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Preface

The detection of humans in still images and especially in traffic scenarios is an important
problem for artificial vision, pattern recognition and in a broader context for autnomous vehi-
cles. A robust solution to this problem has various applications to fields such as autonomous
driving systems, video surveillance, image retrieval, vulnerable road user protection.

The goal of this book is to bring an overview of existing solutions for feature based
pedestrian detection systems and to present the contributions brought by the author in this
field. The book presents the main milestones of the pedestrian detection techniques in the
context of classical machine learning methods such as Support Vector Machines, Adaptive
Boosting or Bayesian Network trained on visual features extracted from monocular intensity
or infrared images.

The detailed theoretical and pragmatic solutions are extracted from the author’s PhD
Thesis entitled ”Adaptive Search Space Pruning in the Context of Multiple Attitude Pedes-
trian Detection Models” (2015) and are also found in the scientific papers published by the
author.

This book is addressed to computer science students that are in their senior year or
pursuing a Masters degree and to young researchers that want to get an introdoction to
classical pedestrian detection systems. This book assumes that the reader has reasonable
knowledge in the areas of image processing, computer programming, data structures and
algorithms, artificial intelligence and pattern recognition systems.
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Chapter 1

Introduction

Pedestrian detection is an extremely active field of scientific and technological exploration.
From many years researches in all the world have tried to build systems able to detect
pedestrians in images captured with various sensors setups. Monocular or sterovision systems,
Lidar, Radar or Infrared based frameworks have been widely explored.

The detection of humans in still images and especially in traffic scenarios is an important
problem for artificial vision and pattern recognition. A robust solution to this problem should
have various applications to autonomous driving systems, video surveillance, image retrieval.

In general, the goal of pedestrian detection is to determine the presence of humans in
images and videos and return information about their position. The problem of detecting
pedestrians has a high degree of complexity because of the large intra-class variability, as
pedestrians are highly deformable objects whose appearance depends on numer- ous factors
like: pose, orientation, shape, attitude, occlusions, imaging conditions, background.

With respect to other identities that appear in traffic (vehicles, road, traffic signs) that
have a rigid structure, pedestrians may adopt a large variety of appearances due to the
actions they perform (walk, run, stand), due to the motion of different body parts, due to
the clothing and accessories they wear. Hence pedestrians posses a large intra-class variability
because they are highly deformable instances in a traffic scene and their appearance depends
on numerous factors like: pose, orientation, shape, attitude, occlusions, imaging conditions,
background. The difficulties in pedestrian detection algorithms arise exactly from this high
variance in appearance.

The main components of a classical pedestrian detector are shown in Figure 1.1.

Figure 1.1: Sample processing pipeline for a classical pedestrian detector. Feature extraction
and classification are detailed in this book.

A first component of a classical pedestrian detector comprise a region of interest generation
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CHAPTER 1. INTRODUCTION

pocess. This is performed by means of sterovision or in the case of monocular cameras it is
done using geometric assumptions – for example most pedestrians are localized on the ground
(road) plane or if a pedestrian is far away from the ego-vehicle than its size in the aquired
image will be smaller than the size of a pedestrian that is close to the vehicle. The region of
interest generation process is a separate subject that is not in the context of this book.

The second component of the classical pedestrian detection system is the feature extractor
that explores the relevant features which make a pedestrian distinguishable with respect to
other entities that appear in a traffic scene.

The third component is the classifier or detector. Based on the design priciples of the
detector, several features are extracted in the given regions of interest, and based on those
features a classification model is applied having as result several detections. Each detection
has associated a likelyhood that it represents a pedestrian.

Furthermore, in the detection pipeline, tracking operations can be applied in order to
improve the flickering effects of a detector (that is a pedestrian is detected in the previous
frames, than in the current frame it is not detected and in the next frames it is detected
again).

In this book two components of a classical pedestrian detector are explored: the fea-
ture extraction and classification. The explanations provided in this book detail classical
approaches for a pedestrian detection system applicable in the context of monocular infrared
and monocular visible systems.

8



Chapter 2

Visual Fetures

Choosing the features implied in the design of a classifier represents a very important step. A
robust set of attributes must be used in order to recognize the humanoid shape in a cluttered
background and under difficult illumination conditions.

Existing approaches exploit descriptors based on first order partial derivatives computed
in four directions, histogram of gradient orientations, anisotropic Gaussians, Gabor wavelets,
Haar wavelets, Local Binary Patterns.

2.1 First Order Partial Derivatives

The magnitude of the first order partial derivatives is used because the sign of the magnitude
of the first order partial derivative is uninformative due to varying clothing and background
colors. In order to decrease the influence of small spatial shifts in the detection window,
a local average of the first order partial derivatives in each direction by convolving their
responses with a 2D averaging filter is performed. For each image I(x) in the training set
the following operation is performed:

GId(x) = |I(x) ∗Gd)| ∗B (2.1)

where ∗ denotes the convolution, Gd is the derivative kernel ([−1, 0, 1] or [−1, 0, 1]T ) used for
obtaining the derivatives in direction d ∈ D, B is a 2D averaging filter and GId is the result
image that captures the amount of first order partial derivative information at every pixel
location, in direction d. The set D = {0◦, 45◦, 90◦, 135◦} represents the directions in which
the partial derivatives have been computed. Figure 2.1 shows the resulting features for the
four directions. Each feature is characterized by direction, absolute value of the first order
partial difference and position in the image. We divide each image GId into several blocks of
different dimensions. The features in each block are normalized. For each block we perform
a correlation feature selection (CFS) algorithm. The selected features from all the blocks
form a vector of descriptors that represent the input to a classification algorithm.

9



CHAPTER 2. VISUAL FETURES

Figure 2.1: Directional derivatives

2.2 Histogram of Oriented Gradients

History and usage of HOG features

HOG features have become extremely popular in pedestrian and object detection in general
since their introduction in 2005. The HOG features are employed by [116], [114], [99], [26],
[117] , [98], [52], [22], [11], [4], [115], [56], [118].

Several variations and improvements of the HOG feature model have been proposed. For
example [8] propose a PCA algorithm to reduce the number of features per cell (will be
referred as FHOG), [98] describe a co-occurrence semantic HOG, [74] analyze the influence
on accuracy of different ways of computing the histograms in the HOG blocks. FHOG are
used by all papers that refer to the deformable part model like [24], [77], [64].

LiteHog designed to make use of the spare computational resources and LiteHog+ which
is more balanced in terms of memory and processor bandwidth are proposed by [119].

Another extension of HOG based on Comparison of Granules (HOG-CoG) is proposed
by [120] and extended in the form of histograms of oriented gradient of granules (HOGG) by
[121]. Instead of collecting gradient information at each pixel, the histograms of gradients in
small regions are computed. HOGG with different granularity can describe the contour while
ignoring the noisy edges. They prove that with the help of the integral image technique, the
evaluation of HOGG can be efficient.

A data driven feature transformation that improves the performance of gradient histogram
based features is proposed by [122]. They replace the gradient orientations with general filters
that preserve the unit norm and 0-mean properties. A modified spherical k-means algorithm
that uses sample medoids is employed for defining a vocabulary of image patches that are
used for constructing the block descriptors.

Feature Interaction Descriptor (FIND) is employed by [68]. It is based on HOG features
and it is computed in two phases: (1) constructing the localized oriented gradients histogram
and calculating the interaction of adjacent histogram bins using a histogram-similarity func-
tion.

10



CHAPTER 2. VISUAL FETURES

Irregular HOG patterns are learned in a discriminative fashion in the work of [123].
The opponent colors (OPP) space is exploited by [124] and [108] as a biologically inspired

alternative for human detection. They feed the OPP space in the baseline framework of [116]
and obtain better detection performance than by using RGB space.

HOG is improved by the usage of a segmentation based weighting scheme instead of gra-
dient magnitude based weighting in the work of [125]. The gradient at a certain pixel location
only encodes differences between adjacent pixels in intensity or color, while [125] incorporate
in the HOG descriptor differences based on a wider spatial support. The differences are
provided as weights resulting from a mean-shift segmentation algorithm applied to the CIE
Luv color space.

The process of constructing the histograms of oriented gradients comprises the following
steps:

• Gradient computation.

• Spatial/orientation binning.

• Normalization and descriptor blocks.

Each step will be described in detail in the next paragraphs.

Gradient computation

For each point of an image I the gradient magnitude, M and orientation θ are computed as
follows:

GIx = (I ∗B) ∗Gx (2.2)

GIy = (I ∗B) ∗Gy (2.3)

M =
√

(GIx)2 + (GIy)2 (2.4)

θ = arctan
GIy
GIx

(2.5)

where B is a Gaussian smoothing kernel, Gx = [−1, 0, 1]T , Gy = [−1, 0, 1].

Spatial/orientation binning

In the next step each pixel provides a weighted vote for an edge orientation histogram channel
based on the orientation of the gradient element centered on it, and the votes are accumulated
into orientation bins over local spatial regions that are called cells as shown in2.2. Rectan-
gular cells were considered. The orientation bins are evenly spaced over 0 ◦– 360 ◦(“signed”
gradient).

To reduce aliasing, votes are interpolated bi-linearly between the neighboring bin centers
in both orientation and position. The vote is a function of the gradient magnitude at the
pixel.

11



CHAPTER 2. VISUAL FETURES

Figure 2.2: a)Original Image; b)Gradient magnitude and cell division; c)Histogram of Ori-
ented Gradients computed on each cell; d)Cell grouping into blocks within which normaliza-
tion is made.

Normalization and descriptor blocks

Gradient strengths vary over a wide range owing to local variations in illumination and
foreground-background contrast, so effective local contrast normalization turns out to be
essential for good performance. The normalization scheme groups the cells into larger spatial
blocks and contrast normalizes each block separately. The final feature descriptor is the vector
of all components of the normalized cell responses from all of the blocks in the image. The
blocks are overlapped, so that each scalar cell response contributes to several components of
the final descriptor vector, each normalized with respect to a different block. This may seem
redundant but good normalization is critical and including overlap significantly improves the
performance.

Normalization scheme

As it turns out from the work of [116], effective local contrast normalization is essential for
a good performance of pedestrian detectors based on gradient attributes. For both feature
types L2-norm normalization algorithm applied on image blocks is used. Suppose that within
a block there is a vector of k features denoted by fd. The value of a feature fd(i) can either be
the magnitude of the first order partial derivatives computed in four directions or a histogram

12



CHAPTER 2. VISUAL FETURES

value ( for HOG attributes). The normalization equation is:

fd(i) =
fd(i)√∑k

i=1(fd(i))2 + ε
(2.6)

where ε is a small constant.

2.3 Haar Filters

The used Haar filters are reminiscent of Haar basis functions which have been used by [153]
and [154]. They operate on gray level images and their value is represented by the difference
of sums computed over rectangular regions. The regions have the same size and shape and
are horizontally or vertically adjacent. The three kinds of features proposed by [154]: two-
rectangular, three rectangular and four-rectangular features and a nine rectangular feature,
as shown in Figure 2.3 have been explored. The value of a two-rectangular feature is the

Figure 2.3: Haar features

difference between the sums of the pixels within two rectangular regions. The regions have the
same size and shape and are horizontally or vertically adjacent. A three-rectangular feature
computes the sum within two outside rectangles subtracted from the sum in center rectangle.
A four-rectangular feature computes the difference between diagonal pairs of rectangles. Two
other types of features can easily be generated by rotating the first two types by 90◦. A nine-
rectangular feature is computed in a rectangular region divided into nine equal blocks. The
value is given by the difference between the sum of the pixels in the middle rectangle and
the sum of the pixels in the other eight rectangles.

Integral Image

Rectangle features can be computed very rapidly using an intermediate representation for
the image called the integral image[154]. The integral image at location x, y contains the
sum of the pixels above and to the left of x, y, inclusive:

ii(x, y) =
∑

x,≤x,y,≤y

i(x,, y,) (2.7)

where ii(x, y) is the integral image and i(x, y) is the original image. The integral image can
be computed in one pass using the following pair of recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (2.8)

13



CHAPTER 2. VISUAL FETURES

ii(x, y) = ii(x− 1, y) + s(x, y) (2.9)

where s(x, y) is the cumulative row sum, s(x,−1) = 0 and ii(−1, y) = 0.

Figure 2.4: Integral Image representation

As shown in Figure 2.4 the sum of the pixels within rectangle D can be computed with
four array references. The value of the integral image at location L1 is the sum of the pixels
in rectangle A. The value at location L2 is A + B, at location L3 is A + C, and at location
L4 is A+B +C +D. The sum within D can be computed as L4 + L1− (L2 + L3). Hence,
using the integral image, any rectangular sum can be computed in four array references.
Clearly, the difference between two rectangular sums can be computed in eight references.
Since the two-rectangle features defined above involve adjacent rectangular sums they can
be computed in six array references, eight in the case of the three-rectangle features, nine for
four-rectangle features and five for the nine-rectangle features.

2.4 Local Binary Patterns

Local Binary Patterns (LBP) have been introduced by [155]. Originally they have been used
for texture recognition and more recent approaches included them in the field of pedestrian
detection. The LBP local histogram was used for face detection by [156] and this idea was
extended to work with pedestrian detection.

LBP is used by [157] for detecting pedestrians at night or in a dark environment setting
that needs to overcome problems of low contrast, image blur and noise. They propose three
types of LBP based features: weighted LBP, Multi-resolution LBP, and Multi-scale LBP.
Their experimental results show that the proposed method improves upon the basic LBP
significantly and outperforms benchmarks such as histogram of oriented gradients and co-
occurrence histograms of gradient orientations (CoHOG).

Another LBP-based feature, termed pyramid center-symmetric local binary/ternary pat-
terns (pyramid CS-LBP/LTP), for pedestrian detection is introduced by [158]. The proposed
CS-LBP captures the gradient information, it is easy to implement and computationally ef-
ficient, which is desirable for real-time applications.

For each point of an image I the LBP operator generates a binary code considering a
threshold-ed difference of intensity values between the pixel and some points in its local
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neighborhood. The threshold value is zero. The value of the LBP code for a pixel (xc; yc) is
given by:

LBPP,R =
P−1∑
p=0

s(gp − gc)× 2p (2.10)

where P is the number of neighbors to be analyzed on a circle of radius R centered at
xc, yc; s(x) = 0 if x ≥ 0 and s(x) = 1 otherwise; gp is the intensity of neighbor p and gc
is the intensity of the current (center) pixel. The number of features extracted by the LBP
operator can be reduced by using the so called uniform patterns [159]. These patterns are
used to reduce the length of the feature vector and also implement a simple rotation-invariant
descriptor. A local binary pattern is called uniform if the binary pattern contains at most
two bit-wise transitions from 0 to 1 or vice verse when the bit pattern is traversed circularly
[160]. In the computation of the LBP labels, uniform patterns are used so that there is a
separate label for each uniform pattern and all the non-uniform patterns are labeled with a
single label. For example if a neighborhood of 8 pixels on a circle of radius 1 is used the total
number of patterns is 256 and for them 59 different labels are obtained out of which 58 are
uniform and the last is used for the non-uniform patterns.

2.5 Anisotropic Gaussians

Anisotropic Gaussian features were introduced by [161]. They are constructed from base
functions of an over complete basis. The expansion of any image in the base is not unique.
The generative function φ(x, y) : R2 → R is described by the equation φ(x, y) = xe−(|x|+y2).
It is made of a combination of a Gaussian and its first derivative. This presents the ability of
approximating efficiently contour singularities with a smooth low resolution function in the
direction of the contour and it approximates the edge transition in the orthogonal direction.

Figure 2.5 shows some Anisotropic Gaussian kernels with different scaling, bending, rotat-
ing and translating parameters. Figure 2.6 displays some features computed on a pedestrian
image.

Figure 2.5: Examples of Anisotropic Gaussian kernels

Different transformations can be applied to this generative function:

• Translation by (x0, y0): Tx0,y0φ(x, y) = φ(x− y0, y − y0)

• Rotation by θ: Rθφ(x, y) = φ(xcosθ − ysinθ, xsinθ + ysinθ).

• Bending by r:

Brφ(x, y) =

{
φ(r −

√
(x− r)2 + y2, r arctan( y

r−x)) , if x < r

φ(r − |y|, x− r + r × π
2
) , if x ≥ r
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Figure 2.6: Original image and two Anisotropic Gaussians computed on it

• Anisotropic scaling by (sx, sy): Ssx,syφ(x, y) = φ( x
sx
, y
sy

)

By combining these four basic transformations, a large collection D of ψsx,sy ,θ,r,x0,y0 as defined
by equations bellow is obtained:

ψi(x, y) = ψsx,sy ,θ,r,x0,y0(x, y) = Tx0,y0RθBrSsx,syφ(x, y)

The obtained anisotropic features were normalized and as their number was very large a
random selection of 2640 features was applied. Parameters θj and pj are chosen using Bayes
decision rule.

2.6 Gabor Wavelets

The Gabor’s theory is based on the failure of Fourier transform. The Fourier transform is a
linear combination of trigonometric functions, where the scalars or coefficients are given as
inner products between the original signal and each trigonometric function. Each coefficient
reveals how much energy the signal contains of that particular (corresponding) trigonometric
function. A trigonometric function is the same as a particular frequency Thus; a Fourier
transform determines the frequency content of a signal. The Fourier transform has unique
mapping of a time domain representation in frequency domain. This is called as one to one
mapping. It is advantageous due to following points:

• Uniqueness.

• It is very much specific to period and scale.

• Fourier analysis is fast using Fast Fourier Transform (FFT).

• Relevant for quantification of stationary signals.

But it is has some disadvantages like:

• FFT requires the size of the image to be of the power of 2.
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• Problem with boundary condition – in other words after segmentation region can be
very well identified but boundary conditions are not defined.

• Time domain and frequency domain description of a signal are inversely related.

In 1946, Dennis Gabor [162], the inventor of the hologram, proposed the expansion of
a wave in terms of Gaussian wave packets. An example of such a wave packet is a sine
wave multiplied by a Gaussian function. If a signal is modulated (multiplied) by a Gaussian
window of a certain width and central time, then a Fourier expansion of the modulated
signal gives a measure of the local spectrum. Clearly such a spectrum is not unique since
the width of the Gaussian is arbitrary; but nevertheless, such local spectra are extremely
useful. If a collection of local spectra is computed for a suite of window positions, the result
is a time-frequency decomposition called a Gabor transform. Furthermore, if the signal can
be reconstructed from this decomposition, then a non-stationary filter can be achieved by
modifying the decomposition before reconstruction. Gabor observed that there should be a
presentation or representation which is local both in time and frequency domain and such
a local time and frequency representation should be discrete so that it is better adapted
to various applications. Gabor proposed to expand a function into a series of elementary
functions, which are constructed from a single building block by translation and modulation.

The two-dimensional Gabor functions that we have used were introduced by [163]. A
two-dimensional Gabor function consists of a sinusoidal plane wave of some frequency and
orientation, modulated by a two-dimensional Gaussian. The Gabor filter in the spatial do-
main is given by:

gλ,θ,σ,γ(x, y) = exp (−x
′2 + γ2 + y′2

2σ2
)(cos 2π

x′

λ
+ ψ) (2.11)

where:
x′ = x cos(θ) + y sin(θ),

y′ = y cos(θ)− x sin(θ)

The terms in equation 2.11 are:

• λ – wavelength of the cosine factor

• θ – orientation of the normal to the parallel stripes of a Gabor function in degrees

• ψ – phase offset in degrees

• γ – spatial aspect ratio (spatial width) and specifies the elliptically of the support of
the Gabor function and

• σ – standard deviation of the Gaussian and determines the (linear) size of the receptive
field.

The parameter λ is the wavelength and f = 1/λ is the spatial frequency of the cosine factor.
The ratio σ/λ determines the spatial frequency bandwidth of simple cells and thus the number
of parallel excitatory and inhibitory stripe zones which can be observed in their receptive
fields.

Figure 2.7 depicts some examples of Gabor filters with different combinations of spatial
width, frequency and orientation.
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Figure 2.7: Gabor filters with different combinations of spatial width, frequency and orien-
tation

2.7 Mixture of Features

This category comprises approaches that use a several visual features for the pedestrian
detection task. These features can be computed on a single modality – for example the
grayscale image or on multiple modalities like the grayscale image, density image, optical
flow image or on multiple channels like RGB, LUV.

Multi-cue features

A combination of two or more features is employed by several authors. For example [117]
introduce the self-similarity features on color channels and combine them with HOG features
and motion features derived from optical flow.

HOG features and Local Binary Patterns (LBP) are computed for several cues (intensity,
optical flow, depth) in the work of [23]. Different combinations of HOG with Local Oriented
Pattern (LOP), Color Self-Similarity (CSS), and Texture Self-Similarity (TSS) fed to a Sup-
port Vector Machine are exploied by [129]. Shape and texture features are combined in the
work of [51], [23], [130]. The shape-based detection involves a coarse-to-fine matching of an
exemplar-based shape hierarchy to the image data. The texture representation is given by
local adaptive receptive field features or HOG features. Haar wavelets and edge orientation
histograms are employed by [131], [132]. HOG and LBP are combined in the work of [133],
[134].

Channel features

The idea beyond channel features is derived from integral images and it strives to generate
and compute features efficiently using integral images over multiple registered image channels.
Integral Channel Features (ICF) [15] represent simple rectangular features that perform a
sum operation over a given image region. For the particular task of pedestrian detection
[15] show that good results are obtained when using 6 quantized orientations, 1 gradient
magnitude and 3 LUV color channels. Integral channel features are also used by [30], [135],
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Figure 2.8: Integral channel features used by [15]

[123].
Sketch tokens computed on integral channel features are employed by [136] for improving

pedestrian detection. Sketch tokens are mid-level features that capture local edge structure.
Their appearance ranges from straight lines and junctions to curves and sets of parallel lines.
Clustering is used to form sketch token classes and a random forest classifier is employed for
efficient detection of sketch tokens in novel images.

Aggregated Channel Features (ACF) introduced by [86] and available in the framework
of [87] are based on integral channel features. The idea of ACF is that given an input image
I, several channels C = Ω(I) are computed, then every block of 4×4 pixels in C are summed
and the resulting lower resolution channels are smoothed.

Channel features are also used by [76] and are applied directly on the scan windows
that remain after a pruning process. The first three channels are obtained by resizing the
bounding box centered on the pedestrian with three different scales and the Y-channels from
the YUV color spaces are extracted. The next three channels are Sobel edge maps of the
three Y-channels. Hence [76] learn features with multiple scales and boundary cues that are
given by Gabor filters.

Integral World Channels and Boosting are used for detecting pedestrians in the work of
[137]. They build the integral world channels using HOG, LBP and LUV features. A visual
codebook is build on top of these features. The pedestrians are detected by scanning the
fixed size image with sliding windows at different scales and using the same classifier because
different code words would be activated for near and far pedestrians.

Multi-modal multi-channel Haar like features

These features are Haar like templates applied on several channels like LUV, gradient mag-
nitude, histogram of oriented gradients proposed by [16]. Haar templates are generated by
sliding rectangular windows of pre-defined sizes over a pre-defined pedestrian shape model.
The template can be binary – traditional Haar features with weights +1 and -1 and ternary
(shown as white, black, and red areas) which are given the weights of +1, -1, and 0, respec-
tively.

Multi-channel Local Binary Patterns

Local Binary Patterns are computed by [21] on each component of the YCbCr space and
on the low pass and high pass images of the Y channel. Several quantization schemes are
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Figure 2.9: Haar templates used by [16]

explored in their work.

Binary Visual Elements

By means of random projections and adaptive thresholding [138] transform histogram based
image representations like HOG, LBP and BOW into binary item transactions. Then using
data mining algorithms like Jumping Emerging Patterns they build histograms of pattern
sets that are used for the classification task.

Context Cues

The context is a high level information that can be added to the detection framework. Context
has been explored at level feature or at pattern classification level.

For context features we should mention the work of [17] that combine the local scan win-
dows with neighborhood windows in order to construct a multi-scale image context descriptor.
They use multi-scale HOG features and local difference patterns (LDP) for constructing the
feature vector. These features are iteratively learned by ContextBoost method (see section

Figure 2.10: Multi context image features proposed by [17]

??). we develop an iterative classification algorithm called contextual boost. At each itera-
tion, the classifier responses from the previous iteration across the neighborhood and multiple
image scales, called classification context, are incorporated as additional features to learn a
new classifier.

20



CHAPTER 2. VISUAL FETURES

Correlation-based feature selection

The purpose of correlation-based feature selection (CFS) scheme is to eliminate redundant
attributes as well as irrelevant ones. As presented by [164] and [165], CFS tries to select
good feature subsets that contain attributes highly correlated with the class, yet uncorrelated
with each other. The correlation between two attributes A and B can be measured using the
symmetric uncertainty [165]:

U(A,B) = 2× H(A) +H(B)−H(A,B)

H(A) +H(B)
(2.12)

where H is the entropy function :

H(p1, p2, . . . , pn) = −p1 log p1 − p2 log p2 . . . pn log pn (2.13)

The symmetric uncertainty always lies between 0 and 1. Correlation-based feature selection
determines the goodness of a set of attributes using:∑

j U(Aj, C)√∑
i

∑
j U(Ai, Aj)

(2.14)

where C is the class attribute and the indexes i and j range over all attributes in the set.
Attribute selection is normally done by searching the space of attribute subsets and

evaluating each set. Search can be performed exhaustively, using a simple genetic algorithm,
randomly, or by greedy hill-climbing with or without backtracking. In our experiments we
have used the CFS implementation provided by [166].
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Chapter 3

Machine Learning Algorithms for
Pedestrian Detection

This section performs an overview of the machine learning algorithms that are frequently
used for the particular task of pedestrian detection, namely Bayesian Networks, AdaBoost,
Multi-layer perceptron and Support vector machines.

These methods operate on a set of feature vectors and walk through a large area of machine
learning techniques. The choice of a particular learning strategy has a great influence on the
overall speed and accuracy of the pedestrian detection method. For example non-linear
classifiers such as Radian Basis Function for Support Vector Machines have a good accuracy
but are slow. On the other hand linear classifiers such as linear SVMs, Random/Hough
Forests and different variants of Boosting are used. Other approaches perform probabilistic
reasoning or try to linearly approximate nonlinear kernels.

3.1 Bayesian Networks

In the methods we propose we have used a Bayesian network learning scheme. Bayesian
networks or belief networks have been used successfully for pedestrian classification in [167],
[168].

Belief networks [169] are used to model the statistical dependencies among the component
features. They take the topological form of a directed acyclic graph where each link is
directional and there are no loops. They allow efficient and effective representation of the
joint probability distribution over a set of random variables. In our solutions each node or
unit represents a visual feature. For a given instance, the probability of each class value can
be predicted using conditional probability tables that are given by the relative frequencies of
the associated combinations of attribute values in the training data.

In order to build a learning algorithm for Bayesian networks two components must be
defined: a function for evaluating a given network based on the data and a method for
searching through the space of possible networks [165]. The quality of a given network is
measured by the probability of the data given the network. The probability that the network
accords to each instance is computed by adding the logarithms of the probabilities over all
instances.

23



CHAPTER 3. MACHINE LEARNING ALGORITHMS FOR PEDESTRIAN
DETECTION

In some configurations the nodes in the network are predetermined, one for each attribute
including the class. So, our Bayesian network U is a pair B = 〈G,Θ〉, where G is a directed
acyclic graph whose vertexes correspond to attributes in the training set, and whose edges
represent direct dependencies between attributes. We model the set of attributes by the
random variables A1, . . . , An. The graph G encodes independence assumptions: each variable
Ai is independent of its non-descendants given its parents in G. Θ represents the set of
parameters that quantifies the network. It contains a parameter θai|Πai

= PB(ai|Πai) for each
possible value ai of Ai, and Πai , of ΠAi

, where ΠAi
denotes the set of parents of Ai in G. The

Bayesian network B defines a unique joint probability distribution over U given by:

PB(A1, . . . , An) =
n∏
i=1

PB(Ai|ΠAi
) =

n∏
i=1

θAi|ΠAi
(3.1)

So, being given a set of attributes a1, . . . , an and an attribute describing the class, c, the clas-
sifier based on B returns the label c that maximizes the posterior probability PB(c|a1, . . . , an).

3.2 Boosting

Boosting [170] is based on the observation that finding many rough rules of thumb can be
a lot easier than finding a single, highly accurate prediction rule. In order to apply the
boosting approach, one should start with a method or algorithm for finding the rough rules
of thumb. The boosting algorithm calls this “weak” or “base” learning algorithm repeatedly,
each time feeding it a different subset of the training examples or, to be more precise, a
different distribution or weighting over the training examples. Each time it is called, the
base learning algorithm generates a new weak prediction rule, and after many rounds, the
boosting algorithm must combine these weak rules into a single prediction rule that, hopefully,
will be much more accurate than any one of the weak rules.

Adaptive Boosting was introduced as a practical algorithm of the boosting theory. I will
exemplify it on a binary classification problem. The task of the binary classification is to
find a rule, which, given a set of patterns, assigns an object to one of the two classes.

Let X be the input space which contains the objects and denote the set of possible
classes by Y . In the binary classification case, Y = {−1,+1}). The task of learning can be
summarized as follows: estimate a function f : X → Y , using input, output training data
pairs generated independently at random from an unknown probability distribution P (x, y),
(x1, y1), . . . (xn, yn) ∈ Rd×{−1,+1} such that f will correctly predict unseen examples (x,y).
The label assigned to an input x is y = f(x).

The performance of the classifier is assessed by:

L(f) =

∫
λ(f(x), y)dP (x, y) (3.2)

where λ is a chosen loss function. The risk L(f) is often called the generalization error.
For binary classification, the loss function used is:

λ(f(x), y) = I(yf(x) ≤ 0) (3.3)
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where I(E) = 1 if the event E occurs and 0 otherwise.
In other words:

λ(f(xi), yi) =

{
1, if xi is misclassified
0, otherwise

(3.4)

Since the probability distribution P (x, y) is unknown, this risk L(f) cannot be directly
minimized. So we have to estimate a function as close as possible from foptimal based on the
available information, i.e. the training examples and the properties of the function class F
from which f is chosen. One classical solution is to approximate the generalization error by
the empirical risk defined as follows:

L̂(f) =
1

N

N∑
n=1

λ(f(xn), yn) (3.5)

This is the case if the examples are uniformly distributed. If the training set is large enough,
we expect that:

lim
N→∞

L̂(f) = L(f) (3.6)

However, one stronger condition is required to validate formula 3.6: the risk error L̂(f) has
to converge uniformly over the class of functions F to L(f)

While this condition is possible for large size training sets, for small samples size large
deviations are possible and over-fitting might occur. If it is the case, the generalization
cannot be obtained by minimizing the training error L̂(f).

The AdaBoost algorithm Let h1, h2, . . . hT be a set of simple hypothesis and consider
the composite ensemble of hypothesis:

f(x) =
T∑
t=1

αtht(x) (3.7)

There are many approaches for selecting the coefficients αt and the base hypothesis ht in
equation 3.7. We will present next the Adaptive Boosting algorithm.

It is called Adaptive in the sense that examples that are misclassified get higher weights
in the next iteration, for instance the examples near the decision boundary are harder to
classify and therefor get high weights in the input set after the first iterations.

1. Input: S=(x1, y1), . . . , (xn, yn), Number of iterations T

2. Initialize: d
(1)
n = 1

N
for all n = 1, . . . , N

3. for t = 1, . . . , T do

(a) Train classifier with respect to the weighted sample set S, d(t) and obtain hypoth-
esis ht : x→ {−1,+1}, i.e. ht = L(S, d(t))

(b) Calculate the weighted training error et of ht:

et =
N∑
n=1

d(t)
n I(ym 6= ht(xn)) (3.8)
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(c) Set:

αt =
1

2
log

1− et
et

(3.9)

(d) Update the weights:

d(t+1)
n =

d
(t)
n e−αtynht(xn)

Zt
(3.10)

where Zt is a normalization constant such that
∑N

n=1 d
(t+1)
n = 1

4. Break if: et = 0 or et ≤ 1
2

and set T = t− 1

5. Output: fT (x) =
∑T

t=1
αt∑T
r=1 αt

ht(x)

where x is the pattern to be classified, y is its target label and f(x) is the decision function.

A weight d(t) = (d
(t)
1 , . . . , d

(t)
N ) is assigned to the data at step t and a weak learner ht is

constructed based on d(t) . This weight is updated at each iteration. The weight is increased
for the examples which have been misclassified in the last iteration.

The weights are initialized uniformly: d
(1)
n = 1/N .

To estimate if an example is correctly or badly classified, the weak learner produces a
weighted empirical error defined by:

εt(ht, d
(t)) =

N∑
n=1

d(t)
n I(yn 6= ht(x)n) (3.11)

Once the algorithm has selected the best hypothesis ht , its weight αt = 1
2
log 1−εt

εt
is

computed such that it minimizes a loss function. One of the possible loss function considered
in AdaBoost is:

GAB(α) =
N∑
n=1

e−yn(αht(xn)+ft−1(xn)) (3.12)

where ft−1 is the combined hypothesis of the previous iteration given by:

ft−1(xn) =
t−1∑
r=1

αrhr(xn) (3.13)

The iteration loop is stopped if the empirical error εt equals 0 or εt ≥ 1
2

. If εt = 0, the
classification is optimal at this stage and so it is not necessary to add other classifiers. If
εt ≥ 1

2
, the classifiers do not respect the weak condition anymore. They are not better than

random selection so AdaBoost cannot be efficient.
Finally, all the weak hypotheses selected at each stage ht are linearly combined as follows:

fT (x) =
T∑
t=1

αt∑T
r=1 αr

ht(x) (3.14)

The final classification is a simple threshold which determines if an example xi is classified
as positive or negative.
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Other similar algorithms such as LogitBoost or Arcing algorithms use different loss func-
tions.

Weak learners
The adaptive boosting algorithm calls the “weak” or “base” learning algorithm repeatedly,
each time feeding it a different subset of training examples (actually, a different distribution
or weighting over the training samples). Each time it is called, the base learning algorithm
generates a new weak prediction rule, and after many rounds the boosting algorithm must
combine these weak rules into a single prediction rule, that hopefully, will be more accurate
than any one of the weak rules.

For weak learners one can use:

• Bayes decision rule [171]

• Decision trees having a root node and two children and using as splitting criteria:

– Miss-classification error;

– Entropy;

– Gini index;

• Other decision rules.

We have used the training data for building a decision tree with one level a root and two
children as depicted in Figure 3.1.

Figure 3.1: Decision tree with root and two children

Much of the work in designing trees focuses on deciding which property test or query
should be performed at each node. With non-numeric data, there is no geometrical interpre-
tation of how the test at a node splits the data. However, for numerical data, there is a simple
way to visualize the decision boundaries that are produced by decision trees. For example,
suppose that the test at each node has the form “is xi ≤ xis?” This leads to hyperplane
decision boundaries that are perpendicular to the coordinate axes.

The fundamental principle underlying tree creation is that of simplicity: we prefer de-
cisions that lead to a simple, compact tree with few nodes. This is a version of Occam’s
razor, that the simplest model that explains data is the one to be preferred [169]. To this
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end, we seek a property test T at each node N that makes the purity data reaching the
immediate descendant nodes as “pure” as possible. In formalizing this notion, it turns out to
be more convenient to define the impurity, rather than the purity of a node. Several different
mathematical measures of impurity have been proposed, all of which have basically the same
behavior [169]. Let i(N) denote the impurity of a node N . In all cases, we want i(N) to be
0 if all of the patterns that reach the node bear the same category label, and to be large if
the categories are equally represented.

The most popular measure is the entropy impurity (or occasionally information impurity):

i(N) = −
∑
j

P (ωj) log2 P (ωj) (3.15)

where P (ωj) is the fraction of patterns at node N that are in category ωj .By the well-known
properties of entropy, if all the patterns are of the same category, the impurity is 0; otherwise
it is positive, with the greatest value occurring when the different classes are equally likely.

Another definition of impurity is particularly useful in the two-category case. Given the
desire to have zero impurity when the node represents only patterns of a single category, the
simplest polynomial form is:

i(N) = P (ω1)P (ω2) (3.16)

This can be interpreted as a variance impurity since under reasonable assumptions it is
related to the variance of a distribution associated with the two categories. A generalization
of the variance impurity, applicable to two or more categories, is the Gini impurity:

i(N) =
∑
i 6=j

P (ωi)P (ωj) = 1−
∑
j

P 2(ωj) (3.17)

This is just the expected error rate at node N if the category label is selected randomly
from the class distribution present at N. This criterion is more strongly peaked at equal
probabilities than is the entropy impurity (see Figure 3.2).

The miss-classification impurity can be written as:

i(N) = 1−max
j
P (ωj) (3.18)

It measures the minimum probability that a training pattern would be misclassified at N .
Of the impurity measures typically considered, this measure is the most strongly peaked at
equal probabilities. It has a discontinuous derivative, though, and this can present problems
when searching for an optimal decision over a continuous parameter space. Figure 3.2 shows
these impurity functions for a two-category case, as a function of the probability of one of
the categories.

Given a partial tree down to node N , what value s should be chosen for the property
test T? An obvious heuristic is to choose the test that decreases the impurity as much as
possible. The drop in impurity is defined by:

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) (3.19)

where NL and NR are the left and right descendant nodes, i(NL) and i(NR) their impurities,
and PL is the fraction of patterns at node N that will go to NL when property test T is
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Figure 3.2: For the two-category case, the impurity functions peak at equal class frequencies
and the variance and the Gini impurity functions are identical. To facilitate comparisons,
the entropy, variance, Gini and miss-classification impurities have been adjusted in scale
and offset to facilitate comparison; such scale and offset does not directly affect learning or
classification. [169]

used. Then the “best” test value s is the choice for T that maximizes ∆i(T ). If the entropy
impurity is used, then the impurity reduction corresponds to an information gain provided
by the query. Since each query in a binary tree is a single “yes/no” one, the reduction in
entropy impurity due to a split at a node cannot be greater than one bit

For each weak classifier, the values are sorted. The optimal threshold with respect to
the weighted error can be computed in a single pass over this sorted list. For each possible
threshold, four sums are evaluated:

• Total sum of positive image weights T+;

• Total sum of negative image weights T−;

• Sum of positive weights below the current threshold S+;

• Sum of negative weights below the current threshold S−;

The weighted error for a threshold is:

e = min (S+ + (T− − S−), S− + (T+ − S+)) (3.20)

or the minimum of the error of labeling all images with a feature value below the current
threshold negative and labeling the images with a feature value above positive (parity, pj
equals to -1 in the expression of the weak classifier) versus the error of the converse (parity pj
equals +1 in the expression of the weak classifier). The error of the weak learner is computed
by summing the weights of the images ( positive and negative ) which are incorrectly classified
by it.
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3.3 Multiple Layer Perceptron

Multiple layer perceptron (MLP) also known as feed forward neural networks represents a
series of logistic regression models stacked on top of each other, with the final layer being
either another logistic regression or a linear regression model, depending on whether we are
solving a classification or regression problem [172].

Multilayer perceptrons consist of several layers of units (perceptrons) that are connected
and each connection has a weight. The first layer is connected to the input representing
the attributes in the data. Next it has the hidden layer that has no direct connection to
the environment and performs the actual processing. A multilayer perceptron has the same
expressive power as, say, a decision tree. Two aspects are considered when dealing with
multiple layer perceptrons: learning the structure of the network and learning the connection
weights. Back-propagation can be used in order to determine the weights given a fixed
network structure. Often a single hidden layer is all that is necessary, and an appropriate
number of units for that layer is determined by maximizing the estimated accuracy.

Mathematically speaking, if the MLP has two layers and a regression problem is considered
the model has the form [172]:

p(y|x, ) = N (y|wT z(x), σ2) (3.21)

z(x) = g(V x) = [g(vT1 x), . . . , g(vTHx)] (3.22)

“where g is a non-linear activation or transfer function (commonly the logistic function),
z(x) = Φ(x, V ) is called the hidden layer (a deterministic function of the input), H is the
number of hidden units, V is the weight matrix from the inputs to the hidden nodes, and
w is the weight vector from the hidden nodes to the output. It is important that g be
nonlinear, otherwise the whole model collapses into a large linear regression model of the
form y = wT (V x). One can show that an MLP is a universal approximator, meaning it
can model any suitably smooth function, given enough hidden units, to any desired level of
accuracy

To handle binary classification, the output is passed through a sigmoid, as in a GLM”:

p(y|x, θ) = Ber(y|sigm(wT z(x))) (3.23)

3.4 Support Vector Machine

Support vector machines use linear models to derive nonlinear class boundaries. They work
by transforming the input space into a new space. With a nonlinear mapping, a straight
line in the new space does not look straight in the original instance space. A linear model
constructed in the new space can represent a nonlinear decision boundary in the original
space. New examples are then mapped into that same space and predicted to belong to a
category based on which side of the gap they fall on.

In our experiments we use the implementation of SVM provided by [166] that implements
the sequential minimal optimization (SMO) algorithm for training a support vector classifier,
using polynomial or Gaussian kernels.

Sequential minimal optimization is an algorithm for solving the quadratic programming
problem that arises during the training of support vector machines.
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3.5 Aggregated Channel Features

Recently [86] proposed a model for multiple resolution image feature approximation instead
of actual feature computation. The model can be applied to a generic object detector and
it was applied to the pedestrian detection task in the Aggregated Channel Features (ACF)
framework [86], [87].

The idea of ACF is that the computational bottleneck of many pedestrian detectors
raised by feature computation at every scale over a finely sampled image pyramid can be
removed by feature approximation via extrapolation from nearby scales. For a broad family
of features this process does not reduce the performance of the detection. [86] find that
features computed at octave-spaced scale intervals are sufficient to approximate features
on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature
computation. As a result, the proposed approximation yields considerable speedups with
negligible loss in detection accuracy.

A feature pyramid represents a multiple scale representation of an image I. For each scale
s channels Cs = Ω(Is) are computed. These channels can be gradients, histograms and other
textural features. The basic steps of the ACF method are:

• Given an input image I, compute several channels C = Ω(I), sum every block of 4× 4
pixels in C, and smooth the resulting lower resolution channels.

• Instead of computing the features for each scale the ACF method computes Is and
Cs = Ω(Is) for only a sparse set of s (once per octave).

• At intermediate scales Cs is computed by approximation.

• Scan the pyramid with a sliding window of dimension 32× 64.

The important definitions described in detail by [86] for feature approximation are:

• Ω any low-level shift invariant function that takes an image I and creates a new channel
image C = Ω(I)

• C is a per-pixel feature map such that output pixels in C are computed from corre-
sponding patches of input pixels in I (thus preserving overall image layout).

• C may be down-sampled relative to I and may contain multiple layers k.

• Define a feature fΩ(I) =
∑

ijk wijkC(i, j, k)

– This forms includes gradient histograms, linear filters, color statistics etc.

• Given two scales s1, s2 Dollar. et. al. show that:

– fΩ(Is1)/fΩ(Is2) = (s1/s2)−λΩ + ε

– λΩ is determined empirically

– ε – deviation from the power law for a given image
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The method uses 27 scales. The four mentioned features are computed for the predefined
scales equal to 1, 0.5, 0.25, 0.125, while the values of the features for 7 intermediate scales are
approximated from neighboring scales. Exact feature scaling computation and approximation
methodology is detailed in [86].

3.6 Random Forests

A random forest is composed of binary decision trees [143]. The training of a random forest
consists in assigning each leaf node in each tree a binary test that is applicable to any data
sample. Depending on the result of the test a sample can follow the path of one of the
two children of a given non-leaf node. The training involves tree construction and also the
assignement to each leaf node the class distribution. In order to classify a test sample its
features are passed down all the trees of the forest and the classification score is computed
by averaging the distributions recorded at the reached leaf nodes.

Contextual information is integrated in random forests and applied for the task of semantic
labeling and pedestrian detection by [144]. They augment the random forest structure with
label information and provide a novel split function evaluation criterion that makes use of
the joint distribution observed in the structured label space.

3.7 Hough Forests

The Hough forests are in many aspects similar to random forests but as described by [19]
they have some specific properties. As stated by [19] the set of leaf nodes of each tree in
a Hough forest is a discriminative codebook. Each leaf node makes a probabilistic decision
on a patch and tells if it corresponds to a part of the object or to the background. Also, a
leaf node provides a vote about the centroid position of the whole object with respect to the
patch center. The trees in a Hough forest are built such that the leaves produce probabilistic
votes with small uncertainty. Each tree is constructed considering a collection of patches
from the training samples. The method is supervised in the sense that at the construction
of the forest it has to be known whether a patch comes from a background or an object, in
the latter case, which part of the object does it come from

In the generalized Hough transform the detections of individual object parts cast prob-
abilistic votes for possible locations of the centroid of the whole object. The final detection
hypotheses correspond to the maxima of the Hough image that accumulates the votes from
all parts.

[19] demonstrate that Hough forests improve the results of the Hough-transform object
detection. A sample detection is shown in Figure 3.3. Using random forests [19] learn a
direct mapping between the appearance of an image patch and its Hough vote. For detecting
pedestrians the learned model is applied to the patches in the test image and the resulting
votes are accumulated in the Hough image where the maxima are found.

The Hough-transform is also used by [46] that learn the class specific implicit shape model
(ISM) that represents a codebook of interest point descriptors.

Two improvements on the Hough Forest object detection framework are proposed by
[42]: they infer precise probabilistic segmentations for the object hypotheses and use those
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Figure 3.3: The Hough transform used for pedestrian detection by the work of [19]

segmentations for improving the final hypothesis selection. They also develop an efficient
cascaded voting scheme that significantly reduces the effort of the Hough voting stage without
loss in accuracy.

A probabilistic framework related to Hough transform is proposed by[20] and extended by
[66]. They formulate the object detection task as a problem of finding the finite subset of the
Hough space that corresponds to objects that are present in the image. For the pedestrian
detection task the votes are obtained in a probabilistic manner using Hough forests. Figure

Figure 3.4: Pedestrian detection with Hough forests used by [20]

3.4 shows their approach.

3.8 Neural Networks

A multiple layer neural network trained using adaptive local receptive field features (of 5× 5
features) is used by [99], [51]. A deep learning model computed on the deformable part
pedestrian detector is employed by [106]. In their model each hidden variable of the network
represents the visibility of a part. The object detection problem in general is regarded as a
multi-layered model by [65]: with segmentation as first layer and a segment classification as
second layer. They provide bounding boxes as object candidates using a single Deep Neural
Network. Each bounding box has an associated confidence score that represents how likely
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is the box to contain an interest object. This is the localization network. Then a classifier
network (also a Deep Neural Network) returns the final classification score.

A Convolutional neural network model is employed by [146]. Their model uses multi-
stage features, connections that skip layers in order to integrate global shape information
with local distinctive motif information and an unsupervised method based on convolutional
sparse coding to pre-train the filters at each stage.

A Switch Deep Network (SDN) is proposed by [76]. The SDN automatically learns hi-
erarchical feature representations that correspond to body parts and the whole body. The
SDN is composed of a convolutional layer that is initialized (or pre-trained) using a set of
Gabor filters. It learns to extract low- and mid-level features. On the next level the SDN
comprises four switchable layers (modeled by a Switchable Restricted Boltzmann Machine –
SRBM) and they model high-level mixture representations and salience maps of the whole
body and of three body parts: head-shoulder, upper-body, and lower-body. The last layer
performs logistic regression and predicts labels.
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Chapter 4

Collections of Annotated Image and
Evaluation Metrics

4.1 Color Image Collections

A summary of available pedestrian datasets dealing with monocular intensity sequences for
pedestrian detection is described in [33] and [39]. In order to asses the accuracy of the
proposed algorithms we have used several benchmark pedestrian detection datasets.

Daimler

The Daimler Stereo Pedestrian Detection Benchmark Dataset 1 introduced in [173] is an
extension of the monocular dataset described in [33]. For our experiments we have used
the monocular images. The annotations contain fully-visible pedestrians, pedestrian groups,
partially occluded pedestrians, bicyclists and motorcyclists. The images are grayscale and
have a size of 640 × 480 pixels. They provide a nice summary of the available pedestrian
datasets recorded from a moving platform in an urban environment.

ETHZ

The ETHZ dataset 2 is described in [174]. The annotations contain few very small pedestrians
having the size smaller than 60 pixels. The dataset contains color images of dimension
640× 480 pixels. We use the setup 1 (chariot Mk I) in our evaluations.

Caltech

The Caltech Pedestrian Dataset 3 was introduced by [175]. It is a monocular color dataset and
it is two orders of magnitude larger than existing datasets. The images have been recorded

1http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Stereo_Ped_

_Detection_/daimler_stereo_ped__detection_.html
2http://www.vision.ee.ethz.ch/~aess/dataset/
3http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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from a moving vehicle and contain also low resolution images and frequently occluded people.
The annotations refer to single pedestrians, occluded pedestrians and groups of pedestrians.

TUD-Brussels

The dataset was introduced by [114]. The data is divided in three sequences: (1) ‘tud-
pedestrians’ that contains 250 images with 311 side-view fully visible pedestrians with sig-
nificant variation in clothing and articulation; (2) ‘TUD Crossing Sequence’ that contains
201 images with 1008 annotated pedestrians. Most of the pedestrians are in side-view and
many are partially occluded for the whole sequence. (3) ‘TUD Campus Sequence’ – contains
71 image with 303 annotated pedestrians. All pedestrians are in side-view and many are
partially occluding each other.

NICTA

The dataset 4 has been introduced by [176] that analyze different characteristics of a a dataset
such as image size, aspect ration, geometric variance and the relative scale of positive class
instances within the training window. The goal is to determine what characteristics are
desirable for a pedestrian dataset. The dataset contains positive and negative images at
different resolutions (in our experiments we have used 16×40 and 64×80 image dimensions).
The final dataset contains 25551 unique pedestrians, allowing for a dataset of over 50 000
images obtained using mirroring.

INRIA

Person Dataset 5 collected as part of research work on detection of upright people in images
and video [116]. The authors of the database describe its content as follows: the database
contains two sets of images:

1. positives: normalized positive training or test images centered on the person with their
left-right reflections

2. negatives: containing original negative training or test images.

These two sets are further divided into training set containing images of dimension 96× 160
pixels (a margin of 16 pixels around each side), and test set containing images of dimension
70 × 134 pixels (a margin of 3 pixels around each side). “This has been done to avoid
boundary conditions (thus to avoid any particular bias in the classifier)”. It is suggested to
use the centered 64 × 128 pixels window for the pedestrian detection task and this is the
dimension we have used.

4http://www.nicta.com.au/research/projects/AutoMap/computer_vision_datasets
5http://pascal.inrialpes.fr/data/human/
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MIT

The training database [177] of people was generated from color images and video sequences
taken in Boston and Cambridge in a variety of seasons using several different digital cameras
and video recorders. The data was initially used in [178]. The pose of the people in this
dataset is limited to frontal and rear views.

Each image was extracted from raw data and was scaled to the size 64x128 and aligned
so that the person’s body was in the center of the image; the height of these people is such
that the distance from the shoulders to the feet is approximately 80 pixels.

4.2 Infrared Image Collections

Dataset Description

Before describing the infrared image data a short overview of the infrared domain will be
provided. All matter (gases, planets, etc) emits some amount of electromagnetic radiation
across a range of energies (or wavelengths). Infrared refers to the part of the electromagnetic
spectrum where biological life-forms emit the most light, at wavelengths slightly longer than
what we perceive as the color red. The human beings are not able to see infrared, but they
can sense it through what is commonly called heat. Physical touch is the most direct way of
observing it.

Objects generally emit infrared radiation across a spectrum of wavelengths, but sometimes
only a limited region of the spectrum is of interest because sensors usually collect radiation
only within a specific bandwidth. Therefore, the infrared band is often subdivided into
smaller sections. The commonly used sub-division scheme comprises near-infrared (0.75 −
1.4µm), short-wavelength infrared (1.4 − 3µm), mid-wavelength infrared (3 − 8µm), long-
wavelength infrared (815µm), far infrared (15 − 1, 000µm). The long wavelength infrared
corresponds to the “thermal imaging” region, in which sensors can obtain a completely passive
picture of the outside world based on thermal emissions only and requiring no external
light or thermal source such as the sun, moon or infrared illuminator. Forward-looking
infrared (FLIR) systems use this area of the spectrum. This region is also called the “thermal
infrared”.

LWIR Sensor Information

The images have been collected with a PathFindIR camera that is ’designed primarily for
driving vision enhancement (DVE) applications. PathFindIR is a hermetically sealed system,
rated to IP-67, with an integrated, automatic window heater. using a 12VDC input power
source, standard NTSC or PAL video is output for compatibility with most monitors or
displays.’ 6. The characteristics of the camera are:

• 320x240 uncooled VOx microbolometer, 38 micron pitch

• 8-14 micron LWIR

6http://www.flir.com/cvs/cores/view/?id=51221&collectionid=551&col=51218
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• Hermetically sealed, IP67 enclosure

• Fixed 19mm (36 degree HFOV) high impact optic

• Built in automatic lens heater

• Nominal 12VDC power input

• Standard NTSC, or PAL video output

• Compact size: 71.4mm × 57.4mm × 56.1mm(2.8′′ × 2.3′′ × 2.2′′) – Standard System
cable adds 3” to bottom.

• Weight 360 grams.

• Persistent FLIR logo on image

Infrared Dataset

We have used our own annotated dataset that was formed from the several traffic sequences
taken in autumn and in winter. The dataset contains 1924 pedestrian images having the
heights varying from 12 pixels to 150 pixels and aspect ratios (width/height) in the range
(0.3, 0.4, 0.5, 0.6).

Besides fully visible pedestrians we have annotated occluded pedestrians, groups of pedes-
trians and occluded groups. Those annotations were used for assessing the performance of
the region of interest generator. For classification we have only used the annotations of fully
visible pedestrians without any occlusion handling. For testing we have employed another
set of sequences that contains frames captured both at night and at daytime.

4.3 Evaluation Metrics

A proper evaluation methodology is crucial in the assessment of the good behavior of a
pedestrian detector. We follow a standard evaluation protocol for the classifiers we propose.
As stated by [36] this protocol quantifies and ranks detectors performance in a realistic,
unbiased and informative manner.

Per window evaluation using confusion matrices

A protocol for evaluating detectors based on binary classifiers is to measure their per-window
(PW) performance on cropped positive and negative image windows [36]. Per window eval-
uation is commonly used to compare classifiers – as we did in chapter 5.

The per window evaluation is captured in a tabular form in the confusion matrix that
allows the visualization of the performance. Each column of the matrix represents the in-
stances in a predicted class, while each row represents the instances in an actual class. Table
4.1 shows the confusion matrix for a two class classification problem dealing with pedestrian
and non-pedestrian categories.
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Ground truth pedestrian Ground truth non-pedestrian
Predicted pedestrian True positive False positive
Predicted non-pedestrian False negative True negative

Table 4.1: Confusion matrix

The measures that are derived from the confusion matrix are:

True positive rate =

∑
True positive∑

Ground truth positive
(4.1)

The true positive rate represents the amount of correctly detected pedestrians from the total
number of ground truth pedestrians present in the evaluation.

False negative rate =

∑
False negative∑

Ground truth positive
(4.2)

The false negative rate represents the amount of ground truth pedestrians that are classified
as negatives from the total number of ground truth pedestrians present in the evaluation.

Log average miss rate

The log average miss rate was proposed by [179] and used extensively by [36]. It is a metric
used to report the detection performance on a full image as miss rate versus false positives
per image (FPPI).

As stated by [36] “a detection system needs to take an image and return a BB and a
score or confidence for each detection. The system should perform multiscale detection and
any necessary non-maximal suppression (NMS) for merging nearby detections. Evaluation
is performed on the final output: the list of detected BBs. A detected BB (BBdt) and a
ground truth BB (BBgt) form a potential match if they overlap sufficiently. Specifically, the
PASCAL measure is employed, which states that their area of overlap must exceed 50%:

a0 =
area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
> 0.5 (4.3)

For larger of the threshold the performance degrades.”
In our experiments we use the evaluation protocol provided by [36], [87]. In describing

their evaluation protocol they state that “each BBdtand BBgt may be matched at most once.
They resolve any assignment ambiguity by performing the matching greedily. Detections
with highest confidence are matched first; if a detected BB matches multiple ground truth
BBs, the match with highest overlap is used (ties are broken arbitrarily). Unmatched BBdt

count as false positives and unmatched BBgt as false negatives.”
The log average miss rate (lamr) is defined by [179] as “the average miss-rate sampled

from the lowest false positive rate to a false positive rate of 1 FPPI.
The log-average miss rate is used in [36], [87] to “summarize detector performance, com-

puted by averaging miss rate at nine FPPI rates evenly spaced in log-space in the range
10−2 to 100 (for curves that end before reaching a given FPPI rate, the minimum miss rate
achieved is used).
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The log-average miss rate is similar to the performance at 10−1 FPPI (meaning a neg-
ative at every 10 frames) but in general gives a more stable and informative assessment of
performance. ”
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Chapter 5

Monocular Color Pedestrian Detection

5.1 Survey of Current Approaches

Pedestrian detection is presented in the context of collision avoidance systems by the survey
in [32]. They make a comparison of different sensor modalities (like visible cameras, near and
thermal infrared cameras, RADAR, LASER scanner) for pedestrian detection. They analyze
the approaches for pedestrian detection and tracking in the visible and infrared domain and
the methods that combine several sensor cues. They also revise methods for behavior analysis
and collision prediction.

An overview of pedestrian detection approaches related to monocular systems is provided
by [33]. Their survey is two-fold: first they revise state of the art methods in pedestrian
detection and secondly they describe an experimental study of the most popular approaches
for pedestrian detection: cascade of AdaBoost classifier trained on wavelet features, lin-
ear SVM with HOG features, Neural Networks with Local Receptive Fields and combined
shape-texture detection. The survey identifies and describes three main components of the
pedestrian detection pipeline: Region of Interest selection, Classification comprising genera-
tive and discriminative models. Generative models regard the appearance of a pedestrian as
a class conditional density function and the posterior probability for the pedestrian class can
be inferred using a Bayesian approach. These models are based mainly on shape cues and
some combine shape and texture. On the other hand discriminative models learn the param-
eters of a discriminant function between the pedestrian and non-pedestrian classes based on
a set of training samples. The study identifies main features, classification architectures and
multiple part representations.

An extensive literature review is done by [1]. They divide the problem of pedestrian
detection into different processing steps, also identified in [34]: preprocessing, foreground
segmentation, object classification, verification/refinement, tracking and application. These
steps are analyzed in the framework of monocular and stereo visible sensors, near and ther-
mal infrared sensors and in the perspective of multiple fused sensors. The preprocessing
methods comprise exposure time, gain adjustments, camera calibration. The foreground
segmentation extracts the regions of interest from the image. These regions are sent to the
classification module. [1] shortly review methods that are applied to monocular images (com-
prising scan window based approaches, biologically inspired visual attention algorithms [2],
symmetry based methods [35]), infrared images (including symmetry based approaches [35],
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Figure 5.1: Processing steps in pedestrian detection methods surveyed by [1]

intensity thresholding, histogram projection combined with thresholding, hypermutation net-
works used for pixel classification), stereo based algorithms and motion based segmentation
algorithms. In the step of object classification they identify two classes of methods: silhouette
matching and appearance based algorithms that define a set of image features (descriptors)
and a classifier is trained on those features. For the verification step [1] identify methods to
filter out false positive detections and in the refinement step a fine segmentation of the pedes-
trian is performed. Tracking methods are also surveyed and their usage is nicely described:
false detection removal over time, prediction of future pedestrian positions, inference about
pedestrian trajectory and behavior. Discussion and review of benchmarking procedures are
also presented.

Reference state of the art algorithms are described and evaluated by [36]. They also
describe the Caltech dataset and study the statistics of size, position and occlusion patterns
for pedestrians. A comparison between pedestrian detection datasets is made in terms of
samples used for training and testing, pedestrian heights, and different properties like color
images, evaluation methodology, temporal analysis. They also propose an elaborate eval-
uation methodology. For the reviewed algorithms they focus on sliding windows detection
processes. They revise Haar based detectors using SVM [37] or AdaBoost [38], HOG based
methods, shape based template matching methods, motion based methods and approaches
that combine multiple feature representations: HOG, Haar, shapelets, edgelets, Local Binary
Patterns, Integral Channel Features. They also revise the methods that improve the learning
framework and methods that explore very large feature spaces. Finally they refer to part
based detectors and pose specific detectors.

A recent survey [39] analyze the remarkable progress of the last decade by discussing
the main ideas explored in 40+ detectors available in Caltech pedestrian detection bench-
mark. Based on the classification technology, [39] identify three classes of approaches: (1)
deformable part models (DPM) variants , (2) Deep networks and (3) decision forests. In the
pattern recognition chapter we will revise each.

We conclude that the above mentioned studies identify a modular approach in the devel-
opment of a pedestrian detection scheme containing the following components:

(a) Generation of possible pedestrian location hypotheses: regions of interest – ROI or
foreground segmentation;
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(b) Definition of the pedestrian data model: full body, part based representations, compo-
nents;

(c) Choice of the data representation model: contours, gradient histograms, wavelets;

(d) Pattern recognition or classification: matching, SVM, boosted classifiers;

(e) Refinement in which multiple scale overlapping detections are analyzed and the best
detection is kept.

(f) Tracking of detected pedestrians.

(g) Benchmarking procedure and evaluation methodology.

The pedestrian hypothesis generation depends on the type of system used (stereo, monoc-
ular, infrared). Pedestrian hypothesis refers to the generation of possible locations for a
pedestrian. Therefore we will name this process either pedestrian localization, pedestrian
hypothesis generation or region of interest selection. We will present existing approaches for
three types of sensorial systems: monocular, stereo and infrared.

5.2 Pedestrian Representation Model

The classification is done using a set of features extracted on different parts of the pedestrian
body, on the whole body or it combines multiple parts or components and multiple views or
poses of the pedestrian.

There are an extremely large number of methods that use one of these approaches and
it is probably impossible to mention them all. Yet our study tries to capture the evolution
of the pedestrian data representation model from simple whole body representation, to rigid
multiple part description up to hierarchical deformable models and multiple view multiple
part combined models.

When dealing with a pedestrian data representation model an important aspect is given
by the model dimension. There are approaches that consider a single model dimension when
training a classifier and there are methods that create multiple size models and for each size
they train a classifier.

At a first representation level we have divided the approaches into monolithic ones that
consider the pedestrian data as a whole and into part based model that regard the pedestrian
as a combination of parts and the whole body. For each of the two division single scale or
multiple-scale methods have been developed. These representations try to capture the high
variance of the pedestrian appearance and some underline the multiple views or poses that
pedestrians may have.

5.2.1 Monolithic Models

The pedestrian model is regarded as an indivisible and uniform structure. The variations
of this model are given by the detector size and the pedestrian views enclosed. The multi-
resolution monolithic models are formalized by [60]. They identify fixed resolution models
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that we divide into no-view and multiple view single scale models, multiple fixed-resolution
models that we categorize in no-view and multiple view fixed resolution models that consider
separate model for each interest detection size.

No View Single Scale Model

The simplest and most popular representation is given by a single size model that is not view
centric, that is no special views of pedestrians are considered. Basically all views or attitudes
of a pedestrian are comprised without any separation between them. This approach has
been used by [98] that propose a method for discriminating between pedestrians, bicyclists
and motor-cyclists is described in [98]. For pedestrian detection they employ HOG features
and Co-occurrence semantic HOG features that are input to a Fisher’s linear discriminant
function. MRF tracking is also used.

Multiple View Single Scale

The multiple view model considers specific views of pedestrians and trains focused classifiers
for these views. This approach is encountered in the work of [99], [42].

In the work of [42] the multi-view pedestrian model comprises side-viewed front, rear,
or diagonal pedestrians. They model the views by the rotation angle with respect to a side
viewed pedestrian that has a rotation of 0 degrees, 45, 90/270 and 135 degrees.

Four view-related classifiers or mixture of experts are proposed by [23]. The considered
views or poses correspond to front, left, back and right views of pedestrians.

No View Multiple Scale Model

A popular approach that speeds up the pedestrian detection process is employed by [30] that
consider as canonical classifier the Integral Channel Feature based classifier of [15] and train
it for a predefine set of scales (a scale for each octave). They obtain a remarkable speed-up
improvement with negligible loss in accuracy because they perform object detection without
image resizing.

Detectors encompass different scales of the single view model: [4].

A scan window based approach for pedestrian detection is presented in [5]. Their classifi-
cation comprises a Discrete AdaBoost classifier with Weighted Fisher Linear Discriminant as
weak learner trained on several macrofeature layouts. Macrofeatures encode a set of low-level
features in a neighborhood. [5] employ three shape layouts (line, triangle and pyramid) as
shown in Figure 5.2. These layouts are composed of HOG feature blocks closely located to
each other in a multi-scale feature pyramid. They train a classifier on INRIA dataset and
evaluated it on challenging data sets like: INRIA, ETH, TUD-Brussels, Caltech, Daimler.
The proposed method is evaluated in terms of detection performance (relationship between
detection rate and the number of false positives per image) and it terms of localization per-
formance (mean of PASCAL VOC overlap ratios given false positives per image). They
measure how is the alignment of the detected bounding boxes with respect to the ground
truth annotation.

The algorithm is implemented using CUDA and it runs at 9.43 fps.
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Figure 5.2: Macrofeatures selection and layout types employed by [5]

Multiple View Multiple Scale Model

Detectors are trained for several scales and for multiple views of the same object.

In the work of [68] the pedestrian views on which classifiers are trained are divided into
four categories: back, front, left, right. The scale is represented by dividing the target
distance up to 60m into three ranges: near, middle and far.

5.2.2 Part Based Models

These representations regard the pedestrian as a collection of parts that can have a certain
degree of deformation.

When dealing with component based approaches more expert classifiers are trained and
a voting or a combination scheme is used for the final classification.

Usually three main stages [100] are identified when dealing with part based models: part
localization, part refinement and part combination. Part localization provides a score to the
feature that describes the location of the part in an absolute framework (commonly referred
to as ’star model’ [101]) or with respect to other parts [102].

Part refinement may take several forms: part decomposition into subparts, re-training of
the part mask for increased discriminative power, or binding the SIFT descriptor of the part
with additional, hopefully orthogonal, descriptors (e.g. of texture or color).

Part combination may take the form of ’and’ or ’or” operators applied to component
parts, with and without spatial constraints. Applying ’and’ operators corresponds to sim-
ple monomials introducing non-linearity when no spatial constraints are imposed, and to
’doublets’ [102] if such constraints exist. Applying ’or’ operators can create ’semantic parts’
which may have multiple, different appearances yet a

Rigid Part Based Model

This model does not make a separation between the multiple poses of the parts used. It just
decomposes the pedestrian into a collection of rigid parts.

A combination of HOG-SVM upper, lower and whole body classifiers is employed by [72],
[62].
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The individual human is modeled as an assembly of natural body parts [12]. Part detectors
are based on edgelet features and are learned by boosting. “Responses of part detectors are
combined to form a joint likelihood model that includes cases of multiple, possibly inter-
occluded humans. The human detection problem is formulated as maximum a posteriori
(MAP) estimation.”

A flexible model is also employed by [12] and extended by [103] that use four components
corresponding to full body, head-shoulder, torso and legs and also three poses of pedestrians:
front/rear, left profile and right profile for which they train an AdaBoost classifier.

A part hierarchy is defined by [6] that model each part as a sub-region of its parent
except for a whole-object node. The hierarchy model is depicted in Figure 5.3. For each

Figure 5.3: The part based hierarchy of [6]

part a Cluster Boosted Tree is trained using edgelet features. “A child node in the hierarchy
inherits image features from its parent node and if a target performance can not be achieved
only from the inherited features, more features are selected and added to the child node.
For the whole-object node, in addition to the detector, a pixel-level segmentor is learned.
They formulate segmentation as a binary classification problem and train the segmentor by
a supervised learning algorithm. In the training procedure, for each feature in a large feature
pool, a pair of weak classifiers for detection and segmentation is built”.

Flexible Models

The flexible or deformable models represent a pedestrian in a collection of parts arranged in
a deformable configuration. They capture the variations of parts in appearance and define
parametric relations between parts.

Humans are modeled as flexible assemblies of parts in the work of [104]. The parts are
modeled by co-occurrences of local features which captures the “spatial layout of the parts
appearance. Feature selection and the part detectors are learnt from training images using
AdaBoost”.

One remarkable work in articulated part based models is given by the pictorial structures
introduced by [7]. They consider that “an object is modeled by a collection of parts arranged
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in a deformable configuration. Each part encodes local visual properties of the object, and
the deformable configuration is characterized by spring-like connections between certain pairs
of parts. The best match of such a model to an image is found by minimizing an energy
function that measures both a match cost for each part and a deformation cost for each pair
of connected parts”. A tree like pictorial structure is depicted in Figure 5.4. In their work

Figure 5.4: Tree like pictorial structure used in [7]

the authors provide statistical models for learning pictorial structures from examples and
methods for finding multiple good matches of a model to an image. Matching is formulated
as an energy minimization or Maximum A-posteriori Estimate.

A very popular multiscale deformable part model (DPM) is proposed by [8] and extended
in [71] and [105]. In their work the models are not bound to a unique position relative to
the detection window. The initial model of [8] consists of a global “root” filter and several
part models composed of a spatial representation and a part filter. The spatial representation
defines a set of allowed placements for a part relative to a detection window and a deformation
cost for each placement. The classification score of a scan window is a combination between
the root filter and the parts filters all trained on modified HOG features. The detection using

Figure 5.5: Deformable part based model proposed by [8]

the DPM model is depicted in Figure 5.5. For the classification component they introduce a
new formalism called latent SVM.

A general method for building star-cascade classifiers from DPM models is presented by
[71].

The deformable part model (DPM) has been adopted and exploited in the work of [77],
[64], [24], [106], [69], [107], [86], [108], [49], [4].

Pictorial structures are used for pedestrian detection in the work of [109]. Densely sam-
pled shape context descriptors and discriminatively trained AdaBoost classifiers model the
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appearance of body parts. The normalized margin of each classifier is interpreted as a likeli-
hood in a generative model and non-gaussian relationships between parts are represented as
Gaussians in the coordinate system of the joint between parts.

A new insight on the deformable part model is given by [28] that perform object detection
with grammar models. The formalism of grammar models has been introduced by [110]. In
grammar models objects are represented by means of other objects using compositional rules.
The relative motion of parts with respect to one another is described by deformation rules.
This constructs hierarchical deformable part models. The grammar model for pedestrians
allows plenty of flexibility in describing the amount of the person that is visible. “The parts
in the model, such as the head part, are shared across different interpretations of the degree
of visibility of the person. The grammar model also includes subtype choice at the part level
to accommodate greater appearance variability across object instances. [28] use parts with
subparts to benefit from high-resolution image data, while also allowing for deformations.”
They explicitly model the source of occlusion for partially visible objects.

A multi-task form of DPM is proposed by [64]. They partition the resolution space into
two classes: low resolution containing scan windows in range 30–80 pixels and high resolution
that comprises scan windows of dimension higher than 80 pixels. Their method considers
the commonness and the differences of samples from different resolutions which are captured
by a multi-task strategy. They build a resolution-invariant subspace by using a mapping of
features from different resolutions to a common subspace. On this subspace a shared detector
is trained in order to capture the structural commonness. The execution time is less than 1s
on a standard PC.

A latent deformable template model with a locally affine deformation field and an inference
procedure adapted for the method is proposed by [9]. Their template is allowed to deform
according to a locally affine deformation field. The idea is based on refining the template
“beyond translation and scaling with an additional transformation selected from a finite set
of possible perturbations covering aspect ratio change and small in plane rotations.” The

Figure 5.6: The locally affine deformation field proposed by [9]

locally affine deformation field is shown in Figure 5.6. They also prove that the deformation
field can be used to measure the similarity of the training samples and hence use it for
clustering samples of similar viewpoints and poses.
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A hierarchical part based template matching is combined with HOG based discriminative
learning in the work of [10]. They first learn a tree of part based contour templates. A
histogram of gradient weighted edge orientation histograms is build. For each possible scan
window they estimate the optimal pedestrian pose using template matching. Then block
features closest to each pose contour point are concatenated in a feature vector as shown
in Figure 5.7(a). Given the feature vector and the part part templates for a scan window,

(a) Descriptors computed on contour points from the part templates (b) Part detectors for occluded pedes-
trians

Figure 5.7: Approach used in [10].

an optimal tree path is estimated by computing the part template score as an average of
gradient magnitudes of corresponding orientation bins in each block of the feature vector.
The score is defined by orientation consistency instead of distances between edges as in
traditional Chamfer matching. Special occlusion handling is modeled by the score given by
part combinations (that is weighted sum of individual part responses). The parts are depicted
in figure 5.7(b). In order to speed up the scan window detection process and knowing the
camera parameters they estimate the expected location of a head point given an arbitrary foot
point in the image. They use a homography matrix that is estimated by least-squares method
using four or more pairs of annotated foot and head points. Background subtraction is also
employed. For evaluation they use the INRIA and MIT-CBCL data sets. The execution time
for the occlusion based method is about 5fps on a standard CPU.

Pedestrians are represented in the framework of a grammar dictionary composed of clus-
tered poselets models [11]. The clustered poselets select representative keypoint configura-
tions of human parts and use HOG-SVM to learn the appearance models. HOG features
are extracted at multiple resolutions for a test image. Convolution is employed for providing
activations for all clustered poselet filters. Maximum a posterior solution is provided by
bottom-up inference and connect the activations into the pedestrian full-body. The infer-
ence obtains locations the whole body and also for the parts. The execution time with no
optimizations on a standard CPU is of 3 seconds per frame.

Statistical component based pedestrian shape model is referred by [16] that divide the
pedestrian body into three parts: the head, the upper body and the lower body for which
they compute Haar like templates.

Pedestrians are modeled as a hierarchy by four switchable layers of a Deep Neural Network
in the work of [76]. They propose a root layer for the whole body and three sub-layers for
head-shoulder, upper-body, and lower-body, respectively.

An iterative part based feature synthesis has been proposed by [100]. At each iteration of
their method they perform feature generation that provides candidate features and feature
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(a) The and-or grammar (b) Pedestrian keypoints

Figure 5.8: Pedestrian representation grammar a keypoints for poselets used by [11]

selection that has as outcome a subset of selected features and a learned linear classifier.
Their process is based on a feature hierarchy model that comprises part-based features and
operators that are used for part localization, part refining and part combination. Predictive
feature selection is used for feature pruning. A large pool of rectangular image fragments
is sampled from aligned positive training images. The features employed are HoG features,
global maximum features, sigmoid features, localized features, subpart features, LDA fea-
tures, OR features, cue integration and ’and’ features. Their work is extended by [111] that
propose an Accelerated Feature Synthesis that reduces the number of locations searched for
each part by KDFerns method that compares each image location to only a subset of the
model parts. Spatial inhibition object-level coarse-to-fine strategy is used to reduce candi-
date part locations. Their method achieves about 10fps on a regular CPU and on images of
640× 480 pixels.

Multiresolution contextual models are proposed by [60]. They act as a deformable part-
based model when scoring large pedestrian instances and as a rigid template when dealing
with small size pedestrian instances.

5.3 Attitude Based Pedestrian Detectors

Within the context of a traffic scenario, pedestrians may have several attitudes or perform
different actions: wait at the traffic light, cross the street, run for a bus or a taxi, walk or run
on the pavement. When performing all these actions, pedestrians have different attitudes:
stand, walk, run. We have studied those attitudes and the contexts in which they appear.
A fine partition of the pedestrian appearances comes to improve the overall detectin rate.
We prove that specific classifiers trained on particular attitudes provide a better overall
performance than a generic classifier trained on a non-partitioned pedestrian space.

Attitude based pedestrian detectors have been largely studied, designed and implemented
by the author.

Given the large appearance space of pedestrians in monocular intensity images capturing
traffic scenes we propose (a) a coarse partitioning scheme into basic attitudes like run, stand
walk and (b) a fine partitioning of the space into complex attitudes that combine the basic
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attitudes with motion direction information (left, right, front, rear). The two partitioning
schemes are included in a dataset we have designed and developed for modeling the variance
in pedestrian attitudes.

We study several visual descriptors like HOG, Directional Derivatives, Anisotropic Gaus-
sians, Gabor features and we design and implement an original feature mixture model mapped
on an input space partitioned into distinct attitudes.

We create a pool of pattern classifiers that comprises AdaBoost, Bayesian Network, Neu-
ral Network and Support Vector Machines. We analyze the performance of those pattern
classifiers in the context of a multiple attitude partitioned space and we introduce an original
meta-classification scheme that combines several classifiers trained on different attitudes. We
prove that the meta-classification scheme has better results than a generic pattern classifier
trained on the un-partitioned input space.

We design and implement two novel meta-classification schemes:

1. Basic attitude meta-classifier that is trained on a coarse partition of the input space.
The division comprises three main attitudes: stand, run, walk. As features we use
histogram of gradient orientations, directional derivatives and anisotropic Gaussians.
As pattern classifiers we employ Adaptive Boosting and Bayesian Networks.

2. Complex attitude meta-classifier that is trained on a fine partition of the input space.
We propose a segmentation based on semantic concepts that comprise a combination
between the actions that pedestrians perform: stand, run, walk and the direction of
movement front, back, lateral left, lateral right.

Both meta-classification schemes are evaluated and compared to standard pedestrian detec-
tion methods. They prove to have an increased accuracy: an average true positive rate of 90%
and a false negative rate smaller than 5%. For a monocular system, the execution time of the
basic meta-classification schemes is about 17fps while the complex attitude meta-classifier
achieves a speed of 14fps depending on the classifiers and on the features embodied in the
model.

We enrich the whole-body meta-classification model with a part based model and intro-
duce the so called ”part based meta-classifier”. The method considers four pedestrian models:
front, rear, lateral left, lateral right (named attitudes or poses). We train a root classifier
on all pedestrian attitudes. This root classifier has a high true positive rate but the false
positive rate is not very low. Yet it has the role of identifying pedestrian hypotheses fast.
These hypotheses are further refined by the specific classifiers trained for different attitudes.
The attitude classifiers combine different five body part components. The log average miss
rate of the star classifier on Daimler dataset is about 45% outperforming the classical HOG
classifier. For evaluation we have used the per image evaluation measure [87]. This measure
is hit for pedestrians having height greater than 50 pixels and partially occluded (that is at
least 50% of the body is visible). For pedestrians having a height greater than 100 pixels and
not occluded the log average miss rate is of about 20%. That is the star classifier detects
correctly about 80% of the pedestrians that are not occluded and are closer to the camera.
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5.3.1 Basic Attitude Meta-Classifier

For the basic attitude meta-classifier we have considered a coarse division of the pedestrian
input space into three attitudes: sanding, walking and running. For those three attitudes we
study the relevance of three types of features: histogram of gradient orientations, directional
derivatives and anisotropic Gaussians. Based on this analysis we develop a novel attitude
based model based on histogram of gradient orientations. We also compare the accuracy
of two popular pattern classification methods, namely Bayesian Networks and AdaBoost
classifiers. Based on this comparison we design and implement a meta-classification scheme
that encompasses AdaBoost classifiers with histogram of gradient orientations extracted on
the coarse partition of the attitude space.

Bayesian Networks as Basic Attitude Meta-Classifiers

We have considered three pedestrian attitudes: standing, walking and running. For each
pedestrian category we have trained two Bayesian Belief Networks with identical setups
but one uses HOG features and another exploits the absolute value of first order partial
derivatives computed in four directions. We have compared the results obtained using these
two feature sets, HOG providing the best results. We have grouped the classifiers trained
for each category in a meta-classifier or a hierarchy of classifiers. The work was presented in
[183]. The steps we performed for constructing the meta-classification scheme are:

• build a hierarchy of pedestrian attitudes;

• for each image from the hierarchy of attitudes, relevant features are extracted and
selected;

• for each of the three pedestrian attitudes a classifier is trained.

The flow of our pedestrian recognition algorithm is presented in Figure 5.9. With this ap-
proach we want to answer the question if a meta-classifier composed of binary classifiers
trained on each class of attitudes has better performance than a single binary classifier
trained on the whole set?

An important step is the feature selection that identifies and removes irrelevant and
redundant information. This reduces the dimensionality of the data and may allow learning
algorithms to operate faster and more effectively. In our experiments we have used CFS
feature selection for the directional derivatives.

Given the four directional derivative images as shown in Figure 5.10 after applying CFS
the points remaining are grouped on the pedestrian contour and on the pedestrian relevant
body parts.

The images in Figure 5.10 depict the selected features for each direction and all the
overlapping of all the features selected. One may notice that a certain form of pedestrian
can be observed.

Evaluation

Dataset description For our experiments we have have considered three pedestrian atti-
tudes. We have annotated images from INRIA [184] and MIT [177] datasets. The dataset
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Figure 5.9: Flow of the pedestrian detection algorithm for two categories: pedestrians running
and pedestrians standing.

Figure 5.10: Feature selection using CFS
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Pedestrians standing Pedestrians walking Pedestrians running
(front+rear view) (lateral view) (lateral view)

2100 positive train samples 1000 positive train samples 1100 positive train samples
400 positive test samples 400 positive test samples 400 positive test samples
Same negative images: 10000 for training , 2000 for testing.

Table 5.1: Dataset description for stand, walk and run attitudes

structure is presented in Table 5.1. For each category we have considered images of dimension
18x36 pixels.

Experimental set-up For all three categories, pedestrians running, walking and pedes-
trians standing, we have computed the two feature sets: histograms of gradient orientations
and magnitude of first order partial derivatives computed in four directions. We experimented
numerous combinations of parameters for each attribute set:

1. For magnitude of first order partial derivatives computed in four directions the possible
parameters are:

• block size: 3x6, 3x3, 6x6, 6x12 pixels

• search strategy for correlation-based feature selection: best first, genetic search,
random search

2. For HOG the set of parameters is given by:

• cell size: 3x3, 3x6, 6x6, 6x12 pixels.

• number of bins in the histogram: 4, 8, 16

• block size in number of cells: 3x3, 2x2

We retained the parameters that provide optimal results for the detection window of
18x36 pixels:

1. For magnitude of first order partial derivatives computed in four directions: a block
size of 6x12 pixels and best first search resulted in a feature set of 316 attributes.

2. For HOG: a cell size of 3x6 pixels with a histogram having 8 bins, and a block size of
3x3 cells resulted in a feature set of 288 attributes.

Concerning the parameters of the Bayesian Network we have used TAN as learning algo-
rithm. It determines the maximum weight spanning tree and returns a Näıve Bayes network
augmented with a tree.

As shown in Figure 5.11 we have trained a classifier for each attitude and also, we have
trained a classifier that contained in the training set the three training sets of pedestrians
having different attitudes. We have used this classifier for comparing the results to the results
obtained with our meta-classifier.

Classifiers trained on HOG features
Table 5.2 shows the results of classifiers trained separately on the three attitudes and a

54



CHAPTER 5. MONOCULAR COLOR PEDESTRIAN DETECTION

Figure 5.11: Methodology for evaluating run, stand, walk pedestrian classifiers

Classifier Pedestrians Pedestrians Pedestrians Pedestrians
trained on standing walking running all attitudes
tested on
standing TP = 0.898 TP = 0.72 TP = 0.68 TP = 0.86
walking TP = 0.79 TP = 0.847 TP = 0.77 TP = 0.81
running TP = 0.55 TP = 0.76 TP = 0.90 TP = 0.76

Table 5.2: Comparing results of meta-classifiers with a classifier trained on all attitudes for
HOG features
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Classifier Pedestrians Pedestrians Pedestrians Pedestrians
trained on standing walking running all attitudes
tested on
standing TP = 0.866 TP = 0.67 TP = 0.69 TP = 0.72
walking TP = 0.72 TP = 0.875 TP = 0.78 TP = 0.76
running TP = 0.64 TP = 0.76 TP = 0.805 TP = 0.72

Table 5.3: Comparing results of meta-classifiers with a classifier trained on all attitudes for
directional derivative features

classifier trained on all attitudes, all using HOG features. In red we have underlined the best
true positive results. We notice that specific classifiers have a true positive rate greater with
at least 3% than an classifier trained on all attitudes.

Classifiers trained on directional derivative features
Table 5.3 shows the results of classifiers trained separately on the three attitudes and a
classifier trained on all attitudes, all using directional derivative features. In red we have
underlined the best true positive results. The results for directional derivatives are not so
promising as in the case of HOG, but these features can still be used in the future for other
types of classifiers.

We conclude that the recognition rates for the HOG are better than the ones for the
magnitude of first order partial derivatives computed in different directions. Nevertheless,
the performance of the detector trained on pedestrians standing using first order partial
derivatives is quite accurate and its results can be improved. We have considered this set
of features because our module is applied in the context of a real-time detection system in
which fast computation of features is a must. Also, the CFS feature selection scheme can be
replaced by more accurate feature selection methods.

For both sets of features, the resulting meta-classifier formed of three attitude specialized
classifiers outperforms the detection rate of a classical learner trained on the whole pedestrian
feature space.

Bayesian Networks and AdaBoost Meta-Classifiers

The previous section presented the results for a meta-classifier trained on three pedestrian at-
titudes. Due to the large overlapping of pedestrians walking with the situations of pedestrians
running and pedestrians standing we propose a scheme that is focused only on pedestrians
running and standing.

The contributions reside in the development of a mixed classification scheme for pedestrian
recognition based on a partitioned pedestrian space. We have trained different classifiers,
namely AdaBoost and Bayesian Networks for two categories of pedestrian attitudes: standing
and running. We show that the obtained meta-classifier outperforms previous approaches
that use the whole un-partitioned pedestrian space. The work was published in [185].

The idea of our research was to divide the complex pedestrian space into several different
attitudes. For each attitude we have trained a classifier. We have obtained by this, a tree
of classifiers that were all grouped into a meta-classifier. We show that the performance of
the meta-classifier is better than the detection rate of a single classifier trained on the whole
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un-partitioned object space. Figure 5.12 shows the methodology we have employed for this

Figure 5.12: Methodology for running and standing pedestrian attitudes

meta-classification class.
Dataset description We have considered two classes of attitudes for pedestrians: stand-

ing and running. For each class we have used a training set and a testing set. We have
collected our samples in the category standing from the MIT pedestrian database [177] and
from the INRIA pedestrian database [184] that contain images of pedestrians in city scenes.
We have collected pictures for the category ’running pedestrians’ from several images taken
from the Internet or from our personal photos and some from the INRIA [184] database. We
build a set of 300 images of different running pedestrians. In all the pictures the pedestrians
occupy the central position. We have applied a 4 small in-plane rotations with 5◦, 10◦, -5◦and
-10◦to each image from both classes of attitudes, hence we have obtained a dataset of 1500
pictures of running pedestrians and 2500 pictures of standing pedestrians.

Methodology For each category we have considered images of dimension 18x36 pixels.
We have divided the datasets for the standing pedestrian attitude into 2100 training samples
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and 400 testing samples and the dataset for running pedestrians was split into 1100 train
pictures and the 400 test pictures. The initial negative training set had 12000 images (also
of dimension 18x36 pixels) sampled randomly from person-free training photos. An initial
training is made and the obtained detector is tested on a larger set of negative images that
were not in the initial negative training set. All the false positives are added to the training
set and the process is repeated until we reach a good accuracy of the detection. Hence,
we obtain a classifier for each category of the considered pedestrian attitudes i.e. running
and standing. For each category we have trained two separated classifiers, one that uses
HOG features and another that exploits Anisotropic Gaussians. We have compared the
results obtained using these two feature sets, HOG providing the best results for pedestrians
running and Anisotropic Gaussians gave best results for pedestrians standing. Figure 5.13

Figure 5.13: Bayesian meta-classifier for running and standing pedestrians

shows the main modules of the proposed system.
We have grouped the classifiers trained for each category in a mixture of classifiers. The

next step was the comparison of our method based on the partitioning of the pedestrian space
into several classes, with a method that trains a classifier using the whole pedestrian set. In
order to perform this comparison we build a third classifier that used as positive training set
1100 images from the category running and the 2100 train images from the category standing
and the same set of negative samples as the classifiers build separately for each category.

Figure 5.14 shows samples from the collected dataset.
Considering the two test sets ( for pedestrians running and for pedestrians standing )

we evaluated the performance of a Bayesian detector trained using the whole object space,
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(a) (b)

Figure 5.14: Samples for running and standing pedestrians

an adaptive boosting classifier trained on the whole object space and the performance of
the mixture of classifiers (that uses belief networks for pedestrians running and AdaBoost for
pedestrians standing). The best results of pedestrian recognition are obtained when applying
the mixed scheme.

The detection window is of 18x36 pixels. We have not described the way in which the
mixture of classifiers is applied for larger images because the recognition module is designed
to work within an existing probabilistic pedestrian detection framework [186], [187] which
provides the pedestrian hypotheses.

Evaluation

In this part we will present some results of the system. For both categories, pedestrians
running and pedestrians standing, we have computed the two feature sets: histograms of
gradient orientations and anisotropic Gaussians. For our detection window of 18x36 pixels
we have retained for HoG features: a cell size of 3x6 pixels with a histogram having 8 bins,
and a block size of 3x3 cells resulted in a feature set of 128 attributes.

We have evaluated our method with 400 positive samples of running pedestrians, 400
positive images of standing pedestrians and 10000 non-pedestrians. The positive images
were collected from INRIA [184] and MIT [177] datasets.

As shown in figure 5.15 we have used three datasets: a dataset that comprises all pedes-
trians without any attitude separation (we will refer it as ALL DB), a dataset for pedes-
trians standing (referred as STAND DB) and a dataset for pedestrians running (referred as
RUN DB). We have trained separately a classifier that uses anisotropic Gaussians on the
ALL DB, a classifier that uses HOG and Bayesian Network on ALL DB.

Then we have separated the attitudes and trained on separate attitudes datasets.
Table 5.4 makes a comparison of the recognition rates for the Bayesian Network trained

using HOG features and the meta-classifier proposed in our research. We depict the values
of the true positive rate (TP) and of the true negative rate (TN). The results show that our
approach which trained a classifier for each class of objects and formed a meta-classification
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Figure 5.15: Bayesian meta-classifier for running and standing pedestrians

Classifier ped. ped. running &
trained running standing standing
on TP TN TP TN TP TN
Run 0.90 0.95 0.55 0.91 0.76 0.91
test
Stand 0.68 0.90 0.89 0.91 0.86 0.91
test

Table 5.4: Detection rates obtained using a Bayesian Network trained on the unpartitioned
object space using HOG features and the proposed metaclassification scheme

Classifier ped. ped. running &
trained running standing standing
on TP TN TP TN TP TN
Run 0.75 0.70 0.52 0.78 0.70 0.82
test
Stand 0.57 0.63 0.87 0.85 0.79 0.82
test

Table 5.5: Detection rates obtained using boosted classifiers trained on the ALL DB object
space using anisotropic Gaussians and the proposed meta-classification scheme.
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scheme gives better results than the Bayesian Network trained on the mixed set of pedestrians
(running and standing). Table 5.5 makes a comparison of the recognition rates for the Adap-
tive Boosting trained using anisotropic gaussian features and the meta-classifier proposed.
We present the values of the true positive rate (TP) and of the true negative rate (TN). The
results show that our approach which trained a classifier for each class of objects and formed
a meta-classification scheme gives better results than the boosted classifiers trained on the
mixed set of pedestrians (running and standing). For both sets of features, the resulting
meta-classifier outperforms the detection rate of a classical learner (either Bayesian Network
or Adaptive Boosting classifier) trained on the whole pedestrian feature space.

Figure 5.16: Results for classifier trained on pedestrians running

Figure 5.16 shows the detection rate of the classifier for the category pedestrians run-
ning(PedRun). The negative training set is shortly referenced with NonPed. We have
depicted the true positive rate (TP), precision (Prec.), recall (Rec) and area under ROC
(ROC-A). Figure 5.16 also includes the ROC for the classifier trained on pedestrian running
set.

Figure 5.17: Results for classifiers trained on pedestrians standing

Figure 5.17 shows the ROC curve for the classifier trained on pedestrians standing.
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Basic attitude Meta-Classifier Application

We have applied the meta-classification scheme as a stand-alone classification module for
monocular intensity images.

In a monocular setup the meta-classifier is applied following the standard pipeline of a
pedestrian detector as shown in Figure 5.18 Given an input image the monocular region
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windows
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Pedbstand
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Pedbwalk
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S2
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Figure 5.18: Basic meta-classifier in the context of monocular images

of interest generator is applied. Next HOG features are extracted and a multiple scale
image feature pyramid is created. For this meta-classification scheme we used no feature
approximation techniques. Given the image pyramid, each layer of the pyramid is scanned
with three detection models of different sizes corresponding to pedestrians stand, walk and
run classifiers. Each location is provided with a score from the three classifiers. Then the
scores are combined using “at least one” class label combination scheme. This means that
if at least one of the classifiers provides a positive score than the final detection will be
“pedestrian”. If none of the classifiers gives a positive than the location does not contain a
pedestrian.

The execution time of the method is about 17 fps and its speed-up boost is given by the
large space pruning factor of the region of interest.

Evaluated on Daimler dataset with occluded pedestrians and pedestrians of all heights the
method has a log average miss rate of about 49% outperforming the classical HOG classifier
that has a log average miss rate of 52%. When evaluated on pedestrians with at least 80%
of the body visible and with a height greater than 100 pixels the log average miss rate is of
30%.

5.3.2 Complex Attitude Meta-Classifier

Using the results of the previous chapters and keeping in mind that we could infer motion
information from any monocular or stereo based system we create a fine partition pedestrian
attitude space. The fine partition combines in the form of semantic concepts three main
attitudes: pedestrians running, standing, walking with direction information like front, back,
lateral left and lateral right. The work was published in [188] and further used in [189].

AdaBoost, Neural Networks and SVM meta-classifiers for different pedestrian
attitudes

Figure 5.19 shows the semantic concepts that form the fine partition scheme of the pedestrian
input space:

We propose a model that has the role of analyzing the correlation between semantic
concepts, visual features and pattern classifiers as shown in the scheme in Figure 5.20. Based
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Figure 5.19: Semantic concepts identified for traffic scenes

Figure 5.20: The objective for a semantic concept correlation analysis
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on the correlation model we design and implement a complex attitude meta-classifier.

As features we have used: Histograms of Oriented Gradients and Gabor wavelets. For
classification we have experimented Adaptive Boosting, Neural Networks and Support Vector
Machines.

The method can be integrated in a stereo-vision system that can provide the speed and ori-
entation of the objects that appear in a traffic scene. Actually a stereo based pre-classification
step is used for determining the speed, orientation and the dimension of the pedestrian pat-
tern.

If that obstacle is probably to be a pedestrian, we can apply a specialized classifier trained
on a particular attitude This results in a higher detection accuracy.

Definition of Semantic Concepts

We have collected video sequences of traffic scenes and from them we have extracted three
types of attitudes: stand, walk, run. These attitudes are characterized by two basic features:
orientation and speed. Using these two basic features we have constructed semantic concepts
as presented in Table 5.6. The constants α1 and α2 are determined experimentally, α1 is

Attitude Orientation Speed Semantic

concept

Run 80◦- 100 ◦ s ≥ α1 Side run

Run 0◦- 10 ◦ s ≥ α1 Front run

Run 0◦- (-10) ◦ s ≥ α1 Rear run

Walk 80◦- 100 ◦ α2 ≤ s ≤ α1 Side walk

Walk 0◦- 10 ◦ α2 ≤ s ≤ α1 Front walk

Walk 0◦- (-10) ◦ α2 ≤ s ≤ α1 Rear walk

Stand 80◦- 100 ◦ s = 0 Side stand

Stand 0◦- 10 ◦ s = 0 Front stand

Stand 0◦- (-10) ◦ s = 0 Rear stand

Table 5.6: Relationship between semantic concepts and pedestrian attitudes

about 1m/s and α2 is 0.5m/s.

Method description The architecture of our system comprises two modules: training
and classification as shown in Figure 5.21

The training module takes the established semantic concepts and extracts features. Then,
on each type of feature it trains a semantic classifier.

In the classification module the semantic classifiers are applied on the 2D pattern that
results after analyzing the 3D box of an obstacle detected by the stereo vision system. A
pre-classification module analyzes the speed, orientation and box dimension of each detected
obstacle. Based on the values of these three characteristics, a precise semantic classifier is
applied. A schematic view of the pre-classification module is given in Figure 5.22.
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Figure 5.21: Semantic training module

Figure 5.22: Stereo-based preclassification module
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Evaluation

Dataset with pedestrian attitudes

We also created a dataset of semantic concepts for pedestrians in traffic scenes. The anno-
tations and the number of instances for each semantic concept are defined in Table 5.7.

The dimension of the images that belong to front run, front stand, front walk, rear run,
rear stand, rear walk, side stand is of 75 × 184 pixels. The pictures for side walk and side
run have a dimension of 104 × 144 pixels. The dimension of the 2D model differs because
side running and side walking attitudes require phisically a larger space.

Front Front Front Rear Rear Rear Side Side Side
Walk Run Stand Walk Run Stand Walk Run Stand

Nb Pos 600 600 600 600 600 600 600 600 600
Nb Neg 5000 500 5000 5000 5000 5000 5000 5000 5000
Size 74x184 74x184 74x184 74x184 74x184 74x184 104x144 104x144 74x184

Table 5.7: Semantic concepts – dataset description

In each negative set used for the subsequent methods we have included images of semantic
concepts , different from the one on which the classification was done. For example, in the
negative set of the concept ‘walk front’ we have included images of the concepts ‘walk rear’,
‘run front’, ‘run rear’ , ‘stand rear’, ‘stand front’, ‘stand side’.

Experimental setup

The experimental setup for each feature was:

• HoG – cell width = 10, cell height = 10, number of bins = 8, normalization block
dimension is 3× 3.

• Gabor wavelets: σ ∈ {0.5, 1}, orientation ∈ {0◦, 45◦, 90◦}, scale = 2, frequency ∈
{
√

2, 2
√

2}

Classifier training methodology We have trained classifiers on each semantic concept
and for each semantic concept we have used different features and different classifiers as
shown in Figure 5.23.

In our experiments we have used 600 positive images for each semantic concept and 5000
negative images. We have used cross-validation with 10 folds for evaluating the results of the
classifiers in the dataset.

Confusion matrices
For training the classifiers we have used the functions offered by the library WEKA [165].
The results for the the classifiers trained using HoG features are presented in Table 5.8.

In most of the cases, support vector machines proved to be the best classifier. Yet, for
some concepts like run rear, walk side or walk front the best results were obtained using
AdaBoost.

The concept ‘stand rear’ has not so good classification results using Histogram of Oriented
Gradient features. As one can notice in Table 5.9 Gabor wavelets have better results on this
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(a)

(b)

(c)

Figure 5.23: Semantic concept – classifiers trained
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Concept AdaBoost SVM MLP
TP TN FP TP TN FP TP TN FP

Stand front 82% 75% 25% 84% 80% 20% 80% 77% 23%
Stand rear 51% 59% 41% 70% 68% 32% 65% 57% 43%
Stand side 55% 65% 35% 79% 80% 20% 71% 82% 18%

Walk front 88% 70% 30% 86% 79% 21% 75% 76% 24%
Walk rear 67% 69% 31% 82% 70% 30% 72% 68% 32%
Walk side 85% 67% 33% 80% 80% 20% 71% 75% 25%

Run front 85% 78% 22% 88% 80% 20% 82% 79% 21%
Run rear 86% 80% 20% 84% 76% 24% 74% 75% 25%
Run side 80% 53% 47% 86% 81% 19% 72% 66% 34%

Table 5.8: Classification results for the recognition using HoG features

semantic concept. TP stands for True Positive rate, TN stands for True Negative rate, FP
is used for denoting the false positive rate and FN represents the false negative rate.

Analyzing the results obtained on our dataset, as presented in Table 5.9 and Table 5.8 we
can say that there is a slight correlation between concepts and classifiers. Most of the semantic
concepts have been best detected by support vector classifiers, but there are semantic concepts
for which boosted classifiers or multi layer perceptron gave the best results.

Regarding the features used, in most of the cases, Histogram of Oriented Gradients proved
to be the most suitable for the pedestrian detection problem. There are semantic concepts
like stand rear, stand side, walk rear that were recognized better using Gabor features rather
than using HoG.

Concept AdaBoost SVM MLP
TP TN FP TP TN FP TP TN FP

Stand front 62% 69% 31% 85% 79% 21% 80% 70% 30%
Stand rear 62% 69% 31% 85% 78% 22% 70% 72% 28%
Stand side 80% 65% 35% 85% 73% 27% 82% 70% 30%

Walk front 80% 83% 17% 87% 89% 11% 72% 84% 16%
Walk rear 85% 79% 21% 87% 78% 22% 80% 77% 23%
Walk side 84% 86% 14% 82% 87% 13% 80% 83% 17%

Run front 80% 78% 22% 82% 82% 18% 85% 80% 20%
Run rear 81% 79% 21% 84% 80% 20% 82% 69% 31%
Run side 73% 79% 21% 83% 82% 18% 82% 76% 24%

Table 5.9: Classification results for the recognition using Gabor wavelets

The disadvantage of Gabor features is their high execution time and this does not make
them suitable for a real time execution.
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Classifier Feature Frames per Log Average
second Miss rate

AdaBoost HOG 14 fps 46%
AdaBoost Gabor 2fps 42%
SVM HOG 10fps 44%
SVM Gabor 0.8 fps 40%

Table 5.10: Complex meta-classifier performance for pedestrians with heights greater than
50 pixels

Complex Attitude Meta-Classifier Application

In a monocular setup the complex meta-classifier is applied following the standard pipeline
of a pedestrian detector as shown in Figure 5.24

Monocular
ROI

generator

Multiple5
size

sliding5
windows

Meta-classifier:
Rear5stand
Rear5run
Rear5walk

Front5stand
Front5run
Front5walk
Side5stand
Side5run
Side5walk

S1
S2
S3
S4
S5
S6
S7
S8
S9

Multiple
scores
combination

Input5
image

Detections
refinement

Image5
feature
pyramid

Figure 5.24: Complex meta-classifier in the context of monocular images

Given an input image the monocular region of interest generator is applied. Based on the
feature relevance analysis and on the classifier relevance analysis we have used two feature
setups, namely HOG and Gabor wavelets and AdaBoost and SVM classifiers and we have
evaluated the meta-classification scheme on Daimler dataset. The results are presented in
Table 5.10. There is a trade-off between speed and performance. One may notice that the
AdaBoost trained on HOG is the fastest but has the smallest performance, while SVM trained
on Gabor features has the highest accuracy but it is very slow.

We refine our results to pedestrians having heights higher than 100 pixels and having at
least 90% of the body visible. The results are shown in table 5.11 The performance rates are

Classifier Feature Frames per Log Average
second Miss rate

AdaBoost HOG 14 fps 29%
AdaBoost Gabor 2fps 25%
SVM HOG 10fps 27%
SVM Gabor 0.8 fps 24%

Table 5.11: Complex meta-classifier performance for pedestrians with heights greater than
100 pixels and 90% of the body being visible
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better reaching up to 76% detection performance with only one false detection at every 10
frames.

5.3.3 Part Based Attitude Meta-Classifier

Considering the results of the previous sections we introduce part based representation to
attitude based classifiers published in [190]. The method considers four pedestrian models:
front, rear, lateral left, lateral right (named attitudes or poses). Our original contribution
resides in the development of a classification scheme based on these models. We train a root
classifier on all pedestrian attitudes. This root classifier has a high true positive rate but the
false positive rate is not very low. Yet it has the role of identifying pedestrian hypotheses fast.
These hypotheses are further refined by the specific classifiers trained for different attitudes.
Hence the attitude classifiers have the role of refining the false positive detections of the root
classifiers.

Another original contribution resides in the representation of the pedestrian model. We
use a block based feature computation approach. Our classifiers are trained using Histogram
of Oriented Gradient features (HOG) and Local Binary Patterns (LBP). The novelty resides
in the combination of the multi-attitude representation of the pedestrian model with part
based feature extraction. That is we define several pedestrian models corresponding to front,
rear and lateral attitude and we do not compute the features on the whole pedestrian model,
but we extract features parts of interest that are positioned along different pedestrian body
parts. Each part is composed of overlapping blocks of dimension 16x16 pixels having an
overlap of 8x8 pixels. This part based approach is useful for capturing the variations in
shape and position of different pedestrian body parts. We try to model the variance in arms,
legs and torso.

We have tested our method in the framework of a stereo-vision system [191]. This system
performs several preprocessing operations, among which pedestrian hypotheses generation.
The obtained intensity image corresponding to the pedestrian hypothesis is input to our
star-based classification scheme that provides a confidence score.

We have also tested the method on monocular images from the Daimler pedestrian
dataset. We have considered intensity images (without any stereo-vision information) and
we applied a scanning window approach. These experiments show the method has a good
accuracy even if for the particular test setup it was time consuming due to the lack of a
fast pedestrian hypothesis generation (that we benefit from in the stereo-vision based frame-
work). In order to obtain training data for the attitude classifiers we have analyzed the
Daimler pedestrian benchmark data.

Method Overview

The method we propose makes use of the following:

• Stereo-based pedestrian hypothesis generation;

• Component based pedestrian representation by using parts of interest for multiple
pedestrian attitudes;
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• Visual descriptors based on Histogram of Oriented Gradients and Local Binary Pat-
terns.

• Mixture of expert classifiers based on cascades of AdaBoost learners.

• Detection refinement based on non-maximum suppression.

Our method’s originality resides in the development of a pose specific analysis (front view,
lateral view and rear view) of pedestrians and in the usage of classification models for each
pose based on a block feature computation scheme.

The architecture of the proposed approach is described in Figure 5.25. For each input

Pedestrian
hypotheses
generator

HOG and LBP
extraction

Star based
multi-pose

classification

Final detection
refinement

Figure 5.25: The framework for multi-pose pedestrian detection using HOG-LBP features

hypothesis our framework computes the HOG descriptors and the LBP descriptors defined
on particular parts. Then the descriptors are concatenated into a single feature vector and
it is passed to the classification component that returns a confidence score for the input
hypothesis.

Part Based Representation

For each of the five pedestrian data representation we use different parts. In order to define
these parts we made a block-based analysis of the degree of homogeneity in the gradient
magnitude that captures the variations in intensity. For a given image we extract the gradient
magnitude and then we divide the image into overlapping blocks of dimension 16×16 pixels.
The overlapping factor is of 8×8 pixels. For each block we compute the normalized histogram
of gradient magnitudes, p(f), with f ∈ [minG, . . . ,maxG], minG is the minimum value of
the magnitudes in the image and maxG is the maximum value of the magnitudes in the whole
image. Then for each block we measure the homogeneity, E:

E =
maxG∑
f=minG

(p(f))2 (5.1)

We analyze each attitude separately and for each we define parts that are comprised of bocks
with minimum values of E. We have considered the parts such that we cover the variances
of different body parts. Figure 5.26 shows the parts we have used for each attitude and for
the root.

Star Classification Model

The pedestrian detection method we propose employs the combination of a root classifier
with attitude-specific classifiers. We will refer this structure as being a star detection model.
We build five classifiers: (1) Root – is a generic classifier trained on all pedestrian attitudes.
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(a) Root (b) Front (c) Back (d) Left (e) Right

Figure 5.26: The parts used for extracting features

Its mission is to rapidly identify pedestrians on the trade-off of a larger false positive rate. Its
detections will be further refined by the pose-specific classifiers that have a high true positive
rate and a very low false positive rate (hence they will eliminate the possible false detections
of the root classifier). (2) Front – is a specialized classifier considering as positive set only
front pose pedestrians. (3) Rear (or back) – is a learner focused on rear pedestrian attitude.
(4) Lateral Left – is a classifier concentrated on pedestrians facing left. (5) Lateral Right – is
a particular classifier that considers only the pedestrians facing right. Figure 5.27 represents
the architecture of the star classification scheme. Each of the five learners is a cascade of

Figure 5.27: Star detection model: combination of Root and Attitude specific classifiers

AdaBoost classifiers containing 2 stages. The final classification score is a combined vote
between root and attitude classifiers. The fusion of classification outputs is done using a
majority vote filtered by the root classifier. We have five classifiers: c1, c2, c3, c4, c5, with
c1 being the root classifier and the others are attitude classifiers. Each of them provides a
response for a test image I. The set of responses is r1(I), r2(I), r3(I), r4(I), r5(I) and each
response is a weighted combination of weak learners responses. If the root response r1(I)
is greater than a given threshold t1 then we have a high probability that I is a pedestrian
and we analyze the votes of the attitude classifiers. The decision is based on the majority
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voting scheme: v = max(r2, r3, r4, r5). If the maximum response v is greater than a threshold
tv then we consider the image I is a pedestrian, otherwise it is not. The thresholds are
particular for each classifier and they have been chosen empirically. Figure 5.28 shows the
voting scheme. The proposed method has a high applicability in systems for which motion

Root

Input Image

Front Rear Left Lateral Right Lateral

negative

positive

Vote analyser

Final classification score

Figure 5.28: Voting scheme for multi-attitude star classification model

information can be captured. Based on the motion law (speed, direction), one can apply only
the attitude-specific classifiers and this leads to a very small execution time for pedestrian
classification. But for the purpose of this paper we validate our results without considering
motion information.

Refining the Hypothesis Location

During the test and evaluation phase we perform a supplementary analysis of the detection
window in order to identify optimal locations of the parts for each attitude. We find the
areas having minimum homogeneity and based on those areas we define a penalty score.
By this operation we try to capture small variations in body part positions with respect
to the original parts that we have defined. For each attitude we consider separately the
original parts of interest (shown in Figure 5.26) and we analyze a neighbouring region of
each block. In that neighbouring region we find the optimal location of the block (for a test
image) based on minimum homogeneity E. Figure 5.29 depicts the process. We perform this
analysis for each part of a given attitude and we obtain best part locations. Based on these
locations we introduce a penalty score that measures the displacement with respect to the
original positions. The penalty score is high when parts are shifted in different directions
with respect to the original position and it is small when parts are not shifted or they are
all displaced with similar offsets with respect to the original. We will exemplify how we
compute the penalty score for a given attitude aj. Suppose that for aj we have five parts
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original position

blocks in the neighbourhood 
neighbourhood

dy
dx

Figure 5.29: Analysis of block homogeneity for optimal part location generation

represented by top-left coordinates, width and height. Their original positions with which the
training of the classifier was made is defined by: o1(xo1, yo1, wo1, ho1), . . . o5(xo5, yo5, wo5, ho5).
After the analysis of the neighbourhood region for each of the five blocks we obtain the best
positions using minimum homogeneity analysis: b1(xb1, yb1, wb1, hb1), . . . b5(xb5, yb5, wb5, hb5).
We measure the displacements of the best block position with respect to the original positions:
dxi = xoi − xbi; dyi = yoi − ybi; i ∈ (1 . . . 5). We compute the standard deviation of the
displacements on the x axis: σx and on the y axis: σy. The penalty is directly proportional
with the sum of standard deviation on both axes σx + σy. The features will be computed in
the best matching positions and the score returned by the attitude classifier will be multiplied
with the penalty score.

We also perform a non-maximal suppression step for eliminating multiple detections. For
our experiments we have used a method that chooses the smallest subset of the bounding
boxes such that each remaining bounding box is within overlap of one of the chosen bounding
boxes. The score of each bounding box is set to the sum of the scores of the bounding boxes
it covers.

Experimental Results

We have created a framework for the training and evaluation of the proposed method.

Training setup

For training the star-classifier we have used Daimler pedestrian dataset. We scaled all pedes-
trian images to have a dimension of 64× 128. We made an analysis of this database and we
manually labeled images corresponding to four different attitudes and this resulted in:

• Frontal pedestrian images: 1800

• Back (rear) pedestrian images: 4500

• Lateral left pedestrian images: 2600

• Lateral right pedestrian images: 2600

We left out the images that did not fall in any of these four categories. For each image in the
training database we have extracted HOG and LBP features having the following parameters:

• HOG parameters: block size = 16× 16, cell size = 8× 8, number of bins = 9, normal-
ization in blocks = L2Hys;
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• LBP parameters: circle of radius 1, considering 8 neighbours. We have used uniform
patterns and we had 59 labels; The LBP descriptors were grouped in overlapping blocks
of dimension 16 × 16 with an overlapping of 8 × 8 pixels. A histogram of descriptors
was computed for each block.

For training the star cascade classifier we have used the implementation of Real AdaBoost in
[181]. As weak learners we employed decision stumps. Each classifier has 500 weak learners.
The star-classification scheme is comprised of five learners: root and four attitude cascades,
each having 2 stages.

Results and evaluation procedure

We have evaluated the proposed method in two different scenarios

(a) On intensity images from a standard dataset that has ground truth labels for test
images.

(b) On pedestrian hypothesis obtained in the context of a stereo-vision framework.

The log average miss rate of the star classifier on Daimler dataset is about 45% outper-
forming the classical HOG classifier. For evaluation we have used the per image evaluation
measure [87]. This measure is hit for pedestrians having height greater than 50 pixels and
partially occluded (that is at least 50% of the body is visible). For pedestrians having a
height greater than 100 pixels and not occluded the log average miss rate is of about 20%.
That is the star classifier detects correctly about 80% of the pedestrians that are not occluded
and are closer to the camera.

Another test case was made using the pedestrian hypothesis generated by the stereo-vision
system. The results are shown in Figure 5.30 .

For the evaluation on the hypotheses generated by the stereo-vision system we took a
sequence in an urban environment setting. We manually annotated the pedestrians and non-
pedestrian objects (such as cars or poles). Then we run our star-based classification scheme
on the annotated sequence.

We evaluated the performance when applying just the root classifier (blue curve in Figure
5.30) and when applying the star classification (red curve). It can be noticed that the star
based classification has better results.

The execution time for one cascade is comparable to real-time execution but the applica-
tion of five different cascades is time consuming and further improvements should be made
on this aspect. We hit an execution time of 16 fps.

As future improvements we can either use motion and direction information and apply
only the root and the specific pose classifier, or we can reduce the number of stages in each
cascade. Some results on the images taken with our stereo-based framework are displayed in
Figure 5.31.

5.3.4 Bag of Words For Pedestrian Detection

The bag of words model has been actively adopted by content based image retrieval and
image annotation techniques. We employ this model for the particular task of pedestrian
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Figure 5.30: Evaluation of root vs. multi-attitude star classification model on stereo-based
pedestrian hypotheses

Figure 5.31: Pedestrian detection results
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detection in two dimensional images, producing this way a novel approach to pedestrian
detection. The work was published in [192] and used by [193].

We perform a study of two types of representations used for pedestrian detection:

• Representation based on primitive features: we have extracted relevant visual features
in the field of pedestrian detection, namely Haar and Histogram of oriented Gradient
(HoG).

• Representation based on codebook computed from primitive features.

We apply the same classification algorithm to both representation, for features computed on
images in benchmark datasets. We notice that the codebook representation provides better
detection results than the representation using primitive visual features.

Method Description

The methodology we employ is depicted in Figure 5.32. The main steps are the following:

Figure 5.32: Methodology: pedestrian detection based on primitive features and based on
the bag-of-words model of the primitive features

1. Extract primitive features from different datasets. By primitive features we mean: Haar
wavelets, HoG features.

77



CHAPTER 5. MONOCULAR COLOR PEDESTRIAN DETECTION

2. Randomly choose a number of positive images and generate for them the codewords.
Then take all the images in the positive and negative training set and compute the
extended codebook.

3. Feed the primitive features to a classification module (AdaBoost).

4. Send the code-books for each feature to the classification module.

5. Compare the detection results of the previous two steps.

Algorithm for Codebook Generation From Visual Features

The Bag of Words (BoW) model has been introduced by natural language processing tech-
niques and during the last years it has been used extensively in computer vision for the object
recognition task.

To represent an image using BoW model, an image can be treated as a document. For the
image context we need to define the “word” concept. This concept has different meanings and
representations depending on the task we need to solve, on the images and on the features
extracted for them.

Three main computational steps are employed by the bag-of-words model [194]:

1. feature detection: extract several local patches (or regions), which are considered as
candidates for basic elements, “words”.

2. feature description: each image is abstracted by several local patches. Feature repre-
sentation methods deal with how to represent the patches as numerical vectors. These
methods are called feature descriptors.

3. The final step is to convert vector represented patches to “codewords” that are represen-
tative for several similar patches. One simple method is performing K-means clustering
over all the vectors.

We have modified the classic approach of the bag-of-words model by transforming the
local patches into features. Our idea is to find the most representative features by clustering
and then, for each image compute a histogram representation that stores the information
about how many features are in the clusters. The steps of our algorithm are:

1. Randomly choose p images from the training data set.

2. For each image compute the features. The number of features may differ from image
to image. We denote fi the number of features computed for the ith image.

3. Construct a large feature space by putting all the features for all images in a single
feature vector.

4. Perform a supervised clustering using all the features of the large feature vector.

5. The features representing the centers of the clusters will be the codewords.
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These steps are done for each class of objects, in our case for the Pedestrian class and for the
NonPedestrian class.

The second major step consists in representing an image by its codebook. To obtain the
codebook representation of an image we do the following:

• Compute all the features of the image;

• Find the cluster to which each feature belongs;

• Count how many features are in each cluster;

The final codebook representation feature vector associated to an image has a number of
elements equal to the number of clusters and the value of the element at position i is given
by the number of features that belong to cluster i for the given image.

Figure 5.33: Codeword generation for images in a given class

Evaluation

We perform our evaluation on Daimler and NICTA pedestrian datasets.

Experimental set-up

For both features, Haar and HOG, and for both representations (codebook and primary) we
have used the AdaBoost classification method. Our experiments have been done with the
machine learning library, WEKA 1 [166]. The parameters of the ensemble learning algorithm
were the following:

• Weak learner type: decision stump.

• Number of iterations: 10.

1http://www.cs.waikato.ac.nz/ml/weka/
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As clustering method for generating the codewords we have used k-means. The general
idea of k-means is that being given a set of observations (x1, x2, . . . , xn), where each observa-
tion is a d-dimensional real vector, the algorithm tries to partition the n observations into k
sets (k ≤ n) S = S1, S2, . . . , Sk so as to minimize the within-cluster sum of squares (WCSS):

argminS

k∑
i=1

∑
xi∈Si

||xj − µi||2 (5.2)

where µi is the mean of points in Si.

Haar features influence on codebook based detection

The first experiment comprised Haar features computed on Daimler dataset.
Classification results based on primitive Haar features

For Daimler dataset we have randomly chosen 5000 negatives images and 4800 positives
images and we have created a classification model. The number of Haar features was equal
to 840 for each image.

For the test set we have considered all the other images, that is: 20000 negatives and
19195 positives. The results are the following:

• Correctly Classified Instances = 32981 that is 84.1459 %;

• Incorrectly Classified Instances = 6214 that is 15.8541 % of the total number of samples;

• Kappa statistic = 0.6831;

• Mean absolute error = 0.2644;

• Root mean squared error = 0.3515;

• Relative absolute error = 52.9121 %;

• Root relative squared error= 70.3168 %;

The detailed accuracy by class is:
The confusion matrix is given in table 5.13.
Classification results based on Haar codebook representation

For the codebook representation of Haar features extracted on Daimler dataset we have
randomly chosen 500 positives and 500 negatives. We have used them for generating a bag
of words model for the positive data and a bag of words model for the negative data. Each of
the models contained 70 codewords (we have generated 70 clusters). Next we have randomly
chosen other 4800 positive images that we have used for generating the codebooks of positives
and we have picked randomly 5000 negatives for generating the codebook of negatives. All the
remaining images have been used for creating the test data that contained: 19208 pedestrians
and 19984 non-pedestrians. The results are much better than in the case of primitive Haar
features:

• Correctly Classified Instances = 39148 that is 99.8877 %;
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Class Measure Value

Pedestrian TP Rate 0.866
Pedestrian FP Rate 0.182
Pedestrian Precision 0.82
Pedestrian Recall 0.866
Pedestrian ROC-Area 0.9
NonPedestrian TP Rate 0.818
NonPedestrian FP Rate 0.134
NonPedestrian Precision 0.864
NonPedestrian Recall 0.818
NonPedestrian ROC-Area 0.9

Table 5.12: Primitive Haar Detailed Accuracy on Daimler dataset

# Pedestrians #NonPedestrians Classified as

16617 2578 Pedestrians
3636 16364 NonPedestrians

Table 5.13: Confusion Matrix for Primitive Haar on Daimler dataset

• Incorrectly Classified Instances = 44 that is 0.1123 % of the total instances;

• Kappa statistic = 0.9978;

• Mean absolute error = 0.0014;

• Root mean squared error = 0.0259;

• Relative absolute error= 0.2776 %;

• Root relative squared error = 5.1845 %;

The detailed accuracy by class is given in table 5.14:

Class Measure Value

Pedestrian TP Rate 0.999
Pedestrian FP Rate 0.001
Pedestrian Precision 0.999
Pedestrian Recall 0.999
Pedestrian ROC-Area 0.999
NonPedestrian TP Rate 0.999
NonPedestrian FP Rate 0.001
NonPedestrian Precision 0.999
NonPedestrian Recall 0.999
NonPedestrian ROC-Area 0.999

Table 5.14: Codebook Haar Detailed Accuracy on Daimler dataset
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# Pedestrians #NonPedestrians Classified as

19180 16 Pedestrians
28 19968 NonPedestrians

Table 5.15: Confusion Matrix for Codebook Haar on Daimler dataset

The confusion matrix is show in table 5.15.
The second experiment comprised Haar features computed on NICTA pedestrian dataset.
Classification results based on primitive Haar features

For NICTA training set we have considered 7000 positive images and 7000 negative images
having a resolution of 16×40 pixels. The number of features extracted for each image equals
1152. For testing we have used 13785 pedestrian images and 23100 negative images. The
classification results are as follows:

• Correctly Classified Instances = 32605 that is 88.3221 %;

• Incorrectly Classified Instances = 4311 that is 11.6779 % of the total instances;

• Kappa statistic = 0.7509;

• Mean absolute error = 0.1851;

• Root mean squared error = 0.291;

The detailed accuracy by class is provided in table 5.16:

Class Measure Value

Pedestrian TP Rate 0.84
Pedestrian FP Rate 0.091
Pedestrian Precision 0.999
Pedestrian Recall 0.848
Pedestrian ROC-Area 0.949
NonPedestrian TP Rate 0.909
NonPedestrian FP Rate 0.16
NonPedestrian Precision 0.999
NonPedestrian Recall 0.904
NonPedestrian ROC-Area 0.949

Table 5.16: Primitive Haar Detailed Accuracy on NICTA dataset

The confusion matrix is provided by table 5.17.
Classification results based on Haar codebook representation

For the codebook representation on the NICTA dataset we have randomly chosen 1000 posi-
tives and 1000 negatives with which we have generated the centers of the clusters. Then, the
codebook representation for the training set was formed of 8000 positive images and 8000
negative images. The evaluation was done on a set that contained 13915 positives and 22999
negatives.
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# Pedestrians #NonPedestrians Classified as

11695 2221 Pedestrians
2090 20910 NonPedestrians

Table 5.17: Confusion Matrix for Primitive Haar on NICTA dataset

The results are:

• Correctly Classified Instances = 36882 (99.9133 %),

• Incorrectly Classified Instances = 32 ( 0.0867 %),

• Kappa statistic = 0.9982;

• Mean absolute error = 0.0012;

• Root mean squared error = 0.0255;

• Relative absolute error = 0.2331 %;

• Root relative squared error = 5.1203 %

The detailed accuracy by class is depicted in table 5.18:

Class Measure Value

Pedestrian TP Rate 0.999
Pedestrian FP Rate 0.001
Pedestrian Precision 0.998
Pedestrian Recall 0.999
Pedestrian ROC-Area 0.999
NonPedestrian TP Rate 0.999
NonPedestrian FP Rate 0.001
NonPedestrian Precision 0.999
NonPedestrian Recall 0.999
NonPedestrian ROC-Area 0.999

Table 5.18: Codebook Haar Detailed Accuracy on NICTA dataset

The confusion matrix is displayed in table 5.19.

# Pedestrians #NonPedestrians Classified as

13908 7 Pedestrians
25 22974 NonPedestrians

Table 5.19: Confusion Matrix for Codebook Haar on NICTA dataset
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HOG feature influence on codebook based detection

For Histogram of Gradient orientation features we have used the standard parameters of
computation:

• cell size of dimension (8× 8)

• block size of dimension (16× 16)

• block stride of 8× 8

• unsigned gradient representation

• L2Hys normalization

As the Daimler dataset contains small images (18x36) the number of HoG descriptors
having standard parameters is relatively small. That is why we have concentrated our exper-
iments with HoG features on NICTA database working with images of dimension 64× 80.

Classification results based on primitive HoG features
For the training set we have used 8000 positive images and 8000 negative images. For each
image we have extracted 144 features. For testing we have used 16413 pedestrian images and
20503 non-pedestrian images.

The obtained results are as follows:

• Correctly Classified Instances = 30923 ( 83.7658 %),

• Incorrectly Classified Instances = 5993 (16.2342 %);

• Kappa statistic = 0.6662;

• Mean absolute error = 0.2136;

• Root mean squared error = 0.3352;

The detailed accuracy by class is shown in table 5.20:

Class Measure Value

Pedestrian TP Rate 0.874
Pedestrian FP Rate 0.185
Pedestrian Precision 0.741
Pedestrian Recall 0.874
Pedestrian ROC-Area 0.922
NonPedestrian TP Rate 0.815
NonPedestrian FP Rate 0.126
NonPedestrian Precision 0.915
NonPedestrian Recall 0.815
NonPedestrian ROC-Area 0.922

Table 5.20: Primitive HoG Detailed Accuracy on NICTA dataset
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# Pedestrians #NonPedestrians Classified as

12168 1748 Pedestrians
4245 18755 NonPedestrians

Table 5.21: Confusion Matrix for Primitive HoG on NICTA dataset

The confusion matrix is displayed in table 5.21.

Classification results based on HoG codebook representation
For the codebook representation we have randomly chosen 1000 positives and 1000 negatives
for which we have generated the clusters. The number of clusters is equal to 60. For comput-
ing the codebook representation of the training set we have chosen 8000 positives and 8000
negatives, while for testing we have analyzed 13825 positives and 23089 negatives.

The classification results are:

• Correctly Classified Instances = 35404 (95.9094 %);

• Incorrectly Classified Instances = 1510 (4.0906 %);

• Kappa statistic = 0.9128;

• Mean absolute error = 0.0601;

• Root mean squared error = 0.175 ;

• Relative absolute error = 12.0399 %;

• Root relative squared error = 35.0631 %.

The detailed accuracy by class is provided in table 5.22:

Class Measure Value

Pedestrian TP Rate 0.943
Pedestrian FP Rate 0.031
Pedestrian Precision 0.949
Pedestrian Recall 0.943
Pedestrian ROC-Area 0.992
NonPedestrian TP Rate 0.969
NonPedestrian FP Rate 0.057
NonPedestrian Precision 0.965
NonPedestrian Recall 0.969
NonPedestrian ROC-Area 0.992

Table 5.22: Codebook HoG Detailed Accuracy on NICTA dataset

The confusion matrix is shown in table 5.23.
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# Pedestrians #NonPedestrians Classified as

13115 800 Pedestrians
710 22289 NonPedestrians

Table 5.23: Confusion Matrix for Codebook HoG on NICTA dataset

Conclusion

Several methods for pedestrian detection in monocular intensity images have been presented.
The authors’ original contributions reside in the creation of a two fold partitioning of the
pedestrian attitude space: (1) coarse partition that comprises basic attitudes like run, sand,
walk and (b) fine partitioning that combines the basis attitudes with motion direction infor-
mation: side, rear or front motion.

In the context of the two partitioning schemes feature mixture model that maps relevant
features to attitudes is proposed and developed. The considered features are Histogram of
Gradient Orientations, Directional Derivatives, Anisotropic Gaussians and Gabor features.

A pool of pattern classifiers that comprises AdaBoost, Bayesian Network, Neural Network
and Support Vector Machines was created. An analysis of the performance of those pattern
classifiers in the context of the multiple attitude partitioned space was performed. An original
meta-classification scheme that combines several classifiers trained on different attitudes was
described in this chapter. Based on the experimental results the author proves that the
meta-classification scheme has better results than a generic pattern classifier trained on the
un-partitioned input space.

Two original meta-classification schemes were designed and implemented:

1. Basic attitude meta-classifier that is trained on a coarse partition of the input space.
The division comprises three main attitudes: stand, run, walk. As features we use
histogram of gradient orientations, directional derivatives and anisotropic Gaussians.
As pattern classifiers we employ Adaptive Boosting and Bayesian Networks.

2. Complex attitude meta-classifier that is trained on a fine partition of the input space.
We propose a segmentation based on semantic concepts that comprise a combination
between the actions that pedestrians perform: stand, run, walk and the direction of
movement front, back, lateral left, lateral right.

Both meta-classification schemes are evaluated in a stereo-vision framework and in a
monocular system. For the stereo-vision system the basic attitude meta-classifier provides an
overall improvement of about 5% and the complex attitude meta-classifier gives a pedestrian
detection improvement of 8% leading to an overall detection accuracy of about 90%, while
obeying the real time execution constraints.

For the monocular setup we use the Daimler pedestrian benchmark data. The basic meta-
classifier evaluated with occluded pedestrians and pedestrians of all heights the method has
a log average miss rate of about 49% outperforming the classical HOG classifier that has a
log average miss rate of 52%. When evaluated on pedestrians with at least 80% of the body
visible and with a height greater than 100 pixels the log average miss rate is of 30%. The
basic meta-classifier achieves an execution time of 17 fps.
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When evaluated on pedestrians having heights greater than 50 pixels and with at least
50% of the body visible the complex meta-classifier achieves a log average miss rate of 44% at
14 fps. If we refine the space by dealing with pedestrians that are closer (i.e. having a height
greater than 100 pixels) and not heavily occluded (i.e. at least 90% of the body is visible)
the performance rates are better reaching up to 76% detection performance with only one
false detection at every 10 frames.

We enhance the multi-attitude scheme with the inclusion of part-based classifiers. We
combine models for different pedestrian attitudes lateral, front, rear with a root classifier
trained on all attitudes. The role of the root classifier is to identify pedestrians fast with
the cost of admitting more false positives. The attitude classifiers come to refine the root
decision and to eliminate the false detections and refine the positive detections. The root
and attitude classifiers are trained on HOG and LBP features computed for different parts
of interest defined based on edge homogeneity minimization function. The proposed method
operates at 14 fps. The log average miss rate of the star classifier on Daimler dataset is about
45% outperforming the classical HOG classifier. For evaluation we have used the per image
evaluation measure of the framework [87]. This measure is hit for pedestrians having height
greater than 50 pixels and partially occluded (that is at least 50% of the body is visible). For
pedestrians having a height greater than 100 pixels and not occluded the log average miss
rate is of about 20%. That is the star classifier detects correctly about 80% of the pedestrians
that are not occluded and are closer to the camera.

In our work we encompass a section in which we study the relevance of the codebook
representation of different visual features like Haar and HOG. A general conclusion that can
be drawn from the experiments we have performed is that, in terms of accuracy, the codebook
representation overcomes the representation based on primitive features. Another advantage
of the codebook is the dimension of data space that is much smaller and the classification
algorithms work faster. Nevertheless, for a test image we still need to compute all the features
in order to generate the codebook, hence the feature computation time is not reduced.
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Chapter 6

Pedestrian Detection in Infrared
Images

The infrared field is of high interest because it is sensitive to the heat emitted by objects.
Hence the usage of an infrared camera can improve the accuracy of pedestrian detection for
monocular visible cameras because infrared can be used in extreme conditions like rain, fog,
snow and it overpasses the monocular cameras for night vision applications. The benefits of
long wave infrared sensors (LWIR) are exploited and a solution for pedestrian localization
and pedestrian detection in infrared images is proposed and developed. The ’infrared’ term
is used throughout the chapter to denote the long wave infrared band.

Most approaches for detecting pedestrians in automotive applications rely on stereo or
monocular vision mainly for daytime conditions. A limitation of the visual spectrum is
encountered at night or in difficult weather conditions when stereo vision is not feasible. For
night vision pedestrian detection the infrared sensors have been used successfully because
they capture the heat emitted by objects. The infrared sensors can also be used at daytime
and enhance the accuracy of stereo vision or monocular vision based approaches by sensor
information fusion.

The pedestrian appearance in infrared images is different from the look of a pedestrian
in the visual field but the challenges that must be faced by a pedestrian detector hold due to
the high variety of appearance given by clothing, accessories, body part positions, viewing
angle (front, lateral, rear) and actions (walk, stand, run) performed by pedestrians. Another
difficulty for a pedestrian detector on infrared images is given by the fact that an infrared
image looks different at summer and at winter. In winter the pedestrian face appears as being
lighter while the body is insulated by warm clothes and it is darker. In autumn and spring
when temperatures are bellow 25 degrees the pedestrian head and body is more nicely visible
because the clothes are less insulating than in winter. Usually the cars and heated buildings
are also clearly visible in those conditions, while the road, the sky or other cold objects
appear to be darker in the IR image. In summer when temperatures are very high (above 30
degrees) the road and the sky are hotter and appears lighter than the buildings. Depending
on the environment temperature the pedestrians might be darker than the background in
hot summer days. To overcome the difference between appearances in summer and winter, a
polarity inversion algorithm can applied on IR images taken in hot summer days such that
the pedestrians are lighter than the environment.
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This chapter presents approaches for detecting pedestrians in long wave infrared images
refereed in what follows ’infrared’ and abbreviated as IR. The appearance of a pedestrian
in IR images is usually lighter that the appearance of the environment, but it is influenced
by several factors like: different levels of clothing insulation, environmental temperature (an
IR image looks different at summer and at winter), accessories, body part positions, viewing
angle (front, lateral, rear) and actions (walk, stand, run) that a pedestrian may perform.
Hence the detection of pedestrians in infrared images is a challenging task.

A solution proposed by the author is also explained. The described solution considers the
above mentioned constraints and difficulties and it is two-fold:

• First it generates a region of interest (ROI) that comprises parts of the image that have
a high probability of containing a pedestrian.

• Second it applies a pedestrian detector in the identified ROI.

The region of interest generator was designed based on the following considerations:

1. Pedestrians are vertical structures in the image hence vertical edge information is ex-
tracted and uniform areas such the sky or parts of road and buildings are removed.
Some of the vegetation is elliminated and areas having a high density of connected
vertical edges are enhanced.

2. In an automotive setup closer pedestrians have a large height opposed to far pedestrians
that are smaller.In each region of the image the dimension of the scanning windows
that must be retained by the region of interest generator is determined.

3. Usually in all environment conditions the pedestrian head and legs appear as light spots
in the image. In order to make the whole body uniform a combination of morphological
operations and adaptive thresholding to keep as much as possible of the pedestrian body
in the region of interest is applied.

The methods explored by the author also comprise the analysis of four channel features
for pedestrian detection in infrared images. These features are: the intensity channel also
referred as infrared channel, histogram of gradient orientations (HOG), normalized gradient
magnitude (MN) and local binary patterns (LBP).

A dataset of pedestrian models in long wave infrared images is created. The dataset
is created from video sequences taken in autumn and winter and it comprises over 3000
pedestrian instances annotated from traffic scene images. The proposed framework is suitable
for night vision because in far-infrared images pedestrians generally appear warmer than the
background.

6.1 Survey of Current Approaches

A survey of approaches is given by [32], [199] , [200] and [201]. They provide details on
infrared based technologies for pedestrian collision avoidance systems.

Based on these surveys a generic scheme valid for pedestrian detection in images from all
types of sensors is identified. This scheme comprises the generation of pedestrian hypothesis
candidates, extraction of relevant features and the actual classification.
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For the generation of the regions of interest (ROI) existing methods combine the presence
of hot spots with edge and texture information [202], [203]. A horizontal segmentation of
the infrared image is presented in [204]. Another approach is employed by [205] that besides
thresholding and edge detection perform ROI generation based on symmetry by computing
the local direction of gradients. Edge symmetry information is combined with intensity
profile analysis and road detection using infrared stereo in the work of [199]. A candidate
generation method driven by the search of pedestrian head is employed by [206], [207]. By
simple thresholding they find the blobs corresponding to the head and grayscale correlation
is used for validation of the bounding boxes. Next they compute the symmetry of vertical
edges on a bounding box approximated from a set of geometric constraints. Then an adaptive
linear gain curve is applied to areas of the image with a high vertical symmetry in order to
extract the silhouette of the warm objects detected. In the work of [208] the ROI is extracted
based on discrete keypoints computed from the phase coherence image using the maximum
and minimum moment of covariance.

When using a classification method that learns a discriminative function for the detection
of pedestrians several visual features have been explored. Such features may be edgelets [209],
multi-block binary patterns(MLBP) [210], local binary patterns(LBP) and their variations
[211], histogram of oriented gradients (HOG) [212], [213], combination of HOG with contour
based features [214]. Other methods exploit the benefits of scale invariant descriptors like
discrete keypoints [208], SURF [215], or codebook dictionaries build upon SURF descriptors
[216] that use reciprocal nearest neighbor (RNN) search to group similar SURF features into
a tree like code book. Their work is extended by [217] that add several fast computing global
features that improve the discriminative power representation. Intensity Self Similarity (ISS),
adapted to pedestrian detection in far IR images is proposed by [218]. The ISS encodes the
distribution of color as repetition across the image. Contrast invariant features named HOPE
are proposed by [219] that exploit the local information histogram of orientations of phase
coherence. An evaluation of several combinations of features and classifiers is done in [220].
They include features like Principal Component Analysis (PCA), LBP, HOG and HOPE.

For the actual pedestrian detection [203] use a shape correlation algorithm based on
shaded 3-D pedestrian models. Correlation with precomputed deformable probabilistic mod-
els is also employed by [206], [207]. [204] use a template matching method that compare
the similarity between multi-dimensional shape-independent feature vectors for previously
generated ROIs and one generic pedestrian template. The shape independent feature vec-
tor comprises brightness histograms, image inertial, and contrast. Pattern correlation and
trained pattern classification has been explored by [221] that combine (1) hierarchical contour
matching based on distance transform; (2) Haar based cascade classification and (3) several
hyper permutation networks that transform the original input image into the per pixel likeli-
hood image. Support vector machines are employed by [212] that frame the SVM detector in
a complete system, which deals with stereo infrared images. SVM is also employed by [213],
[216], [217], [214] and [208], [219]. The use of Dempster-Shafer theory (DST) to combine in a
finer way the outputs of SVM classifiers is presented by [222]. An adaptation of a latent vari-
able SVM for far infrared images is proposed by [220]. Other classification methods explored
by state of the art algorithms are artificial neural networks [223] and boosting [224]. An an
Implicit Shape Model is build by [215] in order to describe the codebook for the pedestrian
class. Classification is done by SURF feature matching that cast votes for object center
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locations in a 3D Hough voting space. Probabilistic models are employed by [225]. They use
four different models in order to recognize the pose of the pedestrians: open, almost open,
almost closed and fully closed legs are detected.

6.2 Detection by Means of Feature Scaling

For the method that uses feature scaling the main steps are as follows:

• Region of interest generation that has the role of rapid identification of the areas in the
infrared image that may contain pedestrians.

• Feature extraction – that computes HOG, LBP and gradient magnitude channels from
a fixed predefined set of infrared image scales.

• Multiple scale image feature approximation – that performs a fast computation of
channel features for intermediate scales. The intermediate scales are in the range of
the fixed scales at the previous step.

• Classification using AdaBoost classifiers – does the actual detection.

• Non maximal suppression – removes multiple overlapped close detections.

The region of interest generator is described in the previous section.

6.2.1 Feature Extraction

Several feature configurations in order to find a best setup for pedestrian detection in infrared
images have been experimented.

Normalized gradient magnitude features computed as described by [31] and [86] are com-
puted as:

M̃(i; j) = M(i; j)/(M(i; j) + 0.005) (6.1)

where M is the average gradient magnitude in each 11 × 11 image patch (computed by
convolving M with an L1 normalized 11× 11 triangle filter).

Next local gradient histograms on image blocks of dimension 4× 4 pixels are computed.
For each pixel of an image I the gradient magnitude and the orientation are computed. Next
the gradient histogram for an image is extracted. For the histogram each pixel provides a
vote that is weighted by its gradient magnitude. The bin of each pixel corresponds to its
gradient orientation. The approach in [86] is used and the image is divided into blocks of
4 × 4 pixels and then in each block the gradient histogram is computed. A number of bins
equal to 6 is used. The votes for three of the bins are presented in sub figures 6.1(d), 6.1(e),
6.1(f). The other votes are not shown because they are not so visible in the given context of
an infrared image.

Another employed feature is the local binary pattern [155]. For each point of an image I
the LBP operator generates a binary code considering a threshold-ed difference of intensity
values between the pixel and some points in its local neighborhood. The threshold value is
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(a) Original Image (b) Normalized Gradient
Magnitude

(c) LBP applied on ROI

(d) HOG – 1 (e) HOG – 2 (f) HOG – 3

Figure 6.1: Features used

zero. The number of features extracted by the LBP operator can be reduced by using the
so called uniform patterns [159]. These patterns are used to reduce the length of the feature
vector and also implement a simple rotation-invariant descriptor. A local binary pattern is
called uniform if the binary pattern contains at most two bit wise transitions from 0 to 1 or
vice verse when the bit pattern is traversed circularly [160].

Experiments with several versions of LBP include:

• LBP59 – the LBP using uniform patterns with at most two transitions of 0 and 1s and
this resulted in 59 different labels;

• LBP37 – the uniform 59 LBP was cyclically rotated such that the obtained binary
number is minimum. There are 37 patterns obtained by this cyclic rotation.

• LBP256 – the classical LBP pattern.

The used features are depicted in Figure 6.1.

Multiple Scale Image Feature Approximation

This step is extremely important for ensuring a fast execution of the overall detection process.
The classical methodology of a pedestrian detector is based on computing the features for
one scale of the image, than slide the detection window and mark positive answers. Next,
scale the image and recompute features and repeat the sliding process. Image scaling, feature
computation and sliding window detection for a large number of scales is time consuming.
In the proposed method the idea presented in [31] and [86] with the so called Aggregated
Feature Channels [87] is used. The method uses 27 scales. The four mentioned features
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are computed for the predefined scales equal to 1, 0.5, 0.25, 0.125, while the values of the
features for 7 intermediate scales are approximated from neighboring scales. Exact feature
scaling computation and approximation methodology is detailed in [86]. The LBP features
were integrated in the framework of [87]

Shortly the main steps are:

• Given an input image I, compute several channels C = Ω(I), sum every block of 4× 4
pixels in C, and smooth the resulting lower resolution channels.

• Instead of computing the features for each scale the ACF method computes Is and
Cs = Ω(Is) for only a sparse set of s (once per octave).

• At intermediate scales Cs is computed by approximation.

• The pyramid obtained by computed and approximated features is scanned with a win-
dow of dimension 32× 64

Nb. Scale Factors
Ap. computed ; approximated
0 1 0.91 0.84 0.77 0.70 0.65 0.59 0.54 0.50 0.45 0.41 0.38 0.35 0.32 0.30 0.27 0.25
2 1 0.91 0.84 0.77 0.70 0.65 0.59 0.54 0.50 0.45 0.41 0.38 0.35 0.32 0.30 0.27 0.25
4 1 0.91 0.84 0.77 0.70 0.65 0.59 0.54 0.50 0.45 0.41 0.38 0.35 0.32 0.30 0.27 0.25
7 1 0.91 0.84 0.77 0.70 0.65 0.59 0.54 0.5 0.45 0.41 0.38 0.35 0.32 0.30 0.27 0.25

Table 6.1: Examples of scale approximation factors

Table 6.1 shows with blue the scale factors that are computed and in red the scale factors
that are approximated.

6.2.2 Classification Using AdaBoost

For classification a cascade of AdaBoost classifiers is used [87]. Their classification score is a
linear combination of weighted weak learner responses.A cascade of such composite ensemble
is used. The cascade has four stages and each stage has the same positive training set, while
the negatives for each stage are the false positives of the previous stage. Each weak learner
is a decision tree. The number of weak classifiers in the stages is 256, 512, 1024, 2048.

6.3 Pedestrian Detection in IR With Multiple Scale

Boosted Cascades

Another approach for the classification task is to train eight boosted cascades, each working
with a specific size of training images. Hence the so called approach of one image scale
and multiple detector sizes is adopted. For each size an aspect ratio of 0.5 is used. Each
cascade is trained until it reaches specific false positive and true positive rates. Negatives’
bootstrapping is applied for each stage of the eight cascades.
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(a) Scale=1.0 (b) Scale=0.91 (c) Scale=0.84

(d) Scale=0.77 (e) Scale=0.70 (f) Scale=0.65

(g) scale=0.659 (h) scale=0.654 (i) scale=0.650 (j) Scale=0.45

Figure 6.2: Blue border – features are computed, Red border – features are approximated
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By the sizes of the models the entire height dimension of infrared pedestrians captured
by the IR sensor is covered and for this method we work with images having a resolution of
320× 240 pixels in order to obtain a speed-up improvement.

6.4 Cascade of AdaBoost Classifiers

As classification method a cascade of boosted classifiers is employed. This concept was
introduced by [154]. Each boosted classifier is a threshold-ed linear combination of a variable
number of weak learners that are decision stumps. As input the number of stages (i.e. the
number of boosted classifiers) and a target false positive rate and a target detection rate
are provided. Each stage in the cascade reduces the false positive rate and decreases the
detection rate. Each stage is trained by adding weak learners until the target detection and
false positive rates are met.

The classical approach with scan window pedestrian detection is to scan the image with
a window of constant size for which a classification model was build, and mark all positive
detections. Then the image is scaled up and down with a certain number of factors and the
scan window procedure is repeated. This process image pyramid scan window is extremely
slow.

Instead of the image pyramid the model of [30] is adopted, that instead of rescaling the
image learned models at few different scales.

Eight different scales are proposed for which models are trained. At each scale an as-
pect ratio of 0.5 is used. This ratio results from the analysis of more than 3000 annotated
pedestrians in real traffic scenes.

The eight window sizes are: 24 × 48, 36 × 72, 48 × 96, 60 × 120, 72 × 144, 84 × 168,
86 × 192, 108 × 216. Each of the eight models is a cascade of AdaBoost classifiers that are
trained until each stage in the cascade has a true positive rate of 0.99 and a false positive
rate of 0.01.

A diagram of our cascade model is shown in the figure 6.3.

Evaluation

Evaluation of pedestrian detection using feature scaling

The Aggregated Channel Feature method uses 7 approximation scales per octave and in total
there are 8 scales per octave.The number of approximated scales per octave was varied and the
impact on accuracy and execution time was studied. First no approximations were adopted.
This means the features are computed for every scale (27 scales in total). For comparison we
have considered the following set of number of approximated scales per octave: 0, 2, 4, 7. This
was done for the ACF method that uses HOG, Normalized gradient and IR channels, and
for the ACF method in combination with LBP256, LBP59 and LBP37. The performance of
the detection was evaluated using full image evaluation as described by [36]. The miss rate
against the percent of false positives per image using the evaluation toolbox provided by [87]
is measured
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Figure 6.3: The scan windows for an input image are evaluated by the models having similar
sizes in the multiple scale cascade

Table 6.2 shows the frames per second rate (fps) and the log average miss rate (lamr)
for different channels and for several approximated scales per octave. Several configurations
for LBP features in combination with the classical channels like: HOG, normalized gradient
magnitude (MN)and LUV image were considered. Instead of the LUV color space the infrared
image (IR) is used.

Approximated scales per octave

0 2 4 7

Channels fps lamr fps lamr fps lamr fps lamr

HOG MN IR LBP256 4.3 37.10% 10 40.67% 13 41.19% 16 45.29%

HOG MN IR LBP59 6 35.36% 11 41.47% 16 45.27% 18 50.39%

HOG MN IR LBP37 6 35.33% 13 38.42% 18 39.51% 22 44.58%

HOG MN IR 16 38.67% 24 41.38% 37 43.59% 38 48.95%

Table 6.2: Comparison of execution time and log average miss rate for different methods

One can notice that in all types of channel combinations the best performance is achieved
when no feature channel approximation is done. Yet, for those cases the execution time is
high. If the number of approximated scales is increased then the execution time decreases in
disadvantage of a lower accuracy.

From the comparative analysis it can be noticed that the LBP features bring an improve-
ment in terms of accuracy but lower the execution time. A reasonable setup, as shown in
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table 6.2 would be the combination of HOG, MN, IR and LBP37 and their approximation
for a number of 4 scales per octave. This leads to an accuracy of 39.5% that is close to the
best accuracy obtained without feature approximation for HOG, MN and IR, that is 38.87%,
having lower execution time of about 18fps. The log average miss rate curves are presented
in Figure 6.4.

(a) No approximated scales per octave (b) Two approximated scales per octave

(c) Four approximated scales per octave (d) Seven approximated scales per octave

Figure 6.4: Log Average Miss Rate for different approximated scales per octave for infrared
images

Sample detection results are presented in Figure 6.5.

Execution time analysis

The code was tested on an i7–3770K CPU machine. All the experiments are performed on
images having the size 640× 480 pixels. A hybrid implementation that combines C++ and
Matlab is used For the region of interest generator the execution time for processing one
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Pedestrian detection in IR images with feature scaling approach
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Table 6.3: Per window evaluation
Model Size TP rate TN rate

24× 48 60% 99%
36× 72 96.5% 96.2%
48× 96 99.2% 83%
60× 120 99.5% 85.1%
72× 144 97.2% 87%
84× 168 98.76% 89.4%
86× 192 93.2% 92.3%
108× 216 92.8% 91.3%

frame is about 5 ms for a frame and the total execution time of the detector depends on
the type of features used and on the number of approximated scales. As shown in Table 6.2
depending on the number of approximated scales per octave the total execution time ranges
from 38fps – when seven approximation scales are used to 4.3 fps when no approximation is
used and LBP256 is employed.

Evaluation of pedestrian detection using multiple scale boosted cascades

The performance of the detection was evaluated using two different measures proposed by
[36].

• Per window evaluation that is we measure the performance on cropped positive and
negative image windows.

• Full image evaluation in which we find the miss rate against false positives per image.

For each of the eight cascades a per window evaluation is applied, in order to find out
the accuracy of each cascade in part on pedestrian and non-pedestrian images that have
been resized in order to fit the detector size. The results of the per window evaluation are
provided in table 6.3. TP rate refers to the true positive rate that is how many of the
positives are correctly classified. TN rate refers to the true negative rate that is how many
of the negatives are correctly classified as being negatives. Each classifier behaves relatively
good when dealing to perfectly scaled small images.

In order to perform the per image evaluation test sequences are considered and for each the
average number of false positive detections and the average true positive rate are measured.
The true positive rate of a frame is given by the number of correctly detected pedestrian
divided by the total number of pedestrians in that frame. The average true positive rate for
a sequence is given by the sum of true positive rates per frames divided by the total number
of frames that contain pedestrians. In order to prove the effectiveness of the multiple scale
cascade structure its performance is compared with each of the eight cascades. The results
are shown in table 6.4.

An evaluation of 1000 annotated frames of the test sequences is carried out. Only pedes-
trians having height greater than 30 pixels were considered.
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Table 6.4: Per image evaluation
ε = 0.3; th = 1 ε = 0.2; th = 3

Model Size Average Average FP Average Average FP
TP rate per window TP rate per window

24× 48 58% 3.15% 58% 3.15%
36× 72 75% 1.94% 59% 0.28%%
48× 96 49% 18.73% 73% 4.4%
60× 120 30% 5.38% 72% 46.3%
72× 144 30% 2.39% 29% 42%
84× 168 34.2% 1.75% 10.8% 39.2%
86× 192 38.3% 1.706 12.8% 38.6%
108× 216 22.5% 1.69% 12.4% 37.7%

Multi-scale: 67% 0.49% 34% 0.75%

In order to obtain these values a grouping of close enough bounding boxes based on their
location and score was performed. All the input rectangles were clustered using the rectangle
equivalence criteria based on similarity in size location [181].

The similarity is defined by the parameter ε that gives the relative difference between
sides of the rectangles to be merged into a group. Then, the small clusters containing less
than or equal to th rectangles are rejected. In each other cluster, the average rectangle is
computed and put into the output rectangle list.

Table 6.4 shows the TP rate and the FP rate for two different parameter settings. When
ε = 0.3 and the grouping threshold is 1 the multi-scale cascade has a true positive rate of
almost 70% and a false positive rate of 0.49, while the stand-alone cascades perform worse.

It can be noticed that the proposed detector works better than the classical HOG detector
evaluated on the intensity images from INRIA dataset by [36].

Some examples of detection results are shown in Figure 6.6.
The sample detection results show that small pedestrians are not detected because a

constraint of height being greater than 30 pixels was imposed, and in the detection results a
false positive can be also noticed.

Execution time analysis

Our experiments have been run on an i7–3770K CPU. All the images used have a dimension
of 320×240 pixels. For the region of interest generator the execution time for processing one
frame is about 29 ms and this leads to an average execution time of 0.5fps.

Conclusion

This chapter presents two original solutions for detecting pedestrians in far infrared images:
(1) detection by means of image feature approximation and (2) detection by multiple scale
boosted cascades.

A popular and successful approach for monocular intensity pedestrian detection is based
on the approximation (instead of computation) of image features for multiple scales based on
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(a) Detection results 1 (b) Detection results 2

(c) Detection results 3 (d) Detection results 4

Figure 6.6: Pedestrian detection in IR images with multi-scale cascades

the features computed on set of predefined scales. This idea is ported to the infrared domain.
The contributions of the author reside in the combination of four channel features, namely
infrared, histogram of gradient orientations, normalized gradient magnitude and local binary
patterns with the objective of detecting pedestrians for night vision applications dealing with
far infrared sensors. Multiple scale feature computation is done by feature approximation.
Another contribution is the study of different formulations for Local Binary Patterns like
uniform patterns and rotation invariant patterns and their effect on detection performance.
The detection speed is also boosted by the aid of a fast morphological based region of interest
generator. A reasonable result hits a speed of 18fps with a log average miss rate of 39%.

Another proposed approach for the classification task is to train eight boosted cascades,
each working with a specific size of training images. Hence the so called approach of one
image scale and multiple detector sizes is followed. For each size an aspect ratio of 0.5 is
used. Each cascade is trained until it reaches specific false positive and true positive rates.
Negatives’ bootstrapping is applied for each stage of the eight cascades. By the sizes of
the models the entire height dimension of infrared pedestrians captured by the IR sensor is
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covered. All the images have a resolution of 320 × 240 pixels. An execution time of about
20fps and a log average miss rate of 33% is obtained.
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Chapter 7

Conclusions

This book addresses the problem of time-constrained pedestrian detection in monocular in-
tensity and far infrared images. The described approaches involve a comprehensive study of
the various modules of a pedestrian detector, namely the pedestrian representation models,
the feature extraction process and the actual pattern classification.

Chapter 1 presents the motivation and the main challenges of generic pedestrian detec-
tion models for monocular images. A main motivation for developing pedestrian detection
systems in the context of road environments is given by the need of active safety technologies
that assist autonomous driving systems in the prevention of pedestrian collision. The ob-
jective of such active safety technologies is to minimize the occurrence and consequences of
automobile accidents. The challenges that a pedestrian detection system must face are given
by the large variety of appearances due to the actions they perform (walk, run, stand), due
to the motion of different body parts, due to the clothing and accessories they wear. Hence
pedestrians posses a large intra-class variability because they are highly deformable instances
in a traffic scene and their appearance depends on numerous factors like: pose, orientation,
shape, attitude, occlusions, imaging conditions, background.

Chapter 2 presents the mathematical models employed by various existing solutions.
Details upon visual descriptors like first order partial derivatives, histogram of gradient ori-
entations, Haar filters, local binary patterns, anisotropic Gaussians and Gabor wavelets are
provided. The correlation based feature selection method that is employed for selecting
relevant features is included.

Chapter 3 provides a description of the machine learning algorithms used in state of
the art solutions for pedestrian detection. Insights on Bayesian networks, boosting, multiple
layer perceptrons and support vector machines are provided.

Chapter 4 presents popular datasets used in assessing the performance of pedestrian
detectors. The standard evaluation protocol used for assessing the performance of pedestrian
detection methods is also detailed.

Chapter 5 discuses the difficulties of existing scan window based pedestrian detectors in
monocular visible images and presents our several ways for tackling this problem.

A revision of techniques for monocular based pedestrian detection is deployed.

A summary of existing pedestrian representation models is given. The representation
models refer to the pedestrian appearance captured by the classification model. The main
identified categories are: (1) monolithic representations consider the pedestrian data as a
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whole and (2) part based representations that regard the pedestrian as a combination of
parts and the whole body. For each of the two representations single scale or multiple-scale
methods have been developed. These representations try to capture the high variance of
the pedestrian appearance and some of them underline the multiple views or poses that
pedestrians may have.

Next the contributions of the author in this field are presented. An approach that con-
siders several pedestrian attitudes specific for traffic environment is defined. Actions like
pedestrian running, pedestrian standing and walking are identified as being representative
in the process. A space of semantic concepts that are formed by adding direction informa-
tion to the attitudes is described: for example walk left, right, pedestrian facing forward
or backward. Several classification algorithms have been employed for learning different se-
mantic concepts. Those classifiers are combined in a single reasoning module that called
meta-classifier that comprises: (1) basic attitude meta-classifier that is trained on a coarse
partition of the input space. The division comprises three main attitudes: stand, run, walk.
(2)complex attitude meta-classifier that is trained on a fine partition of the input space. A
segmentation based on semantic concepts that comprise a combination between the actions
that pedestrians perform: stand, run, walk and the direction of movement front, back, lateral
left, lateral right is proposed.

The complex meta-classifier is integrated in a stereo-vision system and also in a monocular
system. Based on the motion information provided by the stereo-system the orientation of
each pedestrian hypothesis is extracted. Using the orientation only three instead of nine
classifiers are applied once. For example if the orientation information corresponds to front
motion than only front walk, front run and front stand classifiers are applied. Given this
context information the complex meta-classifier improved the overall pedestrian detection
accuracy with about 8% leading to an overall true positive rate of about 90% with only a
small decrease in execution time of the overall system.

Thirdly, a star based meta-classifier that combines a whole body (root) classifier with part
based the multi-attitude models is described. Models for different pedestrian attitudes given
by orientations like lateral left, lateral right, front, rear are proposed. The root classifier
trained on all attitudes. The role of the root classifier is to identify pedestrians fast with
the cost of admitting more false positives. The attitude classifiers come to refine the root
decision and to eliminate the false detections and refine the positive detections. The root
and attitude classifiers are trained on HOG and LBP features computed for different parts
of interest defined based on an edge homogeneity minimization function. The log average
miss rate of the star classifier on pedestrians from Daimler dataset having a height greater
than 50 pixels and partially occluded is of about 45% For pedestrians having a height greater
than 100 pixels and not occluded the log average miss rate is of about 20%. That is the star
classifier detects correctly about 80% of the pedestrians that are not occluded and are closer
to the camera. The star meta-classifier hits an execution time of 16 fps.

Chapter 6 outlines existing feature based classification approaches for detecting pedes-
trians in infrared images. The contributions of the author in this direction are underlined
by two categories of methods: (1) detection by means of image feature approximation and
(2) detection by multiple scale boosted cascades. Insights on the proposal of a single detec-
tion model applied at multiple scales are given. A pyramidal model with approximation of
features values for different scales is used.
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The formalisation and description of methods that comprise multiple size models applied
at one image scale are also included. Several detection models of different dimensions are
trained and applied in parallel without any image scaling. Hence the so called approach of
one image scale and multiple detector sizes is achieved. For each size an aspect ratio of 0.5
is used. Each cascade is trained until it reaches specific false positive and true positive rates.
Negatives’ bootstrapping is applied for each stage of the eight cascades. By the sizes of the
models the entire height dimension of infrared pedestrians captured by the IR sensor is being
covered. For this method the images have a resolution of 320 × 240 pixels. An execution
time of about 20fps and a log average miss rate of 33% is obtained.
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[57] S. Álvarez, M. Á. Sotelo, I. Parra, D. F. Llorca, and M. Gavilán, “Vehicle and Pedes-
trian detection in eSafety Applications,” in WCECS ICIAR09, oct. 2009.

[58] S. Alvarez, D. Llorca, M. A. Sotelo, and A. G. Lorente, “Monocular target detection
on transport infrastructures with dynamic and variable environments,” in Intelligent
Transportation Systems (ITSC), 2012 15th International IEEE Conference on, Sept
2012, pp. 61–66.

113

http://dx.doi.org/10.1109/34.730558
http://www.sciencedirect.com/science/article/pii/S0042698910002348
http://dx.doi.org/10.1016/j.rti.2004.12.004
http://dx.doi.org/10.1016/j.rti.2004.12.004


REFERENCES

[59] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, “Online mul-
tiperson tracking-by-detection from a single, uncalibrated camera,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 33, no. 9, pp. 1820–1833, Sept
2011.

[60] D. Park, D. Ramanan, and C. Fowlkes, “Multiresolution models for object detection,”
in Proceedings of the 11th European Conference on Computer Vision: Part IV,
ser. ECCV’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 241–254. [Online].
Available: http://dl.acm.org/citation.cfm?id=1888089.1888108

[61] P. Sudowe and B. Leibe, “Efficient use of geometric constraints for sliding-window
object detection in video,” in Computer Vision Systems, ser. Lecture Notes in Computer
Science, J. Crowley, B. Draper, and M. Thonnat, Eds. Springer Berlin Heidelberg,
2011, vol. 6962, pp. 11–20.

[62] A. Prioletti, P. Grisleri, M. Trivedi, and A. Broggi, “Design and implementation of a
high performance pedestrian detection,” in Intelligent Vehicles Symposium (IV), 2013
IEEE, June 2013, pp. 1398–1403.

[63] K. Yang, E. Du, P. Jiang, Y. Chen, R. Sherony, and H. Takahashi, “Automatic
categorization-based multi-stage pedestrian detection,” in Intelligent Transportation
Systems (ITSC), 2012 15th International IEEE Conference on, Sept 2012, pp. 451–
456.

[64] J. Yan, X. Zhang, Z. Lei, S. Liao, and S. Z. Li, “Robust multiresolution pedestrian de-
tection in traffic scenes,” in Proceedings of the 2013 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’13), ser. CVPR ’13. Washing-
ton, DC, USA: IEEE Computer Society, 2013.

[65] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using
deep neural networks,” in Proceedings of the 2014 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’14), ser. CVPR ’14. Washington,
DC, USA: IEEE Computer Society, 2014.

[66] O. Barinova, V. Lempitsky, and P. Kholi, “On detection of multiple object instances us-
ing hough transforms,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 34, no. 9, pp. 1773–1784, Sept 2012.

[67] J. H. Joung, M. S. Ryoo, S. Choi, W. Yu, and H. Chae, “Background-aware pedes-
trian/vehicle detection system for driving environments,” in Intelligent Transportation
Systems (ITSC), 2011 14th International IEEE Conference on, Oct 2011, pp. 1331–
1336.

[68] K. Goto, K. Kidono, Y. Kimura, and T. Naito, “Pedestrian detection and direction
estimation by cascade detector with multi-classifiers utilizing feature interaction de-
scriptor,” in Intelligent Vehicles Symposium (IV), 2011 IEEE, June 2011, pp. 224–229.

114

http://dl.acm.org/citation.cfm?id=1888089.1888108


REFERENCES

[69] H. Cho, P. Rybski, A. Bar-Hillel, and W. Zhang, “Real-time pedestrian detection with
deformable part models,” in Intelligent Vehicles Symposium (IV), 2012 IEEE, June
2012, pp. 1035–1042.

[70] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from edges,” in
ECCV, 2014.

[71] P. Felzenszwalb, R. Girshick, and D. McAllester, “Cascade object detection with de-
formable part models,” in Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, June 2010, pp. 2241–2248.

[72] A. Mogelmose, A. Prioletti, M. Trivedi, A. Broggi, and T. Moeslund, “Two-stage part-
based pedestrian detection,” in Intelligent Transportation Systems (ITSC), 2012 15th
International IEEE Conference on, Sept 2012, pp. 73–77.

[73] A. Prioletti, A. Mogelmose, P. Grisleri, M. Trivedi, A. Broggi, and T. Moeslund, “Part-
based pedestrian detection and feature-based tracking for driver assistance: Real-time,
robust algorithms, and evaluation,” Intelligent Transportation Systems, IEEE Trans-
actions on, vol. 14, no. 3, pp. 1346–1359, Sept 2013.

[74] P. Geismann and G. Schneider, “A two-staged approach to vision-based pedestrian
recognition using haar and hog features,” in Intelligent Vehicles Symposium, 2008
IEEE, June 2008, pp. 554–559.

[75] L. Yu, W. Yao, H. Liu, and F. Liu, “A monocular vision based pedestrian detection
system for intelligent vehicles,” in Intelligent Vehicles Symposium, 2008 IEEE, June
2008, pp. 524–529.

[76] P. Luo, Y. Tian, X. Wang, and X. Tang, “Switchable deep network for pedestrian
detection,” in Proceedings of the 2014 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’14), ser. CVPR ’14. Washington, DC, USA:
IEEE Computer Society, 2014.

[77] G. Chen, Y. Ding, J. Xiao, and T. Han, “Detection evolution with multi-order contex-
tual co-occurrence,” in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, June 2013, pp. 1798–1805.

[78] J. Yan, Z. Lei, L. Wen, and S. Z. Li, “The fastest deformable part model for object
detection,” in Proceedings of the 2014 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’14), ser. CVPR ’14. Washington, DC, USA:
IEEE Computer Society, 2014.

[79] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image windows,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 11, pp.
2189–2202, Nov 2012.

[80] G. Gualdi, A. Prati, and R. Cucchiara, “Multi-stage sampling with boosting
cascades for pedestrian detection in images and videos,” in Proceedings of

115



REFERENCES

the 11th European Conference on Computer Vision: Part VI, ser. ECCV’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 196–209. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1888212.1888229

[81] P. Dollár, R. Appel, and W. Kienzle, “Crosstalk cascades for frame-rate pedestrian
detection,” in ECCV, 2012.

[82] G. Gualdi, A. Prati, and R. Cucchiara, “Multistage particle windows for fast and accu-
rate object detection,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 34, no. 8, pp. 1589–1604, Aug 2012.

[83] M. Pedersoli, J. Gonzlez, A. D. Bagdanov, and X. Roca, “Efficient discriminative
multiresolution cascade for real-time human detection applications,” Pattern
Recognition Letters, vol. 32, no. 13, pp. 1581 – 1587, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865511001954

[84] M. Pedersoli, J. Gonzlez, A. Bagdanov, and J. Villanueva, “Recursive coarse-to-fine
localization for fast object detection,” in Computer Vision ECCV 2010, ser.
Lecture Notes in Computer Science, K. Daniilidis, P. Maragos, and N. Paragios,
Eds. Springer Berlin Heidelberg, 2010, vol. 6316, pp. 280–293. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15567-3 21

[85] M. Pedersoli, A. Vedaldi, and J. Gonzalez, “A coarse-to-fine approach for fast de-
formable object detection,” in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, June 2011, pp. 1353–1360.

[86] P. Dollar, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for object
detection,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 36,
no. 8, pp. 1532–1545, Aug 2014.

[87] P. Dollár, “Piotr’s Image and Video Matlab Toolbox (PMT),” http://vision.ucsd.edu/
∼pdollar/toolbox/doc/index.html.

[88] C. H. Lampert, M. Blaschko, and T. Hofmann, “Beyond sliding windows: Object local-
ization by efficient subwindow search,” in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, June 2008, pp. 1–8.

[89] ——, “Efficient subwindow search: A branch and bound framework for object local-
ization,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 31,
no. 12, pp. 2129–2142, Dec 2009.

[90] A. Lehmann, B. Leibe, and L. Van Gool, “Feature-centric efficient subwindow search,”
in Computer Vision, 2009 IEEE 12th International Conference on, Sept 2009, pp.
940–947.

[91] D. Llorca, M. Sotelo, A. Helln, A. Orellana, M. Gaviln, I. Daza, and A. Lorente, “Stereo
regions-of-interest selection for pedestrian protection: A survey,” Transportation
Research Part C: Emerging Technologies, vol. 25, no. 0, pp. 226 – 237, 2012. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0968090X12000885

116

http://dl.acm.org/citation.cfm?id=1888212.1888229
http://www.sciencedirect.com/science/article/pii/S0167865511001954
http://dx.doi.org/10.1007/978-3-642-15567-3_21
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://www.sciencedirect.com/science/article/pii/S0968090X12000885


REFERENCES

[92] D. Llorca, M. Sotelo, I. Parra, J. Naranjo, M. Gavilan, and S. Alvarez, “An exper-
imental study on pitch compensation in pedestrian-protection systems for collision
avoidance and mitigation,” Intelligent Transportation Systems, IEEE Transactions on,
vol. 10, no. 3, pp. 469–474, 2009.

[93] S. Nedevschi, S. Bota, and C. Tomiuc, “Stereo-based pedestrian detection for collision-
avoidance applications,” Intelligent Transportation Systems, IEEE Transactions on,
vol. 10, no. 3, pp. 380–391, 2009.

[94] M. Enzweiler, M. Hummel, D. Pfeiffer, and U. Franke, “Efficient stixel-based object
recognition,” in Intelligent Vehicles Symposium (IV), 2012 IEEE, June 2012, pp. 1066–
1071.

[95] C. Keller, M. Enzweiler, M. Rohrbach, D. Fernandez Llorca, C. Schnorr, and D. Gavrila,
“The benefits of dense stereo for pedestrian detection,” Intelligent Transportation Sys-
tems, IEEE Transactions on, vol. 12, no. 4, pp. 1096–1106, Dec 2011.

[96] C. Keller, D. Llorca, and D. Gavrila, “Dense stereo-based roi generation for pedestrian
detection,” in Pattern Recognition, ser. Lecture Notes in Computer Science, J. Denzler,
G. Notni, and H. Se, Eds. Springer Berlin Heidelberg, 2009, vol. 5748, pp. 81–90.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-03798-6 9

[97] C. Keller, T. Dang, H. Fritz, A. Joos, C. Rabe, and D. Gavrila, “Active pedestrian
safety by automatic braking and evasive steering,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 12, no. 4, pp. 1292–1304, Dec 2011.

[98] T. Takahashi, H. Kim, and S. Kamijo, “Urban road user classification framework using
local feature descriptors and hmm,” in Intelligent Transportation Systems (ITSC), 2012
15th International IEEE Conference on, Sept 2012, pp. 67–72.

[99] M. Enzweiler and D. Gavrila, “Integrated pedestrian classification and orientation esti-
mation,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, June 2010, pp. 982–989.

[100] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg, “Part-based feature
synthesis for human detection,” vol. 6314, pp. 127–142, 2010. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15561-1 10

[101] A. Hillel, D. Weinshall, and T. Hertz, “Efficient learning of relational object class
models,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference
on, vol. 2, Oct 2005, pp. 1762–1769 Vol. 2.

[102] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman, “Discovering objects
and their location in images,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, vol. 1, Oct 2005, pp. 370–377 Vol. 1.

[103] B. Wu and R. Nevatia, “Detection and tracking of multiple, partially occluded
humans by bayesian combination of edgelet based part detectors,” International

117

http://dx.doi.org/10.1007/978-3-642-03798-6_9
http://dx.doi.org/10.1007/978-3-642-15561-1_10


REFERENCES

Journal of Computer Vision, vol. 75, no. 2, pp. 247–266, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s11263-006-0027-7

[104] K. Mikolajczyk, C. Schmid, and A. Zisserman, “Human detection based on a
probabilistic assembly of robust part detectors,” in Computer Vision - ECCV
2004, ser. Lecture Notes in Computer Science, T. Pajdla and J. Matas, Eds.
Springer Berlin Heidelberg, 2004, vol. 3021, pp. 69–82. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24670-1 6

[105] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detec-
tion with discriminatively trained part-based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[106] W. Ouyang and X. Wang, “A discriminative deep model for pedestrian detection with
occlusion handling,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, June 2012, pp. 3258–3265.

[107] J. Xu, D. Vazquez, A. Lopez, J. Marin, and D. Ponsa, “Learning a multiview part-based
model in virtual world for pedestrian detection,” in Intelligent Vehicles Symposium
(IV), 2013 IEEE, June 2013, pp. 467–472.

[108] R. Muhammad Anwer, D. Vzquez, and A. Lpez, “Color contribution to
part-based person detection in different types of scenarios,” in Computer
Analysis of Images and Patterns, ser. Lecture Notes in Computer Science,
P. Real, D. Diaz-Pernil, H. Molina-Abril, A. Berciano, and W. Kropatsch, Eds.
Springer Berlin Heidelberg, 2011, vol. 6855, pp. 463–470. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-23678-5 55

[109] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited: People detection
and articulated pose estimation,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, June 2009, pp. 1014–1021.

[110] P. Felzenszwalb, “Object detection grammars,” in Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, Nov 2011, pp. 691–691.

[111] D. Levi, S. Silberstein, and A. Bar-Hillel, “Fast multiple-part based object detection
using kd-ferns,” in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, June 2013, pp. 947–954.

[112] D. Gavrila and S. Munder, “Multi-cue pedestrian detection and tracking from a
moving vehicle,” International Journal of Computer Vision, vol. 73, no. 1, pp. 41–59,
2007. [Online]. Available: http://dx.doi.org/10.1007/s11263-006-9038-7

[113] S. Munder and D. Gavrila, “An experimental study on pedestrian classification,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, no. 11, pp.
1863–1868, Nov 2006.

118

http://dx.doi.org/10.1007/s11263-006-0027-7
http://dx.doi.org/10.1007/978-3-540-24670-1_6
http://dx.doi.org/10.1007/978-3-642-23678-5_55
http://dx.doi.org/10.1007/s11263-006-9038-7


REFERENCES

[114] C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian detection,” in Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, June
2009, pp. 794–801.

[115] F. Suard, A. Rakotomamonjy, and A. Bensrhair, “Model selection in pedestrian de-
tection using multiple kernel learning,” in Intelligent Vehicles Symposium, 2007 IEEE,
June 2007, pp. 270–275.

[116] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in In
CVPR, 2005, pp. 886–893.

[117] S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and insights for pedes-
trian detection,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, June 2010, pp. 1030–1037.

[118] A. Gepperth, M. Ortiz, and B. Heisele, “Real-time pedestrian detection and pose clas-
sification on a gpu,” in Intelligent Transportation Systems - (ITSC), 2013 16th Inter-
national IEEE Conference on, Oct 2013, pp. 348–353.

[119] G. Overett, L. Petersson, L. Andersson, and N. Pettersson, “Boosting a heterogeneous
pool of fast hog features for pedestrian and sign detection,” in Intelligent Vehicles
Symposium, 2009 IEEE, June 2009, pp. 584–590.

[120] Y.-F. Kao, Y.-M. Chan, L.-C. Fu, P.-Y. Hsiao, S.-S. Huang, C.-E. Wu, and M.-F. Luo,
“Comparison of granules features for pedestrian detection,” in Intelligent Transporta-
tion Systems (ITSC), 2012 15th International IEEE Conference on, Sept 2012, pp.
1777–1782.

[121] Y.-M. Chan, L.-C. Fu, P.-Y. Hsiao, and M.-F. Lo, “Pedestrian detection using his-
tograms of oriented gradients of granule feature,” in Intelligent Vehicles Symposium
(IV), 2013 IEEE, June 2013, pp. 1410–1415.

[122] M. Dikmen, D. Hoiem, and T. Huang, “A data driven method for feature transforma-
tion,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, June 2012, pp. 3314–3321.

[123] R. Benenson, M. Mathias, T. Tuytelaars, and L. Van Gool, “Seeking the strongest rigid
detector,” in CVPR, 2013.

[124] R. Muhammad Anwer, D. Vzquez, and A. Lpez, “Opponent colors for
human detection,” in Pattern Recognition and Image Analysis, ser. Lecture
Notes in Computer Science, J. Vitri, J. Sanches, and M. Hernndez, Eds.
Springer Berlin Heidelberg, 2011, vol. 6669, pp. 363–370. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21257-4 45

[125] Y. Socarrs Salas, D. Vzquez Bermudez, A. Lpez Pea, D. Gernimo Gomez, and
T. Gevers, “Improving hog with image segmentation: Application to human
detection,” in Advanced Concepts for Intelligent Vision Systems, ser. Lecture Notes

119

http://dx.doi.org/10.1007/978-3-642-21257-4_45


REFERENCES

in Computer Science, J. Blanc-Talon, W. Philips, D. Popescu, P. Scheunders, and
P. Zemk, Eds. Springer Berlin Heidelberg, 2012, vol. 7517, pp. 178–189. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33140-4 16

[126] S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel support vector
machines is efficient,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, 2008, pp. 1–8.

[127] B. Wu and R. Nevatia, “Simultaneous object detection and segmentation by boosting
local shape feature based classifier,” in Computer Vision and Pattern Recognition,
2007. CVPR ’07. IEEE Conference on, 2007, pp. 1–8.

[128] O. Tuzel, F. Porikli, and P. Meer, “Human detection via classification on riemannian
manifolds,” in Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Con-
ference on, June 2007, pp. 1–8.

[129] C.-E. Wu, Y.-M. Chan, L.-C. Fu, P.-Y. Hsiao, S.-S. Huang, H.-H. Chen, P.-T. Huang,
and S.-C. Hu, “Combining multiple complementary features for pedestrian and mo-
torbike detection,” in Intelligent Transportation Systems - (ITSC), 2013 16th Interna-
tional IEEE Conference on, Oct 2013, pp. 1358–1363.

[130] M. Enzweiler and D. Gavrila, “A mixed generative-discriminative framework for pedes-
trian classification,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, June 2008, pp. 1–8.

[131] G. D., S. A. D., L. A., and P. D., “Adaptive image sampling and windows classification
for on-board pedestrian detection,” in The 5th International Conference on Computer
Vision Systems, 2007.

[132] D. Gernimo, A. D. Sappa, D. Ponsa, and A. M. Lpez, “2d3d-based on-board
pedestrian detection system,” Computer Vision and Image Understanding, vol. 114,
no. 5, pp. 583 – 595, 2010, special issue on Intelligent Vision Systems. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1077314210000330

[133] J. Marin, D. Vazquez, A. Lopez, J. Amores, and B. Leibe, “Random forests of local ex-
perts for pedestrian detection,” in Computer Vision (ICCV), 2013 IEEE International
Conference on, Dec 2013, pp. 2592–2599.
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