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Abstract

From the abstract concept of self-reproducing automata to recent cases of cyber-
terrorism, malicious software is one of the greatest challenges to security. In the last few
years we have witnessed an exponential growth in the number of new malware samples,
reaching 400,000 unique files in a single day. In order for the security solutions to handle
these emerging threats, all new samples needs to be analyzed and categorized, a process
that can no longer be performed manually. This thesis proposes solutions inspired from
the machine learning area for automating most of the analysis tasks and reducing the
amount of manual work.

The malware landscape is divided into malware families, each family containing
many variants that perform the same actions but are rewritten or obfuscated to look
syntactically different. This thesis proposes several approaches for comparing binary
samples and finding similarities that will help identifying samples that belong to the
same malware family and also find plagiarized code.

Being able to compute the distance between two programs is not enough to analyze
large collections. Cluster analysis, as a form of unsupervised machine learning can group
together similar samples. The shortcoming of classical clustering algorithms is that their
running time is quadratic in the number of inputs, which is unacceptable in real-world
scenario. This shortcoming is addressed by proposing new clustering algorithms that
produce a very close approximation of the required clusters while dramatically improving
the running time.

One recurring problem in malware research that cannot be fully automated is de-
ciding whether a new sample is clean or malicious. Based on the assumption that similar
programs are likely to share the same verdict, this thesis presents algorithms for selecting
the most relevant samples from a collection to be analyzed, inferring the correct verdict
for the rest of them. Combined with the fast clustering algorithms, these proposal can
considerably reduce the amount of manual analysis.

Another problem solved in this thesis is identifying plagiarism cases in large collec-
tions, such as Android applications markets. This problem is difficult because it requires
more than simply performing pairwise comparison between all applications. Some practi-
cal aspects like eliminating the legally shared code such as common libraries or ignoring
pairs of applications developed by the same entity must be considered. The scalability
problem is also addressed, as applications markets are continuously increasing.
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Chapter 1

Introduction

1.1 Motivation

Malicious software or malware is a type of program created with the purpose of
violating a system’s security. Regardless of form, this software is a threat for every user
and must be detected before causing any harm.

By Bishop’s definition [Bis02], “malicious logic is a set of instructions that causes
a site’s security policy to be violated”. We will consider a program to be malicious if it
contains any malicious logic. As the author of [Bis02] pinpoints, this malicious logic is
difficult to detect even by humans. For instance, a sequence of instructions that encrypt
the user’s personal files might be contained in a benign program that helps the user to
protect his privacy. The same sequence of instructions could be used to encrypt the user’s
personal files in order to demand a ransom for restoring them. The only difference is that
in the first case, the user desires the effect of the program (i.e. the encryption of the files)
while, in the second case, the user is rather tricked into running the malware.

The difficulty of malicious logic detection was shown more formally by Cohen.
His paper [Coh89] focuses on a particular type of malicious logic, called computer virus
(formally defined as a sequence of symbols that replicate themselves in a Turing machine).
The paper states that“it is undecidable whether an arbitrary program contains a computer
virus”. The statement is proved by reducing the virus detection to the halting problem
[Tur36].

Various attempts have been made to design a system where malicious logic could
cause no harm [Bis02]. Unfortunately, such systems could not eliminate malicious logic
completely, while the usability was dramatically reduced.

The current solution for protecting against malware is to use anti-virus programs.
Such programs usually detect if a software is malicious by checking it against a database of
known malicious samples. This type of detection will be called signature-based detection
since the malware database contains the signatures extracted from the known malware.
The problem with this approach is the lack of proactivity. A new malware sample cannot
be detected if it hasn’t been previously seen and categorized by the anti-virus vendor.
Since the number of new malware samples that appear everyday has surpassed more than
300,000 [AT16], simply working with malware collections has become a difficult task.

Figure 1.1 divides malware detection into three components:

• source channel detection: the malware is blocked before it reaches the target system
by blacklisting known malware channels (like web sites that contain malware). A
program is detected if it comes from a malicious source.
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• static detection: the malware is detected after it gets downloaded into the system
but before it has the chance to run. At this point, the binary program is available
but it is in a passive state (it doesn’t run yet). A program is detected if it looks
like malware.

• dynamic detection: the malware is detected by the actions performed at run-time.
A program is detected if it behaves like malware.

source channel detection static detection dynamic detection

no malicious actions executed

proactivity increases

Figure 1.1: Proactivity by detection method

If the malware is detected in the first two phases, it cannot cause any harm to
the user, as no malicious action gets to be executed. In the third phase, the malware is
already running and some of the malicious actions cannot be undone. For example, if the
malware sends the victim’s passwords to the attacker, the malicious purpose has already
been achieved.

As the figure shows, proactivity grows from left to right. A source channel cannot
be blacklisted until it was previously seen, so this type of detection has a low proactivity.
Dynamic detection is based on the actions that the malware performs on the victim’s
system. By detecting the malicious behavior a higher proactivity can be achieved, but
with a cost: by the time of detection, some harm has already been done.

Static detection comes with its advantages and challenges. An anti-virus scanner
has the chance to examine the binary program before it runs. Unfortunately, malware
authors do everything they can to make detection harder. Obfuscation techniques [LD03]
are used to modify an existing program in order to make its binary content difficult to
recognize while maintaining the semantics. Most research efforts focus on detecting ob-
fuscated programs by finding invariant features in existing malware. Using these features
as signatures, new malware samples from the same family can be proactively detected.
However, the task of clustering malware samples by family is getting harder, giving the
increasing number of new samples.

As the malware landscape is getting more crowded with new samples and more
sophisticated with new techniques, it is imperative to find new defense solutions. This
thesis aims to provide such solutions by employing techniques from the machine learning
area, based on features extracted through static analysis on binary programs.

1.2 Thesis Overview

The following chapter will present the concepts and definitions used along this
thesis. This presentation is divided into two sections. Section 2.1 presents an overview
of the anti-malware research field, while section 2.2 will outline the machine learning
concepts used throughout this thesis.

Chapter 3 describes other efforts into applying machine learning for anti-malware
tasks and pinpoints the gaps filled by the current thesis. The first section of this chapter
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highlights related efforts in identifying similar content for both source code and binary
programs, including applications where machine learning classifiers were used to predict
malware based on similar features. Section 3.2 describes other attempts to cluster large
datasets using hashing techniques.

Chapter 4 presents techniques for analyzing programs and measuring their similar-
ity. Our approach is based on code analysis and the first section outlines the process of
extracting code features from various program formats. Section 4.2 shows how to design
distance functions based on these features. The code features extracted from a program
can be treated as a large sequence of operations and represented as a string or can be
split into smaller sequences and represented as a set. Both approaches can produce viable
distance metrics. Some binary programs may exhibit structural characteristics (like the
division into packages, classes and methods). A distance function that takes such fea-
tures into consideration may provide better results, as shown in section 4.3. Section 4.4
considers the problem of feature selection. We will provide a technique to decide what
code features should be used to discriminate between clean and malware samples and to
get a higher similarity between obfuscated versions of the same program. The features
and distances proposed in this chapter will be tested in section 4.5 that provides the
experimental results.

Chapter 5 uses the distance functions discussed in the previous chapter to perform
cluster analysis on large collections of binary programs. The chapter emphasizes the
difficulty of clustering large collections, as classical algorithms are based on computing
the similarity for each pair of samples. We will propose two approaches for avoiding these
expensive computations. The one in section 5.1 takes advantage of the Suffix Tree data
structure used to compute the deq distance from section 4.2, while section 5.2 shows how to
use Locality-Sensitive Hashing to filter the pairs of samples where distance computations
is required. The experimental results in section 5.3 will show that our algorithms can
cluster 10 million samples in a couple of hours.

Chapter 6 shows how to use clustering in malware analysis. Two techniques for
reducing the amount of human work are proposed in sections 6.1 and 6.2. The first one
selects the most representative samples from a cluster to be further analyzed, while the
second one infers the verdicts (clean or malicious) for new samples based on verdicts
already given on similar ones.

A complete system for detecting plagiarism cases in large collections, like an An-
droid applications market is presented in chapter 7. The system is based on the results
from previous chapters but also deals with practical issues. The chapter takes into account
the attack vectors used for avoiding detection in section 7.1 and avoids flagging applica-
tions developed by the same entity as a plagiarism case. The system’s architecture based
Map-Reduce paradigm is presented in section 7.3, which is followed by the experimental
findings in section 7.4.

The thesis conclusions, along with the main contributions are presented in chap-
ter 8.
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Chapter 2

Concepts and Definitions

2.1 Concepts and Definitions from Anti-malware Research

As stated in the Introduction chapter, malware is a category of software created
with the purpose of violating a system’s security, by harming users, computers or networks.
Anti-malware research deals with the analysis of malicious software in order to understand
how it works and combat future attacks of the same type. This section will provide the
basic terminology and techniques used in this area of research.

2.1.1 Samples fingerprinting through hashing

The main data sources in anti-malware research are collections of files. A file can
be anything, like a binary program, a document, a picture or an archive. Every file has
characteristics and metadata. The characteristic are intrinsic properties like the file size
or the number of pixels for an image. Some other properties like the provenience of the file
or the file name cannot be derived from the file content and we will call them metadata.

Files collections are usually large. For instance, AV-TEST [AT16] collected more
than 500 million malware samples over the years. Similar collections of clean files can be
estimated to have the same order of magnitude.

Whenever a new sample is encountered, the first problem that arises is whether the
sample already exists in a given collection or is a new sample. The naive solution for this
problem would be to compare the content of the new file with the content of each sample
existent in the collection. Such an exhaustive search may determine the appartenance of
a sample to a given collection but is unpractical for large collections. One may argue that
we can stop at the first different byte when comparing two samples, so most of the times
we will stop after a few bytes. In practice, the bytes in the file content are not uniformly
distributed. For instance, self-extracting archives start with the extractor code, having a
large number of common bytes at the beginning.

For efficient comparison, we would need a mapping function that transform arbitrary-
length content into a fixed-size value, uniformly distributed over the values set. Such a
function is called a hash function and is formally defined in Equation 2.1, the concept
dating back from 1953 [Knu98].

h : S → V (2.1)

The set S is an infinite set, consisting of all binary contents, regardless of length. If
Σ = {0, 1, 2, . . . 28− 1} is the alphabet containing all bytes values, S = Σ? can be defined
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as the set of all words built with symbols from Σ. The set of values V , on the other hand,
is a finite set that can be represented on a fixed number of bits. We will say that a hash
is n bits long if |V| = 2n.

Since S is infinite while V is finite, no hash function can be injective. This means
that ∃X, Y ∈ S, such that X 6= Y and h(X) = h(Y ). Such a case is called a collision and
is unavoidable in hashing. However, the collision probability is very low for hashes with
a sufficient number of bits. For example, the MD5 hash [WY05] is 128 bits long and the
probability to find a random collision in a collection of 1010 samples is smaller than 10−18.

If a large collection of samples is indexed by the content hash, samples retrieval
becomes an easy task. Finding the hash value of a sample in a given collection can
determine the appartenance with a very high probability.

The utility of hash functions can be extended in order to detect malicious samples
on a user’s computer. If we compute the hash on a given sample and find it in the malware
hashes collection, we can infer that the found sample is malware. This approach has two
fundamental issues. The first issue is performance. In order to compute a hash value for
a file, the entire file content must be read from the disk. Usually disk access operations
are costlier than other computations so they need to be avoided. A possible approach is
to select only some representative regions of the file for hash computations. Hash values
computed on these regions are called signatures and are widely used in anti-virus products
[SH12]. The second issue is the lack of proactivity for such signature-based detection. If
a new version of the same malware has a single byte changed, the hash value will be
different and the signature will not match. One of the contributions of this thesis is the
extraction of features that are more robust to changes (section 4.1).

2.1.2 Structural analysis of programs

Every sample is represented as raw binary data. Although some useful information
(like file size or strings) can be extracted from such data, most features are extracted by
parsing the sample’s structure.

The first information of interest is the file type. Some tools for identifying the file
format already exist, the most notable being the file command and libmagic library
in Unix environments. These tools have a high accuracy in identifying most known file
formats but they are limited to existing patterns. Also, some files can belong to more
than one format. For example, a self-extracting archive is both an executable file and an
archive. An Android application (APK file format) is also a JAR (Java ARchive) and a
ZIP archive.

In anti-malware research, the most important file formats are those that contain
executable code. Example of such file formats are:

• Microsoft Portable Executables (Windows executable files)

• ELF files (the most common program format on Linux and Unix distributions)

• Android APK files

• script files (Javascript, Visual Basic Script, Python, Perl)

• documents with active content (PDF files with Javascript, Microsoft Office docu-
ments with macros)
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In theory, any data file can have malicious content, as it can contain an exploit
specially crafted to thwart and take control of the executable used to process the data.
Exploits are an important topic in security research but they will not be detailed in this
thesis.

Binary programs usually contain code, data and metadata. Most features used in
this thesis will be extracted from code, but the other two components must be parsed as
well. Metadata will provide high-level information and will help the analysis tool to split
the program into logical parts. A program’s data can provide valuable insights, like the
language of the program’s author, Internet resources that might be accessed at runtime
or encryption keys used in the program’s activity.

2.1.2.1 The Portable Executable file format

Most malware threats are found on the Windows platform, so, the most explored
file format will be the Portable Executable. In [Pie02], Matt Pietrek provides an in-depth
look of this file format.

One of the key ideas of the format is that the file layout on the disk resembles
the memory layout. Every PE file begins with a header that contains most of the file
metadata and is followed by several sections. The section form a logical division of the
program, as each section can contain code, data or resources.

Some differences between the file layout and the memory layout may occur. Some
section may have different sizes on disk than in memory, due to alignment differences
(on disk, the sections are sector-aligned, which is usually 512 bytes and in memory the
sections are page-aligned, which is usually 4096 bytes) or due to uninitialized data (such
data will not be present on disk). To speed-up run-time operations, most addresses in
the PE file format are expressed as Relative Virtual Addresses (RVA), which are memory
addresses relative to the Image Base (the address at which the module will be loaded into
the virtual memory). To transform a RVA into a file address, one needs to verify which
section the address falls into, then subtract the section’s RVA and add the section’s file
address.

Each section is characterized by a name, file address and RVA, file size and memory
size and some characteristics that may hint the section’s contents. Based on these char-
acteristics we can determine if a given section contains code or not. These characteristics
can be modified at run-time, a technique often used by packers to obscure the program’s
code from static analysis.

2.1.3 Disassembling and decompiling

Disassembling is the process that reverses binary code to Assembly instructions.
Decompiling is a similar process, that reverses binary code to original source code.

Given the fact that Intel x86 assembly instructions map one to one to binary code
[Int13], the disassembly process is easy to perform. As for the decompiling, it is usually
impossible to revert a native program to the original source code. This is because the
variable and function names are usually lost and different C syntax constructs can be
translated to the same binary code.

The challenges of code disassembly are presented in [SDA02]. The paper states
that “code disassembly routines form a fundamental component of software systems that
statically analyze or modify executable programs”. Two challenges are identified for Intel
x86 disassembly: indirect jumps and presence of data inside code sections. Such challenges
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will not be present on other platforms like the Common Intermediate Language in the
.NET framework [Int12].

The most used disassembly strategies are:

• linear sweep: decodes each instruction and proceeds to the next one, by adding the
current instruction’s length to the buffer position. The method is straightforward
but will also try to disassemble any data found among the assembly instructions,
rendering inaccurate results.

• recursive traversal: this strategy follows the program flow by considering instructions
like jumps, returns or branches. In case of conditional branches, both alternatives are
taken into account. Indirect jumps (jumps where the destination is only computed
at run-time) may mislead a recursive traversal disassembly tool.

The most popular disassembly tool is IDA pro [Eag11], an interactive disassembler
that uses many heuristics and expert knowledge to deal with the aforementioned issue.
IDA pro users can also decompile the analyzed code using the Hex-Rays Decompiler, a
plugin able to infer many high-level language constructs.

2.1.4 Programs obfuscation and detection resistance

In order to detect and classify malware, we must first understand how malware
authors protect it.

An older but still relevant synthesis work on modern malware belongs to Ször
[SF01]. The paper is dealing with different types of file infectors (also called viruses) but
the employed techniques are used in other malware types, not only at the time of writing
the paper (2001) but even nowadays.

The paper starts by describing the evolution of virus code. In order to avoid detec-
tion, the malware payload (or the malicious logic) was encrypted and a small decryption
stub was used to decrypt it at run-time. Since the decryption key was different each time,
hash-based detection will fail. Indeed, computing a hash on the binary zone where the
malicious code resides and checking the result against a malware database cannot work,
since that zone will be different for every sample. A possible solution is to sign the code
stub that unpacks the payload. This will work if the stub is specific enough so we won’t
have false positives on clean files. Also a necessary condition is that the stub doesn’t
change.

The first attempt to resist this kind of detection was the use of oligomorphic viruses.
A Windows 95 virus called Memorial was able to change its decryption stub during the
infection of new samples. However, he could only generate 96 distinct patterns. Even
if the number is finite and not very large, it is not practical for an anti-virus engine to
use 96 signatures in order to detect a single malware. The malware evolution continued
with polymorphic viruses. They also change the decryption stub dynamically like an
oligomorphic virus but the number of variations is not limited. A solution to detect both
oligomorphic and polymorphic malware is to use code emulators. These emulators can
interpret the decryption stub and execute it in a virtual environment. If the code is
interpreted correctly, at some point the malicious payload will get decrypted.

The next step for malware writers was the metamorphic virus. As [SF01] explains,
“metamorphic viruses do not have a decryptor, or a constant virus body. However, they
are able to create new generations that look different. Metamorphic viruses do not use a
constant data area filled with string constants but have one single code body that carries
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data as code”. This means that the original code of the malware will never be revealed
because the processor runs the modified code directly, as there is no need to unpack it.
The paper presents first some examples of metamorphic engines. It starts with simple
techniques like swapping the instruction’s registers, permuting entire blocks of code or
adding garbage instructions. The most notable piece of malware presented was the Zmist
virus that could disassemble the binary code of a program and insert it’s own instructions
between them in such a way that both the host and the virus would be executed.

Several detection techniques are presented but none of them can be considered the
magic bullet against this type of malware. Geometric detection is based on observing
the structural particularities of the malware file. Unfortunately, such a method can have
a large number of false positives. Disassembling techniques looked more promising but
they can’t detect any type of malware. Some amount of manual work is also required
for deciding which instructions can cause a sample to be malicious. Emulators can also
be used to observe the malicious behavior in an isolated environment. Unfortunately,
nowadays malware comes with a bag of tricks to detect emulators.

The limits of the emulators are further discussed in a more recent paper [PMRB09].
In order to evade detection, malware samples use pieces of code called red pills that behave
differently in an emulated environment than in a real one. This emulators limitation comes
from the fact that the processor and the operating system are quite complex and emulating
them completely would come with a great performance decrease. The paper showed how
these red pills can be generated automatically. More attacks on emulators and virtual
machines were presented in [Fer07]. The conclusion of the author is that in some cases
there is no method to prevent the malware from detecting that it runs in a controlled
environment. Fortunately, as more and more systems run in virtual environments, the
attacker will have to change their tactics or risk not running at all on the victims systems.

The malware authors also try to make their creations resistant to static analysis by
thwarting the disassemblers. The paper [LD03] proposes two disassembly methods called
“linear sweep” and “recursive traversal”. The disassembly process is generally difficult
because the Intel x86 assembly instructions vary in length [Int13]. The linear sweep
approach starts at a given point in the binary code then determines the position of the
next instruction by determining the length of the current disassembled instruction. The
problem with this approach, as stated in [LD03] is that “it is prone to disassembly errors
resulting from the misinterpretation of data that is embedded in the instruction stream”.
The recursive traversal tries to fix this by considering the control flow of the program and
by following the encountered branches. The paper shows several techniques to thwart
both disassembly approaches. The result is that anti-virus scanner might incorrectly
disassembly some programs and fail to detected them.

Because the task of hiding the malicious payload is different from the task of writing
it, some malware authors prefer to do the hiding part by using packers. A packer is a
program (free or commercial) that can be used to shrink the size of an executable, to
hide the program’s code from reverse engineers and sometimes to detect if the program
is run in a controlled environment like an emulator or a virtual machine. We can’t say a
program is malicious just because it’s packed. Many legitimate applications use packers
to protect their intellectual property. An anti-virus program must be able to unpack a
program while scanning it or at least discern between a malware and a clean application
when they are both packed. If they fail to do so, they either can’t detected the packed
malware or cause a large number of false positives. Unfortunately, as the authors of [SH12]
concluded, “there are no good publicly available automated dynamic unpackers. Many
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publicly available tools will do an adequate job on some packers, but none is quite ready
for serious usage”.

2.2 Concepts and Definitions from Machine Learning

2.2.1 Distance functions and similarity computation

The third chapter of [RU12] explores the concept of “Finding similar items”, a
fundamental concept in machine learning and data mining. Several applications like
plagiarism detection, mirror web pages or collaborative filtering are presented.

The basic similarity function is the Jaccard similarity [Jac01], that examines the
intersection and the union of two sets for computing their similarity. Equation 2.2 formally
defines this similarity as the ratio between those measures.

sim(X, Y ) =
|X ∩ Y |
|X ∪ Y |

(2.2)

One problem with Jaccard similarity is that it works on sets and not all real-world
items are represented as sets. A technique called n-grams extraction or shingling can
transform a document into a set. If we are analyzing text documents, an n-gram can be
defined as a sequence of n consecutive letters or a sequence of n consecutive words. With
binary code, we can replace letters or words by assembly instructions or operations.

In order to detect near-duplicates in a collection without performing pairwise com-
parison, “similarity-preserving summaries of sets” can be used. Such a summary can
be obtained by employing locality-sensitive hashing [IM98], a technique that is further
explored in section 5.2.

Other commonly-used distance functions are:

• Euclidean, Manhattan or cosine distance for vector spaces

• edit or Levenshtein distance for strings

• Hamming distance for sets

2.2.2 Cluster analysis

Clustering is the unsupervised learning process of grouping items in clusters based
on a distance function, in such a way that similar items will end up in the same cluster,
while dissimilar items will end up in different clusters.

According to [RU12] there are two main clustering strategies:

• point assignment - for this strategy, some initial estimation of the clusters is per-
formed at first, like starting with some centroids. Then, each point is assigned to
the cluster that it fits best.

• hierarchical or agglomerative clustering - algorithms from this class start by assign-
ing each point to a different cluster then proceed by combining smaller clusters into
bigger ones, based on similarity.

The most popular clustering approach that fits into the first category is k-means
[M+67]. The standard algorithm was published by Lloyd [Llo82]. Unfortunately, the
algorithm requires an input parameter k that is hard to estimate for some collections.
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Hierarchical clustering, also called linkage, seems more appropriate for grouping
together binary programs that are similar to each other. The first element required for
performing this kind of clustering is a metric distance that computes how dissimilar two
items are. Any metric distance discussed in the previous subsection can be used with
hierarchical clustering algorithms.

The linkage criteria defines the strategy of joining together two existing clusters in
order to form a bigger one. Based on this criteria, the hierarchical clustering can also be
divided into several strategies:

• complete linkage - in this case, the distance between two clusters will be defined
as the maximum distance between an element belonging to the first cluster and an
element belonging to the second cluster. Two clusters will be joined if their distance
is smaller than a given threshold. In other words, we will only join two clusters
if the resulting cluster will have each pair of elements similar to each other. The
complete linkage idea was firstly introduced in [Sør48]. The naive algorithm has
O(n3) complexity but an O(n2) algorithm was given by Defays in [Def77].

• single linkage - two clusters will also be joined based on their distance, but the
distance definition is different. Instead of computing the maximum distance between
elements of the two cluster, we will consider the minimum distance. This definition
favors clusters joining more than the complete linkage case, usually producing a
smaller number of larger clusters. The single linkage algorithm was introduced by
Sibson in [Sib73] and has O(n2) complexity. The author proved that the algorithm
is optimal, so we cannot achieve a better performance (in asymptotic terms) and
guarantee to obtain the same results. One drawback of this approach is the chaining
effect. If an item A is similar to an item B and item B is similar to an item C, A
and C are not necessarily similar but will still end up in the same cluster. This may
lead to heterogeneous clusters.

• average linkage - same as above, the criteria for joining two clusters is based on their
distance. In this case, the distance is defined as the average distance between every
pair of samples where one item belongs to the first cluster and the other item to
the second cluster. The method was introduced in [Sok58] and an O(n2) algorithm
based on UPGMA trees was given in [Mur84].

Other clustering approaches like distribution-based clustering and density-based
clustering also exist. Malware collections are difficult to model as distribution-based
clusters especially because they are not a natural phenomenon. They are artificially
created by humans with the explicit purpose of being as different as possible from each
other in order to avoid anti-virus detection. Density-based clustering shows promising
algorithms like DBSCAN [EKSX96] and a more recent version called OPTICS [ABKS99],
but they haven’t been tried yet for clustering binary programs or malware samples.

2.2.3 Classification

Classification is the supervised machine learning process that learns classification
rules based on labeled training data and uses such rules to make predictions on unlabeled
data. Usually, classifiers learn two classes that we will call positive and negative. Such a
classifier can be extended to learn any number of classes, by training a separate classifier
to predict whether a sample belongs to a specific class or not.

Some popular classifiers are:
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• Naive Bayes classifiers [FS97] are probabilistic classifiers based on the assumptions
that all features are independent.

• Decision Trees [Qui86] are tree-like predictive models where internal nodes represent
decisions based on features and the leaves are class labels. One advantage of Decision
Tree Learning is that it builds a white box model that is easy to understand and
interpret by humans.

• Support-Vector Machines [BGV92] classify data by building a hyperplane that sepa-
rates positive instances from negative ones. The hyperplane is chosen in such a way
to minimize the separation margin (the distance from the closest data point to the
hyperplane). When linear separation is not possible, the features can be mapped
into higher dimensions using kernel functions [STC04].

• Artificial Neural Networks [MP43] use a model inspired by biological neural networks
where interconnected neurons exchange messages between each other. A neural
network can be trained using algorithms like backpropagation [RHW88].

Even poor classifiers are useful. Boosting techniques can combine classifier with
accuracy slightly better than random into a powerful and highly accurate classifier. An
example of such a boosting algorithm is AdaBoost [FS97].

2.2.4 Quality evaluation

Machine learning algorithms should be cross-validated on independent data sets in
order to asses their quality. Usually, the data samples are partitioned into training set
and validation set (also known as testing set). The algorithm is trained on the first set
and validated on the second one.

In case of classifiers, we are interested whether the correct class was predicted or
not, for each sample. In case of clustering algorithms, each pair of items can belong to
the same cluster or not. We will use each pair as a validation sample. Since clustering
belongs to non-supervised machine learning, we don’t need labeled data for training so
the entire dataset can be used for validation.

For each sample in the validation set, we will assign one of the labels from the
confusion matrix [KP98], as in Table 2.1.

Table 2.1: Confusion matrix

Predicted

Similar Dissimilar

Actual
Similar TP FN

Dissimilar FP TN

Based on the relation between the prediction and the actual label, each sample will
be counted into one of the following four categories:

• True Positive (TP ) - Both predicted and actual value are positive. For clustering,
both tested algorithm and expert methods placed the pair of samples into the same
cluster.
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• False Positive (FP ) - The algorithm predicted a positive result but expert classifi-
cation decided otherwise.

• True Negative (FN) - The actual result is positive but the algorithm failed to predict
that. In case of clustering, the two items should belong to the same cluster but were
placed in different ones.

• False Negative (TN) - Both predicted and actual value are negative.

Several quality metrics can be derived from the number of samples with each label:

• Accuracy - is the fraction of correctly classified samples.

ACC =
TP + TN

TP + FP + FN + TN
(2.3)

This metric can be biased by the large number of True Negative instances, especially
for assessing clusters quality. For instance, a clustering algorithm that places every
item into a different cluster will have a high Accuracy. For the reason, this metric
is not used too often.

• Precision - is the fraction of retrieved instances that are relevant.

P =
TP

TP + FP
(2.4)

• Recall - is the fraction of relevant instances that are retrieved.

R =
TP

TP + FN
(2.5)

• F-Measure [Rij79] - is a measure of a test’s accuracy. It considers both the Precision
P and the Recall R of the test to compute the score. The F-Measure can be
interpreted as a weighted average of the precision and recall, and it reaches its
best value at 1 and the worst at 0. A constant β ≥ 0 can be used to balance the
contribution of false negatives.

Fβ =
(β2 + 1) · P ·R
β2 · P +R

(2.6)

The usual value chosen for the constant β is 1, as Precision and Recall are equally
important.

In order to illustrate how the Precision and Recall vary with the similarity thresh-
old, in some cases we will analyze the receiver operating characteristic (ROC) [Faw06].
The threshold will be varied from 0% to 100%, using some increment. At each step, we
computed the number of True Positives (TP ), False Positives (FP ) and False Negatives
(FN).

The true positive rate is identical to the Recall index previously discussed and can

be computed as
TP

TP + FN
. The false positive rate can be calculated as 1 - Precision, or

FP

FP + TP
.
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A ROC curve basically plots the dependency between the two indices. Each point
on the curve corresponds to the false positive rate and true positive rate for a given
threshold. A perfect classifier would pass through the point (0, 1) - that corresponds to
100% true positives and 0% false positives. A random guess would result in a point along
a diagonal line (called line of no discrimination) from the left bottom to the top right
corners. A good classifier should be above this line.
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Chapter 3

State of the Art

3.1 Identifying Similar Content

The issue of comparing binary files for finding similar but non-identical items have
been previously studied.

A tool called sif was presented in [M+94] and was able to find similar files in a
large file system. It was one of the first attempts to apply fingerprinting techniques in
order to find matches in a large collection. The authors considered two files to be similar
if “they contain a significant number of common substrings that are not too small”. The
technique proposed by the author was to extract several fingerprints from each file. A
fingerprint was defined as a hash on a substring. In order to avoid extracting a very large
number of fingerprints, only the ones containing certain “anchors” were considered.

The advantage of this approach is that most of the fingerprints of a file will remain
the same, even if some random characters are inserted or deleted. If substrings starting
from certain positions would have been considered for fingerprints, a simple insertion at
the beginning of the file would change all of them.

The method presented in [M+94] will work on many file formats because it does not
consider the semantics of the file while extracting fingerprints. Unfortunately, this will
be a weakness for identifying similar programs, because simple modifications may change
the operands of most instructions, leaving only small common substrings. The approach
in this thesis is more robust because it disassembles the binary code and only considers
the operations performed, which are less likely to change.

Heintze, in [H+96] approached the scalability problem. The presented solution only
takes into account a fixed number of fingerprints, in order to preserve storage space. The
paper states that the total number of substrings of length α from a document of length l is
l−α+1, which is too many for efficient storage. Although both storage capacity and speed
have increased in the last 20 year, the paper still gives some interesting approaches for
selecting a small number of relevant fingerprints. The substrings frequency is considered,
as frequent fingerprints will lead to a large number of false positives. The substring were
selected based on the frequency of the first 5 letters. Substrings with the lowest frequency
for these 5-letter groups will lead to a smaller number of false alarms.

Plagiarism detection has been approached in other works as well. Any kind of data
can be plagiarized, including documents, multimedia files or programs (both at source
code level or at binary level). We are not interested in verbatim copies, as they are easy
to spot by hashing an entire collection of documents and comparing the documents with
the same hash. Near-identical copies, where the plagiarizer makes some modifications are
harder to detect. Most approaches relied on the concept of n-grams. An n-gram can be
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considered as a group of n consecutive items from a sequence.

3.1.1 Source code plagiarism detection

The ideas behind Moss, a publicly available solution, are presented in [SWA03].
The system is designed for plagiarism detection in programming assignments. The authors
also host a web server where users can upload a collection of source codes and receive a
similarity report. Moss also includes a visualization component that shows similar regions
in the source code.

The fingerprinting technique used in Moss is called Winnowing and is based on
n-grams (called k-grams in the paper). The authors argue against a popular technique,
of selecting only the n-grams that are divisible by a number p as a fingerprint. Although
this technique reduces the number of fingerprints to 1

p
, there may be large gaps between

two selected n-grams. The proposed Winnowing techniques ensures that at least one n-
gram is selected from every window of w consecutive n-grams. This property is ensured
by selecting the minimum value from each window of w n-grams. In case more than one
n-gram with the minimum value is encountered, the rightmost value is selected.

In this thesis we also use n-grams for fingerprinting but instead of working directly
on the source code, we use binary code. The compiler will perform the basic normalization
on the analyzed code, like eliminating variable and function names or rewriting slightly
different functions. These normalizations will make the fingerprints more robust and
ensure a higher detection rate.

3.1.2 Mobile applications plagiarism

Mobile applications plagiarism detection is also an interesting research topic, as we
identified several recent papers dealing with this subject.

In [PNNRZ12], the focus was on cases where the attacker added malicious code to
existing applications. The authors showed that 29.4% applications from a collection of
158000 are more likely to be plagiarized because they already have the permissions that
an attacker needs. For deciding if two programs are similar or not, three schemes were
proposed: Symbol-Coverage, AST-Distance and AST-Coverage. The first one relies on the
symbol names extracted from the application and works only if no form of obfuscation
has been involved. The other two schemes are based on Abstract Syntax Trees, a model
that considers for each method only the number of arguments and the other invoked
methods. Based on these trees, feature vectors can be built for the entire application
or at method-level. AST-Distance finds plagiarism cases in a collection by comparing
the feature vector extracted from a given application with the feature vectors of the
other applications in the collection, while AST-Coverage matches the method-level feature
vectors of two applications and searches for the maximum coverage. All these schemes
work by comparing a given application with all the others in the collection. The tested
collection was small, containing only 7600 samples.

The authors in [CGC12] attempted to eliminate the pairwise similarity computa-
tions by clustering the applications in the first phase. The clustering is performed based
on the application’s attributes. Only the applications situated in the same cluster will
then be pairwise verified for plagiarism by comparing the Program Dependence Graphs
[FOW87]. The graphs are compared in two phases. The first phase tries to filter out
the pairs that are too different while the second one performs the more costly operation
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of finding subgraph isomorphisms. The paper also addresses the problem of eliminat-
ing the library code and the author identification so that two programs belonging to the
same author won’t be flagged as plagiarism. The framework was tested on a collection of
75000 free Android applications and managed to check for plagiarism an average of 0.71
application pairs per minute.

Juxtapp is another system proposed by [HHW+13] that detects vulnerable code
reuse, malicious samples and piracy (plagiarism) cases. This system uses OpCode n-
grams like ours but doesn’t split the code into methods. Since the number of n-grams
extracted from an application is quite large, a feature hash is produced, represented as a
bit vector. Two such bit vectors can be compared using the Jaccard distance. Finding
all cases of similar applications is still a quadratic problem, as each pair must be checked.
The system was tested on a collection of 58000 applications from the Android official
market and from the Anzhi third party market.

The three systems above employ various methods for detecting if two applications
are similar but are working on small samples collections (less than 100000). The focus of
our system is scalability, as it manages to deal with a collection bigger than one million
samples, while still correctly identifying plagiarism cases. Also, the work described in this
thesis presents some practical considerations when dealing with the applications ecosys-
tem. One such consideration is that in many Android applications, the quantity of library
code exceeds the quantity of application-specific code, making library code identification
a top priority.

3.1.3 Training classifiers for malware detection

The authors of [SMF+12a] used features extracted from programs code in order to
build classifiers that discriminate between clean and malicious samples.

The paper compares bytes n-grams with OpCode n-grams. The first type of fea-
tures is obtained by extracting n-grams directly from the binary file, without further
processing. The OpCode n-grams are based on disassembled instructions and take into
consideration only the operation, not the operands. The second approach is proven to be
more robust because the instructions are less likely to change.

The test collection contained more than 30000 files, for which 8 different classifiers
were trained. The classifiers achieved a True Positives Rate above 95% and a False Positive
Rate below 10%. The imbalance problem was also discussed, because in real-life scenarios
the number of malicious files is smaller than the number of clean samples.

Machine learning algorithms such as Hidden Markov Models and linear classifiers
were also used in [CBG14] for detecting JavaScript malware. This kind of malicious scripts
are responsible for spreading further binary executables and relay on heavy obfuscation.
By examining a large dataset of malicious scripts, the machine learning algorithms found
new patterns for detecting this type of malware.

A comparative study between various machine learning techniques for malware
classification was presented in [VCGL15]. The study used real-world data, comprising of
2 million clean files and 200,000 infected files, that is considered “a realistic quantitative
mixture”. The first issue identified was the rate of false positives. If a benign file is wrongly
labeled as malicious, the file will be blocked or even deleted by anti-virus engines, leading
to data losses or work disruption.

The techniques employed included One Side Class learning (training a classifier that
will correctly classify all the records from one class), various classifiers like perceptrons or
decision trees and ensemble techniques. The experimental results showed that the best
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classifier can achieve a detection rate of 76.46%, while maintaining the false positive ratio
around 0.5% and the training time below 7 hours.

3.2 Cluster Analysis on Massive Collections

Clustering large collections is a problem well studied in the literature as it has
been noticed that classical algorithms like SLINK [Sib73] render poor performance on
big datasets. Since SLINK has been proved to compute single linkage in optimal time
and is still quadratic, improvements that achieved higher performance lost some of the
algorithm’s accuracy. In malware analysis, avoiding pairwise distance computations be-
tween millions or even billions of samples may worth misplacing a few samples in different
clusters.

3.2.1 Clustering through hashing techniques

Identical samples can be identified through classical hashes, as stated in subsection
2.1.1. Unfortunately, near-identical or similar samples will not have the same hash value
if we are using regular hashes.

A simple hash function that would output the same value for similar items and
different values for dissimilar ones is impossible to design in Euclidean spaces. Let h be

such a hash function and two samples A and B, such that d(A,B) =
3

2
θ, where θ is the

distance threshold. Since the distance between A and B is greater than the threshold, they
should have different hash values. In any Euclidean space, there exists a point C situated

at half the distance between A and B. This means that d(A,C) = d(B,C) =
3

4
θ < θ.

The last equation implies that h(A) = h(C) and h(B) = h(C), which contradicts the fact
that A and B have different hash values.

The clustering problem has been approached by using several hash functions, each
of them having a high probability of outputting the same value for similar items.

The first approach that involved MinHash functions was done by Broder in [Bro97]
who used the terms resemblance and containment in order to describe relationships be-
tween documents. The resemblance, expressed as a Jaccard similarity between two sets
was shown to be related with the concept of MinHashes. The author also realized that for
a good estimation for the similarity, several MinHash values are required. However, the
approach in [Bro97] was slightly different than ours: instead of considering the minimum
values according to different permutations, the author considered the smallest s elements
in the set (s was a fixed parameter).

A generalized approach called locality-sensitive hashing was introduced by Indyk
and Motwani [IM98] and was used to retrieve similar items from a large collection. The
novel idea was to put together several independent hash functions, each of them being more
likely to give the same value for similar items than for dissimilar ones. Combining these
functions properly will lead to similar items identification with a very high probability.

Koga addressed the problem of clustering in [KIW07], by employing the technique
of locality-sensitive hashing. He showed that the complexity of the clustering algorithm
can drop from O(n2) in the case of SLINK algorithm [Sib73] to O(nB), where B is “the
maximum number of points going into a single hash entry”. The author argues that
the value B is much smaller compared to the number of samples n. Still, depending on
the dataset this value can be large enough to cause performance issue. Our proposed
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algorithm will try to address this issue by further dividing the points going into the same
hash entry, if their set is too big.

Previous attempts to optimize locality-sensitive hashing were also done. In 2012,
Slaney [SLH12] presented a method for selecting the optimal parameters for the locality-
sensitive hashing, in order to improve the speed of search and also maintain a good recall
rate. The author’s approach was based on the data distribution. By sampling the dataset
and inferring a probability distribution for the distance between samples, Slaney managed
to build a model that selects the best parameters.

3.3 Chapter Conclusions

The continuous research for identifying binary similarity and for performing cluster
analysis shows that static analysis is a domain of interest in malware research, plagiarism
detection and information retrieval. The existing solutions contain interesting ideas that
provide some of the basis for the research in this thesis. However, some solutions were
only tested on small datasets and lack the ability to scale, while other solutions are not
adapted to deal with the obfuscation employed by malware authors.

Some early approaches attempted a general solution for finding near-duplicates.
The research in this thesis focuses on binary programs and proposes solutions for specific
files formats but can easily be extended to cover any other formats. By taking into account
the particularities of binary programs, the quality of the results improves. Source code
plagiarism detection can benefit from the methods we propose for dealing with binary
programs. The fingerprinting techniques from the state of the art detection systems will
not completely overcome the syntax differences in plagiarized coding assignments. Some
advanced techniques for comparing Android applications were also proposed in the recent
years but the presented systems worked on collections of 100,000 samples or less. This
thesis proposes a system that dealt with more than 1,000,000 applications.

The literature review also found some interesting techniques for clustering large
collections, based on hashing techniques. Some general guidelines for employing these
technique are given. This thesis completes the guidelines by proposing formal solutions
to select the optimal parameters for fast clustering algorithms.
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Chapter 4

Measuring Software Similarity

4.1 Code Analysis for Features Extraction

A program’s essence resides in it’s code. Most programs are distributed in binary
format, as the source code is usually unavailable. This section describes the process of an-
alyzing binary programs in order to build an abstract model of their code. Such abstract
models will be used in later sections from this chapter to compute software similarity.
There are also programming languages that don’t get compiled (usually scripting lan-
guages like JavaScript, VBScript or Python). Although this section doesn’t show how
to extract abstract models from these type of programs, some models extracted by other
works like [VGB12] can also be used as features for the software similarity task.

4.1.1 Extracting native code from Windows programs

Microsoft Windows uses the Portable Executable file format [Pie02] for binary
programs, most of them running on the Intel x86 [Int13] platform.

The main parts of a Windows portable executable are the headers and the sections.
The headers contains informations about the file, including the characteristics for each
section. For code extraction, we are only interested in the sections marked by the compiler
as code containers. The header format also contains the offset and the size of each section
in file. These executable sections will then be treated as raw code buffers.

Having the raw code buffers, the next step is to disassemble them in order to obtain
the sequence of OpCodes. The code buffers can also contain data or invalid instructions,
besides the binary code, but the good news is that the Intel x86 instruction set has the
property of self-repairing disassembly [LD03]. This property ensures that even if some
invalid instructions occur in the disassembly flow, the flow will “eventually re-synchronize
with the actual instruction stream”.

The actual disassembly process consists in decoding the instruction at the current
position in the buffer, extract any necessary information from it, then advance to the
next instruction. Intel x86 instructions have a variable length, so the only way to advance
to the next instruction is to decode the current instruction and determine it’s length.
The diStorm3 library [Dab13] offers support for this task, as it offers a structured-output
interface that outputs each disassembled instruction as a structure, instead of a textual
representation.

The instructions from Intel x86 architecture [Int13] can contain up to four prefixes,
an operation code (OpCode), a ModR/M field, a SIB (Scale, Index, Base) field, a dis-
placement and an immediate constant (some of the components are not present in all the
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instructions).

We considered the most important part of the instruction to be the OpCode, that
defines the operation performed by the instruction. This OpCode can tell if we are dealing
with a MOV, a PUSH or an ADD instruction, for example.

In order to obtained the desired OpCode sequence, we will proceed as in Algo-
rithm 1.

Algorithm 1 extract-opcode-sequence(S)

Require: A binary code buffer buf
Ensure: A sequence of OpCodes S

1: pos← 0
2: S ← ””
3: while pos < |buf | do
4: crtInstr ← decode-instruction(buf, pos)
5: if is-valid-instruction(crtInstr) then
6: S ← S + crtInstr.opCode
7: pos← pos+ crtInstr.length
8: else
9: pos← pos+ 1
10: end if
11: end while
12: return S

The current position is initialized at the beginning of the buffer. While it doesn’t
exceed the buffer length, we attempt to decode the instruction that begins at that position.
If the current instruction is valid, we will add it’s OpCode to the sequence S. The current
position then advances with the instruction’s length, since Intel x86 instructions have a
variable length. If there’s an invalid instruction, we simply advance to the next byte.

For practical reasons, some of these OpCodes should be ignored. For instance, an
obfuscation tool can add NOP instructions in a given code buffer, to obtain a different ver-
sion of it. NOP instructions can also be added by compilers for alignment purposes. Other
instruction like MOV or PUSH are too common (according to [Bil07], these two instructions
together form more than 40% of the code). Some other OpCodes, although different,
should be treated as they were equal. For example, conditional jumps like JZ (jump if
zero) and JNZ (jump if not zero) are easy to interchange.

To formalize things, we will introduce a function tf , that transforms OpCodes into
other symbols to work with. We will denote by O, the set of all possible OpCodes found
in x86 instructions. The transform function tf defined in Equation 4.1 transforms a given
OpCode into a symbol from the set Σ or into the empty symbol ε.

tf : O → Σ ∪ {ε} (4.1)

The statements made above, about certain OpCodes can be expressed as constrains
on the function tf :
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tf(NOP) = ε

tf(MOV) = ε

tf(PUSH) = ε

tf(JZ) = tf(JNZ)

We will define as Σ?, the set of all strings with elements from Σ. In the code
analysis process, we will work with strings from Σ?, instead of strings from O?.

4.1.2 Working with source code

Although source code is generally unavailable, there are some tasks that require
source code analysis. One such task may be checking students homework for plagiarism.
In order to apply the same analysis techniques, we need to set a common ground between
source code and binary code. Since it is easier to compile sources files and obtain binary
executables, than decompiling the former back into source code, we have chosen the binary
executables as a common format.

For mass compiling several programs from source code, the command-line version
of the Visual C++ compiler [Cor13] was used to produce Windows portable executables
[Pie02]. We wanted the following principles to be enforced in the compilation process:

• The sources should be compiled on release mode. An executable compiled on debug
mode contains a lot of debugging information embedded, that is not relevant for our
goal.

• There should be no compiler optimizations. If the compiler was allowed to perform
optimizations, a piece of code written differently by two students might end up in
the same form.

• No library code should be included in the result. The external libraries used (like
msvcrt, that contains the printf function) should be linked dynamically. Although
we will show how to ignore the library code while computing similarities, it is better
to start without it.

To follow the principles above while compiling, we will use the following command
line arguments for cl.exe:

cl.exe /EHsc /Od /MD source.cpp

The /Od switch tells the compiler to disable optimizations, while /MD “causes the
application to use multithread- and DLL-specific version of the run-time library”. This
means that external libraries won’t be included in the compiled binary, only “a layer of
code that allows the linker to resolve external references”.

After obtaining the binary executable format from the source code, we can treat it
in the same way as the regular binaries. One may argue that some students can submit
uncompilable source code in order to defeat such a plagiarism checking system. To prevent
this, an instructor should not accept source code that doesn’t compile.
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4.1.3 Extracting CIL code from .NET binaries

Since the release of Windows Vista, the .NET framework is installed by default on
any computer that runs this operating system [Wan06] or later versions (Windows 7, 8).
The .NET framework will also run on Windows Phone [Bra12]. This opened a gate to
malware creators, as they are now able to create new, portable malware in an easier way.
For this reason, we have decided to focus on .NET malware.

.NET programs are Portable Executables [Pie02], having a file format similar to
other Windows programs. Instead of x86 assembly, Common Intermediate Language
(CIL) is used. The complete Common Language Infrastructure (CLI) of .NET programs
is described in [Int12]. The document shows how “applications written in multiple high-
level languages can be executed in different system environments without the need to
rewrite those applications to take into consideration the unique characteristics of those
environments”.

More precisely, CLI “provides a specification for executable code and the execution
environment”. The executable code is divided into methods that consist of variable length
CIL instructions, just like native code that runs on x86 processors. However, CIL instruc-
tions are different from the native code. For instance, they do not use registers, they work
with the stack. [Int12] divides the CIL instructions in two categories: base instructions
and object model instructions.

Most of the instructions from the first category have equivalents in x86 native
instructions. We have the following subcategories:

• instructions that move data around: Since CLI works with the stack, these instruc-
tions are somehow limited. Examples of such instructions are ldc that loads a
constant on the stack, pop that removes the top of the stack or ldarg that loads
the specified argument on the stack.

• arithmetic and logic instructions: add, div, or, and, xor, . . .. These instructions
are very similar to the x86 equivalents, except that they read their arguments from
the stack instead of registers and store the result on the stack. The comparation
instructions will also be classified here. Instead of instructions that set the flags (cmp
and test in x86), we have different instructions for different kinds of comparisons.
Some examples are: ceq - compare equal, cgt - compare greater than. The result
of the comparison (0 or 1) will be pushed on the stack.

• instructions that modify the control flow: such instructions are method calls (call),
method jumps (jmp - just like calls, but they never return) or branches. A branch
is an instruction that may transfer the control to another instruction from the same
method, different from the instruction that follows. The address of the target in-
struction is computed by adding the branch’s argument to the address of the in-
struction that follows the current one. These branches are unconditional (br) or
conditional (ble - branch less or equal, blt - branch less than, brtrue - branch
when true). A CIL branch is equivalent to a relative jump from the x86 instruction
set.

Some of these instructions have multiple versions, depending on the argument type.
If the instruction name is suffixed by an .s, we have the small version, meaning that the
instruction’s operand has only one byte instead of four (for example, the offset for a branch
can fit in a single byte). The .un suffix specifies that the operand must be regarded as an
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unsigned number. The two suffixes can be combined. Note that the suffixes appear only
in the instruction’s name. Binary, they are encoded as two different operations.

Object model instructions are special instructions that deal with the object oriented
part of the CLI. Examples of such instructions are newobj that creates new object or throw
that throws an exception.

If we look at the binary encoding, an instruction can start with a prefix and has
an OpCode (Operation Code) and 0 or more operands. The OpCode is the portion of a
CIL instruction that specifies the operation that must be performed. A CIL instruction
also contains the instruction’s operands, but they will be disregarded, as they are very
easy to modify.

In order to get access to the code buffers, we need to parse the .NET structures,
as detailed in [Pis08]. The first relevant information about these structures are found
in the .NET Directory, a data directory from the Portable Executable format [Pie02],
that replaces the old COM Directory. This directory contains an IMAGE_COR20_HEADER

structure, also known as the CLI header.
This structure contains several sections, but we will focus here only on the Metadata

Section. Here, there are usually 5 streams:

• #Strings - An array of ASCII strings. The strings in this stream are referenced by
Metadata Tables.

• #US - Array of unicode strings. The name stands for User Strings, and these strings
are referenced directly by code instructions (ldstr).

• #Blob - Contains data referenced by Metadata Tables.

• #GUID - Contains 128 bits long unique identifiers. Also referenced in Metadata
Tables.

• #∼ - The most important stream. It contains the Metadata Tables.

The Metadata Tables (or the #∼) stream contains a set of variable-length tables,
found in Table 4.1, from [Pis08].

The table that we need for extracting the code buffers is the 6th one, the MethodDef
table. There, each row represents a method in a specific class. Among others, the row
contains the Relative Virtual Address, where the method’s code is located inside the file.
Since the tables above have a variable length, it is necessary to parse them in order to
reach the required table.

After reaching the MethodDef table, we are able to disassemble the methods code.
The instruction set is detailed in [Int12]. Each instruction has an OpCode represented
on 1 or 2 bytes (in the second case, the first byte is always 0xFE for the current version
of CLI). After the OpCode, CIL instructions ”can be followed by zero or more operand
bytes” [Int12].

In Figure 4.1, we have a listing of some CIL (Common Intermediate Language)
code disassembly. On each line we have one instruction with the following information:

• position in file, specified as RVA (Relative Virtual Address)

• instruction’s bytes, between square brackets

• operation’s name
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Table 4.1: The Metadata tables [Pis08]

00 - Module 01 - TypeRef

02 - TypeDef 04 - Field

06 - MethodDef 08 - Param

09 - InterfaceImpl 10 - MemberRef

11 - Constant 12 - CustomAttribute

13 - FieldMarshal 14 - DeclSecurity

15 - ClassLayout 16 - FieldLayout

17 - StandAloneSig 18 - EventMap

20 - Event 21 - PropertyMap

23 - Property 24 - MethodSemantics

25 - MethodImpl 26 - ModuleRef

27 - TypeSpec 28 - ImplMap

29 - FieldRVA 32 - Assembly

33 - AssemblyProcessor 34 - AssemblyOS

35 - AssemblyRef 36 - AssemblyRefProcessor

37 - AssemblyRefOS 38 - File

39 - ExportedType 40 - ManifestResource

41 - NestedClass 42 - GenericParam

44 - GenericParamConstraint

• optionally, one or more operands

The first instruction in the listing is a nop instruction. It starts at the address
0x254C and has a single byte: 0x00. The second instruction is a call, that starts at the
address 0x254D and occupies 5 bytes. The first byte (0x28) represents the OpCode for the
call instruction, while the remaining 4 bytes form the instruction’s operand 0x0A00000E

(the value is written in little endian). For each instruction we can determine the number
of bytes from the OpCode (with one exception - switch, that has a variable size).

Many malware authors apply obfuscation techniques to the code, such that it be-
haves identically, but the sequence of operation is changed. We would like to perform such
a transformation to the code buffers, that several versions of the same method, obtained
through obfuscation will be as similar as possible.

To do this, we will perform two steps: the first one is to eliminate the unreachable
code, and the second one is to normalize the OpCodes.

4.1.3.1 Eliminating the Unreachable Code

Some code obfuscation tools will add random instruction to the existent code, in
such a way that they will never be reached. For example, they can split the instruction
sequence, add an unconditional branch instruction and also some garbage bytes after it.
Provided that all the code references are fixed, the garbage bytes will never be reached.

We may consider the sequence of instructions: i1, i2, i3, i4, i5. An obfuscation
tool may transform it into i1, i2, b, g1, g2, g3, g4, i3, i4, i5, where g1, g2, g3, g4 are
random garbage instructions, while b is an unconditional branch instruction that tells
the interpreter to skip the length of the garbage code. For example, if each garbage
instruction is one byte length, b might be br.s 4. br.s (branch small) is an unconditional
branch instruction (equivalent to the x86 jmp instruction), that tells the interpreter to
jump over the number of bytes specified in the 1-byte argument.

In order to design an algorithm that eliminates the unreachable code, we must take
into account all the possible modifications of the instruction flow:
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=== Method 4: name=’mpress._::Main’; RVA=0x0000254C;

FA=0x0000074C; size=0x9A ===

= Exception handlers: 000025D6; =

0000254C: [00] nop

0000254D: [28 0E 00 00 0A] call 0x0A00000E

00002552: [12 00] ldloca.s 0x00

00002554: [28 03 00 00 06] call 0x06000003

00002559: [13 06] stloc.s 0x06

0000255B: [11 06] ldloc.s 0x06

0000255D: [2D 16] brtrue.s 0x16

0000255F: [00] nop

00002560: [72 01 00 00 70] ldstr 0x70000001

00002565: [72 23 00 00 70] ldstr 0x70000023

0000256A: [28 0F 00 00 0A] call 0x0A00000F

0000256F: [26] pop

00002570: [15] ldc.i4.m1

00002571: [13 05] stloc.s 0x05

00002573: [2B 6E] br.s 0x6E

00002575: [00] nop

00002576: [06] ldloc.0

00002577: [28 10 00 00 0A] call 0x0A000010

0000257C: [80 01 00 00 04] stsfld 0x04000001

00002581: [7E 01 00 00 04] ldsfld 0x04000001

00002586: [6F 11 00 00 0A] callvirt 0x0A000011

0000258B: [0B] stloc.1

0000258C: [14] ldnull

0000258D: [0D] stloc.3

0000258E: [07] ldloc.1

0000258F: [6F 12 00 00 0A] callvirt 0x0A000012

00002594: [8E] ldlen

Figure 4.1: Example of code disassembly

• returning instructions (call, callvirt, . . .): although these instructions modify
the flow by calling another method, the flow will return to the next instruction after
the called method returns. We can treat these instructions as regular instructions,
that do not modify the flow.

• unconditional branches (br, br.s): these instruction will always add a (positive or
negative) value to the instruction pointer. If the argument is 0, they are equivalent
to the nop instruction.

• conditional branches (brtrue, brfalse, breq.s, . . .): the instruction flow might
continue normally, or it might be altered. Since we cannot determine statically if
the branch condition is met or not, both alternatives must be considered. This means
that we will mark as reachable both the code that follows after these instructions
and also the code that would be reached by adding the argument to the instruction
pointer.

• flow disruptive instructions (jmp, ret, throw, . . .): the jmp instruction is similar
to call (it calls jumps to the specified method) but it doesn’t return the control
flow to the next instruction. ret and throw will also disrupt the instruction flow
by ending the current method or by jumping to an exception treating block. The
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code following these instructions will not be marked as reachable, unless referenced
by other reachable instruction.

The proposed Algorithm 2 will receive a code buffer (codeBuf) and will return
another buffer (reach) of the same size. The returned buffer will contain only 0 and 1
values, for each byte. A value of 1 on the position i in the reach buffer means that the
instruction on the corresponding position in codeBuf can be reached by the instruction
flow. A value of 0 means that the corresponding instruction is unreachable.

Algorithm 2 mark-reach-code(codeBuf, excList)

Require: A buffer codeBuf containing a method’s code.
Require: A list of starting positions for the exception handlers excList.
Ensure: A buffer reach where all the reachable bytes are set.

1: for i = 0→| codeBuf | −1 do
2: reach[i]← 0
3: end for
4: Q← {}
5: enqueue(Q, 0)
6: for i = 1→| excList | do
7: enqueue(Q, excList[i])
8: end for
9: while | Q |> 0 do
10: ip← dequeue(Q)
11: while ip <| codeBuf | and reach[ip] = 0 do
12: len← get-instr-length(codeBuf, ip)
13: for i = 0→ len do
14: reach[ip+ i]← 1
15: end for
16: type← get-op-type(codeBuf, ip)
17: if type = BRANCH UNCOND then
18: distance← get-op-arg(codeBuf, ip)
19: ip← ip+ len+ distance
20: else if type = BRANCH COND then
21: distance← get-op-arg(codeBuf, ip)
22: enqueue(Q, ip+ len+ distance)
23: ip← ip+ len
24: else if type = INSTR DISRUPT then
25: break
26: else
27: ip← ip+ len
28: end if
29: end while
30: end while
31: return reach

This algorithm parses the code, instruction by instruction and marks all parsed
instructions as reachable. When a conditional branch is reached (as stated above, both
alternatives must be taken into account), one path is taken and the other one is enqueued.
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The current parsing will stop either when the end of the buffer or some already parsed
code is reached, either when a flow-disruptive instruction is encountered. Then, if the
working queue is not empty, a new address is dequeued and the instructions starting
there will be processed. The initial queue contains the entry point of the method and the
addresses of the exception handlers. These exception handlers are portions of a method’s
code that are invoked when various exceptions occur. Although the normal instructions
flow might not reach them, they must be marked as reachable code, because we can’t
determine statically if an exception will occur or not.

Lines 1-3 will initialize the reach buffer with zeros (we start with no reachable
instructions), while lines 5-8 will enqueue all the possible starting points for code (the
method’s entry point and the exception handlers). From each starting point in the queue,
the code will be parsed sequentially and marked as reachable (lines 13-15), until some
already marked code or the end of the buffer is reached. When an unconditional branch
is reached (lines 17-19), the argument of the command is added to the instruction pointer
(ip). If the branch is conditional (lines 20-23), the parsing continues with the next in-
struction, and the possible target is enqueued. A flow disruptive instruction will stop the
current parsing and will continue with the next element from the queue.

The function get-op-type (get operation type) receives a code buffer and a posi-
tion inside it and returns the type of the instruction at the given position. The function
get-op-arg (get operation argument) receives similar parameters and returns the value
of the first argument of the instruction. In case of branch instructions, the branch distance
is returned, that is relative to the following instruction.

The running time for mark-reach-code, on a buffer codeBuf of length n is O(n),
because in the worst case scenario, every instruction is reached, and every instruction is
processed at most once. Considering the average length for an instruction to be the

constant c ≥ 1, the number of parsed instructions will be
n

c
, and each instruction will

be parsed in O(1) so the final complexity will be O(n). The algorithm will always finish
because each branch instruction will be reached as most once, so it will get the chance to
enqueue a value at most once.

4.1.3.2 OpCodes Normalization

After marking the reachable code, all we have to do is extract the OpCodes from
every reachable instruction. Instead of extracting the raw OpCodes, we will perform some
transformations, similar to the one applied to Intel x86 instructions.

A tf function similar to the one in Equation 4.1 will be defined for CIL instructions.
In this case, O is the set of all CIL instructions. Some constraints enforced on the tf
function will be:

tf(br 0) = tf(nop) = ε

tf(brtrue) = tf(brtrue.s) = tf(brfalse)

The various scenarios that start from a binary program or a source code and obtain
strings from the Σ alphabet are depicted in Figure 4.2.
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Figure 4.2: The workflow for transforming a binary or source file into a sequence of
symbols

4.2 Distance Metrics and Similarity: Set or String Semantics?

In this section we will describe several techniques for computing the distance be-
tween binary programs, in order to decide if two programs are similar or not. We will
propose several distance metrics, that we will compare with common metrics from the
literature. We are interested in two aspects: how well does a certain distance can express
the similarity between two programs and how fast can we compute it.

4.2.1 Distance and similarity definition

In the previous section, we showed how to get an abstract model of a binary program
as a sequence of operations represented by a string from Σ?. In this sections, we will treat
Σ? as a metric space, by defining distance functions between such strings.

A distance function on Σ? can be defined as in Equation 4.2: a function taking as
inputs two strings from Σ? and outputting a non-negative real number.

d : Σ? × Σ? → [0,∞) (4.2)

Such a function is considered a metric, if it follows the following properties:

1. non-negativity: d(X, Y ) ≥ 0,∀X, Y ∈ Σ?.

2. identity of indiscernibles: d(X, Y ) = 0 ⇐⇒ X = Y .

3. symmetry: d(X, Y ) = d(Y,X),∀X, Y ∈ Σ?.

4. triangle inequality: d(X, Y ) + d(Y, Z) ≥ d(Z,X),∀X, Y, Z ∈ Σ?.

The distance between two programs gives a measure of dissimilarity between them.
The second metric property assures that the distance between two programs is 0 if and
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only if they are identical. However, the numeric value of the distance can only be used to
tell if a pair of items is more similar than another pair. Indeed, if the distance between X
and Y is 2 and the distance between X and Z is 10, we know that Y resembles X more
than Z does, but it is hard to tell if none, only Y or both Y and Z have a significant part
of the code common with X. In order to make such statements, we will employ similarity
functions, which also use two elements from Σ? as inputs, but output a value in the [0, 1]
interval (Equation 4.3).

sim : Σ? × Σ? → [0, 1] (4.3)

The advantage of similarity functions is that we can use them to express distances
in a manner that is easier to understand by humans. A sentence like “X is 70% similar
to Y ” is easier to comprehend than “the distance between X and Y is 14.3”. A value of 1
(or 100%) means perfect similarity, while a value of 0 means no similarity at all.

If the distance defined in Equation 4.2 takes values only in a finite interval [0,MAX],
then a distance functions can easily be converted into a similarity function:

sim(X, Y ) =
MAX − d(X, Y )

MAX

In the particular case where MAX = 1 (e.g. the Jaccard distance takes values
between 0 and 1), we have sim(X, Y ) = 1− d(X, Y ).

4.2.2 Proposed metrics based on string semantics

4.2.2.1 Descriptional Entropy

The first similarity function will be based on the concept of Descriptional Entropy
from [PG12].

In order to explain this concept, we will first need to recall Shannon’s definition of
entropy from [SW48]:

Let Σ be an alphabet, and let S be a string from Σ?. For each s ∈ Σ, pS(s) will be
the computed probability that a random symbol from S is s.

The entropy of the string S is:

E(S) = −
∑
s∈Σ

pS(s) · log pS(s) (4.4)

Unfortunately, the entropy, by itself, is not able to differentiate two strings very
well. By the definition above, the entropy of ”aaabbb” and ”ababab” is the same, even if
they appear quite dissimilar.

The authors in [PG12] introduced a new concept of entropy, called the Descriptional
Entropy. It is defined as above, but instead of considering each symbol from S, each
substring is considered, with it’s probability to appear in S. If for each unique substring
we associate an index i from 1 to N , and a probability of appearance pi, the Descriptional
Entropy is defined as follows:

DE(S) = −
N∑
i=1

pi · log pi (4.5)

Below, we have some examples of strings, with their Descriptional Entropy.
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• For S = ”aaabbb”, DE(S) = 2.59861.

• For S = ”ababab”, DE(S) = 2.30963.

• For S = ”abbaab”, DE(S) = 2.66462.

We can observe that DE(S) varies with the string’s complexity.
While computing Descriptional Entropy on the code buffers, we will make a small

modification to the method described in [PG12]. The substring sizes will be limited to a
constant DE_SS_SIZE that has been chosen empirically. This approach has two advantages.
First, the method will be faster as it only has to deal with smaller substrings. Secondly,
if some code portions are permuted, the computed value will remain the same, as most of
the substrings will not change.

With this Descriptional entropy, we can now compute the similarity of two files,
with buffers S1 and S2, with the following formula:

DEsim(S1, S2) = 1− | DE(S1)−DE(S2) |
max(DE(S1), DE(S2))

(4.6)

DEsim(S1, S2) will be very close to 1 when DE(S1) is close to DE(S2) and will
decrease to a minimum value of 0, when they are too dissimilar.

By computing the Descriptional Entropy, after we have extracted the sequence of
symbols, we have manage to project an entire file on a single dimension. Although we
cannot expect surprising results by representing a file as a single real number, we have
included this method, to see how well it performs. In some cases, it can be used for
pre-filtering similarity candidates in order to decide if it worths applying a more precise
but costly similarity function.

4.2.2.2 Normalized Compression Distance

The concept of Normalized Compression Distance is related to the Kolmogorov
complexity [Kol68].

In algorithmic information theory, the Kolmogorov complexity of an object is a
measure of the computational resources needed to specify the object. Unfortunately, the
Kolmogorov complexity of a buffer is not computable, so we will approximate it.

Let us consider a buffer S, that we need to compress. Various compression algo-
rithms will output various compressions, but the output length will depend every time on
the buffer’s complexity.

Usually, if we concatenate a buffer with itself, the compression length of the new
buffer will be very close to the compression length of the original one. Also, if buffer S1

is very similar to buffer S2, the compression length of the concatenation of these buffers
will be close to the compression length of S1.

Based on these observations, we will define the following metric, between two buffers
S1 and S2:

NCDsim(S1, S2) = 1− CL(S1 || S2)−min(CL(S1), CL(S2))

max(CL(S1), CL(S2))
(4.7)

where || is the concatenation operator and CL is the Compression Length function,
that computes the length of the compressed buffer, given an input buffer.
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For the Compression Length we have used the compress function from the zlib
library [Adl13]. This library provides in-memory compression and decompression func-
tions, including integrity checks of the uncompressed data. The compression is fast, and
it is easy to integrate in the project.

4.2.2.3 The deq distance

Visually, we can consider two sequences of operations to be similar if we manage to
align them in such a way that the correspondence between identical blocks of code can be
seen. Such an alignment can be performed by computing the longest common subsequence
between the two strings. A distance based on this approach already exists and it is called
longest subsequence distance [NW70, Nav01]. Unfortunately, the best known algorithm
for computing this distance is quadratic.

The deq distance that we will propose in this subsection uses the longest common
substring instead of the longest common subsequence. Empirically, this means that we
will consider two pieces of code to be similar if they share a large chunk of consecutive
instructions. The advantage here is that the longest common substring can be computed
in linear time. The two distances will also be tested with a clustering algorithm, in order
to see if they produce similar results.

In what follows, a group of consecutive symbols from a given string will be called
a substring. If the symbols are not necessarily consecutive (but they are still in the same
order as in the original string) we have a subsequence.

The deq distance is a special case of edit distance, meaning that it measures the
number of operation required to transform a given string into another. Levenshtein dis-
tance [Lev66] is the most common type of edit distance and it allows the following oper-
ations to be performed on a string:

• insertion: a character can be inserted anywhere in the given string

• deletion: any character from the given string can be deleted

• replacement : any character from the given string can be replaced by another char-
acter

The longest subsequence distance [NW70, Nav01] allows only the insertion and dele-
tion operations. Other distances introduce the transposition (swapping of two characters)
as an operation.

Let Σ be a set of symbols or characters. Such a set will be called an alphabet.
The closure of the set Σ, denoted by Σ? is the set of all strings that can be obtained
by concatenating symbols from Σ. The string distances will be defined on this set, as
functions that receive two points from Σ? and output a positive real number.

The longest subsequence distance is formally defined through the concept of longest
common subsequence: the longest sequence of (not necessarily consecutive) characters
that appear in two strings (LCS : Σ?×Σ? → Σ?). Given the LCS function, this distance
is defined in Equation 4.8.

lsd : Σ? × Σ? → [0,∞)

lsd(S1, S2) = |S1|+ |S2| − 2|LCS(S1, S2)|
(4.8)

The algorithm for determining this distance (which is basically reduced to com-
puting LCS) is based on dynamic programming [Nav01] and has a time complexity of
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O(m1 ×m2), where m1 and m2 are the lengths of the two strings, or O(m2), if m is the
average string length.

Our proposed deq distance allows only insertions and deletions at the beginning
or at the end of the string (like in a double-ended queue). This differs from the previous
distance, where insertions and deletions could be performed anywhere. To transform a
string S1 into S2, one would delete characters from the beginning and from the end of
S1, until a substring S ′ remains, that is also a substring for S2. From this point, new
characters are inserted at the beginning and at the end of S ′, in order to obtain S2. The
smallest number of operations is performed if S ′ is the longest common substring between
S1 and S2. The longest common substring is defined in a similar manner to the longest
common subsequence, but we add the restriction that the characters are consecutive in
the two strings.

We will denote the function that computes the longest common substring as lcs (not
to be confused with LCS - the function that computes the longest common subsequence).

Now we can define the deq distance in the following way:

d : Σ? × Σ? → [0,∞)

d(S1, S2) = |S1|+ |S2| − 2|lcs(S1, S2)|
(4.9)

Theorem 1. The deq distance d is a metric on Σ?.

Proof. Given two strings S and T , we will denote by S ⊆ T the fact that S is a substring
of T .

To prove that d is a metric, we have to prove that the metric properties hold:

1. non-negativity: d(S1, S2) ≥ 0.

Since lcs(S1, S2) ⊆ S1 and lcs(S1, S2) ⊆ S2, we have that:

|lcs(S1, S2)| ≤ |S1|
|lcs(S1, S2)| ≤ |S2|

By summing the inequations above, we get:

2|lcs(S1, S2)| ≤ |S1|+ |S2|
⇒ 0 ≤ |S1|+ |S2| − 2|lcs(S1, S2)|

⇒ 0 ≤ d(S1, S2)

2. identity of indiscernibles :
d(S1, S2) = 0 ⇐⇒ S1 = S2.

If S1 = S2 = S, then lcs(S1, S2) = S.

⇒ d(S1, S2) = |S1|+ |S2| − 2|lcs(S1, S2)|
= |S|+ |S| − 2|S|
= 0

If d(S1, S2) = 0, then |S1| + |S2| = 2|lcs(S1, S2)|. Since |lcs(S1, S2)| ≤ |S1| and
|lcs(S1, S2)| ≤ |S2|, in order to have equality, we have |lcs(S1, S2)| = |S1| = |S2|.
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From |lcs(S1, S2)| = |S1| and lcs(S1, S2) ⊆ S1, we obtain S1 = lcs(S1, S2). Similarly,
S2 = lcs(S1, S2), so S1 = S2.

3. symmetry : d(S1, S2) = d(S2, S1).

Because lcs(S1, S2) = lcs(S2, S1),

|S1|+ |S2| − 2|lcs(S1, S2)| =
|S2|+ |S1| − 2|lcs(S2, S1)|

⇒ d(S1, S2) = d(S2, S1).

4. triangle inequality :
d(S1, S2) + d(S2, S3) ≥ d(S1, S3).

The inequality above can be expanded to:

|S1|+ |S2| − 2|lcs(S1, S2)|+
|S2|+ |S3| − 2|lcs(S2, S3)| ≥
|S1|+ |S3| − 2|lcs(S1, S3)|

After reducing the terms, we obtain:

|S2|+ |lcs(S1, S3)| ≥ |lcs(S1, S2)|+ |lcs(S2, S3)| (4.10)

Since lcs(S1, S2) ⊆ S2 and lcs(S2, S3) ⊆ S2, we will consider the three cases in Figure
4.3, depending on their relative position. In fact there are six cases but lcs(S1, S2)
and lcs(S2, S3) can be swapped without loss of generality.

A B C D E

lcs(S1, S2)

lcs(S2, S3)

S2

(a) Non-overalapping case

A B C D E

lcs(S1, S2)

lcs(S2, S3)

S2

(b) Inclusion case

A B C D E

lcs(S1, S2)

lcs(S2, S3)

S2

(c) Overlapping case

Figure 4.3: Composition of the string S2

In all the cases, the string S2 can be written as a concatenation of 5 substrings:
S2 = ABCDE, so |S2| = |A| + |B| + |C| + |D| + |E|. Any of those strings can be
empty.
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If the two common substrings don’t overlap (Figure 4.3a), we have lcs(S1, S2) = B
and lcs(S2, S3) = D. Since |S2| ≥ |B|+ |D|, we also have that |S2|+ |lcs(S1, S2)| ≥
|B|+ |D| and we obtain the inequality (4.10).

In the other two cases, the two common substrings overlap. In Figure 4.3b,
lcs(S1, S2) = BCD and lcs(S2, S3) = C so
|lcs(S1, S2)|+ |lcs(S2, S3)| = |B|+ 2|C|+ |D|. In Figure 4.3c, lcs(S1, S2) = BC and
lcs(S2, S3) = CD so we also have |lcs(S1, S2)|+ |lcs(S2, S3)| = |B|+ 2|C|+ |D|. In
both cases C ⊆ lcs(S1, S2) so C ⊆ S1 and C ⊆ lcs(S2, S3) so C ⊆ S3. This means
that the longest common substring of S1 and S3 must be at least as long as C. The
inequality (4.10) can be obtained as follows:

|S2|+ |lcs(S1, S3)|
≥ |S2|+ |C|
≥ |B|+ |C|+ |D|+ |C|
= |B|+ 2|C|+ |D|
= |lcs(S1, S2)|+ |lcs(S2, S3)|

The deq similarity The longest common substring and the deq distance can give a
valid measure of how similar are two strings. However, the numbers alone are not enough
to compare two pairs of strings, in order to see which pair has a higher similarity. For
instance, if we have a pair of strings of length 20 whose distance is 15, we can say it has
a higher similarity than a pair of strings of length 100 whose distance is 20, despite the
fact that the first pair has a smaller distance between the strings. Instead, we will use
a similarity measure that is related to the distance but outputs values only in the [0, 1]
interval. When the similarity between two strings is 0, it means that they have nothing
in common, while a similarity of 1 denotes a perfect match.

We will define the deq similarity as 1 minus the ratio between the deq distance and
the sum of the string lengths, as in Equation 4.11:

s : Σ? × Σ? → [0, 1]

s(S1, S2) = 1− d(S1, S2)

|S1|+ |S2|
=

2|lcs(S1, S2)|
|S1|+ |S2|

(4.11)

Indeed, d being a metric, d(S1, S2) = 0 ⇐⇒ S1 = S2, so the similarity is 1 (or
100%) iff the two strings are identical. s(S1, S2) can be 0 only if the two strings have no
common characters, but takes values close to 0 for very dissimilar strings.

Computing the distance The deq distance, as defined in Equation 4.9 and the deq
similarity from Equation 4.11 are both based on the longest common substring problem.

One method to solve it is to use dynamic programming [ZCM07], obtaining the
complexity O(m1 ·m2) (m1 and m2 are the lengths of the given strings). A faster approach
is based on the Suffix Tree data structure that was introduced by Winer in 1973 [Wei73].
The Suffix Tree construction was optimized in 1995 by Ukkonen [Ukk95], that managed
to compute a Suffix Tree for a string of length m in O(m) time and a Generalized Suffix
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Tree from n strings of lengths m1,m2, . . . ,mn in O(m1 +m2 + . . .+mn) time complexity
(or O(m · n), if we consider m to be the average string length). Ukkonen’s original paper
and a more detailed description in [Gus97] proved that the space complexity is the same.

A Generalized Suffix Tree is a compressed trie data structure, containing all the
suffixes of the given strings. Each node corresponds to a substring and has references to
the original strings that contain it. In order to compute the longest common substring
between two strings, one has to find the deepest node that has references to both strings.

For two strings of length m1 and m2, since both the construction and the traversal
of the Generalized Suffix Tree for finding the deepest node are linear, we can say that the
deq distance can be computed in linear time (O(m1 +m2)) while the best known algorithm
for the longest subsequence distance is quadratic (O(m1 ·m2)).

4.2.3 Proposed metrics based on set semantics

4.2.3.1 Common n-grams

At the beginning of this chapter we showed how to transform a binary program into
a sequence of symbols from an alphabet of operations. Some techniques for computing
the similarity based on string semantics were presented in the previous subsection. In the
following, we will provide a method for transforming strings into sets and working with
set semantics.

The basic idea is to transform sequences into n-grams. The n-grams of a sequence
S are all the sub-sequences of n consecutive elements from S.

We will exemplify on the sequence s1, s2, s3, s4, s5, s6. For n = 4, the 4-grams of
this sequence are (s1, s2, s3, s4), (s2, s3, s4, s5) and (s3, s4, s5, s6).

We will define G, the set of all possible n-grams, and P(G), the set of all subsets
of G. If the number of OpCodes symbols is |Σ|, then the cardinality of G is the number
of distinct sequences of length n with elements from Σ. This number is |Σ|n.

We will define ng : Σ? → P(G) as the function that computes the set of n-grams
extracted from a sequence of symbols from Σ?.

As an n-gram has a variable-length representation (depending on n), in the imple-
mentation we have computed a hash function (CRC32) on each. If |Σ|n � 232 (the CRC32
hash takes values from 0 to 232 − 1) another hash function should be chosen, otherwise
hash collisions will decrease the quality of the solution.

The measure of similarity between two sequences S1 and S2 will be proportional
with the number of common n-grams. If the two buffers are very similar, they will have
many common n-grams. If they represent different programs, they will have zero or few
common n-grams.

Formally, we will define this similarity measure by the following formula:

CNsim(S1, S2) =
|ng(S1) ∩ ng(S2)|

max(|ng(S1)|, |ng(S2)|)
(4.12)

where the function | • | computes the size of set.

The problem with this approach is that there might be some library code, that is
common to some of the programs. For the plagiarism detection example, the students
might share some code given by the instructor. If the proportion of library / legally shared
code does not exceed the proportion of normal code, the similarity function should work
well. Unfortunately, we can’t rely on this assumption.
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4.2.3.2 Weighted common n-grams

To improve the metric above by addressing the issue of legally shared code, we will
make some small modifications in similarity function.

So far, we have considered that each n-gram has an equal importance. However, if
an n-gram is common to a large number of programs, the corresponding piece of code is
legally shared. By contrary, if an n-gram is only common to two or three program, and
others don’t contain it, it might be an indication that they share a pretty specific piece
of code.

Following the idea above, we will compute the number of appearances for every n-
gram in the given sequences of symbols. If an n-gram appears several times in a sequence
it will only be counted once. Based on the number of appearances, a weight will be
computed for each n-gram. This weight must be high for rare n-grams, that appear in
just a few sequences and should decrease as the number of n-grams increases. For n-grams
where the number of appearances is over some threshold, the weight should be very low,
as they probably belong to legally shared code. For the similarity metric, instead of using
the sizes of the sets as in Equation 4.12, we will sum on the weights of the n-grams in
those sets.

In the definitions that follow, we will consider that we have N sequences of symbols
S1, S2, . . . SN ∈ Σ?. The goal is to re-design the function from Equation 4.12 such that it
takes into account the weights of the n-grams found in the N sequences.

The number of appearances for an n-gram g ∈ G can also be defined as a function
f : G → N, as in Equation 4.13.

f(g) = |{i ∈ N | 1 ≤ i ≤ N ∧ g ∈ ng(Si)}| (4.13)

Having the f function defined, we are able to compute the weight of an n-gram
with the function w : G → R, as in Equation 4.14.

w(g) =
1

1 + e
1
4
·(f(g)−θ)

(4.14)

A plot that describes the evolution of this function (for θ = 5, θ = 10 and θ = 20)
is presented in Figure 4.4. On the x axis we have the number of appearances of a given
n-gram and on on the y axis we have it’s weight. The constant θ influences the threshold
for legally shared code and can be a parameter given by the user. We can observe that
the weight of an n-gram is a real number that takes values between 0 and 1 and decreases
exponentially for a large number of appearances.

Knowing the weight of each n-gram, a new similarity metric will be derived in
Equation 4.15, similar to Equation 4.12 but also taking the weights into account.

WCNsim(S1, S2) =

∑
g∈ng(S1)∩ng(S2)

w(g)

max(
∑

g∈ng(S1)

w(g),
∑

g∈ng(S2)

w(g))
(4.15)

To highlight the connection between Equation 4.12 and Equation 4.15, we notice
that CSSim is just a particular case of WCNsim, where w(g) = 1, ∀g ∈ G. However,
by using the definition of w from Equation 4.14 instead, we obtained better results, as we
will see in the experimental section.
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Figure 4.4: The weight function w plotted against the number of appearances f(g)

4.3 Proposed Techniques for Dealing with Structured Code

Some compilers, especially those that produce native code do not maintain the
structure of the source code, making it harder to separate the binary code into functions
or classes. On the other hand, Java compilers [JSGB00], including the one for Android
produces binary code that can easily be separated into packages, classes and methods,
giving it a hierarchical structure.

The similarity measure presented in this section will take advantage of this property
in order to provide more accurate results.

4.3.1 Hierarchical code features extraction

This subsection describes how relevant features can be extracted from an Android
binary program, even if it’s compiled and we don’t have access to the source code.

According to [For14], an Android application package (called APK ) is a zip archive
that contains the application’s code, resources and manifest. The entire application binary
code is stored in a single file inside the archive, called classes.dex. This file is obtained
after the Java code is compiled to bytecode, then converted to Dalvik Executable (dex )
format.

Reverse engineering tools like baksmali [Gru15] are able to extract the classes.dex
file from an APK, rebuild the classes and packages and disassemble the bytecode into
an assembly-like format called smali. Figure 4.5 shows the structure of the classes.dex
file extracted from an android application using the baksmali tool. The gray rectangles
with rounded corners correspond to Java packages and will be extracted as a hierarchy of
folders. Each package can contain other packages or Java classes, represented as simple
rectangles and extracted as .smali files. Each such file corresponds to a Java class but
instead of Java code, they contain assembly-like instructions. The content of .smali files
is also divided into methods.

Following an approach similar to the previous section, each smali instruction is
associated with a distinct symbol. A sequence of n consecutive instructions from a method
will be called an n-gram. Internally, each method will be represented as a set of n-grams
instead of a sequence of instructions. The main distinction from the previous approach

47



com.some.application

a

a

b

...

android

...

com

simple

simpleDld

ap.smali

onClick

SearchActivity.smali

download

onCreate

onPause

onResume

search
...

Figure 4.5: classes.dex structure as extracted by baksmali

is that for Android applications we have enough information to give the application a
hierarchical structure, while in the previous works the entire application was represented
as a single set of n-grams.

For formalism, we will make the following notations:

Let G be the set of all possible n-grams that can be extracted from an application
code. Since a method is a set of n-grams, we will define the set of methods asM = P(G)
(the set of subsets of G). Similarly, a class can be defined as a set of methods, and a
package as a family containing classes and other packages. We will not allow a package to
contain itself, directly or indirectly. The family of method containers, formed by classes
and packages will be denoted by C = C1 ∪ C2 (elements from C1 are classes and elements
from C2 are packages). An application can be abstracted as a simple package that contain
the top-level packets.

4.3.2 Similarity functions description

The basic similarity that we need to compute is the similarity between two methods.
Since methods are represented as sets, the most natural similarity function is the Jaccard
similarity [Jac01], that is 0 for disjoint sets and computes the ratio between the size of
the sets intersection and the size of the sets union, as in Equation 4.16.

msim :M×M→ [0, 1]

msim(M1,M2) =

 0, if M1 ∩M2 = ∅
|M1 ∩M2|
|M1 ∪M2|

, otherwise

(4.16)

The Jaccard similarity has some important advantages in our scenario: first of
all, the similarity function will always take values between 0 and 1, with 0 only for
methods represented by disjoint sets of n-grams and 1 only for identical sets. Another
advantage is that the Jaccard distance, defined as dJ : M×M → [0, 1], dJ(M1,M2) =
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1 − msim(M1,M2) is a proper metric and can be used in various clustering algorithms
[RU12].

The Jaccard distance may be sufficient for non-hierarchical code features, as each
application can be represented as a large set of n-grams. However, for computing the
similarity between hierarchical structures, a further step is required. Whether we are
computing the similarity between two classes or between two applications, a new similarity
function between sets of sets is required, as in Equation 4.17.

sim : P(M)× P(M)→ [0, 1] (4.17)

Considering two sets of methods, C1, C2 ∈ P(M), C1 = {m11,m12, . . . ,m1k}, C2 =
{m21,m22, . . . ,m2p}, their similarity should be estimated by the number of methods they
have in common:

• if C1 = C2 (the two sets are comprised exactly of the same methods), then sim(C1, C2) =
1;

• if the similarity between any method from C1 and any method from C2 is very small
(msim(m1i,m2j) < ε, ∀1 ≤ i ≤ k, 1 ≤ j ≤ p), then the similarity between C1 and
C2 should be 0 or close to 0;

• if some methods from C1 match totally or partially methods from C2, the similarity
function should reflect the match percentage.

We can start by associating each pair (m1,m2) ∈ C1 × C2 with a weight corre-
sponding to their similarity, w(m1,m2) = msim(m1,m2). At this point, we can find a
matching between the two sets of methods by solving the maximum weighted bipartite
matching problem (also called the assignment problem). Several polynomial algorithms
exist for this task, the most notable one being the Hungarian algorithm [Kuh55].

In Figure 4.6, we represented two such methods sets, C1 containing 5 methods
and C2 containing 4 methods. Methods with a high similarity are connected with lines
(dashed or contiguous). The Hungarian algorithm can find a match between the two sets
(the contiguous lines), such that each method from C1 matches at most a method from C2

and each method from C2 matches at most a method from C1 and the sum of the weights
of the matches is maximal.

In what follows, we will consider that the Hungarian algorithm takes as input two
sets C1, C2 ∈ P(M) and outputs a set of paired items bm(C1, C2). The bm : P(M) ×
P(M)→ P(M×M) has the following properties:

• ∀(xi, yi), (xj, yj) ∈ bm(C1, C2), xi 6= xj and yi 6= yj. This property will ensure that
no method belongs to more than one match.

• |bm(C1, C2)| = min(|C1|, |C2|). In other words, every item from the smallest set will
be matched with an item from the largest set. If the sets have different cardinality,
some items from the largest set will remained unmatched.

•
∑

(x,y)∈bm(C1,C2)

msim(x, y) is maximal. Since every element of the sum is at most 1

and the number of elements is the smallest between C1 and C2, it follows that this
sum is smaller than the size of any of the two sets.
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Figure 4.6: Bipartite match between two sets of methods

In the Jaccard similarity formula, we can apply the inclusion-exclusion principle
and obtain:

simJ(X, Y ) =
|X ∩ Y |
|X ∪ Y |

=
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
The contents of the bipartite match can be seen as an approximate intersection

between the sets C1 and C2. To devise the new similarity function, we will replace the
intersection cardinality in the equation above with a function that depends on the output
of the bm function:

sim(X, Y ) =
MatchScore(bm(X, Y ))

|X|+ |Y | −MatchScore(bm(X, Y ))
(4.18)

MatchScore(match), where match = bm(X, Y ) should be equal to |X ∩ Y | when
the weights in the bipartite match are 1 (the matched methods are identical) and should
take lower values otherwise. There are two models for computing this function:

• thresholded match: for each pair in the bipartite match, add 1 if the pair has a high
similarity and 0 if the pair has a low similarity:

MatchScore(match) =

|{(x, y) ∈ match | msim(x, y) ≥ θ}| (4.19)

• contiguous match: add every similarity from the best bipartite matching:

MatchScore(match) =
∑

(x,y)∈match

msim(x, y) (4.20)

4.3.3 Hierarchical similarity algorithm

Algorithm 3 computes the similarity between two method containers (classes or
packages). As mentioned in section 4.3.1, applications are also abstracted as packages so
the algorithm will successfully compute the similarity between two applications.
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Algorithm 3 hierarchical-similarity(X, Y )

Require: Two method containers X, Y ∈ C
X = {x1, x2, . . . xk}, Y = {y1, y2, . . . yp}

Ensure: the similarity between X and Y

1: if (X ∈ C1 and Y ∈ C2) or (X ∈ C2 and Y ∈ C1) then
2: return 0
3: else if X ∈ C1 and Y ∈ C1 then
4: for i = 1→ |X|, j = 1→ |Y | do
5: w(i, j)← msim(xi, yj)
6: end for
7: else
8: for i = 1→ |X|, j = 1→ |Y | do
9: w(i, j)← hierarchical-similarity(xi, yj)
10: end for
11: end if
12: match← compute-bipartite-match(w)

13: return
MatchScore(match)

|X|+ |Y | −MatchScore(match)

The algorithm begins by examining the type of the received containers. If the two
containers are of different natures (a class and a package) they can’t be compared, so their
similarity is 0 (line 2).

If X and Y have the same type, we will build a weight matrix with the pairwise
similarity between all the elements of X and Y . If X and Y are classes, their elements
are methods. In this case we will use the msim function described in the previous section
to compute their similarity (line 5). If they are packages, it means that their elements are
also method containers, so we need to make a recursive call to hierarchical-similarity
in order to compute their similarity (line 9).

Having the weights matrix, we can compute the maximum weighted bipartite
matching (line 12) and use it in the similarity function (line 13). The MatchScore func-
tion can follow any of the two strategies presented in the previous section (thresholded
match and contiguous match).

To compute the complexity for Algorithm 3, we will consider the size of the input
as the number of methods the received application or package has. We may consider
that the two inputs have roughly the same number of methods. Since we have a divide
and conquer algorithm, we can use the master theorem [CLR+01], that computes the
complexity for recursions having the form from Equation 4.21.

T (n) = aT
(n
b

)
+ f(n) (4.21)

In our case, b is the number of classes or sub-packages a package have (for simplicity,
we consider it to be constant, b = |X| = |Y |). The recursive call in line 9 is done for every
pair of items in the two sets, so a = |X| · |Y | = b2 times.

Finally, after the recursive calls, the Hungarian algorithm is called on the weights
matrix, but the complexity of this algorithm will be O(b3), which doesn’t depend on n.
It follows that f(n) = O(1) = O(n0).

To apply the master theorem, we need to compute logb a and compare it with c,
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where f(n) = O(nc). From the previous paragraph, we have that c = 0. logb a = logb b
2 =

2.
Since 0 < 2 ⇒ c < logb a and we are in the first case of the master theorem. In

this case, the algorithm’s complexity is O(nlogb a). We conclude that the complexity for
Algorithm 3 is O(n2), where n is the average number of methods an application or package
has.

As a note, the master theorem stands if b > 1. The case b = 1 corresponds to
the situation where all the application code is in a single class (unlikely but possible). In
this case, The algorithm’s complexity will be given by the complexity of the Hungarian
algorithm and will be O(n3).

4.4 Automatic Features Selection

In the first section of this chapter we have shown how a sequence of symbols can
be extracted from a binary program. Although, at this point we can perform malware
detection and clustering based on the list of symbols found, we will go one step further.
In this section we will show how to select a subset of these symbols in such a way that
the abstract representation of the code keeps its specificity and also loses some of the
alterations performed through obfuscation.

As shown before, we will denote by O the set of all instructions. O? will be then
the set of all the finite strings with elements from O. An element of O? can be a function
or a method (a list of instructions).

Similar to the tf function defined above, we can define TF : O? → Σ?, a function
that transforms a method (a string of instructions) into a finite string of symbols from Σ.
We will call such an operation normalization.

TF (i1i2 . . . im) = tf(ik1)tf(ik2) . . . tf(ikp) (4.22)

ik1ik2 . . . ikp is a subsequence of i1i2 . . . im that contains all the reachable instruc-
tions.

The length of the normalized method might not be the same as the length of the
original, because some instructions might be skipped because they cannot be reached
while others might be normalized into the empty symbol ε, which does not alter a string
through concatenation.

For Λ ⊆ Σ, a subset of the symbols set, we will define a function tfΛ : O → Λ∪{ε}
in the following way:

tfΛ(i) =

{
tf(i) , if tf(i) ∈ Λ

ε , otherwise
(4.23)

This function will transform an instruction into its corresponding symbol if that
symbol belongs to Λ, otherwise the instruction will be transformed into the empty symbol
ε.

TFΛ will have a formula similar to Equation 4.22, with tf replaced by tfΛ.
The next step is to design a fitness function, f : P(Σ) → R, where P(Σ) contains

all the subsets of the symbols set Σ. For a subset Λ ⊆ Σ, f(Λ) will tell us how good is
the choice of symbols from Λ.

Having this fitness function, we will search for the best choice of Λ (arg max
Λ

f).

The size of the search space in this case will be the number of subsets of Σ, | P(Σ) |= 2|Σ|.
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This search space is too big for an exhaustive search, so we will try a Genetic Algorithm
and Particle Swarm Optimization for finding a good solution in a reasonable amount of
time.

4.4.1 The Fitness Function

This subsection will help us evaluate how good is a choice of the symbols subset Λ.
A good choice would allow us to find common features to similar methods, features that
are unique to those methods. Our choice of features is the n-grams.

n-grams are groups of consecutive OpCodes or in our case symbols from Λ, of
length n. From every normalized method we will extract all the n-grams. If l1l2 . . . lp is a
normalized method, with lk ∈ Λ, ∀k ∈ {1, 2, . . . p} and p ≥ n, the n-grams are l1l2 . . . ln,
l2l3 . . . ln+1, . . ., lp−n+1lp−n+2 . . . lp.

Some of the n-grams that appear in a method may correspond to library code or
may be too general. For this reason, we cannot say that two methods are similar just
because they have several n-grams in common. The common n-grams must also not
belong to other methods.

We have built a training cleanset of 55230 .NET samples from which we extracted
558695 different methods. We have also created 272 clusters from 1769 different methods.
In each cluster we should have similar methods.

The clusters were obtained by two methods:

• By manually selecting similar malware samples. We selected groups of samples from
the same malware family and performed reverse engineering on them. Methods that
did the same things but didn’t have the same code (not even the same sequence of
OpCodes) were grouped in the same cluster.

• By using obfuscation tools on existing samples, other than the ones from the cleanset.

A good choice for Λ would allow us to find common n-grams for the clusters that are not
present in the methods from the cleanset.

One issue that comes to mind is the choice for the value of n. If n is too small,
most of the possible n-grams will already be in the cleanset. For example, if n = 2, every
combination of 2 symbols might be in the cleanset, so all the common n-grams in the
clusters will be invalid. If n is too big, the cleanset will be less filled but it will get harder
to find common n-grams. We will deal with this problem by trying all the values of n
from a certain range, that was determined experimentally.

The extraction of n-grams from a method is detailed in Algorithm 4. It first
performs a filtering of the received method by extracting only the symbols present in Λ
(lines 2-7). From the filtered methods, all the substrings of length n are extracted and
appended to the nGrams set (lines 8-10). The append-char method used at line 5 will
append the character specified as the second parameter to the string specified as the first
parameter.

Using the extract-ngrams method, we can finally compute the fitness function,
in Algorithm 5. This algorithm will compute the fitness of a subset Λ ⊆ Σ, given a
cleanset and some clusters.

For each n in a given range, the algorithm will extract clnNgrs, a set that contains
all the ”clean” n-grams extracted from the cleanset’s methods (lines 4-7). Using this set,
a cluster score will be computed for each cluster (lines 8-10). As shown in the algorithm,
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Algorithm 4 extract-ngrams(method,Λ, n)

Require: A string from Σ?, method.
Require: A set of symbols Λ ⊆ Σ.
Require: An integer n.
Ensure: A set of n-grams, nGrams

1: nGrams← ∅
2: filtered← ””
3: for i = 1→| method | do
4: if method[i] ∈ Λ then
5: append-char(filtered,method[i])
6: end if
7: end for
8: for i = 1→| filtered | −n+ 1 do
9: nGrams← nGrams ∪ {substring(filtered, i, i+ n)}
10: end for
11: return nGrams

Algorithm 5 compute-fitness(Λ, cleanset, clusters)

Require: A set of symbols Λ ⊆ Σ.
Require: A list of strings from Σ?, cleanset.
Require: A list of lists of strings from Σ?, clusters.
Ensure: A real nr. score, that evaluates the quality of Λ

1: score← 0.0
2: for n = N MIN→ N MAX do
3: nScore← 0.0
4: clnNgrs← ∅
5: for method in cleanset do
6: clnNgrs← clnNgrs ∪ extract-ngrams(method,Λ, n)
7: end for
8: for cluster in clusters do
9: clusterScore← comp-cl-score(cluster, clnNgrs,Λ, n)
10: nScore← nScore+ clusterScore
11: end for
12: if nScore > score then
13: score← nScore
14: end if
15: end for
16: return

score

| clusters |

the fitness function will be the maximum average of the cluster scores, as in Equation
4.24.

score = max
n

∑
cluster

clusterScore

| clusters |
(4.24)

We have chosen to keep the maximum value because the choice of n can be made
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after the choice of Λ. If a small set is chosen for Λ, a big n will ensure that we have a
big enough number of possible n-grams. For a bigger set, a smaller n should suffice. An
average was computed instead of a sum, so that the fitness score will not depend on the
number of clusters.

The last detail of the algorithm is how to compute the score for each cluster. This
computation will be done in Algorithm 6. If we are able to find enough common n-grams
that are not present in the cleanset, in the cluster’s methods, we will give that cluster
a score of 1.0. If the n-grams are only common to some of the methods, we will divide
this score by 2, for each missed method. For example, if we only manage to find enough
common n-grams for 4 out 7 methods in a cluster, the score for that cluster will be 0.125,

because we missed 3 methods, so clusterScore =
1

23
. This approach should give higher

fitness values to choices of Λ that make possible the detection of the entire cluster. If not
all samples can be detected, the score for that cluster will decrease exponentially because
it means we cannot detect all the methods based on the n-grams.

Algorithm 6 comp-cl-score(cluster, clnNgrs,Λ, n)

Require: A list of strings from Σ?, cluster.
Require: A set of clean n-grams, clnNgrs.
Require: A set of symbols Λ ⊆ Σ.
Require: An integer n.
Ensure: A real number clusterScore.

1: counts← {}
2: for method in cluster do
3: for ngr in extract-ngrams(method,Λ, n) do
4: if ngr 6∈ clnNgrs then
5: add-count(counts, ngr)
6: end if
7: end for
8: end for
9: detections← count-detections(counts)
10: clusterScore = 1.0
11: sum = 0
12: for i =| cluster |→ 2 do
13: sum← sum+ detections[i]
14: if sum ≥ DETECTION THRESHOLD then
15: break
16: end if

17: clusterScore← clusterScore

2
18: end for
19: if sum < DETECTION THRESHOLD then
20: clusterScore← 0
21: end if
22: return clusterScore

In lines 1-8, we count how many times each n-gram appears in the cluster’s methods.
If a n-gram appears more than one time in a method it will only be counted once, since
the method extract-ngrams returns a set. The method add-count, called in line 5
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will just increase the count for ngr in counts.
The next step is to count the detections, in line 9. This function will return a

vector detections, where detections[k] will tell us how many n-grams are common to k
methods. In order to determine how many methods have enough common n-grams we
will use a greedy approach: starting from | cluster | downto 2, we will sum the elements
in the detections vector (lines 12-13), until the sum gets bigger than a specific threshold.
At each step, if the sum is smaller, we divide the clusterScore by 2 (lines 14-17).

Of course, this approach is not always correct. If we have two n-grams, the first
being common to the first | cluster | −1 methods and the second to the last | cluster | −1,
both will be common to only | cluster | −2 methods. Still, this greedy approach gives
us a good approximation. Also, the cluster from the example above can still be detected
because the two n-grams will not detect clean methods. Another reason for this greedy
approach is the performance. It is much faster than computing the maximum number of
methods that have at least DETECTION THRESHOLD common n-grams.

Having the fitness function designed, all we have to do is search for a subset of
symbols Λ, that maximizes this function. Unfortunately, the search space is too big for
an exhaustive search to be computationally feasible. For this reason we will use two
bio-inspired algorithms in order to find a good solution in a reasonable amount of time.

4.4.2 Selection Using a Genetic Algorithm

Genetic algorithms were introduced in 1975 [Hol75] and since then, they were
successfully used in many optimization problems. For our problem, we need to optimize
the search for the best subset Λ (the one with the greatest fitness score).

In order to solve an optimization problem with genetic algorithms, one must rep-
resent a possible solution as an individual. Then, generate a random population that is
governed by the principles of evolution: the fittest individuals have greater chances of
reproduction, leading to better generations. In the end, the best individual (solution) is
selected, as a solution for the optimization problem. In a simplified genetic vision, each
individual will be represented as a chromosome - a sequence of genes.

In our case, an individual will be a possible choice for the subset Λ. A random
population of subsets will be generated and we will combine existing solutions in order to
generate better ones.

The genetic algorithms use two operators on the population, in order to obtain a
new generation:

• crossover : This operator takes two chromosomes and combines them in order to
obtain two others. There is a probability pcrossover that the two inputs are combined,
otherwise they will be returned unchanged. Usually pcrossover is high, about 80%-
95%.

• mutation: Each chromosome, with a probability pmutation will get altered, by ran-
domly modifying some of its features. Usually, pmutation is small, about 0.5%-1%.

When selecting two individuals for crossover, they must be selected with a proba-
bility proportional with their fitness. In our implementation, we have used the Roulette
Wheel Selection [Bäc96]. This selection method assumes that all the individuals are placed
on a circle, each having a sector of size proportional with their fitness function. Then,
a point on the circle is chosen randomly, and the individual whose sector contains that
point is selected. It is very important that the chances for an individual to be selected
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for reproduction is proportional with its fitness function, otherwise the algorithm would
become a random search.

In order to prevent losing the best solution found, elitism is also used. The best
ELITE SIZE individuals will always survive to the next generation, unaltered. We will
sort the existing population by the fitness function and the top ELITE SIZE individuals
will be transferred to the next generation. Note that this individuals will also have high
chances of reproduction.

The implementation is detailed in Algorithm 7. For each generation, the following
steps are performed:

• the fitness for each individual is computed (lines 3-5)

• the best individuals are passed to the new population (line 6)

• the rest of the new population is filled with new individuals obtained through
crossover (lines 7-20)

• all the individuals, except for the elites might be mutated (lines 21-25)

To complete the algorithm’s description, we must mention the encoding of the
chromosomes and the details of the crossover and mutation operators.

One chromosome or individual will have one choice of Λ. We have chosen the
simplest form of encoding, the binary encoding. For each chromosome, we will have a
string of bits of length | Σ |. If a bit is set, it means that the corresponding element from
Σ belongs to Λ.

The genetic operators are easy to implement using this encoding. We considered
the most fit type of crossover to be the uniform crossover. Any other type of crossover
would involve some correlation between symbols from Σ and we do not want that.

The uniform crossover receives two parents as inputs and outputs two offspring.
For each position in the bit string, one of the parent’s bits from that position goes to the
first offspring, while the other goes to the second offspring.

If an individual is selected for mutation, some randomly selected bits from his bit
string are inverted.

The genetic algorithm presented above should evolve towards a Λ value that max-
imizes the fitness function from the previous subsection. One problem that might occur
is a stuck in a local optimum. To prevent this issue, an extra step was added to the al-
gorithm, that re-initializes the population to random values if they get stuck at the same
solution for too long.

The most time consuming operation in this algorithm is computing the fitness
function for each individual, since it involves extracting n-grams for all the methods in
the cleanset. The algorithmic complexity for the rest of the steps performed for each
generation is linear in the population size (if we consider the size of the Σ set to be
constant). The number of generation can be fixed, or the algorithm can be left to run for
a certain amount of time and the best solution extracted at the end.

4.4.3 Selection Using Particle Swarm Optimization

Particle Swarm Optimization was introduced by [KE95] and is also used for solving
optimization problems. This time, the method is inspired by the way the birds in a flock
cooperate for finding food. When an individual finds some food, it makes sounds so the
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Algorithm 7 genetic-algorithm(cleanset, clusters)

Require: A list of strings from Σ?, cleanset.
Require: A list of lists of strings from Σ?, clusters.
Ensure: A set of symbols Λ ⊆ Σ.

1: pop← generate-random-population()
2: for generation = 1→ NR GENERATIONS do
3: for i = 1→| pop | do
4: fitness[i]← compute-fitness(pop[i], cleanset, clusters)
5: end for
6: newPop← select-elites(pop, ELITE SIZE)
7: while | newPop |<| pop | do
8: parent1 ← roulette-select(pop, fitness)
9: if | newPop |=| pop | −1 then
10: newPop← newPop ∪ {parent1}
11: else
12: parent2 ← roulette-select(pop, fitness)
13: if random(0, 1) < pcrossover then
14: child1, child2 ← crossover(parent1, parent2)
15: newPop← newPop ∪ {child1, child2}
16: else
17: newPop← newPop ∪ {parent1, parent2}
18: end if
19: end if
20: end while
21: for i = ELITE SIZE + 1→| pop | do
22: if random(0, 1) < pmutation then
23: newPop[i]← mutation(newPop[i])
24: end if
25: end for
26: population← newPop
27: end for
28: return population[ arg max

i=1→|population|
fitness[i]]

nearby birds will know there’s a food source in the area. The neighbours then change
their direction of flight towards the calling bird, scouting for other sources of food in the
way. Guided by sound, the whole swarm will eventually reach the best food source they
could find.

As in a genetic algorithm, we also have a population (called swarm) of individuals
(called particles). Each particle contains a candidate solution (e.g. a choice for Λ, for our
problem), that is determined by the particle’s position in a multi-dimensional space. The
particles move by some pre-defined rules and their position and velocity is influenced by
the best personal solution found so far and by the best solution in the swarm.

For our problem, the particle’s model is described by the following tuple:

p = (X, V,Xbest, best fitness) (4.25)

The 4 components are:
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• X ∈ [0, 1]|Σ| is the particle’s current position. This position is a point situated in
a multi-dimensional cube. The number of dimensions is the size of the Σ set, each
dimension corresponding to a certain symbol from Σ. In order to compute Λ(p),
the solution contained by such a particle, we must find the nearest point of integer
coordinates (the only integers in that interval are 0 and 1) because a set either
contains an element, either it doesn’t. We will consider the projection of X on
each dimension. If the value of the projection is greater than 0.5 (closer to 1), the
corresponding symbol from Σ will belong to Λ(p).

• V ∈ [−1, 1]|Σ| is the particle’s current velocity, and is also a vector in a multi-
dimensional space.

• Xbest ∈ [0, 1]|Σ| is the particle’s personal best, meaning the position with the highest
fitness that the particle has ever reached.

• best fitness is the fitness value for Xbest.

The Algorithm 8 shows how PSO works. It starts by initializing the swarm with
random particles (line 1). Then, for each iteration it computes the fitness function of
every particle (lines 5-7) and updates the globalBest position and its fitness, if necessary.
Every particle is then updated (lines 13-15). In the end, the algorithm returns the value
for Λ corresponding to the best position found.

Algorithm 8 pso(cleanset, clusters)

Require: A list of strings from Σ?, cleanset.
Require: A list of lists of strings from Σ?, clusters.
Ensure: A set of symbols Λ ⊆ Σ.

1: swarm← generate-random-particles()
2: globalBestF itness← 0
3: globalBest← 0|Σ|

4: for iteration = 1→ NR ITERATIONS do
5: for i = 1→| swarm | do
6: fitness[i]← compute-fitness(Λ(swarm[i]), cleanset, clusters)
7: end for
8: bestF itness← max

i=1→|swarm|
fitness[i]

9: if bestF itness > globalBestF itness then
10: globalBestF itness← bestF itness
11: globalBest← swarm[ arg max

i=1→|swarm|
fitness[i]]

12: end if
13: for i = 1→| swarm | do
14: swarm[i]← update-particle(swarm[i], globalBest, globalBestF itness)
15: end for
16: end for
17: return Λ(globalBest)

A particle’s velocity is updated by Equation 4.26, from [SE98a], that is a modi-
fied version from the original one specified in [KE95]. The constant ω is called inertia
weight and it expresses how much importance is given to the previous velocity. φ1 and φ2
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are positive real numbers, called acceleration constants. φ1 shows how important is the
personal best, while φ2 represents the weight of the global best. r1 and r2 are random
constants from the interval (0, 1). If one of the vector’s components is outside the interval
[−1, 1], it will get saturated. The values for φ1, φ2, ω were chosen following the guidelines
from [SE98b].

The equation computes the new value of the velocity vector (V ′), given the previous
value (V ), the current position (X) and the personal (Xbest) and global best (global best)
positions.

V ′ = ωV + φ1r1(Xbest −X) + φ2r2(global best−X) (4.26)

To update the particle’s position we will add to it the recently calculated velocity
vector, as in Equation 4.27. The two vectors are added on the multi-dimensional space. If
the projection on any dimension gets outside the interval [0, 1], saturation is performed.

X ′ = X + V (4.27)

This method has many similarities with the genetic algorithm from the previous
subsection. It also initializes a random population that evolves in time, leading to better
solutions. In our case, PSO was adapted for finding the subset Λ that maximizes the
fitness function. Similar to the previous method, early convergence to a local optimum is
also an issue, so the particles will re-initialize if the global best has been the same for too
long. An advantage over the previous solution is that the swarm (population) size can
be smaller. Since the bottleneck of both algorithms is the fitness function, it means that
PSO can run more iterations in the same amount of time.

4.5 Experimental Evaluation

The concepts described in this chapters have been tested on various datasets ex-
tracted from real-world software. Two types of tests were performed:

• quality evaluation: we are interested on how well a distance metrics performs. A
good distance metric will output small values for similar items and large values for
dissimilar ones.

• performance evaluation: since we are usually working with a large number of sam-
ples, we are interested in how fast a given metric can be computed. In practice,
we can use fast but unreliable metrics (prone to false positives) for prefiltering then
employ costly but more accurate ones.

The quality evaluation can be performed using a confusion matrix similar to the
one in Table 2.1.

For a distance metric, we will assign a threshold and will consider a pair of items
whose distance is below the threshold to be similar, while a distance above the threshold
will mean dissimilarity. The actual decision, whether two items are similar or not can be
made by human experts. Such an expert can decide if two malware samples belong to the
same family, if two binaries are different versions of the same program or if two coding
assignments represent a case of plagiarism. For grouping malware samples into families
we can also use a voting system based on multiple anti-virus engines detection names.

Based on the relation between the predicted similarity verdict and the actual simi-
larity verdict, each pair of samples will be labeled into one of the following four categories:
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• True Positive (TP ) - The two items are similar and the distance metric also predicted
they are similar.

• False Positive (FP ) - The distance metric predicted similarity but expert classifica-
tion decided otherwise.

• True Negative (FN) - The two items are similar but the distance metric failed to
predict that.

• False Negative (TN) - The items are dissimilar and their distance is above the
threshold.

Based on the number of pairs in each of the above categories, quality indices like
Precision, Recall and F-Measure can be derived.

4.5.1 Detection of plagiarism cases among students homework

This experiment was performed on a collection of 946 homework submissions (the
programming assignments from a semester). Our system outputs all the pairs of assign-
ments that have a similarity over a certain threshold and are not belonging to the same
student. To be able to compute the confusion matrix, we need to know which pairs of
assignments were correctly classified as plagiarism and which were not. Since the total

number of pairs from N assignments is
N(N − 1)

2
(in our case 446985), it is infeasible to

take each pair and compare the submissions manually. Instead, we have used Moss, the
system described in [SWA03] and manually checked the plagiarism reports. We have also
verified the plagiarism cases reported by our application and not reported by Moss and
added them to the list, in case we found a true positive. This approach is not perfect,
as it misses the cases not detected neither by Moss, nor by our system, but gives a good
approximation.

The number of pairs situated in each category of the confusion matrix is represented
in Table 4.2.

Table 4.2: Plagiarism detection - simple measurements

Similarity metric TP FP FN

Moss 186 0 119

DEsim 56 1399 249

NCDsim 153 144 152

CNsim 169 79 136

WCNsim 250 0 55

Based on these measurements we have computed the three quality indices described
in the previous subsection and obtained the results in Table 4.3, that were also represented
graphically in Figure 4.7.

By analyzing the results, we observed that Descriptional Entropy performed poorly.
Although it managed to detect some of plagiarism cases, the high number of False Positives
would make it impractical to use.

The Normalized Compression Distance performed quite better, as it obtained values
above 50% for both Precision and Recall.
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Table 4.3: Plagiarism detection - quality indices

Similarity metric Precision Recall F-measure

Moss 100.00% 60.98% 66.15%

DEsim 3.85% 18.36% 10.47%

NCDsim 51.52% 50.16% 50.43%

CNsim 68.15% 55.41% 57.56%

WCNsim 100.00% 81.97% 85.03%
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Figure 4.7: Plagiarism detection results

We also observed quite a large difference in the results obtained by the two metrics
based on common n-grams. CNsim obtained some promising results, but also a con-
siderable number of False Negatives and False Positives. For a better understanding of
this behaviour, we must consider the particularities of the student’s assignments. They
were given a library for measuring the performance of their programs but the usage was
optional. A student that plagiarized someone else’s homework might have removed that
library from his project. Since the size of that library was larger than most of the as-
signment sizes, two very different programs that shared this library appeared to be more
similar than the programs discussed above.

WCNsim addressed this issue well, as it obtained improved results. For a similarity
threshold of 50% we had no false alarms and the Recall was higher than the one obtained
by Moss (this means that we actually found more plagiarism cases). Also, a fair number
of the missed cases were not far below the threshold, and they were arguably cases where
more than just functions and variable names differed.

To better understand how well can WCNsim perform, we have plotted the ROC
curve by varying the plagiarism threshold in Figure 4.8. We can see that if we are satisfied
with 30% false positive rate (70% precision), we can detect more than 95% of the pla-
giarism cases. A lower precision means that the user should carefully verify the reported
cases, as some false alarms might occur.
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Figure 4.8: ROC curve for plagiarism detection using weighted common n-grams

4.5.1.1 Similarity assessment on a malware collection

The four proposed similarity metrics were also tested on a collection of 1742 mal-
ware samples that were already clustered manually into malware families.

We have taken each pair of samples and checked if their similarity is above the
threshold for malware belonging to the same family and below otherwise. Based on this
observation, each pair was labeled as a True Positive, False Positive, True Negative or
False Negative.

The quality indices above were also computed, with a small difference. For the
malware clustering, Precision is more important than Recall. It is not desirable to group
together samples that are different. For this reason, we will use the value β = 0.5 in the
F-measure index, to emphasize the importance of Precision.

The results obtained on this task were similar with the ones obtained in plagiarism
detection. In Table 4.4 we have collected the measurements, while the quality indices
were computed in Table 4.5.

Table 4.4: Malware similarity - simple measurements

Similarity metric TP FP FN

DEsim 352 1134 1238

NCDsim 910 269 680

CNsim 958 263 632

WCNsim 1115 187 474

Table 4.5: Malware similarity - quality indices

Similarity metric Precision Recall F-measure

DEsim 23.69% 22.14% 23.36%

NCDsim 77.18% 57.23% 72.15%

CNsim 78.46% 60.25% 73.99%

WCNsim 85.64% 70.17% 82.02%
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As expected, Descriptional Entropy performed poorly, while the Weighted Common
n-grams method got good results. The interesting fact observed in Figure 4.9 is that the
differences between NCDsim, CNsim and WCNsim are not that big. Since the malware
samples are form a more heterogeneous collection that the student’s assignments, even
some common library code might indicate that there is some similarity between the two
samples.

Precision Recall F-Measure
0

20

40

60

80

100

23
.6

9

22
.1

4

23
.3

6

77
.1

8

57
.2

3 72
.1

5

78
.4

6

60
.2

5 73
.9

9

85
.6

4

70
.1

7

82
.0

2

Quality Index

Q
u
al

it
y

In
d
ex

V
al

u
e

de ncd cn wcn

Figure 4.9: Malware similarity results

The running times of the system using the 4 metrics were also measured in Table
4.6. The DEsim metric was particularly fast in this case and the whole algorithm can be
improved even more, but due to the poor quality showed, it doesn’t worth using. Although
the running time for WCNsim was almost double the running time for CNsim, we prefer
using it because it got the best results.

Table 4.6: Malware clustering - execution times

Similarity metric Clustering time (s)

DEsim 2.01

NCDsim 302.07

CNsim 24.58

WCNsim 45.18

4.5.2 Comparison between deq and longest subsequence distance

4.5.2.1 Clusters quality

The first experiment is meant to prove that the deq distance provides clusters of
similar quality as the longest subsequence distance. A group of N = 2011 malware samples
was used in a single linkage hierarchical clustering algorithm [Sib73]. A cluster id was
assigned to each sample. We will denote by cdeq(s) the cluster id assigned using the deq
distance and clsd(s) the cluster id assigned using the longest subsequence distance. For
each pair of samples, we are interested if they were classified in the same cluster or not by
the two algorithms. The confusion matrix in Table 4.7 shows the four categories a pair of
samples can fall into, and is similar to the confusion matrix in Table ??
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• True Positive (TP): The pair was placed into the same cluster by both distances.

TP = |{(i, j) | 0 ≤ i < j ≤ N∧
cdeq(S1) = cdeq(S2) ∧ clsd(S1) = clsd(S2)}|

• False Positive (FP): The pair was placed into the same cluster by deq distance but
not by longest subsequence distance.

FP = |{(i, j) | 0 ≤ i < j ≤ N∧
cdeq(S1) = cdeq(S2) ∧ clsd(S1) 6= clsd(S2)}|

• True Negative (TN): The pair wasn’t placed into the same cluster by either distances.

TN = |{(i, j) | 0 ≤ i < j ≤ N∧
cdeq(S1) 6= cdeq(S2) ∧ clsd(S1) 6= clsd(S2)}|

• False Negative (FN): The pair was placed into the same cluster only by longest
subsequence distance and was missed by deq distance.

FN = |{(i, j) | 0 ≤ i < j ≤ N∧
cdeq(S1) 6= cdeq(S2) ∧ clsd(S1) = clsd(S2)}|

Table 4.7: Confusion matrix for clusters quality evaluation

cdeq(S1) = cdeq(S2) cdeq(S1) 6= cdeq(S2)

clsd(S1) = clsd(S2) TP FN

clsd(S1) 6= clsd(S2) FP TN

The quality indices Precision, Recall and F-Measure are computed using the same
formulas.

We have also considered another set of clusters, using the malware detection of
several anti-virus products for our collection of samples. Samples detected with the same
family name will belong to the same cluster. The same quality indices will be computed
using these clusters as a benchmark. All the measure results are present in Table 4.8.

The results show that the clusters obtained with the deq distance are very similar
with the ones obtained by the longest subsequence distance (Benchmark 1), as 98.65%
Precision and 99.98% Recall were obtained.

The result against Benchmark 2 confirm that our distance can be successfully used
in clustering and classifying real-world malware.

4.5.2.2 Performance evaluation

To evaluate the performance of the algorithms that compute the two distances, we
have considered strings extracted from malicious samples of various lengths. For each
length from 50 to 1000, counting from 10 to 10, a group of strings with that length was
selected and both distances were computed for each pair.
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Table 4.8: Quality measurements for the clusters obtained with the deq distance

Quality index Benchmark 1 Benchmark 2

TP 374320 372821

FP 5118 6617

TN 1641532 1559097

FN 85 82520

P 98.65% 98.26%

R 99.98% 81.88%

F1 99.31% 89.32%

Table 4.9 shows the average running time in milliseconds for the two algorithms
to compute the distance between to samples, by varying the string length m. For space
reasons, the table shows only 10 measurements.

Table 4.9: Average running time for deq distance and longest subsequence distance

m deq distance (ms) longest subsequence distance (ms)

100 0.066 0.024

200 0.139 0.102

300 0.208 0.212

400 0.274 0.415

500 0.336 0.612

600 0.422 0.979

700 0.539 1.362

800 0.556 1.838

900 0.697 2.552

1000 0.719 2.972

Figure 4.10 shows the charts with the running time for the full set of measurements.
The charts confirm the theoretical result that the deq distance can be computed in linear
time, while the longest subsequence distance requires quadratic time.

Although the longest subsequence distance is faster to compute for small strings
(m < 300), for m = 1000 the deq distance becomes 4 times faster. The charts overlap in
the region 250 ≤ m ≤ 300, where the two distances obtained the same performance.

4.5.3 Experimental results on structured code

In this subsection we will evaluate both the quality and the performance for the
techniques used to deal with structured code. We used a dataset consisting of 53 Android
applications that were already clustered into 18 groups. The applications belonging to
the same group are either different versions of the same application or real plagiarism
cases. An ideal similarity measure will output high similarity values for all the pairs
of applications that belong to the same group and low values for the applications pairs
belonging to different groups.
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Figure 4.10: Performance evaluation for deq distance and longest subsequence distance

To emphasize the quality and the performance of the hierarchical similarity tech-
nique, we will also compare it with the flat model. The flat model assumes that no
hierarchical information is known about applications and all the methods are situated in
a single class.

4.5.3.1 Classification quality

For each of the
53(53− 1)

2
= 1378 pairs of applications we computed the hierarchi-

cal similarity using both the thresholded and contiguous match strategy. By comparing
the similarity result with a threshold, we can state if the two applications are similar
or not. For each matching strategy, we will divide the pairs into the four categories of
the confusion matrix (TP , FP , FN and TN) and compute the quality indices Precision,
Recall and F-Measure.

If we selected the similarity threshold at 50%, we obtained the following values for
the aforementioned quality indices:

• thresholded: P = 100%; contiguous: P = 100%;

• thresholded: R = 78.33%; contiguous: R = 68.33%;

• thresholded: F1 = 87.85%; contiguous: F1 = 81.18%;

The precision is at 100%, meaning that no pair of dissimilar items was classified
as similar. The thresholded match strategy provided a higher recall than the contiguous
match with about 10%, leading also to a higher F-Measure.

By decreasing the similarity threshold, we can increase the recall by decreasing the
precision. At 25% threshold, the values are the following:

• thresholded: P = 89.06%; contiguous: P = 95%;

• thresholded: R = 95%; contiguous: R = 95%;

• thresholded: F1 = 91.93%; contiguous: F1 = 95%;
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In this case, the precision is no longer 100%, meaning that some pairs of applications
may be flagged as similar, even if they are not. However, the recall reached 95%, and the
overall F-Measure is also higher.
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Figure 4.11: ROC curve for thresholded match
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Figure 4.12: ROC curve for contiguous match

Figure 4.11 shows the ROC curve for the classifier that uses the thresholded match
strategy, while Figure 4.12 shows the ROC curve for the classifier that uses the thresholded
match strategy. We can observe that both curves are closer to the ideal (0, 1) point than
to the line of no discrimination, meaning that we managed to build good classifiers.

Table 4.10 contains the quality indices for the two hierarchical similarity strategies
and for the flat similarity, for the closest to the ideal (0, 1).

In Figure 4.11, this point is obtained for the similarity threshold 30%. The best
point on the ROC curve in Figure 4.12 is obtained for the threshold 17%. This results
show that using the contiguous match strategy in the similarity function leads to a slightly
better classifier. Also, both strategies are better than the flat strategy, where the best
point is obtained at threshold 40%.
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Table 4.10: Quality indices for various similarity strategies

P R F1

thresholded 100% 88.33% 93.8%

contiguous 95.08% 96.66% 95.86%

flat 94.64% 88.33% 91.37%

4.5.3.2 Algorithm performance

Theoretical computations showed that Algorithm 3 has O(n2) complexity, where n
is the average number of methods for the two applications. Figure 4.13 plots the running
time of the algorithm against the number of methods.
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Figure 4.13: Performance measurement for Algorithm 3

The algorithm was implemented in Java and ran on an Intel i7 vPro processor at
2GHz with 8GB of RAM. For large applications of more than 7000 methods, the amount
of time required to compute the similarity is a little more than 15 seconds, which make the
method good for comparing individual applications but too slow to make every pairwise
comparison on large collections.

For comparison, we have plotted in Figure 4.14 the performance of the algorithm
in the case where all the methods are situated in the single class (flat similarity). In this
case, for large applications with more than 7000 methods, the running time exceeds 5
minutes, which is 20 times worse than the original algorithm.

4.5.4 Experimental results on automated features selection

We have tested both the Genetic Algorithm and the PSO method from section 4.4,
in order to find the best subset Λ.

We only obtained non-trivial solutions for large enough cleansets. If a small cleanset
is used, we won’t be able to proper identify the n-grams present in the real world clean
samples. For instance, if we find some n-grams extracted from library code, that are
common to a malicious cluster, we could falsely claim that we are able to detected that
cluster. In reality, that library code is also common to clean samples and our detection
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Figure 4.14: Performance measurement for Algorithm 3 assuming a flat model

will give false positives on them. With a small cleanset, those library-code n-grams could
not be filtered out.

The experiments confirmed the statements above, as we couldn’t find any better
solution than Λ = Σ for cleansets smaller than 10000 samples. For scenarios closer to real-
life however, non-trivial solutions were found. The searches performed with the cleanset
containing 558695 different methods from 55230 samples found better solutions that those
found manually, based just on observation.

For the Genetic Algorithm, we have chosen a population size of 200, and it ran for
168 generations, searching for the subset Λ with the greatest fitness value. The evolution
of the best fitness of the population for each generation can be observed in Figure 4.15. We
can see that for the first generation, we have a lower score, that increases as the population
evolves. After a while, the fitness score stagnates, meaning that it got stuck in a local
optimum. After the best fitness score maintains the same value for too many generations,
the population gets randomly re-initialized. At those points, we can see sudden drops on
the chart, because random populations will usually perform worse than local optima.
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Figure 4.15: Evolution of the fitness function for the Genetic Algorithm

The maximum value reached during 168 generations was 0.3965. This fitness score
means that best found solution was able to detect 39.65% of the clusters. Although
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this score seems low, we must remember that we had clusters of methods, not clusters of
samples. Among the methods of a malware sample we can expect to find many similarities
with methods from clean samples (not everything in a malware sample is malicious).

Particle Swarm Optimization got promising results with a smaller swarm, of only
25 particles. Since the fitness function was the performance bottleneck, we were able to
run it for 665 generation, as we can see in Figure 4.16.
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Figure 4.16: Evolution of the fitness function for the Particle Swarm Optimization

By looking at the figure, we can also see regions where the swarm evolves, followed
by stagnation to a local optimum, followed by a random re-initialization. Having the
chance to run for more generations, PSO found a slightly better solution than the Genetic
Algorithm, with a fitness value of 0.4029 (40.29% of the clusters could be detected).
The value falls subject to the same interpretations as the one obtained for the Genetic
Algorithm.

After running these algorithms, we wanted to see how well they performed. The
best solutions found by them were cross-validated on some new clusters. For training, we
had two kinds of clusters: manually selected malware samples from ”the wild” and obfus-
cated ones, using obfuscation tools. For cross-validation, these types will be separated,
for a better understanding of the results. The fitness values for these are shown in Table
4.11.

Table 4.11: Cross-validation results

GA best PSO best

Similar malware samples 0.1819 0.1833

Obfuscated samples 0.8859 0.8859

The cross-validation experiments show that it is easy to learn how to bypass com-
mercial obfuscators. Although the score for the malware methods from ”the wild” was
lower, it shows the probability for a group of methods to be detected, not for a group
of entire samples. If we consider a sample to have m methods and the probability for a
method to be detected is p, then the chance for each method to evade detection is 1− p.
Since the probability to detect each method is independent from the others, the proba-
bility that all m methods evade detection is (1− p)m, so the detection probability for the
sample is P (detection) = 1− (1− p)m.
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Considering m = 20 (it is reasonable to consider that a non-trivial .NET application
has at least 20 methods) and p = 0.1833 = 18.33% (the cross-validation score obtained
by the best solution found by PSO), we obtain P (detection) = 1 − (1 − p)m = 0.9825 =
98.25%.

The calculated detection probability exceeds 98%, a score similar to the ones ob-
tained by [SMF+12b] and [Bil07]. The papers mentioned above also studied malware
detection using n-grams, but their research was focused on x86 OpCodes.

The Genetic Algorithm and the Particle Swarm Optimization ran for a couple of
days in order to find reasonable solution for the subset Λ.

4.6 Chapter Conclusions

This chapter presented techniques for computing software similarity based on the
features extracted from the binary code. By parsing the specific file format for different
types of executables we can locate the code buffers and disassemble them in order to
extract OpCode sequences. The OpCode sequences can be considered an abstract rep-
resentation of a program’s code and can be used to compute the distance between two
programs.Several distance metrics were proposed. They can be categorized according to
the program’s abstract representation:

• string semantics: a program is abstractly represented as string of OpCodes

• set semantics: a program is represented as a set of OpCode n-grams (which can be
considered abstract composite operations)

• hierarchical structures: the binary code can be split into packages, classes and meth-
ods

If a file is abstracted as a string of OpCodes, the fastest distance to compute is deq
distance, because it is based on the longest common substring concept, rather than the
longest common subsequence used for the edit distance. The improved performance didn’t
affect the quality of the distance, as it obtained similar results with the edit distance.

When we switch to set semantics, the weighted common n-grams distance out-
performed other distance functions in terms of Precision and Recall and even obtained
better results in identifying plagiarized student homeworks than Moss, a stat of the art
plagiarism checker.

When extra information about the structure of a binary program is available, like
the program partition into packages, classes and methods, hierarchical similarity can be
used. The idea for computing the hierarchical similarity is to compare two packages by
computing pairwise similarity between their components, then finding the best bipartite
match using the Hungarian algorithm.

The last part of the research in this chapter was to select a subset of the OpCodes
to be used for the n-grams extraction. Since the search space for such a subset is too big,
we needed to optimize it so we can find a good solution in a reasonable amount of time.
The Genetic Algorithm and the Particle Swarm Optimization are bio-inspired algorithms
that are appropriate for such an optimization. They both found good solutions that were
cross-validated to see how well we can detect new clusters.

The following contributions were presented in this chapter:

• the deq distance, a distance for binary programs based on string semantics;
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• the weighted n-grams distance, a distance for binary programs based on set seman-
tics;

• a hierarchical similarity algorithm, for dealing with structured code;

• a method for automatically selecting the most relevant OpCodes for constructing
abstract program representations;

• a plagiarism detection system for students programming assignments;

• a detailed analysis of the .NET executables;
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Chapter 5

Scalable Clustering Algorithms

Large collections of binary programs can contain duplicates and near-duplicates.
Depending on the nature of the collection we can identify plagiarism cases (if the collection
is a market of applications) or different variations of a malware family (if we are dealing
with malware collections). In either case, we want to group together the binary files that
resemble each other. The problem can be solved by employing cluster analysis techniques
but the classical algorithms run in quadratic or even cubic time, being unpractical for
large collections. The bad news is that such algorithms like SLINK have also been proved
to be optimal [Sib73], which means that we can’t perform single linkage clustering in
sub-quadratic time.

In order to improve the running time, we need to relax the requirements of the
algorithm in one of the following ways:

• find particular distance metrics where computing pairwise distances is not necessary

• improve the running time by giving a very good (but inexact) approximation of the
clusters

In this chapter, we will propose two approximate clustering algorithm that gives
good results, while maintaining reasonable running times.

5.1 Clustering Using Suffix Trees

In the previous chapter we have described the deq distance, a distance that can
be computed on sequences of OpCodes extracted from binary programs, based on the
concept of Longest Common Substring. The distance formula is presented in Equation
4.9. Based on this distance, we also devised a similarity function in Equation 4.11, that
outputs values in the [0, 1] interval. This function computes the ratio between twice the
longest common substring length and the sum of the lengths of the two given strings.

An even simpler similarity function can be designed if we consider all the strings to
have the same length (if this is not the case we can get there by padding each string with
a unique symbol). If we consider the length of all strings to be σ ∈ N, the new similarity
function will be:

s′ : Σ? × Σ? → [0, 1]

s′(S1, S2) =
2|lcs(S1, S2)|
|S1|+ |S2|

=
2|lcs(S1, S2)|

2σ
=
|lcs(S1, S2)|

σ

(5.1)
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We prefer to use the later similarity function s′ (from Equation 5.1) because it only
depends on the longest common substring. In other words, we will say that two samples
are 60% similar if the longest common substring of their representation is 60% of the
maximum string length.

After testing the deq distance, we have noticed some practical issues. When the
strings correspond to code extracted from programs, some substrings might correspond
to library code. For practical considerations, we will slightly modify the definition of the
longest common substring, so it will only consider substrings that start with non-library
code. We will see that the complexity of the following algorithms is not affected by this
modification, while the practical results are dramatically improved.

To check if a string starts with library code or not, we can use a precomputed
look-up table, where a hash on the first symbols from each library code string is marked.

5.1.1 The algorithm for computing the deq distance

The key for computing the deq distance, as defined in Equation 4.9 is the computa-
tion of the longest common substring. Several algorithms exists for solving this problem.
Dynamic programming can be used for finding the longest common substring in O(m1 ·m2)
[ZCM07], where m1 and m2 are the lengths of the given strings. A faster approach for
this problem uses the Suffix Tree data structure that was introduced by Weiner in 1973
[Wei73]. The construction of the Suffix Tree was improved by Ukkonen in 1995 [Ukk95].
Ukkonen’s algorithm is linear in the size of the given string, so the cost for computing the
longest common substring is O(m1 + m2). Our work is based on this algorithm that is
presented with more details in [Gus97].

Algorithm 9 high-level-ukkonen(S)

Require: A string S from Σ? of length m
Ensure: A Suffix Tree T

1: T ← initialize-suffix-tree()
2: for i = 1→ m− 1 do
3: for j = 1→ i+ 1 do
4: p← find-path(T, S[j..i])
5: extend-path(T, p, S[i+ 1])
6: end for
7: end for
8: return T

Algorithm 9 from [Gus97] builds the suffix tree given the string S. Although from
the high level description, the complexity seems to be cubic (find-path is also O(m)), it
is proven that by using some implementation tricks, the whole algorithm is linear in the
size of the string (O(m)). The main loop (line 2) is still used, but the second loop (line
3) and the path search (the find-path function at line 4) can be avoided by using suffix
links. These suffix links connect paths in the suffix tree, so there is no need to iterate
through all the suffixes of the current substring in order to find the paths that need to be
extended.

The function extend-path called in line 5 is used to extend the path p from the
tree T with the (i+ 1)-th character from the string S.
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Figure 5.1: Suffix tree representation for string ”CRSXCRXCE”

The suffix tree constructed by Algorithm 9 for the input string ”CRSXCRXCE” is
represented in Figure 5.1. Except for the root, each node in the suffix tree has an incoming
edge labeled with a substring. If we called the function find-path on the example tree,
for the substring ”CRXCE”, the nodes 0, 1, 6 and 13 would be returned. Since 13 is
a terminal node, extend-path does not involve creation of a new node. Instead, the
next symbol can be appended to the substring on the edge 6-13. If we had the substring
”CRXC” instead, the edge 6-13 would be split, like in Figure 5.2. We can see that two
new nodes were added: 14, to split the edge 6-13 and 15, to mark the suffix ”..XCS”.

6

14

1513

E S
12

SXCRXCE XC

Figure 5.2: Splitting an edge in a suffix tree

We will adapt Algorithm 9 in order to compute the suffix tree for an arbitrary
number of strings. The nodes in this tree will also contain a list with all the strings that
contain the associated path.

The function modified-ukkonen in Algorithm 10 receives an existing suffix tree
T and extends it with all the suffixes from the new string S.

Two new symbols are added to the alphabet Σ: ’$’ and ’#’. They are both used
as terminal characters for the inserted strings in order to force all suffixes to end in a
node. In Figure 5.3 we can see a portion of the built suffix tree for two strings. The first
strings ends with ”ABCDE” and the second one with ”ABC”. The suffixes appear in both
strings but in Figure 5.3a, the second suffix (”ABC”) is only implicit, as it is included
in the edge 0-3. In Figure 5.3b, the terminating character ’$’ is added to both strings.
The edge 0-3 gets split by node 1. In this case, the substring ”ABC” also have an explicit
representation. It is important to have such explicit representations for each substring, in
order to add string references for all of them.

Gusfield recommends in [Gus97] “to append a different end of string marker to each
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Algorithm 10 modified-ukkonen(T, S, idx)

Require: An existing suffix tree T
Require: A string S from Σ? of length m
Require: The index of the new string idx
Ensure: An updated suffix tree T

1: S ← S +′ $′

2: endings← {}
3: for i = 1→ m− 1 do
4: for j = 1→ i+ 1 do
5: p← find-path(T, S[j..i])
6: for all node ∈ p do
7: add-string-reference(T, node, idx)
8: end for
9: extend-path(T, p, S[i+ 1])
10: if S[i+ 1] =′ $′ then
11: endings← endings ∪ {last-node(p)}
12: end if
13: end for
14: end for
15: for all node ∈ endings do
16: replace-ending(T, node,′ $′,′#′)
17: end for

string in the set” in order to build a generalized suffix tree (a tree that contains suffixes
for several strings). However, if we used this approach, a new symbol had to be added to
the alphabet Σ for every string. Since we want the alphabet to have a constant size, we
have used a slightly different technique.

Before insertion in the tree, we concatenate the symbol ’$’ to the string to be
inserted (line 1). The last nodes of each path that ends with ’$’ are kept in the set
endings (line 11). After the insertion, the symbol ’$’ is replaced in all these nodes by ’#’
(line 16), ensuring that the following string to be inserted does not end with a symbol that
already exists in the tree. For each node contained in a path associated with a substring
from S, a reference to the current string index is added (line 7).

Using suffix links like in [Ukk95] and [Gus97], the implementation of the Algorithm
10 will also have O(m) complexity.

Finally, the generalized suffix tree for a set of strings can be built by initializing
an empty substring T , then calling modified-ukkonen for each string S and increasing
the current index.

Now, to compute the longest common substring, we will use the function lcs
presented in Algorithm 11. The tree traversal is performed in Algorithm 12 by the function
lcs-aux.

The function lcs starts by building the suffix tree for the given strings. At line 5,
the lcs-aux function is called, in order to perform the tree traversal, starting with the
root node that is situated at depth 0.

The lcs-aux function considers only the nodes that have references to all the input
strings (line 1). Also at this point, the node validation is performed. This validation is
performed for practical issues, in order to avoid library code, as discussed at the end of
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Algorithm 11 lcs(strings)

Require: strings, the set of strings to compute the longest common substring for
Ensure: The length of the longest common substring of all the strings from SS

1: T ← initialize-suffix-tree()
2: for i = 1→ |strings| do
3: modified-ukkonen(T, strings[i], i)
4: end for
5: return lcs-aux(T.root, 0, |strings|)

Algorithm 12 lcs-aux(crtNode, parentDepth, nrStr)

Require: crtNode, the current node in a suffix tree
Require: parentDepth, the depth of the current node’s parent
Require: The number of strings nrStr
Ensure: The length of the longest common substring

1: if crtNode.nrRefs 6= nrStr or not is-node-valid(crtNode) then
2: return −1
3: end if
4: crtDepth← parentDepth+ edge-length(crtNode)
5: maxLen← crtDepth
6: for all node ∈ crtNode.children do
7: len = lcs-aux(node, crtDepth, nrStr)
8: if len > maxChild then
9: maxLen← len
10: end if
11: end for
12: return maxLen

the previous subsection. If library code issues do not arise, this validation can be skipped.

For each valid node, the current depth is computed by adding the length of the
current edge to the parent’s depth (line 4). The function edge-length is used to compute
the length of this edge. The length of an edge is the number of symbols on that edge. For
example, in Figure 5.1, the edge 0-1 has the length 1, while the edge 6-13 has the length
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3.
For each child of the current node, the function lcs-aux is called recursively, in

order to find the depth of deepest node, that corresponds to the longest common substring.
Since the number of nodes in the suffix tree is O(n × m) and the tree traversal

in lcs-aux reaches each node at most once, the algorithm complexity is O(n×m). For
computing the longest common substring for only two strings, we have n = 2, so the
algorithm complexity is O(m) in this case.

5.1.2 Clustering Algorithms

In this subsection, we will show how the deq distance d (Equation 4.9) and the
associated similarity function s′ (Equation 5.1) can be used with classical clustering algo-
rithms in order to compute the malware clusters in quadratic time and how these clusters
can also be computed in linear time using the same Suffix Tree data structure presented
in the previous section.

5.1.2.1 Single-link clustering in quadratic time

Given a measure of dissimilarity (like our deq distance), we can perform various clus-
tering algorithms on a collection of items. The single-link approach, also called nearest-
neighbour is a hierarchical clustering method, where two clusters are joined if the smallest
dissimilarity between an item from the first cluster and an item from the second cluster
doesn’t exceed a given threshold. An algorithm called SLINK with time complexity O(n2)
is given in [Sib73] and is proved to be optimal. This algorithm constructs a dendrogram
that can be further used to select the clusters at any given threshold. However, if the
threshold is given, we can compute the clusters more directly, although the complexity of
the algorithm is also O(n2).

Our algorithm considers all the items to be nodes in a graph. Two nodes are
connected if the distance between them doesn’t exceed a threshold. The connected
components will be the resulted clusters. Clustering algorithms based on graph the-
ory were attempted before, mostly using the Minimum Spanning Tree data structure
[GR69][XOX02][JN09]. We won’t use this data structure, instead we will compute the con-
nected components of the graph using the disjoint-set forest data structure [Tar75][CLR+01].

The disjoint-set forest is a data structure used to keep a collection of disjoint sets.
Each set can be identified by a representative, that is one of the set members. The
following operations are permitted:

• make-set(x): creation of a new set with a single element

• union(x, y): unification of the two sets containing x and y

• find-repr(x): finding the representative member of the set containing x

The amortized analysis in [CLR+01] proves that using two heuristics, union by rank
and path compression the cost for running k operations on n elements is O(k α(n)), where
α is the inverse of the Ackermann function [Ack28], which is at most 4, for all practical
purposes.

A quadratic method for performing cluster analysis on a set of samples is presented
in Algorithm 13. The algorithm receives the samples as an array of strings. Two samples
will receive the same cluster id if their similarity is greater than a given threshold θ.
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Algorithm 13 quadratic-clustering(samples, θ)

Require: A list of strings samples
Require: A similarity threshold θ
Ensure: An array clusters of the same size with samples that associates each string

with a cluster id

1: for i = 1→ |samples| do
2: make-set(i)
3: end for
4: for i = 1→ |samples| − 1 do
5: for j = (i+ 1)→ |samples| do
6: repi ← find-repr(i)
7: repj ← find-repr(j)
8: if repi 6= repj then
9: sim← s′(samples[i], samples[j])
10: if sim ≥ θ then
11: union(repi, repj)
12: end if
13: end if
14: end for
15: end for
16: for i = 1→ |samples| do
17: clusters[i]← find-repr(i)
18: end for
19: return clusters

The algorithm starts by placing each element in a distinct cluster (a new disjoint
set). For each pair of samples, we first verify if they belong to the same set or not. If
they don’t belong to the same set, the similarity between them is computed and if it is at
least θ, their sets are joined by the union operation. In the end, each sample receives as
a cluster number the index of the representative.

If we consider n = |samples|, the operations performed on the disjoint-set forest
are:

• n operations for initialization (line 2).

• 2 find-repr operations for each pair of samples (lines 6-7). Since we have
n(n− 1)

2
pairs, the total number of such operations is n(n− 1).

• At most n − 1 union operations (line 11). We only perform union on items that
do not belong to the same cluster, so it’s like building a spanning tree.

• n find-repr operations for assigning the items to the clusters (line 17).

The total number of operations performed on the disjoint-set forest is n + n(n −
1) + n− 1 + n = n2 + 2n− 1. Given the amortized analysis in [CLR+01], the complexity
for these operations is O(n2α(n)).

The number of similarity computations is also O(n2) in the worst case (line 9). If
the average string length for a sample is m, the complexity here will be O(n2 m), since
the deq distance is computed in O(m).
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Although our goal is to compute the clusters on a very large number of samples and
m can be considered constant, for all practical purposes m� α(n). The final complexity
of the algorithm will be then O(n2 ×m) instead of O(n2α(n)).

5.1.2.2 Single-link clustering in linear time

The previous method is slow because it has to compute the longest common sub-
string for each pair of strings. In this subsection, we will build a single suffix tree for all
the given strings and compute the clusters in linear time for the average case.

Algorithm 14 traverses all the nodes in the generalized suffix tree constructed from
all the input strings. Nodes deeper than θ · σ are associated with common substrings
longer than θ · σ, so the similarity between each pair of string references is at least θ.
For each node situated under this depth and with more than one string reference, all the
references are joined in the same cluster.

Algorithm 14 linear-clustering(samples, θ)

Require: A list of strings samples
Require: A distance threshold θ
Ensure: An array clusters of the same size with samples that associates each string

with a cluster number

1: for i = 1→ |samples| do
2: make-set(i)
3: end for
4: T ← initialize-suffix-tree()
5: for i = 1→ |samples| do
6: modified-ukkonen(T, samples[i], i)
7: end for
8: for all node ∈ T do
9: if node.depth ≥ θ · σ and is-node-valid(node) then
10: for i = 2→ node.nrRefs do
11: rep1 ← find-repr(node.refs[1])
12: rep2 ← find-repr(node.refs[i])
13: if rep1 6= rep2 then
14: union(rep1, rep2)
15: end if
16: end for
17: end if
18: end for
19: for i = 1→ |samples| do
20: clusters[i]← find-repr(i)
21: end for
22: return clusters

The algorithm starts by initializing the disjoint-set forest (lines 1-3) and the suffix
tree (line 4). The suffix tree is then added all the samples in lines 5-7 in the same way
as in Algorithm 11. The tree traversal is then initiated at line 8. Although the actual
implementation uses a recursive traversal like the lcs-aux function, we will consider it
implicit and just iterate through all the tree nodes.
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The substring validation also appears, like in Algorithm 12 and is only necessary
if we want to avoid library code.

For each valid node with a depth greater than θ · σ and with at least two string
references, all the string references must be joined in the same cluster. For this, we
compute the representative of the disjoint set of the first string (line 11) and of the every
other string in the list of references (line 12). If the two representatives are not in the
same disjoint set, the union operation is performed (line 14).

Finally, each sample is assigned a cluster number based on the set representative,
like in Algorithm 13 (line 20).

The complexity of this algorithm is given by the suffix tree building (O(n×m)) and
the tree traversal for finding the clusters. The suffix tree has at most O(n×m) nodes and
for each node, the list of string references must be iterated. In the worst-case scenario,
this list can contain all the strings, being O(n) long. For the average case, we can consider
that the length of this list is γ, a constant that also expresses the average cluster size. For
each item in the list of string references except for the first one, the find-repr function
is called two times, for an amortized cost of O(α(n)). The union function is called at
most n− 1 times the whole algorithm.

The final complexity of this algorithm is then O(n×m× γ × α(n)). Although for
the worst-case scenario the algorithm is still quadratic (γ can be O(n)) like Algorithm 13,
for the average case γ and α(n) are constant so the complexity is only O(n × m). The
linearity of this algorithm is also confirmed by the experimental evaluation.

5.2 Clustering Using Locality-Sensitive Hashing

Locality-sensitive hashing is a technique introduced in 1998 by Indyk and Motwani
[IM98] in order to find similar items in a multi-dimensional space. The basic idea is to use
a family of hash functions where the collision probability for two hashes is equal to the
similarity between their preimages. The ability of this technique to find similar items in a
large collection was used in [KIW07] for performing agglomerative hierarchical clustering.

In this section, we will also apply the locality-sensitive hashing technique for cluster
analysis, but we will focus on clustering binary programs.

An executable program can be represented as a set of n-grams, as described in
the previous chapter. The Jaccard similarity computes the ration between the number
of common n-grams and the total number of n-grams for two samples. Our clustering
algorithm will group together in the same cluster the samples whose similarity exceeds a
given threshold. We will use the single linkage approach [Sib73] but we will show that a
very good approximation of the clusters can be obtained much faster with locality sensitive
hashing.

Previous work exists both in the field of LSH optimizations and improving the
speed of malware clustering. In [SLH12], Slaney proposes a method for choosing the
optimal parameters for LSH, in order to improve the speed of searching for similar items.
As in our approach, the data distribution proves to be very important in choosing these
parameters.

Our efforts mainly consisted in applying the locality-sensitive hashing technique
for clustering and proposing a method for selecting the best parameters for it.
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5.2.1 Locality-sensitive hashing theory

This subsection will present the theory behind locality-sensitive hashing as ex-
plained in [IM98], [RU12] and [SC08]. The description was adapted in order to fit our
particular problem, clustering malware samples.

The last part of the subsection adds some original work to the ideas in [RU12], by
showing how minhash functions can be computed efficiently.

5.2.1.1 Locality-sensitive hashing definition

Generically speaking, a hash is a function that maps arbitrary-length data to fixed-
length values. Common areas where hash functions are used are data transmissions,
where hashes assure data integrity, databases where hashes are used for indexing and
cryptography where hashes are used to secure the data. In all these areas, the hash
functions are designed in such a way to minimize the probability of a collision (situation
where the result of the hash function is the same for different inputs).

Locality-sensitive hash functions have a slightly different goal: to have a high prob-
ability of collision on similar items. To specify these functions in more formal terms, we’ll
use the definition from [RU12]. Let’s define a set S and a distance function d that com-
putes the distance between two items of the set:

d : S × S → [0,∞) (5.2)

For X, Y ∈ S, d(X, Y ) will be a real number that represents the distance between X and
Y . The distance is 0 only if the two items are identical. Given this distance d, we can
formally define a locality-sensitive hash function on S.

Definition 1. A function h : S → H is called a (d1, d2, p1, p2)-sensitive hash function if
H is a finite set, d1 < d2 and the following properties hold for X, Y ∈ S:

• If d(X, Y ) ≤ d1, then P (h(X) = h(Y )) ≥ p1.

• If d(X, Y ) ≥ d2, then P (h(X) = h(Y )) ≤ p2.

What Definition 1 states is that for two items whose distance is smaller than d1,
the probability of hash collision is at least p1, while for two items whose distance is greater
than d2, the probability of hash collision is smaller than p2.

5.2.1.2 Jaccard distance and the minhashes

In the previous section, we have stated that we are working with executable pro-
grams that will be represented as sets of features. A sample X will be represented as the
set X = {x1, x2, . . . xk}, where x1, x2, . . . xk are natural numbers representing the identi-
fiers for the features that are set. If all the possible features are given identifiers from 0 to
m− 1, then each sample will be represented as a subset of the set M = {0, 1, . . .m− 1}.
The set S will be the set containing all the subsets of M , S = P(M).

The distance between two samples X, Y ∈ S will be computed using the Jaccard
similarity, as in Equation 5.3.

dJ(X, Y ) = 1− |X ∩ Y |
|X ∪ Y |

(5.3)
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This distance is a real number between 0 and 1. If two sets are identical, X ∩Y = X ∪Y ,
so the distance will be 0. If the sets have no common element, |X ∩ Y | = 0, so the
distance will be 1. It can be proven that dJ is a proper metric, meaning that all the
metric properties hold for dJ .

Given a permutation σ : M → M , we can define a hash function as in Equation
5.4. Such a hash function will be called a minhash.

h : S →M

h(X) = min
x∈X

σ(x)
(5.4)

The following result is proved in [RU12]:

Lemma 1. If h : S → M is a minhash function, and dJ : S × S → [0, 1] is the Jaccard
distance, then the probability that h(X) = h(Y ) is equal with 1− dJ(X, Y ), for X, Y ∈ S.

Using Lemma 1, the following theorem can be proved:

Theorem 2. If h : S →M is a minhash function, then h is (d1, d2, 1−d1, 1−d2)-sensitive.

5.2.1.3 The banding technique

Minhash functions are used for finding similar items because the probability of two
items having the same minhash is equal to their similarity. However, we cannot use a
single minhash function because many pairs might be missed. The banding techniques
considers two parameters b and r, both natural numbers greater than 0. Instead of one
minhash function, b× r functions are used. For a given sample, the results of these hash
functions are grouped in b bands, each having r rows, as illustrated in Figure 5.4.

The b × r minhash functions will be grouped in a matrix, hij : S → M being the
minhash situated in the band i, on the j-th row.

The first r hash results will be h11(X), h12(X), . . . , h1r(X), the next r will be
h21(X), h22(X), . . . , h2r(X) and the last r hash results will be hb1(X), hb2(X), . . . , hbr(x).
For each band i, we will also compute another hash function on the hash results situated
in that band. Hi will be a classical hash function, applied to the group of r hash results
on the band i, concatenated: Hi(X) = H(hi1(X)hi2(X) . . . hir(X)). The function H can
be MD5, SHA-1 or any other hash function with a negligible chance of collision.

For every band i, we will store a group of buckets, each containing all the samples
Y ∈ S that have the same hash value (Hi(Y ) = Hi(X)) on that band.

For a given sample X, in order to find similar samples without comparing it
with all the samples in the collection, all we have to do is to compute the b hashes
H1(X), H2(X), . . . , Hb(X) and compare our sample only with the other samples situated
in the b buckets that it falls.

We will now compute the probability that a pair of samples X and Y whose Jaccard
distance is d have at least one common bucket.

We start with Lemma 1. If the dJ(X, Y ) = d, then ∀(i, j) with 1 ≤ i ≤ b, 1 ≤ j ≤ r,
we have that P (hij(X) = hij(Y )) = d. Since the probability of a hash collision for the Hi

functions is negligible, in order to have Hi(X) = Hi(Y ), we need to have equality between
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Figure 5.4: Banding technique illustration

all the hashes on that band. In other words:

P (Hi(X) = Hi(Y ))

= P (hi1(X) = hi1(Y ) ∧ . . . ∧ hir(X) = hir(Y ))

= P (hi1(X) = hi1(Y )) · . . . · P (hir(X) = hir(Y ))

= (1− d) · (1− d) · . . . · (1− d)
= (1− d)r

We were able to write the probability that all events occurred as a product because they
are independent.

Now, we want the probability to have a hash collision on at least a band:

Pc(X,Y ) = P (H1(X) = H1(Y ) ∨ . . . ∨Hb(X) = Hb(Y ))

= 1− P (H1(X) = H1(Y ) ∨ . . . ∨Hb(X) = Hb(Y ))

= 1− P (H1(X) = H1(Y ) ∧ . . . ∧Hb(X) = Hb(Y ))

= 1− P (H1(X) = H1(Y )) · . . . · P (Hb(X) = Hb(Y ))

= 1− (1− (1− d)r) · . . . · (1− (1− d)r)
= 1− (1− (1− d)r)b

By varying d from 0 to 1, we obtained the chart in Figure 5.5. On the X axis the
samples distance d was varied from 0 to 1 and we represented Pc(X, Y ) (the probability
to have a collision on at least one band) on the Y axis. The parameters b and r were set
to 20 and 4.

We can see that the collision probability is very high if the samples have a small
distance (99.58% if the distance is 0.3) and very small if the distance is big (15.01% if the
distance is 0.7).
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Figure 5.5: Probability to have at least a collision depending on the samples distance

5.2.1.4 Computing the minhashes efficiently

A minhash, as defined in Equation 5.4 can be computed by using a permutation
σ. In order to generate quality minhash functions, we will need to be able to generate
random permutations on the set M . Unfortunately, working with random permutations
on large sets in computationally unfeasible. However, we can use a different approach.

In [RU12] it is claimed that a true permutation is not really necessary and functions
of the form (a ·x+ b) mod m are used instead. Although these functions will “map some
pairs of integers to the same bucket and leave other buckets unfilled”, the only conditions
are that m is large enough and there are not too many collisions. However, we will show
that such functions are true permutations if m is prime.

Because M contains all the elements from 0 to m− 1, it is isomorphic with the set
of all congruence classes of the integers for the modulus m, Zm. If m is a prime number,
we can define a function σ : Zm → Zm as in Equation 5.5, with 1 ≤ a ≤ m − 1 and
0 ≤ b ≤ m− 1.

σ(x) = a · x+ b (5.5)

Lemma 2. If m is prime, then σ is a permutation.

Proof. We will first prove that σ is injective:
If σ(x) = σ(y), then a · x + b = a · y + b. By subtracting b we obtain a · x = a · y.

Since m is prime, Zm is a finite field, so there exists an inverse for each element. We will
multiply both parts with a−1 and will obtained that x = y.

Since σ(x) = σ(y) → x = y it follows that σ is injective. σ is also surjective since
its domains and codomain are finite and have the same size.

Being injective and surjective, σ is a bijective function and since Zm is finite, σ is
a permutation.

From Lemma 2, we obtained that instead of generating and storing a random
permutation, it suffices to generate two numbers a and b if m is prime. If the total
number of features is not a prime number, we can set m to be the smallest prime larger
than that number and add a couple of extra features that will never be set.

5.2.2 The clustering algorithm

Like in the previous section, based on Suffix Trees, our algorithm considers all
the items to be nodes in a graph and computes the connected components using the
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disjoint-set forest data structure [Tar75][CLR+01].
To use the disjoint-set forest to compute the connected components of a graph,

we need to traverse the list of edges and perform the union operation on every pair of
vertices connected by an edge. This union will be performed only if the two vertices
don’t already belong to the same component. Since we need to find the set for every
two vertices and perhaps perform a union, the total number of operations will linearly
depend on the number of edges. The problem is that in order to discover all the edges in
the graph of malware samples, it is necessary to compute the Jaccard distance between
every pair of samples.

By using the locality-sensitive hashing technique, we will try to reduce the number
of distance computations, while giving a good approximation of the clusters. The first
part of the algorithm will use the banding technique from subsection 5.2.1.3 to place all
the samples in a group of buckets. Then, we will only compute the distance between
samples situated in the same bucket.

5.2.2.1 Algorithm presentation

Algorithm 15 performs the first part of the clustering task, the construction of the
buckets. The buckets are stored as an array of b dictionaries, one for each band. The
dictionary (a data structure that associates keys to values) maps the hash on a given band
to the list of files that have the same hash on that band.

Algorithm 15 build-buckets(samples, b, r)

Require: An array of samples samples
Require: The number of bands b and the number of rows r
Ensure: buckets, an array of b dictionaries

1: for i = 1→ b do
2: buckets[i]← empty-buckets()
3: end for
4: for k = 1→ |samples| do
5: for i = 1→ b do
6: bandHash← INIT VALUE

7: for j = 1→ r do
8: hV al← hij(samples[k])
9: hash-update(bandHash, hV al)
10: end for
11: add-to-bucket(buckets[i], bandHash, k)
12: end for
13: end for
14: return buckets

The algorithm starts by initializing the array of dictionaries (lines 1-3). Then, for
each sample, the b × r minhash values are computed, and for each band, the hash value
Hi(samples[k]) is computed. This hash value, stored in the variable bandHash is first
initialized for each band (line 6), then updated with the computed minhash value, for
each row, using the function hash-update (line 9). Having the bandHash computed, a
reference to the current sample is added to the bucket containing all the files that have the
same hash value on the current band (line 11). The called function (add-to-bucket)
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takes as parameters the dictionary for the current band, the computed hash value that
will be used as a key in the dictionary and the reference to the current sample, which will
be added in the bucket.

Algorithm 16 is used in the second part of the clustering. It takes as input one
bucket, which is an array of sample references that had a hash collision on at least one
band. Each pair of samples is considered and if two samples have a Jaccard distance
smaller than the threshold θ, their disjoint sets are joined.

Algorithm 16 parse-bucket(bucket, samples, θ)

Require: An array of sample references, bucket
Require: An array of samples samples
Require: A distance threshold θ
Ensure: The disjoint sets for similar samples in the bucket will be grouped together

1: for i = 1→ |bucket| − 1 do
2: for j = (i+ 1)→ |bucket| do
3: i1 ← bucket[i], j1 ← bucket[j]
4: repi ← find-repr(i1)
5: repj ← find-repr(j1)
6: if repi 6= repj then
7: if not cache-search(i1, j1) then
8: d← dJ(samples[i1], samples[j1])
9: if d ≤ θ then
10: union(repi, repj)
11: else
12: cache-insert(i1, j1)
13: end if
14: end if
15: end if
16: end for
17: end for

The most costly operation here is computing the distance between two samples. In
theory, the find-repr and the union operations should be more costly since they have
an amortized complexity of O(α(n)), while computing a distance does not depend on n,
the total number of samples. However, α(n) can take only small values (at most 4, in any
reasonable case), while computing the Jaccard distance means finding the intersection
and the union of two sets, which takes more time.

Because of this cost, we will try to avoid computing this distance when unnecessary.
First of all, if two samples are already in the same cluster (or set), we don’t have to
compute their distance anymore (we check this in line 6). Also, since the same pair of
samples may be encountered in different buckets, we will keep a global cache with all
the pairs for which the distance was already computed and proved to be greater than the
threshold θ. Each pair will be first searched in the cache (line 7) and only if it’s not found,
the distance will be computed (line 8). If the distance that was just computed is greater
than θ, the pair is cached so we won’t have to compute this distance anymore.

Using the build-buckets function in Algorithm 15 and the parse-bucket func-
tion in Algorithm 16, we can finally build the locality-sensitive hashing clustering in
Algorithm 17.
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Algorithm 17 lsh-clustering(samples, θ, b, r)

Require: An array of sets samples
Require: A similarity threshold θ
Require: The number of bands b and the number of rows r
Ensure: An array clusters of the same size with samples that associates each string

with a cluster id

1: for i = 1→ |samples| do
2: make-set(i)
3: end for
4: buckets← build-buckets(samples, b, r)
5: for all bucket ∈ buckets do
6: parse-bucket(bucket, samples, θ)
7: end for
8: for i = 1→ |samples| do
9: clusters[i]← find-repr(i)
10: end for
11: return clusters

The algorithm starts by creating a separate set for each sample (line 2). The sets
corresponding to similar samples will be joined in the parse-bucket function, in order
to compute the clusters. In the first phase, the build-buckets function is called, in
order to place the samples into buckets (line 4). In the second phase, all the buckets are
parsed (line 6) in order to find similar samples and join their sets. Finally, a cluster id
is assigned to each sample (line 9). The cluster id will be the set representative, found
through the function find-repr.

5.2.2.2 Algorithm performance

Algorithm 15, which performs the first phase of the clustering, computes b × r
minhashes for each sample. The time to compute a minhash depends on the number
of features set (because we need to iterate them and find the minimum value based on
the permutation discussed above. We will consider this time a constant t1, because it
does not depend on the number of samples n. The dictionary insertion performed by the
function add-to-bucket (line 11) will also be considered to take constant time, since
the dictionary can be implemented as a hash table. The approximative execution time of
this phase of the algorithm will then be t1 · b · r · n.

The performance of the second phase of the algorithm is harder to estimate, since
the appartenance to the same set for a pair of samples largely depends on the samples
distribution. To simplify the analysis, we will consider that the representatives verifica-
tion in line 6 of Algorithm 16 will mostly fail, so we can give an upper bound of the
algorithm running time. Still, we will consider the caching mechanism, so we won’t have
to compute the distance between the same pair of samples more than once. In this case,
the performance of the second phase of the algorithm is reduced to computing the Jaccard
distance for a fraction of the samples pairs. The time required to compute such a distance
will also be a constant t2, since it only depends on the number of set features for each

sample. Since the number of pairs for n samples is
n(n− 1)

2
, the running time of the
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second phase of the algorithm will be t2 · f(b, r) · n(n− 1)

2
.

All that is left to do is to estimate f(b, r), the fraction of the sample pairs that we
are required to compute the distance for.

Let p : [0, 1] → [0, 1] be the distribution of the distances between the pairs of
samples on the given collection. p(d) will be the estimated percentage of the pairs whose
distances are d. In the banding technique description we have shown that for such a pair
whose distance is d, the probability that the two samples share at least a common bucket
(has a hash collision on at least a band) is 1 − (1 − (1 − d)r)b. This means that for a
given distance d, the number of pairs that we will need to compute the distance for is
p(d) · (1− (1− (1− d)r)b).

The total fraction of the samples required will then be:

f(b, r) =

1∫
0

p(x) · (1− (1− (1− x)r)b)dx (5.6)

Finally, having a formula for f , we can estimate the upper bound for the running time of
the Algorithm 17, in Equation 5.7:

T (n, b, r) = t1 · b · r · n+ t2 · f(b, r) · n(n− 1)

2
(5.7)

The bad news is that the complexity is still O(n2), since the dominant term of the expres-
sion is quadratic. However, we will show further how to make this coefficient as small as
possible.

5.2.2.3 Clusters quality

In order to asses the clusters quality, we will use an external evaluation strategy.
For the same group of samples, we can compute the clusters using the slink algorithm
[Sib73]. Then, for each pair of samples we can see if they were placed in the same cluster
or not by the two algorithms.

• If the two samples are placed in the same cluster by both algorithms we will say we
have a True Positive. The number of True Positives will be denoted by TP .

• If the two samples were not placed in the same cluster by either algorithm, we will
have a True Negative.

• If the samples were placed in the same cluster by lsh-clustering but not by
slink, we will have a False Positive. Their number will be denoted by FP .

• If the samples were placed in the same cluster by slink but not by lsh-clustering,
we will have a False Negative. Their number will be denoted by FN .

From these numbers, we can compute the Precision (P ) and Recall (R) indices.
Since our algorithm will join sets only after computing the Jaccard distance, there

will be no False Positive. If FP = 0, then from the Precision formula (P =
TP

TP + FP
)

P = 1, so we have maximum precision. Still, we might have some False Negatives, since
there might be similar samples with no hash collisions.
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By using the banding technique, we have that the probability for two samples
with distance d = dJ(X, Y ), d ≤ θ to have at least a hash collision is Pc(X, Y ) =
1 − (1 − (1 − d)r)b. Even if such a hash collision does not exist, there might exist a
sample Z, such that dJ(X,Z) ≤ θ, dJ(Y, Z) ≤ θ and both pairs (X,Z) and (Y, Z) have
hash collisions. In this case, the single linkage approach will ensure that X and Y fall
into the same cluster.

The Recall, as the fraction of relevant instances retrieved will then be approximated
with this probability that a collision exists, considering the distance between samples to
be θ, so R ≈ 1 − (1 − (1 − θ)r)b. If we want the Recall to be above a certain threshold,
we can set a maximal admissible error ε and add the constraint R ≥ 1− ε.

In this case, we have:

1− (1− (1− θ)r)b ≥ 1− ε
⇐⇒ (1− (1− θ)r)b ≤ ε

⇐⇒ b · log(1− (1− θ)r) ≤ log(ε)

⇐⇒ b ≥ log(ε)

log(1− (1− θ)r)

From Equation 5.7, we can see that for a fixed r and n, if b increases, the whole running

time increases (formally, we can prove that
∂T

∂b
> 0). This means that we want b to take

the smallest possible value, in order to enforce the maximum admissible error ε, so given
r, θ and ε, b can be computed using Equation 5.8.

b =

⌈
log(ε)

log(1− (1− θ)r)

⌉
(5.8)

Table 5.1 contains some common values that we can use for the algorithm’s parameters r
and b.

Table 5.1: Values of the parameter b for different settings

r 1 2 3 4 5 6 7 8

θ ε b

0.1

0.1 1 2 2 3 3 4 4 5

0.01 2 3 4 5 6 7 8 9

0.001 3 5 6 7 8 10 11 13

0.0001 4 6 8 9 11 13 15 17

0.25

0.1 2 3 5 7 9 12 17 22

0.01 4 6 9 13 17 24 33 44

0.001 5 9 13 19 26 36 49 66

0.0001 7 12 17 25 34 47 65 88

0.5

0.1 4 9 18 36 73 147 294 589

0.01 7 17 35 72 146 293 588 1177

0.001 10 25 52 108 218 439 881 1765

0.0001 14 33 69 143 291 585 1175 2354

The distance threshold θ dramatically influences the growth of b, which in turn
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increases the running time of the algorithm. The good news, from Equation 5.8 and
Table 5.1 is that b grows only logarithmically when ε decreases. This means that we can
set the error as small as we want and still get a reasonable running time.

5.2.3 Parameters optimization

The distances distribution p from Equation 5.6 cannot be computed directly, but
we can estimate it by sampling a reasonable number of random pairs. If we split the
interval [0, 1] into k equal intervals, we can approximate p by a constant, on each small
interval. We will denote by pi, the probability that the distance between two samples

falls into the interval

[
i− 1

k
,
i

k

)
, for 1 ≤ i ≤ k, divided by the length of the interval

(or multiplied by k). Note that we will not count the pairs with distance 1 in the last
interval, since the probability of such a pair to appear in the same bucket is 0. Now, we
can rewrite the fraction f from Equation 5.6:

f(b, r) =

1∫
0

p(x) · (1− (1− (1− x)r)b)dx

=

k∑
i=1

i
k∫

i−1
k

p(x) · (1− (1− (1− x)r)b)dx

=

k∑
i=1

pi

i
k∫

i−1
k

(1− (1− (1− x)r)b)dx

For any given b and r, the fraction f is now easy to compute. Some implementation issues
might appear while computing the polynomial under the integral, since the coefficients
can reach very large values. The recommendation is to use arbitrary-precision integers
and store any rational number as a fraction (nominator and denominator) in order to get
the correct results. Some symbolic calculus software package like Maxima [Sch16] can also
be used here.

The time required to compute a minhash on a sample and the time required to
compute the similarity between two samples are the same order of magnitude. Experi-
mentally, we have determined that t2 = 2t1, so we can use t1 = 1 and t2 = 2. At this
point, if we set the distance threshold θ and the desired error ε, the value for b can be
computed using Equation 5.8 and the running time of the algorithm only depends on the

variable r. In theory, to find the best r we can solve the equation
∂T

∂r
(r) = 0. Since r can

take only small integer values (for practical purposes we have established that r ≤ 8) it
is much simpler to try all the values in range and find the minimum.

Based on our sampled distances’ distribution, we have computed the fraction f for
the most common case, θ = 0.5, ε = 0.001 in Table 5.2. The same table contains the
running time T , for n = 105, n = 106 and n = 107.

As we expected, as r and b increase, the fraction of samples that we need to
compute the distances for decreases. Even for the smallest values, we have f(10, 1) =
16.63 · 10−5 ≈ 0.02%. This means that despite the quadratic complexity of the algorithm,
we have managed to reduce the coefficient of the quadratic term by several orders of
magnitude. Unfortunately, as we increase b and r, the number of minhash functions that
we need to compute also increases, so the running time of the first phase of the algorithm
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Table 5.2: The fraction of samples to compute distance for and the total running time

r b f · 105 T (105) · 10−7 T (106) · 10−7 T (107) · 10−7

1 10 16.63 0.27 17.63 1673

2 25 8.96 0.59 13.96 946

3 52 6.12 1.62 21.72 768

4 108 4.84 4.37 48.04 916

5 218 4.16 10.94 113.16 1506

6 439 3.76 26.38 267.16 3010

7 881 3.50 61.70 620.20 6517

8 1765 3.31 141.23 1415.31 14451

is greater. This reflects on the total running time, so for n = 105 samples, the best
decision is to set r = 1 and b = 10. As we increase the number of samples to a million,
the quadratic coefficient becomes more important, so the best time is obtained for r = 2
and b = 25. If the number of samples increases to 10 million, then we must also increase
r to 3, to get the best performance.

If we increased the number of samples, we can observe that the trend maintains.
For example, if n = 109, the best performance is obtained for r = 6. However, when we
are dealing with such a large collection, other problems may arise, like the fact that the
data might not fit in the main memory.

5.2.4 An improved clustering algorithm

The previous results can be further improved, by proposing several heuristics. Al-
gorithm 17 computes b bands of hashes and for each band, two samples will end up in
the same bucket only if they have the same MinHash value on all r rows. The constant b
can be understood as the number of iterations of the algorithm. If we add more bands,
it means that we have more buckets and more chances for two similar samples to end
up in the same cluster. The number of rows r tells how many times we should split the
collection of samples before starting to compute pairwise similarity.

The b and r parameters can be precomputed using the methodology above and be
fixed for the entire duration of the algorithm, or they can be adapted as the algorithm
progresses. Algorithm 18 is a different way of writing Algorithm 17, emphasizing the ideas
of splitting the samples into groups and deciding if we need to take more iterations or
not. It starts by creating a set for each sample from the input data (lines 1-3). In the
repeat-until loop that follows, a sequence of operations is performed on the samples, until
a termination condition is met (lines 4-18).

Inside the loop, the entire set of samples is split into smaller partitions by the
function split-samples() that is detailed in Algorithm 19 (line 5). For each partition,
every pair of samples is considered for similarity (line 7). First, the representatives of the
two samples are found (lines 8 and 9). If they have the same representative, it means
they already belong to the same cluster so no further step is required for that pair. If
not, we need to compute the distance between the two samples (line 11). If the distance
is smaller than the threshold θ, we just found two similar samples that belong to different
clusters. In this case, the two clusters must be joined together, by performing the union
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Algorithm 18 perform-clustering(samples, θ)

Require: A set of features sets samples
Require: A distance threshold θ
Ensure: An array clusters of the same size with samples that associates each item with

a cluster id

1: for all s ∈ samples do
2: make-set(s)
3: end for
4: repeat
5: partitions← split-samples(samples, 1)
6: for all part ∈ partitions do
7: for all (s1, s2) ∈ part× part do
8: rep1 ← find-repr(s1)
9: rep2 ← find-repr(s2)
10: if rep1 6= rep2 then
11: d← dJ(s1, s2)
12: if d ≤ θ then
13: union(rep1, rep2)
14: end if
15: end if
16: end for
17: end for
18: until termination-condition()
19: for all s ∈ samples do
20: clusters[s]← find-repr(s)
21: end for
22: return clusters

operation on their sets (line 13).
Finally, all the samples in the same disjoint set are assigned to the same cluster,

by labeling them with the same label as the set representative (line 20).
The split must be performed in order to reduce the number of distances to compute.

Without the split step, the total number of pairs for n samples is
n(n− 1)

2
= O(n2). If

the set is split into k partitions, of sizes n1, n2, . . . nk, with n1 + n2 + . . . + nk = n, the
number of distance computations will be:

NrPairs =
n1(n1 − 1)

2
+
n2(n2 − 1)

2
+ . . .

nk(nk − 1)

2
= O(n2

1 + n2
2 . . .+ n2

k)

Assuming the k partitions have roughly the same size n1 = n2 = . . . = nk =
n

k
,

then

NrPairs = O

(
k ·
(n
k

)2
)

= O

(
n2

k

)
(5.9)

Equation 5.9 shows that by splitting the sample into k partitions of roughly the
same size, the number of pairs decreases k times.
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Algorithm 19 split-samples(samplesSet, depth)

Require: A set of features sets samplesSet
Require: An integer depth that represents the number of splits done so far
Ensure: A partition of the input set samplesSet into smaller subsets

1: h← random-minhash-function()
2: partitions← ∅
3: map← new-associative-array()
4: for all s ∈ samplesSet do
5: mh← h(s)
6: map[mh]← map[mh] ∪ {s}
7: end for
8: for all mh, part ∈ map do
9: if split-condition(part, depth) then
10: newParts← split-samples(part, depth+ 1)
11: partitions← partitions ∪ newParts
12: else
13: partitions← partitions ∪ {part}
14: end if
15: end for
16: return partitions

The actual split is performed in Algorithm 19 by the function split-samples.
This function tries to split the given set of samples into several subsets such that the
samples situated in the same subset are more likely to be similar than the ones situated
in different subsets.

The algorithm starts by generating a random MinHash function (line 1). As ex-
plained in the previous section, all we need to do is select two random integers a and
b, in order to have a random permutation. The MinHash function will just compute the
minimum value of the features from the given set, after applying the random permutation,
as in Equation 5.10.

h(s) = min
x∈s

((a · x+ b) mod |M |) (5.10)

The algorithm will also need an associative array (line 3) that represents the map-
ping between MinHash values and the sets of samples that have the same value. In lines
4-7 the MinHash value for each sample is computed and the sample is inserted in the
corresponding set.

In other words, the set of samples received as the function argument is split into
several parts by the MinHash value computed on it. These partitions are processed in
lines 8-15, where the function split-condition() decides whether a partition will be
further split or left as it is. The depth parameter of the function contains the number of
splits performed so far. At each recursive call (line 10), the depth is bigger. The value for
this parameter will be used in the split-condition() function in order to decide if we
must performed a new split.
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5.2.4.1 Heuristics for improving the algorithm performance

There are two elements in the clustering algorithm that were left out so far. These
elements are:

• the termination-condition() function, that decides whether the main loop of
the algorithm should stop or perform another iteration.

• the split-condition() function, that decides for a subset of samples if a new split
is needed or the algorithm should leave it as it is and proceed with the pairwise
distances computation.

The previous clustering technique from Algorithm 17 that uses similar principles for
clustering terminates after a finite number of iterations, that are known at the beginning
of the algorithm. Our number of iterations corresponds to b, the number of bands used,
each containing r rows of MinHashes.

According to this technique, the two functions would be:

• termination-condition = (nr.iterations ≥ b)

• split-condition = (depth ≤ r)

First of all, we will try to come up with a better termination condition. Our
approach is based on the idea that after a couple of iteration, we have more information
about the behavior of the algorithm on the current data set, so the decision to terminate
or not is more informed than a decision taken at the beginning of the algorithm.

The best indicator of the algorithm’s progress is the number of union operations
performed in Algorithm 18, line 13. This operation is only performed if we found two
similar samples that belong to different clusters. In this case, the two clusters will be
joined and the total number of clusters will decrease by one. Since the number of clusters
at the beginning of the algorithm is n (the number of samples) and we will have at least
one cluster in the end, this operation is performed at most n − 1 times (this number is
much smaller in practice).

In Figure 5.6 we have plotted the number of union operations performed by the
algorithm in each iteration. This plot was obtained by clustering a collection of 5 million
samples for θ = 0.25 with split-condition = (depth ≥ 3) with the above settings but
in every other case we experimented the results were similar.

Since the decrease in the number of unions is exponential, we have plotted its
logarithm in Figure 5.7. More precisely, if the number of unions at iteration i is u(i),
Figure 5.7 plots U(i) = log(u(i) + 1). when u(i) drops to 0, U(i) also drops to 0.

The new plot shows that the number of unions performed in each iteration is
decreasing almost monotonically (with just some variations at the end). Moreover, if we
plot the average number of unions in the last 5 iterations, the function becomes truly
monotonic. This means that after a specific number of iterations very few unions are
left to be performed so the results of the algorithm won’t improve too much. Indeed, by
computing the percentage of unions completed after a number of iterations, we obtained:

• 74.07% after the first iteration

• 90.13% after two iterations

• 98.52% after 5 iterations
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Figure 5.7: Number of unions performed in each iteration

• 99.88% after 10 iterations

• 99.98% after 15 iterations

The above experiments lead to the following heuristic for the termination condition:
The algorithm should finish when the number of unions performed in the last iterations is
too small for any significant improvements. A safe termination-condition() function,
based on Figure 5.7 is to stop when the average number of unions performed in the last
5 iterations is smaller than 1.

The split-condition() function can also improve if we don’t impose the split
depth to be the same every time. For small subsets of the samples set the split is not
really necessary, as the number of pairs to be evaluated is also small. Splitting subsets will
separate pairs of potentially similar samples that will delay the clusters joining and will
increase the number of necessary iterations of the algorithm. On the other hand, large
subsets must be split, otherwise a big number of distance computations will slow down
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the algorithm. In the following section, we will try three heuristics for the split condition
and determine experimentally which one achieves better results:

• depth heuristic: split-condition = (depth ≤ r)

• size heuristic: split-condition = (|part| ≥ size1)

• size and depth heuristic: split-condition = (depth ≤ maxDepth∧ |part|
depth

≥ size2)

The depth heuristic will follow the principle in the previous subsection, where a
fixed number of splits were performed in each band (r, the number of rows was constant).

The size heuristic is based on the reasoning that large subsets must be split in order
to reduce the number of distance computations while small sets are better left untouched.
In this case, the split is performed only when the size of the subset is larger than a
threshold.

The size and depth heuristic is an extension of the previous one and also takes
into account the depth of the split. This depth should not exceed a maximum value (this
margin should be larger than the one from the depth heuristic) and also the ratio between
the size of the subset and the depth should be larger than a threshold. By dividing the
size of the subset by the current depth, we are discouraging splits at higher depths and
allow them only if the subset is really large.

5.3 Experimental Evaluation

5.3.1 Experimental results on clustering using Suffix Trees

Both Algorithm 13 and Algorithm 14 have been implemented in C++ and tested
on OpCode strings extracted from real-world malware that were prevalent in the last
quarter of 2013 and the first half of 2014. Several tests were performed:

• We have tested to see if both algorithms produced the same output.

• Some clusters (about 5%) were validated manually to see if the samples in the same
cluster belong indeed to the same malware family.

• The performance of Algorithm 14 was measured in order to prove the linearity on a
system with a 2.40 Ghz processor and 24 GB of RAM memory.

• On a machine with more RAM memory (96 GB), we have tested to see that the
algorithm is scalable and can be used to cluster a large number of samples.

Because Algorithm 13 performs clustering in quadratic time, we were not able to
test it on a large number of samples. For 5000 samples, the average running time was a
little more than an hour and a half. In all the performed tests, quadratic-clustering
and
linear-clustering produced exactly the same clusters. The clusters quality was good,
especially after filtering out the library code.

The function quadratic-clustering in Algorithm 14 produced the running
times from the second column of Table 5.3, also illustrated in Figure 5.8.

For space reasons, in Table 5.3 are shown only a couple of measurements. In order
to create the plot in Figure 5.8, 5 test were run for each value of n, varying from 200 to
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Table 5.3: Running time for quadratic-clustering (Algorithm 13) and
linear-clustering (Algorithm 14)

n Running time (s) Running time (s)

quadratic-clustering linear-clustering

200 16.82 0.53

600 130.49 0.72

1000 316.42 0.89

2000 1095.34 1.35

3000 2417.19 1.90

4000 3861.28 2.43

5000 5645.97 3.00

10000 5.66

20000 10.75

30000 15.98

40000 21.77

50000 26.51

60000 31.56

70000 36.42

80000 41.65

90000 46.86

100000 52.01
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Figure 5.8: Running time for Algorithm 13 varying the number of samples n

5000, using a step of 200. From the table and the plot we observe that the complexity of
the algorithm is quadratic in n, as shown in subsection 5.1.2.1. Also, since the running
time is more than an hour and a half for n = 5000, the algorithm is impractical for a
large number of samples (for 20000 samples, the estimated running time is more than 24
hours).

We have also tested the function linear-clustering from Algorithm 14 for the
same samples, also varying from 200, using a step of 200. Since the algorithm proved
to be much faster, we didn’t stop at 5000, but continued the tests to 100000, as shown
in Table 5.3. The plot for the entire range of values is shown in Figure 5.9. The plot
confirms that the algorithm is linear for the average case.
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Figure 5.9: Running time for Algorithm 14 varying the number of samples n

One disadvantage of the linear clustering algorithm is the memory consumption.
On a 64-bit machine, the suffix tree takes about 12 GB of RAM.

We have also tested the algorithm on another system with more memory and
managed to cluster 250000 samples in 137 seconds. This test shows that Algorithm 14
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is a viable solution for clustering large malware collections because the running time for
any quadratic algorithm is impractical for collections larger than 100000 samples.

5.3.2 Clustering results with LSH optimization

We have experimented the clustering algorithm on a collection of over one million
malware samples, from which we extracted 130000 unique sets of features. In this section,
we will consider the number of samples n = 130000, as the identical samples can be easily
eliminated.

The first thing that we tested was the quality of the obtained clusters. We have
used the methods described in the theoretical section in order to compute the recall and
see if the maximum admissible error ε matches the theoretical results. For θ = 0.5 and
r = 2, we have tried various values for ε and computed b based on them. Then, we ran the
clustering algorithm and computed the real error εexp = 1−R. The results are presented
in Table 5.4.

Table 5.4: Comparison between the theoretical estimation and the practical measurement
for the error ε

ε 0.1 0.05 0.01 0.001 0.0001

b 9 11 17 25 33

εexp 0.056 0.027 0.0044 0.0017 0

Next, the performance of the entire clustering algorithm was measured. We have
maintained the common settings θ = 0.5, ε = 0.001 and used for r and b the pairs (1, 10),
(2, 15), (3, 52), (4, 108) and (5, 218). The collection size n was varied from 5000 to 130000,
by 5000.

For space reasons, Table 5.5 only shows some of the values. The five cases (r ← 1..5)
are also plotted in Figure 5.10.

Table 5.5: The running time of the clustering algorithm

n r = 1 r = 2 r = 3 r = 4 r = 5

5000 0.10 0.21 0.45 1.04 2.41

30000 0.74 1.54 3.36 7.63 17.43

55000 1.48 3.07 6.55 14.91 34.46

80000 2.34 4.71 9.98 22.77 52.33

105000 3.21 6.39 13.45 31.14 71.58

130000 4.15 8.06 17.06 39.67 91.75

Figure 5.10 shows that for n ≤ 130000, the complexity of the algorithm is perceived
to be linear, because the coefficient of the quadratic term is very small.

We wanted to see if we can improve the algorithm even further by parallelizing
it. Indeed, the first phase can be run in parallel because the minhashes can be computed
individually for each sample and we only need a synchronization mechanism when inserting
samples into the buckets. In the second phase, the buckets can be treated in parallel, the
only synchronization being required on the disjoint set forest operations.
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Figure 5.10: Running time of the clustering algorithm

In Figure 5.11 we will show the running time of the algorithm for r = 5, b = 218
on 1, 2, 4 and 8 threads.
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Figure 5.11: Running time of the clustering algorithm on different numbers of threads

The experimental results show that even more performance can be squeezed out of
the lsh-clustering function if parallelism is used.

During the performance measurement we have also counted how many times we
had to actually compute the distance between two samples. If we had to compute c such

distances for n samples, given the b and r parameters, then fexp(b, r) =
2c

n(n+ 1)
is the

experimental measurement for the fraction in Equation 5.6, that was theoretically esti-
mated in Table 5.2. Table 5.6 will compare the theoretical estimations with the measured
values.

The measurements show that we have to compute the distance for even fewer
pairs that was estimated theoretically (fexp < f). The result was expected, since in the
theoretical estimation we didn’t account for the fact that the pairs of samples already in
the same cluster will be skipped.
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Table 5.6: Comparison between the theoretical estimation and the practical measurement
for the fraction f

r r = 1 r = 2 r = 3 r = 4 r = 5

f · 105 16.63 8.96 6.12 4.84 4.16

fexp · 105 14.99 6.09 3.37 2.36 1.92

5.3.3 Clustering collections of multiple millions

The experimental evaluation for the technique described in subsection 5.2.4 was
performed on a collection of over 10 million distinct sets of features extracted from binary
programs (both malware and clean samples). For improved results, we have also extracted
a larger number of n-grams, by analyzing the entire code of each application.

For each heuristic, we wanted to chose a good threshold before comparing it with
the other heuristics. The threshold was chosen by experimenting different values on the
first 1, 2, 3, 4 and 5 million samples of the collection.

For the depth heuristic, the clustering algorithm was run for depth ≤ 3, depth ≤ 4
and depth ≤ 5. The results are presented in Table 5.7 and Figure 5.12.

Table 5.7: The running time of the clustering algorithm for depth heuristic

n depth ≤ 3 depth ≤ 4 depth ≤ 5

1 · 106 425.2 441.4 543.6

2 · 106 1202.1 1158.8 1394.2

3 · 106 2497.8 2084.1 2128.8

4 · 106 4075.7 3203.4 3447.1

5 · 106 6425.9 4651.6 4740.6
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Figure 5.12: Running time of the clustering algorithm for depth heuristic

The three plots in Figure 5.12 show that the running time of the algorithm is slightly
better for depth ≤ 4 than for depth ≤ 5 and significantly better than for depth ≤ 3.
Indeed, for depth ≤ 3 there were large partitions not split, that caused a significant
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number of pairwise distance computations. Note that the shape of this plot resembles
more a quadratic than a linear function. For depth ≤ 4 and depth ≤ 5 the partitions
are sufficiently split but in the depth ≤ 5 the increased number of splits led to a higher
number of iterations (48 for 5 million samples, as opposed to 37 in the depth ≤ 4 case)
and overall a greater running time.

The size heuristic, that choses to split a subset only when its size is greater than
a threshold obtained better running times than the depth heuristic, according to Table
5.8 and Figure 5.13. The plot shows that the performance is affected by the choice of the
threshold but not greatly. The best performance was obtained for size ≥ 50, by a small
margin.

Table 5.8: The running time of the clustering algorithm for size heuristic

n size ≥ 25 size ≥ 50 size ≥ 100

1 · 106 298.5 310.8 342.4

2 · 106 1023.8 946.2 927.7

3 · 106 1888.9 1834.7 1843.1

4 · 106 2744.5 2572.4 2592.8

5 · 106 3625.4 3527.9 4536.5
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Figure 5.13: Running time of the clustering algorithm for size heuristic

The size and depth heuristic provided the best results, as shown in Table 5.9 and
Figure 5.14. The best results were obtained if we decided to split a subset only if the
ration between its size and the number of splits performed so far is at least 50. The
thresholds 25 and 100 also provided good performance but the experimental evaluation
showed that for 25 there are too many splits and for 100 too few.

After determining the optimal setup for each heuristic, we ran them on the entire
collection of 10 million samples and compare the running times among them.

The running times for the three heuristics are presented in Table 5.10 and Figure
5.15. The times are detailed, considering the time required to compute MinHash values
in order to split the samples (t1) and the time required to perform pairwise computations
(t2).
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Table 5.9: The running time of the clustering algorithm for size and depth heuristic

n
size

depth
≥ 25

size

depth
≥ 50

size

depth
≥ 100

1 · 106 211.3 165.8 227.3

2 · 106 738.6 552.7 745.9

3 · 106 1502.1 1119.2 1688.5

4 · 106 1976.2 1784.0 2522.2

5 · 106 2556.7 2492.8 3834.1
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Figure 5.14: Running time of the clustering algorithm for size and depth heuristic
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Figure 5.15: Running times of the clustering algorithm for 10 million samples

Figure 5.15 shows that the depth and size heuristic have the best performance,
spending the least time on both computing MinHashes and computing distances. The
size heuristic spent more time on computing MinHashes but still has a better overall
performance than the depth heuristic.

The depth and size heuristic found 3,603,251 cluster in the 10 millions samples
collection. The number of clusters found by the depth heuristic and the size heuristic
are 3,603,268 and 3,603,277. Since the difference between the smallest and the biggest
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Table 5.10: The running times of the clustering algorithm for 10 million samples

depth size depth and size

t1 4978.5 6189.8 4431.5

t2 7607.7 4745.6 4346.9

total time 12586.2 10935.4 8778.4

number of clusters is less than 0.0007%, we can conclude that all 3 heuristics give results
of the same quality and should only be compared in terms of performance.
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Figure 5.16: Performance comparison between the three heuristics

Finally, the overall performance for the best setting of the three heuristics is plotted
in Figure 5.16 where we see that the best approach is the depth and size heuristic.

5.4 Chapter conclusions

In order to analyze large programs collections we need to split them into clusters,
each cluster containing similar samples so only some representatives need to be further
analyzed.

Classical clustering algorithms involve computing the distance between each pair of
samples in the collection. For large collections of millions or even billions samples, these
distance computations alone would take too much time for the algorithm to be of any
practical value.

A clustering algorithm based on Ukkonen’s Generalized Suffix Tree was given and
we proved both theoretically and experimentally that it is linear in the string size and in
the number of samples on the assumption that the average cluster size is constant.

The other proposed clustering technique was based on the concept of Locality-
Sensitive Hashing. The thesis contribution is a formal technique for selecting the optimal
parameters for LSH in order to reduce the number of distance computations to a minimum.
This technique allowed clustering 10 million samples in a few hours.

The following contributions were presented in this chapter:
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• an almost-linear clustering algorithm for OpCode strings based on Suffix Trees;

• a technique for selecting the optimal parameters for Locality-Sensitive Hashing in
order to improve clustering performance;

• two clustering systems based on Suffix Trees and Locality-Sensitive Hashing, able
to cluster several million unique samples in a few hours;

This chapter is based on the following published work:

• Ciprian Opris,a, George Cabău, and Gheorghe Sebestyen Pal. Malware clustering
using suffix trees. Journal of Computer Virology and Hacking Techniques, pages
1–10, 2014. ([OCSP14a])

• Ciprian Opris,a, Marius Checiches, , and Adrian Năndrean. Locality-sensitive hash-
ing optimizations for fast malware clustering. In Intelligent Computer Communica-
tion and Processing (ICCP), 2014 IEEE International Conference on, pages 97–104,
Cluj-Napoca, Romania, 2014. IEEE. ([OCN14])

• Ciprian Opris,a. A minhash approach for clustering large collections of binary pro-
grams. In Control Systems and Computer Science (CSCS), 2015 20th International
Conference on, pages 157–163, Bucharest, Romania, 2015. IEEE. ([Opr15])
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Chapter 6

Clustering-based Malware Analysis

6.1 Multi-centroid Cluster Analysis

The previous chapters showed how to extract code features from binary programs
and how to perform cluster analysis based on these features. Clusters are very helpful in
malware analysis tasks, as the similar samples are already grouped together. A human
analyst can simply analyze a few representatives from each cluster and infer a verdict for
an entire cluster. This section will provide an automated methodology for selecting the
representatives for a cluster in order to minimize the human work.

6.1.1 Clustering and Verdicts

We will denote by S, the set of all feature sets extracted from the sample programs.
The recurring issue in malware analysis is the verdicts assignments. Each sample should
be given a verdict, that can be clean or infected, as in Equation 6.1.

verdict : S → {clean, infected} (6.1)

A distance function d, as in Equation 6.2 will compute the dissimilarity between
two samples.

d : S × S → [0, 1] (6.2)

For instance, the extracted features can be a set of n-grams, as detailed in the
previous chapters. In this case the Jaccard distance can be used. However, the reasoning
will be similar for any metric distance defined on S that takes values between 0 and 1.

For such a metric d, we will make the following assumption: for two samples
A,B ∈ S the probability they will share the same verdict is:

P (verdict(A) = verdict(B)) = 1− d(A,B)

2
(6.3)

Basically, Equation 6.3 states that two samples that are very similar (the distance
between them is small) are likely to share the same verdict. However, if the samples are
completely dissimilar (d(A,B) = 1), no assumption can be made (the probability will be
0.5).

The first step for minimizing the manual work of assigning verdicts to each sample
is to cluster them. We will use the single linkage approach [Sib73], in order to ensure
that each pair of samples that are similar enough will end up in the same cluster. More
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formally, for a given distance threshold θ, ∀A,B ∈ S such that d(A,B) ≤ θ, we will have
cluster(A) = cluster(B). For dealing with a large collection of samples, we will use the
locality-sensitive hashing approach from the previous chapter.

Each cluster can be interpreted as a connected graph, G = (V,E), where V ⊂ S
is the set of all features sets associated to the samples in that cluster. Two nodes are
connected by an edge if their distance is smaller than the threshold θ: E = {(u, v) ∈
V × V | d(u, v) ≤ θ}. Also, each edge will be weighted. The weight function is the
distance between the two nodes, as in Equation 6.4.

w : E → [0, 1]

w((u, v)) = d(u, v)
(6.4)

The biggest issue with the single linkage approach is the chaining effect. Sample
A can be similar with B and B can be similar with C, while A and C are not necessarily
similar. The issue is illustrated in Figure 6.1, where we have used simple lines to represent
distances smaller than the threshold θ and dashed lines for larger distances.

B

A
C

Figure 6.1: Chaining effect illustrated

The single linkage approach would place the nodes A, B and C from Figure 6.1
in the same cluster. To minimize the amount of work required to assign verdicts for all
samples, a researcher can be asked to assign verdicts only for some of the elements of
a cluster. Then, by association, the verdict can be extended to the neighboring nodes
in the graph. Because of the chaining effect, we will only allow verdict extension to the
neighboring nodes. For instance, if we have a verdict given by a human for the node A,
we can expand the verdict to the node B, but we won’t expand it further from B to C,
so we will have to request further investigations for sample C. If we asked the human
to analyze the sample B, the verdict can be directly extended to both nodes A and C,
reducing the human work to a single analysis.

Another issue may arise for the cluster in Figure 6.1 if A and C will be given
different verdicts (e.g. A is declared clean and B infected). In this case, further human
investigation is necessary in order to establish the correct verdict for B. However, if A
and C were given the same verdict, the verdict for B could be automatically inferred with
a high degree of confidence.

By generalizing the above issues to any graph, we can define the two main problems
that the next section will try to solve:

• Given a cluster of possibly malicious programs, select a subset of samples to be
manually analyzed so that the rest of verdicts can be inferred by neighborhood
associations.

• For a cluster where some of the samples already have verdicts (given by humans
or automated systems), determine if the rest of the verdicts can be automatically
inferred or there are conflicts that need to be addressed manually.
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6.1.2 Multi-centroid Selection Algorithm

Several clustering algorithms use the concept of centroid. For instance, the k-means
algorithm [M+67] determine a set of centroids, then groups the remaining points around
them, by proximity. Such centroids can be used as representative points for the cluster.
However, hierarchical clustering methods, such as single linkage do not use centroids.

In order to manually analyze the most relevant samples, we would like to determine
one or more centroids for every cluster. The rule that we have established in the first
section, to infer verdicts only for the direct neighbors of the analyzed nodes will require
a subset of samples, such that each sample in a cluster is either a centroid or is adjacent
to one.

This problem of finding such a set of centroids is called in literature the minimum
dominating set and has been proved to be NP-hard [HL90]. It can be linearly reduced to
the set cover problem [Kan92] which already has a (1 + log |V |)-approximation [Joh73].
The problem was also proved not be (1 − ε) log |V |-approximable for any ε > 0 [Fei98].
An exact algorithm has been published by van Rooij and have a complexity of O(1.5048n)
[vRNvD09].

The (1 + log |V |)-approximation algorithm was adapted from [Joh73] to find a set
of centroids for a given graph in Algorithm 20.

Algorithm 20 find-multiple-centroids(G)

Require: A cluster of samples, represented as a graph G = (V,E)
Ensure: The set of centroids, C ⊂ V

1: C ← ∅
2: NotReached← V
3: for all v ∈ V do
4: Neighb[v]← {v} ∪ {u ∈ V | (v, u) ∈ E}
5: end for
6: while NotReached 6= ∅ do
7: c← arg max

v∈NotReached
|Neighb[v]|

8: C ← C ∪ {c}
9: crtReach← Neighb[c]
10: NotReached← NotReached \ crtReach
11: for all v ∈ crtReach do
12: Neighb[v]← Neighb[v] \ crtReach
13: end for
14: end while
15: return C

The algorithm starts by initializing the set of centroids with the empty set (line 1)
and the set of nodes that have not been reached yet with V (line 2). For each node, we will
build a neighborhood set, comprised of itself and all the other nodes directly reachable
from it (line 4).

While the set of nodes that weren’t reached yet is not empty, the node with the
highest neighborhood is selected as a new centroid (lines 7-8). Its entire neighborhood is
then eliminated from the list of nodes not reached yet (line 10) and from the neighborhoods
of its neighbors (line 12).
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The greedy part of the algorithm is the selection of the next centroid (line 7) as the
node with the highest neighborhood, considering only the nodes not yet reached. This
heuristic tries to eliminate as many nodes as possible from the NotReached set at each
step. The smaller number of steps, the smaller the number of centroids for that cluster
will be.

For each iteration of the algorithm, at least one vertex is eliminated from the
NotReached set, so we have at most |V | iterations. In each iteration, the vertex with
the largest neighborhood is selected (line 7), also in O(|V |) steps, so the complexity so
far is O(|V |2). The subtraction of the currently reachable set from the neighborhoods
(line 12) has a running time proportional with size of crtReach, assuming the sets are
implemented as look-up tables. However, each node will only be eliminated once from the
neighborhoods, so this operation also takes O(|V |2). We conclude that the running time
of Algorithm 20 is quadratic in the cluster size.

After a set of centroids is selected and some verdicts are assigned to each of them,
the verdicts can be extended to all the nodes in the graph. When all the verdicts for
the centroids agree (all of the centroid samples are clean or all of them are infected),
the problem is trivial, as every node in the graph will share the same verdict. If some
centroids are given different verdicts, there will be at least one contradictory edge (the
two ends of the edge will have different verdicts). Since the graph is connected, there will
either be two centroids that are directly connected and have different verdicts, or there
will be a non-centroid node adjacent to both a clean and an infected centroid.

The aforementioned contradictions may appear for two reasons:

• some verdicts were incorrectly assigned

• some nodes that are connected by an edge are in fact not similar

To discern between the two cases and to fix the graph verdicts, further human
intervention is required. An analyst can identify incorrectly assigned verdicts and fix
them or he can remove some edges of the graph in order to separate it into smaller
connected components with uniform verdicts.

6.2 Semi-automated Verdicts Assignment

The model described in the previous section labeled each node with a single verdict:
clean or infected. The new approach will work with a fuzzy model: each node will be
labeled with a real number from the interval [−1, 1]. Every node v ∈ V will have an
associated label l(v). Given two thresholds θ1 and θ2, such that −1 < θ1 < 0 < θ2 < 1,
we can interpret the labels in the following way:

• a node v, such that l(v) ≤ θ1 corresponds to a clean file

• a node v such that l(v) ≥ θ2 corresponds to an infected file

• if θ1 < l(v) < θ2, the verdict is uncertain

For a cluster of samples represented as a connected graph, we will give the following
definitions:

Definition 2. An edge (u, v) ∈ E is called balanced in respect to a given labeling l :
V → [−1, 1] if |l(u)− l(v)| ≤ d(u, v) (the absolute difference between the labels of the two
nodes should not exceed their distance).
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Definition 3. A vertex v ∈ V is called balanced in respect to a labeling l if all its
adjacent edges are balanced. The set of all balanced vertices for a labeling l of a graph will
be denoted as B(V, l) ⊆ V . The set of unbalanced vertices will be B(V, l) = V \B(V, l).

Definition 4. A graph G = (V,E) is called balanced in respect to a labeling l if all its
vertices are balanced in respect to that labeling (B(V, l) = V ).

Labeling verdicts with a real number between -1 and 1 offers the possibility to
interpret them as a degree of certainty. For instance, if an analysts is sure a given sample
is malicious, it will be labeled as 1. Malicious actions observed in a controlled environment
like a virtual machine will also indicate that the sample is likely to be malware, but
the label value will be smaller (like 0.9), as some non-malicious action may be falsely
interpreted as malicious by heuristics. Detection of the anti-virus engines might also
indicate maliciousness with a varying degree of confidence (depending on the individual
verdict from each engine and its known false positives ratio). Similarly, a sample declared
by a human to be clean or a component from a popular operating system may be labeled
with -1, while a sample not detected by any anti-virus engine and prevalent in the market
will receive a negative value (it is likely to be clean) but smaller in module. The labeling
in the previous examples was performed by empirical rules but a more rigorous model can
be given using the probability theory.

Whichever method we choose for assigning initial labels to a cluster of samples,
they must be reconsidered after analyzing the similarities between the samples in the
cluster. Informally, we can state that similar samples should have close labels. Formally,
we can use the definitions above and request that the graph associated with the cluster is
balanced. To achieve this goal, the original labels should be modified as little as possible,
until the graph becomes balanced. In this section we will give an algorithm to balance a
verdicts graph.

The algorithm comprises several iterations and stops only when the graph is bal-
anced. The key idea is that unbalanced nodes send messages to each other through
unbalanced edges. At each iteration, each unbalanced node adjusts its label according to
the messages it receives from its neighbors.

At the beginning of each iteration, the message queue for each node empties (line
3). Then, for each edge of the graph we check if the absolute difference between the
labels of its adjacent nodes is greater than their distance (line 5). If it is, the edge is
unbalanced, so the nodes u and v send each other a message containing its current label
and their similarity (one minus the distance between them).

In the final part of the iteration, if a node received any message, the function
average-msg will compute the weighted average of the labels it received, using the
similarities as weights. Then, the label of the current node is updated using the equation
in line 12. This equation computes a linear combination between the previous label value
and the average of the messages received from the neighbors. The constant λ is called
the transfer factor and decides how much the new label is influenced by the neighbors. A
small value for λ assures that the labels don’t change too much between iterations.

Theorem 3. The balance-graph function in Algorithm 21 terminates in a finite num-
ber of iterations.

Proof. The algorithm terminates when all the nodes of the graph become balanced.

Lemma 3. Let l1 and l2 be the labeling functions for two consecutive steps of Algorithm
21. Then, ∀v ∈ B(V, l1), l2(v) ≤ max

u∈B(V,l1)
l1(u)− c for some constant c.
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Algorithm 21 balance-graph(G, d, l0, λ)

Require: A cluster of samples, represented as a graph G = (V,E)
Require: A distance d : V × V → [0, 1]
Require: An initial labeling of the nodes l0
Require: A transfer factor constant 0 < λ < 0.5
Ensure: A new labeling of the nodes l, such that the graph G is balanced in respect to

it

1: l← l0
2: while |B(V, l)| 6= |V | do
3: Msg[v]← ∅,∀v ∈ V
4: for all (u, v) ∈ E do
5: if |l(u)− l(v)| > d(u, v) then
6: Msg[u]←Msg[u] ∪ {(l(v), 1− d(u, v))}
7: Msg[v]←Msg[v] ∪ {(l(u), 1− d(u, v))}
8: end if
9: end for
10: for all v ∈ V do
11: if |Msg[v]| > 0 then
12: l(v)← (1− λ) · l(v) + λ · average-msg(Msg[v])
13: end if
14: end for
15: end while
16: return l

Proof. Let s = min
(u,v)∈E

d(u, v) be the smallest distance between two vertices in the graph.

Since d is a metric, we know that d(u, v) = 0 ⇐⇒ u = v, so s > 0.
Let lM = max

v∈B(V,l1)
l1(v) be the maximum value for the labels of the unbalanced

nodes.
For an unbalanced node v, we will call active neighbors, the neighboring nodes that

are also unbalanced and send messages to v in the current iteration of the algorithm.
We will assume that ∃v ∈ B(V, l1) such that l2(v) > lM − λ · s and show that this

assumption leads to a contradiction. There are two cases:

• l1(v) is higher than all the labels of the active neighbors of v

• l1(v) has at least an active neighbor with a higher label

Case 1: l1(v) is higher than all the labels of the active neighbors of v.
In order for a neighbor u to send a message to v, the constraint from line 5 must

be enforced, so
|l1(u)− l1(v)| > d(u, v) (6.5)

Since for this case, the label of v is higher than the labels of all the active neighbors,
including u, l1(v) > l1(u) so |l1(u) − l1(v)| = l1(v) − l1(u). Also, d(u, v) ≥ s, so the
inequality in Equation 6.5 becomes:

l1(v)− l1(u) > s (6.6)

⇒ l1(u) < l1(v)− s (6.7)
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Equation 6.7 states that each node that sends a message to v has the label smaller
than l1(v)− s. The weighted average of the messages will also be smaller than l1(v)− s,
so the equation that updates the label from line 12 will become:

l2(v) = (1− λ) · l1(v) + λ · average-msg(Msg[v])

< (1− λ) · l1(v) + λ · (l1(v)− s)
= l1(v)− λ · s
< lM − λ · s

Case 2: l1(v) has at least one active neighbor with a higher label.
In this case, for a node u with the higher label (l1(u) > l1(v)) to send the message,

the difference between their labels should be higher than s (using the same reasoning that
led to Equation 6.7). If l1(v) > lM − s, then l1(u) > l1(v) + s > lM - contradiction, since
lM is the maximum value for the label of an unbalanced node in the current iteration. It
turns out that l1(v) ≤ lM − s. From the update equation in line 12, knowing that the
weighted average of the received messages cannot exceed lM , we have:

l2(v) = (1− λ) · l1(v) + λ · average-msg(Msg[v])

≤ (1− λ) · l1(v) + λ · lM
≤ (1− λ) · (lM − s) + λ · lM
= lM − (1− λ) · s

Since λ < 0.5, we have that 2λ < 1 ⇐⇒ λ < 1 − λ ⇐⇒ −(1 − λ) < −λ. Then
the inequality above turns into:

l2(v) ≤ lM − (1− λ) · s < lM − λ · s

In both cases we have reached a contradiction so @v ∈ B(V, l1) such that l2(v) ≥
l1(vM) − λ · s. This means that ∀v ∈ B(V, l1), l2(v) < lM − λ · s. If we denote c = λ · s,
we obtain ∀v ∈ B(V, l1), l2(v) ≤ max

u∈B(V,l1)
l1(u)− c, which concludes the proof.

Lemma 3 states that the maximum label of the currently unbalanced nodes will
decrease by at least a constant c, in each iteration. However, a node with a higher label
that was previously balanced may become unbalanced, so the maximum unbalanced label
for the entire set of vertices might increase. Figure 6.2 depicts such a case.

v1

-1

v2

0

v3

0.45
0.5 0.5

Figure 6.2: Example of a situation where a balanced node becomes unbalanced

The graph has 3 vertices, v1, v2, v3, with d(v1, v2) = 0.5 and d(v2, v3) = 0.5. For
the constant λ we will use the value 0.1. In the current state, l1(v1) = −1, l1(v2) = 0 and
l1(v3) = 0.45. In this state, only the edge (v1, v2) is unbalanced, because |l1(v1)− l1(v2)| =
1, while d(v1, v2) = 0.5. The edge (v2, v3) is balanced, since the label difference is only 0.45,
while the distance between the nodes is 0.5. In this iteration, max

u∈B(V,l1)
l1(u) = l1(v2) = 0.

In the current step of the algorithm, a message with the value −1 will be transferred
from v1 to v2 and a message with value 0 will be transferred from v2 to v1. The new labels
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will be:

l2(v1) = (1− λ) · l1(v1) + λ · l1(v2) = −0.9

l2(v2) = (1− λ) · l1(v2) + λ · l1(v1) = −0.1

The label for v3 will not change because v3 was balanced, so l2(v3) = l1(v3) = 0.45.
After the label for v2 changes, we will have |l2(v2) − l2(v3)| = | − 0.1 − 0.45| = 0.55 >
d(v2, v3), so v3 becomes unbalanced. For the new labeling, max

u∈B(V,l2)
l2(u) = l1(v3) = 0.45 >

0.
Despite this shortcoming, Lemma 3 gives the following results:

Corollary 1. In each iteration of Algorithm 21, either the maximum value for an unbal-
anced node decreases by at least a constant c, either a previously balanced node becomes
unbalanced.

Lemma 4. If the graph has only two nodes (|V | = 2), Algorithm 21 terminates.

Proof. A graph cannot have a single unbalanced vertex, since an unbalanced node involves
an unbalanced edge and an edge has two vertices. This means that at any given time,
either both nodes are unbalanced, either both are balanced. In the second case, the
algorithm terminates so there is nothing left to prove.

While both vertices are unbalanced, according to Lemma 3, their maximum label

decreases by at least a constant c. This means that after at most

⌈
2

c

⌉
steps, the algorithm

either finishes or the maximum label decreases by 2 (reaching −1). Let’s denote the two
vertices of the graph with v1 and v2, with l(v1) ≤ l(v2). Since the minimum value a label
can have is −1, we have −1 ≤ l(v1) ≤ l(v2) ≤ −1, so l(v1) = l(v2) and the graph becomes
balanced.

Note the importance of the constant c in Lemma 3: if we managed to prove that
the maximum value decreases, but not by a constant factor, then the maximum value can

decrease in step k by
α

2k
. Since

∞∑
k=1

α

2k
= α, the maximum value will not decrease by a

value larger than α after any finite number of steps.

Finally, we can prove the theorem by induction after n = |V |, the number of nodes
in the graph.

The basis case, for n = 2 follows from Lemma 4.
The inductive step: knowing that Algorithm 21 terminates for any graph of size n

after a finite number of steps, prove that it also terminates for any graph of size n+ 1.
Let G = (V,E) be a graph with |V | = n + 1. During the execution of Algorithm

21, the graph can be in one of the following two states:

1. a vertex with the maximum label value is balanced

2. any vertex with the maximum label value is unbalanced

After each iteration of the algorithm, the graph can switch or remain in the same state.
If the graph is always in state 1, the balanced vertex will not participate at all

in Algorithm 21, so the algorithm will run only on the remaining n nodes. Using the
induction hypothesis, the algorithm terminates for any graph of size n, so it will also
terminate in this case.
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If the graph switches eventually to state 2, according to Lemma 3, the label with the
maximum value lM will decrease by at least a constant c. If any other vertices v remain,
with a label l(v), such that lM − c < l(v) < lM , they will either become unbalanced at
some point, or they will never participate in the algorithm, so by induction hypothesis,
it terminates. After such a vertex becomes unbalanced, we use again Lemma 4 to prove
that its label will get smaller than lM − c. So, after a finite number of iterations (that
we will call a step), the algorithm either terminates or the maximum label value in the

entire graph decreases by a constant c. After at most

⌈
2

c

⌉
steps, the maximum label

value decreases to −1, so the algorithm must terminate.

The fact that the algorithm terminates shows that there always exists a verdicts
assignment for a cluster of samples, such that the graph is balanced. Indeed, if we use
the same verdict (the same label) for every sample, the graph will definitely be balanced
because the absolute difference between the labels of every two nodes will be 0. A trivial
solution is then, to assign the same verdict to each sample.

We will design a fitness function that evaluates how well did the verdicts assignment
task performed. Informally, we can state that a verdicts assignment is good if the graph
becomes balanced and the verdicts are not very different from the ones we started with.
Formally, we will compute the root mean square of all these differences, as in Equation
6.8. We will denote by l0 the initial labels and by l the final labels, such that the graph
is balanced.

F (l, l0) =

√√√√∑
v∈V

(l(v)− l0(v))2

|V |
(6.8)

The smaller F (l, l0) is, the better is the labeling l.
As we stated, before, a trivial solution is to assign the same value for each label,

l(v) = x,∀v ∈ V . In this case, Equation 6.8 becomes:

F (l, l0) =

√√√√∑
v∈V

(x− l0(v))2

|V |

The minimum value for this function is achieved when the numerator of the fraction,
F1(x) =

∑
v∈V

(x − l0(v))2 achieves its minimum. x can be found by solving the equation

∂F1

∂x
(x) = 0.

∂F1

∂x
(x) = 0

⇐⇒
∑
v∈V

2(x− l0(v)) = 0

⇐⇒ |V | · x =
∑
v∈V

l0(v)

⇒ x =

∑
v∈V

l0(v)

|V |
(6.9)
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The fitness value when all the labels have the same value x computed above will
be called the trivial fitness. In the following section we will show experimentally that the
fitness value obtained by Algorithm 21 is better than the trivial fitness.

6.3 Experimental Evaluation

6.3.1 Experimental results on multi-centroid cluster analysis

We have tested the algorithm presented in the first section of this chapter on a
collection of more than one million clusters built using the single linkage approach from
more than 20 million unique samples. The tests ran on a machine with Intel i7 vPro
processor at 2GHz with 8GB of RAM.

For Algorithm 20 we are interested on how much the human effort was reduced,
by computing the size of the centroids for different cluster sizes. Since the number of
centroids is influenced by the cluster shape, not only by the cluster size, we have split
the clusters into groups of similar sizes and computed the average number of centroids for
each group. Figure 6.3 shows the results of this algorithm, in terms of cluster sizes and
performance.
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Figure 6.3: Analysis of the results for Algorithm 20

The average number of centroids found by Algorithm 20 in a graph of size n is
shown in Figure 6.3a. Although the trend line shows a linear dependency, the slope is
only 5.37 ·10−2 so the amount of samples in cluster that require manual analysis is greatly
reduced.

Figure 6.3b confirms the theoretical analysis of the algorithm’s complexity and
shows its quadratic running time. For most clusters, finding the centroids requires less
than two milliseconds.

6.3.2 Experimental results on semi-automated verdicts assignment

We have tested the semi-automated verdicts assignment algorithm on a collection
of more than 200000 clusters built using the single linkage approach from more than 20
million unique samples.
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The only theoretical result we have is that the algorithm terminates (from Theorem
3) so we are interested at least in an empirical estimation of the performance.

For various transfer factors λ ∈ {1

2
,
1

4
,
1

8
,

1

16
}, Figure 6.4 plots the number of

iterations of the algorithm against the graph size n.
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Figure 6.4: Number of iterations for various λ

Two observations can be made for this figure:

• For a fixed λ, the number of iterations is linear in n.

• The number of iterations is higher for smaller values of λ.

In order to observe the correlation between
n

λ
and the number of iterations we have

drawn the plot in Figure 6.5. Empirical evidence also suggest linearity.
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Figure 6.5: Number of iterations against
n

λ

The previous results showed that decreasing λ, the performance of the algorithm
drops (the number of iterations increases). Figure 6.6 shows that smaller values for λ lead
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to better results, as the value of the fitness function decreases for smaller transfer factors.
Figure 6.6 also shows the value for the trivial fitness, obtained by assigning each sample
the same label. Regardless of the choice of λ, Algorithm 21 always obtained better results.
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Figure 6.6: Fitness value for n = 100, while varying λ

Experimental results show that the choice of the transfer factor should be a trade-
off between performance and the quality of the results.

6.4 Chapter Conclusions

This chapter showed some solutions for reducing the amount of manual work per-
formed by malware analysts while classifying large collections of potentially malicious
samples.

The first issue was how to select a subset of representative samples from a cluster
of similar ones, such that every other sample is similar with at least a sample that was
selected. The problem was reduced to the minimum dominating set, a known NP-hard
problem that allows some approximating algorithms.

The other issue was to find a model where partial information about a set of samples
can be used to infer verdicts for each of them. For the chosen model, we presented an
algorithm that infers a verdict for the samples where such an inference is possible or
requires manual analysis where it is not possible.

Experimental results showed that the number of iterations for the designed algo-
rithm is linear in the graph size, so it has an overall polynomial complexity (this fact was
not yet formally proven).

The following contributions were presented in this chapter:

• a system for selecting the most representative samples from a cluster for advanced
analysis;

• a technique for inferring the verdicts for new samples based on their similarity with
known samples;

The chapter is based on the following published work:
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• Ciprian Opris,a, George Cabău, and Gheorghe Sebestyen Pal. Multi-centroid
cluster analysis in malware research. In EVOLVE 2015 International Conference,
Iasi, Romania, 2015. ([OCSP15a])

• Ciprian Opris,a, George Cabău, and Gheorghe Sebestyen Pal. Semi-automated
verdicts assignment for potentially malicious programs. In Intelligent Computer
Communication and Processing (ICCP), 2015 IEEE International Conference on,
Cluj-Napoca, Romania, 2015. IEEE.([OCSP15b])
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Chapter 7

A Scalable Approach for Detecting
Plagiarism

This chapter describes a complete system able to detect plagiarism cases in Android
markets. Although the chapter describing software similarity concepts dealt with the
plagiarism issue, the scalability was not a concern. On real-world markets of applications
like Google Play, the amount of samples exceed one million [War13]. Computing pairwise
similarities for finding plagiarism cases would be equivalent to searching the needle in the
haystack. We propose new data structures and algorithms that are able to:

• retrieve applications that are similar to a given one

• retrieve all clusters of applications that are similar to each other and weren’t devel-
oped by the same entity

Our system is able to output pairs of applications suspected of plagiarism, where
further analysis (manual or automatic) can confirm or infirm the verdict.

7.1 Attack Vectors for Plagiarizing Mobile Applications

This section will summarize the attack techniques used for plagiarizing Android
applications. We will take into account the entire applications market environment, since
a simple comparison between applications is not enough. For instance, we will assume
that the goal of the attacker is to make profit. If the cost and effort for plagiarizing and
publishing the cloned application is comparable to the cost and effort for developing a
new legitimate one, the attack is not likely to happen. Even if this cost is a fraction (like
10%) of the development cost for a new app, it is still more profitable to develop than
to plagiarize, since cloned apps are usually short-lived (they are soon reported and taken
down from the market).

Another valid reason for reusing the code of an existing application is to spread
malware. According to [ZJ12], 86% of the malware samples are “repackaged versions of
legitimate applications with malicious payloads”. This means that detecting repackaged
applications will help discover new malware.

In 2007, Roy and Cordy wrote a comprehensive survey [RC07] on software cloning.
Although their scope goes beyond Android and mobile applications, their taxonomy can
successfully be applied in our case. The authors of the survey identified four types of
cloning, the first three being based on textual similarity, while the last one considers
functional similarity:
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• Type I:“Identical code fragments except for variations in whitespace and comments”.
Since whitespace and comments are not considered when producing bytecode, no
plagiarism detection system that relies on already compiled applications will be
affected by this type.

• Type II:“Structurally/syntactically identical fragments except for variations in iden-
tifiers, literals, types, layout and comments”. Some plagiarism detectors take into
account the name of methods, classes or packages (like the Symbol-Coverage tech-
nique from [PNNRZ12]). Official tools like ProGuard [L+09] allow developers to
eliminate these types of literals from their applications in order to make them smaller
and more resistant to reverse engineering. Our proposed system will not take into
account the literal names, so it is unaffected by this type of cloning.

• Type III: “Copied fragments with further modifications”. Besides cloning, code-level
modifications are introduced manually or automatically. PANDORA [PM13] is a
proof-of-concept tool designed to apply obfuscation techniques to the Android byte-
code in order to make it different from a syntactic point of view. Depending on the
obfuscation level, similarity functions based on n-grams or Abstract Syntax Tree are
still able to detect common elements between the original and the plagiarized appli-
cation. The difficulty mainly consists in balancing the true positives and the false
positives rate. A small similarity threshold will detect more plagiarism cases but
will also flag some legitimate apps as being plagiarized. A high similarity threshold
will avoid most of the false positives but will also miss some of the clones.

• Type IV: “Two or more code fragments that perform the same computation but im-
plemented through different syntactic variants”. It is generally undecidable [Tur36]
if two programs produce the same output on any given input. Even human experts
will not always agree if a pair of samples is a plagiarism case or just a reuse of the
same idea.

Since the approach in this section is based on the binary code found in the classes.dex
file, it is not affected by Type I and Type II cloning. Sometimes the delimitation between
Type IV and Type III clones might not be clear, as one would need to decide whether
a piece of code is re-implemented or simply obfuscated. In what follows, we will con-
sider Type IV changes only those changes performed by humans, while code-level changes
performed by automated system will be classified as Type III, regardless of their sophis-
tication. Type IV clones are difficult to detect using only statical analysis and difficult to
prove. Although the general problem of identifying Type IV clones is equivalent to the
halting problem [Tur36], there are particular cases where automated analysis can still give
valuable insights. If only some parts of the code are re-written, while the others are left
intact or simply obfuscated, the remaining parts can still trigger a high similarity score.
The quantity of manually re-written code is also correlated with the development cost
for the attacker: making few changes would be cheap, but the risk of being detected is
high, while making too many manual changes would be impractical. Even if all the meth-
ods of an application are re-implemented, the clone can still be detected using structural
features, if the classes structure and hierarchy is left unchanged.

In a 2012 paper [PNNRZ12], the authors also described two levels of obfuscation:
level 1 only addresses changes to the symbol table (this corresponds to a type II cloning
from Roy’s taxonomy), while level 2 considers a number of added methods with no func-
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tionality (this partially covers type III). According to the authors, only level 1 obfuscation
has been encountered in practice.

Detecting type III clones depends on the nature and the number of changes applied
to the original code. The approach in this paper is based on OpCodes n-grams, a method
robust to most of these changes. Bellow, we will enumerate the type III cloning approaches
from [RC07] and see how the current approach handles them.

• near-miss clones : non-identical code fragments that keep the syntactical structure.
Since the OpCode includes only the operation to be performed, not the operands,
a code fragment will be abstracted as a sequence of operations, that will remain
identical, in this case.

• gapped clones and non-contiguous clones : some code segments are inserted or
deleted. The success of the n-grams approach is highly dependent on the amount
of changes. If enough segments of at least n consecutive instructions are preserved,
the clone will still be detected. If a significant amount of code is altered this way,
the clone will evade detection, but the effort for the attacker will also be higher. A
clone with a large number of changed code fragments may also be categorized as
type IV clone, which is out of our scope.

• structural clones and function clones : the syntactic structure of the program is
modified. In the Android case, some classes can be moved from one package to
another, or some methods can be moved from one class to another. Also, package
and classes can be split or joined. Since our abstraction considers an application
to be a set of methods, such structural changes do not modify the abstract view.
The only changes that can affect our approach is to move blocks of code between
methods.

• reordered clones : the order of some code segments is changed, such that the code
semantics is preserved. Two methods will be compared as unordered sets of n-grams.
The only n-grams that will differ will be the ones that cross the border between two
segments. For instance, if the sequence of operations ABCDEFGH is changed into
EFGHABCD (the two halves are swapped), and we extract 2-grams (n = 2), the
only different 2-gram will be DE, that will be replaced by HA, while the remaining
2-grams (AB, BC, CD, EF , FG and GH) will remain the same.

The applications similarity functions in the next subsection will output a similarity
score, based on the amount of common code, between two applications. Since type I and
II clones produce identical features, the similarity score will be 100%, so there will be
no issue in detecting them. For type III clones, however, the similarity threshold (the
lower bound, above which a pair of applications will be suspected as plagiarism) must
be chosen such to maximize detection while avoiding false positives. The problem is that
many Android applications contain a large amount of library code. It is not uncommon
for an Android application to be com prised of more than 90% (sometimes even more
than 99%) library code. Two different applications may look very similar because they
are using the same library, so even if we set the threshold at 90%, we can’t avoid the false
positives.

Our approach will try to identify library code and disregard it while computing the
similarity score. Some library code was labeled manually, while most of it was identified
because it appeared in multiple applications from different developers. A possible attack
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against this method is to publish multiple plagiarized versions of the same application
under different developer IDs. If enough different versions will be found in the market,
an automated system will automatically label the entire application code as library and
will not identify further plagiarism cases. This attack is viable, since creating a new
developer account is relatively inexpensive (25$). A mitigation to this attack is to assign
a reputation score to each developer, based on the number of application he published,
the user ratings for those applications and the amount of time he has been in the market.
A code fragment will only be flagged as library if the sum of the reputation values for the
developers that use it exceeds a threshold. This will not make the attack impossible, but
will increase the cost for the attacker enough for the plagiarism not to be profitable.

7.2 Applications Similarity Functions

This section deals with the similarity issue and proposes two methods for computing
the similarity between applications: shallow similarity and deep similarity. Both methods
are based on the applications code and use the concept of n-grams discussed in a previous
chapter.

A similarity function is a function that takes as input two applications and outputs
a real number between 0 and 1, as in Equation 7.1. If sim(A1, A2) = 1 it means that the
two applications have the same non-library code, while a similarity of 0 means that they
are completely different (except for library code).

sim : A×A → [0, 1] (7.1)

Definition 5. We will say that two applications A1, A2 ∈ A represent a plagiarism
case iff sim(A1, A2) ≥ θp. θp ∈ [0, 1] is a constant called plagiarism threshold.

The set A is the set of all applications in a collection. An application is represented
as a set of methods: A = {M1,M2, . . . ,Mk} Mi ∈ M,∀i ∈ 1, k. The set M is the set of
all the unique methods found in the collection’s applications. We will also represent each
method as a set of n-grams. An n-gram, as discussed in the first section is a sequence
of n consecutive OpCodes from a method. The set of all n-grams from the collection’s
methods will be denoted by G.

7.2.1 Publishers Identification and Library Code

In order to publish an application in the Android market developers need to create
an account [And14a]. Currently, there is a one time fee of 25$ for creating a new account,
“to encourage higher quality products on Google Play (i.e. less products with SPAM)”.
A developer may publish as many applications as he wants from the same account. An
application is uniquely identified by a package name and is self-signed with a “certificate
whose private key is held by the developer” [And14b]. In order to update an existing
application, the new version must have the same package name and be signed with the
same certificate.

Since the publisher name can be easily changed in the developer’s account, we will
rely on the following two facts when identifying the publishers:

• If two applications have the same package name, they belong to the same publisher.

• If two applications are signed with the same certificate, it means that the signers
had the same private key so they must be the same entity.
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The above assumptions don’t hold if the private key of a publisher is leaked or if the
certificate’s algorithm is insecure. On this matter, we have identified several applications
that are still signed using the MD4 hash algorithm that was already proved to be insecure
[Leu08]. However, most applications use MD5 or SHA for hash in their certificate.

In what follows, we will consider pub : A → N, a function that assigns a publisher
id to each application. If pub(A1) = pub(A2), it means that the applications A1 and A2

have the same publisher.
We will now give the definition for library code. Informally, we will consider library

code a piece of code that is widely used, usually by many publishers. To improve the
system’s accuracy, some n-grams and methods may be manually marked as library code.
The following definitions will formally illustrate the concepts of library n-grams and library
methods.

Definition 6. The set of library n-grams is a set GL ⊂ G that contains all the n-grams
found in at least θGL different methods and the n-grams manually marked as library code,
as in Equation 7.2. The set of non-library n-grams will be denoted by G? = G \ GL.

GL = {g ∈ G | |{M ∈M | g ∈M}| ≥ θGL} ∪ LG (7.2)

θGL is a chosen threshold for library n-grams and LG is the set of manually chosen
library n-grams. For performance reasons, we won’t associate the n-grams with publishers
and will relay only on the number of methods they appear into.

Definition 7. The set of library methods is a set ML ⊂M that contains all the methods
found in at least θML1 different applications or used by at least θML2 publishers and the
methods manually marked as library code, as in Equation 7.3. The set of non-library
methods will be denoted by M? =M\ML.

ML ={M ∈M | |{A ∈ A |M ∈ A}| ≥ θML1}
∪ {M ∈M | |{pub(A) | A ∈ A ∧M ∈ A}| ≥ θML2}
∪ LM (7.3)

θML1 and θML2 are a chosen thresholds for library methods and LM is the set of
manually chosen library methods.

In order to mitigate the attack described in the previous section, where a plagiarized
application can be re-published using multiple accounts so that the entire code will be
flagged as library code, we can alter Equation 7.3 in the following way:

ML ={M ∈M | |{A ∈ A |M ∈ A}| ≥ θML1}

∪

M ∈M
∣∣∣∣∣∣

∑
P∈{pub(A)|A∈A∧M∈A}

reputation(P ) ≥ θML2


∪ LM (7.4)

Basically, in Equation 7.4, instead of counting the number of distinct publishers,
we add their reputation values. The reputation function is computed for a given publisher
based on the user ratings and the number of downloads for their published apps. The cost
for creating a large number of high-rated user accounts is high enough to discourage this
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attack. The threshold θML1 is larger than the highest number of applications published
by a single developer. This way, an attacker cannot force our system to flag all the
application’s methods as library code by publishing θML1 versions of it using a single
account. In theory, it is possible to get beyond this threshold using several accounts and
publish a large number of clones with all of them, but this kind of behavior may raise
other suspicions.

In the rest of this paper we will consider that each application in our collection has
a reasonable number of non-library methods. An application with too few non-library
methods (less than a given threshold) will be excluded from the collection A as we cannot
find similar applications based on its extracted code.

7.2.2 Shallow Similarity

After formally defining the concept of library code in the previous subsection, we
can now define the shallow similarity between two applications in Equation 7.5.

ssim : A×A → [0, 1]

ssim(A1, A2) =
|{M ∈M? |M ∈ A1 ∧M ∈ A2}|
|{M ∈M? |M ∈ A1 ∨M ∈ A2}|

(7.5)

In other words, the shallow similarity is the Jaccard similarity between the sets
where the library methods have been filtered out. It computes the ratio between common
non-library methods and total non-library methods.

Let A ∈ A be an application. If we denote by A? ⊂ A the subset of non-library
methods from A, A? = {M ∈ A | M ∈ M?}, Equation 7.5 can be rewritten in a simpler
way, in Equation 7.6.

ssim(A1, A2) =
|A?1 ∩ A?2|
|A?1 ∪ A?2|

(7.6)

One disadvantage of this similarity function is that it assumes the attacker will
leave most of the application’s code unaltered. If the attacker uses an obfuscation tool
that slightly modifies the code of each method so at least an n-gram will be altered, the
shallow similarity will fail to recognize the plagiarism. Internally, a method is stored as a
hash on the sorted list of n-grams, so the method hashes won’t be the same.

In [PNNRZ12] it is argued that although advanced obfuscation methods exist,
“their applicability to mobile applications remains unknown due to the specific byte-code
format and the tight resource and energy constraints”. Their model allows the attacker
to add or remove some methods but not to perform modifications at the method level.

For the cases where method-level modifications are performed, our system is still
able to detect the plagiarism cases, by using the deep similarity presented in the next
subsection.

If the average number of non-library methods in an application is m (we have
already denoted with n the number of consecutive OpCodes in the n-grams) and the
applications are represented as sorted lists, the computation complexity is O(m).

7.2.3 Deep Similarity

Deep similarity goes beyond method-level and tries to match the non-identical
methods between the applications based on their n-grams.
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First of all, we will define the similarity between two methods in the same way the
shallow similarity between two applications was defined.

msim :M? ×M? → [0, 1]

msim(M1,M2) =

 0, if |{g ∈ G? | g ∈M1 ∩M2}| = 0
|{g ∈ G? | g ∈M1 ∩M2}|
|{g ∈ G? | g ∈M1 ∪M2}|

, otherwise

(7.7)

The msim function in Equation 7.7 computes the similarity between two methods
using the Jaccard similarity function on the non-library n-grams. Notice that a method
may have all the n-grams in GL (library n-grams) yet not be a library method. If we need to
compute the similarity between two such methods, the denominator of the fraction would
be 0. For this reason, the first branch of the equation states that if the two methods have
no common n-grams, their similarity is be 0.

For practical purposes, we may consider the similarity between two methods only
if it is above a certain threshold (θm). In this case, we will use msim′ instead of msim:

msim′(M1,M2) =

{
msim(M1,M2), if msim(M1,M2) ≥ θm

0, otherwise
(7.8)

If we take a closer look at Equation 7.5 and Equation 7.6, we observe that the
difference between the numerator and the denominator of the fractions consists in the
non-common methods from both A1 and A2. Equation 7.6 can be further rewritten as:

ssim(A1, A2) =
|A?1 ∩ A?2|

|A?1 ∩ A?2|+ |A?1 \ A?2|+ |A?2 \ A?1|
(7.9)

Because shallow similarity works at method-level, it won’t take into account matches
between methods from A?1 \ A?2 and methods from A?2 \ A?1 that have common n-grams.

Given two sets of methods X, Y ∈M?, with X ∩Y = ∅, we can associate each pair
(x, y) with x ∈ X, y ∈ Y with a weight, w(x, y) = msim(x, y). At this point, we can find a
matching between the two sets of methods by solving the maximum weighted bipartite
matching problem (also called the assignment problem). Several polynomial algorithms
exist for this task, the most notable one being the Hungarian algorithm [Kuh55].

The best match value between the sets X and Y will be denoted by bm(X, Y ) and
is expressed in Equation 7.10.

bm :M? ×M? → R+

bm(X, Y ) = max
min(|X|,|Y |)∑

i=1

msim′(xi, yi),

xi ∈ X, yi ∈ Y,
xi 6= xj, yi 6= yj,∀i 6= j

(7.10)

The best match value between the non-common methods of the two applications
A1 and A2 can be added to the fraction’s numerator in Equation 7.6 to compensate for the
non-identical function matches. This new similarity function will be called deep similarity
and will be expressed in Equation 7.11.
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dsim : A×A → [0, 1]

dsim(A1, A2) =
|A?1 ∩ A?2|+ 2 · bm(A?1 \ A?2, A?2 \ A?1)

|A?1 ∪ A?2|
(7.11)

The best match value at the numerator is scaled by 2, because each pair of non-
common methods M1 ∈ A1, M2 ∈ A2 contributes with 2 to the denominator while their
match can contribute to the numerator with less than 1.

Unlike the shallow similarity, deep similarity is able to identify plagiarism cases
even if the attacker performs changes in the code of each method. The drawback is that
the deep similarity function is harder to compute. If the average number of non-library
methods in an application is m, the complexity of the Hungarian algorithm that finds the
best match is O(m3), which is considerably higher than O(m), the cost for computing the
shallow similarity.

7.3 System’s Architecture and Algorithms

The previous section presented the two similarity functions for Android applica-
tions. Shallow similarity is faster to compute while deep similarity is more robust to
obfuscations and both of them work well when they need to check a pair of applications
for plagiarism. Unfortunately, the real-world problems are more difficult than this. One
common use-case is to add a new application to the system and search for all similar
applications belonging to different publishers. Another one would be to output all the
plagiarism cases found in the collection. The system also need to scale well and deal with
a collection of millions of applications.

7.3.1 Data Model

In order to satisfy the scalability requirement we have used a NoSQL database.
Our choice was MongoDB [Cho13]. The data is store into 4 main collections:

• ApkToMet maps the relation between applications and methods. Each item is a
document that stores the application id and the sorted list of method hashes in the
application. The application’s publisher id is also stored here.

• MetToNgr maps the relation between methods and n-grams. For each method, we
will store a sorted list with all the method’s n-grams.

• MetToApk is the reversed index for the ApkToMet collection. If a method is non-
library, the collection will hold all the applications that contain it. Otherwise, a
boolean field of the document will store the fact that this is a library method.

• NgrCount is a simple collection that counts how many times each n-gram appears
in methods.

The reversed index (MetToApk collection) is used for finding similar applications
without checking every item in the ApkToMet collection.

Instead of storing a mapping form n-grams to methods, the last collection will store
a simple count for each n-gram. Storing an entire list of methods for each n-gram would
take up too much space. We will show that we can still find methods similar with a given
one without using a reversed index, by employing the locality-sensitive hashing technique.

The ER diagram (Entity-Relationship) is presented in Figure 7.1.
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Figure 7.1: Data Model ER diagram

7.3.2 Database Construction

Building the database presented in the previous subsection from a raw collection
of applications is no easy task, due to the size of the data. We will use the Map-Reduce
model [DG08] for dividing this task into smaller tasks.

This model involves two functions: map and reduce. map takes as input a raw
data item and produces key-value pairs, through the function emit. The Map-Reduce
framework groups all these pairs by the key then passes to each reducer a key and the
list of values that were emitted for that key. The reduce function should implement the
processing of these value lists for each key. After the reduce phase, the algorithm may
finish or use the results for another map-reduce stage.

Our implementation uses two map-reduce stages for building the entire database,
as in Figure 7.2.

In the first stage, each application is processed by the function map-1 described in
Algorithm 22.

map-1 processes an application and extracts the methods. For each method, a
hash on the sorted list of n-grams is computed by the hash function and added to the
methodHashes list (line 3). Each method is also emitted along with the id of the current
application (line 4). After the list of method hashes has been constructed, it is inserted
into the ApkToMet collection with the application’s id as primary key.

The Map-Reduce framework groups together all the application ids emitted for the
same method. The reducers from the first stage, implemented by the function reduce-1
in Algorithm 23 will receive a method with all the emitted application ids for it.

Algorithm 23 starts by inserting the method’s n-grams in the MetToNgr collection,
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Figure 7.2: Database building

Algorithm 22 map-1(A)

Require: An application A ∈ A
Ensure: A will be stored in the ApkToMet collection
Ensure: All methods will be emitted.

1: methodHashes← {}
2: for all M ∈ A do
3: methodHashes← methodHashes ∪ {hash(M)}
4: emit(M,A.id)
5: end for
6: ApkToMet.insert(A.id,methodHashes)

with the method hash as primary key. The reason we perform the insertion at this point
and not in the map-1 function is that the same method may belong to several applications.
A unique index would ensure it won’t be inserted more than once, but the search would
still be performed every time. The band hashes computed on the method’s n-grams are
also inserted in the database at this point, in order to ensure that similar methods can be
retrieved given a set of n-grams. The locality-sensitive hashing approach will be detailed
in subsection 7.3.5.

Next, the method is inserted in the MetToApk collection. If the method is a library
method (M ∈ML), according to Definition 7 and Equation 7.3, the list of application ids
won’t be stored into the collection, just the information that it’s a library method (line
3).

According to Figure 7.2, the reduce phase in the first stage (reduce-1) is immedi-
ately followed by the map phase from the second map-reduce stage (map-2). Since both
operations work at the method level, they have been joined in Algorithm 23. The map-2
operation is performed in the lines 7-9 and for each n-gram g ∈M , the value 1 is emitted
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Algorithm 23 reduce-1(M,Apps)

Require: A method M ∈M
Require: A list of application ids Apps
Ensure: The method’s n-grams will be stored in the MetToNgr collection.
Ensure: The method M will be stored in MetToApk collection.

1: MetToNgr.insert(hash(M),M,band-hashes(M))
2: if |Apps| ≥ θML1 or |unique-pubs(Apps)| ≥ θML2 then
3: MetToApk.insert(hash(M), IsLibrary = 1)
4: else
5: MetToApk.insert(hash(M), Apps = Apps)
6: end if
7: for all g ∈M do
8: emit(g, 1)
9: end for

for the key g. This ensures that the reducers from the second stage will count the number
of containing methods for each n-gram.

Algorithm 24 reduce-2(g, Lst)

Require: An n-gram g ∈ G
Require: A list of 1s Lst
Ensure: g will be stored in NgrCount collection.

1: NgrCount.insert(g, |Lst|)

The second-stage reducers are described by the function reduce-2 from Algorithm
24 and perform a single operation: count how many times an n-gram was emitted and
insert this information into the NgrCount collection. Since each time an n-gram is emitted
the value 1 is used, the parameter Lst of reduce-2 will be a list containing as many values
of 1 as the number of methods the n-gram g was found in.

7.3.3 Searching for Similar Items

We have established in the previous subsection that both shallow and deep similar-
ity are easy to compute when a pair of samples needs to be checked for plagiarism. The
problem gets more difficult when we are searching for all the applications in the collection
that are similar with a given one or when we are searching for all the pairs of similar
applications. We would like to avoid the naive algorithms where we have to compare the
searched application with every other application in the first case or check every pair of
applications in the second case. This subsection will propose three new algorithms for:

• finding similar items based on shallow similarity

• finding all pairs of similar items based on shallow similarity

• finding similar items based on deep similarity

Each of the following algorithms is based on the Map-Reduce model. Local map
and reduce procedures will be implemented in each one of them. As discussed above,
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map will receive a raw item and emit key-value pairs, while reduce will be called
for each key and the associate list of values and optionally return an output. The
perform-map-reduce function puts it all together by calling map on each item from
the input list and return a list with all the outputs returned by the reducers. Unlike
classical Map-Reduce frameworks, we have designed our system to perform fast similarity
queries so fault tolerance was not an issue. This gives a better performance, since there
is no need to store intermediary results on permanent storage and more flexibility, since
the map and reduce functions need not to be stateless.

7.3.3.1 Finding Similar Apps Based on Shallow Similarity

Algorithm 25 find-similars-shallow(A)

Require: An application A ∈ A
Ensure: A list of applications similar with A

1: procedure map(M)
2: Rec←MetToApk.query(M)
3: if not Rec.IsLibrary then
4: for all B ∈ Rec.Apps
5: emit(B, 1)
6: end for
7: end if
8: end procedure

9: procedure reduce(B,Lst)

10: s← |Lst|
|A?|+ |B?| − |Lst|

11: if s ≥ θp and pub(A) 6= pub(B) then
12: return B
13: end if
14: end procedure

15: return perform-map-reduce(A)

Algorithm 25 receives an application A ∈ A and produces a list with all the similar
applications that have different publishers than A, based on shallow similarity.

The map function is called for each method M ∈ A. The method is searched in
the MetToApk collection (line 2). If M is a non-library method, then each application B
in its list of apps is a candidate for similarity so it will be emitted (line 5).

A candidate B will be emitted once for each non-library method that is common
with A, so the number of elements in the list Lst, the second parameter of reduce will
be equal to this number: |Lst| = |A? ∩ B?|. To compute the shallow similarity as in
Equation 7.6, we will also need the size of the union, for the fraction’s denominator. By
applying the inclusion-exclusion principle, we have:

|A? ∪B?| = |A?|+ |B?| − |A? ∩B?|
= |A?|+ |B?| − |Lst|
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This means that the equation in line 10 correctly computes the shallow similarity
between A and B (s = ssim(A,B)). All we have to do now is to check if this similarity
is above the plagiarism threshold and that A and B have different publishers. If both
conditions hold, B will be added to the list of applications similar with A.

To compute the complexity of Algorithm 25, we will assume that a database query
takes constant time (if it is indexed properly) and that an average application has m
methods. If M ∈ M?, the maximum number of applications in a MetToApk record
is θML1, so the map function will emit at most θML1 values. Since map is called for
each method, the number of operations performed by the first phase of Map-Reduce is
O(m × θML1). In the reduce phase, we need to compute |B?|, or how many non-library
methods has the set B (|A?| can be computed once then cached), so m database queries
will be performed. In the worst-case scenario, the reduce function is called for each
emitted pair, so it will be called O(m × θML1) times. Assuming that θML1 is constant,
the final complexity will be O(m2).

7.3.4 Finding All Pairs of Similar Apps Based on Shallow Similarity

Algorithm 26 find-all-similars-shallow()

Require: The database described in the previous subsection
Ensure: AllSims, a list of plagiarism cases

1: procedure map(M)
2: Rec←MetToApk.query(M)
3: if not Rec.IsLibrary then
4: for all A,B ∈ Rec.Apps, A.id < B.id
5: emit((A,B), 1)
6: end for
7: end if
8: end procedure

9: procedure reduce((A,B), Lst)

10: s← |Lst|
|A?|+ |B?| − |Lst|

11: if s ≥ θp and pub(A) 6= pub(B) then
12: return (A,B)
13: end if
14: end procedure

15: return perform-map-reduce(M)

Algorithm 26 builds a list with all the plagiarism cases found in the database and is
very similar with Algorithm 25. It also has a map phase that processes methods, but the
inputs won’t belong to a single application but will be the entire MetToApk collection (or
the setM). For a non-library method M ∈M?, each pair of applications that contain it
will be emitted with the value 1, for counting (line 5).

The reduce function is identical with the one from Algorithm 25, with the ex-
ception that the key input is a pair, not a single application and the output list will also
contain pairs.
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In order to speed-up, the computations, |A?| and |B?| won’t be computed for every
reducer. Instead, the number of non-library methods for each application can be pre-
computed (also with a Map-Reduce algorithm) and accessed in O(1). The map function
now considers all the pairs of apps that contain the non-library method M ∈ M?, which

number is at most
θML1(θML1 − 1)

2
or O(θ2

ML1). The map phase that needs to call map

|M| times is the most costly part of the algorithm, since both the reduce phase and the
counting of non-library methods for all applications take less operations. The complexity
for Algorithm 26 is then O(|M|× θ2

ML1) or O(|M|) if we consider θML1 to be a constant.

7.3.5 Finding Similar Apps Based on Deep Similarity

This algorithm is split into three parts. Algorithm 27 finds similar methods with a
given one, while Algorithm 28 and Algorithm 29 implement the map and reduce phases
for finding similar applications based on deep similarity.

The function find-similars-methods from Algorithm 27 receives a method M
and outputs a list of methods whose similarity with M is above the threshold θm (from
Equation 7.8). Each item in the list is a pair that contains the similar method and
the actual similarity score. The list is sorted by this similarity in descending order (the
method with the highest similarity being the first).

The idea for finding similar methods is different from finding similar applications,
because we don’t have a reverse index for the MetToNgr collection. We will use locality-
sensitive hashing [IM98] instead. Informally speaking, a locality-sensitive hash is a hash
function where the collision probability for similar items is higher than the collision prob-
ability for dissimilar ones.

In [RU12] it is proved that the collision probability for a minhash is equal with
the Jaccard similarity. A minhash is a function that retrieves the minimum element
from a set, according to a permutation σ: h(X) = min

x∈X
σ(x). A permutation σ on the

set {0, 1, 2, . . . p − 1} can be approximated by σ(x) = (a · x + b) mod p. The collision
probability can be augmented with the banding technique: we will use b × r different
minhash functions, grouped on b bands, each containing r rows. On each band, a band
hash is computed on the results of the r minhash functions. If the Jaccard similarity
between two applications is s, the probability that at least one band hash has the same
value is 1 − (1 − sr)b. Guidelines for choosing the parameters b and r were given in
[OCN14].

Let θm = 0.8. If we pick r = 4 and b = 10, the probability for two methods with
similarity θm to have at least one common band hash is 99.48%. If the similarity between
the two methods is 0.3, the probability drops to 7.81%.

In order to be able to find similar methods with a given one, we will augment the
collection MetToNgr with the b band hashes computed on the non-library n-grams. These
band hashes need to be updated periodically, because an n-gram can move from G? to
GL after adding new applications to the collection. If we keep indexes on all these b band
hashes, we can find similar candidates by querying the collection for items with the same
band hash on each band.

Algorithm 27 begins by querying the database for the current method record. A
list of candidate similar methods is produced, by querying the collection MetToNgr for
records with the same band hashes (lines 2-6). Each candidate except for the actual
queried method is checked for similarity with M and if the similarity is at least θm, the
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Algorithm 27 find-similars-methods(M,A)

Require: A method M ∈ A
Ensure: A list of methods similar with M that don’t belong to A and the associated

similarities

1: candidates← ∅
2: MRec←MetToNgr.query(M)
3: for i = 1→ b
4: rs←MetToNgr.query(bandi = MRec.bandi)
5: candidates← candidates ∪ rs
6: end for
7: results← ∅
8: for all C ∈ candidates \ A
9: s← msim(M,C)
10: if s ≥ θm then
11: results← results ∪ {(C, s)}
12: end if
13: end for
14: sort(results)
15: return results

candidate and the similarity scores are added to the results list. Finally, the result list is
sorted in descending order on the similarity field (line 14) and returned (line 15).

The function find-similars-methods that finds methods similar with the given
parameter M is a useful tool for finding similar applications. The function that performs
this task find-similars-deep is split between Algorithm 28 where we can find the map
phase and Algorithm 29 that contains the reduce code.

The map function from Algorithm 28 receives one of the application’s methods
(M ∈ A) as a parameter and emits applications that are likely to be similar with A, along
with a similarity weight and the information that the method is common with A or is just
similar with one of A’s methods.

If the method M is not a library method, each application B that contains it is
emitted with the weight w = 1 and the information that the method is common to A
and B, common = true (line 5). For each method similar with M that doesn’t belong
to A and is not a library method, all applications that haven’t been used so far for this
method are emitted with the weight w = 2 · s and the information that the method is not
common to A, common = false.

The reason for choosing the weight to be twice the similarity is because the best
match value is also multiplied by two in Equation 7.11. The common field will be used by
the reduce function to treat differently the fact that an emit operation was performed
from a common method or a similar method.

Algorithm 29 describes the second phase of the find-similars-deep function, the
reducers code. The inner reduce function is called for each application B that has a
chance of being similar with A and also receives all the emitted values for it. At this point
we could compute the value dsim(A,B) and decide if the applications are indeed similar
or not. The problem is that this computation is costly, so we want to perform it only for
applications that are very likely to be similar with A.

The denominator of the fraction in Equation 7.11 is easy to compute using the
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Algorithm 28 find-similars-deep(A) - part 1

Require: An application A ∈ A
Ensure: A list of applications similar with A

1: procedure map(M)
2: Rec←MetToApk.query(M)
3: if not Rec.IsLibrary then
4: for all B ∈ Rec.Apps \ {A}
5: emit(B, (w = 1, common = true))
6: end for
7: usedApps← Rec.Apps
8: sims← find-similars-methods(M,A)
9: for all (M ′, s) ∈ sims
10: Rec←MetToApk.query(M ′)
11: if not Rec.IsLibrary then
12: for all B ∈ Rec.Apps
13: if B /∈ usedApps then
14: emit(B, (w = 2 · s, common = false))
15: usedApps← usedApps ∪ {B}
16: end if
17: end for
18: end if
19: end for
20: end if
21: end procedure

Algorithm 29 find-similars-deep(A) - part 2

1: procedure reduce(B,Lst)
2: num← 0, common← 0
3: for all val ∈ Lst
4: num← num+ val.w
5: if val.common then
6: common← common+ 1
7: end if
8: end for
9: s← num

|A?|+ |B?| − common
10: if s ≥ θp and pub(A) 6= pub(B) then
11: s′ ← dsim(A,B)
12: if s′ ≥ θp then
13: return B
14: end if
15: end if
16: end procedure

17: return perform-map-reduce(A)

inclusion-exclusion principle like we did in Algorithm 25 because we can count exactly
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how many common methods were emitted from the common filed of each emitted value
(lines 5-7). Next, we will prove the following lemma:

Lemma 5. The sum of all the emitted weights for a key B in Algorithm 28 is greater or
equal than the fraction’s numerator in Equation 7.11.

Proof. Each time the application B is emitted as potentially similar with A, we either
have a common method (Algorithm 28, line 5), in which case the weight is 1, either the
method belongs only to B and is similar with one of A’s methods (Algorithm 28, line 14).

num =
∑
key=B

w =
∑
key=B

common=true

w +
∑
key=B

common=false

w

= |A? ∩B?|+
∑

M∈A?\B?

∑
M ′∈B?\A?

2 ·msim′(M,M ′)

≥ |A? ∩B?|+ 2
∑

M∈A?\B?

max
M ′∈B?\A?

msim′(M,M ′)

≥ |A? ∩B?|+ 2 · bm(A? \B?, B? \ A?)

From Lemma 5 we have that the variable s computed at line 9 in Algorithm 29 is
greater or equal than dsim(A,B). This means that if s < θp, B cannot be similar with
A. We will only compute the real deep similarity only if s ≥ θp.

7.4 Experimental Evaluation

7.4.1 Algorithms Running Times

We have created the database described in the previous section for a collection
of 1,165,942 Android samples from the Google Play market. The collection comprised
mostly of free apps, but we also had a small budget (a couple of hundreds US dollars) in
order to purchase the most popular paid apps.

The database was created from an initial collection of 1,065,000 samples that grew
as new applications were added. The initial construction took 4 days and 15 hours. After
that, several thousands new samples were added daily.

Table 7.1 shows the total running times of the three functions used for the database
construction. The map-1 function took 76.7 hours or 69% of the total time. From this
time, 94% or 72.1 hours were spent parsing the binary applications in order to extract the
methods and the n-grams. Both reduce-1 and reduce-2 times also contain the time
spent by the framework to build the list of values for each key.

Table 7.1: Running times for database construction

Operation Running time (h)

map-1 76.7

reduce-1 27.7

reduce-2 6.46
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Having the database built, the average running time for finding all pairs of similar
applications based on the shallow similarity (Algorithm 26) takes 2 hours and 37 minutes.

Both searches for similar applications with a given one vary with the number of
methods of the searched sample. If we use the shallow similarity algorithm, the running
time takes from less than a second to a couple of seconds. Deep similarity is more costly,
varying from a few seconds for small applications to a few minutes on average and more
than 10 minutes for large applications.

7.4.2 Similarity Cases Found by the System

Before discussing the results found by the system, we must point out is that the
similarity of two application could indicate different things:

• they both may be using the same framework but with a slightly change configuration
(e.g. a framework for on-line radio but with different addresses from where the
application uses the radio-stream).

• one could be an re-branded version of the other (e.g. the vendor of the first appli-
cation is willingly selling it’s code to another vendor; the other vendor usually only
applies some UI changes to the original app (colors, skin, images, icon, texts, etc).

• finally, one could be a copy of the other one, without any previous agreement between
the two vendors (plagiarism).

Although our goal is to find only plagiarism cases (the third case), the system will
also output some pairs that belong to the first two cases.

The first case should be ruled out by the library code identification that was pre-
viously discussed. In practice, a popular framework that is used by enough different
developers or by many different applications will be marked as library code automatically.
The methods extracted from other frameworks / libraries can be manually set as library
code. However, the system may still have some false alarms for different applications that
use the same uncommon framework.

Unfortunately the second case is almost impossible to rule out automatically. The
difference between a re-branding and a plagiarism case can consist only in some agreement
between the vendors that cannot be inferred by an automatic system and sometimes not
even by a human.

For the plagiarism cases we will also be interested in the monetization techniques
used by the attacker. We have established in the introductory section that one hour could
suffice to create a repackaged app. The 25$ payment is still needed for publication so
there must be methods for getting more money out of a repackaged app. The answer lies
in the modifications performed to the original application. The most common changes
that can easily be applied are:

• if an Adware SDK is used, change the ad sdk unique identifier. This identifier tells
the server where to put the virtual money that are earn by clicking an add. In many
cases this is merely a string that can be easily replaced with another one (for example
the following string represent an add id for Google AdMob SDK: ”UA-99999999-9”)

• add another Adware SDK – preferable one that can offer more money through
advertising. This is a little bit more difficult than the first approach as it requires an
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integration with the application. However, several Ad SDK offers push notification
– a technique that does not require a special integration with the host app, but
only a separate thread that from time to time will alert the user about different
promotional offers. Further more, push notifications does not require the app that
is hosting the SDK to be active for them to work. This actually makes this technique
more expensive (e.g. having push notification usually means more money for the one
that is hosting them) as the user can be spammed continuously with promotional
messages.

• remove some components that are not required (remove some ad SDK or different
payment methods that the app is using).

Table 7.2: Example of application that was plagiarized

Package Vendor Installs Price

com.vectorunit.red Vector Unit 1,000,000 – 5,000,000 ∼2.3 Euro

com.vectorunit.red.bdroid.a12b2f30 Jennifer Nelson 100 - 500 Free

com.vectorunit.redbbzf50 Laura Stone 1000 - 5000 Free

com.vectorunit.red.bdroid.a12b2102 Janet Stofkoper 1000 - 5000 Free

com.vectorunit.red.bdroid.a12b2100 Joshua Parker 1000 - 5000 Free

Table 7.2 shows an example of such a case. The first line represents the original
application. The next ones are different copies of it. In this case the original app was
not free. The copies however were free and bundled with the following Adware SDK:
AirPush, StartApp. Even if all of the copies had different vendors they all share the same
Ad identifier for the two adware SDK; this is a clear indicator that the same entity was
behind this action. Further more, additional permission were added to the repackaged
forms:

• android.permission.VIBRATE

• android.permission.ACCESS_COARSE_LOCATION

• android.permission.ACCESS_FINE_LOCATION

• android.permission.ACCESS_WIFI_STATE

• android.permission.READ_PHONE_STATE

• com.android.launcher.permission.INSTALL_SHORTCUT

• com.android.launcher.permission.UNINSTALL_SHORTCUT

All of these permission were required by the AdSDK. For example, INSTALL_SHORTCUT
offers the AdSDK the possibility of adding icons to the main desktop (each added icon
gives the vendor some money).

To make it even more convincing, the repackaged app had a similar icon with the
original one (actually the mirror image of the original icon).

These results represent the state of the market on May 2013. The fake application
were removed (they usually managed to stay up to 10 - 14 days in the market). Also the
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number of installs and / or price of the original application may have changed during this
time. The names used by the repackaged apps for the vendors are obviously fake (most
likely were chosen randomly).

It’s not clear how much money the ones that created these fake apps gain however,
it’s likely that is more that 25$ per app. Further more, assuming that the users that
installed the fake apps would have bought the original one, than the original vendor
would have gain from 10,000 to 50,000 Euros.

Algorithm 26 ran on the entire collection of 1,165,942 Android samples and found
214,818 pairs of applications whose shallow similarity was above θp = 50%. The total
number of unique samples involved was 44,675. The involved samples were also grouped
into 4047 clusters using the single linkage approach [Sib73].

We have split the similar pairs by the similarity score as in Table 7.3. The first
category contains the pairs with a perfect match (100% similarity on non-library methods),
while the subsequent categories contain the 10% length intervals starting from 50%. The
values are also illustrated in the chart from Figure 7.3.

Table 7.3: Statistics on the similar pairs found in the collection

Interval Nr. pairs Nr. samples

100% 18709 5587

[90% - 100%) 38920 14949

[80% - 90%) 38182 13807

[70% - 80%) 32177 15486

[60% - 70%) 40063 17599

[50% - 60%) 46767 20117
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Figure 7.3: Statistics on the similar pairs found in the collection

For each interval, we have counted the number of pairs with the similarity in that
interval, along with the number of unique samples involved. Since an application A can
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be 95% similar with an application B and 75% similar with an application C, the sum on
the Nr. samples column is greater than the total number of unique samples involved in
the pairs.

The involved samples were also analyzed dynamically for behavior that affects the
user’s privacy. The following undesired actions were found:

• id : Sending the device unique identifier on the Internet.

• e-mail : Sending the user’s e-mail address.

• pass : Different user’s passwords are sent in plain text.

• location: Sending the user’s GPS location.

• phone: Sending the phone number.

• contacts : Sending the contacts from the user’s phone agenda.

For each similarity interval, we have counted how many involved applications per-
form the actions above in Table 7.4.

Table 7.4: Statistics on the similar pairs found in the collection

Interval id e-mail pass location phone contacts

100% 777 24 21 74 18 0

[90% - 100%) 2451 157 88 152 69 1

[80% - 90%) 2291 157 85 133 79 1

[70% - 80%) 2702 186 75 171 92 1

[60% - 70%) 3169 192 97 178 103 1

[50% - 60%) 3643 194 102 240 102 1

Most of the actions from Table 7.4 are attributed to aggressive Adware SDKs that
were introduced by the attacker to gain more financial revenue.

7.5 Chapter Conclusions

We have proposed a new approach for finding plagiarism cases in the Android
applications market. Since the number of current applications is over one million, the
main concern was scalability.

One of the challenges in identifying plagiarized Android applications was that 90%
of the code of a typical app is library code, that is likely to be found in other applications
as well. Another challenge is the fact that most Android developers reuse the code between
their apps, but we don’t want to flag two applications belonging to the same developer
as plagiarized. To address this challenges, the proposed system is able to identify the
applications publishers and to detect and eliminate from analysis the library code.

Two similarity metrics, shallow similarity and deep similarity can be used to com-
pute how similar two applications are. They are both based on feature extracted from
the code, but the shallow similarity works with methods hashes while the deep similarity
also considers similar but non-identical methods based on their OpCode n-grams.
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Although deep similarity is slower to compute, the performance is not an issue
when checking a single pair of applications. Our solution solves the problem of searching
for applications similar with a given one in the entire collection, or even finding all the
pairs of similar items.

A database was designed to store all the collection’s data in a manner that allows
fast retrieval of similar applications. The search is based on the concepts of reversed
index and locality-sensitive hashing and is performed using Map-Reduce algorithms. For
shallow similarity, we can find all pairs similar with a given one or all similar pairs. For
deep similarity, we can perform an approximate search in order to retrieve even heavily
obfuscated clones for a given application.

The designed system was able to handle a large collection of 1,165,942 Android
samples, from which 44,675 unique ones were involved in 214,818 similarity cases. A
dynamic analysis on the involved applications showed that plagiarism not only affects
developers but also the users, by performing actions that affect the user’s privacy.

The following contributions were presented in this chapter:

• two similarity functions for Android applications markets:

– shallow similarity, which is faster to compute;

– deep similarity, a slower but more robust to obfuscations function;

• a scalable architecture based on map-reduce for identifying plagiarism cases in entire
Android markets (millions of applications);

• a description and classification of the attack vectors involved in mobile applications
plagiarism;

• a technique for identifying application publishers in order to avoid plagiarism reports
for applications developed by the same entity.

This chapter is based on the following published work:

• Ciprian Opris,a, Dragos, Gavrilut, , and George Cabău. A scalable approach for
detecting plagiarized mobile applications. Knowledge and Information Systems,
pages 1–27, 2015.([OGC15])
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Chapter 8

Conclusions and Contributions

8.1 Thesis Conclusions

This thesis proposes new techniques for dealing with the overgrowing threat of ma-
licious software. The large number of new samples that appear each day impose automatic
analysis and machine learning techniques.

One important characteristic of the malware ecosystem is that we are dealing with
many variations of the same binaries generated in order to avoid anti-virus detection. To
handle these variations, we must be able to identify similar samples based on charac-
teristics extracted from their code. Several distance metrics were proposed in order to
compute such similarities. They can be categorized according to the underlying model:

• string semantics: a program is abstractly represented as string of OpCodes

• set semantics: a program is represented as a set of OpCode n-grams (which can be
considered abstract composite operations)

• hierarchical structures: the binary code can be split into packages, classes and meth-
ods

For each model, several distance functions were described, analyzed and tested against
real-world programs. For each distance computation, the first step is to parse the file
format and disassemble the program code. The experiments were performed on Microsoft
Portable Executables, .NET programs and Android applications. Each file format has its
own particularities but can be parsed and adapted to work with the proposed distance
functions.

The weighted common n-grams distance, based on set semantics outperformed
other distance functions in terms of Precision and Recall and even obtained better results
in identifying plagiarized student homeworks than a stat of the art plagiarism checker.
The deq distance was proved to be a viable alternative to the edit distance because it can
be computed in linear time, instead of quadratic time and provides similar results. When
extra information like the original code structure (division into classes and methods) is
available, a distance that takes into account such information will provide better results.

The OpCode n-grams become more robust to program obfuscations if we carefully
select which instructions to take into consideration and which to ignore. Unfortunately,
this selection process is not difficult, as the search space for the optimal subset of oper-
ations is exponential. This thesis proposes two selection methodologies based on genetic
algorithms and Particle Swarm Optimization that are able to learn quality selections of
instructions subsets (although not guaranteed to be optimal).
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Being able to compute the distance between two programs is not enough to ana-
lyze large collections. What we need is to split the collection into clusters, each cluster
containing similar samples so only the cluster representatives need to be further analyzed.

Classical clustering algorithms involve computing the distance between each pair of
samples in the collection. For large collections of millions or even billions samples, these
distance computations alone would take too much time for the algorithm to be of any
practical value. This thesis proposes two new algorithms for approximating the clusters
without requiring pairwise distance computations.

The first proposed clustering algorithm works with the deq distance and is based
on the linearity of the Generalized Suffix Tree data structure. Deep nodes in this three
will correspond to groups of strings that have long common substrings so they will be
joined into the same cluster.

The second clustering algorithm is based on Locality-Sensitive Hashing. Although
this clustering model has been proposed before in the literature, the LSH parameters
selection have been left to empirical procedures. Our work provides a technique to select
the optimal parameters based on data distribution.

The Suffix Tree clustering approach managed to cluster 105 samples in less than a
minute but it requires too much memory to scale further. The LSH approach does not
have this limitation and was able to cluster 10 million samples in a few hours.

Having the clusters built, two practical problems were solved in the following chap-
ter:

• given a cluster, select the most representative samples to be further analyzed

• if some of the sample verdicts (clean or infected) were already determined, can we
infer the verdicts for the other similar samples?

The representatives selection problem is NP-Hard and was solved using an approximation
algorithm. The experimental results showed that by selecting the centroids to analyze
further, the amount of work is reduced almost 20 times.

For the verdicts inference, we have designed a propagation algorithm that threats
the cluster as a connected graph and infers the verdicts from the neighboring nodes.

The final part of the thesis presents practical considerations on the scalability issue,
by proposing a complete system able to identify plagiarism cases in the Android market.
Some practical issues are discussed, starting with the motivation and the techniques em-
ployed by the attackers when plagiarizing mobile applications. One of the challenges in
identifying plagiarized Android applications was that 90% of the code of a typical app is
library code, that is likely to be found in other applications as well. Another challenge is
the fact that most Android developers reuse the code between their apps, but we don’t
want to flag two applications belonging to the same developer as plagiarized. To address
this challenges, the proposed system is able to identify the applications publishers and to
detect and eliminate from analysis the library code. The proposed architecture is based
on the Map-Reduce paradigm, in order to ensure scalability and to deal with the fact that
our apps collections is continuously increasing.

The results presented in this thesis show that machine learning and big data make
a great addition to the existing security and privacy techniques. The proposed methods
and algorithms can be applied in order to reduce the amount of manual work in analyzing
security threats and also to deal with the scale of the new emerging threats, for which
classical security solutions are obsolete.
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8.2 Thesis Contributions

8.2.1 Theoretical contributions

• a literature survey describing recent results in the fields of malware research and
machine learning applications (chapters 2 and 3).

• several distance/similarity metrics for comparing binary programs. The proposed
metrics are presented, formalized and tested on real-world programs.

– the deq distance, based on OpCodes strings semantics (subsection 4.2.2). This
distance is faster to compute then the classic edit distance and obtains similar
results. The basic idea is to use the longest common substring concept instead
of longest common subsequence.

– weighted common n-grams, for assigning lower weights to frequent n-grams
when comparing n-grams sets (subsection 4.2.3). The assigned weights help
building a better similarity function that is less prone to false alarms due to
legitimate shared code.

– a hierarchical similarity algorithm, for dealing with structured code (section 4.3).
The algorithm takes into account the hierarchical structure of some programs
(like Android applications) and provides more precise and faster results than
the ones obtained with raw n-grams.

– two similarity functions for Android applications markets (section 7.2). The
similarity functions will consider the whole applications ecosystem, not only
the two compared applications. One of the functions is faster to compute,
while the second one is slower but more robust to obfuscation.

• a method for automatically selecting the most relevant OpCodes for constructing
abstract program representations (section 4.4). The method employs Genetic Al-
gorithms and Particle Swarm Optimization in order to select a subset of OpCodes,
such that the n-grams extracted using only the selected OpCodes provide the best
separation between clean and malicious samples.

• an almost-linear clustering algorithm for OpCode strings based on Suffix Trees (sec-
tion 5.1). A Generalized Suffix Tree can be constructed in linear time and each
node at a given depth corresponds to a common substring of the same length. The
pairwise samples comparison is avoided by linking only the samples situated in the
same nodes, below a threshold depth.

• a technique for selecting the optimal parameters for Locality-Sensitive Hashing in
order to improve clustering performance (section 5.2). Locality-Sensitive Hashing
also avoids pairwise samples comparison by selecting only pairs of samples with
a high probability of being similar. The proposed parameters selection technique
allows finding a balance between the number of computed hashes and the number
of pairwise distance computations in order to reduce the overall computing time.

• a technique for inferring the verdicts for new samples based on their similarity with
known samples (section 6.2). An approximation algorithm for the dominating set
problem is used in order to select the most representative samples from a cluster.
By using the verdicts computed for a subset of the items in a clusters, the remaining
verdicts are automatically inferred using a new propagation algorithm.
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8.2.2 Practical contributions

• a plagiarism detection system for students programming assignments (subsection 4.5.1).
The system uses a compiler to produce binary code and and extracts OpCode se-
quences from it. The obtained results are better than state of the art plagiarism
detectors.

• a detailed analysis of the .NET executables (subsection 4.1.3). The description
includes the file format analysis but focuses on the disassembly process and how to
treat various instructions classes.

• two clustering systems based on Suffix Trees and Locality-Sensitive Hashing, able
to cluster several million unique samples in a few hours (section 5.3). The systems
can perform the cluster analysis faster by relaxing the single linkage condition but
the error percentage can be tuned and can be arbitrarily small.

• a system for selecting the most representative samples from a cluster for advanced
analysis (section 6.1). By analyzing only the selected representatives, the analysis
effort is reduced 20 times and we are still able to determine the verdicts for all
samples in a cluster.

• a scalable architecture based on map-reduce for identifying plagiarism cases in entire
Android markets (millions of applications) (section 7.3). The proposed system can
build a continuously updating database that contains the features extracted from
the entire application market. The database can be queried to retrieve items that
are similar to a given one or to retrieve all pairs of plagiarized apps.

• quality and performance evaluation for all described algorithms and comparison
with state of the art when possible.

The results of this thesis have been disseminated by publishing 4 journal papers
(3 as first author), 11 conference papers (9 as first/unique author), 1 short paper and
3 non-academic papers presented at international conferences for the anti-malware in-
dustry. One of the journal papers is ISI indexed, with an impact factor of 1.782. One
of the conference papers received the Best Paper Award. The publications received 13
independent citations. Some of the technologies developed in this thesis are used in Bit-
defender anti-virus, an award winning product that protects more than 500 million users
worldwide.
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