenge is to find models that can deal with the diversity of these 

activities. The situation becomes even more complex when real-time applications share resources with 

applications that do not have real-time restrictions. Starting from these issues, the operation of real-time 

applications in open environments and sharing resources between applications with different time 

restrictions, some important research topics have emerged: 

• Resource management in open real-time systems (which contain applications with different 

time restrictions) [4] [5] [16]  

• Handling real-time tasks in common use operating systems [17] 

• Virtualization techniques for real-time systems [18] 

• The adaptation of non-real-time technologies such as those used in SOA, Web and Cloud 

Computing, for real-time systems [19] [20] [21] 

Many classic models and solutions, which are used in the development of real-time systems, cannot 

handle the recent evolution in this domain. A review of classic theories is needed in order to adapt them, 

if possible, to meet current needs. On the other hand, new models, algorithms and technologies, which 

deal with the complexity of current real-time systems, are needed. 

Performance evaluation of a new real-time model, algorithm or technique implies the comparison 

with similar existing results according to a certain method and based on a set of metrics. Many research 

results in the area of real-time systems are validated through complex mathematical analysis by 

computing the system’s worst case response time. However, with the growing complexity of real-time 

systems, the worst case behavior is sometimes impossible to identify. Consequently, these methods are 

becoming out-of-date and there is need for new evaluation methods and tools. The real-time community 

has recently acknowledged [22] that there are three “major obstacles” in comparing published work in 

the area of real-time systems: 

• The lack of standard methodologies and software tools for performance evaluation  

• The lack of public/open software used for performance evaluation 

• Research results are not made available as downloadable data files 

The real-time systems research community needs a set of open tools and data sets that would be used 

for research results evaluation. There is need for common metrics and common evaluation methods to 

be able to make a relevant comparison between similar research results.   
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Chapter 2. Real-time system models  

1. Introduction 

The main difference between a real-time application and a general-purpose one is that the developer 

must demonstrate not only the logical correctness of the application but also the fulfillment of a set of 

predefined time restrictions (e.g. deadlines, periodicity, etc.). In many real-time systems, exceeding the 

time limits is critical and it may cause accidents (including human injuries) or significant material loses. 

Therefore, a so-called “best effort” approach typical for non-real-time applications is not applicable for 

those with time restrictions.  

Evaluating, controlling and analytically demonstrating the time-behavior of a system is usually not a 

trivial task. Any analytical (mathematical) approach requires an abstract model of the real system, which 

necessarily introduces a number of abstractions and simplifying assumptions. Without such a model, the 

attempt to demonstrate the timely behavior of a reasonably complex system is impossible [1]. Like in 

any other science, modeling a physical system is an important step in the process of understanding and 

controlling its behavior.  

In real-time systems, models allow us to predict different time parameters of a system (e.g. execution 

or response time, delays, transmission times, periodicity, etc.) without the need for experimental 

measurements and tests. In many cases, experimental validation of a real system is not possible or it is 

not relevant. For example, if the application is controlling an industrial process, a longer delay in the 

system’s response to a critical event may cause accidents. On the other hand, experiments may not reveal 

the “worst-case response time”. 

A model is a simplified, abstract representation of a complex reality. The model introduces a set of 

concepts and relations (e.g. equations) between them that may be used for analytical evaluation of the 

system’s behavior [1]. The model introduces, as well, a set of assumptions that have the role of 

simplifying its analysis. 

The following are some simplifying assumptions that are encountered in real-time systems theory: 

• Discrete time. Time variables (e.g. execution time, repetition period) are discrete. 

• Predictable execution. The executable instances of a task will have the same execution time. 

• Preemptivity. The executable instances of a task are preemptable if they can be interrupted 

at any time during execution or non-preemptable if not. 

• Uni/Multi processor. The workload will be executed by a single or by multiple processing 

resources. 

• Sequential or parallel execution. The executable instances of a task will be executed by at 

most one processor at the same time. Otherwise, it will be executed by more than one 

processor, in parallel.  

• Task independence. Tasks don’t influence each other’s execution. Data or precedence 

dependencies are not considered. 



Real-time system models | 2 

 

 

 

 

 

• Communication time. Communication time between application components and hence 

communication-related delays are not considered in the model.  

• Other restrictions (e.g. mutual exclusion, synchronization).  

As presented in [4], the model of a real-time system may be divided into three sub-models: 

• The workload model – describes the applications that are executed on the system’s platform 

• The resource or platform model – describes the system resources available to the 

applications 

• A set of scheduling and resource management algorithms – describe how the applications 

use the available resources 

In this chapter, we make a presentation of the most representative theoretical models used in real-

time systems research. Starting from the presented models, we discuss the status of real-time theoretical 

analysis and identify some directions that, in our opinion, need attention from the research point of view. 

Moreover, we present our representation approach, for each model component. 

2. Workload models 

A real-time application is composed of periodic and non-periodic tasks. The real-time task is a 

concept used for modeling a software program that has an execution requirement and a deadline. A 

particular execution instance of a task is called a job; a job is in fact program executed on a given 

processing platform. A periodic task will issue a sequence of jobs that will be released at equal distances 

in time one after the other. A non-periodic task will issue a single job or a sequence of jobs, but not at 

equal distances in time. Tasks execution may be correlated or not. If tasks are correlated with a 

precedence relation, then the set of correlated tasks form a transaction. A transaction may have a linear 

(no branches), tree or graph structure.  In our approach, a real-time application may contain a set of 

transactions or a set of independent tasks. 

There are many approaches to real-time workload modeling. The main categories of models we intend 

to investigate are the following: 

• Sequential tasks  

• Parallel tasks  

• Transactions 

 Some of the most representative approaches in these categories will be presented below. 

2.1. Sequential tasks 

Many real-time applications are represented as sets of sequential tasks. A task is sequential if each 

job can execute on exactly one processor at a time. The task models presented as follows assume that 

job execution is sequential. 
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2.1.1. Periodic task models 

The workload model that, for a long time, received the most attention from researchers is the periodic 

task model, also known as the Liu and Layland model [5]. Most of the later workload models are 

generalizations of this model.  

The real-time workload is modeled as a set of periodic tasks. A periodic task is a sequence of jobs 

with identical parameters that occur at constant intervals over time. Periodic tasks have the following 

important parameters: 

• Period p – the length of the interval between release times of consecutive jobs. In [5] these 

intervals are constant.  

• Execution time e – the maximum execution time of all the jobs in the task. 

• Phase 𝜙– the release time of the first job in the task. In many cases, it is assumed that the 

phase is equal to zero for all tasks. A task set is called synchronous if the phase is equal for 

all its tasks; otherwise, the task set is asynchronous. 

• Deadline D – the relative deadline.  

The most representative parameter of a real-time task is the deadline. The deadline of a task is defined 

as the time (relative to job release time) before each job in the task has to finish its execution. There are 

three main deadline types used in real-time task models: 

• Implicit – deadline is equal to the task’s repetition period. 

• Constrained – deadline is less than the task’s repetition period. 

• Arbitrary – deadline can have any value, independent of the task’s repetition period. 

The task deadline type influences the task set feasibility analysis method in terms of complexity (the 

most complex analysis is for arbitrary deadlines). 

The job mostly inherits the parameters of the task; some of its parameters are computed based on the 

task’s parameters. The parameters of a job (J) are the following [4]: 

• Release time (r) – the instant in time at which the job is available for execution. The release 

time can be fixed, meaning that the exact time instant of the release is known, or can be 

jittered, meaning that only the time interval [rmin, rmax], in which the release can occur, is 

known.    

• Absolute deadline (d) – the instant in time by which the execution of the job must be 

completed (d=r+D). 

• Relative deadline (D) – if a job is released at r, job execution must be completed D units of 

time after r. The term deadline is usually used when referring to the relative deadline.   

• Execution time (e) – the amount of time required to complete the execution of the job, when 

it executes without being interrupted and all resources needed are available. The execution 

time of a job may be variable, meaning that the exact value can be any, in the interval [emin, 

emax].  
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• Preemptivity – a job is preemptable if its execution can be interrupted at any time, to allow 

other jobs to be executed. Later, the execution is resumed from the point of suspension. If a 

job is nonpreemptable, its execution can’t be interrupted.  

The utilization factor (ui) of a periodic task is the fraction of processor time spent in the execution of 

that task [5] (ui=ei/pi). The total utilization (U) of a task set is the sum of all task utilizations (U=∑ui). 

In Liu and Layland’s model, a periodic task is represented as a tuple τ(e, p) which contains the worst 

case (maximum) execution time and the period of the task. It is also assumed that: 

• Tasks are preemptable 

• Tasks have implicit deadlines 

• Tasks are independent, meaning that they do not have any precedence constraints or other 

type of dependencies (e.g. data). 

The periodic task model has some strong restrictions: 

• Tasks have constant period, even though in real-world cases the inter-release time may be 

variable. 

• It is assumed that tasks have constant execution time, which rarely happens. In fact, tasks 

usually contain conditional and repetitive sequences of code, which cause variable 

execution time in consecutive releases.    

• It is assumed that tasks are independent. However, it is highly probable that tasks will 

depend on the availability of data or other operating system on hardware resources that 

influence the execution behavior of task sets.  

Even though these restrictions reduce the model’s expressiveness, the less complex analysis methods 

encouraged many researchers to use it in their work.  Therefore, the periodic task model was intensively 

studied for many years and it is still used for the analysis and validation of uniprocessor and 

multiprocessor scheduling algorithms. 

2.1.2. Sporadic and aperiodic task models  

Aperiodic and sporadic tasks are used to model responses of the real-time system to external events 

that may occur at any time. Aperiodic tasks have random interarrival times, and in many cases, their 

deadlines are either soft, or they do not have deadlines. In the case of sporadic tasks [6], job releases 

will not occur periodically but there is a minimum interval between any two consecutive job releases. 

Sporadic tasks may have hard deadlines. 

 The multiframe task model is presented by Mok in [7]. This model generalizes the periodic task 

model, by relaxing the conditions on task execution time and task period. In the multiframe model, it is 

assumed that:  

• Jobs in a task may have variable execution time, but the variation follows a certain recurrent 

pattern 
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• Tasks are sporadic, which means that they have a minimum occurrence period 

• Task deadline is implicit 

• Tasks are independent and preemptable 

 A multiframe real-time task is represented as a tuple τ(E, p), where E is a finite list of n (n 1) 

execution times (e0, e1,…, en-1) and p is the minimum separation time between two consecutive frames 

(jobs). The execution time of the ith frame of the task is ei mod n. The deadline of each frame is equal to p 

(implicit deadline). In the particular case when n=1 and p is a constant separation time between frames, 

the multiframe task model reduces to a periodic task model.  

 The generalized multiframe task model (GMF) presented in [8] extends Mok’s multiframe 

model. In the GMF model, deadline and separation time assumptions change: 

• Deadlines are explicit, meaning that they differ from the minimum separation time 

• Deadlines are not equal for all frames 

• Frames have different minimum separation time 

A GMF task is represented as a tuple τ(E, D, P), where E, D and P are finite lists of n (n 1) elements. 

E contains execution times (e0, e1,…, en-1), D contains deadlines (D0, D1,…, Dn-1) and  P contains 

minimum separation times (p0, p1,…, pn-1). According to this model, for the ith frame of task T, the 

execution time is equal to ei mod n, the deadline is Di mod n and the next frame will have the release time 

ri+1 ri + pi mod n. 

The most general model (at this time) which uses multiframe tasks to describe real-time workload is 

the non-cyclic GMF model presented in [9]. The term “non-cyclic” comes from the fact that there is no 

recurrent pattern for task activations, like in the previous multiframe task models (Mok’s multiframe 

model and GMF model). A non-cyclic GMF task consisting of n frames is defined by a sequence of 

tuples ((e0, D0, p0), (e1, D1, p1),…, (en-1, Dn-1, pn-1)). Any frame can be activated at the end of the minimum 

separation time of the previous frame. The non-cyclic GMF model is used for event-triggered systems, 

for which the task activation pattern cannot be predicted. 

A different approach, of using graphs in real-time workload modeling is presented in [10]. The 

recurring real-time task (RRT) model starts from the idea that, for many event-triggered real-time 

applications, timing requirements may change at runtime as result of conditional branches that depend 

on the system state or on environment parameters. In these cases, periodic or multiframe models can be 

used only to describe the worst case behavior of task systems. But it may be sometimes very difficult to 

predict the worst case behavior. The RRT model allows the representation of conditional real-time code. 

A RRT is represented as a task graph. A task graph is a directed acyclic graph (DAG) in which vertices 

are subtasks and edges are possible flows of control. 

A real-time task τ is formally represented by a task graph G(τ) and a period P(τ). G(τ) has a unique 

source vertex and a unique sink vertex. Each vertex u represents a subtask and is labeled with a pair 

(e(u), d(u)), where e(u) is the execution time and d(u) is the relative deadline of the subtask. Each time 

a subtask u is triggered, a job is generated with (e(u), d(u)) timing requirements. Each edge (u, v) is 
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labeled with p(u, v), which represents the minimum separation time between the triggering of u and v (v 

can be triggered as early as p(u,v) time units after u was triggered). The source vertex of the task graph 

can be initially triggered at any time. Then, the source vertex can be triggered only after the sink vertex 

was triggered and minimum P(τ) time units after its previous triggering. Fig. 1 is an example of RRT. 

 

Figure 1. An example of recurring real-time task [10] 

 An event is a tuple (τ, t, u) that denotes that a subtask u of task τ is triggered at time t. The 

sequence of events of task τ, 𝜎(𝜏)=[(τ, t1, u1), (τ, t2, u2),...] may be infinite and is said to be legal if the 

following conditions are satisfied: 

• If ui is not the sink vertex of G(τ), then (ui, ui+1) is an edge, and ti+1-ti  p(ui,ui+1) 

• If ui is the sink vertex of G(τ), then ui+1 is the source node of G(τ), and if exists an event (τ, 

tj, uj), j<i in the event sequence for which ui=uj, then  ti+1-ti P(τ)  

 A system of recurring real-time tasks Γ consists of independent recurring real-time tasks that 

are preemptively scheduled on a single processor. A legal event sequence for a task system σ(Γ) is 

obtained by merging one legal event sequence for each task in Γ. 

Starting from the example in Fig. 1, σ(Γ)=[(τ, 0, u0), (τ, 11, u1), (τ, 35, u3), (τ, 53, u0), (τ, 58, u2), (τ, 

80, u3), (τ, 103, u0), (τ, 110, u2) (τ, 130, u3)] is an example of a legal sequence of events. 

 The non-cyclic recurring real-time model presented in [11] generalizes the initial RRT model 

by removing the task period P(τ) and allowing multiple sink vertices, in this way being able to represent 

non-cyclic behavior. The difference from the RRT model is that:  

• A real-time task τ is formally represented only by a task graph G(τ)  

• The task graph has a unique source vertex and one or more sink vertices 

• Sink vertices are labeled with a value p(u, src(τ)), which denotes the minimum separation 

time between the triggering of the sink vertex and the triggering of the source vertex. If the 

sink vertex was triggered at time ti, than the source vertex will be triggered at ti+1 ti+ p(u, 

src(τ)).   
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The digraph real-time task model (DRT) presented in [12] is a generalization of the non-cyclic RRT 

model. The workload is defined by a system of N independent tasks. Each task is represented by a 

directed graph G(τ). The set of vertices represent the types of jobs that can be released by the task. Each 

vertex is labeled with a pair (e(u), d(u)), where e(u) is the execution time and d(u) is the relative deadline 

of the job. The edges represent the order in which jobs can be released. Each edge is labeled with p(u, 

v), the minimum separation time between jobs. In contrast with the RRT models, DRT model allows 

cycles in G(τ) and does not require a source vertex (any vertex can be the first to be released).  

Multiframe and graph-based models, in their most general form, are able to represent independent 

sporadic tasks that contain conditional and repetitive code. They are able to model the cases when 

subsequent executions of the same code have different execution times, with the condition that the 

execution behavior has to generate a pattern.  

The task automata model [13] is a very expressive way of representing sequential non-periodic real-

time workload. Task automata can describe complex tasks, which have the following characteristics: 

• Non-deterministic generation according to timing constraints  

• Interval execution times  

• Completion times may influence the releases of other task instances (there may be 

dependencies between tasks) 

A task is defined as a tuple P(emin, emax, D), where P is the name of the task, emin is the best case 

execution time, emax is the worst case execution time and D is the relative deadline. 

A task automaton is obtained by extending a timed automaton [14] with real-time tasks. It is assumed 

that Act={a, b, c, …} is a set of actions, C={x1, x2, …} is a set of clocks and B(C) is a set of clock 

constraints. A task automaton over actions Act, clocks C, and tasks P is a tuple (N, l0, E, I, M, xdone) 

where: 

• N is a finite set of locations 

• l0N is the initial location 

• ENB(C) Act2CN is the set of edges 

• I is a function assigning each location with a clock constraint 

• M is a partial function that assigns a task to a location 

• xdone is the clock which is reset every time a task finishes 

The state of a task automaton is a tuple (l, u, q), where l is the location, u is the clock value and q is 

the task queue, which contains pairs of remaining computation times and deadlines for all released task 

instances that did not finish their execution. There are two types of transitions. Delay transitions 

correspond to the execution of the running task. Discrete transitions correspond to the release of new 

task instances.  

Task automata model can express precedence dependencies between tasks as well as between task 

instances (jobs), non-periodic job release and non-deterministic task behavior. However, this model is 

not used very often in real-time systems analysis due to the complexity of its scheduling analysis 
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methods that, in some cases (e.g. task preemption, dependencies between jobs), do not converge to a 

result [13].   

2.2. Parallel tasks 

Most research work that involves real-time multiprocessor systems use sequential task models (e.g. 

models in which it is assumed that jobs execute on a single processor at a time instant). Recent work 

[15] [16] [17] introduces models of parallel tasks as a response to the problem of modeling execution 

parallelism (e.g. multithreading and other parallel programming constructions with finer granularity than 

threads). A job generated by a parallel task can execute at the same time instant on more than one 

processor. In [17] the authors classify parallel recurrent (periodic or sporadic) tasks as: 

• Rigid – the number of processors assigned to the jobs is fixed (does not change throughout 

its execution) and is specified a priori and externally to the scheduler.  

• Moldable – the number of processors assigned to the jobs is determined by the scheduler 

(for each job) and does not change throughout the job’s execution. 

• Malleable – the number of processors assigned to the jobs can be changed by the scheduler 

during the execution. 

A model of sporadic malleable tasks is presented in [15]. A task system, which executes on m 

identical processors, consists of n tasks. A task is represented as a 3-tuple τ(e, p, Γ), where e is the worst 

case execution time, p is the minimum separation time (the relative deadline is equal to p) and Γ =

(𝛾1, 𝛾2, … , 𝛾𝑚) is an m-tuple of execution ratios that satisfies 𝛾1 < 𝛾2 < ⋯ < 𝛾𝑚. A job that executes t 

time units on j processors completes 𝛾𝑗 ∗ 𝑡 units of execution. The utilization ratio of the task is U=e/p. 

To complete its execution, a task requires k+1 processors simultaneously, where: 

𝑘 = 0 𝑖𝑓 𝑈 < 𝛾1; 𝑒𝑙𝑠𝑒, 𝑘 = 𝑚𝑎𝑥𝑘−1
𝑚 {𝑘|𝑈 < 𝛾𝑘} 

Both models presented in [16] and in [17] define periodic parallel tasks as 4-tuples τ(v, e, d, p), where 

v is the number of required processors, e is the worst case execution time, p is the period and d is the 

relative deadline. It is assumed that d ≤ p. However, the two groups of authors do not seem to agree on 

the definitions of rigid and moldable tasks. In [16] the authors consider moldable tasks (even if they do 

not explain the mechanism the scheduler uses for determining the number of required processors for a 

task) and in [17] the authors consider rigid tasks. 

Recent work presented in [18] and [19] considers the fork-join model for parallel real-time tasks. This 

model assumes that a task is composed of sequence of sequential and parallel execution regions. The 

task always starts and ends with a sequential execution region. A fork-join task is represented as a tuple 

((Ci
1,Pi

2,…,Pi
s-1,Ci

s), mi,Ti), where Ci
s is the worst case execution time of a sequential execution region, 

Pi
s is the worst case execution time of each thread in the parallel execution region, mi is the number of 

parallel threads in each parallel region and Ti is the repetition period of the task. 
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2.3. Real-time transactions 

Distributed applications are composed of several software components that run on different 

computers and that interact to achieve a common goal. The main problems in modeling distributed real-

time applications are: 

• Representing the interaction between tasks (e.g. network communication, execution 

dependencies) 

• The specification of time constraints  (e.g. deadlines) in the distributed context     

The network communication between two processing tasks is represented as a message. The message 

is a special type of task that has a transmission time and a deadline. The release time of the message 

depends on the execution of the emitting task. A precedence relation is thus created between the message 

and the emitting and receiving tasks. The message’s repetition period is closely related to that of its 

predecessor task. In many cases, there are no differences between the representations of tasks and 

messages in a distributed real-time system’s model. 

There are different modeling approaches for distributed real-time systems. From among these, the 

most representative is the real-time transaction model. Many other models are its variants, even if the 

terminology is different.  

Transactions [35] can be described, in their most general form, as directed acyclic graphs in which 

nodes are tasks or messages and the edges are precedence relations between tasks and messages. In a 

simplified form, the transaction is a chain of tasks. Each task has at most one predecessor and at most 

one successor. Chain transactions are frequently used to validate scheduling methods because they 

contain the smallest number of dependencies between tasks.  

Transactions can be periodic or sporadic and have end-to-end deadlines, meaning that the 

transaction’s deadline is equal to the deadline of its last task. Intermediate tasks do not have explicit 

deadlines. However, in some models, intermediate tasks have their own deadlines [36]. A real-time 

periodic transaction has the following defining elements: 

• Task graph (G) – a DAG that describes the dependencies between tasks and messages and 

determines the execution order. Nodes are tasks or messages, while graph edges represent 

precedence dependencies. 

• Period (T) – the repetition period of a transaction. 

• Deadline (D) – the deadline of a transaction, relative to its release time. 

In many cases, messages are treated as tasks that are handled by nodes representing network segments, 

and their transmission time is treated as task execution time. 

Another approach similar to chain transactions is the end-to-end tasks model [4]. An end-to-end task 

is a chain of atomic actions that execute in a pipeline fashion, each action on a different processor. If τ 

is a task that contains n actions, action i+1 will be ready to execute only if action i has finished its 

execution. V={V1, …, Vn} is the visit sequence for task τ, meaning that Vi is the processor on which action 

i executes. The end-to-end release time of a task is the release time of its first action. The end-to-end 
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deadline of a task is the deadline of its last action. As long as end-to-end timing constraints (deadline) 

are satisfied, it is not important when other actions finish their execution. 

Other approaches for expressing task dependencies are presented in [20] and in [21]. In [20], 

dependent periodic and sporadic tasks are modeled as port-based objects, meaning that a task has a set 

of input ports and a set of output ports through which it communicates (sends or receives data) with 

other tasks. A task also has a set of possible behaviors. Different events combined with some input data 

can trigger different behaviors and some output data. A set of tasks is modeled as a directed graph, in 

which tasks are nodes and the edges represent data flows (links) from output ports to input ports of tasks. 

There can be synchronous and asynchronous links. A synchronous message triggers the execution of the 

receiver task. An asynchronous message is buffered until the receiver task is activated. There are a few 

constraints on this model:  

• Synchronous links can’t create cycles  

• Each task can have at most one synchronous link 

The work in [21] describes a model for dependent periodic tasks. The authors make the distinction 

between simple and extended precedence. A simple precedence is defined as a relation between two 

tasks 𝜏𝑖
 
→ 𝜏𝑗, which means that task τi, must execute before task τj. The graph that represents the 

precedence constraints of a task set has to be acyclic. An extended precedence is defined as a set of 

precedences between task instances (jobs) 𝜏𝑖
𝑀𝑖,𝑗
→  𝜏𝑗, where ∀(𝑛, 𝑛′) ∈ 𝑀𝑖,𝑗, 𝜏𝑖[𝑛]

 
→𝜏𝑗[𝑛

′]. 

Few approaches for modeling task dependencies are different from the real-time transaction model. 

The previously presented task automata model can express precedence dependencies between tasks (e.g. 

a task can be released only if another task finishes its execution).  

2.4. The Sequential-Parallel-Distributed Real-Time workload model 

We propose a workload model that allows the representation of a variety of real-time applications 

that include sequential, parallel and distributed (with network communication).  We call it Sequential-

Parallel-Distributed Real-Time (SPD-RT) model. 

We define a task model that is general enough to represent: 

• Periodic and a-periodic behavior 

• Parallel execution  

In the most simplified case, our task model is able to represent sequential independent tasks that have 

a repetition period.  

The expressiveness of the proposed task model, in the context of the previously presented task models, 

is depicted in Fig. 2. Because of the far too complex feasibility analysis [12], we chose not to cover the 

most complex aspects of sequential execution. However, the strength of our model is that it covers at 

the same time sequential and parallel execution requirements. 
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Figure 2. The expresiveness of the proposed task model in the context of the reviewed task models 

We consider that tasks may have execution constraints introduced by the execution of other tasks. We 

represent precedence dependencies between tasks through transactions. Our transactions take the form 

of DAGs, as presented in Section 2.3. 

A task is represented by the following parameters: 

𝜏 = (ɸ, 𝐸, 𝑑, 𝑝𝑟, 𝑃, 𝐶, 𝐴) 

Where: 

• Phase (ɸ) – the time when the task releases its first job. 

• Execution (E) – a sequence of execution segments, that describe the task’s execution 

requirements: 

𝐸𝜏 = {(𝑒𝑖, 𝜋𝑖)|𝑖 > 0} , e – segment execution time, 𝜋 - degree of parallelism 

• Deadline (d) – time limit relative to the release of the job. 

• Priority (pr).  

• Consumed and produced events (P, C). Events are used to model precedence dependencies.  

• CPU affinity (A) – list of processors on which the task can be executed. 

A periodic task has one more parameter, the repetition period (T). In the case of periodic tasks, phases 

can be equal to zero or can be set according to user’s requirements. Tasks are preemptive. 

To represent parallel execution using our model, we describe the task’s execution requirements 

through a sequence of execution segments. Applications usually have portions that are inherently 

sequential, and other portions that can be parallelized. An execution segment may be a sequential portion 

of a task or it can be executed in parallel on a number of processors. The execution segment has two 

parameters: the execution time and the degree of parallelism (number of threads that may run in parallel). 
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Between two execution segments, there is a synchronization point, such that an execution segment will 

begin only if the previous execution segment is completed. At the beginning of each execution segment, 

a number of parallel threads equal to the degree of parallelism will be created. Each thread will have the 

execution time of the segment to which it belongs. The constraint imposed by this model is that all 

threads generated by an execution segment have the same execution time. If a task contains only one 

execution segment with a parallelism degree equal to 1, its jobs will be single threaded (sequential).  

To be able to represent the dependencies between tasks, we propose a mechanism based on the 

producer-consumer model. A task can produce events, which are consumed by other tasks, hence 

creating an execution dependency between producer and consumer. Events produced by executing jobs 

are stored in the global event queue. Producing an event is a non-blocking action. On the other hand, 

consumer jobs extract the expected events from the global queue. If the expected event is not in the 

queue (it has not been produced), the job’s execution will be blocked until the expected event is 

produced. 

Tasks that are part of transactions do not have predefined periods and deadlines. However, their period 

is equal with the transaction’s period and the deadline of the last task is equal to the transaction’s 

deadline.  The deadlines of intermediate tasks have to be determined using some specific method. 

We will use the proposed task and transaction models in the next chapters that deal with problems 

related to real-time scheduling and real-time systems analysis.   

3. Platform models 

The platform model describes the system resources available to the applications. Applications require 

processors in order to execute, networks for communication, and sometimes they need to use other 

resources during execution, such as storage devices, memory, locks and others. 

In [4] two types of system resources are distinguished: 

• Active resources, which are usually called processors (e.g. CPUs, transmission links, disks) 

• Passive resources (e.g. shared data objects, buffers, locks) 

The model of active resources is of greater importance because it describes the availability of 

processors, for the execution of the workload. For the rest of this document, the terms resource and 

processor will be considered synonyms. 

3.1. Classification 

3.1.1. Uniprocessor platforms 

Platforms that provide only one processor for the execution of applications are called uniprocessor 

platforms. Uniprocessor platforms are intensively studied because the system validation mechanisms 

are much easier to use than for multiprocessor platforms. Many real world real-time applications are 

executed on one dedicated uniprocessor (e.g. control applications). In cases in which the system is 
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composed of more concurrent applications, each is executed on a dedicated processor in isolation (e.g. 

avionics software).  

3.1.2. Multiprocessor platforms 

Multiprocessor platforms contain more than one processor, π={π1,π2,…,πm} where m>1. 

Multiprocessor platforms are further classified by [22] in three categories:  

• Homogeneous  

• Uniform  

• Heterogeneous  

In homogeneous multiprocessor platforms, the processors are identical, meaning that the execution 

rate of all tasks is the same on all processors. 

A uniform multiprocessor platform contains processors characterized by their speed 𝜋 =

{𝑠1, 𝑠2, … , 𝑠𝑚}. The execution rate of a task depends only on the speed of the processor.  

In heterogeneous multiprocessor platforms, the processors are different. Task execution rates depend 

on both the task and the processor. A task execution rate si,j≥0 is associated with each pair (Ti,πj), where 

Ti is a task.  

Distributed platforms can be modeled as a multiprocessor: both nodes and network links between 

nodes are represented as processors. For simplicity, the multiprocessor can be homogeneous, but the 

most accurate representation would be the heterogeneous multiprocessor. 

3.2. Virtual resource models 

Many hard real-time systems require the execution of the real-time application on a dedicated 

processing resource. This constraint simplifies the representation of the processing resource’s 

availability, since the resource is used by a single real-time application. More complex resource models 

have been introduced in the context of open real-time systems, in which more applications that have 

different timing requirements share the same processing resource. 

Open real-time systems have received lately an increased attention from the real-time research 

community. Some of the main issues addressed in research work are: 

• Resource sharing between applications that have different timing requirements 

• Guaranteeing that applications that are validated in isolation, have the same timing 

parameters while executing on a platform which is shared with other applications 

The concept of virtual resource in real-time systems research was first introduced by [23], in the 

context of open systems. It provided an abstraction for the availability of a single resource shared 

between different applications. In the same paper, the concept of supply function is presented, to measure 

the amount of time the virtual resource is available.  
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The virtualization of computing resources is applied to uniprocessors as well as to multiprocessors 

(Fig.3). There are a number of different approaches in modeling virtual resources. The most 

representative will be presented as follows.  

 

Figure 3. Open real-time system architecture that includes virtual platforms 

3.2.1. Virtual uniprocessor models 

The resource partition model was proposed by [23] as a solution for resource sharing in open real-

time systems. The main problem addressed was that, in open systems, each task group (application) 

assumes exclusive access to the physical resource, and hence their scheduling policies may conflict. The 

authors presented the idea that each task group should have access to a virtual resource that represents 

a fraction of the shared physical platform. In this way, each individual application can use its specific 

scheduling policy without conflicts, while a second-level scheduler handles the service requests received 

from the virtual resources.  

A static resource partition is defined as a pair Π=(Θ,P), where Θ is an array of n time pairs {(a1,b1), 

(a2,b2),…, (an,bn)} and P is the partition period. The time pairs represent the time intervals during which 

the physical resource is available for the partition and have to satisfy the following condition: 0≤ a1 ≤ 

b1 ≤ … ≤ an ≤ bn ≤ P. The availability factor and the supply function characterize the partition. The 

availability factor of a partition is expressed as: 
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The supply function S(t) of a partition is the total amount of available time in the partition starting 

from time 0 to time t. 

The static resource partition has a degree of rigidity because it assumes an exact knowledge of the 

available time intervals on the physical platform. That is why, in the same work [23], the authors provide 

a more flexible representation of the resource partition, the bounded delay partition. The bounded delay 
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partition is described by the bandwidth (α) and the delay (Δ). The bandwidth represents the amount of 

resource supplied to the application and the delay represents the worst-case service delay. 

In the resource partition approach, each application is independently scheduled to meet real-time 

requirements on its own partition. Application scheduling depends only on the partition parameters and 

it is independent of how the partitions are scheduled on the physical resource.  

According to the resource reservation paradigm, the capacity of a processor can be partitioned into a 

set of reservations. Each reservation is equivalent to a virtual processor that provides a fraction of the 

available computing power.  

The Constant Bandwidth Server (CBS) presented in [24] is an example of resource reservation model 

designed for the integration of soft and hard real-time systems. In this approach, it is assumed that all 

hard real-time applications run directly on the physical processor and that they are scheduled according 

to an algorithm which insures that all their deadlines are met. The remaining fraction of processor time 

will be used for soft real-time applications execution. This fraction of processor time is modeled by the 

CBS.  

A CBS is defined by a budget qs and a pair (Qs, Ps), where Qs is the maximum budget and Ps is the 

period of the server. The server bandwidth is: Us = Qs/Ps. The server has a fixed deadline ds,k, at each 

time instant. It is assumed that ds,0=0. When a job is served (executed), the budget qs is decreased with 

the execution time of that job. When qs=0, the budget is recharged at the maximum value Qs and 

ds,k+1=ds,k+Ps. If a job arrives and the server is active, the job is put in the queue of pending jobs and 

served according to a non-preemptive algorithm (e.g. FIFO). If a job arrives and the server is idle, then 

if qs (ds,k-ri,j)Us, the server generates a new deadline ds,k+1=ri,j+Ps and qs is recharged at the maximum 

value, otherwise the job is served using the current budget and deadline.  

The CBS model guarantees that if Us is the fraction of processor time (or bandwidth) assigned to a 

server, the server’s contribution to the total processor utilization factor is at most Us, even in the presence 

of overloads. The CBS has the temporal protection property, which means that: 

• The temporal behavior of a task can’t be affected by other tasks’ overruns 

• The timing parameters of an application allocated to a virtual resource can be guaranteed in 

isolation and do not depend on other applications that run on the same physical platform. 

The periodic resource model presented in [25] describes a partitioned resource that each period 

allocates a part of the total resource capacity, to an application modeled as a periodic task. A periodic 

resource model Π=(Θ,P) guarantees a resource allocation of Θ time units every P time units. The 

resource availability is described by two parameters: 

• The resource supply – the amount of resource allocations that the resource provides during 

a time interval. 

• The service time – the amount of time needed by the resource to provide a specified resource 

supply. 
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A recent development of the periodic resource model is the Explicit Deadline Periodic (EDP) 

resource model presented in [26]. The initial periodic resource model assumes an implicit deadline for 

the resource allocation, equal to the resource period. The EDP model introduces an explicit deadline Δ. 

As a consequence, the resource model Π=(Θ,P,Δ)  provides a resource allocation of Θ time units within 

Δ time units, every P time units. The motivation for using an explicit deadline is that a demand which 

can’t be scheduled on a periodic resource because the length of the interval with no supply is larger than 

the earliest deadline in demand, could be scheduled on a periodic resource with the same capacity by 

lowering the resource deadline.  

3.2.2. Virtual multiprocessor models 

In [2] the authors present a multiprocessor bandwidth reservation scheme in which tasks are grouped 

in containers (an abstraction that allows isolation between task groups). Containers in a system form a 

hierarchy. The amount of resource (multiprocessor) which has to be allocated to a container is described 

by a parameter called bandwidth. Given a container C and its bandwidth w(C), C will receive ⌊𝑤(𝐶)⌋ 

fully available processors and at most one partially available processor. This way, the model enforces a 

minimum degree of parallelism on the resource supply. The supply function of a processor k, over a 

time interval t, is computed as follows: 

))(ˆ,0max()( kkk tutS −=
 

where 𝑢𝑘̂ is the processor bandwidth and σk is the maximum interval when the processor does not 

provide any supply. The resource supply for a container is characterized by a collection of such supply 

functions. If m is the number of processors (and also supply functions), for 1≤ k ≤ m-1processors the 

supply functions will be Sk(t)=t, as all of them will be fully available for the container. 

The multiprocessor periodic resource model is presented in [27] in the context of virtual clustering 

of multiprocessors. Clustering is an approach used in multiprocessor scheduling, which assumes that 

processors in a multiprocessor system are statically grouped into clusters, to reduce task migration 

during execution. Tasks are assigned to clusters and then they are globally scheduled on the 

corresponding cluster. In the virtual clustering approach, physical processors are dynamically assigned 

to clusters, and a processor can be part of two virtual clusters. To express the resource supply of a virtual 

cluster, the multiprocessor periodic resource (MPR) model is defined as Π=(Θ,P,m’). An MPR specifies 

that an identical multiprocessor platform provides Θ time units in every period P, with the maximum 

degree of concurrency of m’. The model is feasible if Θ ≤ m’P.  For m’=1 the MPR model reduces to 

the periodic resource model presented in [25]. 

In [28] the authors propose to represent a parallel machine as a virtual platform which contains m 

virtual processors 𝑉 = {𝑣𝑖}𝑖=1
𝑚 . Each virtual processor provides computing time according to a 

uniprocessor bounded delay partition, as in [23]. Given this virtual platform model, a Multi Supply 

Function (MSF) is a set of m supply functions {𝑍𝑣𝑖}𝑖=1
𝑚

, one for each virtual processor. 

In the context of a time partition P, a supply function is the minimum amount of time allocated by the 

partition in every interval of time of length 0t : 
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Given the set of partitions that can be allocated by a virtual processor, legal(v), the supply function of 

the virtual processor is: 
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A delay bounded model (α,Δ) can be derived for each virtual processor from its supply function, 
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The approach presented in [28] can be used to implement parallel real-time applications 

independently of the physical platform. The virtual processors are implemented using reservations, as 

sequential servers.  

The Parallel Supply Function (PSF) proposed in [3] is used as the interface of a virtual platform, and 

expresses the computing capacities of a virtual platform implemented on a multiprocessor. The authors 

extend the resource partition model presented in [23] to multiprocessors through multi-partitions.  

A multi-partition is the aggregation of all time partitions defined for each individual processor. The 

multi-partition is formally defined as a multi-set of time intervals. In a multi-set, individual elements 

may occur multiple times, as the same time interval may appear on two different processors. The 

characteristic function of a subset A is defined as: 
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The characteristic function of a multi-partition P is: 
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The maximum degree of parallelism of a multi-partition is: 
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The level-j supply function Yj,P(t) expresses the minimum amount of computing capacity provided by 

a multi-partition every interval of length t ≥ 0 by at most j intervals in parallel: 
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To define the PSF of a virtual platform Π, implemented on m identical processors, the authors first 

extend the multi-partition level-j supply function to the set of multi-partitions that can be allocated by 

Π, legal(Π): 
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Finally, the PSF of a platform Π is defined as the set of level-j supply functions {𝑌𝑗}𝑗=1
𝑚 . The PSF is 

used to derive a delay bounded model (α,Δ) for the virtual platform, as in [28]. 

3.3. Discussion 

For the rest of this book, we will refer to multiprocessor platforms in both their forms: 

• Without network communication 

• Distributed (with network communication) 

We will mainly use the homogeneous multiprocessor model, in which tasks execute at the same speed 

on all processors (processors are identical). 

In Chapter 3, we use the resource reservation approach to model the availability of open network 

segments that allow the transmission of real-time traffic at the same time with non-real-time traffic.   

In Chapter 4, we use a platform availability modeling approach similar to the resource partition 

approach in [23]. We find this model suitable to express the availability of execution time in a certain 

discrete time interval that has been partially “occupied” by a number of tasks, to build cyclic schedules 

for real-time transaction sets.   

4. Scheduling models 

The time at which each tasks finishes the execution is essential for the correctness of a real-time 

system. To guarantee that the system response does not exceed the requested deadline, the use of 

appropriate scheduling techniques is necessary. A scheduling technique establishes a set of rules used 

to impose the execution order of all released jobs. The component of a computing system that applies 

the rules imposed by the scheduling technique is called scheduler. Each hardware platform that has to 

be shared between a set of jobs needs a scheduler or a set of schedulers that have the role of establishing 

jobs’ execution order.  

Two main approaches are used in real-time scheduling [4]: 

• Clock-driven 

• Priority-driven 
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In the clock-driven approach, scheduling decisions are made at specific time instants. These time 

instants are chosen before the system is started. The schedule of the jobs is computed off-line and stored. 

The scheduler uses the pre-computed schedule at run time, at each scheduling decision time, to choose 

which job will be executed next. The schedule used by a clock-driven scheduler has to contain all 

scheduling decisions that have to be made since system start to its stop. This is possible only if all 

parameters of the workload are known a-priori and fixed (do not change over time). The schedule of a 

workload that contains only periodic tasks, is periodic and it repeats with the task set’s hyper-period. 

The hyper-period of a task set is equal to the least common multiple (LCM) of the tasks’ repetition 

periods. A periodic static schedule is called a cyclic schedule. If a cyclic schedule can be computed 

before system start, the scheduler will restart the same schedule at the beginning of each hyper-period. 

The clock-driven approach has the following main advantages: 

• The static schedule can be represented by a table of job start times and completion times. 

The scheduler uses the table at run time. The implementation of such a system is 

straightforward. From the execution time point of view, there is a minimum scheduling 

overhead, because the scheduler does not make the decisions at runtime.   

• Systems based on clock-driven scheduling approach are relatively easy to test and validate 

trough simulation. 

However, this approach has some important disadvantages: 

• It can’t handle dynamic systems such as tasks that have variable parameters that can’t be 

predicted in advance. 

• It can’t handle sporadic and aperiodic tasks. 

• They are difficult to modify and maintain.   

Clock-driven approach is best suited in the case of periodic task systems that have a bounded hyper-

period, and that once built, don’t change very often (e.g. small embedded systems). 

In the priority-driven approach, each job that is ready for execution is given a priority. At any 

scheduling decision time, the jobs with the highest priorities are chosen to be executed on the available 

processors. Scheduling decisions are made at runtime. Compared to the clock-driven approach priority-

driven scheduling is more flexible and can handle a large variety of task models. Scheduling decisions 

are made at runtime, but with a larger scheduling overhead.  

It is said that the priority-driven approach is work-conserving because it does not allow any 

processor/resource to be idle when there are jobs ready for execution. This approach is event-driven, 

that is, scheduling decisions are made when events such as job releases or job completions occur. The 

jobs’ priorities are assigned according to a scheduling algorithm. A scheduling algorithm receives as 

input a task set and has to establish the order in which jobs generated by the task set are executed on the 

platform, by assigning priorities.  

4.1. Classification of scheduling algorithms 

One can classify scheduling algorithms based on different criteria. In [37] the authors distinguish 

three classes based on the priority assignment scheme: 



Real-time system models | 20 

 

 

 

 

 

• Fixed priority scheduling algorithms assign a priority for each task. The priority is inherited 

by the task’s jobs. Task priority does not change during execution (example: Rate 

Monotonic algorithm [5]). 

• Job-level dynamic priority scheduling algorithms assign a priority for each job. Job priority 

does not change during execution. Jobs belonging to the same task may have different 

priorities, but the relative priority of two jobs stays the same (example: Earliest Deadline 

First algorithm [5]).  

• Dynamic priority scheduling algorithms assign priorities for each job, which may be 

changed any time during execution. The relative priority of two jobs may change in time 

(example: Least Slack First algorithm [6]). 

In [22] scheduling algorithms are further classified as: 

•  Preemptive, when the algorithms allow jobs with higher priority to interrupt the execution 

of lower priority jobs.  

• Non-preemptive, when algorithms do not allow job interruption during execution. A job that 

starts its execution will occupy the processor until its completion. 

• Co-operative, when jobs can be preempted at predefined points during their execution. 

4.2. Main problems of real-time scheduling 

To guarantee the correctness of a real-time system, one has to prove that each job will finish its 

execution before its deadline. Therefore, real time scheduling has been mainly focused on analytically 

solving the feasibility and the schedulability problems [37].   

Given a system model, a task set is considered feasible if there is a schedule so that all tasks are 

executed without missing any of their deadlines. 

A task is schedulable according to algorithm A if its worst-case response time obtained with this 

algorithm is less or equal to its deadline. A task set is schedulable if all its tasks are schedulable. Given 

a system model, a scheduling algorithm is optimal if it can schedule all task sets that are feasible on the 

system.  

A schedulability test assesses the schedulability of a task set according to a given algorithm. The 

schedulability test is sufficient if all task sets that satisfy the condition are schedulable. The 

schedulability test is necessary if all task sets that do not satisfy the condition are not schedulable. A 

schedulability test is exact if it is at the same time necessary and sufficient. The majority of 

schedulability tests developed and used in real-time scheduling (especially in the case of 

multiprocessors) theory and practice are sufficient tests. These tests are based on the system’s worst-

case behavior and sometimes exclude some of the schedulable task sets. On uniprocessors, the worst 

case response time of a task occurs at its critical instant, when the task is released at the same time with 

all the tasks that have higher priorities. On multiprocessors, however, the critical instant does not occur 

under the same conditions as on uniprocessors. It is known [22] that the critical instant has not been 

identified in the case of multiprocessor scheduling of sporadic tasks. In [32] the authors evaluate 
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different sufficient multiprocessor schedulability tests and show that there is large number of task sets 

that are in the “un-decidable zone” (see Fig.4), that is, they did not prove unfeasible, but were rejected 

by the sufficient feasibility tests.     

 

Figure 4. The limits of multiprocessor sufficient and necessary schedulability tests as a function of total 

task set utilization 

4.3. Uniprocessor scheduling 

The most representative priority-driven scheduling algorithms for uniprocessors are the Rate 

Monotonic (RM) and Earliest Deadline First (EDF) algorithms, which were first presented and analyzed 

by Liu and Layland in [5]. Both RM and EDF algorithms are optimal for sporadic task sets on 

uniprocessors. 

RM is a fixed priority scheduling algorithm that assigns priorities to tasks according to their repetition 

rate (𝑓 =
1

𝑝
). The algorithm will assign priorities that are proportional with the task’s repetition rate. 

Jobs of the same task will inherit the task’s priority. The RM algorithm can schedule all task sets that 

have total utilization factor less than 𝑈 = 𝑚(2
1

𝑚 − 1), where m is the task set’s cardinality. The largest 

utilization factor of tasks sets that can be scheduled is around 70% when m is larger than 10, and slightly 

increases to 78% when m decreases.     

EDF is a job-level dynamic priority algorithm that assigns priorities to jobs according to their absolute 

deadline. The job with the closest deadline will be assigned the highest priority. Job priority will not 

change during execution, but jobs belonging to the same task have different priorities. The EDF 

algorithm can schedule all task sets that that have total utilization factor less than U=1, that is any task 

set that fully utilizes the processing time will be scheduled. 

Another important uniprocessor scheduling algorithm is Least Slack First (LSF). LSF is a dynamic 

priority scheduling algorithm presented and analyzed by Mok in [6]. It is also known under the name of 

Least Laxity First algorithm. The slack of a job is defined as “the maximum time the scheduler can delay 

running the job before it is bound to miss its deadline”. LSF algorithm assigns priorities to jobs 

according to their slack computed at the time the scheduling decision is made. The job with the shortest 

slack is assigned the highest priority. As the slack decreases every time instant if the job does not 

execute, the job’s priority may change very often. Moreover, there are a lot of preemptions because the 
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relative priority of jobs changes during execution. The overheads introduced by the very frequent 

priority re-computation and by preemptions discouraged the practical use of this algorithm. The LSF 

algorithm is optimal for sporadic task sets and can schedule all task sets that that have total utilization 

factor less than U=1(like EDF).     

4.4. Multiprocessor scheduling 

In multiprocessor systems, including distributed systems, the scheduling problem has two aspects: 

• Allocation: for each task/job, choose a processor on which it will execute. 

• Priority assignment: establish in which order jobs will be executed. 

From the allocation point of view, multiprocessor scheduling has been classified as [37]: 

• Global 

• Partitioned 

• Clustered 

In the global approach, jobs can be allocated to any available processor and can migrate to other 

processors during execution with no restrictions. Global scheduling assumes the existence of a unique 

global scheduler and a global job queue. At each time instant, the global scheduler chooses from the job 

queue n jobs with the highest priority, where n is the number of available processors. The chosen jobs 

will be executed on the processors. Since job migration is allowed, it is not important for a job that 

started its execution on a certain processor, once preempted, to continue its execution on the same 

processor.  

Partitioned scheduling assumes that each processor has its own scheduler and job queue. Each task is 

assigned to a single processor. Jobs can only be assigned to the processor the task was assigned to. Job 

migration to other processors is not allowed.  

In clustered scheduling, job migration is restricted to a subset of the available processors. Processors 

are grouped into clusters. Each cluster has its own scheduler and job queue. First, tasks are allocated to 

clusters, and then each cluster scheduler globally schedules jobs inside the cluster. It can easily be 

observed that the global and partitioned scheduling are instances of clustered scheduling. If the cluster 

size is equal to the total number of processors, then we have global scheduling. If each cluster contains 

only one processor (the number of clusters is equal to the number of processors), we have partitioned 

scheduling. 

Partitioned scheduling is done in two steps. First, tasks are allocated on processors by using a 

partitioning algorithm. Second, a uniprocessor scheduling algorithm such as RM or EDF is applied to 

schedule the tasks allocated on each processor. 

Task set partitioning on a multiprocessor is equivalent to the Bin-Packing problem that requires 

placing n objects of different dimensions in m boxes. It is known that the Bin-Packing problem is NP-

hard. As optimal solutions can only be found through exhaustive search, for practical reasons, 
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suboptimal solutions known as partitioning heuristics are used in real-time scheduling. Some of the 

most common partitioning heuristics are the following: 

• First Fit (FF) – allocates the task to the first processor that verifies the schedulability 

condition after the allocation. The search for an available processor always starts with the 

first processor in the processor list. 

• Next Fit (FF) - allocates the task to the next processor (starting with the current processor) 

that verifies the schedulability condition after the allocation.  

• Best Fit (BF) - allocates the task to the processor that minimizes the remaining processor 

capacity. 

• Worst Fit (WF) - allocates the task to the processor that maximizes the remaining processor 

capacity. 

Usually some task sorting procedure is applied before partitioning the task set. By sorting the tasks, 

the result of the partitioning heuristic can be improved. The sorting criterion can be task deadline, period, 

utilization, and others. 

For some time, partitioned scheduling received more attention for two reasons: 

• The schedulability analysis of a task set partitioned on a multiprocessor reduces to the 

analysis of m task sets on m uniprocessors. 

• Global scheduling suffers from the “Dhall effect”. The authors in [38] demonstrated that 

when there are m tasks with short periods/deadlines and very low utilizations, and one task 

with utilization close to 1 that have to be scheduled with global EDF on m processors, the 

heavier task misses its deadline, so the utilization bound of global EDF is 1+ε, for arbitrary 

small ε. Furthermore, authors in [40] showed that for partitioned scheduling of periodic 

tasks with implicit deadlines, the utilization bound is (m+1)/2. 

The main drawback to the partitioned approach is the task allocation step, in which each task is 

allocated to a processor for execution. The allocation problem is known to be NP-hard. Moreover, the 

partitioned approach is not work-conserving, so ready jobs allocated to one processor may stay in the 

queue while other processors are idle resulting in the fragmentation of processing capacity. 

Compared to partitioned scheduling, global scheduling is work conserving, but with the cost of 

migration overhead that didn’t exist in the partitioned approach. There are some global dynamic priority 

scheduling algorithms that are optimal for periodic task sets with implicit deadlines such as 

Proportionate Fair family algorithms [29] and LLREF [39]. However, these optimal algorithms are not 

used in practice due to very large overheads they introduce through high frequency migrations and 

preemptions. A large number of research works [34][43][44][45] try to adapt optimal uniprocessor 

scheduling algorithms such as RM and EDF to global multiprocessor scheduling. It was demonstrated 

in [34] that the maximum utilization achieved by global EDF is influenced by the value of the heaviest 

task (in terms of task utilization): 𝑈𝐸𝐷𝐹 = 𝑚 − (𝑚 − 1)𝑢𝑚𝑎𝑥 . A number of improved EDF-based 

algorithms [43][44] have increased the utilization bound, but neither of them is optimal. 
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Clustered scheduling is similar to partitioned scheduling, as the task set is partitioned on the clusters. 

Because each cluster contains two or more processors, the scheduling inside each cluster is in fact global 

scheduling. By reducing the number of processors in a cluster the overheads introduced by global 

scheduling (global queue size, migrations) are reduced. Capacity fragmentation is less of a problem than 

in partitioned scheduling. 

Semi-partitioned scheduling [41][42] is a hybrid between partitioned and global ones that tries to 

overcome the disadvantages of both. This approach is applied to task sets that can’t be partitioned on 

the available processors. In the first step, tasks are allocated to processors until no other task can be 

allocated. These tasks are scheduled according to the partitioned approach. The remaining tasks are 

scheduled according to the global approach, thus they are allowed to migrate on any processor that is 

available for execution. There are two main variants of semi-partitioned scheduling, each of them using 

different methods for reducing the number of migrations for tasks that are scheduled with the global 

approach. The first method statically allocates portions of tasks to available processors. The task’s 

portions are executed on the allocated processors without supplementary migrations. The second method 

defines a restricted migration pattern for jobs of tasks that are globally scheduled. In this case, the jobs 

are not allowed to migrate, but successive jobs of the same task can be released on different processors. 

In the case of distributed systems, the scheduling problem is similar to the partitioned scheduling 

problem if the individual physical processing resources are uniprocessors.  Otherwise, if the processing 

resources are multiprocessors, the scheduling is resolved by a hierarchy of schedulers that may be 

partitioned, global or clustered. In distributed scheduling, tasks have to be allocated on the individual 

processing resources by using a partitioning heuristic. Local schedulers solve the task scheduling on 

each individual processing resource after allocation. The allocation and scheduling problems usually 

have more constraints, as the tasks have precedence and communication dependencies.  

4.5. The Loose Clustered Approach 

Priority-based scheduling and in particular Rate Monotonic (RM) [5] and Earliest Deadline First 

(EDF) [5] algorithms received a great deal of attention from the real-time research community. From 

among the proven optimal uniprocessor scheduling algorithms, RM and EDF are successfully used in 

practice. 

On the other hand, multiprocessor and distributed scheduling still raise open research problems. 

Among the open problems related to multiprocessor and distributed scheduling are: 

• Task allocation/partitioning in both distributed and multiprocessor systems 

• The implementation of optimal multiprocessor scheduling algorithms for real-world 

applications 

• Scheduling real-time parallel applications on multiprocessors 

• Scheduling tasks with interdependencies on multiprocessors and distributed systems 

Most research efforts were, at first, directed towards adapting the most successful uniprocessor 

scheduling techniques to multiprocessors. The same well established workload models such as the 
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periodic and sporadic (sequential) task models were chosen for analysis. As multiprocessor platforms 

introduces new variables, many uniprocessor research results proved inapplicable to multiprocessors. 

Moreover, the multiprocessor variants of RM and EDF algorithms are not optimal. As result of these 

observations, two major research directions emerged:  

• In the first direction, efforts are made to introduce new multiprocessor scheduling 

algorithms, which can be implemented in practice. 

• The second direction concentrates its efforts on finding the best schedulablity tests for well 

known algorithms such as RM and EDF.  

The work in these directions is far from being finished. Optimal multiprocessor scheduling algorithms 

such as the Proportionate Fair algorithm [29] and its variants [30][31] are almost impossible to be 

implemented in practice due to very large overheads introduced by their very frequent scheduling 

decisions and task preemptions. In the second direction, up until now, mainly necessary or sufficient 

analytical schedulability tests were found, most of them having very high complexity levels [32]. The 

existing sufficient schedulability tests introduce very strong constraints that excessively limit their 

results. 

As an example, we can mention the case of the global EDF algorithm. In [32] the authors surveyed 

the most important seven sufficient schedulability tests with different computational complexity levels. 

Their results show that there is a large interval on the total utilization axis, which is not covered by the 

schedulability tests. The interval increases with the number of processors. In the 8 processor scenario, 

this interval starts at a total utilization approximately equal to 4.5 (about 56%). This means that all 

evaluated schedulability tests introduce strong constraints on the task sets they assess, leaving outside 

their limits a large number of task sets which may be schedulable. 

The results we reviewed show that remains a great deal of research work to be done concerning 

multiprocessor real-time scheduling. 

For the rest of this book we intend to discuss problems related to multiprocessor scheduling, and in 

particular: 

• Real-time communication scheduling in the context of real-time distributed systems timing 

analysis. We adapt the well known Response Time Analysis technique to real-time 

communication and we create a method for network bandwidth estimation (detailed in 

Chapter 3).  

• Multiprocessor scheduling of real-time transactions. We propose two different techniques 

for solving this problem. The first technique creates schedules based on a clock-based 

approach and is suitable for small embedded systems. The second technique combines a 

genetic algorithm with simulation-based evaluation of candidate solutions to find feasible 

system setups (detailed in Chapter 4). 

• Simulation-based analysis of real-time multiprocessor systems. We create an environment 

that allows the simulation of a variety of real-time systems models and as well supports the 

statistical evaluation of different scheduling techniques (detailed in Chapters 5 and 6).   
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For our work on multiprocessor scheduling, we addopt a model based on the clustered approach. In 

this way, we can customize the scheduler to be partitioned or global, as they are particular cases of a 

clustered scheduler. Through parametrization, we can obtain models suited for the representation of 

multiprocessor and distributed scheduling. Each cluster can apply a different priority-based scheduling 

algorithm.  

We propose an optimization of the classic clustered scheduling, the loose clustered scheduling 

mechanism. Our approach extends the classic clustered approach with a load balancing mechanism that 

has the following objectives: 

• Equalize cluster utilization;  

• Reduce capacity fragmentation due to not optimal task partitioning between clusters.  

 

Figure 5. The loose clustered approach 

Each time a processor in a cluster is idle, it can execute a job from another cluster’s queue if a 

collaboration relation has been defined between the clusters. A collaboration relation between two 

clusters can be statically defined before the start of the system. Each of the collaborating clusters can 

execute a job from the other’s queue. The migrated job can be executed on the free CPU with the lowest 

priority and it will not affect the response time of other jobs.  Fig. 5 depicts an example of this 

mechanism. The collaboration relation is defined between cluster A and cluster B that both contain two 

CPUs. J3 is scheduled on cluster A, but can execute on cluster B because CPU 4 is idle. 

In Chapter 5 we describe the implementation of this model in a simulation environment that we use 

for real-time systems analysis. In Chapter 6 we evaluate this new approach against the clustered, global 

and partitioned scheduling. 

5. Conclusion 

This chapter reviews the most important models and algorithms used in real-time systems current 

research. The analysis of theoretical models was made by addressing the main components of a real-

time system:  

• Workload 
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• Platform 

• Scheduling  

In the context of multiprocessor real-time systems, recent research work is directed towards finding 

new models to describe real-time parallel applications and parallel platforms.  

Workload models capture real-time application patterns, which are used in real-time systems analysis. 

Most of the current analysis techniques on multiprocessors use, for simplicity, the Liu and Layland 

periodic task model or the sporadic task model which were developed in the uniprocessor era of real-

time systems. However, latest research efforts try to integrate parallel application models in real-time 

systems analysis. Another direction, which needs attention, is that of task dependencies and real-time 

distributed transactions.  

Platform models try to describe the computing resource parallelism through different abstractions 

such as reservations or parallel supply functions.  

In the direction of multiprocessor scheduling, efforts are made to introduce new multiprocessor 

scheduling algorithms, which can be implemented in practice and as well to find the best schedulablity 

tests for widely used algorithms such as RM and EDF.  

Based on the review of the current research results in real-time systems modeling and analysis, we 

identified some directions, which may accommodate new contributions such as: 

• Accommodating real-time communication over general purpose networks, in the context of 

distributed real-time systems 

• Real-time transactions scheduling on multiprocessor platforms 

• Real-time systems simulation  

• Simulation-based analysis of real-time multiprocessor systems  
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Chapter 3. Real-time communication over general purpose 

networks 

1. Introduction 

Distributed real-time systems such as remote process supervision and control systems require a 

communication infrastructure that supports reliable and safe real-time data transmission. These 

requirements are usually solved by using dedicated networks and industrial protocols, as presented in 

[8] and [9]. As these special purpose protocols are incompatible with general purpose protocols used in 

local area networks and company intranets, there are interoperability problems between distributed 

control applications and organizational software. Local computer networks and Internet protocols, on 

the other hand, fail to satisfy real-time requirements because they apply the best-effort principle in 

supplying communication services, and it is quite difficult to use them as infrastructure for real-time 

applications. To satisfy real-time communication requirements on networks that use Internet protocols, 

solutions that enable a predictable network behavior and that provide end-to-end delivery time 

guarantees have to be developed. 

The recent expansion of the real-time applications domain created a significant research trend towards 

finding solutions to accommodate both real-time and non-real-time applications on a common 

environment [1][2][3][4][5][6]. Common use hardware and communication protocols do not offer 

timing guarantees, which are essential in the case of real-time applications. The main challenge in this 

case is to find theoretical and pragmatic methods that facilitate the estimation of applications response 

time, as support for real-time applications. Because of this trend, there is significant research work 

oriented in three main directions: 

• Implement real-time applications on common use microprocessors [4] [5][6] 

• Accommodate real-time data transmission on general purpose networks [1][2][7] 

• Integrate real-time specific features in common-use operating systems [3] 

This chapter presents a solution for using general purpose (non-deterministic) networks for real-time 

communication. The research work in this direction was mainly encouraged by networking technology 

developments such as increasing network bandwidth (Gbps) and development of new Quality of Service 

(QoS) mechanisms. In this context, the (communication-related) issues are generated by the integration 

of distributed control systems with other information systems that do not require special communication 

services.   

This solution can guarantee the timing requirements for real-time data transmission over general 

purpose networks. A real-time communication model based on data flow analysis is used as support for 

a reservation-based communication architecture. Based on the same model, the network bandwidth 

required by real-time traffic is analytically estimated.  
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2. Literature review 

Many research efforts are directed towards the formalization of models that describe the sharing of 

resources between applications that have different timing requirements. The main objective in this case 

is to guarantee the timing requirements of each application, in isolation. The concepts of virtual 

resources, resource partition [10] and resource reservation [11] have been proposed as support for the 

analytic determination of application’s timing parameters in isolation.  Moreover, resource reservation 

techniques have been combined with feedback techniques to provide response delay and respectively 

execution time guarantees for tasks that coexists in a shared environment [1][12]. These concepts have 

been recently extended to multiprocessor platform models [4][5].  

Several authors investigated the problem of accommodating real-time traffic on best-effort networks 

and proposed some pragmatic solutions. In [13] the authors present a method for managing the network 

bandwidth for multiple client applications. Their communication middleware, the NIProxy, is able to 

partition available client bandwidth between real-time and non real-time traffic flows by arranging them 

in a stream hierarchy. This solution gives good results in improving client Quality of Experience, but it 

does not guarantee any end-to-end timing requirements for real-time traffic.  

Another approach is presented in [7], where the authors propose introducing a prioritization 

mechanism in the Internet protocol suite, a mechanism that complies with the IEEE 802.1D standard. 

They evaluate the solution through simulation, using the OPNET simulator, by measuring end-to-end 

latency of real-time packets in the presence of FTP traffic on the same network. Their conclusion is that 

a large part of the end-to-end message latency occurs at the end nodes, assuming that the network 

bandwidth is large enough to support all the traffic. In the referred paper the authors do not provide a 

solution for evaluating network bandwidth requirements, they just assume that the bandwidth is large 

enough.  

In [14], Martinez et al. present Earliest Deadline First (EDF) communication scheduler 

implementation adapted for high-performance networks. The characteristics of high-performance 

networks enabled them to simplify the calculus of packet deadline, taking into consideration only the 

previous packet’s deadline, packet size and average bandwidth.  

Schantz et al. [2] describe two approaches, priority-based and reservation-based, in developing 

distributed real-time middleware. For both solutions, the communication infrastructure is an IP network. 

In the priority-based middleware the standard Differentiated Services (DiffServ) mechanism is 

implemented for network resource management. In the reservation-based middleware the Integrated 

Services (IntServ) mechanism is implemented. Their main contribution is in the area of middleware 

implementation. But there are two quite important issues not addressed by this paper:  

• the provision of instruments for evaluating the resource requirements of real-time tasks;  

• the differentiation between hard and soft tasks. 

IntServ [15][16] provides end-to-end per-flow QoS by means of hop-by-hop resource reservation 

within the IP network but impose a significant burden on the core routers. To reduce the complexity 

within each core router, alternative schemes, referred to as Measurement Based Admission Control 
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Schemes (MBAC) have been proposed [17]. These schemes replace per-flow states with run-time link 

load estimates performed in each router. However, MBAC solutions still require significant 

modification of the existing Internet architecture, as core routers must support load estimation 

algorithms, and still need to be explicitly involved in per flow signaling exchange.  

A completely different approach is provided by DiffServ [18]. In DiffServ, core routers are stateless 

and unaware of any signaling. While DiffServ easily enables resource provisioning performed in a 

management plane for permanent connections, their widely recognized limit is the lack of support per-

flow resource management and admission control, resulting in the lack of strict per flow QoS guarantees. 

A number of proposals, presented in the literature, have shown that per flow Distributed Admission 

Control schemes can be deployed over DiffServ architectures [19][20]. Although significantly different 

in implementation, they share the common idea that accept/reject decisions are taken by the network 

endpoints and are based on the processing of “probing” packets, injected in the network at setup to verify 

the network congestion status. A “pure” Extended Admission Control (EAC) scheme, called Phantom 

Circuit Protocol-Delay Variation (PCP-DV) is proposed in [21]. The scheme determines whether a new 

connection request can be accepted based on delay variation measurements taken on the probing packet 

at the edge nodes. 

Reinemo et al. [22] propose and evaluate three different admission control schemes for virtual cut-

through networks, each one suitable for use in combination with DiffServ based QoS scheme to deliver 

soft real-time guarantees. Two of the schemes assume pre-knowledge of the network’s performance 

behavior without admission control and are both implemented with bandwidth broker. The third is based 

on endpoint/egress admission control and relies on measurements to assess the load situation. Due to 

the way in which the flow control affects latency and the nature of cut-through networks, latency and 

jitter properties are hard to achieve.  

An approach to quantify the impact of end-to-end QoS provisioning through a combination of both 

intra and inter-autonomous system (AS) traffic engineering (TE) is proposed in [23]. Two offline QoS-

aware systems are deployed for this and a direct relationship between intra-AS and inter-AS TE is then 

established. The interaction between them is analyzed and both the decoupled and integrated approaches 

are presented.  

In [24], several possible algorithms for routing and scheduling that allow coexistence of QoS and 

best- effort flows are presented. The network algorithm takes into account state imprecision in routers, 

maxmin bandwidth allocation, and existing link state information. 

Most of the contributions presented in the research work we studied are in the area of middleware 

implementation and do not provide an analytical evaluation of communication resource requirements. 

Our objective is to propose a solution for accommodating real-time traffic on IP networks and, 

furthermore, develop a method for the analytical estimation of the network bandwidth required by real-

time traffic.   
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3. Identified issues 

Distributed control systems are an integral part of the industrial automation domain. Their 

functionalities include data acquisition, monitoring and control of industrial processes. While the 

majority of the control systems are usually located within more confined area (e.g. plant area, company 

local network) and communications are usually performed using local area network (LAN) technologies 

that are typically reliable and high-speed, other are geographically distributed (e.g. SCADA systems) 

and need long-distance communication systems such as the Internet. 

We focus on the communication issues of distributed control systems that are deployed in the 

companies’ local IP networks. Usually, these networks are managed by the companies and the nodes 

(hosts, switches, routers, servers) are configured and administered by a company internal authority. Such 

a network has to accommodate two broad categories of traffic: non-real-time and real-time. Non-real-

time traffic can adjust to changes in delay and throughput and is generated by applications that include 

common Internet-based applications, such as file transfer, electronic email, remote logon, network 

management, and Web access. Real-time traffic does not easily adapt, if at all, to changes in delay and 

throughput and have requirements that include beside delay and throughput, delay variation and packet 

loss.   

In addition, these corporate networks may be connected to strategic partner networks and to the 

Internet, thus, making more use of Wide Area Networks (WANs) and Internet to transmit their data to 

remote stations. 

Most control applications must satisfy real-time and safety constraints. A very important parameter 

in real-time environments is the system response time, defined as the time between the occurrence of an 

event and the corresponding response. In distributed systems, message delivery time, has a large 

influence on the system’s response time. Network protocols must incorporate control mechanisms for 

message delivery time in order to guarantee maximum delivery time for control messages. These 

mechanisms assume a deterministic network behavior, which permit a-priori evaluation of maximum 

message delivery time. 

When measuring the performance of a real-time communication system, the following parameters are 

taken into consideration [25]: 

• Deadline miss rate (fraction of all messages that are delivered to late at the destination) 

• Delay jitter (the variation of message delays) 

• Loss rate (fraction of all messages that are dropped on the route from source to destination) 

For hard real-time applications, deadline misses are not acceptable. Moreover, message response time 

must be guaranteed a-priori. Delay jitter may not cause serious problems as long as deadlines are 

satisfied. In the case of soft real-time applications, deadline misses are tolerable to some extent, but, 

under some particular conditions, delay jitter may have negative effects. In the case of distributed control 

systems traffic, one has to deal with both hard and soft real-time requirements. For these reasons, the 

goal is to minimize both message response time (end-to-end delay) and delay jitter. 
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In the case of using an IP network for real-time communication, some important issues may arise. 

First of all, a maximum response time for packets has to be guaranteed. This can be a serious problem 

knowing that IP networks function on a best-effort basis.  

Another communication issue is message delivery efficiency. Data transmitted through the network 

in distributed control systems are quite different compared to data transmitted by usual applications that 

generate traffic in IP networks. Control applications use short, unstructured data (e.g. digital signal 

values). Process control data is generated, mostly, at well determined periods of time. The majority of 

supervision and control functions involve data acquisition, processing and storage, visualization of 

process status and command issuing, which require a short reaction time.  

Control applications include different automation and computing devices, which are interconnected. 

In order to insure interoperability, the communication protocol must allow uniform and transparent 

access to system’s resources and it must be simple enough to allow implementation on devices with 

limited computing resources. 

Last but not least is the issue of real-time and non-real-time traffic coexistence. In the case of remote 

process control it is quite possible to have both traffic (real-time) generated by the control system and 

traffic (best-effort) generated by other applications (e.g. office automation) that run in the same network. 

Network bandwidth has to be managed in order to insure real-time requirements for control traffic and, 

at the same time, to insure fair treatment for the best-effort traffic.  

The objective of this research is to take a new approach in solving some of the following 

communication issues: 

• Guarantee packet delivery time in IP networks in the presence of both real-time and non-

real-time traffic 

• Ensure predictability of  network behavior   

• Ensure transmission efficiency of process control data   

• Provide device interoperability and uniform access to process control data 

To address these problems, a reservation-based communication system architecture for distributed 

control applications on best-effort networks is described in the next section. As part of the solution, a 

control traffic model and a method for the estimation of the required network bandwidth are defined.  

4. The data-flow model as support for a reservation-based communication 

architecture 

4.1. The reservation-based communication architecture 

To provide a comprehensive communication system architecture based on IP infrastructures that 

meets the challenges of quality of service provisioning for industrial control applications, three major 

components are integrated:  

• Industrial control applications and processes 
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• A middleware (service manager) between the application and the protocol driver; this 

middleware closely interacts with the Internet protocol stack 

• A network infrastructure based on IPv4 or IPv6 protocol 

The first component of the system architecture represents quality of service demanding applications 

that use a QoS API to send requests to the service manager. These applications generate periodic and 

aperiodic real-time traffic. The traffic is characterized by packet size, transmitting data rates, priority, 

and accepted latency. 

The middleware bridges the industrial applications and the underlying network systems by 

dispatching the application requests and returning status and feedback from the underlying system to 

the application. Examining the application requests and the available network resources, the middleware 

selects a provisioning service or service level, maps the application QoS to network-specific quality of 

service, and initiates resource reservation or renegotiates the parameters with the application before the 

flows’ source starts to generate any packets. 

The following components are integrated in the middleware: 

• Traffic QoS specification 

• QoS negotiation 

• Traffic and QoS monitoring 

• Resource reservation 

• Data transfer 

The middleware components are depicted in Fig. 1 and will be described as follows. 

Traffic QoS 

Specification

QoS 

Negotiation

Resource 

Reservation

Data Transfer

Traffic QoS 

Monitoring

Network

Industrial 

control 

application

 

Figure 1. System architecture – components 
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4.1.1. Traffic QoS Specification and QoS Negotiation modules 

An application which wants to set up a connection in order to transmit packets to another application 

in the network uses the means of the traffic QoS specification to set up a reservation request first. This 

module is a generic API so that an application demanding quality of service is isolated from the 

complexity of the provisioning services. 

The application defines its generic QoS specification in terms of traffic profile which is composed of 

parameters that characterize the traffic stream or session (source IP address and port number, destination 

address, transport protocol) and parameters that define quantitatively the network performance 

requirements (transmitting rates, message size, transmission deadlines, latency), which can be specified 

using maximal, average and minimal values.  

The traffic QoS specification module contains a set of rules for converting the traffic characteristics 

to parameters in the underlying message model. 

Based on the input from the QoS specification module, the QoS negotiation module is responsible for 

authorizing the request and check if the network is able to support the new connection interacting with 

the resource reservation module for resource allocation. The goal of this module is to provide optimal 

quality of service with respect to critical parameters and previous requests. 

Application’s requests for quality of service parameters can be solved in two ways: positive, in case 

the resource reservation module sends a positive acknowledge to the QoS negotiation module that there 

are enough resources in the network to satisfy the request and the reservation is set along the path, and 

negative. In case of a negative notification, the application may invoke the QoS negotiation module in 

order to find what resources and services are available in the network and to adjust the quality of service 

requirements and start a new negotiating procedure. 

4.1.2. Traffic and QoS Monitoring module 

In this module components are included for monitoring network resources (available bandwidth, 

average utilization of a link, delay, jitter) and quality of service related statistics from routers (queue 

length, number of conforming/exceeding packets in bytes, number of dropped packets, CPU utilization). 

It also signals significant changes in resource availability.  

When an application establishes a network traffic stream, this module starts collecting its 

performance. It collects data from traffic stream, including quality of service specification, connection 

times, transmission rates and delays, and communicate the quality of service parameters to the QoS 

negotiation module in order to determine if there is any quality of service violation. All collected data 

is stored into a management information base. 

4.1.3. Resource Reservation module 

The resource reservation module is the ultimate authority for the resource handling in this 

architecture. Its main building blocks are admission control and reservation setup. Admission control 

implements request authorization by checking if the network is able to support the flow and the decision 

algorithm that nodes use to determine whether a new flow can be granted the requested quality of service 
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with/without impacting earlier guarantees. For these tasks it closely interacts with the main entity, the 

resource reservation protocol. 

Resource ReSerVation Protocol (RSVP) [15] is used for resource reservation signaling. It is designed 

to enable the senders, receivers and routers of communications sessions to communicate with each other 

to reserve resources for new flows at a given level of QoS. On the other hand, the reservation protocol 

is responsible for maintaining flow specific state information at the end nodes and at the nodes along 

the path of the flow. 

RSVP requests result in resources being reserved in each node along the data path. Given below are 

the main attributes of this protocol: it requests resources in only one direction (it treats a sender 

separately from a receiver, although the same application might be running at both the sender and the 

receiver); is receiver-oriented (the receiver of a data flow initiates and maintains the resource reservation 

used for that flow); RSVP itself is not a routing protocol, but it is designed to work with the existing 

routing protocols; RSVP supports both IPv4 and IPv6. 

To make a resource reservation at a node [26], our RSVP daemon uses the admission control 

mechanism. If check fails, the RSVP returns an error notification to the QoS negotiation module that 

originated the request. If checks succeed, the RSVP daemon sets the parameters. 

4.2. The data flow model 

In order to make an analytical evaluation of the traffic generated by the distributed control system, it 

is required to classify this traffic and then, based on the identified types, to define the traffic model. 

4.2.1. Traffic classification 

Control traffic is generated by data exchanged between the control applications and industrial devices, 

such as: 

• Values obtained through data acquisition, with a well-defined frequency (e.g. temperature 

in an oven, liquid level in a tank, engine state – started/stopped, etc.) 

• Commands generated at known periods of time 

• Operator commands (e.g. start/stop engine, increase oven temperature to 200 degrees, etc.) 

• Process events, alarms, alerts, etc.  

The previous categories of data generate periodic and aperiodic network traffic, with real-time 

constraints.   

4.2.2. Model definition 

Distributed real-time applications (control applications are in the same category) are quite often 

modeled as chains of task and messages [27][28] that are executed on the distributed system’s active 

resources (e.g. processors, networks). As example, consider an application that monitors the temperature 

and humidity in a room. Temperature and humidity variables are measured by a number of sensors with 

the same periodicity of 30 minutes. The sensors send their data to the process computer. This computer 

places the values into packets and sends them to the monitoring application. Assuming that there are 

two temperature and two humidity sensors (we consider two sensors of each type for redundancy), we 
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can model the room monitoring application as four periodic chains of tasks and messages, one for each 

sensor. A chain will be composed of a task that reads the temperature form the environment and sends 

it to the process computer through a message. The second task that runs on the process computer; it 

receives the message from the sensor and it forwards the measured value to the monitoring task in a 

predetermined format, as a message. The monitoring task runs on a remote site. Fig. 2 shows the model 

of the room monitoring system with chains of tasks and messages (in black). The message-based model 

of the Internet communication, in the case of distributed real-time systems, is quite inefficient due to the 

large overhead introduced by the Internet protocols. As for the feasibility analysis, this model generates 

overestimated requirements on communication due to the large number of messages that influence each 

other. 

In this context, we propose a model that solves the issues of the message-based model. To model the 

control traffic, we introduce data flows.  

Definition. A data flow is the sum of all packets sent through the network that have the same source, 

destination, content and periodicity.  

Traffic between control applications and devices connected to the process is a sum of periodic and 

aperiodic data flows. In our previous example, the packets containing temperature and humidity values 

create a data flow. In Fig. 2, the alternative model with data flows is depicted in blue. Another example 

is shown in Fig. 3, where data flows are established between two control applications connected to 

remote industrial processes, through an IP network. 

 

Figure 2. Data flows between control applications 
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Periodic data flows include values obtained through data acquisition, control commands, which occur 

at well defined periods. Aperiodic data flows include commands issued by the application operator, high 

priority alerts and event signals. A number of parameters are identified for each data flow type.  

The parameters for aperiodic data flows are:  

• Source 

• Destination  

• Packet size  

• Priority (importance)  

• Content (process control data included in the flow)  

• Required packet delay (or response time) 

• Transmission deadline  

Periodic data flows have two more parameters with respect to aperiodic data flows, the inter-release 

period and the phase (the release time of the first packet in the data flow). 
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Figure 3. Data flows between control applications 

It is a common practice in real-time task modeling to assume that aperiodic tasks have a minimum 

inter-release period, which is given by process related parameters. Because all tasks are considered 
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periodic, scheduling and feasibility analysis are simplified. For the same reasons, we choose to make 

the minimum inter-release period assumption for aperiodic data flows. 

A periodic data flow is formally defined as an n-tuple, as follows: 

𝐷𝐹 = (𝜑, 𝑇, 𝑃, 𝑟, 𝐷, 𝑙, 𝑆𝑟𝑐, 𝐷𝑒𝑠𝑡, 𝐶𝑜𝑛𝑡𝑒𝑛𝑡)                                                                        (1) 

The components of the n-tuple are the data flow parameters. φ is the data flow’s phase, T is the inter-

release period for periodic data flows and the minimum inter-release period for aperiodic data flows.  P 

is the priority, r is the required packet delay or response time, D is the transmission deadline and l is the 

size of a data flow packet. The last three components are the source (Src), destination (Dest) and content 

description of the data flow (Content).  

The Internet protocol suite is optimized to deliver large packets of data in a best-effort manner. 

Process control messages, on the other hand, are very short (from a few bytes to hundreds of bytes); 

they have periodic occurrence and real-time constraints. If very short periodic messages are packed and 

released in an IP network, the protocol overhead is very large compared with the payload data. Because 

messages with short period of occurrence (e.g. seconds, milliseconds) can generate large amounts of 

traffic although few effective data is transmitted, one can conclude that the network is inefficiently 

utilized for data transmission. 

To optimize the transmission of control packets in IP networks, we adopt the strategy of aggregating 

control data from different process devices into the same data flow. 

To organize control data into larger data flows, the following parameters must be considered:  

• Data acquisition periodicity, assuming that devices which perform data acquisition with the 

same period read the sensor values virtually at the same time 

• Data priority  

• Data source and destination  

By performing data flow aggregation, the data flow packets contain larger amounts of effective data, 

hence increasing the efficiency of control data transmission. To achieve a correct data flow aggregation 

the respective data flows have to be synchronized (their phases are equal). It is not enough to have the 

same release period. Data has to be produced and transmitted at approximately the same time. Usually, 

it is not a difficult problem to achieve the synchronization requirement. For this reason, we will assume 

that aggregated data flows can be easily synchronized.  

To aggregate data flows we propose the Aggregate Data Flows (ADF) algorithm. First, an array of 

data flows (DF) is created by defining a data flow for each piece of process data. The parameters are set 

for each data flow. The array of data flows is then sorted by data flow period. To aggregate data flows 

that have similar characteristics, each periodic data flow is compared to all other periodic data flows that 

have the same period. If the data flows have the same source and destination, they are put together in 

the same data flow. The aggregated data flow (see Procedure 1 – Merge Data Flows) will contain data 

from both initial data flows, they will have the highest priority and the smallest deadline of the two data 
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flows. The first data flow will be substituted by the aggregated data flow and the second data flow will 

be deleted.  

Algorithm 1: Aggregate Data Flows (ADF) 

count = 0; 

Foreach process_data_value 

{ 

     DF[i] = Create_data_flow (); 

     Set_data_flow_parameters ( DF[i] ); 

     i++; 

} 

Sort_data_flows_by_period (); 

For ( i=0; i < count-1; i++ )  

{ 

     If Periodic (DF[i]) and !Marked_for_delete (DF[i])  

     {  

          j = i+1; 

          While ( DF[i].period == DF[j].period )  

          {     

               If ( Periodic ( DF[j] ) ) 

               { 

                    If ( DF[i].src == DF[j].src )and( DF[i].dest == DF[j].dest 

) 

                    { 

                            

                          Merge ( DF[i], DF[j] ); 

                      Mark_for_delete ( DF[j] ); 

                     } 

               } 

               j++; 

          } 

     } 

}   

Foreach DF  

{ 

     If (Marked_for_delete ( DF[i] ))  

     { 

      Delete ( DF[i] ); 

     } 

} 

 

Procedure 1: Merge Data Flows (MDF) 

Input: DF[i], DF[j] 

Output: DF[i] 

 

DF[i].content = DF[i].content + DF[j].content; 

DF[i].size = DF[i].size + DF[j].size; 

DF[i].priority =  max (DF[i].priority, DF[j].priority); 

DF[i].deadline = min (DF[i]. deadline, DF[j]. deadline); 



13 | Real-time communication over general purpose networks 

 

 

 

 

In this way, we obtain the specification of periodic data flows for a control system. For aperiodic data 

flows, which cannot merge with other flows, transmission efficiency is reduced. A solution for these 

flows, if their frequency of occurrence is high, is to reserve space for aperiodic data in periodic flows. 

This space (e.g. a few bytes) is used only if the aperiodic event takes place right before a periodic data 

flow packet is sent. 

5. Response time analysis for real-time communication 

In real-time systems, it is essential to guarantee response times.  The system architecture proposed in 

this chapter uses an IP network as a communication infrastructure. The main challenge in this case is to 

guarantee real-time constraints on a best-effort communication infrastructure. For solving this problem, 

we use a network bandwidth reservation mechanism. 

The bandwidth reservation mechanism requires the estimation of network bandwidth for the real-time 

traffic generated in the system. For this purpose, we adopt a method commonly used in the case of real-

time tasks, the response time analysis using a priority-based scheduling algorithm. This method allows 

the calculation of the worst case response time of real-time tasks [28][29] as the solution of a recursive 

equation.  We adapted the classic method of response time analysis to our data flow model. This allows 

the computation of response time for each data flow.  

The most important time restriction in our case is that the response time of any data flow should not 

exceed its deadline. To obtain an estimation of the network bandwidth we have to find the minimum 

bandwidth value for which all data flows meet their deadlines, in the worst case. 

In our adaptation of response time analysis, we assume that each data flow corresponds to a “task” 

and the network corresponds to the “processor”, which has to be shared between all “tasks” in the 

system. Priorities are assigned to data flows in a rate-monotonic fashion [30], that is, the priority of a 

data flow is given by its period parameter. This way, a data flow that has a lower period will have a 

higher priority. Data packets will inherit the priority of the data flow to which they belong.  The packet 

with the highest priority will be transmitted first.  

Periodic and aperiodic data flows are taken into consideration for scheduling. Aperiodic data flows 

are considered to have a minimum inter-release period. The next step is to compute the response time 

for each data flow. The data flow system is feasible if, for each data flow, the response time is less than 

its transmission deadline (r < D). In this work we consider that transmission deadline for a data flow is 

equal to its inter-release period (T = D). By obtaining the appropriate values for the response time of all 

data flows, in the worst case, the value for the required network bandwidth can be derived. The 

bandwidth value obtained is used to make resource reservations. In this way, it can be guaranteed that 

actual response time for each data flow will be less or equal than the computed response times.  

It is considered that the worst case response time for a data flow happens when a packet has to wait 

for the transmission of packets that belong to all data flows with higher priority and for one packet with 

lower priority, but with the largest transmission time. It is also assumed that all data flows start at the 

same time.  



Real-time communication over general purpose networks | 14 

 

 

 

In order to compute the data flow response time (ri) the following variables are taken into 

consideration:  

• The delay caused by the devices found on the network path (tdelay) 

• The transmission time of packets that belong to the data flow (Ci) 

• The data flow’s inter-release period (Ti) 

• The data flow’s priority (Pi) 

• The transmission time of packets that belong to data flows with higher priority  

• Maximum transmission time of packets that belong to data flows with lower priority 

• The number of hops from source to destination (nHops) 

Response time for each data flow is computed using the following equations: 
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       The response time is obtained through iteration, until the computed response time is 

approximately equal to the response time computed in the previous step (⌈𝑟𝑖
𝑡 − 𝑟𝑖

𝑡+1⌉ < 𝜀, 𝜀 → 0). Two 

important conditions that have to be imposed: 

• All response times have to be less than the corresponding deadlines (ri<Di) 

• Network utilization has to be less than 100% ( ∑
𝐶𝑖

𝑇𝑖
< 1 ) 

The bandwidth value is at first equal to B0=∑
𝐶𝑖

𝑙𝑖
 and it is gradually increased from with 10% while 

the response time and utilization are computed, until these requirements are met. The bandwidth 

value used for the reservation (Br) is the minimum bandwidth value for which the requirements 

are met.   

In the first iteration, the response time of a data flow is computed by summing up the transmission 

time, the delay caused by the network devices such as switches and routers, and the transmission time 

of all other data flows that have higher priority. In subsequent iterations, the response time equation has 

two new components: the maximum transmission time of packets that have lower priority and the sum 

of transmission time of all packets of higher priority that are likely to be released while the packet is 

being transmitted through the network. The number of packets with higher priority that influence the 

response time of the data flow equals the number of packets that are released in the response time of a 

packet from the data flow. To decrease the number of iterations, the time interval when the actual packet 

is being transmitted (Ci) is subtracted from the response time, as in that time interval packets from other 

data flows cannot be transmitted.  

The transmission time for packets that are included in a data flow is computed as follows:   
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The delay caused by network devices can be approximated by using a mean round-trip time of a probe 

packet sent on the same route on which the bandwidth reservation will be made. 

As the response time is computed recursively, the computation time could be a problem. In our case, 

because bandwidth requirements are assessed and reservations are made before starting the control 

system, a larger computation time is not an issue.  

The main disadvantage of the response time analysis method is that sometimes it does not converge 

to a solution. In this case, we have to increase ε and give an approximate solution. 

6. An experimental reservation-based control system 

To validate the system architecture, the data flow model and the method of estimating network 

bandwidth described earlier, a prototype of a distributed control system, was developed. The prototype 

includes the communication middleware, the industrial application and the industrial device simulator 

(for the provision of industrial process data).  

The communication middleware runs on a network infrastructure based on Internet protocol suite, 

with IPv6 as a network protocol. The adopted solution is to use the IPv6 Traffic Class and Flow Label 

fields. The Traffic Class field enables a source to identify desired traffic-handling characteristics of each 

packet relative to other packet from the same source. The intent is to support various forms of services. 

In case of IPv6 standard [31], a flow is defined as a sequence of packets sent from a particular source to 

a particular destination for which the source desires some special handling by the intervening routers. 

From the source’s point of view, a flow is just a sequence of packets that are generated from a single 

application instance at that source and have the same transfer service requirements. From the router’s 

point of view, a flow is a sequence of packets that share attributes that affect how these packets are 

handled by the router. In principle, all of a user’s requirements for a particular flow could be defined in 

an extension header and included in each packet, but for our implementation, we leave the concept of 

flow open to include a wide variety of requirements and adopt the flow label, in which the flow 

requirements are defined before traffic generation and a unique flow label is assigned to the flow. 

The RSVP module is designed as a state machine. The objects defined in this module represent: 

• RSVP sessions 

• State information extracted from PATH message and information from RESV message 

• Reservations installed in an outgoing interface 

• Information about a previous hop in a session, i.e. the last reservation that has been sent to 

this hop 

For each RSVP session, all relevant information is bundled and the destination address and port is 

saved. From each PATH message all relevant information is held, i.e., the sender’s address and traffic 

specification, routing information. For each reservation requested from a next hop, reservation 
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specification is held, i.e., the FlowSpec, which determines the amount of resources that are requested, 

depending on the service class. 

The industrial control application uses all the facilities offered by the communication middleware and 

implements the following functionalities:  

• Remote process control and visualization  

• Input and output data flow definitions for devices participating in the industrial process  

• Control data flow through commands sent to devices connected to processes  

• Specification and negotiation of resources needed for communication with other devices  

• Receive and process data flows from industrial devices 

• Register data flow delay time  

The operator can visually create the diagram of the industrial process, by dragging the symbols of 

different types of devices on the control board. Next, the operator has to specify input data flows (data 

received from devices connected to the process) and output data flows (commands sent to devices) in 

order to establish communication parameters.  

After the definition of data flows, the negotiation process for resources starts. Input and output data 

flows are analyzed and, as a result, bandwidth needed to satisfy real-time communication constraints is 

computed. The application sends a query asking for the available bandwidth and round-trip time to 

destination process. The response time can be guaranteed only for the data flows having the period less 

than the delay caused by the network devices (e.g. switches, routers). If the available bandwidth is 

insufficient, data flows having the smallest period are deleted, data is recomputed and application begins 

the resource reservation process. After the negotiation and reservation process, the application can start 

to send and receive data flows.   

 

Figure 4. Data flow specification in XML 

The industrial device simulator sends periodical data flows (requested by the control application) 

containing process values randomly generated from a predetermined range and receives periodical data 

flows representing commands from the control application for devices connected to the process. Devices 

<Flow> 

      <ID> data_flow_ID </ID> 

      <SrcIP> source_IP </SrcIP> 

      <DestIP> destination_IP </DestIP> 

      <Per> data_flow_period </Per> 

      <Pri> data_flow_priority </Pri> 

      <Name> data_flow_symbolic_name </Name> 

     <Content>  

XML_content_specification  

     </Content> 

 </Flow> 
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cannot negotiate resource reservations for generated data flows nor to specify quality of service 

parameters. The control application connected to these devices is responsible for the negotiation and 

bandwidth reservation. 

An important issue encountered during the implementation of both the industrial control application 

and the device simulator is the specification of data flows. In order to assure the device and application 

interoperability, data flow parameters and content are specified using XML. In this way, messages 

between applications and devices are interpreted easier and the access to process and control data is 

uniform. Fig. 4 shows an example of a periodic data flow specification in XML. 

7. Experimental evaluation 

Two sets of experiments are conducted. First, a simulator is used to validate the proposed method for 

network bandwidth estimation. Second, tests are performed using the implemented control system 

prototype, which was deployed on the experimental infrastructure. 

7.1. Estimation of network bandwidth 

For the first set of experiments, we measure the response time, jitter and packet loss for multiple 

periodic real-time data flows, which are released in a simulated IP network. The transport protocol is 

UDP, because it is more appropriate to real-time traffic. The main objective of these experiments is to 

check if the computed network bandwidth value guarantees the required response time and low jitter for 

all data flows. 

The simulation study was performed on Network Simulator (NS-2) [32], version 2.33. The simulation 

results were evaluated for different scenarios using the topology depicted in Fig. 5. 

 

Figure 5. The topology used for simulations 

 

The topology consists of 5 nodes. These nodes are connected with full-duplex bidirectional links. All 

links have the same available bandwidth and propagation delay. It is assumed that per link delay is 

negligible. Constant-Bit-Rate (CBR) agents were attached to the source node (S) and used to generate 

periodic, fixed size packet traffic in the network. User Datagram Protocol (UDP) was used as transport 

layer protocol to minimize the overhead of establishing a connection. Five periodic data flows were 

defined, having the same source (S) and destination (D). The parameter settings are summarized in Table 

1.  

Table 1. Parameter settings for periodic real-time data flows 

Flow Period (ms) Packet size (B) 

F1 10 300 

F2 120 300 

F3 50 300 

F4 75 300 
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F5 520 300 

 

Two scenarios were simulated. Measurements were made to compare data flows’ response times with 

the corresponding deadlines and to observe to what extent the jitter affects the response time of packets. 

In the first scenario the network bandwidth was set to the minimum value which can accommodate 

all defined data flows (379 Kbps). Results analysis revealed that the average measured response times 

were acceptable in the case of data flows which had larger periods, but for the other data flows response 

times were very often greater than the corresponding deadlines. Jitter measurements showed that even 

if the average value was quite small, the maximum value was very large, approximately equal to the 

measured minimum response time. For this scenario no packets were lost.  

For the second scenario, equations (2) were used to derive the maximum bandwidth needed by the 

set of data flows in order to satisfy the deadlines. The computed maximum bandwidth was 2106 Kbps. 

As expected, a considerable difference can be observed between the measured maximum response time 

and the maximum computed response time. This difference is due to the fact that the worst-case scenario 

does not occur during simulation time, thus the resulting network utilization is low. All the deadlines 

were satisfied and the average delay jitter is very small for the flow with the largest period. There was 

no packet loss.  

For both scenarios, measured values can be found in Tables 2-5 and the comparison between data 

flows in terms of response time and jitter are shown in Fig. 6-9. 

Table 2. Response times (1st scenario) 

Flow 
Response time (ms) - measured 

Maximum Average Minimum 

F1 50.66 28.87 25.33 

F2 50.66 33.01 25.33 

F3 50.66 32.98 25.33 

F4 50.66 30.48 25.33 

F5 50.66 33.03 25.33 

 

Table 3. Response times jitter (1st scenario) 

Flow 
Response time jitter (ms) - measured 

Maximum Average Minimum 

F1 25.33 3.22 0 

F2 18.68 3.58 0 

F3 19 4.33 0 

F4 24 4.41 0 

F5 25.33 3.59 0 

 

Table 4. Response times (2nd scenario) 

Flow Response time (ms) 
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Measured Computed 

Maximum Average Minimum 

F1 6.078 3.103 3.039 9.12 

F2 6.078 3.839 3.039 68.4 

F3 6.078 3.870 3.039 27.36 

F4 6.078 3.447 3.039 41.04 

F5 6.078 3.724 3.039 86.64 

 
Table 5. Response times jitter (2nd scenario) 

Flow 
Response time jitter (ms) - measured 

Maximum Average Minimum 

F1 3.039 0.114 0 

F2 2.279 0.547 0 

F3 2.279 0.484 0 

F4 3.039 0.815 0 

F5 3.039 0.002 0 

 

 

Figure 6. Response times (1st scenario) 
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Figure 7. Response times jitter (1st scenario) 

 

Figure 8. Response times (2nd scenario) 

 

 
Figure 9. Response times jitter (2nd scenario) 
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7.2. Tests performed using the experimental control system 

To test the distributed control system prototype, two PCs connected in a local network were 

configured as traffic source and destination. A static route consisting of another two PCs which played 

the role of routers was established between these nodes. The network infrastructure was based on IPv6 

protocol. The communication middleware, the control application and the device simulators were 

deployed on the test infrastructure.  

A process schema containing monitoring elements connected to two data flows was specified in the 

control application. The first data flow (Flow 1) has a 2 seconds period and 270 byte packet size. The 

second data flow (Flow 2) has a 0.5 second period and the same packet size. After starting the remote 

control application and the device simulators, response time for all packets was measured. 

Measurements were made in two cases. In the first case, the communication middleware was used to 

make network bandwidth reservations before starting the traffic. In the second case, no reservations 

were made for the real-time traffic. For both data flows, response time measured during tests was less 

than the maximum allowed response time, in the case of reservations, presented in Table 6.  

Table 6. Measured response time for experimental data flows with reservations 

 Flow 1 Flow 2 Flow 1 Flow 2 

Computed bandwidth 9 kbps 

Available bandwidth 100 kbps 64 Mbps 

Measured tdelay 1.5 ms 0.65 ms 

Computed maximum response time 0.745 s 0.497 s 0.744 s 0.496 s 

Measured response time 0.685 s 0.372 s 0.677 s 0.367 s 

 

The measurements showed that the proposed system architecture, traffic model and method of data 

flow scheduling are able to satisfy the control system's requirements and guarantee a maximum delivery 

time.  They also showed that the analytical evaluation of the response time is an upper limit to the 

measured time parameters.  

If no reservations were made, for both data flows, measured response time fluctuated between a 

minimum of 0.367 seconds and a maximum of 0.617 seconds, as can be observed in Table 7. Packets of 

Flow 1 have the same priority on the network as packets of Flow 2, even though Flow 2 requires a better 

response time. Real-time requirements were not satisfied, because for Flow 2 the maximum measured 

response time was greater than the computed maximum response time.  

Table 7. Measured response time for experimental data flows without reservations 

 Flow 1 Flow2 

Computed bandwidth 9 kbps 

Available bandwidth 100 Mbps 

Measured tdelay 0.4 ms 0.4 ms 

Computed maximum response time 0.744 s 0.496 s 
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Maximum measured response time 0.617 s 

 

0.617 s 

 

Minimum measured response time 0.367 s 0.367 s 

 

Fig. 10 and Fig. 11 show charts that compare the computed response time for the two data flows with 

the measured response time, on both test scenarios. 

 
(a) Available bandwidth = 100kbps 

 
(b) Available bandwidth = 64Mbps 

Figure 10. Response time measurements using reservations 
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Figure 11. Response time measurements without using reservations 

8. Conclusions 

This chapter presents an approach in solving the control of network delivery time and data delivery 

efficiency in distributed control systems, on IP infrastructures. The data flow traffic model provides the 

basis for communication scheduling, and a reservation-based communication system architecture, and 

is the support for the rate-monotonic response-time analysis method used for computing the required 

network bandwidth. The solution uses Integrated Services/RSVP and the facilities of IPv6 protocol as 

support for real-time communication.  

The experimental results show that the implemented prototype satisfies the real-time constraints. This 

proves the validity of the proposed communication model and the method for computing the required 

network bandwidth. Moreover, the analytical evaluation of response time demonstrated to be an upper 

limit for measured delivery time. 
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Chapter 4. Multiprocessor real-time scheduling 

1. Introduction 

A scheduling strategy imposes a set of rules that are used to establish the execution order of all tasks 

that are ready for execution. One of the main tasks of a real-time system’s designer is to configure the 

application on a given platform and find a proper scheduling strategy so that all tasks satisfy their time 

requirements (e.g. deadlines). In the case of real-time uniprocessor systems, several widely studied 

optimal algorithms find a feasible schedule for a given setup, such as RM, EDF [1] and LSF [2]. 

On the other hand, for multiprocessor real-time systems, the search space for a feasible scheduling 

solution is multi-dimensional. There are far more restrictions and therefore finding a feasible solution is 

much more complex [3]. Moreover, real world applications, are usually of high complexity, and can’t 

always be modeled as independent task sets. In the case of distributed real-time systems, for example, 

applications consist of tasks with resource usage constraints and with data dependencies among them. 

Consequently, there are many more parameters which have to be considered before making a scheduling 

decision. 

Most multiprocessor scheduling algorithms offer real-time guarantees only at very low resource 

utilization rates [4] compared to their uniprocessor equivalents, or they are very difficult to implement 

in real-world cases [5]. However, as multicore and distributed systems are becoming the typical 

computing platforms for a wide range of real-time applications, recent research efforts are mostly 

directed towards finding pragmatic solutions for multiprocessor systems.  

In the case of multiprocessor platforms, in order to reduce the complexity of the real-time scheduling 

problem, one often used approach is to divide it into several sub-problems, such as: 

• Allocate tasks to available execution nodes (e.g. processors, networks).   

• Set priorities/deadlines for tasks contained in distributed transactions. 

• Apply local scheduling techniques for tasks’ execution. If tasks are not allowed to migrate 

(partitioned scheduling), these local scheduling techniques are uniprocessor.  

In this chapter, we present two scheduling techniques for real-time transactions on multiprocessors.  

The first scheduling technique is best suited for distributed embedded systems that have limited 

processing and communication resources. In this case, it is important to have the lowest scheduling 

overhead possible, so that applications that run on the platform will not be delayed.  

The second scheduling technique is best suited for larger systems for which a traditional scheduler 

will fail at lower system loads. Our technique combines a genetic algorithm with simulation-based 

evaluation of candidate solutions to find feasible system setups. When using the term “system setup”, 

we refer to a task to processor mapping and an intermediate task deadline assignment for which the EDF 

scheduling algorithm will produce a feasible schedule. 
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We implement tools that based on these scheduling techniques and starting from abstract real-time 

transactions and platform representations can produce static schedules and feasible system setups. The 

tools allow us to validate our research and to make the performance evaluation of the proposed 

techniques. 

2. Literature review 

Real-time scheduling on multiprocessor systems, as we already noted in Chapter 2, includes two 

important sub-problems:  

• The allocation or mapping of tasks to processors  

• The assignment of task priorities, which consequently establishes the order of execution 

In transactional systems, that consider precedence restrictions between tasks, an extra problem is to 

establish priorities not only for the end of a transaction but also for the tasks contained in it. In systems 

that use EDF schedulers, the priority is given by the task’s deadline. Usually, the intermediate task 

deadlines are not determined by the nature of the real-time application, but they may have an important 

impact on the schedulability of the system. Intermediate task deadlines are necessary to the local 

scheduling of tasks (on each individual processor).  

An important number of research works investigate the two scheduling sub-problems separately, or 

as a composite solution.   

Task allocation in distributed real-time systems is known to be an NP-complete problem [6], so an 

algorithm that generates an optimal solution in polynomial time, does not exist. To generate sub-optimal 

solutions for task allocation in polynomial time, one can use heuristics such as First Fit, Best Fit, Worst 

Fit or Next Fit [6]. If the system workload is heavy, a feasible solution may not be found even if such a 

solution exists. 

Solutions that address only the tasks order of execution consider that task allocation to processors is 

already resolved. The most complex issues appear in the case of distributed applications, which are 

modeled as transactions or sequences of tasks with end-to-end deadlines. In this situation, intermediate 

tasks do not have predefined deadlines, so the only imposed restriction is that the last task of the 

sequence finishes its execution before the end-to-end deadline. To obtain a schedule, researchers 

proposed different algorithms [7] and heuristics [8][9] for assigning deadlines to intermediate tasks. In 

[7] the authors investigate a deadline assignment that reduces resource utilization. They consider a 

component-based approach, analyzing each transaction individually, and use separate windows of 

execution for the tasks in a transaction. In [8] and [9] the authors propose two similar heuristics for 

intermediate deadline assignment, which distribute the end-to-end deadline evenly or proportionally 

between all tasks. In [11] the authors use an iterative optimization algorithm called HOPA to assign 

deadlines to the tasks inside a transaction set. The authors in [12] use a genetic algorithm to optimize 

the deadlines assigned by HOPA.  

In the case of composite solutions, which solve both task allocation and priority assignment, 

optimization techniques such as simulated annealing [10] or genetic algorithms [13][14][15][16][17] 
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can be used. Other techniques use constraint programming [18] or combine search heuristics with 

Response Time Analysis [19].  

It is rather difficult to make a comparison between the existing scheduling techniques, as they use 

different system models, schedulability analysis and different metrics for performance evaluation. For 

example, [6] evaluates task allocation heuristics using a periodic task model, with independent tasks, 

under EDF and Fixed Task Priority (FTP) scheduling. In [10] and in [18] the authors use periodic task 

models with inter-task communication and FTP scheduling, while in [13], [14] and [19] the authors use 

linear transaction models with end-to-end deadlines under FTP scheduling. In [15][16][17] the authors 

consider transactions described by directed acyclic graphs that  contain non-preemptive tasks and 

communication costs, under FTP scheduling. For performance evaluation, authors use metrics such as: 

• Success rate: ratio between the number of data sets for which a feasible scheduling solution 

was found, and the total number of data sets. [12][13] 

• Scheduling index: the worst distance between the transaction’s worst case response time and 

its deadline.[11] 

• Execution time of the algorithm.[11][12][14] 

Another important aspect for performance evaluation is the test data set. It has to be general enough 

to allow a relevant interpretation of the experimental results. However, there are papers [12][14] that 

use test data sets that, in our opinion, are not general enough.  

When doing a comparison between two algorithms, it is a good idea to run the same test data sets 

with both algorithms. This approach is very hard to achieve or even impossible if researchers do not 

make public their tools and test data sets. At this time, very few research groups make available their 

tools and data sets.   

3. Identified issues 

The objective of our research is to schedule a set of real-time transactions on multiprocessor 

(distributed) platforms and to guarantee that all their constraints are respected. Our work addresses two 

important aspects of multiprocessor scheduling: task allocation to processors and the order for task 

execution on each processor. We intend to give a composite solution to these problems. 

We consider the following types of constraints for the explored real-time systems: 

• Precedence: the release and execution of a task may be conditioned by the execution of other 

tasks or reception of some messages, and thus, precedence relations between tasks are 

created. We represent applications as transactions. 

• Real-time: Transactions have to finish their execution before their deadlines. If any deadline 

misses are detected, the application is considered not schedulable. 

• Resource: each task can be deployed on a sub-set of the available platform nodes, those that 

provide all requested capabilities.  

We propose two solutions to this problem: 
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• An algorithm that builds static cyclic schedules for each processor or network segment that 

belongs to the platform. 

• A genetic algorithm that finds feasible system setups. Tasks are allocated to processors and 

are assigned deadlines such that, under local EDF scheduling, all transactions will meet their 

deadlines. 

The detailed solutions are presented as follows. 

4. The cyclic executive-based scheduling technique  

The cyclic executive-based scheduling technique is best suited for multiprocessor (distributed) 

embedded systems that have limited processing and communication resources. In this case, the 

processing overhead introduced by the scheduler must be as low as possible such that the applications 

will not be delayed. The lowest scheduling overhead is obtained when using pre-computed schedules. 

Then, the scheduler does not need to make any scheduling decisions at runtime. It only chooses the job 

indicated by the schedule. The cyclic executive scheduling approach uses these pre-computed schedules.  

The cyclic executive scheduling approach was chosen after weighing both its advantages and 

disadvantages [20].  

The advantages are: 

• The execution schedule is predetermined, and it guarantees that all deadlines are met. Future 

system execution is determined based on the schedule computed for a cycle.  

• There are fewer context switches. 

• Overheads introduced by context switches are low. 

• The processor level scheduler is very simple. It only has to dispatch jobs according to the 

predefined schedule. There is no need for complex scheduling policies that can introduce 

large computational overheads.  

The disadvantages are: 

• The cyclic executive is best suited for harmonic task systems. 

• The maximum allowed worst case execution time is constrained by the value of the minor 

cycle. 

• Changes in the system can’t be made at runtime. 

• Job overruns can’t be handled. 

Some of the mentioned disadvantages can however be solved through system design decisions, such 

as enforcing harmonic task periods or splitting large tasks into smaller ones. 

The design of the algorithm that generates cyclic schedules for real-time transactions on 

multiprocessors is presented as follows.  

4.1. System model 

 To be able to build the schedule, one has to formally describe the workload and the underlying 

platform. In the next subsections, the workload and the platform models are presented.  
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4.1.1. The Workload Model 

Applications are represented as preemptive sets of tasks (T). Each task (tT) is characterized by its 

worst case execution time (e) and by a set of execution constraints. Task execution is constrained by 

resource and data availability. Each task can only be executed on a subset of the available processors 

and can start its execution only if all its data dependencies have been solved. Tasks can produce data, 

which is considered “available” only at the end of their execution. Data is then ready to be used by other 

tasks, which, at their turn, can produce data. Data dependencies create precedence relations between 

tasks. Due to these precedence relations, tasks form directed acyclic graphs (DAGs) called transactions.  

Real-time transactions have the following parameters: 

• Task graph (G) – a DAG which describes the execution flow dictated by data dependencies 

between tasks 

• Period (p) – the repetition period of the transaction 

• Phase ( ) – the release time of the first instance of the transaction 

• Deadline (D) – the relative deadline of the transaction; we assume that transactions have 

hard deadlines (deadline misses are not accepted) 

The task graph consists of a set of nodes (N). A node niN contains a task (ti) and its “children”, a 

set of tasks which use data produced by ti. Between two nodes ni and nj there is a directed edge (ni, nj) 

only if tj children(ti). In the context of a task graph G, we will use notations children(ti) and parents(ti) 

to refer to the set of tasks which use the data produced by ti and the set of tasks that produce the data 

which is used by ti, respectively. 

At the start of each period, an instance of the transaction is ready to be executed. A transaction 

instance contains task instances (jobs). The execution of a transaction starts with the execution of jobs 

that don’t have data dependencies (jobs don’t have to wait for data to be available). Gradually, all jobs 

in the transaction instance are executed, as soon as their data dependencies are resolved.  

Task description does not contain any specific real-time parameters such as phase ( ), period or 

deadline. These parameters are present in the transaction description. These real-time parameters are 

inherited by the tasks in the task graph, from the transaction. The phase of the first task in the transaction 

is equal to the transaction phase. The deadline of the last task in the transaction is equal to the transaction 

deadline. All tasks that execute after the first task and before the last task have variable phases and 

deadlines. Their phases are computed as a function of their “parents” phase and execution time: 

))(),()(max()( ikkki tparentsttett +=                                                                                (1) 

A real-time workload model W=(T, TR) contains a set of tasks and a set of transactions. Fig. 1 shows 

an example of such a workload model. T is a set of five tasks and TR a set of three transactions. For each 

task, the worst case execution time and the set of processors (on which the execution is possible) are 

known. Transactions describe the flow of execution created by precedence relations between tasks. For 

example, in transaction tr3, the jobs of tasks t2 and t3 can begin their execution only if the job of task t4 
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has finished its execution. In the same transaction, the job of t5 will begin its execution if the jobs of t2 

and t3 have finished. 

 

Figure 1. A workload model with five tasks and three transactions that run on 4 processors. 

4.1.2. The Platform Model 

These real-time applications execute on a distributed platform, which consists of multiple nodes that 

communicate through a network. Each node has a single processor and a buffer, where data generated 

by tasks is memorized until use.  The execution rate of all tasks is the same on all processors.  Nodes 

have different capabilities (e.g. not all nodes can measure the temperature of the environment), and 

therefore, a task can execute only on the platform nodes which provide all requested capabilities. As 

previously presented, each task has an associated set of processors that are able to execute it. 

As communication scheduling is out of the scope of this research, it is assumed that the 

communication network insures real-time transmission of data packets between tasks. 

Data transmission time is included in the execution time of the task that produced the data. Even if 

more than one tasks use the produced data, it is considered that the transmission is done only once. Data 

reception time is included in the execution time of the task that uses the data. Data transmission and data 

reception times are the same if the transmitter and receiver tasks execute on the same node, or on 

different nodes. Data transmission is asynchronous. This means that a task will finish its execution as 

soon as data transmission is finished. Data is then buffered until the receiver tasks are released. The 

transmitter task will not block until the release of the receivers.   

Fig. 2 shows an example of communication between tasks. Tasks are placed on time axes. Tasks t1 

and t2 execute on the same processor, t3 executes on another processor.  Task t1 produces data that is 

later used by t2 and t3. The gray part of task execution depicts the portion of task execution time that is 

used for data transmission or data reception.   

P={P1, P2, P3, P4} – available processors 

T = {t1, t2, t3, t4, t5}   G1:      

 t1 = (e1, {P1, P2})            G2:                        

 t2 = (e2, {P1, P2, P3})   

 t3 = (e3, {P4})   G3:     

 t4 = (e4, {P1, P2, P3})            

 t5 = (e5, {P2, P4})                    

 

TR = {tr1, tr2, tr3}  

tr1 = (G1, p1, 1, D1)  

tr2 = (G2, p2, 2, D2)         

tr3 = (G3, p3, 3, D3) 

G1 = {(t1, {t2}), (t2, {})} 

G2 = {(t1, {t3}), (t3, {})} 

G3 = {(t4, {t2, t3}), (t3, {t5}), (t2, {t5}), (t5, {})} 

 

t4 

t1 

t1 t2 

t3 

t2 

t3 

t5 

t1 

t1 

t4 



7 | Multiprocessor real-time scheduling 

 

 

 

 

 

Figure 2. Communication between tasks. 

The processing resources of the platform are modeled as a homogeneous multiprocessor P={P1, P2, 

… , Pm} composed of m processors. Similar to the resource partition model presented in [21], each 

processor is modeled as ),( iiiP = , where i represents the processor available time during the 

period i . i is expressed as a union of non-overlapping time intervals:   

         
k

kki ba ],[= , where 1+ kkk aba  and kb                                                         (2) 

The semantic of this representation is that processor Pi has the same availability in any

])1(,*[ ii kk + time interval. This representation will help us compute a periodic schedule for each 

processor. 

4.2. Building the cyclic schedule 

Under the assumptions of the previously described workload and platform models, our scheduling 

problem reduces to multiprocessor scheduling. This solution is an adaptation of the uniprocessor cyclic 

executive model described in [22], to multiprocessors and transactions.  

The cyclic executive is a simple scheduler that uses a cyclic schedule that establishes the job execution 

order. The cyclic schedule is computed offline, before system start. This schedule covers job execution 

over a time period. At the start of each new period, the cyclic schedule is restarted.   

The cyclic executive model is best suited to schedule harmonic task systems, because in other cases 

the length of the schedule can be too large to be of any use in real-world systems. A periodic task system 

is harmonic if all task periods are multiples of the smallest task period. 

In this case, tasks inherit the periodicity of transactions. In consequence, many tasks will have the 

same period. So, the condition to have a harmonic transaction set is less restrictive on application system 

design.   

The choice of the cyclic executive was made because: 

• The static cyclic schedule used by the executive guarantees that all transaction deadlines are 

met. It does not need further analysis to demonstrate its feasibility. 

• By computing the schedule for a cycle, the entire future system execution is predicted. 
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• The method does not involve complex Response Time Analysis or other schedulability 

analysis techniques. 

• The computational overhead introduced by the local processor scheduler is minimized. No 

additional scheduling decisions have to be made at runtime. 

• The method reduces the number of context switches. 

Other scheduling-related assumptions are: 

• Jobs can be preempted. 

• Jobs are not allowed to migrate, but different jobs of the same task can be started on different 

processors. 

The objective is to allocate jobs to processors, such as job constraints are respected (deadline, resource 

constraints and data dependencies). For each processor, a cyclic schedule will gradually be built, as jobs 

are allocated processor time. 

A cyclic schedule is defined as a pair ),( = S , where  is the schedule repetition period.  is an 

ordered sequence of executables ),,( iiki erj= , where jk is the executed job, ri is the start time of the 

executable and ei is its execution time. 

 i , j in , if i < j , then iij err +                 (3) 

Jobs can be preempted, so the execution of a job can be composed of more than one executables. 

Each executable has a repetition period equal to the schedule repetition period. 

To obtain the set of cyclic schedules for the multiprocessor, a cyclic schedule for each processor

),( iiiP = must be computed. It is assumed that processors have equal periods. Each schedule’s 

repetition period must be equal to the processor period and equal to the least common multiple (LCM) 

of the transaction set periods: 

})|)(({ TRtrtrpLCM kk =                                (4) 

Each executable in the schedule occupies processor time, each period. A new executable can be added 

to the cyclic schedule only if the requested time interval is available on the processor. 

To create the cyclic schedules: 

• First, the list of jobs that will have to be executed during  is computed.  

• Then, jobs are allocated while gradually building intermediate cyclic schedules for each 

processor.   

• Each taken allocation decision is final.   
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4.2.1. The List of Jobs 

For each transaction trTR, there will be 
)(trp


 transaction instances. Each transaction instance 

contains jobs that have to be executed according to its task graph. For each job (j) the following 

information is needed: 

• Release time (r) – time when the job starts its execution. The release time of a job is 

computed with equation (5).   

)()1()( trDktr −+=                                   (5) 

• Deadline (D) – equal to transaction instance deadline.  

)(trDkD =                                                                                          (6) 

• Completion time (c) - time when the job completes its execution. 

• Remaining transaction execution time (E) – transaction execution time starting with this 

job, to transaction end. 

• Priority (Pr) – The job with the earliest release time is scheduled first. If there are jobs with 

the same release time, the one that is closest to deadline is first. 



+−
+=

)(
Pr

ErD
r                                                                               (7) 

• Scheduled – “true” if the job was scheduled. 

• Ready – “true” if the job is ready to be scheduled. A job is ready to be scheduled only if its 

“parents” have already been scheduled.   

• The transaction to which it belongs (tr). 

• The task graph node that generated it – needed to compute data dependencies (n). 

• The task that generated it (t). 

• The instance sequence number (k, 1 k
)(trp


) 

4.2.2. Job Allocation 

To allocate jobs to processors, the following steps are repeated until all jobs in the list of jobs are 

scheduled: 

1. The first step is to choose the job that has the lowest priority value, from the job list. Only 

jobs which are “ready” (do not have any unresolved data dependencies) can be selected.  

2. The second step is to select a processor for the job. From the subset of processors on which 

the job can execute (obtained from the corresponding task), the processor on which the job 

would complete earliest is chosen. If there are two processors that can provide the same 

completion tine, the one least loaded is selected.  

3. In the third step, the job is locally scheduled on the selected processor.  

4. At the end, job’s “children” are marked as “ready”, and the release time in recomputed for 

all unscheduled jobs belonging to the transaction instance. The release times have to be 

recomputed, because: 
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o It is not guaranteed that each job receives a time interval that starts exactly at its 

estimated release time. 

o Jobs can be split over many execution intervals. Job’s children can only have release 

times greater or equal to its completion time.  

After re-computing the release times, there may be cases in which unscheduled jobs would certainly 

miss their deadlines, and then, the transaction set would be considered not schedulable.  

The pseudocode for the job allocation strategy is listed below. 

Algorithm 1: Job Allocation Strategy 

Input: J - the list of jobs; P – the list of processors 

Output:  – the set of cyclic schedules 

Begin 

 

while(NotScheduled(J)) 

{ 

 j = SelectJobToSchedule(J); 

 p = SelectProcessor(j,P); 

 if (Processor selection failed)  

    {  

         Transactions could not be scheduled;  

         break; 

    } 

 Schedule(j,p); 

 MarkReadyJobs(Children(j)); 

 RecomputeReleaseTimes(j,J); 

    if (Jobs miss deadlines)  

    {  

         Transactions could not be scheduled;  

         break; 

     } 

} 

Σ = GetSchedules(P); 

 

end 

 

4.2.3. Schedule generation 

For each processor, a scheduling algorithm (scheduler) receives the job as input, and produces a list 

of executables, which are then added to the processor schedule. The scheduler searches for available 

execution time intervals on the processor, which match the job execution request. The needed execution 

time intervals are then occupied and the corresponding executables are created. 

To optimize the search for available execution time intervals, the processor available time i is 

partitioned in
GCD

l


=  sub-intervals, where GCD is the greatest common divisor of the transaction set 
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periods. Each sub-interval can have at most l available units of execution time. When an execution time 

interval is occupied, it is removed from i . i is expressed as: 


k

kkjli ba ],[);,...,,( 21 ==  , where 1+ kkk aba  and lbk                   (8) 

The job j which has to be scheduled, initially requests [r(j), r(j)+e(j)] execution time interval. In most 

cases, this interval is not available. The scheduler searches the best match, which can be an ordered list 

of n intervals ikk ba ],[ , where )()(,)( 1 jejrbajr n + and 1+ kkk aba . For each interval, the 

corresponding executable is created ),,( kkkk abaj −= and added to the cyclic schedule. The 

pseudocode for the generation of a cyclic schedule is listed below. 

Algorithm 2:  Generation of a cyclic schedule 

Input: j - the list of job; r(j) – release time of j; e(j) – execution time of j;  – processor available 

time; l – number of sub-intervals of   

Output: EL – the list of executables 

Begin 

 

remainingExecTime = e(j); 

searchKey = r(j)/l; 

startTime = r(j)%l; 

while(remainingExecTime>0) 

{ 

 Foreach(Interval [a,b] in [searchKey]) 

    { 

    if (startTime < b) 

       { 

           if (a > startTime)   {  startTime = a; } 

           if (b >= startTime + remainingExecTime) 

           { 

          s= searchKey * l + startTime; 

             EL.Add(j, s, s + remainingExecTime); 

             Δ.Remove(δ[searchKey], startTime, startTime+ remainingExecTime); 

             return EL; 

            } 

            else 

              { 

                   s= searchKey * l + startTime; 

                   EL.Add(j, s, s + b); 

                   Δ.Remove(δ[searchKey], startTime, b); 

                   remainingExecTime -= b - startTime; 

                   startTime = b;                             

               } 

           }   

       }  

  searchKey ++; 

  startTime = 0; 

} 
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return EL; 

 

end 

To obtain a multiprocessor schedule, cyclic schedules have to be generated for each processor. The 

proposed scheduling algorithm splits the job’s execution over the available processor time. Unlike the 

classic cyclic executive technique, our approach does not impose that the job’s execution time is less 

than the minor cycle (GCD of the transactions’ periods).  Therefore, our method is more general.  

4.3. Experimental evaluation 

To validate the proposed scheduling method, we implemented a tool that receives as input a text file 

which contains the workload model as previously described, and the number of processors on which the 

workload should be scheduled. The tool generates a text file that contains a cyclic schedule for each 

processor, by using the proposed multiprocessor cyclic executive method. 

 

Figure 3. A workload model with five tasks and three transactions that run on 4 processors. 

The test configuration has 3 processors, 20 tasks and 6 transactions. The workload model is described 

in Fig. 3. It is assumed that each transaction starts at time =0, and that transaction period is equal to 

the deadline. The total utilization of the transaction set is 2.8, which would generate an average load of 

0.933 on each processor. 

P={P1, P2, P3} – available processors 

T = {t1, t2, … , t20}    

 t1 = (3, {P1, P2})      t8 = (1, {P1, P2, P3})    t15 = (2, {P1, P2, P3}) 

 t2 = (3, {P1, P2, P3})      t9 = (2, {P1, P2, P3})      t16 = (2, {P1, P2, P3}) 

 t3 = (3, {P1, P2, P3})       t10 = (2, {P1, P2, P3})     t17 = (2, {P1, P2, P3}) 

 t4 = (2, {P1, P2, P3})        t11 = (3, {P1, P2, P3})     t18 = (2, {P1, P2, P3}) 

 t5 = (2, {P1, P2, P3})       t12 = (1, {P2, P3})          t19 = (2, {P1, P2, P3}) 

 t6 = (4, {P1, P2, P3})        t13 = (3, {P1, P2, P3})    t20 = (2, {P1, P2, P3}) 

 t7 = (2, {P2, P3})      t14 = (3, {P1, P2})     

TR = {tr1, tr2, tr3, tr4, tr5, tr6} 

tr1 = (G1, 10); G1 = {(t1, {t2}), (t2, {})} 

tr2 = (G2, 10); G2 = {(t3, {t4}), (t4, {})} 

tr3 = (G3, 15); G3 = {(t5, {t6}), (t6, {t7}), (t7, {})} 

tr4 = (G4, 30); G3 = {(t8, {t9, t10}), (t9, {t11}), (t10, {t11}), (t11, {t12, t13}), (t12, {t14}),  

                               (t13, {t14}), (t14, {})}} 

tr5 = (G5, 15); G5 = {(t15, {t16, t17}), (t16, {t18}), (t17, {t18}), (t18, {})} 

tr6 = (G6, 30); G6 = {(t19, {t20}), (t20, {})} 
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Our tool generated the following schedules with=30: 

• S(P1)={(t1;0;3), (t8;3;1), (t6;4;4), (t20;8;2), (t10;10;2), (t18;12;2), (t11;14;3), (t15;17;2), 

(t16;19;2), (t1;21;3), (t14;24;3), (t18;27;2)} 

• S(P2)={( t3;0;3), (t19;3;2), (t4;5;2), (t16;7;2), (t7;9;2), (t3;11;3), (t2;14;3), (t12;17;1), (t13;18;3), 

(t3;21;3), (t7;24;2), (t4;26;2)}  

• S(P3)={( t5;0;2), (t15;2;2), (t2;4;3), (t9;7;2), (t17;9;2), (t1;11;3), (t4;14;2), (t5;16;2), (t6;18;4), 

(t17;22;2), (t2;24;3)} 

Processor loads obtained after scheduling are: 0.9 on P1, 0.94 on P2 and 0.96 on P3. 

In another experiment, the configuration is 7 tasks and 3 transactions to be scheduled on 2 processors. 

The transaction set generated an average load of 0.84 on the processors. One task had the execution time 

equal to the most frequent transaction period. This condition makes scheduling more difficult in the case 

of cyclic executives. Our tool generated schedules for this configuration, too. 

To make a statistical evaluation of the proposed scheduling technique, transaction sets were generated 

with the workload generation tool presented in Chapter 5. The imposed constraints on the generated data 

sets are: 

• Chain transactions 

• Transactions in a set have harmonic periods and deadlines 

• The system is composed of 6 transactions on 4 processors, and of 10 transactions on 8 

processors 

• A transaction contains at most 10 tasks 

Transaction sets were generated with increasing average system utilization starting at 40% and up to 

99%. For this evaluation, 390 transaction sets with these characteristics were used. 

The following metrics were used: 

• Success rate: ratio between the number of data sets for which a feasible scheduling solution 

was found, and the total number of data sets. 

• Execution time of the algorithm. 

The evaluation of the proposed cyclic executive scheduling technique (CYEX) was made by 

comparison to a global EDF scheduler (LAX-EDF). The global EDF scheduler chooses the jobs that 

have the closest deadlines at runtime. These jobs are allocated to any available processor; jobs can 

migrate on different processors during their execution. For the EDF scheduler to work, intermediate 

tasks inside the transaction must be allocated deadlines. In this case, the deadlines were computed with 

equation (9).  

𝑙 = 𝐷 − ∑ 𝐶𝑘𝑇𝑎𝑠𝑘𝑠                                                                                        (8) 

𝑑 = 𝐶 + 𝑙 ∗
𝐶

∑ 𝐶𝑘𝑇𝑎𝑠𝑘𝑠
                            (9) 
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Where D, C are the transaction’s deadline and execution time, l is the transaction’s laxity and d, c are 

the deadline and the execution time of a task. To compute intermediate tasks’ deadlines, the transaction’s 

laxity time is proportionally divided between tasks.  

LAX-EDF scheduling technique was implemented using the RTMultiSim simulation tool that is 

presented in Chapter 5. As it is a runtime scheduler, its functioning was simulated, and the performance 

comparison was based on the simulation results. 

It is expected that LAX-EDF has a better success rate than CYEX, because it is a runtime scheduler 

that allows job migrations. All test transaction sets were scheduled with both techniques.   

Experimental results are presented in Fig 4, 5 and 6. It was observed that CYEX has better success 

rate than LAX-EDF for scheduling 6 transactions on 4 processors. For the case of 10 transactions on 8 

processors, CYEX has 20% less success rate than LAX-EDF. During the experiments, it was observed 

that CYEX has some problems in scheduling heavy (low laxity) transactions.  

In terms of execution time, CYEX is better than LAX-EDF (see Fig. 6). CYEX finds the schedules 

earlier that LAX_EDF is able to generate them in RTMultiSim. 

 

Figure 4. Success rate for scheduling workloads with 6 transactions on 4 processors. 

 

Figure 5. Success rate for scheduling workloads with 10 transactions on 8 processors. 
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Figure 6. Execution time of CYEX compared to LAX-EDF. 

Concerning related work, the cyclic executive model didn’t receive much attention from the research 

community, even if it is used in safety-critical systems and in real-time network protocols such as 

WorldFIP [23]. A uniprocessor cyclic executive model implemented in Ada was formally described in 

[22].  In [24], an adaptation of the cyclic executive is used for scheduling high-criticality tasks in a 

mixed-criticality system. The cyclic executive is one of the several schedulers they used in their 

hierarchical scheduling model.  

More recently, an implementation of a multiprocessor cyclic executive in safety-critical Java was 

presented in [25]. They compute cyclic schedules using the UPPAAL [26] model checker. As they do 

not make a statistical evaluation of their approach, we are not able to compare it with our approach in 

terms of success rate or a similar metric. However, they report that their schedule generation process, 

done with UPPAAL, takes in the case of 16 tasks and multiple resource constraints as much as 30 

minutes, which is far more than the execution time of CYEX.   

We conclude that our approach, CYEX,  has better success rate compared to a global EDF approach, 

but only in the case of small systems. Moreover, CYEX is faster than the global EDF approach and even 

than the UPPAAL approach presented in [25]. 

5. A genetic approach for multiprocessor real-time scheduling 

In this section, an optimization-based technique that enhances the scheduling of real-time 

transactional multiprocessor systems is described. The technique addresses two important aspects: task 

allocation and task deadline assignment. In order to satisfy real-time restrictions genetic search and 

simulation are combined to find feasible system setups. The genetic engine looks for a feasible task-to-

processor mapping (allocation) and deadline setting that meets the given real-time and dependency 

restrictions. The simulator is used to evaluate the behavior and consequently the quality of different 

candidates. Through an iterative process, we obtain a feasible scheduling solution by choosing the best 

candidate result. 

This contribution addresses the adaptation of a genetic algorithm to the multiprocessor scheduling 

problem and specifically the definition of a multi-criteria fitness function that describes the quality of a 

schedule related to the imposed time restrictions. 
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5.1. System model 

5.1.1. Workload model 

The real-time transactions model described in Chapter 2 is used for the genetic approach. A 

transaction is a sequence of tasks executed periodically, which has an end-to-end deadline. This means 

that the transaction must finish its execution before that deadline. We choose to represent the precedence 

dependency between tasks in a transaction through a list.  

A real-time transaction has the following defining elements: 

• Task list (L) – a list that describes the dependencies between tasks and determines the 

execution order restrictions.  

• Period (T) – the repetition period of a transaction. 

• Deadline (D) – the time limit for a transaction, relative to its release time. 

A task has the following parameters: 

• Execution time (C). 

• Deadline (d) – time limit relative to the task’s release time.   

• CPU affinity – list of processors on which the task can be executed. 

Transactions are released periodically in accordance with some external or functional requirements. 

A transaction instance contains task instances called generically jobs. The execution of a transaction 

starts with the execution of jobs that do not have precedence dependencies. A job is considered for 

scheduling only if its dependences are solved (jobs that precede it are executed). 

In case of a real application, only transaction deadlines are specified. Intermediate task deadlines are 

not specified. However, the scheduling algorithm, in our case EDF, requires such deadlines in order to 

establish the execution priorities. One of the main goals of our research is to determine these 

intermediate deadlines in a way that all real-time, precedence and resource restrictions are satisfied.  

Our workload model is general, in the sense that it may be configured to represent independent sets 

of tasks or distributed applications, including network communication tasks (messages). The message, 

in our case, can be represented as a task, which is handled only by a network segment (represented as a 

processor), configured in the CPU affinity parameter. 

5.1.2. Platform and Scheduling Models 

The processing resources of a platform are modeled as a multiprocessor system P={P1, P2, … , Pm} 

composed of processors (CPUs) and possibly network segments. From an abstract point of view, the 

network segments may be assimilated with processors that can handle messages. Messages are 

scheduled for transmission on a network segment in a similar way as tasks on a processor. This model 

can cover a wide range of system configurations that span from parallel systems (without messages and 

network segments) to distributed ones.  

It is assumed that each processing resource has its own scheduler. The scheduler chooses the job with 

the highest priority to be executed, at a certain point in time, on the processing resource. The priority is 
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computed by the scheduling algorithm implemented in the scheduler. The experiments use the EDF 

algorithm that assigns priorities to jobs according to their deadlines, so the job that has the closest 

deadline will have the highest priority. It is known that the EDF algorithm is optimal for single processor 

systems [1] and it can handle task set utilizations of up to 100% in the case of independent tasks. 

 The workload model must be mapped on the platform, so that all transactions meet their deadlines. 

To accomplish this goal, each task must be allocated to a suitable processing resource. On each 

processing resource, each task must have a deadline, to be able to compute its jobs priorities. Both, 

allocation and deadline assignment are solved with the proposed approach. 

5.2. Scheduling with a genetic approach  

This solution addresses two important aspects of multiprocessor scheduling: task allocation to 

processors and intermediate task deadline assignment. 

The task allocation and deadline assignment problems generate a multidimensional solution space, 

which increases with the number of processors and the number of tasks in the system. As mentioned 

before, finding an optimal solution is an NP-complete problem. However, sub-optimal solutions are 

acceptable in our case if transactions’ end-to-end deadlines are not exceeded, even if some intermediate 

task deadlines are missed. Our objective is to find this type of sub-optimal scheduling solution.  

The genetic algorithm is used as a search and optimization method, because it is well suited for 

problems with a large search space and multiple optimization objectives. Genetic algorithms are inspired 

from biological evolution. A genetic algorithm starts with an initial set of possible solutions called 

population. At each iteration step, it generates a new population by means of natural selection, crossover 

and mutation. Each solution is evaluated with a fitness function. The fittest solutions will propagate their 

characteristics to later populations, generating improved new solutions. 

 The continuous genetic algorithm was adapted to the problem domain. Scheduling variables that 

must be optimized are task allocations to processors and task deadlines. The parameters that need to be 

minimized are transaction response times, task response times and the processor utilization factor 

(defined later by equation 16).  

Initial solutions are obtained by applying known heuristics for both task allocation to processors and 

intermediate task deadline assignment. New populations are generated mostly through crossover, but 

also by keeping the best individuals from the previous population. After obtaining a new population, 

mutation is applied. The variables of the genetic algorithm are population size, crossover and mutation 

probability factors.  

The fitness of a solution is evaluated through simulation. The simulator receives a workload model 

obtained from the individual representation created in the genetic algorithm, and creates the execution 

schedule using the platform and the scheduling predefined models. This approach is based on the results 

in [27], where the authors showed that for deterministic fixed priority scheduling algorithms (e.g. EDF) 

the schedulability analysis must be performed during a period equal to twice the hyper-period of the task 

set (hyper-period = least common multiple of tasks’ repetition periods). Therefore, each configuration 
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setup is simulated for two hyper-periods of the transaction set, and the timing results obtained through 

simulation are used for the computation of the fitness function. 

A conceptual schema of the proposed technique is depicted in Fig.7. The optimization-based 

technique comprises three steps. In the first step, the genetic algorithm generates a solution population. 

The solutions are evaluated through simulation in the second step. In the third step, based on the 

evaluation, the genetic algorithm generates a new solution population, which replaces the previous. 

These steps are iterated until a feasible solution is reached. 

 

Figure. 7. Scheduling using a genetic approach 

Algorithm 1 shows the pseudo-code for the genetic algorithm. New populations are mostly generated 

through crossover, but also by keeping the best individuals from the previous population. After obtaining 

a new population, mutation is applied. The configurable variables of the genetic algorithm are population 

size, crossover and mutation probability factors. If at any iteration step, it is observed that there is not 

enough genetic diversity mutation is applied with a higher rate on the population, before the creation of 

a new population. 

Algorithm 1: Genetic scheduling 

Begin 
 

Generate initial population; 

For each individual in population compute fitness; 

While (generations < max_generations) 

{ 

   If (not enough genetic diversity) 

   { 

        Apply mutation on population with higher rate; 

   } 

   Create new individuals with crossover; 

   Add new individuals to new population; 

   Choose best individuals from population;  

   Add best individuals to new population; 

   Replace population with new population; 

   Apply mutation on population; 

   For each individual in population compute fitness;    

Step 3: Replaces 

Step2: 

Evaluates 

New solution 

population 

Genetic 

algorithm 
Simulation 

Step1: 

Generates 

Solution 

population 

Fitness 
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} 

 

End 

5.2.1. Genetic representation of a scheduling solution 

Solutions to the processor allocation and deadline assignment problems are represented as individuals 

in a population. Each individual (chromosome) is composed of a sequence of genes. A gene is an integer 

value that may represent a processor number (identifier) on which the task is allocated, or a task deadline. 

Each gene has its own domain of values (Δ). For processor allocation, the domain is the task’s CPU 

affinity list.  

𝛥𝑃

𝑇𝑎𝑠𝑘𝑗 = {𝑃𝑖|𝑃𝑖 ∈ 𝐶𝑃𝑈𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦𝐿𝑖𝑠𝑡𝑇𝑎𝑠𝑘𝑗
}                                                                                  (10) 

In the case of task deadlines, the value domain is continuous between the execution time of the task 

(minimum) and the largest possible deadline (maximum) assuming that all subsequent tasks in the 

transaction can execute without interruption, without exceeding the transaction deadline. Note that a 

task’s deadline is relative to its release time. A task is not released until all its predecessors finished their 

execution, so the assigned deadlines do not determine or enforce the precedence between tasks.     

      𝛥𝑑

𝑇𝑎𝑠𝑘𝑗 = [𝑑𝑗
𝑚𝑖𝑛, 𝑑𝑗

𝑚𝑎𝑥],  

𝑑𝑗
𝑚𝑖𝑛 = 𝐶𝑗,                                                                                                                                        (11) 

      𝑑𝑗
𝑚𝑎𝑥 = 𝐷𝑘 − ∑ 𝐶𝑙 , 𝑇𝑎𝑠𝑘𝑙 ∈ 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑘 

Even though the transactions have hard deadlines (meaning that if a transaction misses its deadline, 

then the scheduling is considered not feasible) the tasks inside transactions have soft deadlines. This 

happens because even if several intermediate tasks miss their deadlines, it is still possible for the last 

task (and consequently the transaction) to meet its deadline. For this reason, we allow a less constrained 

value domain for genes that represent task deadlines. A less constrained deadline domain can increase 

the chances of finding a good scheduling solution.  

The chromosome contains two adjacent genes for each task in the workload. The first gene 

corresponds to the processor to which the task is allocated and the second is the task’s deadline. The 

order of the genes is given by transactions. Fig. 8 gives an example of how the chromosome is 

constructed based on the system model. The example is composed of four processors and two 

transactions (with the corresponding tasks). Tasks can be allocated to any of the four processors. For 

instance, the first gene shows that task t1 is allocated to processor P1 and its intermediate deadline is 10 

time units. The next gene is for task t2 allocated on P0 and with deadline of 5 time units. 
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Figure 8. Chromosome construction based on the transaction model 

For an efficient search, the initial population must have a large genetic variety. We generated the 

initial population in two steps. First, we created a number of individuals using task allocation heuristics 

such as First Fit or Round Robin. We also assigned the deadlines for tasks and messages choosing the 

smallest possible value as deadline (dmin). In the second step, we choose a random individual from the 

population, copy it and apply several mutations. The obtained individual is then added to the population 

only if there are no duplicates. The second step is repeated until the specified population’s size is 

reached. 

5.2.2. Genetic operators 

Two types of genetic operators are used: crossover and mutation. These operators are applied on the 

current population with predefined probability rates, to create new generations with better fitness. 

Crossover combines genes from two individuals to create two offspring, which will have mixed 

characteristics from the parents. For our scheduling problem, we use a two-point crossover operator. 

The parents are selected by tournament. From two randomly selected individuals, the fittest is chosen to 

be one of the parents. This way we give a chance to individuals that do not have the best fitness but may 

have good partial solutions to propagate their genes to later generations.  

Crossover is allowed only between different individuals. The crossover points are selected at random. 

Cases are eliminated when the points coincide or when they are at the two ends of the chromosome. A 

certain task can inherit the allocation gene from a parent and the deadline gene from the other parent, so 

it is not necessary that the genes between the crossover points include both allocation and deadline genes 

for a task. 

Mutation randomly changes the value of a gene in order to find a better solution and consequently to 

maintain a certain degree of genetic variety. Mutation is applied with a given probability on all 

individuals each time a new population is obtained.  

Two different mutation operators are applied. In the majority of cases, we applied the classic mutation 

operator that selects a random gene from the chromosome and changes its value, with another random 

value from the gene’s value domain. We also implemented a mutation operator, which chooses the new 

value from a sub-interval around the current value of the gene. The limited interval is set as a percentage 

of the maximum allowed interval.  

t1 t2 t3 t4 t5 

t6 t7 t8 TR2: T=30, D=30 

TR1: T=60, D=60 

Processors: P0, P1, P2, P3 

t1 t2 t3 t4 t5 t6 t7 t8 

P1,1 P0,5 P2,1 P0,1 P3,6 P1,5 P0,1 P3,3 

Chromosome: 1,10,0,5,2,10,0,10,3,6,1,5,0,1,4,3 

Assign (resource, deadline) pair to each task:  
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Experimental results improved when the interval was limited to 50% of the initial domain and later 

to 25%. We applied this type of mutation only on populations with good average fitness, because we 

suppose that their genes are close to their best values and we do not want to spoil good possible solutions 

through mutations that radically change the gene’s value. 

5.2.3. The fitness function 

The fitness function evaluates the quality of a given scheduling solution related with some chosen 

optimization objectives. A scheduling solution is considered the best if all transactions finish before 

their deadlines, all tasks finish their execution before their designated deadlines and if the tasks are 

uniformly allocated to the available processors. But, as mentioned before, we only look for sub-optimal 

solutions, in which at least all transactions finish before their deadlines. For this purpose, we establish 

three optimization objectives, with different weights.  

The most important optimization parameter is the transaction’s completion time, which has to be less 

than the transaction’s deadline. A solution is considered feasible if the transaction’s completion time is 

less or equal to the transaction’s absolute deadline. Another optimization objective is to have a rather 

uniform allocation of tasks over the existing resources. This will increase the system’s robustness and it 

can increase the effectiveness of the search. The third optimization objective is the task response time, 

which has to be less than the task’s deadline. We tried to differentiate between satisfying transactions 

deadlines and intermediate task deadlines in the sense that transaction deadlines are much more 

important (because they derive from real application constrains) and task deadlines are artificially 

introduced for the scheduling algorithm.    

In order to express all the above optimization goals, we defined a fitness function as a weighted 

combination (sum) of four fitness expressions. A smaller value means a better solution.  

The first component fTR measures the quality related to the transaction’s completion time (equation 

3). It is computed as a sum of terms, each term representing a transaction that does not meet its deadline. 

A term is an exponential function of the difference between the maximum response time Ri and the 

deadline Di of a transaction. The goal is to have all the differences equal to zero, which means that all 

transactions meet their deadlines.  

𝑓𝑇𝑅 = ∑ 2𝑚𝑎𝑥(𝑅𝑖−𝐷𝑖)
(𝑅𝑖−𝐷𝑖)>0                                                                                              (12) 

The second component measures if the intermediate tasks meet their deadline (equation 4). This 

component has a smaller weight. 

𝑓𝑡 = ∑ 2max (𝑟𝑗−𝑑𝑗)
𝑡𝑎𝑠𝑘𝑠                                                                                                               (13) 

The next component measures the degree of uniform allocation of tasks on processors (equation 14). 

It is the sum of the differences between the actual processor’s utilization factor Up and an average value. 

The goal is to obtain an allocation as close as possible to the average value. It is obvious that this 

component will have lower values if the transactions are composed of tasks with lower individual 

utilization that can be evenly spread on the available processing resources.  
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𝑓𝑎𝑙𝑙𝑜𝑐 = ∑ |𝑈𝑝 − 𝑈̅|𝑝∈𝑃                                                                                                      (14) 

where:                                

      𝑈𝑝 = ∑
𝐶𝑘

𝑑𝑘
𝑡𝑎𝑠𝑘𝑠∈𝑝                                                                                        (15) 

  𝑈̅ =
∑

𝐶𝑘
𝑑𝑘

𝑡𝑎𝑠𝑘𝑠

𝑐𝑎𝑟𝑑(𝑃)
                                                                                                                                     (16) 

Ck and dk are the execution time and deadline of task k. Card(P) is the number of processors. 

Below is the complete expression of the fitness function. 

𝐹 = 𝑓𝑇𝑅 ∗ 𝑤1 + 𝑓𝑎𝑙𝑙𝑜𝑐 ∗ 𝑤2 + 𝑓𝑡 ∗ 𝑤3                                                                              (17) 

Based on experiments, we found that a good combination of weights is: w1 = 1000, w2=100 and w3=1. 

A significant observation is that the most important factor should receive the largest weight. 

5.3. A technique that reduces the search space 

As the task allocation and deadline assignment problems generate very large solution spaces that 

increase with the number of processors and the number of tasks, the execution time of the genetic 

algorithm can be very large (e.g. hours). Moreover, as the solution space increases, the algorithm’s 

success rate reduces because it doesn’t always converge to an acceptable solution in an acceptable 

number of iterations, or it deadlocks (finds a local minimum).  

We intend to investigate if a smaller search space has a good impact on the genetic algorithms success 

rate, its speed and the fitness of the best solutions. This technique combines the optimization-based 

approach for finding a task to processor allocation with a non-iterative approach for intermediate task 

deadline assignment.  

The steps for finding a scheduling solution are: 

• In the first step, the chromosomes are created. 

• In the second step, a non-iterative algorithm or heuristic is applied to assign deadlines to all 

tasks. 

• In the third step, the fitness is computed.  

• In the fourth step, the genetic algorithm chooses the best individuals and applies the genetic 

operators to obtain a new population. 

Second, third and fourth steps are iterated until an acceptable solution is found. The genetic algorithm 

will create the chromosomes as described in section IV, but the genes that represent task deadlines will 

have constant values (determined in the second step) and will not be modified (mutated) during genetic 

iterations.  

We implemented two variants of the proposed technique, by using two distinct solutions for task 

deadline assignment. In the first variant, we used the algorithm proposed in [7], where the authors find 



23 | Multiprocessor real-time scheduling 

 

 

 

 

a deadline allocation by constructing an ordered list of tasks. The obtained deadline assignment depends 

on the distribution of computation times among the tasks and on task to processor allocation. 

In the second variant, we propose a deadline assignment heuristic similar to the ones presented in [8] 

and [9]. We computed the transaction laxity time (l) as in equation 9 and we divided it proportionately 

between the transaction’s intermediate tasks. The deadline is computed as the execution time to which 

is added the portion of the transaction’s laxity time (see equation 10). 

This deadline allocation heuristic is influenced by the transactions time parameters (deadline and 

execution time) and not by the task to processor allocation. 

The implementation variants allow us to explore two distinct strategies for deadline assignment, 

combined with the optimization-based technique, and to observe which of them is the most effective. 

5.4. Experimental evaluation  

For the experimental part, we developed a tool, which receives as input the system model and 

generates schedules according to the proposed optimization-based technique. The scheduling tool is 

composed of a genetic engine linked to a real-time system simulator. The genetic engine receives as 

input the application model composed of tasks and transactions. The transactions are translated into 

chromosomes. Afterwards, the genetic engine generates populations in search for better individuals 

(system configurations). At the end of the genetic iteration, it writes the results (chromosomes and 

corresponding fitness values) in a file.  

We use RTMultiSim for simulation. This tool is described in Chapter5. RTMultiSim is a discrete 

time-stepped simulator for real-time multiprocessor task scheduling and execution. It executes a given 

system model from an initial moment to a preset maximum simulation time. The simulation results are 

stored in a database. After an iteration of the genetic algorithm, all individuals in the population are 

passed to the simulation tool. The individual is translated into a simulation model. The simulation is 

executed for a time equal to twice the transaction set’s hyper-period. During simulation, the maximum 

response times of tasks and transactions are determined. Based on these parameters, the simulation tool 

computes the fitness value of the individual. Fitness values are supplied to the genetic algorithm, which 

continues the search with a new generation. 

 To explore the behavior of the proposed techniques in different scenarios, we use tools for automatic 

task set generation and transaction set generation that are described in Chapter 5. These tools can 

generate task/transaction sets with predefined cardinality (number of tasks/transactions) and total 

utilization factor, ensuring a random distribution of individual task utilization factors.  

The optimization-based technique can be used in different situations and scenarios. The most general 

problem is to find a feasible schedule for distributed transactions. By simplifying the general problem, 

our technique can find solutions for the allocation of independent tasks on a given multiprocessor 

platform, or the assignment of time parameters to tasks. This is possible due to the flexibility of the 

system model and of the simulation tool used for solution evaluation.  
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We chose to evaluate the optimization-based scheduling technique in the case of distributed 

transaction scheduling, which is the most complex of the scenarios mentioned before. To solve this 

problem, the genetic algorithm must find a good task deadline distribution besides a good task to 

processor allocation. 

Experiments allowed us to adjust the parameters of the genetic algorithm for a faster generation of a 

good solution. In case of mutation probability the best values was 1% for shorter chromosomes (20-30 

genes) and 0.6% for longer chromosomes (more than 100 genes), and for the crossover probability 70%. 

In some cases, a variable mutation ratio with a tendency of decreasing the probability in every generation 

had better results. The initial population was set to 60 individuals, as a compromise between variability 

and algorithm execution time; higher number of chromosomes require more simulation time. We let the 

population evolve to maximum 1000 generations. We also observed that using intuitive heuristics for 

the initial population generation, instead of random generation, is a better choice for a faster search. 

For the experiments, we generated two types of system models with the workload generation tool 

presented in Chapter 5. In the first case, we generated system models composed of 6 transactions on 4 

processors. In the second case, we generated models composed of 10 transactions on 8 processors. The 

generated models have partitioned scheduling (a task is assigned to only one processor, the task does 

not migrate) and don’t have any resource restrictions (all tasks are able to be execute on any processor). 

A transaction contains at most 10 tasks. Transaction execution times and task execution times are 

generated at random. The number of tasks in a transaction is random between 1 and the maximum 

number of tasks. The transaction sets have random periods of repetition, while their hyper-periods are 

less than 1500 discrete time units. The method used for transaction set generation is described in detail 

in Chapter 5. Our method insures a certain degree of generality for the data sets used for the evaluation. 

We generated transaction sets with average system utilization of 60%, 70%, 75%, 80%, 85%, 90%, 94%, 

97% and 99% (10 models for each utilization configuration).   

The obtained results from 3 sets of experiments (on the same data sets):  

• With the proposed optimization-based technique applied on both task allocation and 

deadline assignment sub-problems (OPT);  

• With the optimization-based technique composed with the deadline assignment algorithm 

in [9] (ORDER-OPT);  

• With the optimization-based technique composed with the deadline assignment heuristic 

that divides the laxity time between tasks (equation 10), which is similar to [8] and [9] 

(LAX-OPT).  

A feasible solution has the fitness less than 1000.  

For the evaluation, the following metrics were used: 

• Success rate: ratio between the number of transaction sets for which a feasible scheduling 

solution was found, and the total number of transaction sets.  
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• Average number of iterations: average number of iterations until a feasible scheduling 

solution is found. The runs that don’t find a feasible solution are not considered. This 

measure shows how fast a feasible solution is found. 

• Average fitness: average fitness of feasible scheduling solutions. 

Fig. 9 shows the success rate of the three proposed optimization-based approaches for 6 transactions 

on 4 processors as a function of system utilization (a description of system load). We use LAX-EDF 

scheduler, which we described in the previous section, as reference. All three algorithms have better 

success rate by at least 30%. LAX-OPT has slightly better results than OPT, while ORDER-OPT has 

the worst performance. OPT and LAX-OPT find feasible solutions for all transaction sets with 

utilizations up to 90%.  Between 90% and 99%, the success rate drops from 1 to 0. Fig. 10 shows the 

success rate for each approach for 10 transactions on 8 processors. OPT and LAX-OPT find feasible 

solutions for all transactions sets in the test set for utilizations of up to 70%. There is an average of 30% 

improvement compared to LAX-EDF. 

 

Figure 9. The success rates of the proposed techniques, for 6 transaction on 4 processors 

 

Figure 10. The success rates of the proposed techniques, for 10 transaction on 8 processors 

Fig. 11 and 12 show the average number of steps executed by the genetic algorithm until a feasible 

solution is found, as a function of system utilization. It may be observed that for 6 transactions OPT has 
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the best results, but note that for utilizations greater than 90%, it finds less feasible solutions than LAX-

OPT. For the case with 10 transactions OPT and LAX-OPT find feasible solutions in fewer steps. 

Fig. 13 and 14 show the average fitness of feasible solutions found with our approach, as a function 

of system utilization. In the case of 6 transactions on 4 processors, the solutions obtained by OPT have 

the best fitness. The solutions obtained by LAX-OPT have the worst fitness between utilizations of 80% 

and 97%, but, on the same interval, LAX-OPT has the highest success rate. In the case of 10 transactions 

on 8 processors ORDER-OPT has the best average fitness. However, considering that ORDER-OPT has 

the worst success rate we consider that the best overall results are obtained by LAX-OPT. 

 

Figure 11. Average number of steps executed until a feasible solution is found, for 6 transaction 

on 4 processors 

 

Figure 12. Average number of steps executed until a feasible solution is found, for 10 transaction 

on 8 processors 
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Figure 13. Average fitness of feasible scheduling solutions found, for 6 transaction on 4 

processors 

 

Figure 14. Average fitness of feasible scheduling solutions found, for 10 transaction on 8 

processors 

At this point, we can conclude that the optimization approach is efficient as it improves the results to 

as much as 80% for some data sets, compared to an algorithm that does not use optimization techniques, 

like LAX-EDF. Overall, the best average performance is obtained by OPT, but in some cases, LAX-

OPT finds more (5-10%) feasible solutions than OPT. During our experiments, we observed that LAX-

OPT and ORDER-OPT perform better for large problems, while for small problems they fail much more 

often that OPT. 

We further evaluate the performance of our optimization-based approach by making a performance 

comparison with related work. Azketa et. al. solve in [12], [13] and [14] a similar problem to ours by 

using a genetic algorithm. In [12] they use the genetic approach to optimize the scheduling solution 

found by an iterative algorithm that assigns static priorities to tasks in a transaction set. In [13] and [14] 

they extend their work and solve the task to processor allocation at the same time with priority 

assignment. We highlight the differences between our approach and the one presented in [14] in Table 

1. 
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The authors evaluate their work in [14] with only one transaction set for which they gradually increase 

the execution time of inner tasks to generate greater load, while keeping the other characteristics 

(repetition period, deadline, number of tasks) unchanged. In our opinion, our evaluation method is more 

general. However, because their implementation and test data set are not available, we replicated their 

tests using the description in the article and we applied OPT. We found that our approach starts failing 

at 67% load on this particular data set. They report that their genetic algorithm starts failing at 67% load, 

too. We can conclude that our approach has similar performance in terms of success rate, on their 

evaluation data set.  

In [13] the authors make a statistical evaluation of their approach by randomly generating 2 types of 

transaction sets, small (6 transactions) and large (12 transactions). They gradually increase the tasks’ 

execution time to obtain increasing system loads. Their best success rates are for small systems with 6 

transactions on 4 processors. In those cases, their algorithm started failing at system loads of around 

70%. For large systems, their algorithm starts failing at loads of around 60%. Our approach seems to be 

better in terms of success rate, since it starts failing at over 70% systems loads, for larger systems (10 

transactions on 8 processors).    

6. Conclusions 

This chapter presents two solutions for multiprocessor scheduling of real-time transactions.  

The first solution is best suited for small embedded systems, as it minimizes the computation overhead 

introduced by a scheduler. Performance evaluation shows that the cyclic executive-based approach is 

slightly better than a global EDF runtime scheduler, but only for small systems (e.g. 6 transactions on 4 

processors). For larger systems, the runtime EDF scheduler is better. In terms of execution time, we 

Characteristics OPT GA-Azketa 

Workload model Chain transactions Chain transactions 

Platform model Identical multiprocessor  Heterogeneous multiprocessor  

Resource restrictions Yes Yes 

Scheduler EDF FTP 

Chromosome  Genes for processor allocation 

and  task deadline  

Gene for processor allocation, 

priority is given by the gene’s 

position. 

Operators Mutation, Crossover Mutation, Crossover, Clustering 

Fitness function 
Minimize transaction response 

time and task response time;  

Uniform processors’ utilization  

Minimize transaction response 

time and resource utilization 

Fitness evaluation Fitness computed from  

simulation results 

Response time computed by 

holistic schedulability analysis 
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conclude that our schedule generation technique is faster than the runtime scheduler, and faster than 

other cyclic schedules generators know of. 

 The second solution uses a genetic algorithm combined with a simulation tool to find feasible system 

setups. By system setups, we mean: 

• Task to processor allocation 

• Intermediate tasks deadline assignment 

The genetic algorithm searches through the possible solutions, while the simulation tool evaluates the 

candidate solutions by means of the fitness function. We demonstrated through experiments that our 

approach improves non-iterative scheduling techniques by at least 30%. Compared to other similar 

optimization-based approaches, we estimate that our technique is at least 10% better in terms of 

scheduling success rate.   
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Chapter 5. Real-time systems simulation 

1. Introduction 

Multiprocessor systems are becoming the execution environment for most of today’s real-time 

applications. In consequence, developers need theoretical methods and experimental tools for evaluating 

the feasibility and time behavior of such systems.  As showed in many recent papers [1][2], real-time 

analysis on multiprocessor systems is not a trivial task, and in the general case when different restrictions 

(synchronization, casual dependencies, data race conditions, etc.) are considered, beside the time 

conditions, the problem has a non-polynomial complexity.  

In this context, empirical methods like simulation have become a more practical alternative to 

complex mathematical schedulability analysis. Even though simulation is mainly used to assess systems’ 

defects, it can be used to generate system schedules during a preset time interval. The authors of [3] and 

[4] showed that fixed priority algorithms (including RM and EDF) generate periodic schedules in the 

case of feasible periodic task systems. Therefore, an exact schedulability test would be to check the task 

set’s schedulability during this period. This type of test can be implemented in practice through a 

simulation tool.  

On the other hand, empirical methods such as simulation are used for the evaluation of new scheduling 

techniques. As we already mentioned in Chapter 1, the lack of standard methodologies and tools is an 

issue in the area of real-time systems. When we first started to evaluate our work in the area of real-time 

multiprocessor scheduling, we noticed that there were just a few multiprocessor simulation tools. We 

were not able to use any of those simulators, since some were very hard to extend with new features and 

new algorithms, while others were not even available for public use. Therefore, we started to develop 

our own simulation tool. 

 The goal was to develop a real-time simulator that can cover a multitude of cases from parallel 

architectures to distributed ones and from independent task sets to transactions or fork-join parallel tasks. 

We also included aspects of network communication.  

The resulting tool called RTMultiSim is a discrete time simulator that can be used to measure the time 

parameters of such systems and in predefined scenarios to demonstrate the feasibility of a real-time 

scheduling policy. It can be useful in evaluating the statistical influence of different parameters (e.g. 

CPU utilization, parallelism degree) over the real-time behavior of multiprocessor systems. In addition, 

we developed a synthetic workload generation tool, which provides input for the simulation tool.  

The simulation tool is useful in system modeling and design phases in order to establish the number 

of required processors, the maximum utilization/load factor, the worst-case response time of critical 

tasks, or to demonstrate the feasibility of a given setup.  

2. Literature review 

In the field of real-time system’s analysis and simulation, there are a number of solutions and tools, 

offered as open source software (e.g. STORM [5], MAST [6]) or as commercial products (e.g Simulink 
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[12], SymTA/S [13]). The first ones are more generic and are dealing with the real-time behavior of 

systems at higher abstraction levels. The commercial ones are more related to some pragmatic solutions 

or to specific platforms.  

The differences between these tools are regarding the following aspects: 

• The workload model used in simulation – types of executing units (tasks, threads), 

periodicity of jobs, processor affinity, clustering, etc. 

• The execution environment model – uniprocessor, parallel or distributed systems, uniform 

or heterogeneous execution, with or without communication (networking).  

• The scheduling model – fixed or dynamic priorities, time-triggered or event-triggered. 

• The real-time parameters and restrictions model – discrete time, global or local time. 

• Non-real-time conditions accepted in the model – task synchronization, causal 

dependencies, and concurrent access to common resources. 

In our approach, we tried to cover as many scenarios as possible, allowing seamless variation between 

different models. The above-mentioned model types may be obtained as particular cases through the 

tool’s parametric configuration. This is not the case for a number of existing simulation tools, specialized 

for a given workload and system model.  

There are several simulation or analysis tools for real-time systems, but many do not have proper 

documentation, they are not extendable (e.g. add new scheduling policies), nor open source. Moreover, 

there isn’t any tool imposed as standard in this area. That is why many researchers choose to develop 

their own performance evaluation tools. As result of this context, there are a lot of very specialized tools 

that work only for a specific workload model or test only a specific problem.  

We will mention four simulation tools that have documentation, seem to be extendable, some of them 

are open source and provide automatic task set generation. These tools are STORM [5], MAST [6], 

FORTAS [7] and YARTISS [8].  

The closest tool to RTMultiSim is STORM (Simulation tool for real-time multiprocessor scheduling) 

[5]. STORM can handle multiprocessor architectures and data exchange between periodic or aperiodic 

tasks. The simulated system’s description is specified through an XML file that contains simulation 

parameters, tasks set, data exchanged by tasks, CPU and scheduler specification. Compared to our tool, 

this simulator does not cover intra task parallelism (e.g. multi-threading or fork-join model). It uses only 

global scheduling strategies and it does not allow partitioned and clustered scheduling approaches. 

STORM isn’t reported to have a task set generation tool. STORM is written in Java, it is not open source 

but one can easily write their own scheduler as long as they don’t need a different task or platform 

model.  

Another similar tool is YARTISS [8], an event-based real-time systems simulator obtained as result 

of the extension and redesign of RTSS simulator [9]. This tool is able to handle real-time periodic tasks 

(the Liu & Layland model) and transactions (graph) executed on multiprocessor systems. The task model 

is augmented with energy related parameters. The scheduling policies implemented are uniprocessor 

and global multiprocessor variants of RM, DM, EDF and LLF. Moreover, this tool provides a task set 
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generator based on the UUniFast-Discard [11] algorithm and simulation results visualization facilities. 

YARTISS is written in Java and is extendable as it is open-source.       

MAST (Modeling and analysis suite for real-time applications) [6] allows the analysis of uniprocessor 

and complex distributed systems. It uses an event-triggered execution model with the possibility to 

handle complex task dependencies. As scheduling strategies, it supports fixed priority and EDF. The 

main features of MAST are worst-case response time schedulability analysis, sensitivity analysis and 

optimized priority assignment. The file that contains the model received by MAST as input is quite 

complex. Moreover, they do not provide automatic model generation. Due to the complexity of the input 

model specification and the lack of an automatic model generator, some will argue that MAST is 

difficult to use for performance evaluation. Because it is written in Ada, many will consider MAST hard 

to extend. 

FORTAS (Framework for real-time analysis and simulation) [7] is a real-time system analyzer and 

simulator. It offers functionalities for feasibility testing of various multiprocessor scheduling algorithms 

as well as for viewing task schedules with different uniprocessor and global multiprocessor scheduling 

algorithms (RM, DM, EDF, LLF and PF). It also provides a task set generation tool that uses UUniFast 

algorithm. The task generator has as parameters the interval for task priorities (and deadlines) and the 

distribution for task utilizations. FORTAS is written in Java, but it is not open source and consequently, 

not extendable. 

Compared to MAST and FORTAS, which are focused on analytical scheduling evaluation, our 

approach is mainly concentrated on simulation-based evaluation offering step-by-step information about 

the evolution of the system under test. Our tool implements a clustered scheduling approach and it allows 

intra-task parallelism. Moreover, in the same simulated system, different scheduling strategies can be 

defined for each particular executing element (processor, or network). 

Another research problem closely related to real-time systems performance evaluation and simulation 

is the automatic generation of task sets. Researchers use various methods to generate tasks sets that are 

used to demonstrate the performance of scheduling algorithms. Some of these methods can produce 

biased experimental results, as shown in [10]. This happens in the context in which there aren’t any 

reference task sets to be used as benchmarks, or any standard methods for conducting the performance 

evaluation of real-time systems. 

 The authors in [10] identify the requirements of automatic task set generation. In their opinion, the 

tool has to be efficient, independent and unbiased. The efficiency refers to the number of generated task 

sets that has to be large in order to achieve statistically significant results. Independence refers to the 

possibility of generating task sets by varying certain parameters such as number of tasks or task set 

utilization independent of other (constant) parameters. Finally, the distribution of the generated task sets 

should be equivalent to randomly choosing a task set from all possible ones, and discarding those that 

do not match the predefined parameters. 

For task sets that are used to validate uniprocessor systems (total utilization equal to 1), there is a very 

good method based on the UUniFast algorithm presented in [14]. This method was extended to 

multiprocessor task sets (total utilization can be greater than 1) by [11]. But the UUniFast-Discard 
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algorithm proposed in [11] proved inefficient when the total utilization is equal to half the task set 

cardinality (nearly all task sets are discarded). The authors in [10] argue that Randfixedsum algorithm 

is appropriate to be used for multiprocessor task sets generation and provide a python implementation 

of the generator. Randfixedsum is able to efficiently generate a predefined number of task utilization 

values that add up to a predefined total utilization. We will demonstrate later in this Chapter that the 

algorithm we propose for task sets automatic generation is comparable to Randfixedsum, while easier 

to implement. Moreover, we propose an algorithm that generates chain transactions. 

In the following sections, we describe the simulation environment that we developed.  

3. The simulation environment 

The RTMultiSim simulation environment provides a set of tools that aim to assist researchers or real-

time systems designers in: 

• Assessing new scheduling methods,  

• Comparing existing scheduling methods,  

• Studying the behavior of real-time applications in different execution scenarios  

• Finding settings (e.g. timing parameters assignation, processor allocation) that would 

improve the real-time applications’ schedulability  

As seen in Fig.1, the RTMultiSim Simulation Tool is the main component. It receives as input 

specifications of the workload and platform 

models, executes the simulation and stores 

the results in a database. The simulation 

results (e.g. statistics, execution traces) are 

later manually interpreted, or viewed using 

the Visualization Module. The workload and 

platform models and other simulation 

settings have to be specified in XML files that 

have predefined structures. Alternatively, the 

user can configure the platform model and 

the simulation settings configured through 

the graphical interface.  

The Workload Generation Tool 

automatically generates synthetic task or 

transaction sets that can be used for statistical 

analysis of real-time systems, according to some predefined parameters (e.g. total utilization, 

hyperperiod, cardinality). The generated workload models are produced in the XML format required by 

the Simulation Tool. 

The Visualization Module provides a graphic representation of the simulation results. The user can 

view the execution trace of a task set and its corresponding jobs on processors and general information 

about the simulation (e.g. number of migrations, number of deadline misses, processors utilizations). 
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Figure 1. The RTMultiSim simulation environment 
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The design and main features of the RTMultiSim simulation environment will be detailed as follows. 

4. The simulation tool 

The workload and platform models specifications as well as the simulation settings received as inputs 

are transformed into components of the Simulation Tool, as shown in Fig. 2. The simulator executes the 

task set on the platform’s 

available CPUs according to the 

selected scheduling strategy. 

During the simulation process, 

the simulator records relevant 

time parameters related to the 

behavior of the system that are 

later stored as results. 

The characteristics of the 

workload and platform models 

implemented in the simulator, as 

well as the simulation engine 

will be described next. 

 

 

Figure 2. The 

RTMultiSim simulation tool components 

4.1. The Workload Model  

The workload model used in RTMultiSim allows the representation of a variety of real-time 

applications that fall in the following general categories: sequential (single threaded), parallel (multi 

threaded) and distributed (with network communication).  

We propose a task model that is general enough to represent precedence dependencies and parallel 

execution and that, in the most simplified case, is able to represent sequential independent tasks that 

have a repetition period. We have already described the workload model in Chapter 2, so we will use 

that description as reference. 

The RTMultiSim workload model is implemented as a set of tasks with dependencies like depicted in 

Fig. 3. The model contains periodic and aperiodic tasks that produce and consume events. We implement 

the dependencies between tasks with events. A task can produce events, which are consumed by other 

tasks, creating an execution dependency between producer and consumer. With this model, we can 

represent chain or graph transactions.  
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Figure 3. Workload model implementation (class diagram) 

Fig.4 shows five tasks that create a graph transaction. Each task has P (produce) and C (consume) 

event lists. The execution precedence between tasks is created by the fact that a tasks that has to consume 

an event will be blocked (not scheduled for execution) until that event is produced and put in the global 

event queue.   

The task’s execution requirements are represented as a 

sequence of execution segments. An execution segment 

may be a sequential portion of a task and generate a single 

thread, or it can generate multiple threads that could be 

executed in parallel on a number of processors (if 

available). Each thread will have the execution time of the 

segment to which it belongs. Depending on the execution 

model, the task can be fork-join, or multiframe. In the case 

of a fork-join task, the execution segments represent the 

task’s sequential and parallel portions. These portions are 

executed in the same order each period. In the case of 

multiframe tasks, the execution segment represents the 

execution behavior during a period. Each task instance will 

have the execution requirements of a single execution 

segment, in the order given by the execution segments list. 

Fig. 5 shows the difference between the fork-join execution model and the multiframe execution model. 

Note that our task model supports both execution models, but in our experiments, we used only the fork-

join model.   

4.2. The Platform and Scheduling Models 

The platform is modeled as a sum of identical processing units (CPUs). The execution speed of all 

tasks is the same on all processors. Job context switch time and job migration time can be taken into 

C= {} 
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Task 2 
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C={evB} 
Task 3 

P= {evD, evE} 
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Task 4 

P={} 
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Task 5 
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Figure 4. Tasks that create a 

transaction through precedence 

dependencies 
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consideration as constant values. This type of platform model can represent parallel systems as well as 

distributed systems. In the case of distributed systems, the networks are represented as processing units.   

   

 

 

 

 

 

 

 

 

 

 

Figure 5. Two uses of execution segments: fork-join parallel tasks and multiframe tasks   

From the allocation point of view, there are three main approaches for multiprocessor scheduling: 

• Global 

• Partitioned 

• Clustered 

In the global approach, jobs can be allocated to any available processor and can migrate to other 

processors during execution with no restrictions. Partitioned scheduling assumes that each processor has 

its own scheduler and job queue. A task is allocated to a single processor. In clustered scheduling, job 

migration is restricted to a subset of the available processors. Processors are grouped into clusters. Each 

cluster has its own scheduler and job queue. First, tasks are allocated to clusters, and then each cluster 

scheduler globally schedules jobs inside the cluster.  

In RTMultiSim, we implemented the loose clustered approach, which we described in Chapter 2. We 

can configure the scheduling mechanism to be partitioned, global, clustered or loose clustered.  

The RTMultiSim implementation of the scheduling model (Fig. 6) contains a cluster manager and a 

set of clusters. The cluster manager applies a partitioning heuristic to allocate all tasks to the existing 

clusters. If there is only one cluster (global scheduling), all tasks are allocated to that cluster. 

A cluster contains the allocated task set, the list of CPUs and two schedulers (the cluster’s own 

scheduler and the alternative scheduler). The alternative scheduler can be excluded if the user does not 

Task 4 
Execution={(3,1), (5,3), (2,1)} 
Period=15 

Fork-join model 
Execution={(4,1), (5,3), (2,1)} 

Multiframe model 
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0              5               10             15           20             25      Time 
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want to use the loose clustered mechanism. The local scheduling algorithm decides the execution order 

of jobs. In our model, each cluster can use a different scheduling algorithm.   

 

 

 

 

 

 

 

 

 

 

Figure 6. The RTMultiSim scheduling implementation (class diagram) 

 The partitioning heuristics available in RTMultiSim are: Next Fit and Affinity. In Next Fit, tasks are 

sorted in a decreasing order according to their utilization factor (execution time divided with period). 

Each time, the first task is allocated to the next available cluster. In Affinity, tasks with largest utilization 

factor and the shortest CPU Affinity list are allocated first. Each task is allocated to the first available 

cluster, which contains a CPU from its CPU Affinity list. New partitioning heuristics can be added by 

writing classes, which implement a predefined abstract interface (IPartitioningAlgorithm). 

In RTMultiSim, we implemented priority-based scheduling algorithms. A scheduling algorithm of this 

category chooses the jobs with the n highest priorities to be executed on n available processors, after it 

has computed the priority for each job. The available scheduling algorithms are: Rate Monotonic (RM), 

Earliest Deadline First (EDF), Least Laxity First (LLF) and First In First Out (FIFO). RTMultiSim 

supports preemptive (e.g. RM, EDF, LLF) and non-preemptive (e.g. FIFO) scheduling algorithms. The 

simulator may be extended with other user-defined scheduling algorithms by creating classes, which 

implement a predefined abstract interface (ISchedulingAlgorithm). 

4.3. The Simulation Engine 

The simulation is performed for a fixed time interval or until the feasibility interval is covered. For 

instance, according to [3] and [4] the feasibility interval for fixed priority algorithms on multiprocessor 

systems is a multiple of the task set hyper-period. The simulation engine receives as input the system 

model in order to perform the simulation. The most important components of the simulation engine are: 

• System model (tasks, CPUs, schedulers) 

• Clock 

• Job generator 
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• Jobs and threads 

Simulation time and job generation. The simulation time is modeled as a global clock. All CPUs 

are synchronized to this clock. The global clock advances every time with one simulation time unit 

(STU). At each clock tick (transition), the state of the system is recomputed. There can be new job 

releases and, depending on the scheduling strategy, there can be schedule updates that generate 

preemptions. A job’s execution time is equal to an integer number of STUs. In a time step, each CPU 

executes exactly one time unit from the total execution time of a running job.  

The job generator creates new jobs according to the workload model. After each global clock 

transition, this component gets from the workload model all the tasks that have to release new jobs at 

the current simulation time. Based on those tasks, it creates new jobs, which are copied in the global job 

queue. 

Jobs and threads. In RTMultiSim, jobs inherit all task parameters. The job release time is set to its 

creation time. Job execution is performed according to the task’s sequence of execution segments.  

A job contains a list of threads, which can be started and executed in parallel. Threads are created at 

the start of an execution segment. When all the threads in an execution segment are completed, the 

threads for the next segment are created. A thread can pass through several states during its existence, 

from creation to completion. The possible thread states are:  

• Ready 

• Scheduled 

• Running 

• Blocked  

• Completed 

In “ready” state, a thread is prepared to be scheduled. If it was chosen by the scheduler and assigned 

to a CPU, the thread is in “scheduled” state. During execution, the thread is in “running” state. In the 

thread is preempted, it returns in “ready” state. The thread is “blocked” if it waits for an event to be 

produced, in order to start or resume its execution.    

Scheduling. The cluster manager takes the jobs from the global job queue and places them in the 

clusters’ job queues, according to task partitioning. Then, each cluster’s scheduler chooses the jobs that 

will be executed on each of its CPUs, according to the scheduling algorithm. Threads belonging to the 

same job have the same priority. Ready threads will not interrupt running threads that belong to the same 

job. A multithreaded job can be allocated to more than one CPU at the same time. For real-time 

transactions, deadlines have to be assigned to intermediate tasks before these will be scheduled. The 

simulator has some heuristic algorithms that assign deadlines to tasks. It also has an extension that finds 

optimized deadlines by using a genetic algorithm. 
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Figure 7. Simulation execution flowchart 

Execution. A simulation execution step, as shown in Fig. 7, starts with job generation. Generated 

threads that do not meet the requirements to enter ready state (e.g. the thread can start only if a certain 

event is produced) are blocked. Blocked threads that meet the requirements to enter the ready state are 

unblocked. 

New jobs, if any, are placed in the clusters’ job queues. Each cluster scheduler allocates jobs (threads) 

to its CPUs. Next, the threads are executed on CPUs. During thread execution, events can be consumed 

or produced, execution time is increased and execution statistics are recorded. If the thread is completed, 

it is removed from the jobs’ current threads list. If the job is completed, it is removed from the cluster’s 

queue and placed in the results. 
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Finally, the simulation time is increased, and the simulation execution moves to the next time step. 

Results. Simulation results are periodically written in a database, until simulation completion. Results 

for each simulation are recorded separately. For each released job, the simulator records the response 

times and deadline. For each thread, release time, start time, completed time, execution time, number of 

migrations and CPU visitation sequence are recorded. Based on the recorded raw data, a number of 

statistical parameters may be computed such as: the number of successfully finished tasks, number of 

deadline misses, number of migrations, effective utilization of CPUs, etc. 

4.4. Simulation examples 

RTMultiSim can simulate a variety of systems, defined through configuration parameters, without any 

changes in the code. From the platform point of view, these systems can span from multiprocessor 

(parallel) to distributed architectures. The scheduling strategies may be global, partitioned, clustered or 

loose clustered. The workload can be represented as independent parallel or sequential tasks, periodic 

or aperiodic tasks and distributed transactions. 

The workload and other simulation parameters such as number of processors, cluster configuration, 

scheduling and partitioning strategies are specified in XML or text files. 

An independent task set may have the following specification: 

<Tasks> 

   <Task type="periodic" id="1" C="10" T="15" D="12" />  

   <Task type="parallel" id="2" C="5,4,6" P="1,3,1" T="15" D="15" />   

   … 

</Tasks>  

Where id is the task identifier, C is the execution time or list of execution times (for each execution 

segment), T is the period, D is the deadline, and P is a list of parallelism values, one for each execution 

segment. 

A transaction is specified as follows: 

;60,60 

t1 child m1 

m1 child t2 

t2 child 

Where the first two values are the period and the deadline t1, t2 are tasks and m1 is a message. For 

each task or message, the user has to specify the execution time and the processors (networks) on which 

they can execute like: 

t1, 23, 1, 2 

t2, 11, 2 

m1, 10, 0 
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Task t1, for example, has execution time equal to 23 and can be executed by processors with id’s 1 

and 2. 

A DAG transaction is specified as follows: 

;30,40 

t1 child t2, t3 

t2 child t4 

t3 child t4 

t4 child 

Task t1 has two children, t2 and t3 that have a common child, t4. 

The platform and other simulation parameters can be specified in an XML file or configured through 

the simulation tool's GUI. An example of platform XML is as follows: 

<Platform> 

<CPU No="4" Cluster="{0 1 2 3}" Sched="EDF" Part="Affinity" LinkClusters="false" /> 

<Settings WriteResults="true" SimTime="5000"/> 

</Platform> 

“Cluster” attribute describes the scheduling approach. In the previous example, it is the global 

approach. For partitioned approach, each CPU ID is put in separate brackets like “{0}{1}{2}{3}”. For 

clustered approach, the CPU IDs are grouped (one pair of brackets for each cluster) like “{0 1}{2 3}”. 

“LinkClusters” is “true” if the user chooses the loose clustered approach and “false” if it chooses 

traditional clustered approach. “Sched” and “Part” are the scheduling and the partitioning algorithms. 

 

Figure 8. The RTMultiSim user interface.  

The RTMultiSim GUI allows choosing the workload and platform model files and the manual input 

of some configuration parameters. Moreover, there are controls for starting the simulation or other types 

of evaluation. Fig. 8 shows the RTMultiSim GUI, the Simulation tab. 
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5. Synthetic workload generation tool 

In order to generate different simulation scenarios that fit statistically to some globally defined 

parameters (e.g. processor utilization) we developed a tool for automatic workload generation. The goal 

is to establish for every simulation scenario some parameters that statistically cover the most relevant 

cases. Our tool can generate periodic independent task sets or periodic transaction (chain of tasks) sets. 

5.1. Task Set Generation 

Task sets used for evaluations are generated automatically in the majority of cases. The method used 

to generate tasks is essential, as some task set characteristics like the task set cardinality, the distribution 

of task periods or the distribution of individual task utilizations may influence the evaluation. For 

instance, for the same task set utilization factor, we obtained different schedulability results when we 

used uniform and exponential task utilization distribution. On 6 processors, with utilization factor of 4.8 

and global EDF scheduling, task sets generated with a uniform distribution were better scheduled then 

those obtained with an exponential task utilization distribution.  

We needed a tool that generates task sets that do not produce misleading simulation results. The 

parameters that can be configured for the task set are:  

• Total utilization 

• Number of tasks 

• Task set maximum hyperperiod (LCM of repetition periods)  

The main problem to be solved is to generate n individual utilization values of which the sum is equal 

to U. Even though there are two important results, which address this problem, the UUnifast-Discard 

algorithm [11] and the Randfixedsum algorithm [10], we decided to use a new approach. We made this 

decision because, in the UUniFast-Discard case, the algorithm fails to generate task sets for particular 

values of n and U [10], and because Randfixedsum is very complex and difficult to understand and 

implement.   

To obtain a task set with n independent periodic tasks with implicit deadlines and utilization equal to 

U, we developed the following methodology: 

1. Randomly choose n task periods (Ti) uniformly distributed in the interval [Tmin, Tmax], having the 

least common multiple (LCM) less than a given LCMmax.  

2. Generate n random task utilization values (ui) for which the sum is equal to a given U. Each ui 

has to be equal or greater than 1/Ti and less than 1 (because the computed execution time Ci has 

to be greater than 0).  

3. For each pair (Ti, ui), compute the execution time Ci=ui*Ti of task i. 

4. Verify if the task set satisfies the requested parameters. If not, the task set is discarded.       

For step 2, we propose an algorithm that generates n task utilization values with the sum equal to U. 

The algorithm starts with assigning each ui the mean value (U/n). To obtain a random distribution of the 

utilization values inside the task set and keep the total utilization equal to U, at each iteration step we 

randomly choose two ui values which will be modified by adding and subtracting a random value from 
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the interval [0,U/n]. After a large number of iterations, we obtain task utilization values, which are well 

spread in the interval [1/Ti, 1].  The proposed algorithm’s pseudocode is listed below. 

Algorithm:  generate n utilization values of sum equal to U. 

Input: n, U, T1,T2,…,Tn 

Output: u1, u2, …,un 

Begin 

 

For(i=1; i<=n){ ui=U/n;} 

Repeat n4 times 

{ 

  d = random(0,U/n); 

  x = random(1,n); 

  y = random(1,n);     

  if(x!=y)&&(1/Tx<=ux-d<=1)&&(1/Ty<=uy-d<=1) 

  { 

     ux = ux+d; 

     uy = uy-d; 

  } 

} 

 

End 

 

Figure 9. Comparison between Randfixedsum (blue) and our algorithm (red) 

We compared our results with the results of Randfixedsum [10] and we concluded that the two 

approaches are equivalent because they generate similar distributions of individual utilization values. 

We generated task sets with 40 tasks per set and with total utilization of 4 with both algorithms 

(Randfixedsum and ours). Fig. 9 shows the distribution of individual task utilizations we obtained by 

using the two algorithms. In terms of execution time, our algorithm is slightly less efficient, but it 

produces results in an acceptable time for less than 100 tasks per task set.   

Moreover, our algorithm does not have the problem of UUnifast-Discard [11], being able to generate 

without any problem task sets having the total utilization equal to half the task set cardinality. 
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5.2.  Transaction Set Generation 

We generate periodic transaction sets, using a similar methodology. The transactions are in fact chains 

of tasks, meaning that each task has at most one predecessor and at most one successor. Processing tasks 

may alternate with communication tasks.  

The parameters that can be configured for the transaction set are:  

• Total utilization 

• Number of transactions 

• Maximum number tasks per transaction 

• Transaction set maximum hyperperiod (LCM of repetition periods)  

The methodology for automatically generating a transaction set based on the previous preset 

parameters is the following: 

1. Randomly choose n periods (Ti) uniformly distributed in the interval [Tmin, Tmax], having the least 

common multiple (LCM) less than a given LCMmax.  

2. Generate n random transaction utilization values (ui) for which the sum is equal to a given U. 

3. Based on the generated periods and utilizations, create n transactions.  

4. For each transaction, create a task set using the methodology presented in section IV.A. All tasks 

will have the same period, equal to the transaction’s period. The precedence relations between 

them will be based on the order in which they are generated.  

This version of the Workload Models Generation Tool does not generate platform related constraints 

for tasks. The user can add this type of constraints (e.g. task to CPU affinity) manually to the task or 

transaction set specification files.  

6. The Visualization Module 

After the simulation has ended, the Visualization Module can generate statistics and graphic 

representations of the simulation results. The user has to choose a simulation for which the module will 

show the results.  

The user can view statistical data such as: 

• Number of task migrations 

• Number of job migrations 

• Number of deadline misses 

• Actual utilization per processor 

The user can also view execution traces of tasks and jobs on processors, or the execution trace for all 

processors in parallel in the same window. Fig. 10 and 11 are graphic representations generated by the 

module. 
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Figure 10. Task migrations in the Visualization module 

 

Figure 11. Task execution trace on one processor in the Visualization module 

7. Comparison with other simulation tools 

To highlight the main characteristics of RTMultiSim, we compare it with similar tools. We selected 

three of the most representative and recent real-time systems simulation tools: STORM, YARTISS, 

MAST. Table 1 shows the comparison. We highlighted the most general approach for each 

characteristic.  

Table 1. Comparison between RTMultiSim and other real-time systems simulation tools 
Characteristics RTMultiSim STORM YARTISS MAST 

Simulation Yes Yes Yes No 

Schedulability 

analysis 

Yes No No Yes 

Set and optimize 

scheduling 

parameters 

(processor allocation, 

Yes No No Yes 
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deadline assignation 

) 

Workload model Parallel tasks, 

periodic tasks, 

non-periodic 

tasks, 

transactions, 

tasks with 

precedence 

dependencies 

Sequential 

periodic tasks, data 

messages between 

tasks 

Sequential 

periodic tasks 

(energy aware), 

graph transactions 

Chain transactions 

Platform model Homogeneous 

multiprocessor 

Homogeneous 

multiprocessor 

Homogeneous 

multiprocessor 

Heterogeneous 

multiprocessor 

Scheduling model Clustered, Loose 

Clustered, 

Global, 

Partitioned 

Global Global Partitioned 

Scheduling 

algorithms 

RM, EDF, LLF, 

FIFO 

FP, EDF, FIFO FP, EDF, LLF, 

FIFO 

FP, EDF 

Partitioning 

heuristics 

Next fit, Affinity No No Partitioning is 

done manually 

Energy aware No No Yes No 

Task set generation Yes No Yes  No 

Transaction set 

generation 

Yes No No No 

Language C# Java Java Ada 

OS Windows Windows, Linux Windows, Linux Windows, Linux 

Open source Yes No Yes Yes 

Visualization Yes Yes Yes Yes 

 

We conclude that, compared to these other tools, RTMultiSim‘s has the following advantages: 

• The most general workload model 

• The most general scheduling model 

• It implements partitioning heuristics 

• Has task set and a transaction set generation tools 

• The task and transaction set generation tools rely on a more efficient algorithm than 

UUnifast-Discard, while others rely on UUnifast-Discard. 

As for the disadvantages: 

• It is not available on Linux; however, with some minimum effort it can be compiled with 

Mono [15], to obtain its Linux version. 

• The Visualization module is weak compared to others; however, by using some external, 

more complex tools we can achieve good graphical results analysis.  

• It is not energy-aware; but only YARTISS has this characteristic. 
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8. Conclusions 

This chapter presented RTMultiSim, a versatile simulation tool that covers most of the typical cases 

of multitasking and multiprocessor real-time systems. The workload model used by the simulator allows 

representation of various types of real-time tasks such as independent periodic tasks, dependent tasks, 

parallel tasks, fork-join tasks, and transactions. The scheduling strategy may be global, partitioned, or 

clustered. RTMultiSim provides multiple partitioning and scheduling algorithms and an easy method to 

integrate new algorithms. The tool includes a feature for automatic task and chain transaction set 

generation that can be used to create different simulation scenarios that fit some predefined parameters.  

The RTMultiSim tools (source code and executables) and documentation are available at 

http://users.utcluj.ro/~ancapop/research.html. 
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Chapter 6. Performance evaluation of real-time 

multiprocessor systems  

1. Introduction 

Rea-time scheduling strategies need schedulability tests for validation. This chapter presents a 

simulation-based schedulability test methodology and an evaluation method that are used to assess the 

performance of multiprocessor real-time systems. These evaluation methods aim to reduce the 

complexity of analytical test procedures. 

Moreover, in the last section introduces a set of benchmark tests that assess the main features of a 

parallel real-time programming language. These tests measure the performance of individual operations 

executed on parallel threads. This chapter includes descriptions for the conducted experiments and 

results analysis. 

2. A simulation-based schedulability test methodology for multiprocessor 

real-time systems 

In the last years, important research efforts were made in the direction of finding feasible scheduling 

strategies for parallel architectures, but the results are far from being final or stable. One conclusion of 

these efforts is that the simple extension of uniprocessor theory and experience to parallel systems is not 

a successful approach. There are many examples when researchers based their demonstration on 

uniprocessor system results and proved to be wrong on parallel systems. For instance, it was proved that 

in case of a parallel architecture the critical time interval is not the period that follows after all the tasks 

are released at the same time, as in the case of a single CPU. In addition, the optimality of RM and EDF 

scheduling algorithms on parallel systems is not true, at least in some cases. 

In the direction of feasibility analysis most of the results concentrate on finding necessary or sufficient 

conditions for feasibility. Nevertheless, these conditions are in most cases too complex [6] and hard to 

implement in practice or the gap between the necessary and sufficient condition leave too many cases 

undecided. The existing sufficient schedulability tests introduce very strong constraints, which 

excessively limit the utilization factor of many systems. Through simulation, we will show that these 

feasibility limits are too high, and we can find schedulable tasks sets that are not verifying the sufficient 

conditions.  

Another research direction is based on the computation of demand and supply functions for 

multiprocessor real-time systems. In [7] and [8] the authors derive sufficient conditions for the feasibility 

of task systems using these functions. The complexity of the obtained relations, as well as the pessimistic 

results, limits the use of this method.  

Recent research on priority-based multiprocessor scheduling showed that fixed priority algorithms 

(including RM and EDF) generate periodic schedules in the case of feasible periodic task systems 

[9][10]. This result will be used later in this section to demonstrate the feasibility of a task set using the 

simulation approach. 
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2.1. System model 

The simulation-based schedulability test works for applications that can be modeled as independent 

periodic tasks with no restrictions other than real-time ones. It should be noted that the system model is 

a particularization of the one presented in Chapter 2.  

A task set (τ) comprises n tasks and each task (τi) is described by its execution time (Ci), repetition 

period (Ti), and relative deadline (Di). Task deadlines are implicit. The total utilization of a task set is 

computed as U=Σui, where ui=Ci/Ti is the task’s utilization factor. Another important task parameter 

that we consider here is the phase. If the phase is equal for all tasks, the task set is called synchronous. 

If the phases are different, the task set is asynchronous. In this case, task sets are synchronous. It is 

assumed that all jobs are sequential, meaning that a job has no multiple threads and it can be executed 

on at most one processor at the same time.  

The platform is modeled as a homogeneous multiprocessor P={P1, P2, … , Pm} composed of m 

processors with identical characteristics. The platform uses the global scheduling model that assumes 

the existence of a unique global scheduler and a global job queue. At each time instant, the global 

scheduler chooses from the job queue, ma jobs with the highest priority, where ma is the number of 

available processors. The chosen jobs will be executed on the processors. The priority of each task is 

computed by using a specific algorithm. 

2.2. Theoretical results on global EDF schedulability analysis 

We analyze the case of synchronous task sets executed on a homogenous multiprocessor system and 

scheduled with global EDF algorithm. 

Most of the theoretical results on global EDF algorithms establish necessary or sufficient conditions 

for feasibility. In [6] the authors surveyed the most important seven sufficient schedulability tests with 

different computational complexity levels. One sufficient feasibility test [8], given below, states that a 

task set is schedulable with global EDF if: 

U ≤ m (1 - umax) + umax                                 (1) 

This rather simple condition takes into account only the number of processors m and the usability 

factor umax of the most demanding task from the set (the task with the maximum utilization factor). It 

can be seen that if umax is close to 1 the usability of m processors is reduced to the usability of a system 

with a single processor. We used equation (1) as a reference for the simulation results.  

A more powerful global EDF schedulability test (in terms of the detected number of schedulable task 

sets) [6] is based on an iterative method and has a pseudo-polynomial computational complexity. This 

test computes the minimum slack Sk (distance between the deadline and the completion time of a job) 

for each task. If the slack is negative for a task, the task set fails the schedulability test. The equation is: 
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, where       indicates the interference caused by      

other tasks i on task k. 

As we already commented in Chapter 2, according to the latest studies [6], there is a large region 

between the sufficient and necessary conditions, where task sets’ schedulability is undecided. The 

“undecided” region increases with the number of processors. For instance, in the 8 processor scenario, 

this interval starts at a total utilization of about 56% of the maximum utilization. Even if some 

schedulability tests find more schedulable task sets than others, the conclusion of [6] is that all evaluated 

schedulability tests introduce strong constraints on the task sets they assess, leaving outside their limits 

a large number of task sets which may be schedulable. 

We want to show, through simulation, that a large number of task sets from the undecided region are, 

in fact, schedulable.  

Our method is based on the results in [9] and [10], where the authors show that deterministic fixed 

priority algorithms generate periodic schedules in the case of feasible periodic task systems. In [9] the 

authors prove that a feasible schedule obtained using deterministic global EDF of a synchronous 

constrained deadline system on m identical processors is periodic with a period P that begins at instant 

0. The schedule repetition period P is equal to the task set’s hyper-period. The authors extend their 

results in [10], where they give some guidelines for the development of an exact schedulability test for 

global EDF on multiprocessors. To decide if a task set is schedulable, the authors suggest to build a 

schedule and check if the periodic part of the schedule is reached or not. The periodic part is reached 

when the execution states at the two ends of the interval coincide (this is true because it is assumed that 

the algorithm is deterministic). If there are no missed deadlines in the first period, then the task set is 

schedulable. In the case of asynchronous task systems, the periodic part of a feasible schedule may begin 

after more than one hyper-period. 

Following these results, we focused our research on combining simulation with theoretical analysis 

results to assess the schedulability of synchronous periodic task systems. The main objectives of our 

research are to: 

• Develop a method for assessing the multiprocessor schedulability of periodic task systems 

through simulation. 

• Experiment the behavior of multiprocessor systems with global EDF using randomly 

generated periodic task sets, in order to determine the features that influence the 

schedulability. 

The outcome of our work will help real-time system designers to choose a practical strategy that does 

not involve complex and restrictive mathematical analysis and which is well suited to the characteristics 

of their application. 

)
0

)mod(,min(
i

S
i

T
k

D
i

C
i

C

i
T

k
D

i

k
I −+=














i
k

I



Performance evaluation of real-time multiprocessor systems | 4 

 

2.3. The schedulability test and evaluation method 

The simulation-based exact schedulability test was developed following the guidelines presented in 

[10]. The test uses RTMultiSim, the real-time systems simulator presented in Chapter 5 to build the 

periodic schedule for independent, synchronous, periodic task sets scheduled with global EDF. Theory 

says that the schedule period is equal to the task set’s hyper-period.  

To check if the schedule’s period has been reached, we simulate the system during two hyper-periods 

and we verify if the states at the end of each hyper-period coincide. The state of the schedule, at a certain 

time is given by the jobs that are executing at that time. A feasible schedule is one that, at the end of the 

task set’s hyper-period has the following properties: 

• All jobs meet their deadlines 

• All jobs that started during the hyper-period, have finished their execution during the same 

hyper-period 

We will use this tool to assess the schedulability of task sets with global EDF in different scenarios. 

As there are not available any standard benchmark models or model sets inspired from real systems, 

to evaluate a scheduling technique or algorithm, we propose to use synthetic system models. This 

method is widely used in the performance evaluation of real-time scheduling techniques. However, the 

evaluation results depend on certain model parameters such as: 

• The number of processors. An important factor is how the performance degrades as a 

function of the number of processors in the system. 

• The task set cardinality. The number of tasks in a set influences the individual task utilization 

distribution. If there are few tasks in a set, those tasks will have larger utilizations compared 

to larger task sets that have the same total utilization. 

• The individual task utilization distribution in a task set. Task utilization distribution is known 

to influence the schedulability rate in evaluation tests [11]. 

• The task set’s hyper-period. In our case, the schedulability test can be performed only if the 

task set’s hyper-period is less than 106. If the hyper-period is larger, the simulation will take 

too much time to execute. 

We intend to investigate how these parameters influence the results of the schedulability test. After 

the results analysis, we will be able to draw some conclusions and give some advice on how to choose 

and vary the parameters of task sets that are used for real-time systems performance evaluation. 

For our experiments, we will use the task set generation tool that we presented in Chapter 5. Our tool 

usually generates task sets with exponential distribution of individual task utilizations. To obtain task 

sets with other distribution, we temporarily altered the tools generation process.  

2.4. Experiments and results analysis 

We conducted experiments with the global EDF algorithm for different systems and determined 

through simulation which of the generated tasks sets are schedulable. We use synchronous periodic tasks 

with implicit deadlines, so the schedule period will start at time 0 and will be equal to the task set’s 
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hyper-period. We use the schedulability test we developed with RTMultiSim that was previously 

presented.  

The total number of task sets generated and simulated was approximately 10,000. We investigate how 

many schedulable task sets are found by the simulation-based test and how the parameters of the task 

sets influence their schedulability. 

First, we investigated how the individual task utilization distribution influences the schedulability 

rate. We generated tasks sets with different total system utilizations that will be executed on a platform 

with 8 processors. We generated three cases: 

• In the first case, the distribution is uniform, between 0.1 and 0.5. 

• In the second case, the distribution is uniform, between 0 and 0.7. 

• In the third case, the distribution is exponential.  

Fig. 1shows (left) the distribution of individual task utilizations in three cases, and (right) the 

schedulability test results. 

 

Figure 1. Experiments with different task utilization distribution. Distribution of individual task 

utilization in 3 cases and results obtained through simulation on 8 processors for the 3 cases. 

After this experiment, we are able to draw the following conclusions: 

• For the same number of processors and total utilization, the schedulability depends on the 

distribution of individual task utilizations. The results in Fig. 1 show that the uniform 

distribution causes higher schedulability rates. The schedulability rate is even higher when 

the individual task utilization values are in a smaller interval (case 1). 

• The schedulability of a task set is more critical when there are a few tasks with utilization 

close to 1.  From Fig. 1 case 3 we observe that if we have task utilizations in the interval 

close to 1 the schedulability decreases. This is somehow in accordance with equation (1) 

that states that the largest possible schedulable total utilization is a function of the largest 

individual task utilization. 
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Moreover, we made simulations on 4 different platforms that contain 2, 4, 6 and 8 processors. For 

each platform we generated synchronous periodic implicit deadline task sets with increasing 

cardinalities between m+2 and m*10, and increasing total utilizations between 0.6*m and 0.99*m, where 

m is the number of processors. We created 30 task sets for each individual scenario. For each task set 

we selected task periods from the interval [10, 250], having the LCM less than 100,000.  

On each of the generated task sets, we also applied the global EDF schedulability test described by 

equation (1), in order to compare the results with those obtained with the simulation-based method. 

Below, we include the graphical representation of the results we obtained for the platforms with 4 

(Fig. 2) and 8 processors (Fig. 3). The results for 2 and 6 processors are similar and follow the same 

pattern, but were not included as graphical representations.  

        

 

 

 

 

 

a. Results obtained through simulation 

      

 

 

 

 

 

 

b. Results obtained with equation (1) 

Figure 2. Experiment results for 4 processors 
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a. Results obtained through simulation 

      

 

 

 

 

 

 

b. Results obtained with equation (1) 

Figure 3. Experiment results for 8 processors 

After the evaluation of the results, we made the following observations: 

• The schedulability rate of all task sets decreases while the number of processor increases, 

for the same total (normalized) utilization. This is true for the simulation-based test, as well 

as for the test done with equation (1). 

• As expected, the schedulability of a task set decreases with the increase of its total 

utilization. This can be seen in Fig. 2a and Fig. 3a, where for 4 and 8 processors the number 

of not schedulable task sets is represented related with the total utilization factor. 

• For a given total utilization, the most critical scenarios are when the number of tasks in a 

set is slightly higher than the number of processors; as the number of tasks increases the 

number of not schedulable tasks decreases, becoming equal to 0 when the number of tasks 

is more than 10 times the number of processors. 

• The results obtained through simulation are more optimistic than those obtained for the same 

scenarios using the analytical sufficient schedulability conditions. Fig. 2 and 3 compare the 

two situations; in Fig. 2a and 3a are results obtained through simulation and in Fig. 2b and 

3b are results obtained with equation (1).  This observation motivates the use of our 

simulation-based methodology. 
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The conclusion of these experiments is twofold. For a given total utilization, an increased (greater) 

number of tasks increases the feasibility chance. The presence of tasks with utilization close to 1 

drastically reduces the chances for the whole set to be schedulable. The results obtained through 

simulation proved to be more optimistic than the theoretical ones.  

The experiments and their results offer some guidelines in choosing the parameters of synthetic 

system models used for performance evaluation. Moreover, the simulation-based exact schedulability 

test can be a more pragmatic alternative to analytic tests that introduce too many restrictions and rule 

out many systems models that may be schedulable. 

3. Simulation-based evaluation of global, partitioned and clustered 

scheduling approaches 

We continue our investigation regarding multiprocessor scheduling of real-time systems with more 

simulation-based tests that focus on evaluating and comparing the three main multiprocessor scheduling 

approaches and the new approach proposed in Chapter 2, the loose clustered approach. We use the 

experience gained during the previous section.  

The criteria used to measure the performance of a scheduling strategy are often chosen in accordance 

with the application domain. For hard real-time systems, where deadline misses are not allowed, the 

performance of a scheduling strategy is mostly measured by its ability to find a feasible schedule [12]. 

A schedule is feasible if, given a set of tasks all tasks complete their execution before their deadline.  

In the case of soft real-time applications, performance measures can include the average and 

maximum response time or deadline miss rate. The evaluation of the performance can be done by 

formally proving the limits of the performance measures. Sometimes, finding these limits is a very 

complex problem. In these cases, simulation can be a good method for scheduling strategy performance 

evaluation.  

In the uniprocessor world, the performance evaluation of scheduling strategies is mostly done through 

analytical evaluation. In 1973 Liu and Layland [2] proved the schedulability conditions of RM and EDF 

strategies (see equations (3) for RM and (4) for EDF) for sets of periodic independent tasks.  

  
( )12 /1 − n

i nU
        (3) 

   1iU
         (4) 

Later, Response Time Analysis (RTA) was proposed [13] as an iterative method for the exact 

evaluation of task worst case response time for fixed priority schedulers. This method relies on the 

analysis of the worst case arrival sequence (when all jobs are ready to execute at the same time, t=0).  

The transition to multiprocessors proved to be challenging from the theoretical point of view. Not all 

uniprocessor theory can be generalized to multiprocessors. An important example is uniprocessor RTA, 

which cannot be applied to multiprocessors because the uniprocessor worst case arrival sequence is not 

valid under these new conditions [14]. To our knowledge, the worst case arrival sequence remains 
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unknown for multiprocessors. The majority of the schedulability tests for global multiprocessor 

schedulers introduce a large computation overhead [14]. But for hard real-time systems, tests that 

guarantee timing requirements are necessary. On the other hand, non-critical real-time systems don’t 

need such exact proofing mechanisms. An approximate performance evaluation of the scheduling 

strategy can be accepted.   

The simulation of abstract representations or models is an approximate evaluation method. The 

approximation is better if the model used by the simulation is closer to the real-world and there are 

enough measurements done. To make a relevant evaluation of a scheduling strategy, the input for the 

simulator and the performance criteria have to be chosen according to the profile of the system that will 

use the strategy.  

As already discussed in Chapter 2, there are advantages and disadvantages for each of the 

multiprocessor scheduling approaches.  

Partitioned approach is preferred because after the step at which tasks have been assigned to 

processors, scheduling is reduced to uniprocessor scheduling on multiple processors. The main 

disadvantages are that this approach is not work-conserving and that task partitioning is done with non-

optimal heuristics. The schedulability rate of these systems is closely related to the efficiency of the task 

partitioning step.  

Global approach is work-conserving but suffers from “Dhall’s effect” [15]. In the presence of heavy 

tasks, the schedulability of task sets is reduced almost to the maximum utilization of a uniprocessor 

(1+ε). Another problem of global scheduling is caused by the frequent migrations. The cost of migration 

is not quantified in many theoretical models, but in real systems, this cost is very high. Many developers 

of real-time systems prefer strategies that minimize the number of migrations, of context switches and 

the scheduling overhead introduced by a unique, large process queue.  

Clustered scheduling emerged because of the observation that the cost of migration decreases in the 

case of shared cache memories. Migration is confined to processors that have shared caches. Moreover, 

the number of migrations and the scheduling overhead are reduced. As in the case of partitioned 

scheduling, the clustered approach is influenced by the partitioning heuristic, as well.   

The loose clustered approach described in Chapter 2, was proposed as an optimization of the clustered 

approach and can be applied for the partitioned one, as well. Our approach extends the clustered with a 

load balancing mechanism that: 

• Equalizes cluster utilization;  

• Reduces capacity fragmentation due to not optimal task partitioning between clusters.  

We estimate that the loose clustered approach will schedule more tasks sets than the clustered one, 

while maintaining a lower migration rate than the global approach.  

To evaluate and compare the above scheduling approaches, we use the following metrics: 
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•  The number of schedulable task sets, normalized with the total number of evaluated task 

sets. This metric shows how many tasks sets the scheduler is able to schedule without 

deadline misses. 

• The migration rate defined as the total number of migrations divided by the number of 

schedulable task sets. This is because we do not record all steps for tasks sets that have 

deadline misses. The migration rate is important when the systems developer wants to 

quantify the migration-related overhead introduced by a scheduler. 

• The average slack of task sets. The slack or laxity is defined as the time remaining from the 

job’s completion time until the actual deadline. The slack is a metric for the maximum 

additional load a system would be able to accept, and still be schedulable. The scheduler 

that obtains larger slacks is more efficient in using the processors’ available time. 

3.1. Experimental setup 

A similar system model with the one used in the previous section is used: 

• Independent periodic task sets with implicit deadlines 

• Homogenous multiprocessor 

The scheduling model proposed in Chapter 2 and implemented in RTMultisim is used. The scheduling 

model can be configured to be: 

• Global 

• Partitioned 

• Clustered 

• Loose clustered 

In the cases when a partitioning scheme is needed, Next Fit heuristic is used. The scheduling 

algorithm is EDF. 

RTMultiSim and its task set generator are used to conduct the simulations and to produce synthetic 

workload models. The previously presented simulation-based schedulability test is used to assess the 

schedulability of a task set. The migration rate and average slack are computed from the simulation 

results. 

The evaluation is done as follows: 

• We do all our tests on a platform with 4 processors. 

• We generate 450 task sets with total loads of 50% to 99%, with 6 to 20 tasks. 

• We simulate the scheduling in case of all four scheduling models, using the same task sets. 

3.2. Experimental results 

The experimental results are presented in Fig. 4, 5 and 6. The partitioned approach can find the most 

feasible schedules. The greatest advantages of this approach is that jobs do not migrate and that it has 

one distinct scheduler for each processor. The greatest disadvantage is that if the partitioning heuristic 

is weak, there will be less feasible schedules. Moreover, the average slack is the smallest. 
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Figure 4. Schedulable task sets as a function of system utilization 

 

 

 

 

 

 

 

 

Figure 5. Migration rate as a function of system utilization 

 

 

 

 

 

 

 

Figure 6. Average slack as a function of system utilization 
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The global approach finds the fewest feasible schedules. This is mostly because o the Dhall’s effect. 

The migration rate is very high for task sets with system utilization larger than 80%. However, the 

average slack is one of the largest; only the loose clustered approach has a larger slack for task sets with 

system utilization larger than 80%. 

The clustered approach finds slightly more feasible schedules than the global approach, but only for 

task sets with system utilization larger than 70%. However, the migration rate is half the one measured 

for the global approach. The average slack is less than the one measured for the global. 

Compared to the clustered approach, the loose clustered one finds more schedulable task sets, but 

with the cost of larger migration rates. But, for system utilizations larger than 80% it os only a little 

more higher. The average slack is one of the highest. 

Due to these observations, we can conclude that the loose clustered approach has good results mainly 

for task sets with large system utilization, in these cases improving the schedulability rate with the cost 

of a very small increase of the migration rate.  

4. Tests for assessing the features of parallel real-time Java 

implementations 

Real-time applications mostly use special processors in order to be predictable and to show a 

deterministic behavior. General purpose processors, on the other hand, are not widely used in real-time 

systems because of the non-determinism introduced by various features that are used to improve their 

performance such as the processor cache hierarchy, speculative execution of instructions or hardware 

parallelism (Hyper-Threading). However, the technology advances and mainly the improvement of 

multi-core processors made general purpose processors more interesting to the real-time community. 

The use of multicore processors and of parallel programming generated new areas of interest in real-

time systems. As noted in Chapter 1, the interest in multicore platforms is twofold. There is a special 

interest in the timing analysis of multicores and that of operations that involve a cache hierarchy. On the 

other hand, there is a special interest in parallel or multicore-aware programming languages for real-

time applications. 

The most popular programming languages for real-time applications were until recently C or Ada. In 

the past years, in an effort for introducing Java and its advantages (e.g. object-oriented programming, 

platform independence) to the real-time community, the Real-Time Specification for Java (RTSJ) [16] 

standardized a set of constraints on the Java language and runtime environment. These constraints are 

related to several features like its garbage-collector, dynamical memory allocation, threading and 

synchronization methods, that make Java unsuitable for real-time programs. Currently, there are several 

available RTSJ implementations [17][18][19][20]. Due to the development of multicore processors and 

the real-time community’s interest in it, the group that defined the RTSJ showed their intention to create 

a specification for a parallel/ multi-threaded version of RTSJ[21].  

In this context, our research targets the development of benchmark tests that will assess the features 

of parallel real-time Java implementations.  
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Currently, there are just a few real-time Java benchmarks, but they are either not multiprocessor-

aware [22] or not complete real-time benchmarks [23] (the latter doesn’t support 

NoHeapRealtimeThreads and AsyncEventHandlers [16]). The micro-benchmark presented in [24] deals 

with memory allocation, communication buffering and assessing timer accuracy for real-time Java. Even 

if it does not discuss the consequences of using multi-core processors, uses test scenarios that rely on 

multi-threading and a multi-core system for testing. However, the accent falls on real-time issues and 

not on parallelism (the two threads are started concurrently, but not necessarily in parallel) or low-level 

multi-core issues. In the embedded systems world, there are a few C benchmarks that are parallel/multi-

core aware, such as MiBench [25] and EEMBC [26]. MiBench is open-source and has a collection of 

35 C applications that are used to characterize embedded workloads and determine the performance of 

embedded processors. EEMBC provides also a Java application benchmark suite for the evaluation of 

multi-core processors but is only commercially available. 

4.1. Tests overview 

We developed a set of benchmark tests (RTSJMcBench) that assess important features of parallel 

Java implementations such as: 

• Memory operations: allocation, copy, shared cache read. 

• Asynchronous event handling. 

• Locking. 

A test starts a collection of parallel threads that execute a given task. Depending on the test purposes, 

a particular primitive operation is timed by using the processor timestamp counter (e.g., in the case of 

Intel processors, the rdtsc instruction [27]). Such operations, for instance, can be the acquiring of a lock 

or an array copy. The timing operation is done in a loop, in order to take several measurements that 

allow for a statistical interpretation of the results. Each thread reports the time values in a separate file. 

For timing and reporting, we use the jTools [28] package. A separate tool merges the individual result 

files into a CSV file where each column represents the values of a single thread. Practically, this is the 

final output of the benchmark. We developed an additional tool for processing of this result files and 

interpreting the results. 

Running a RTSJMcBench test can be also complicated by the number of arguments the program 

needs. To configure the run-time arguments, the application that starts the tests reads these parameters 

from an XML file. By default, the name of the arguments file is args.xml and it must reside in the same 

directory with the test application. Below is an example of such an arguments file used by a memory 

allocation test for Linear Time Scoped Memory [16]: 

<testapp name="rtsj.mcperf.mem.alloc.memalloc"> 

<arg name="no_of_threads" value="10"> Number of realtime threads </arg> 

<arg name="type_of_threads" value="rt"> Type of threads: RealtimeThread (rt), NoHeapRealtimeThread 
(nh) </arg> 

<arg name="scheduling_policy" value="rr"> POSIX realtime scheduling policy: SCHED_RR (rr), SCHED_FIFO 
(fifo)</arg> 

<arg name="count" value="10000"> Number of iterations </arg> 
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<arg name="priority" value="30"> Priority of the real-time threads </arg> 

<arg name="datadir" value="./datadir"> Directory storing the results of the run </arg> 

<arg name="instr_load" value="1000"> Number of instructions to simulate activity </arg> 

<arg name="memtype" value="LT"> Memory type: scoped (LT or VT), immortal </arg> 

<arg name="memsize" value="32M"> Memory size: bytes, Kilobytes (K), Megabytes (M) </arg> 

<arg name="allocsize" value="8"> Size of the allocated memory chunks: bytes, Kilobytes (K), Megabytes 
(M) </arg> 

</testapp> 

The arguments describing the collection of parallel real-time threads of a benchmark test are: the 

number of threads, their type (RealtimeThread [16] in the above case), their scheduling policy 

(SCHED_RR [29] in the above example) and real-time priority, the number of iterations performed in 

order to time a given operation, the directory where the results of the run will be stored and a so called 

“instruction load” that is used to run some fake computation that allows simulating thread activities 

besides those represented by the operations that are timed. The rest of the arguments in the above 

example are those particular to the memory allocation test, namely the type of memory to be allocated 

(Linear Time Scoped Memory), the total amount of Scoped Memory allocated for the test and the size 

of each of the allocation operations performed by the test.  

The following sections will describe the individual tests and their experimental results obtained for 

Jamaica VM, a multicore-aware implementation of RTSJ. The Linux system we used for testing is a 

Slackware distribution running on a dual quad-core Intel Xeon E5405 running at 2 GHz with 3 GB of 

RAM. This quad-core processor is a uniform memory access symmetric multiprocessor that packages 

two dual-core dies into the same chip. There is no Hyper-Threading available. The cache sharing of the 

processors, which can be detected by means of the CPUID instruction, is: cores 0 and 2 share their own 

L2 cache and so do cores 4 and 6, 1 and 3 as well as 5 and 7. 

4.2. Memory operations 

Memory allocation. This test aims to evaluate the performance of allocating either regular Java 

memory (heap memory) or the various types of RTSJ memory: Scoped Memory (either Linear Time or 

Variable Time) and Immortal Memory [16]. The test measures the time taken by the new instruction 

when allocating an array of given size for various types of memory. The user can set the size of the 

memory area to be used and the size of the array allocated by new. The allocation is performed a number 

of times specified by the iteration count value taken from the arguments file. An automated procedure 

detects whether the choice of the various parameters doesn't lead to memory overflow (i.e., the number 

of iterations times the allocation size is smaller than the available memory). 

The main thread creates the test threads and calls the start method of the benchmark framework. 

Because the constructor of the thread test class takes a reference to a Memory Area object (either Scoped 

or Immortal memory), the start method will create the corresponding real-time threads using the 

specified type of memory. If no RTSJ MemoryArea object is specified, normal Java heap memory is 

used instead. Each test thread sets its processor affinity, attempts to pass a barrier waiting for all the 

threads of the collection to be ready to run and then enters a loop. The processor affinity is set in a Round 

Robin manner across the set of available processors based on the logical thread ID. Within the loop, the 



15 | Performance evaluation of real-time multiprocessor systems  

 

thread iterates a fixed number of times (the iteration count is taken from the args file) over a sequence 

of operations that allocates an array of bytes and simulates some work. The allocation instruction is 

timed using the start/stop methods of HighResTimer [28] object for that thread.  

 

 

Figure 7. Results of the memory allocation test 

Fig. 7 describes the results obtained by running an allocation test with 16 real-time threads for heap 

memory, both with JamaicaVM [17] (parallel version) and plain Java running on Linux. The threads 

used a SCHED_FIFO [29] policy (priority based, equivalent to PriorityScheduler [16]) and real-time 

priorities of 30. The size of the allocation unit varied from 1 KB to 10 KB with a 1KB increment. On 

the y-axis is reported the average latency of allocations.  

Memory copy. This test is almost the same with the previous one, with one difference. This time, we 

measure the time is takes to copy an array by using System.arraycopy. Both the source and destination 

arrays are local to the test thread and are allocated before entering the main loop of the run method of 

the test thread.  

 

Figure 8. Average memory copy latencies 
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Fig. 8 describes the average latencies of copying heap memory arrays of various sizes, with Jamaica 

VM (parallel version) and plain Java with 16 real-time threads using SCHED_FIFO and priorities of 30. 

All the processors of the system described at the beginning have been used. The size of the arrays to be 

copied ranged from 1 to 10 KB with an increment of 1 KB. It can be noticed that the copy performance 

of Jamaica is worse than that of plain Java, but this is mainly due to a particular implementation of the 

arrays in the Jamaica VM.  

Shared cache read performance. This test aims to assess the performance of using the CPU caches 

when copying byte arrays. The source of the array copy is shared by all the threads, while the destination 

of the copy is a local array for each of the test threads. The source array is allocated to fit in the L2 

cache. The source array size is taken from the arguments file and is expressed as a fraction of the L2 

cache size. Threads’ CPU affinity is set so that they all share a L2 cache. The assignment is perfectly 

balanced according to a Round Robin scheme based on the logical thread ID. 

 

Figure 9. Shared cache copy performance 

Fig. 9 shows the test results for 16 real-time threads running on two CPUs that share an L2 cache. 

The L2 cache size for Intel 5405 is 6 MB. Therefore, the size of the array to be copied varied from 6 

MB to 6 KB, using a fraction factor growing exponentially according to the powers of 2 from 1 to 1024. 

The graphs report the average latency of copying a shared array allocated in heap memory. Naturally, 

as its size increases to the L2 cache size, the performance degrades. It can also be noticed that the 

Jamaica VM performance is somehow worse than that of Java. 
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Figure 10. Average cost per byte for array copy 

Fig. 10 describes an average cost per byte as the size of the array increases. It can be noticed that the 

cost per byte of Jamaica VM is insensitive to the increase of the array size. 

4.3. Asynchronous event handling 

This test evaluates the dispatch delay of an RTSJ event handling (i.e., the time between firing an event 

and the call of the associated handler). Each test thread defines a local event and associates a handler 

with it (a BoundAsyncEventHandler [16] object; therefore, according to RTSJ, each handler executes 

within a separate thread). Each handler has its own CPU affinity, which is the same with that of the 

thread associating the handler with the event. The CPU affinity is set Round Robin across the available 

processors, both for the test threads and their corresponding handlers. Within the main loop, each thread 

starts the local timer, fires the local event and waits for an event handler notification. The event handler 

records the current time by stopping the timer. Before finishing, the event handler notifies its completion 

to the firing thread. The thread unblocks, simulates some activity and starts a new loop iteration. 

 

Figure 11. One-on-one average event handling dispatch latency and maximum event handling dispatch 

latencies 

Fig. 11 shows the average dispatch latency and its maximum value for real-time threads on Jamaica 

VM and Linux. The tests used all the processors and have been run with 8, 16, 32, 64 and 128 real-time 

threads respectively. Note that the average dispatch time stays somehow constant with the number of 

threads. However, the maximum dispatch delay grows naturally with the number of threads. It is also 

worth noting that the maximum delays are on the order of seconds, while the average delays are worth 

hundreds of microseconds. One possible explanation is that the dispatch of some of the bound event 

handlers (Linux threads) might have been delayed by the activity of system threads. 

4.4. Locking 

This test evaluates the performance of storing spin-locks in shared CPU caches. When two threads 

that synchronize using spin-locks run on cores that don’t share any processor cache, grabbing and 

releasing the spin-lock are operations that fire the cache coherence protocol. The test measures the 

impact of the cache coherence protocol on the locking performance. Note that even if two cores are on 

the same chip, they may not share an L2 cache. The test chooses a random CPU from the processor set 

and then finds CPUs that share an L2 cache with it. Half of the threads perform cache-aware locking, 
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while the other half does not. Instead, they run on a processor subset not sharing an L2 cache. The 

threads set their CPU affinities Round Robin across their corresponding CPU subsets. Each of the halves 

uses its own shared spin-lock. We have run simultaneously the two thread sets to make sure that the 

measurements are taken in the same conditions. After setting the appropriate CPU affinity, each thread 

enters the main loop where it attempts to grab the corresponding shared spin-lock. The local thread timer 

measures the acquire operation. After performing the critical section, the lock is released. Fig. 13 shows 

the average spin-lock acquire latency when using 4 real-time threads. Two threads perform cache-aware 

locking (Threads 1 & 2), while two other (Threads 3 & 4) perform non-cached locking. The graphs show 

three values per thread, one for each processor set that has been used. The first bar (the red one) shows 

the performance of running cache-aware locking on CPUs {0,2} and non-cached locking on CPUs {1,5}. 

The second bar, the blue one, shows the performance on another experiment using CPUs {0,2} and 

{3,7}. The third bar (the green one) shows the performance of using the set of CPUs {1,3} and {0,4}.  

Figure 13. Average cache-aware latencies 

Note that for non-cached locking at least one of the threads 3 and 4 is constantly hit be synchronizing 

penalties. In only one case, the green bar on the Java graph, both cache-aware and non cache-aware 

locking perform comparably poor. For the rest of the cases, cache-aware locking outperforms non-

cached locking (at least one of the threads 1 and 2 takes advantage of the shared cache). In terms of 

absolute values, Jamaica VM performs one order of magnitude poorer than Java. 

5. Conclusions

This chapter presented solutions for two directions in the area of multiprocessor real-time systems

performance evaluation, namely the evaluation of scheduling strategies and execution time 

measurements of individual operations in real-time programs. 

The validation of real-time multiprocessor scheduling strategies through analytical schedulability 

tests is often very difficult. In this chapter, an exact schedulability test that is based on simulation is 

presented. This test is based on the theoretical result which states that if a feasible schedule with the 

period equal to the task set’s hyper-period is found, then the task set is feasible. The performance 

evaluation methodology developed with this test is then used to evaluate several scheduling strategies. 

This schedulability test proved to find more schedulable task sets than other analytical tests. 
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To conclude the discussion on real-time systems performance evaluation, the last section of this 

chapter presents a set of micro-benchmark tests made for assessing the timing of individual memory-

related, asynchronous event handling and locking operations implemented in parallel real-time Java.  
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