Data Acquisition Systems Fundamentals

Applications

MIRCEA ALEXANDRU DĂBACAN LIVIU MARIIN VIMAN VLAD BANDE

UTPRESS
Cluj-Napoca, 2022
ISBN 978-606-737-605-0

Mircea DĂBÂCAN
Liviu Marin VIMAN
Vlad BANDE

Data Acquisition Systems Fundamentals

Applications

UTPRESS
Cluj - Napoca, 2022
ISBN 978-606-737-605-0

Editura UTPRESS
Str. Observatorului nr. 34
400775 Cluj-Napoca
Tel.: 0264-401.999
e-mail: utpress@biblio.utcluj.ro
http://biblioteca.utcluj.ro/editura

Director: ing. Dan Colțea
Recenzia: Conf.dr.ing. Septimiu Sever Pop Șl.dr.ing. Ionel Horea Baciu

Pregătire format electronic: Gabriela Groza

Copyright © 2022 Editura UTPRESS
Reproducerea integrală sau parțială a textului sau ilustraţiilor din această carte este posibilă numai cu acordul prealabil scris al editurii UTPRESS.

ISBN 978-606-737-605-0
Bun de tipar: 06.12.2022

1 Sampling Theory

1.1 Background

1.1.1 Signal Spectrum

A periodical signal, of period T, can be decomposed in spectral components, as in the Fourier series (1.1):

$$
\begin{equation*}
f(t)=\sum_{n=-\infty}^{\infty} c_{n} \cdot e^{j n \omega t} \tag{1.1}
\end{equation*}
$$

The Fourier coefficients are:

Figure 1.1 Rectangular pulse train with amplitude A, period T, duty factor $D F$
$c_{0}=\mathrm{DC}$ component; $c_{l}=$ fundamental amplitude; $c_{n}=$ the amplitude of the n th harmonic.

For a rectangular signal of period T and duty factor $D F$, as in Figure 1.1, the Fourier coefficients are:

$$
\begin{gather*}
c_{0}=A \cdot D F \tag{1.3}\\
c_{n}=\frac{1}{T} \cdot \int_{-D F \cdot \frac{T}{2}}^{D F \cdot \frac{T}{2}} A \cdot e^{-j n \omega t} d t=\frac{A}{j n 2 \pi} \cdot\left(e^{j n \pi \cdot D F}-e^{-j n \pi \cdot D F}\right)= \tag{1.4}\\
=A \cdot D F \cdot \frac{\sin (n \cdot \pi \cdot D F)}{n \cdot \pi \cdot D F}=A \cdot D F \cdot \sin c(n \cdot \pi \cdot D F)
\end{gather*}
$$

As evident in (1.4) and Figure 1.2, all spectral components are covered by a sinc type function. Furthermore, $n=k / D F$ harmonics are missing in the spectrum. This is:

Applications

- even harmonics for $\mathrm{DF}=50 \%$
- $\quad 3^{\text {rd }}, 6^{\text {th }}, 9^{\text {th }}$, etc. for $D F=1 / 3$.
- $5^{\text {th }}, 10^{\text {th }}, 15^{\text {th }}$, etc. for $\mathrm{DF}=1 / 5$.
- $10^{\text {th }}, 20^{\text {th }}, 30^{\text {th }}$, etc. for $\mathrm{DF}=1 / 10$ or $9 / 10$ (notice DC component $=\mathrm{DF} * \mathrm{~A}$).

Figure 1.2 Left: 600 Hz rectangular signals with various duty factors (from top to down: $1 / 2,1 / 3,1 / 5,1 / 10,9 / 10)$.

1.1.2 Sampling Rate

Analog signals are continuous, both in "amplitude" and "time" domains. Converting them to digital implies discretizing in both domains.
The amplitude discretization is called quantification. The conversion resolution is the smallest change in the analog value which modifies the digital value.

The "time" discretization is sampling, meaning that the signal is represented by a sample string. Uniform sampling uses constant the time interval between subsequent samples:

$$
\begin{align*}
& T_{\text {sampling }} \tag{1.5}\\
& =1 / f_{\text {sampling }}
\end{align*}
$$

The sampling frequency must obey the sampling theorem (Nyquist):

$$
\begin{equation*}
f_{\text {sampling }} \geq 2 \cdot f_{\max } \tag{1.6}
\end{equation*}
$$

where $f_{\text {max }}$ is the highest frequency in the input signal spectrum.

Under-sampling means using a sampling frequency below that allowed by the sampling theorem, as in Figure 1.3, up. The collected samples do not correctly represent the signal of which were extracted.
Sampling a signal at the Nyquist limit frequency, still does not allow the rebuild of the initial signal. In Figure 1.3, middle, the input signal is sinusoidal, having a single spectral component. Two samples are

Figure 1.3 Under-sampling (up), sampling at Nyquist limit (middle) and oversampling (down) a sinusoidal signal

Applications

collected each period. Depending on the phase shift between the sinus signal and the sampling times, the sampled values are different. The extreme cases are pecking samples at:

- "zero" points of the input signal (as in Figure 1.3, middle).
- maximum, respectively minimum points.

Any intermediate situation is possible.
Choosing a sampling frequency (much) higher than required by the sampling theorem is called over-sampling. The resulting samples represent more correct the original input signal as the over-sampling rate increases. Figure 1.3, down, illustrates a sinus signal over-sampled by a factor of 10 (10 time more than required by sampling theorem, which is 20 times the highest frequency in the spectrum).

1.1.3 Alias

The sampled signal spectrum includes the original signal spectrum and mirror images of it around sampling frequency and its integer multiples.
Alias phenomenon occurs at under-sampling and consists in overlapping the mirror spectrum (most likely the mirror image built around the fundamental frequency) to the original signal spectrum. "Recovering" the initial signal spectrum out of the sampled signal one is impossible in such conditions, so rebuilding of the initial signal cannot be anymore correct.

For infinite spectrum signals (i.e.: rectangle, triangle, etc.) it is impossible to choose a sampling frequency (∞) to obey the sampling theorem. It is preferable to limit the initial signal spectral bandwidth, using an anti-alias (low pass) filter.

Figure 1.4 (up) shows 600 Hz input signals and sampled signals with 10 kHz , 10% rectangular pulses. The middle graphs show the spectra of the input signals, and the lower graphs show the spectra of the sampled signals. The left figures use a rectangular input signal while the right-side figures use a filtered rectangle, keeping only the fundamental, the $3^{\text {rd }}$ and $5^{\text {th }}$ harmonics.
Notice that the vertical scale in spectrum diagrams is linear, in [V].
In the left-side graphs, the sampled signal spectrum overlaps the mirrored spectral images to the initial one. Rebuilding the initial signal by filtering the sampled one is impossible, even using an ideal filter.

In the right-side graphs, the rectangular signal was anti-alias filtered, cutting out harmonics above the $5^{\text {th }}$. The filtering changes the initial signal shape, as shown in the upper-right graph, but avoids alias. The signal can be rebuilt out of its samples, using an output filter identical to the anti-alias one. The errors induced by filtering the input signal are less than the avoided alias ones.

Figure 1.4 Sampling signals and spectra:

- 600 Hz rectangular (left) and filtered rectangular (right)
- Time domain (up), original spectrum (middle) and sampled (down)

Applications

The ideal sampling is multiplying the input signal to a periodical string of Dirac pulses, repeating at the sampling frequency. A Dirac pulse has a time length of 0 , infinite amplitude and closes surface equal to unity. The sampled signal keeps same energy as the input signal: the sample pulses are infinitesimal short in time (0 at limit), but very high amplitude (∞ at limit).

Real sampling circuits peck the instantaneous value of the input signal at the sampling time. That corresponds to multiplying the input signal by a string of periodical pulses, at sampling frequency, with time length as short as possible (but finite) and finite amplitude. The real sampled signal has much lower energy than the initial, analog one.
The resulting sample values are quantified, during the analog-to-digital conversion. The digital signal representation is a string of successive numbers, which can be transmitted, stored, and/or processed, taking the advantages of digital technology (speed, density, computing power, error immunity).

If the analog signal needs to be rebuilt, the digitized string, is converted back to analog and then filtered with an output filter as shown above. Before filtering, the samples are interpolated, for getting back the time continuity and for recovering the energy lost when sampling. Mostly used, the 0 -degree (polynomial) interpolation holds the value of a sample until the next sample is available, similar to a "sample-and-hold" circuit.

Interpolation itself acts as low pass filtering, as seen in Figure 1.5 (compared to the lower-right image in Figure 1.4), the original spectral components recovered the energy.

Figure 1.5 0-degree interpolated signal (up) and spectrum (down)

1.2 Experiment

Figure 1.6 shows the full schematic of the experimental board, but circuits not used in the current experiment are shaded.
U 7 and U8 are linear voltage regulators, providing -3 V and +2.7 V , since AD8592 supports maximum 6 V differential supply voltage.
Pin 5 of AD8592 is the Shut Down signal for the amplifier A; when $L O W$, the output of the amplifier goes HiZ , insulating C_{10}, for the Hold period. D_{l} and R_{6} translate the 5 V logic signal SnH to the $(-3 V \ldots+1.7 V)$ range, compatible with the Shut Down signal requirements.
The board is designed to directly connect to the Digilent Analog Discovery. Channel 2 of the $A W G(W 2)$ generates the input signal, $V_{i n}$. The digital pin DIO10 generates SnH . The scope channels $1+$ and $2+$ are accessible in J 2 , for probing $V_{\text {in }}(\mathrm{J} 10-2)$ and $V_{S H}$ (J8-1).

Figure 1.6 Sample and Hold experimental board schematic

Applications

Figure 1.7 shows the experimental board prepared with scope probe wires for the Sampling experiments. Jumpers on J3-J6 are irrelevant for these experiments. Notice that the same board is used for several other experiments.

1.2.1 Signal Spectrum Experiment

 Set the WaveForms instruments:- WaveGen Channel 2: Square, 600 Hz , Amplitude: 0.5 V , Offset: 0.5V, Symmetry: 50\%
- Scope:
- Set Time, Channels and Trigger as in Figure 1.8.
- View/FFT.
- Click the green arrow, to see advanced options.
- Set FFT as in Figure 1.8.

Figure 1.7 S\&H experimental board Notice the settings effect.

- Change time base and notice the change in the FFT view. The FFT needs a large number of periods in the time view (acquisition buffer) for accurate spectrum computation. At the resulting time base, the time view is difficult to read. A Zoom view is needed.
- View/AddZoom.
- Hoover mouse over the zoom window to highlight the zoomed area in the time view.
- Click (left or right) and drag on the horizontal or vertical axes, to move, respectively zoom in/out. Notice the changes in the Zoom window and of the highlighted area in the main time view.
- You can undock and dock the FFT and Zoom windows.
- You can undock/dock instruments, clicking the graphical symbol in the upper-right corner of the instrument tab.
Modify the Duty Factor in WaveGen. Observe the spectrum, similar to Figure 1.2.

Data Acquisition Systems Fundamentals

Figure 1.8 Rectangular signal: $D F=10 \%$

1.2.2 Sampling rate experiment

- WaveGen Ch 2: Sinus, 500 Hz , amplitude: 1V, offset: 0V, symmetry: 50%.
- Patternsl:
- Add/Signal/DIO10/Add
- Output: PP (Push-Pull)
- Type: Clock
- Edit parameters
- Frequency: 370 Hz ,
- Duty: 1%
- Phase: 0°
- Patterns2: WaveForms software allows multiple instances of the same instrument. A single one can Run at a time; all others are Busy. From Patterns1:
- File/NewPatterns/Clone
- Change Frequency: 1 kHz .
- Patterns3: set Frequency: 10kHz.

Figure 1.9 Setting DIO10 as clock

Applications

- Power Supplies: ON,+5 V and -5 V (If WaveForms reports an "Overcurrent condition" and stops the user power supplies, try starting the supplies one by one: first the positive supply and, after few seconds, the negative one).
- Scope:
- Set Time, Channels an Trigger as in Figure 1.10
- AddChannel/Digital/Signal: DIO10
- View/FFT.
- Click the green arrow, to see advanced options.
- Set FFT as in Figure 1.11. Notice the settings effect.
- Change time base for convenient image in the FFT view.
- View/AddZoom.
- Hoover mouse over the zoom window to highlight the zoomed area in the time view.
- Click (left or right) and drag on the horizontal or vertical scales, to move, respectively zoom in/out. Notice the changes in the Zoom window and of the highlighted area in the main time view.
Run Patterns 1 for under-sampling $\left(f_{\text {samp }}=370 \mathrm{~Hz}\right)$, Patterns 2 for sampling at Nyqusit limit ($f_{\text {samp }}=1 \mathrm{kHz}$) respectively Patterns 3 for oversampling ($f_{\text {samp }}$ $=10 \mathrm{kHz}$). Run Scope in Single mode.
Observe in the time domain that only oversampling allows rebuilding the signal from the samples (higher oversampling rate allows better reconstruction).
Observe in the frequency domain that under-sampling produces frequency components lower than the sampled signal, so these cannot be removed by a LPF to rebuild the original signal. Sampling at Nyquist limit produces a rectangle of same frequency as the input signal, but the amplitude is random (depends on the phase shift between input and sampling signals). Oversampling replicates the original signal spectrum and adds mirror images (direct and reflected) around sampling frequency and integer multiples of it.

Ideally, the rebuild filter needs to keep all frequencies in the input signal spectrum and reject all the mirror images. Higher sampling frequency and lower input frequency range both increase the frequency distance between the highest frequency to keep and the lowest frequency to reject, making the filter task easier.

Also notice that interpolation (even the simple 0 -degree) accentuated the original signal spectrum over the mirror images. (A better interpolation would do even more of that, with the cost of complexity, delay and stability).

Notice that the magnitude of the spectral components is represented at logarithmic scale in Figure 1.11. Chang units from db_{v} to $\mathrm{V}_{\mathrm{rms}}$ to see the linear ratio between original spectral components and mirror ones.

With the logarithmic amplitude scale, many other (residual) spectral lines are visible. These have various origins:

- Mixing products (of type $\left.\left(f_{0} \pm f_{l}\right) / 2\right)$ between the input signal (pure) frequency and all the harmonics of the sampling signal.
- Harmonic distortion due to the finite time of the "sample" phase in the sample-and-hold circuit. (ideally, "sample" time should be null, and the rebuilt signal should be a series of rectangles, without any moment to "follow" the input signal)
- Harmonic distortion of the physical circuits in the schematic.
- Measuring system sampling. The Analog discovery acquires the signals by sampling. The maximum frequency able to be shown in the FFT window is half of the sampling frequency. The Analog Discovery input stage bandwidth is limited, but no anti-alias filtering is done. Negative mirror images reflected by the acquisition sampling process are visible in the FFT view.

Figure 1.10 Under-sampling a sine signal

Applications

- Noise.

All these components define the THD (Total Harmonic Distortion) of the acquisition system. They are only visible on logarithmic scale, but insignificant on the linear scale.

Even small changes in the sampling frequency or duty factor significantly modify the residual spectral components. Edit DIO10 in the Patterns. Set close Min/Max limits for Frequency ($9 \mathrm{kHz} . . .11 \mathrm{kHz}$) and Duty Factor (0%... 2%). Drag cursors within these close limits and observe the effect on the FFT image.

1.2.3 Alias experiment

Set WaveForms instruments:

- WaveGen1 Ch 2: Rectangle, 600 Hz , amplitude: 1V, offset: 0V, symmetry: 50\%.

Figure 1.11 Sampling and rebuilding a signal with 0 -degree interpolation:
Under sampling (up), sampling at Nyquist limit (middle) and oversampling (down). Time views (left) and spectra (right)

- Use Spectrum analyzer, to measure the relative amplitudes of fundamental, $3^{\text {rd }}$ and $5^{\text {th }}$ harmonics of the WaveGen1 signal, as in Figure 1.12: fundamental @ ~600Hz, $3^{\text {rd }}$ harmonic @ ~1800Hz, $5^{\text {th }}$ harmonic @ ~ 3000 Hz :
- View/Components/T1
- Units: Vrms
- Top: 1Vrms
- From WaveGen1: File/NewWaveGen/Empty:
- WaveGen2 Ch 2: Filtered version of the WaveGen1 signal: only the fundamental, the $3^{\text {rd }}$ and $5^{\text {th }}$ harmonics are kept. The signal is generated in the custom mode. After measuring the amplitude of the fundamental, $3^{\text {rd }}$, $5^{\text {th }}$ harmonics in the FFT view of WaveGen1 signal, use them as coefficients in a Math Custom synthesized signal:
- Custom/Edit/Math
- $0.901 * \sin (2 * \mathrm{PI} * \mathrm{X})+0.301 * \sin (2 * 3 * \mathrm{PI} * \mathrm{X})+0.181 * \sin (2 * 5 * \mathrm{PI} * \mathrm{X})$
- Generate
- Save
- Frequency: 600 Hz (Sample Rate is calculated automatically)
- Amplitude: 1 V
- Offset:0V
- Phase: 0°

Figure 1.12 Reading the amplitudes of spectral components

Applications

- Patternsl:
- Add/Signal/DIO10/Add
- Output: PP (Push-Pull)
- Type: Clock
- Edit parameters: Frequency: 10kHz, Duty: 10\%, Phase: 0°
- Power Supplies: ON, +5 V and -5 V
- Scope:
- Set Time, Channels a Trigger as in Figure 1.10
- View/FFT.
- View/AddZoom; adjust zoom view as convenient.

The alias experiment is conducted in two versions:
a. With no interpolation (Figure 1.13) - closer to ideal sampling. Samples are $10 \mu \mathrm{~s}$ short, with null value between samples $(90 \mu \mathrm{~s})$. Scope channel 1 probes $V_{i n}$, channel 2 probes $S n H$. The sampled signal is computed by Mathl (AddChannel/Math-Custom) as product of vin by SnH (divided by the voltage amplitude of SnH signal): Math1 $=C 1 * C 2 / 3.3$.
b. With 0-degree interpolation (Figure 1.14) - real "sample-and-hold, closer to real reconstruction of the samples. The $V_{S H}$ signal repeats $V_{i n}$ for $10 \mu \mathrm{~s}$, then keeps the last value for the next $90 \mu \mathrm{~s}$. Scope channel 1 probes $V_{i n}$, channel 2 probes $V_{S H}$, the sampled (and interpolated) signal.
The alias experiment is conducted over two input signals:

1. Rectangular - As defined for WaveGen1 (up in both Figure 1.13 and Figure 1.14).
2. Filtered rectangular, as defined for WaveGen2 (down in both Figure 1.13 and Figure 1.14).

Change the FFT vertical scale between dB_{v} (logarithmic) and $\mathrm{V}_{\mathrm{rms}}$ (linear). Observe the effect. Explain which are the advantages for each scale.

Data Acquisition Systems Fundamentals

Figure 1.13 Ideal sampling on rectangular (up) and filtered (down) signal

Applications

Figure 1.14 0-degree interpolated rectangular (up) and filtered (down) signal

2 Sample and Hold

2.1 Background

A Sample and Hold circuit follows the input signal during sample period and stores it for all the hold period. The sample period is usually required to be as short as possible, while the hold period needs to cover the AD conversion time. Figure 2.1 shows the input voltage V_{i}, and the output one V_{e}, for an ideal sample and hold circuit.

In Figure 2.2, the switch K is $O N$ during "sample" state, loading capacitor C_{H} to voltage V_{i}. In "hold" state, K is $O F F$ and V_{e} keeps the value it had at the end of "sample" state. $O A_{1}$ and $O A_{2}$ are impedance adapters: $O A_{l}$ provides low output impedance for fast C_{H} loading in "sample" state, the high input impedance of OA_{2} prevents C_{H} discharge in "hold" state.

Figure 2.2 The Sample and Hold circuit
Figure 2.1 Ideal Sample and Hold circuit behavior
 principle

2.1.1 Sample and Hold Circuits Parameters and Errors

Sample and Hold circuits producing error phenomena can be classified considering the behavioral phase they manifest:

2.1.1.1 "Sample" phase

Sample offset - In Figure 2.2, the offset errors of $O A_{l}$ and $O A_{2}$ alter V_{e} value. When "sample" state ends:

$$
\begin{equation*}
V_{e}=V_{C H}+V_{o f f 2}=V_{i}+V_{o f f 1}+V_{o f f 2} \tag{2.1}
\end{equation*}
$$

Gain accuracy - due to the amplifier gain error in "sample" state.
Gain non-linearity - due to the operational amplifiers, but also to the non-

Applications

linearity of passive components implied in overall circuit gain.

2.1.1.2 "Sample" to "Hold" transition

Aperture delay time - the time needed to switch from "sample" to "hold". It is measured from the 50% point of the command signal "hold" transition until the output voltage doesn't follow any more the input voltage.

Aperture uncertainty time or aperture jitter - the variation of the aperture delay time for the same circuit at different transitions (same or different environment conditions).
Charge offset or pedestal - the offset of the output voltage due to the charge transfer between the storing capacitor and the switching circuit parasitic
Figure 2.3 Sample to Hold transition capacity.

Figure 2.4 Hold phase errors

2.1.1.3 "Hold" phase

Figure 2.4 emphasizes the most important errors occurring in the "hold" phase. Each error type is shown, as it would be alone. The cumulated effect of all errors can be seen in the V_{e} evolution.

Droop rate - due to the leakage current of the storing capacitor, but mostly to the "off" switch current and to the butput operational amplifier bias current. It is a linear time function, with $d V_{d} d t$ ratio.

Feedthrough - the quantum of input signal transferred to output during "hold" phase. It is due to the "off" switch finite impedance, but also to other parasitic impedances in the circuit.

Dielectric absorption in the hold capacitor or sag. A typical capacitor model is

Figure 2.5 Typical capacitor model shown in Figure 2.5, where C_{H} is the nominal capacity, $C_{a}, C_{b}, R_{a}, R_{b}$ are the parasitic capacities and resistances. C_{H} is charged fast during sample period, but the parasitic capacities need much more time and tend to redistribute the charge in the "hold" phase, reducing the swing by V_{e} in the previous "sample" phase.

2.1.1.4 "Hold" to "sample" transition

Acquisition time or settling time - the time needed by the sample and hold circuit output to enter (and stay) in an allowable error range around the ideal (final) value, when the circuit switches from "hold" to "sample". Usually defined for a full-scale V_{e} jump.
Hold to sample switching transient damped oscillation or exponential time function.
Figure 2.6 Hold to Sample transition 2.1.1.5 Global defined errors
This category includes errors summing effects from multiple sample and hold circuit behavior phases and manifesting in the global throughput function: from input signal V_{i} to the "hold" phase stored voltage V_{e} :

Throughput offset - the sum of "sample-" and "charge-offset".
Throughput nonlinearity - the sum of charge offset variation and gain nonlinearity. The effect of these two errors cannot be compensated by gain and offset adjustment.
Dynamic nonlinearity - defined as total "hold" phase throughput function nonadjustable error. It includes the throughput nonlinearity and errors due to storage capacitor losses and temperature variations.

Applications

2.2 Simulation

Figure 2.7 shows the simulated circuit. Pin 5 of AD8592 is the Shut Down signal for the amplifier A; when $L O W$, the output of the amplifier goes HiZ , insulating C_{10}, for the Hold period. D_{I} and R_{6} translate the 5 V logic signal

Figure 2.7 Sample and Hold simulation circuit

Figure 2.8 Sample and Hold general behavior simulation result

SnH to the $(-3 V \ldots+1.7 V)$ range, compatible with the Shut Down signal requirements.

2.2.1 General behavior - Simulation

Figure 2.8 shows the general behavior simulation results: $V_{\text {in }}$ is $1 V$ amplitude, 10 KHz sinus. SnH is set at 100 KHz , with 10% Duty Factor: the Sample period begins at every $10 \mu s$ and takes $1 \mu s .10$ samples are taken for each $V_{i n}$ period.

To analyze the errors and non-idealities, specific simulation conditions are set for each phase.

2.2.2 "Sample" phase - Simulation

For permanent "Sample", SnH is set continuously High, by replacing Ul with a 5 V supply.
$V_{i n}$ is set Triangular, with $1 V_{V V}$ amplitude, $20 \mu s$ period and $10 \mu s$ fall time ($50 \mathrm{kHz}, 50 \%$ duty factor).

Figure 2.9 shows very close shapes for $V_{i n}, V_{C}$ and $V_{S H}$ (left). A postprocessor graph (right) shows the error $V_{S H}-V_{i n}$.

Figure 2.9 Sample phase simulation (left) and post processing (right)

Applications

The DC component (average value) of the error is the overal offset error of the Sample and Hold circuit.

$$
\begin{gather*}
\varepsilon_{o f f}=\operatorname{mean}\left(V_{S H}-V_{\text {in }}\right)=\frac{-12.1841 \mathrm{mV}+8.0592 \mathrm{mV}}{2} \tag{2.2}\\
=-2.06245 \mathrm{mV}
\end{gather*}
$$

The rectangular component in the error is given by the propagation time. During the rising slope, the apparent delay, $t_{d, r}$ is:

$$
\begin{gather*}
\frac{d V_{i n}}{d t}=\frac{1 \mathrm{~V}}{10 \mu \mathrm{~s}}=\frac{-12.1841 \mathrm{mV}}{-t_{d, r}} \tag{2.3}\\
t_{d, r}=121.841 \mathrm{~ns} \tag{2.4}
\end{gather*}
$$

During the falling slope:

$$
\begin{gather*}
\frac{d V_{i n}}{d t}=\frac{-1 \mathrm{~V}}{10 \mu s}=\frac{8.0592 \mathrm{mV}}{-t_{d, f}} \tag{2.5}\\
t_{d, f}=80.592 n s \tag{2.6}
\end{gather*}
$$

The actual propagation delay is the average of above:

$$
\begin{equation*}
t_{d}=\frac{t_{d, r}+t_{d, f}}{2} \approx 100 \mathrm{~ns} \tag{2.7}
\end{equation*}
$$

t_{d} is the time delay between the input- and the output signals, during the sampling period, as opposite to the apperture time, t_{a}, which is the time needed to switch from hold to sampling.

Since the error in the post processing diagram has no triangular component, the simulated gain error component is null: both gain accuracy and gain non-linearity are non-measurable low.

2.2.3 "Hold" to "Sample"- Simulation

In Figure 2.10, sampling frequency is $50 \mathrm{kHz}, 50 \%$ duty factor; hold to sample transitions happen at $0 \mu \mathrm{~s}, 20 \mu \mathrm{~s}, 40 \mu \mathrm{~s} \ldots$ and sample to hold at $10 \mu \mathrm{~s}, 30 \mu \mathrm{~s}, \ldots$ The input voltage is $V_{i n}=1 V_{V V}, 5 \mathrm{kHz}$, symmetrical.
The left diagrams show the full simulation time. A detail of the hold-tosample transition starting at time $20 \mu \mathrm{~s}$ is shown on the right.
The upper diagrams show $V_{i n}$ and $V_{S H}$, while the lower figures are postprocessed to show the difference (error) $V_{S H}-V_{i n}$.

In the lower-right diagram, $V_{S H}-V_{i n}$, the settling time, t_{s} is:

$$
\begin{align*}
& t_{s}=3.3 \mu s @ \pm 1 \mathrm{mV} \\
& t_{s}=4.5 \mu \mathrm{~s} @ \pm 0.2 \mathrm{mV} \tag{2.8}
\end{align*}
$$

Figure 2.10 Hold to Sample simulation (up), and post processing $\mathrm{V}_{\mathrm{SH}}-\mathrm{V}_{\mathrm{in}}$ (down), full size (left) and detail (down)

Applications

2.2.4 "Sample" to "Hold" - Simulation

Figure 2.11 shows two sample to hold details, from Figure 2.10; at time $50 \mu \mathrm{~s}$, during rising slope of $V_{i n}$, and at time $150 \mu s$, during the falling slope of $V_{i n}$.

The ideal hold $V_{S H, i d}$ should be 500 mV in both cases. However, this is influenced by the offset error as measured in (2.2), by the propagation time, evaluated in (2.7) and by the aperture time, t_{a}, resulting in:

$$
\begin{gather*}
V_{S H}=V_{S H, i d}+\varepsilon_{o f f}+\left(t_{a}-t_{d}\right) \cdot \frac{d V_{\text {in }}}{d t} \tag{2.9}\\
V_{S H, r}=500 \mathrm{mV}-2 \mathrm{mV}+\left(t_{a}-100 \mathrm{~ns}\right) \cdot \frac{1 \mathrm{~V}}{100 \mu \mathrm{~s}}=501.6 \mathrm{mV} \tag{2.10}\\
V_{S H, f}=500 \mathrm{mV}-2 \mathrm{mV}-\left(t_{a}-100 \mathrm{~ns}\right) \cdot \frac{1 \mathrm{~V}}{100 \mu \mathrm{~s}}=494.4 \mathrm{mV} \tag{2.11}
\end{gather*}
$$

Solving both (2.10) and (2.11) for t_{a}, independently results in:

$$
\begin{equation*}
t_{a} \cong 0.46 \mu s \tag{2.12}
\end{equation*}
$$

Which is confirmed by graphical reading in Figure 2.11.

Figure 2.11 Sample to Hold detail; rising- (left) and falling slope (right)

2.2.5 "Hold" phase - Simulation

In Figure 2.12, the input signal is $20 \mathrm{~Hz}, 2 V_{V V}(\pm l \mathrm{~V})$, rectangular, with 50% duty factor. Sampling signal is set to $5 \mathrm{~Hz}, 1 \%$ duty factor, delay $=10 \mathrm{~ms}$: the first sampling phase begins at 10 ms , the first hold period at time 12 ms . The hold period is $198 m s$.
Subsequent sampling phases start at $210 \mathrm{~ms}, 410 \mathrm{~ms}$, etc. All samples should theoretically pick the "high" value of the rectangular signal, 1 V .

In the right-side detail diagram, some errors are visible:

- the sample phase offset:

$$
\begin{equation*}
\varepsilon_{o f f} \cong 2 m V \tag{2.13}
\end{equation*}
$$

- the drop rate:

$$
\begin{equation*}
\frac{d V_{S H}}{d t} \cong \frac{1 \mathrm{mV}}{200 \mathrm{~ms}}=5 \mathrm{mV} / \mathrm{s} \tag{2.14}
\end{equation*}
$$

- the Feedthrough: $\quad \frac{d V_{S H}}{d V_{i n}} \cong \frac{0.1 m V_{V V}}{2 V_{V V}}=50 \mathrm{ppm}$

Figure 2.12 Hold phase simulation: full view (left) and $V_{S H}$ detail (right)

Applications

2.3 Experiment

Figure 2.13 shows the full schematic of the experimental board, but circuits not used in the current experiment are shaded. U7 and U8 are linear voltage regulators, used to get -3 V and +2.7 V supply voltages; AD8592 supports maximum $6 V$ differential supply voltage. The other circuits work as explained next to Figure 2.7.

The board is designed to directly connect to the Digilent Analog Discovery. Channel 2 of the $A W G(W 2)$ generates the input signal, $V_{i n}$. The digital pin DIO10 generates SnH . The scope channels $1+$ and $2+$ are accessible in J 2 , for probing $V_{i n}$ (J10-2) and $V_{S H}$ (J8-1).

Figure 2.14 shows the experimental board prepared with scope probe wires for the Sample and Hold experiment. Notice that the same board is used for several other experiments.

Figure 2.13 Sample and Hold experimental board schematic

2.3.1 General behavior

The WaweForms instruments are set as below (similar to Figure 2.8):

- Supplies: ON, +5 V and -5 V (If the WaveForms software reports an "Overcurrent condition" and stops the user power supplies, try starting the supplies one by one: first the positive supply and, after few seconds, the negative one).
- WaveGen, Channel 2: Sinus, $10 \mathrm{kHz}, \quad$ IV amplitude, 50% symmetry.
- Pattern, DIO10: Push-Pull clock, $100 \mathrm{kHz}, 10 \%$ duty factor, 0° phase.
- Scope:
- Time base $=10 \mu s / d i v$.
- $\mathrm{C} 1, \mathrm{C} 2$ range $=500 \mathrm{mV} / \mathrm{div}$
- AddChannel/Digital/Signal: DIO10
- Trigger: source $=\mathrm{C} 1$, condition $=$ Falling

Figure 2.15 Sample and Hold general behavior experiment

Applications

To analyze the errors and non-idealities, specific simulation conditions are set for each phase.

2.3.2 "Sample" phase - Experiment

For permanent "Sample", SnH is set Constant/High in the Pattern generator.
$V_{i n}$ is set Triangular, with $1 V_{V V}$ amplitude, $50 \mathrm{kHz}, 50 \%$ symmetry.
Figure 2.16 shows very close shapes for $\mathrm{C} 1=V_{i n}$, and $\mathrm{C} 2=V_{S H}$. Math 1 (Math/Simple) channel computes the error $\mathrm{C} 2-\mathrm{C} 1=V_{S H}-V_{i n}$. A measurement view is open (View/Measure) and the Average and Amplitude of Math1 are displayed (Add/DefinedMeasurement/Channell/Vertical/...).

The DC component (average value) of the error is the overal offset error of the Sample and Hold circuit.

$$
\begin{equation*}
\varepsilon_{o f f} \approx-4.8 \mathrm{mV} \tag{2.16}
\end{equation*}
$$

The rectangular component in the error is given by the propagation time.
During the rising slope, the apparent delay, $t_{d, r}$ is:

$$
\begin{gather*}
\frac{d V_{i n}}{d t}=\frac{1 \mathrm{~V}}{10 \mu \mathrm{~s}}=\frac{-30 \mathrm{mV}}{-t_{d, r}} \tag{2.17}\\
t_{d, r}=300 \mathrm{~ns} \tag{2.18}
\end{gather*}
$$

Figure 2.16 Sample phase experiment

During the falling slope:

$$
\begin{gather*}
\frac{d V_{i n}}{d t}=\frac{-1 V}{10 \mu \mathrm{~S}}=\frac{20 \mathrm{mV}}{-t_{d, r}} \tag{2.19}\\
t_{d, f}=200 \mathrm{~ns} \tag{2.2}
\end{gather*}
$$

The actual propagation delay is the average of above:

$$
\begin{equation*}
t_{d}=\frac{t_{d, r}+t_{d, f}}{2} \approx 250 \mathrm{~ns} \tag{2.21}
\end{equation*}
$$

t_{d} is the time delay between the input- and the output signals, during the sampling period, as opposite to the apperture time, t_{a}, which is the time needed to switch from hold to sampling.

The triangular component in the Math1 error, measures the gain error. In Figure 2.17, a Custom Math channel computes:

$$
\begin{equation*}
\text { Math2 }=C 2-\left(1+\varepsilon_{\text {gain }}\right) \cdot C 1 \tag{2.22}
\end{equation*}
$$

$\varepsilon_{g a i n}$ is manually adjusted to bring Math2 as close as possible to rectangular. In Figure 2.17, the final result is:

$$
\begin{equation*}
\varepsilon_{\text {gain }}=0.2 \% \tag{2.23}
\end{equation*}
$$

Figure 2.17 Sample phase experiment - gain error compensation

Applications

2.3.3 "Hold" to "Sample"- Experiment

In Figure 2.18, the sampling frequency is $50 \mathrm{kHz}, 50 \%$ duty factor; hold to sample transitions happen at $0 \mu s, 20 \mu s, 40 \mu s \ldots$ and sample to hold at $10 \mu s$, 30 $\mu \mathrm{s}$, ...

The input voltage is $V_{i n}: 0.5 \mathrm{~V}$ Amplitude, 0.5 V Offset, 5 kHz , triangle.
The upper diagram shows: $C 1=V_{i n}, C 2=V_{S H}$, and the error $M 1=C 2-C 1$. The lower diagrams show zoom details, at trigger time: $V_{i n}$ and $V_{S H}$ (left), and $M 1=V_{S H}-V_{\text {in }}$ (right).

In the lower-right diagram, $V_{S H}-V_{i n}$, the settling time, t_{s} is:

$$
\begin{equation*}
t_{s}=4 \mu s @ \pm 1 \mathrm{mV} \tag{2.24}
\end{equation*}
$$

Figure 2.18 Hold to Sample experiment: full view (up) and zoom details (down): $V_{i n}$ and $V_{S H}$ (left) and Mathl $=V_{S H}-V_{\text {in }}$ (right)

2.3.4 "Sample" to "Hold" - Experiment

Figure 2.19 shows two sample to hold details, from Figure 2.18 ; at time $10 \mu s$, during rising slope of $V_{i n}$, and at time $90 \mu s$, during the falling slope of $V_{i n}$.

The ideal hold $V_{S H, i d}$ is influenced by the offset error as measured in (2.16), by the propagation time, evaluated in (2.21) and by the aperture time, t_{a}, resulting in:

$$
\begin{gather*}
V_{S H}=V_{S H, i d}+\varepsilon_{o f f}+\left(t_{a}-t_{d}\right) \cdot \frac{d V_{i n}}{d t} \tag{2.25}\\
V_{S H, r}=643 \mathrm{mV}-4.8 \mathrm{mV}+\left(t_{a}-250 \mathrm{~ns}\right) \cdot \frac{1 \mathrm{~V}}{100 \mu \mathrm{~s}}=637 \mathrm{mV} \tag{2.26}\\
V_{S H, f}=541 \mathrm{mV}-4.8 \mathrm{mV}-\left(t_{a}-250 \mathrm{~ns}\right) \cdot \frac{1 \mathrm{~V}}{100 \mu \mathrm{~s}}=537.5 \mathrm{mV} \tag{2.27}
\end{gather*}
$$

Solving both (2.26) and (2.27) for t_{a}, independently results in:

$$
\begin{equation*}
t_{a} \cong 125 n s \tag{2.28}
\end{equation*}
$$

Which is confirmed by graphical reading in Figure 2.11(2.19).
Notice that the measurement above is at the noise limit: $1 m V$ of noise on top of $V_{S H}$ or $V_{S H, i d}$ would modify the computed t_{a} by $100 n s$.

Figure 2.19 Sample to Hold details; - rising $V_{\text {in }}$ (left) and falling $V_{\text {in }}$ (right)

Applications

2.3.5 "Hold" phase - Experiment

In Figure 2.20 , the input signal is $20 \mathrm{~Hz}, 2 V_{V V}(\pm l \mathrm{~V})$, rectangular, with 50% duty factor. Sampling signal is set to $5 \mathrm{~Hz}, 1 \%$ duty factor: the triggered sampling phase begins at 0 ms , the first hold period at time 2 ms . The hold period is 198 ms . Subsequent sampling phases start at 200 ms , 400 ms , etc. All samples should theoretically pick the "high" value of the rectangular signal, 1 V .

In the diagram, some errors are visible:

- the sample phase offset:

$$
\begin{equation*}
\varepsilon_{o f f} \cong-4 m V \tag{2.29}
\end{equation*}
$$

- the drop rate: $\quad \frac{d V_{S H}}{d t} \cong \frac{10 \mathrm{mV}}{200 \mathrm{~ms}}=50 \mathrm{mV} / \mathrm{s}$
- the Feedthrough: $\quad \frac{d V_{S H}}{d V_{i n}} \cong \frac{1 m V_{V V}}{2 V_{V V}}=500 \mathrm{ppm}=-66 d \mathrm{~B}$

Figure 2.20 Hold phase experiment

3 Resistor Networks

3.1 Binary weighted resistors network, voltage switching, no load

3.1.1 Background

The resistor values in Figure 3.1 are power-of-two multiples of the generic value R. The dual-pole switches K_{i} are driven by a_{i} bits, which build the unipolar, binary number $\{A\}$ as in (3.1).

$$
\begin{align*}
& \{A\}=0 \cdot a_{1} \ldots a_{(n-1)} a_{n} \\
& \tag{3.1}\\
& =\sum_{i=1}^{n} a_{i} \cdot 2^{-i}
\end{align*}
$$

The branch voltages, V_{i}, are:

$$
\begin{align*}
& a_{i}=0 \Rightarrow K_{i} \rightarrow G N D \Rightarrow V_{i}=0 \\
& a_{i}=1 \Rightarrow K_{i} \rightarrow V_{\text {ref }} \Rightarrow V_{i}=V_{\text {ref }}
\end{align*}
$$

Figure 3.1 Weighted resistors network
Thevenin model
which can be expressed as: $\quad V_{i}=a_{i} \cdot V_{\text {ref }}$
The Thevenin model has:

$$
\begin{gather*}
R_{e}=\frac{1}{\sum_{i=1}^{n} \frac{1}{R_{i}}+\frac{1}{R_{n}}}=\frac{R}{\sum_{i=1}^{n} 2^{-i}+2^{-n}}=R \tag{3.4}\\
V_{e}=\frac{\sum_{i=1}^{n} \frac{V_{i}}{R_{i}}}{\sum_{i=1}^{n} \frac{1}{R_{i}}+\frac{1}{R_{n}}}=\frac{\frac{V_{r e f}}{R} \cdot \sum_{i=1}^{n} a_{i} \cdot 2^{-i}}{\frac{1}{R} \cdot\left(\sum_{i=1}^{n} 2^{-i}+2^{-n}\right)}=V_{\text {ref }} \cdot \sum_{i=1}^{n} a_{i} \cdot 2^{-i} \tag{3.5}\\
=V_{\text {ref }} \cdot\{A\} \tag{3.6}
\end{gather*}
$$

With no load, the output voltage, V_{o}, is: $\quad V_{o}=V_{e}$
The full-scale voltage, $V_{F S}$, the absolute resolution, $R_{a b s}$, and the voltage corresponding to the least significant bit, $V_{L S B}$, (n-bit, binary, unipolar) are:

$$
\begin{align*}
& V_{F S}=V_{o} \mid\{A\}=1=V_{r e f} \tag{3.7}\\
& R_{a b s}=V_{L S B}=V_{F S} \cdot 2^{-n} \tag{3.8}
\end{align*}
$$

Applications

3.1.2 Simulation

3.1.2.1 Ideal circuit

Figure 3.2 shows the Multisim schematic file for simulation. A binary counter, with 1 kHz clock, generates the $\{A\}$ numbers. The reference voltage (5 V) and the switches are simulated by the 40163BT_5V output buffers:

$$
\begin{align*}
& R=10 \mathrm{k} \Omega \\
& n=4 \\
& V_{\text {ref }}=V_{F S}=5 \mathrm{~V} \tag{3.9}
\end{align*}
$$

Figure 3.2 Weighted resistors network simulation schematic

Figure 3.3 shows the transient simulation results. The digital graph (up) shows the bits of the number $\{A\}$ (four-bit binary counter), the analog graph (down) shows the V_{o} voltage (ramp from $0 V$ to $V_{F S}-V_{L S B}=4.6875 \mathrm{~V}$, in steps of $\left.V_{L S B}=312.5 \mathrm{mV}\right)$. The cursors are set at $\{A\}=0$ and $\{A\}=15 \mathrm{LSB}=$, with $d y=V_{F S}-V_{L S B}$.

3.1.2.2 Resistor mismatch induced errors

For analyzing the resistor mismatch induced errors, a series of 5 transient simulations were done. For simulation number k, one resistor $\left(R_{k}\right)$ was altered by the relative error of $\varepsilon_{R}=+1 \%$;
A postprocessor was set to calculate the error of each simulation.

```
err(R1)=V(vo)-(V(al)/2+V(a2)/4+V(a3)/8+V(a4)/16)
err}(R2)=\operatorname{tran02.V(vo)-(tran02.V(al)/2+\operatorname{tran02.V(a2)/4+tran02.V(a3)/8+tran02.V(a4)/16)}
err}(R3)=\operatorname{tran03.V(vo)-(tran03.V(al)/2+\operatorname{tran03.V(a2)/4+tran03.V(a3)/8+\operatorname{tran03.V(a4)/16)}}\mathbf{}\mathrm{ (tran}
err}(R4)=\operatorname{tran04.V(vo)-(tran04.V(a1)/2+\operatorname{tran04.V(a2)/4+tran04.V(a3)/8+\operatorname{tran04.V(a4)/16)}}\mathbf{2}/2
err}(R5)=\operatorname{tran05.V(vo)-(tran05.V(a1)/2+\operatorname{tran05.V(a2)/4+tran05.V(a3)/8+\operatorname{tran05.V(a4)/16)}}\mathbf{}/2
```

$$
\begin{align*}
& R_{k}=2^{k} \cdot R \cdot\left(1+\varepsilon_{R}\right) \\
& R_{i}=2^{i} \cdot R \quad \forall i \neq k \tag{3.10}
\end{align*}
$$

The post processing results are shown in Figure 3.4. Some interesting, yet predictable, properties of the graphics:

Figure 3.3 Weighted resistors network simulation results

Figure 3.4 1\% resistor mismatch errors

Applications

A. $\operatorname{err}(R 5)$ is different compared to all others: it is linear with the input number $\{A\}$.
B. all other errors are non-linear and have minimum absolute values for $\{A\}=0$ and $\{A\}=1-1 L S B$ (see cursor positions in Figure 3.3 and Figure 3.4). Indeed, conform to equation (3.5), when all bits $a_{i}=0, V_{e}=0$ and does not depend on R_{k} (nor on R_{k} errors). For $\{A\}=1$ (if that would be possible) $V_{e}=V_{\text {ref }}$, not depending on R_{i} or R_{i} errors.
C. the resistor mismatch in higher significant branches of the network propagates with higher weight in the output error.
D. the polarity of the error due to branch k changes when the a_{k} bit changes. That makes the errors to be "linearity errors".

3.1.2.3 Vi induced errors

If all V_{i} branch voltages are affected by the same percentage error, this is equivalent to an $V_{\text {ref }}$ error in (3.3) and (3.5), and generates an V_{o} "gain error", which is easy to compensate. However, if V_{i} errors are different for each branch, this generates linearity errors.

For analyzing the V_{i} mismatch induced errors, a series of 4 transient simulations were done. For simulation number k, one branch voltage $\left(V_{k}\right)$ was altered by the relative error of $\varepsilon_{R}=+1 \%$.

$$
\begin{align*}
& V_{k}=a_{k} \cdot V_{\text {ref }} \cdot\left(1+\varepsilon_{R}\right) \\
& V_{i}=a_{i} \cdot V_{\text {ref }} \quad \forall i \neq k \tag{3.11}
\end{align*}
$$

A postprocessor was set to calculate the error of each simulation. The results are shown in Figure 3.5. Interesting graphics properties:
A. the V_{i} mismatch errors propagate to the output signal with the same weight as the useful signal of the branch $\left(2^{-k}\right)$. Accordingly, when designing a DAC, the most significant branches should be designed to have minimal errors, while least significant branches have less restrictions.
B. as simulated, the error due to branch k only appears when a_{k} bit is 1 and is null when the a_{k} bit is 0 . That makes the errors to be "linearity errors".

Figure 3.5 1\% Vi mismatch errors

3.1.2.4 Dynamic errors

To simulate dynamic errors, ADG859 analog switches are used in Figure 3.6 and Figure 3.7. The SPICE model of these circuits considers finite propagation time, parasitical capacitance of switches, as well as different switching time for rising, respectively falling time.
A. Settling time: is measured from the change of the input number until the output signal enters and remains within the allowed error band (around the ideal value). In Figure 3.7, the transition from $\{A\}=15 L S B$ to $0 L S B$ happens at time $310 n s$, but V_{o} finishes the corresponding trip (with $0.1 L S B$ error band) $10 n s$ later.
B. Glitch: multiple bits cannot switch absolutely at the same time. Usually, rising and falling transition times are different. In Figure 3.7, the transition from $\{A\}=0.0111$, to $\{A\}=0.1000$ at time 150 ns generates an intermediate state of $\{A\}=0.1111$. Ideally, V_{o} would shortly jump at $V_{F S}-1 L S B$ and then back to $V_{F S} / 2$. The analog limited speed reduces the glitch to the artefact seen at about l60ns.

Applications

Figure 3.6 Dynamic simulation schematic

Figure 3.7 Dynamic simulation

Data Acquisition Systems Fundamentals

Figure 3.8 The Resistor Networks board schematic

Figure 3.9 The Resistor Networks board

3.1.3 Experiment and measurements

The experiment uses the Resistor Networks board, shown in Figure 3.8 and Figure 3.9.
The network includes R15 ...R12, and $R c 2$. The branches are connected to 4 pins of Analog Discovery: DIO15 $=a_{1}=$ MSB, $\quad D I O 14=a_{2}$, $D I O 13=a_{3}, D I O 12=a_{4}=L S B$.

To separate the output voltage, $V 15=$ V_{o}, no jumper should be loaded on $J 5$, J8, J9.

The scope channel 1 is used to measure V15: pin 3 of $J 8$ (V15) must be tied to pin 1 of $J 2(1+)$.

Applications

3.1.3.1 Non-idealities

The FPGA within the Analog Discovery drives digital signals DIO15...DIO12 to voltages approximating $V c c=3.3 V$ for $a_{j}=1$, and $V_{G N D}=$ $O V$, for $a_{j}=0$. The approximations generate gain and linearity errors.

The digital signals, DIOx, are protected within the Analog Discovery with R_{s} $=220 \Omega$ series resistors, which add to the branch resistance. The equivalent branch resistances are:

$$
\begin{align*}
& R 15_{e}=R 15+R_{s} ; R 14_{e}=R 14+R_{s} ; \\
& R 13_{e}=R 13+R_{s} ; R 12_{e}=R 12+R_{s} \tag{3.12}
\end{align*}
$$

Since only certain resistor values are available as discrete components, the equivalent resistances of the branches are not perfectly matching the ideal power of two sequence. This generates linearity and gain errors.

3.1.3.2 Experiment

In the Patterns Generator, Add/Bus of DIO15...DIO12, set it as Binary Counter, Push-Pull, with frequency $=1 \mathrm{kHz}$. Run Patterns Generator.

Set the Scope as in Figure 3.10. Run the scope. Observe the graph. Compare to Figure 3.3. Notice that for the experimental board, the ideal values are:

$$
\begin{equation*}
R=10 \mathrm{k} \Omega ; n=4 ; V_{r e f}=V_{F S}=3.3 \mathrm{~V} ; R_{a b s}=V_{L S B}=206.25 \mathrm{mV} \tag{3.13}
\end{equation*}
$$

Figure 3.10 The weighted resistor network output voltage ramp

3.1.3.3 Measurements

Set two cursors at times 0.5 ms and 15.5 ms . Hover the mouse over the cursors to read the voltage of $C 1$ at the cursors.
Task 1. Starting from the cursor measured voltages, write down the equations and calculate the actual values of $\boldsymbol{V}_{F S}$ and $\boldsymbol{V}_{L S B}$.
In the scope instrument, AddChannel/Math/Custom to create channel Math 1. Edit the script shown in Figure 3.11. This describes the ideal shape of $C 1$. Notice the meaning of the constants in the equation: Time* 1000 shows time in $m s, V_{F S}=3.3 \mathrm{~V}, 2^{4}=16$ is the number of possible values for $n=4$ bits. However, the script works only for one counting cycle, from 0 ms to 16 ms , measured from the trigger event. Ignore the graph beyond these limits.

Disable C1. Read the voltage of Math 1 at the cursors.
Task 2. Starting from the cursor measured voltages, write down the equations and calculate the ideal values of $\boldsymbol{V}_{F S}$ and $\boldsymbol{V}_{L S B}$.

In the scope instrument, click AddChannel/Math/Simple to create channel Math 2. Edit the math function as Cl-M1. Math 2 shows the error of $C 1$, as in Figure 3.12. Disable M1. Stop the scope to freeze the image. Set the Range and Offset of Math 2 for optimal reading. Hover the mouse over the cursors to read the voltage of Math 2 at the cursors.

Notice that the equation used in Figure 3.11 includes quantization (floor function), so Math2 does not include the quantization error. Remove quantization from Mathl and notice the effect on Math1 and Math2.

Figure 3.11 Math script for ideal 4-bit ramp

Applications

Explain the effect. Restore quantization in Mathl for subsequent steps.
Math2 shows the global error of C1. It includes offset, gain, linearity and dynamic errors.
For understanding the spikes of Figure 3.12, change the time base to a low value (2us/div), as in Figure 3.13. At this scale, the dots indicate the Analog Discovery samples. Notice the sampled value of C1 (real signal) versus the ideal Math1. The difference is shown in Math2 (notice that Math2 has another

Figure 3.12 The weighted resistor network output voltage error

Figure 3.13 The weighted resistor network output voltage dynamic error
scope range as C1 and Math1). This difference is not a dynamic error of the resistor network, rather a sampling misalignment of Cl and Math1. Actual resistor network dynamic errors are measured later in this paragraph.
To remove the offset and gain errors, add custom Math 3: $C 1 * 1.01+0.01$, where $\operatorname{cor}_{g a i n}=1.01$ is the gain correction coefficient and $\operatorname{cor}_{o f f}=0.01$ is the offset correction (in $m V$). Add simple Math 4: M3-M1. Edit the equation of Math 3 to minimize Math 4: adjust the cor $_{\text {gain }}$ to bring the overall slope of Math 4 as close as possible to zero (horizontal); adjust the cor off to bring the average value of Math 4 as close as possible to zero. When offset and gain are well compensated, as in Figure 3.14, Math 4 only includes linearity and dynamic errors. The initial Cl gain and offset errors can be calculated:

$$
\begin{align*}
& \mathrm{C}^{*} \mathrm{cor}_{\text {gain }}+\mathrm{cor}_{\text {off }}=\text { Math1 } \\
& \mathrm{C} 1=\frac{\text { Math } 1}{\operatorname{cor}_{\text {gain }}}-\frac{\operatorname{cor}_{\text {off }}}{\operatorname{cor}_{\text {gain }}}=\text { Math1 } \cdot\left(1+\varepsilon_{\text {gain,rel }}\right)+\varepsilon_{\text {off,abs }} \\
& \varepsilon_{\text {gain,rel }}=\frac{1}{\operatorname{cor}_{\text {gain }}}-1=\text { relative gain error } \tag{3.14}\\
& \varepsilon_{\text {off }, \text { abs }}=-\frac{\operatorname{cor}_{\text {off }}}{\operatorname{cor}_{\text {gain }}}=\text { absolute offset error }
\end{align*}
$$

Task 3. Compute the absolute and relative gain and offset errors of your weighted resistor network.

Figure 3.14 Linearity after compensating gain and offset errors

Applications

To compute the integral absolute linearity error, add two horizontal cursors (Y drop menu in the upper right corner of the plot). Make the cursors independent (in the cursor's drop menu, set Reference to none, for both cursors). Place the cursors on the highest positive, respective lowest negative values of Math 4 (visually mediate the quantifying noise), as in Figure 3.15. The highest absolute value among the two cursors is the maximum integral linearity error.

Figure 3.15 Measuring the absolute integral linearity error
To compute the differential absolute linearity error, add two horizontal cursors (Y drop menu in the upper right corner of the plot). Make cursor 2 relative to cursor 1 (in the cursor's 2 drop menu, set Reference to 1). Drag cursors to catch the biggest difference between two adjacent flat levels of Math 4 (visually mediate the quantifying noise), as in Figure 3.17. Notice that Cursor 2 displays the delta relative to Cursor 1 . The absolute value of the difference is the maximum differential linearity error. If the maximum differential linearity error is higher as $V_{L S B}$, the $D A C$ is non-monotonic.

Task 4. Compute the absolute and relative integral and differential errors of your weighted resistor network. Verify if your DAC is monotonic.

Dynamic errors are not measurable at this time-base. Set the scope time base to $5 u s / d i v$ and the time position to $15 u s$. Add/Digital/Bus DIO15 ...DIO12.to the Scope view. That builds a combined instrument, with synchronized analog and digital signals. Set the trigger source to Digital. In the digital area
of the scope, set the trigger condition to DIO15 = falling edge, all other DIOx $=$ Don't Care. This sets the trigger event and time origin of the acquisition to the moment when the digital bus rolls over from 15 to 0 . Set scope Channell range and offset as in Figure 3.17, for optimal readings.
Consider the acceptable error $= \pm 0.1 V_{L S B}= \pm 20 \mathrm{mV}$, as in paragraph 3.1.2.4, A.

Figure 3.17 Measuring the absolute differential linearity error

Figure 3.16 Measuring the settling time

Applications

The ideal output voltage should drop instantly at time $=0$, from $V_{F S}$ to 0 . However, in Figure 3.17, the real V15, measured by the scope Channell, has an overshoot of about -40 mV , has a damped oscillation, and enters the allowed $\pm 20 \mathrm{mV}$ error band at a settling time of about 25 us .

Task 5. Measure the settling time of your weighted resistor network.
The next figures show some digital transitions of amplitude 1LSB. Each of these transitions should result in a $V_{L S B}$ rising step of $V 15$.

Finite settling time can be observed. Furthermore, glitches can be seen as explained in paragraph 3.1.2.4, section B: instead of direct rising ramp, the transition begins with a negative pulse (showing that the effect of the falling bits in the input number DIO15 ...DIO12 is faster than the effect of the rising bits). The glitch is null in Figure 3.18, since a single bit is switching, slightly observable in Figure 3.19, with just two bits switching in opposite directions, and doubles in each Figure 3.20 and Figure 3.21 with increasing number of simultaneously switching bits. The small switching time unbalance and the integration effect of parasitical capacitances in the schematic keep the glitches much smaller than the maximum theoretical level ($V_{F S} / 2$ in Figure 3.21).

Data Acquisition Systems Fundamentals

Figure 3.18 DIO15 ...DIO12 transition 0000 to 0001 . No Glitch

Figure 3.19 DIO15 ...DIO12 transition 0001 to 0010 . Small Glitch

Applications

Figure 3.20 DIO15 ...DIO12 transition 0011 to 0100. Moderate Glitch

Figure 3.21 DIO15 ...DIO12 transition 0111 to 1000. Biggest Glitch

3.2 Binary ladder resistors network, voltage switching, no load

Figure 3.22 Ladder resistors network Thevenin model

3.2.1 Background

Only two resistor values are used in Figure 3.22: the generic value R and $2 R$. With the same conventions as in (3.1), (3.2) and (3.3), it is shown that the Thevenin model has same values as in (3.4) and (3.5):

$$
\begin{gathered}
R_{e}=R \\
V_{e}=V_{\text {ref }} \cdot \sum_{i=1}^{n} a_{i} \cdot 2^{-i}=
\end{gathered}
$$

$$
=V_{r e f} \cdot\{A\}
$$

With no load, the output voltage is:

$$
\begin{equation*}
V_{o}=V_{e} \tag{3.17}
\end{equation*}
$$

The full-scale voltage, $V_{F S}$, the absolute resolution, $R_{a b s}$, and the voltage corresponding to the least significant bit, $V_{L S B}$, (n-bit, binary, unipolar) are identical to (3.7) and (3.8):

$$
\begin{align*}
& V_{F S}=V_{o} \mid\{A\}=1=V_{r e f} \tag{3.18}\\
& R_{a b s}=V_{L S B}=V_{F S} \cdot 2^{-n} \tag{3.19}
\end{align*}
$$

3.2.2 Simulation

3.2.2.1 Ideal circuit

Figure 3.23 shows the Multisim schematic file for simulation. A binary counter, with 1 kHz clock, generates the $\{A\}$ numbers. The reference voltage $(5 \mathrm{~V})$ and the switches are simulated by the 40163 BT _ 5 V output buffers:

Figure 3.23 Ladder resistors network simulation schematic

Applications

$$
\begin{align*}
& R=10 \mathrm{k} \Omega \\
& n=4 \\
& V_{\text {ref }}=V_{F S}=5 \mathrm{~V} \\
& R_{\text {abs }}=V_{L S B}=312.5 \mathrm{mV}
\end{align*}
$$

Figure 3.24 shows the transient simulation results. This ideal graph is identical to the one in Figure 3.3 (ramp from $0 V$ to $V_{F S}-V_{L S B}=4.6875 \mathrm{~V}$, $V_{L S B}=312.5 \mathrm{mV}$).
The cursors are set at $\{A\}=0$ and $\{A\}=15 L S B$, with $d y=V_{F S}-V_{L S B}$.

3.2.2.2 Resistor mismatch induced errors

For analyzing the resistor mismatch induced errors, a series of 9 transient simulations were done. For simulation number k, one resistor $\left(R_{k}\right)$ was altered by the relative error of $\varepsilon_{R}=+1 \%$; The results shown in Figure 3.25 are similar to the ones for weighted resistor networks (Figure 3.5). Observations B, C and D of paragraph 3.1.2.2 apply here also.

Figure 3.24 Ladder resistors network simulation results

Data Acquisition Systems Fundamentals

Figure 3.25 1\% resistor mismatch errors (R1...R4 = up, R5 ...R8 = down)

3.2.2.3 Vi induced errors

For $V i$ induced errors, the ladder network is identical to the weighted network, so paragraph 3.1.2.3 applies here, including graphics and observations.

Applications

3.2.3 Experiment and measurements

The experiment uses the Resistor Networks lab board, as shown in Figure 3.8 and Figure 3.26.

The network to study includes $R 7 \ldots R 4$, Rs $7 \ldots$...Rs 5, and Rc4. The branches are connected to 4 pins of the Analog Discovery: DIO7 $=a_{l}=$ MSB, DIO6 $=a_{2}$, DIO5 $=a_{3}$, DIO4 $=a_{4}=L S B$.

To separate the output voltage, $V 7=V_{o}$, no jumper should be loaded on $J 3, J 8, J 9$.

The scope channel 1 is used to measure $V 7$: pin 1 of $J 8(V 7)$ must be tied to pin 1

Figure 3.26 The Resistor
Networks board of $J 2(1+)$.

3.2.3.1 Non-idealities

Same non-idealities as in paragraph 3.1.3.1 apply here. The branch voltages approximate $V c c=3.3 V$ for $a_{j}=1$, and $V_{G N D}=0 V$, for $a_{j}=0$. The approximations generate gain and linearity errors.
The digital signals, DIOx, are protected within the Analog Discovery with R_{s} $=220 \Omega$ series resistors, which add to the branch resistance. The equivalent branch resistances are:

$$
\begin{gather*}
R 7_{e}=R 7+R_{s} ; \quad R 6_{e}=R 6+R_{s} ; \quad R 5_{e}=R 5+R_{s} ; \quad R 4_{e} \tag{3.21}\\
=R 4+R_{s}
\end{gather*}
$$

Since only certain resistor values are available as discrete components, the equivalent resistances of the branches are not perfectly matching the ideal power of two sequence. This generates linearity and gain errors.

3.2.3.2 Experiment

Redo all the steps, experiments, measurements and tasks for the ladder network described in 3.2.3. Use DIO7...DIO4 instead of DIO15 ...DIO12. Use V7 instead of V15.

3.3 Combined resistors network, voltage switching, no load

3.3.1 Background

Each branch in Figure 3.27 is the Thevenin model of a subnetwork, with the equivalent impedance R_{p} and equivalent voltage:

$$
\begin{equation*}
V_{i}=\frac{V_{r e f}}{2^{m}} \cdot\left\{d_{i}\right\} \tag{3.22}
\end{equation*}
$$

Each subnetwork can be considered a binary $D A C$ of a digit $\left\{d_{i}\right\}$ of radix r, where d_{i} is an m-bit binary integer:

$$
\begin{equation*}
d_{i}=\sum_{j=0}^{m-1} 2^{j} \cdot b_{i, j} \tag{3.23}
\end{equation*}
$$

Figure 3.27 Combined resistors network Thevenin model.

Additional resistors R_{s} and R_{c} connect the subnetworks to get a radix r combined network. The design equations are:
A. The equivalent impedance from each node downwards is the same:

$$
\begin{equation*}
R_{e}=R_{p}\left\|R_{c}=R_{p}\right\|\left(R_{s}+R_{p} \| R_{c}\right)<=>R_{c}=R_{s}+R_{p} \| R_{c} \tag{3.24}
\end{equation*}
$$

B. The equivalent Thevenin voltage propagating from node i to node $i-1$ is attenuated by factor r :

$$
\begin{equation*}
r=\frac{V_{e, i, i}}{V_{e, i-1, i}}=\frac{R_{p}+R_{c}}{R_{p}} \tag{3.25}
\end{equation*}
$$

The equation system (3.24), (3.25) can be solved for R_{c} and R_{s} :

$$
\begin{equation*}
R_{c}=(r-1) \cdot R_{p} ; \quad R_{S}=\frac{(r-1)^{2}}{r} \cdot R_{p} \tag{3.26}
\end{equation*}
$$

The combined network works as a radix r Digital to Analog Converter. The overall Thevenin model in Figure 3.27 has:

$$
\begin{gather*}
V_{e}=(r-1) \cdot \sum_{i=1}^{n} \frac{V_{i}}{r^{i}}=\frac{V_{r e f}}{2^{m}} \cdot(r-1) \cdot \sum_{i=1}^{n}\left\{d_{i}\right\} \cdot r^{-i}= \\
=V_{r e f} \cdot \frac{r-1}{2^{m}} \cdot \sum_{i=1}^{n} \sum_{j=0}^{m-1} r^{-i} \cdot 2^{j} \cdot b_{i, j}=V_{r e f} \cdot \frac{r-1}{2^{m}} \cdot\{A\}_{r} \tag{3.27}\\
R_{e}=R_{p} \| R_{c}=\frac{r-1}{r} \cdot R_{p} \\
53
\end{gather*}
$$

Applications

Where $\{A\}_{r}$ is an n-digit, fractional, unipolar number written in radix r :

$$
\{A\}_{r}=0 . d_{1} \ldots d_{(n-1)} d_{n}=\sum_{i=1}^{n} d_{i} \cdot r^{-i}=\sum_{i=1}^{n} \sum_{j=0}^{m-1} r^{-i} \cdot 2^{j} \cdot b_{i, j}
$$

$V_{F S}$ and $V_{L S B}=R_{\text {abs }}$ are the V_{e} values for $\{A\}=1$, respectively $\{A\}=r^{-n}$:

$$
\begin{align*}
& V_{F S}=V_{r e f} \cdot \frac{r-1}{2^{m}} \tag{3.30}\\
& V_{L S B}=V_{r e f} \cdot \frac{r-1}{2^{m} \cdot r^{n}}=R_{a b s}
\end{align*}
$$

3.3.1.1 Hexadecimal combined resistor network

$$
\begin{align*}
& R_{p}=R ; \quad m=4 ; \quad r=16 \\
& R_{c}=15 \cdot R_{p}=15 \cdot R \\
& R_{s}=\frac{15^{2}}{16} \cdot R_{p}=14.0625 \cdot R \\
& R_{e}=\frac{15}{16} \cdot R_{p}=0.9375 \cdot R \tag{3.31}\\
& V_{e}=V_{\text {ref }} \cdot \frac{15}{16} \cdot\{A\}_{r} \\
& V_{F S}=V_{\text {ref }} \cdot \frac{15}{16} \\
& V_{L S B}=V_{\text {ref }} \cdot \frac{15}{16^{n+1}}=R_{\text {abs }}
\end{align*}
$$

3.3.1.2 Decimal combined resistor network

$$
\begin{align*}
& R_{p}=R ; \quad m=4 ; \quad r=10 \\
& R_{c}=9 \cdot R_{p}=9 \cdot R \\
& R_{S}=\frac{9^{2}}{10} \cdot R_{p}=8.1 \cdot R \\
& R_{e}=\frac{9}{10} \cdot R_{p}=0.9 \cdot R \tag{3.32}\\
& V_{e}=V_{\text {ref }} \cdot \frac{9}{16} \cdot\{A\}_{r} \\
& V_{F S}=V_{\text {ref }} \cdot \frac{9}{16} \\
& V_{L S B}=V_{r e f} \cdot \frac{9}{16 \cdot 10^{n}}=R_{a b s}
\end{align*}
$$

3.3.2 Simulation

3.3.2.1 Hexadecimal

Figure 3.28 shows the Multisim schematic file for simulating a 2 -digit, Hexadecimal combined network. Ladder 4-bit subnetworks are used but weighted or a combination of ladder and weighted subnetworks can be equally used. A binary counter, with 1 kHz clock, generates the $\{A\}$ numbers. The reference voltage (5 V) and the switches are simulated by the 40163BT_5V output buffers:

$$
\begin{align*}
& R=10 \mathrm{k} \Omega ; \quad n=2 ; \quad V_{\text {ref }}=5 \mathrm{~V} \\
& V_{F S}=4.6875 \mathrm{~V} \tag{3.33}\\
& R_{\text {abs }}=V_{L S B}=18.310546875 \mathrm{mV}
\end{align*}
$$

Figure 3.29 shows the transient simulation results. The digital graph (up) shows the bits of the $\{A\}$ number (two-digit BCD counter), the analog graph (down) shows the V_{o} voltage (ramp from $0 V$ to $V_{F S}-V_{L S B}=4.669189453125 \mathrm{~V}$, in steps of $\left.V_{L S B}\right)$. The cursors are set at $\{A\}=0$ and $\{A\}=255 L S B$, with $d y=V_{F S^{-}}$ $V_{L S B}$.

Figure 3.28 2-digit Hexadecimal Combined Network schematic

Applications

Figure 3.29 2-digit Hexadecimal Combined Network simulation results

3.3.2.2 $\quad \underline{B C D}$

Figure 3.30 shows the Multisim schematic file for simulating a 2-digit, BCD combined network. Compared to Figure 3.28, U1 and U2 are replaced by BCD counters 40162BT_5V and R17 and R18 changed values as in (3.32).

$$
\begin{align*}
& R=10 \mathrm{k} \Omega ; \quad n=2 ; \quad V_{\text {ref }}=5 \mathrm{~V} \\
& V_{F S}=2.8125 \mathrm{~V} \tag{3.34}\\
& R_{\text {abs }}=V_{L S B}=28.125 \mathrm{mV}
\end{align*}
$$

Figure 3.30 2-digit BCD Combined Resistor Network schematic
Figure 3.31 shows the transient simulation results: the bits of the $\{A\}$ number (two-digit BCD counter) (up) and the V_{o} voltage (ramp from $0 V$ to $V_{F S}-V_{L S B}$ $=2.784375 \mathrm{~V}$, in steps of $V_{L S B}=28.125 \mathrm{mV}$) (down). The cursors are set at $\{A\}=0$ and $\{A\}=99 L S B$, with $d y=V_{F S}-V_{L S B}$.

Figure 3.31 2-digit BCD Combined Resistor Network simulation results

Applications

Figure 3.32 simulates a BCD network (as in Figure 3.30), driven by hexadecimal counters (40163). This is a non-typical situation: a BCD DAC should never get input digits higher than 9 , since the digits are weighted $10: 1$. However, each digit $(d 2=b 23 \ldots b 20, d 1=b 13 \ldots b 10)$ gets hexadecimal values of $0 \ldots F$. Consequently, there are multiple input values which result in the same output voltage value:

$$
\begin{array}{ll}
V_{e}\left(0 A_{h}\right)=V_{e}\left(10_{h}\right) ; & V_{e}\left(0 B_{h}\right)=V_{e}\left(11_{h}\right) ; \\
V_{e}\left(1 A_{h}\right)=V_{e}\left(20_{h}\right) ; & \left.V_{e}\left(1 B_{h}\right)=C_{h}\right)=V_{e}\left(12_{h}\right) \ldots \tag{3.35}\\
e & \left(21_{h}\right) ;
\end{array} V_{e}\left(1 C_{h}\right)=V_{e}\left(22_{h}\right) \ldots .
$$

This explains the non-monotonic "saw-tooth" aspect of the ramp.

Figure 3.32 BCD combined network driven by hexadecimal code

3.3.3 Experiment and measurements

The experiment uses the Resistor Networks lab board, as shown in Figure 3.8 and Figure 3.33.

The network to study includes $R 7 \ldots R 0$, Rs $7 \ldots$...Rs 1, Rc 4 and Rc0. The branches are connected to 8 pins of the Analog Discovery: DIO7 = $a_{1}=M S B, \ldots$ DIO0 $=$ $a_{8}=L S B$.

To separate the output voltage, $V 7=V_{o}$, no jumper should be loaded on headers J8, J9.

The scope channel 1 is used to measure $V 7$: pin 1 of $J 8(V 7)$ must be tied to pin 1 of $J 2(1+)$.

Figure 3.33 The Resistor Networks board - two-digit hexadecimal with ladder subnetworks

3.3.3.1 Non-idealities

All the non-idealities shown in paragraph 3.1.3.1 are present here also and generate similar errors.

3.3.3.2 Hexadecimal experiment

Load jumpers on J3 and J4 as shown in Figure 3.33, to select RSH7 as series resistor and RCH3 as closing resistor. That builds a two-digit hexadecimal DAC from the two ladder subnetworks.

In the Patterns Generator, add a bus of bits DIO7...DIO0, set it as Binary Counter, Push-Pull, with frequency $=1 \mathrm{kHz}$. Run Patterns Generator.

Set the scope as in Figure 3.34. Run the scope. Observe the graph. Compare to Figure 3.29. Notice that for the experimental board, the ideal values are:

$$
\begin{align*}
& R=10 \mathrm{k} \Omega ; \quad n=4 ; \quad V_{\text {ref }}=3.3 \mathrm{~V} \\
& V_{F S}=3.09375 \mathrm{~V} \tag{3.36}\\
& R_{\text {abs }}=V_{L S B}=12.0849609375 \mathrm{mV}
\end{align*}
$$

Applications

Figure 3.34 The weighted resistor network output voltage ramp

Figure 3.35 The hexadecimal combined resistor network error

Data Acquisition Systems Fundamentals

Figure 3.36 Linearity after compensating gain and offset errors
Task 6. Compute the absolute and relative integral and differential errors of your combined resistor network. Verify if your DAC is monotonic.
Hint 1: build Math channels $1 \ldots 4$, similar to paragraph 3.1.3.3. Modify the constant values to match the current experiment.
Hint 2: compared to Figure 3.12...Figure 3.17, in Figure 3.35 and Figure 3.36 there are many more transitions in a single saw tooth period: 256 transitions in 256 ms . Each transition generates a dynamic spike, as explained in Figure 3.13. The magnitude and density of the spikes make Math 2 and Math 4 look "noisy" signals, and their actual DC level is difficult to estimate. To overcome this effect, you can do either or both workarounds below:

Figure 3.37 Identifying transition-generated spikes in the error graph

Applications

A. Run the scope in "Single" mode. Repeat "Single" runs, to get a clean (cleaner) image of Math 2 and Math 4.
B. After running scope in "Single" mode, change the scope time base to enlarge the image, as in Figure 3.37. You will be able to identify the dynamic spikes. Coming back to the original time base, you will be able to ignore the spikes in your measurements/adjustments.

3.3.3.3 Decimal experiment

Load jumpers on J3 and J4 as shown in Figure 3.38, to select RSD7 as series resistor and RCD3 as closing resistor. That builds a two-digit BCD DAC from the two ladder subnetworks.

Set an 8-bit BCD Counter on DIO7...DIO0. Connect the scope as in Figure 3.38. The voltage $V 7$ will be shown on channel 1 of the Scope.
Set the scope as in Figure 3.39. Run the scope. Observe the graph. Compare to Figure 3.31. Notice that for the experimental board, the ideal values are:
$R=10 \mathrm{k} \Omega ; n=4 ; V_{\text {ref }}=3.3 \mathrm{~V}$
$V_{F S}=1.85625 \mathrm{~V}$
$R_{a b s}=V_{L S B}=18.5625 \mathrm{mV}$

Figure 3.38 The Resistor
Networks board - two-digit
BCD, with ladder subnetworks

Data Acquisition Systems Fundamentals

Figure 3.39 The weighted resistor network output voltage ramp

Figure 3.40 The BCD combined resistor network error

Applications

Figure 3.41 Linearity after compensating gain and offset errors
Task 7. Compute the absolute and relative integral and differential errors of your weighted resistor network. Verify if your DAC is monotonic.
For the task above, use Figure 3.40 and Figure 3.41 as references. Consider the Hints in the previous paragraph.

3.3.3.4 Decimal network forced to hexadecimal number

Load jumpers on J3 and J4 as shown in Figure 3.38, to build a two-digit BCD DAC, as in the previous paragraph. However, set the Pattern Generator to a hexadecimal counter DIO7...DIO0, as in paragraph 3.3.3.2. This combination generates the non-typical situation simulated in Figure 3.32. The scope image is shown in Figure 3.43.

Figure 3.42 The Resistor
Networks board - two-digit BCD, with ladder subnetworks

Figure 3.43 BCD combined network driven by hexadecimal code experiment

3.3.3.5 Combined network with weighted resistor subnetworks

All experiments in 3.3.3.2 ... 3.3.3.4 can be repeated with weighted subnetworks R15...R12, Rc2 and R11...R8, Rc1.
Load jumper on J7, as in Figure 3.44, to cascade the two weighted subnetworks in a combined network. Connect V15 to scope channel 1 (pin 1+ of J2).

For hexadecimal experiments, load jumpers on J5 and J6 as shown in Figure 3.44 , to select RSH15 as series resistor and RCH11 as closing resistor. That builds a two-digit hexadecimal DAC from the two weighted subnetworks. Set the Pattern Generator to drive DIO15 ...DIO8 as a two-digit hexadecimal counter (in fact, a single 8-bit binary counter).

Figure 3.44 The Resistor Networks board - two-digit hexadecimal, with weighted subnetworks

Applications

For BCD experiments, move the jumpers on J 5 and J 6 to left, to select RSD15 as series resistor and RCD11 as closing resistor. That builds a two-digit BCD DAC from the two weighted subnetworks. Set DIO15...DIO8 as a two-digit BCD counter.

3.3.3.6 3-digit combined network with mixed resistor subnetworks

To build a 3-digit combined network, load a jumper on J7, as shown in Figure 3.45. This connects R15 ...R12, Rc2 as the most significant subnetwork, in front of $R 7 \ldots R 4$ and $R 3 \ldots R 0$.

For 3-digit hexadecimal (12-bit binary) network, place jumpers on J3, J4 and J5, as shown in Figure 3.45, to set RSH15 and RSH7 as series resistors, respectively RCH3 as closing resistor.

Set a 12-bit binary counter in the Pattern Generator, with the bits in the following order (from MSB to LSB): DIO15, DIO14, DIO13, DIO12, DIO7, DIO6, DIO5, DIO4, DIO3, DIO2, DIO1, DIOO, as shown in Figure 3.46.

Figure 3.45 The Resistor
Networks board - three-digit hexadecimal

Set the scope as in Figure 3.47. Modify the Math1 script for the current time base and number of states/ramp period:
floor(Time*1000)*3.09375/4096
Observe the output voltage V15 and the total error as in Figure 3.47. Compensate the offset and gain errors in Math3 and observe the linearity error in Math4, in Figure 3.48.
Build a 3-digit BCD network, by moving to right the jumpers on J3, J4 and J 5 , to set $R S D 15$ and $R S D 7$ as series resistors, respectively $R C D 3$ as closing resistor. In the Patterns Generator, set a BCD counter to drive this circuit.

Figure 3.46 Pattern Generator 12-bit binary counter

Figure 3.47 3-digit hexadecimal network output voltage and errors

Figure 3.48 3-digit hexadecimal network linearity error

Applications

3.4 Operational Amplifier Output Stage for Voltage Switching Resistor Networks

3.4.1 Background

An inverting operational amplifier output stage can be attached to any of the resistor networks analyzed above, as in

Figure 3.49 Operational amplifier output stage for voltage switching resistor networks Figure 3.49. Due to the negative feedback, the network output node is shortcut to the virtual ground, V :

$$
\begin{gather*}
V_{-}=0 \tag{3.38}\\
I_{f}=\frac{V_{e}}{R_{e}} \tag{3.39}\\
V_{o}=-V_{e} \cdot \frac{R_{f}}{R_{e}}
\end{gather*}
$$

The operational amplifier provides low impedance for the output signal V_{o}, but brings additional non-idealities, errors and potential issues:
A. Offset error (operational amplifier offset voltage multiplied by the stage gain).
B. Gain error (mostly due to R_{f} / R_{e} ratio, less due to finite operational amplifier gain).
C. Bandwidth limitations (usually a constant gain times bandwidth product).
D. Slew Rate limitations.
E. Input and output voltage range limitations (usually related to the supply voltages).
F. Stability (depending on the stage gain and load).
G. Noise (own thermal noise and propagated from supply voltages and adjacent signals).
H. Drifts (the parameters change with temperature and age).

For both weighted and ladder, n-bit, unipolar networks, from (3.4), (3.5), (3.15), (3.16):

$$
\begin{gather*}
R_{e}=R ; \quad V_{e}=V_{\text {ref }} \cdot \sum_{i=1}^{n} a_{i} \cdot 2^{-i}=V_{\text {ref }} \cdot\{A\} \tag{3.41}\\
V_{o}=-V_{\text {ref }} \cdot \frac{R_{f}}{R} \cdot \sum_{i=1}^{n} a_{i} \cdot 2^{-i}=-V_{\text {ref }} \cdot \frac{R_{f}}{R} \cdot\{A\} \\
\quad V_{F S}=-V_{\text {ref }} \cdot \frac{R_{f}}{R} ; \quad V_{L S B}=-\frac{V_{\text {ref }}}{2^{n}} \cdot \frac{R_{f}}{R} \tag{3.43}
\end{gather*}
$$

For n-digit combined unipolar networks of radix r, from (3.27), (3.28):

$$
\begin{gather*}
V_{e}=V_{r e f} \cdot \frac{r-1}{2^{m}} \cdot\{A\}_{r} ; \quad R_{e}=\frac{r-1}{r} \cdot R_{p} \tag{3.44}\\
V_{o}=-V_{r e f} \cdot \frac{r}{2^{m}} \cdot \frac{R_{f}}{R_{p}} \cdot \sum_{i=1}^{n} d_{i} \cdot r^{-i}=-V_{r e f} \cdot \frac{r}{2^{m}} \cdot \frac{R_{f}}{R_{p}} \cdot\{A\}_{r} \tag{3.45}\\
V_{F S}=-V_{r e f} \cdot \frac{r}{2^{m}} \cdot \frac{R_{f}}{R_{p}} ; \quad V_{L S B}=-\frac{V_{r e f}}{r^{n}} \cdot \frac{r}{2^{m}} \cdot \frac{R_{f}}{R_{p}} \tag{3.46}
\end{gather*}
$$

For n-digit unipolar hexadecimal combined networks, $m=4, r=16$:

$$
\begin{gather*}
V_{e}=V_{\text {ref }} \cdot \frac{15}{16} \cdot\{A\}_{r} ; \quad R_{e}=\frac{15}{16} \cdot R_{p} \tag{3.47}\\
V_{o}=-V_{r e f} \cdot \frac{16}{16} \cdot \frac{R_{f}}{R_{p}} \cdot \sum_{i=1}^{n} d_{i} \cdot 16^{-i}=-V_{r e f} \cdot \frac{R_{f}}{R_{p}} \cdot\{A\}_{r} \tag{3.48}\\
V_{F S}=-V_{r e f} \cdot \frac{R_{f}}{R_{p}} ; \quad V_{L S B}=-\frac{V_{r e f}}{16^{n}} \cdot \frac{R_{f}}{R_{p}} \tag{3.49}
\end{gather*}
$$

For n-digit unipolar BCD combined networks, $m=4, r=10$:

$$
\begin{gather*}
V_{e}=V_{\text {ref }} \cdot \frac{9}{16} \cdot\{A\}_{r} ; \quad R_{e}=\frac{9}{10} \cdot R_{p} \tag{3.50}\\
V_{o}=-V_{\text {ref }} \cdot \frac{10}{16} \cdot \frac{R_{f}}{R_{p}} \cdot \sum_{i=1}^{n} d_{i} \cdot 10^{-i}=-V_{r e f} \cdot \frac{10}{16} \cdot \frac{R_{f}}{R_{p}} \cdot\{A\}_{r} \tag{3.51}\\
V_{F S}=-V_{\text {ref }} \cdot \frac{10}{16} \cdot \frac{R_{f}}{R_{p}} ; \quad V_{L S B}=-\frac{V_{r e f}}{10^{n}} \cdot \frac{10}{16} \cdot \frac{R_{f}}{R_{p}} \tag{3.52}
\end{gather*}
$$

Applications

3.4.2 Simulation

Figure 3.50 Ladder resistor network with operational amplifier output stage
Figure 3.50 shows the Multisim schematic file for simulation. A weighted or combined network could be as well used instead of the shown ladder network. A 10 MHz clock and a fast time base are used to observe fast dynamic artefacts.

The noticeable parameters of ADA 4851 OpAmp are:

- $V_{\text {supp }}:+3 \ldots \pm 5 \mathrm{~V}$
- Output swing: 60 mV to either rail
- Input common mode: $V_{\text {supp }}-0.2 \mathrm{~V} \ldots V_{\text {supp }}-2.2 \mathrm{~V}$
- Slew Rate: 375V/us (specific conditions)
- Bandwidth: 130 MHz

The simulation results are shown in Figure 3.51. V_{o} is negative since the output stage is inverter. The settling time and slew rate limit the speed of V_{o}, for every $V_{L S B}$ step. The biggest delay happens when the input number rolls over and V_{o} jumps from almost $V_{F S}$ to 0 .
$V_{\text {., the }}$ theltage in the inverter pin of the operational amplifier is not constant null, as expected in a negative feedback stage.

$$
\begin{equation*}
V_{-}=V_{o}+R_{f} \cdot I_{f} \tag{3.53}
\end{equation*}
$$

The operational amplifier in negative feedback should generate the needed value of V_{o} to keep V. null in (3.53). However, the slew rate and settling time limitations do not allow V_{o} to change fast enough, and generate the
 however they exist in I_{f} and can be seen in V..

Figure 3.51 Weighted resistor network with operational amplifier output stage simulation results

Applications

3.4.3 Experiment and measurements

The 4-bit ladder resistor network $R 7 \ldots R 4$, Rs $7 \ldots$...Rs5, Rc4 is connected in Figure 3.52 to the inverting operational amplifier stage, with a jumper on $J 9$, position $V 7$. $V_{\text {out }}$ and V. are probed by channels 1 and 2 of the scope.

The Pattern Generator drives DIO7...DIO4 as a 4-bit binary counter with a clock of 10 MHz .

The signals in Figure 3.53 are not identical to the simulation above. The Analog Discovery scope probe impedance ($1 \mathrm{M} \Omega \| 24 \mathrm{pF}$), the probe wires inductance and the crosstalk from digital signals were not considered in simulation but do affect the experiment.

Figure 3.52 The Resistor Networks board - weighted resistor network with OpAmp output stage

Figure 3.53 Operational amplifier output stage experiment

The scope probes not only modify the probed signal shapes, but also influence the overall circuit. Removing the scope probe from V. circuit node, increases the overall $V_{\text {out }}$ bandwidth, as in Figure 3.54.

Figure 3.54 Operational amplifier output stage experiment (V. probe removed)

Task 8. Based on the acquisition in Figure 3.54, measure the apparent slew rate of the operational amplifier.
Hint: modify the scope time base and horizontal position, to enlarge the steepest slope (at digital rollover). Place vertical cursors across it. Click View/X Cursors. Read $\Delta y / \Delta x$ in the X Cursors Window. Notice that the actual Slew Rate, measured for a particular set of conditions, might be significantly different compared to the standard measured value in the Operational amplifier data sheet.

At low frequency, the Analog Discovery probe and input stage dynamic limitations are less visible, as in Figure 3.55. The operational amplifier offset error increases the overall offset, compared to Figure 3.12.

Offset, gain and linearity errors can be computed in Figure 3.55, similarly to paragraph 3.1.3.3, Figure 3.14 and Figure 3.15.

Applications

Figure 3.55 Operational amplifier output stage - total error (up) and linearity error (down).

Task 9. Use jumpers on J3, J4, J5, J7 headers to build a 12-bit combined hexadecimal resistor network. Set up a 12-bit binary counter in the Patterns Generator to drive the network above. Use the scope channel 1 to visualize the saw tooth signal V15 on J8. Extend the time base and set the horizontal position to observe "big" glitches at $1 / 2$ of the ramp, smaller glitches at $1 / 4$ and $3 / 4$ of the ramp. Notice that the Analog Discovery probes modify the wave
shapes: the probe parasitical capacity (24 pF) builds a Low Pass Filter with the equivalent Resistor Network Resistance ($9.375 \mathrm{k} \Omega$).
Task 10. Use jumpers on J3, J4, J5, J7 headers to build a 12-bit combined decimal resistor network. Set up a 3-digit (12 bit) BCD counter in the Patterns Generator to drive network above. Use the scope channel 1 to visualize the saw tooth signal V15 on J8. Extend the time base and search for glitches. Explain the glitch location.

Task 11. Use a jumper on J 9 to add the operational amplifier output stage. Use scope channel 1 to visualize $V_{\text {out }}$ and channel 2 to see $V_{\text {.. }}$ Repeat for both hexadecimal and decimal networks. Observe same glitches as above. Notice that the glitches are larger in amplitude; in fact, the operational amplifier stage makes the circuit less sensitive to the Analog Discovery scope probe: the operational amplifier output resistance is small, so the influence of the same parasitical capacitance of the probe is almost negligible. A scope probe on V - affects the shape of $V_{\text {out }}$ (remove the probe on V - to see the difference).

Figure 3.56 12-bit hexadecimal network with operational amplifier output stage detail: $V_{\text {out }}$ and V - glitch

Applications

Task 12. Use the decimal network with a hexadecimal counter and reverse. Explain the wave shapes.

Task 13. Use a 2 -digit hexadecimal network with an 8 -bit custom sinus Pattern Generator sequence.
Hint: use Xcell to build a .csv file with sinus samples:

- fill column A, rows 1 to 1024 with values $0,1, \ldots 1023$.
- write the equation $=\operatorname{INT}(127 * \operatorname{SIN}(2 * \operatorname{PI}() * \mathrm{~A} 1 / 1024))+128$ in cell B1. Copy cell B1 to cells B2 to B1024. That will generate 1024 sinus samples for one sinus period. The samples are shifted half of amplitude up, scaled to $0 \ldots 256$ range and rounded to integer
- save the file in csv format.

Hint: in the Pattern Generator, set an 8-bit custom bus with the sinus samples:

- in the pattern Generator, add the 8 -bit custom bus DIO7...DIO0.
- in the Edit window, Import the sinus sample .csv file.
- In the import window, choose column 2 as source for Bus values.

Hint: set jumpers for DIO7...DIO0 two-digit hexadecimal combined resistor network. Repeat experiments for both configurations: with and without operational amplifier output stage.

Figure 3.57 Edit Bus and Import windows

Data Acquisition Systems Fundamentals

Figure 3.58 8-bit sinus by two-digit hexadecimal network without (up) or with (middle and down) operational amplifier output stage. Glitch detail (down)

Applications

Task 14. Measure dynamic parameters for the signal above.
Hint: open a Spectrum Analyzer instrument in WaveForms, and set:

- Click View/Measure;
- Add/Trace 1/Dynamic/ENOB. This shows the equivalent number of bits, computed as:

$$
\begin{equation*}
E N O B=(S N R-1.76) / 6.02 \tag{3.54}
\end{equation*}
$$

- Add/Tracel/Harmonics/FF. That will show the amplitude and frequency of the fundamental component. Add some harmonics.
- In Channel Options, change Sample Mode between Average and Decimate. Notice the influence on $E N O B$. (Averaging the samples at acquisition reduces the noise and improve the $E N O B$. However, this improvement is done on the acquired image of the signal, not on the real signal).

Figure 3.59 Using the Spectrum Analyzer for Dynamic parameters measurement (8 -bit sinus, decimate sampling mode)

Task 15. Repeat Task 13 and Task 14 with a 3-digit hexadecimal network and a 12-bit custom sinus Pattern Generator sequence.
Hint: in the Excell file, change the equation for cell B 1 to $=\operatorname{INT}(2047 * \operatorname{SIN}(2 * \operatorname{PI}() * \mathrm{~A} 1 / 1024))+2048$ and copy cell B1 to cells B2...B1024. Save the file in csv format.
Hint: in the Patterns generator, add the 12 -bit custom bus DIO $15 \ldots$...DIO12, DIO7...DIOO. In the Edit window, Import the sinus csv file.
Hint: set jumpers to configure the 3-digit hexadecimal combined network $R 15 \ldots R 12, R 7 \ldots R 0$. Repeat experiments for both configurations: with and without operational amplifier output stage.

4 DAC CMOS

4.1 Background

4.1.1 Unipolar operation

Figure 4.1 The simplified internal $A D 7520$ structure (in dashed contour) and typical connection
Figure 4.1 shows a unipolar multiplying D/A circuit.
The dashed line includes the simplified internal structure of the 10 bit, CMOS integrated AD7520 D/A converter. ICs with similar internal structure (with various resolutions and eventual additional features) are manufactured by Analog Devices and Texas Instruments.
The core of the circuit consists in an R-2R resistor network and the associated CMOS switches.
For correct behavior, the two current output pins Out $_{1}$ and Out $_{2}$ need to be driven at 0 V by external circuitry. The typical application circuit connects Out $_{2}$ to GND and uses an operational amplifier with negative feedback for generating a virtual GND node in Out_{1}, as in Figure 4.1. The internal $10 \mathrm{k} \Omega$ feedback resistor is matched with the $\mathrm{R}-2 \mathrm{R}$ network in regard to initial value, and drifts.

Applications

Each switch is driven by a bit of the input number: K_{l} by the $M S B \ldots K_{10}$ by the $L S B$.

The unipolar binary number at the DAC input can be understood either as "fractional", composed of bits a_{i}, with $i=1 \ldots n, a_{1}=M S B \ldots a_{n}=L S B$, ($n=10$ for AD7520):

$$
\begin{equation*}
\{A\}=0 . a_{1} \ldots a_{(n-1)} a_{n}=\sum_{i=1}^{n} a_{i} \cdot 2^{-i} ; \quad\{A\} \in[0 \ldots 1) \tag{4.1}
\end{equation*}
$$

Or, as "integer", built of bits b_{i}, with $j=0 \ldots n-1, b_{n-1}=M S B \ldots b_{0}=L S B \quad(n=10$ for $A D 7520$):

$$
\begin{equation*}
\{N\}=b_{n-1} \ldots b_{1} b_{0}=\sum_{j=0}^{n-1} b_{j} \cdot 2^{j} ; \quad\{N\} \in\left[0 \ldots 2^{n}\right) \tag{4.2}
\end{equation*}
$$

where: $b_{n-i}=a_{i} \forall i=1 \ldots n$. The two representations are tied by:

$$
\begin{equation*}
\{N\}=2^{n} \cdot\{A\} \tag{4.3}
\end{equation*}
$$

The equivalent resistance of pin $V_{\text {ref }}$ to GND is R; the current in pin $V_{\text {ref }}$ is:

$$
\begin{equation*}
I_{r e f}=\frac{V_{r e f}}{R} \tag{4.4}
\end{equation*}
$$

The current halves in each node of the $R-2 R$ network; the current in branch i is:

$$
\begin{equation*}
I_{i}=\frac{I_{r e f}}{2^{i}} \tag{4.5}
\end{equation*}
$$

$I_{\text {outl }}$ collects all the currents from branches with the corresponding bit $a_{i}=1$ and $I_{\text {out }}$ from branches with the corresponding bit $a_{i}=0$:

$$
\begin{align*}
& I_{\text {out }_{1}}=I_{\text {ref }} \cdot \sum_{i=1}^{8} a_{i} \cdot 2^{-i}=I_{\text {ref }} \cdot\{A\} \tag{4.6}\\
& I_{\text {out }_{2}}=I_{\text {ref }} \cdot \sum_{i=1}^{N} \overline{a_{i}} \cdot 2^{-i}=I_{\text {ref }} \cdot\{\bar{A}\} \tag{4.7}
\end{align*}
$$

where $\{\bar{A}\}$ is the complement of $\{A\}$:

$$
\begin{equation*}
\{\bar{A}\}=0 . \overline{a_{1}} \ldots \overline{a_{(n-1)} a_{n}}=\sum_{i=1}^{n} \overline{a_{i}} \cdot 2^{-i} ; \quad\{\bar{A}\} \in[0 \ldots 1) \tag{4.8}
\end{equation*}
$$

and:

$$
\begin{gather*}
\{A\}+\{\bar{A}\}+1 L S B=1 \tag{4.9}\\
I_{o u t 1}+I_{o u t 2}+I_{L S B}=I_{r e f} ; \quad I_{L S B}=I_{n}=\frac{I_{r e f}}{2^{i}} \tag{4.10}
\end{gather*}
$$

$I_{\text {out }}$ flows through the feedback resistor and generates an output voltage of:

$$
\begin{gather*}
V_{o u t}=-I_{o u t 1} \cdot R=-I_{r e f} \cdot R \cdot \sum_{i=1}^{8} a_{i} \cdot 2^{-i}=-V_{r e f} \cdot\{A\} \tag{4.11}\\
=V_{F S} \cdot\{A\} \in\left[0 \ldots V_{F S}\right)
\end{gather*}
$$

In terms of integer representation:

$$
\begin{equation*}
V_{o u t}=-V_{r e f} \cdot \frac{\{N\}}{2^{n}}=\frac{V_{F S}}{2^{n}} \cdot\{N\}=V_{L S B} \cdot\{N\} \in\left[0 \ldots V_{F S}\right) \tag{4.12}
\end{equation*}
$$

The CMOS switches in the DA7520 (and similar circuits) allow both polarities for $I_{\text {ref }}, V_{\text {ref }}, I_{1}, I_{2}, V_{\text {out }}$, etc. The circuit in Figure 4.1 can work as a two-quadrant multiplier.

4.1.2 Bipolar operation

Figure 4.2 shows a bipolar $D A C$ schematic. $O A_{2}$ has negative feedback; even if both feedback types coexist, the "positive" one is "reduced" by the $O A_{1}$ negative feedback, which "forces" the noninverting $O A_{2}$ input voltage to GND. As result, $O A_{2}$ input voltages are equal and null, due to virtual ground in "- " $O A_{1}$ input.
The circuit around $O A_{2}$, with $R_{1}=R_{2}$, works as "current mirror":

$$
\begin{equation*}
I_{1}=\frac{V_{2}}{R_{1}}=I_{2}=\frac{V_{2}}{R_{2}} \tag{4.13}
\end{equation*}
$$

Figure 4.2 Bipolar DAC using AD7520

Applications

Kirchhoff equations for OA_{2} input nodes:

$$
\begin{gather*}
I_{\text {out } 2}+I_{c}-I_{1}=0 \tag{4.14}\\
I_{\text {out } 1}-I_{f}-I_{2}=0
\end{gather*}
$$

And, also considering (4.10):

$$
\begin{gather*}
I_{f}=I_{\text {out } 1}-I_{\text {out } 2}-I_{c} ; \quad I_{c}=\frac{V_{\text {ref }}}{2^{n} \cdot R}=I_{L S B} \tag{4.15}\\
I_{f}=I_{\text {ref }}\left(2 \cdot\{A\}_{U}-1\right) \tag{4.16}\\
\begin{array}{r}
V_{o}=-I_{f} \cdot R_{f}=-I_{\text {ref }} \cdot R_{f} \cdot\left(2 \cdot\{A\}_{U}-1\right) \\
=-V_{\text {ref }} \cdot\left(2 \cdot\{A\}_{U}-1\right)
\end{array} \tag{4.17}
\end{gather*}
$$

Were $\{A\}_{U}$ is a unipolar, fractional number, as in (4.1). Notating $\{A\}_{B O}$, the Binary Offset number:

$$
\begin{equation*}
\{A\}_{B O}=2 \cdot\{A\}_{U}-1 \in-[1 \ldots 1) \tag{4.18}
\end{equation*}
$$

Equation (4.17) becomes the definition of a Binary Offset DAC:

$$
\begin{equation*}
V_{o}=-V_{r e f} \cdot\{A\}_{B O}=V_{F S} \cdot\{A\}_{B O} \in\left[-V_{F S} \ldots V_{F S}\right) \tag{4.19}
\end{equation*}
$$

In terms of integer numbers, with $\left\{N^{\prime}\right\}_{B O}$, the integer Binary Offset number (equivalent of moving the fractional dot over $n-l$ bits to the right):

$$
\begin{equation*}
\left\{N^{\prime}\right\}_{B O}=\{A\}_{B O} \cdot 2^{n-1} \in\left[-2^{n-1} \ldots 2^{n-1}\right) \tag{4.20}
\end{equation*}
$$

Equation (4.17) becomes the definition of a Binary Offset DAC:

$$
\begin{equation*}
V_{o}=-V_{r e f} \cdot \frac{\left\{N^{\prime}\right\}_{B O}}{2^{n-1}}=V_{L S B} \cdot\left\{N^{\prime}\right\}_{B O} \in\left[-V_{F S} \ldots V_{F S}\right) \tag{4.21}
\end{equation*}
$$

The circuit is a bipolar DAC, meaning the input number is bipolar, in Binary Offset code. The most significant bit is now the Sign Bit (0 for "negative", 1 for "positive").
Complementing the MSB would turn the circuit into a 2 's Complement DAC. With both possible polarities for $I_{\text {ref, }}, V_{\text {ref }}, I_{1}, I_{2}, V_{\text {out }}$, and also for the input number, the circuit in Figure 4.2 can work as a four-quadrant multiplier.

4.2 Experiment and measurements

The AD7524 CMOS DAC is used on the experimental board. It has a similar structure with AD7520, except:

- It has only 8 -bit of resolution.
- Data Latches are provided for compatibility to a microprocessor data bus. If not used, ChipSelect and Write pins must be tied to GND.

4.2.1 Unipolar Operation

Figure 4.3 shows the full schematic of the experimental board, but circuits not used in the current experiment are shaded. Notice that $J 3$ is loaded with a jumper on pins 2-3, to tie $O u t_{2}$ of $U 2$ to $G N D$, and $J 4$ is loaded with a jumper on pins $1-2$, to insulate U1A.

U2 and U1B build a circuit equivalent to Figure 4.1, with:

- $\quad V_{\text {ref }}=W 1$, the AWG channel 1 of the Analog Discovery.
- Data bits = DIO7 (MSB) ...DIO0(LSB) of Analog Discovery.

Figure 4.3 DAC CMOS, unipolar operation - experimental board schematic

Applications

Notice $\mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{17}$ and C_{18}, added to compensate U1B, U1A, U1D and U1C respectively. They reduce ringing and oscillation risk for the high speed AD8567 operational amplifiers.

Figure 4.4 shows the experimental board prepared with jumpers and scope probe wires for the Static DAC experiment. Notice that the same board is used for several other experiments.

4.2.1.1 Static DAC experiment

On the experimental board:

- Place jumpers at:
- $J 3=2-3$ - shorts $I_{\text {out } 2}$ to GND.
- $J 4=1-2-$ disconnects U1A.
- Place scope probe wires:
- Channel 1 to $J 9-2=W 1=V_{\text {ref }}$.
- Channel 2 to $J 8-2=V B o=V_{\text {out }}$.

In the WaveForms software:

Figure 4.4 DAC CMOS
experimental board

In Wavegen, W1, set a constant, positive or negative voltage for $V_{\text {ref }}$.

- In StaticIO, set a slider for bits DIO7...DIO0.
- In Supplies, activate both +/-V user voltage supplies. (If the WaveForms software reports an "Overcurrent condition" and stops the user power supplies, try starting the supplies one by one: first the positive supply and, after few seconds, the negative one)
- In Scope, open Measurements for channel 1 Average and channel 2 Average. Set a low sampling rate (i.e., $100 \mathrm{~ms} / \mathrm{div}$). This results in averaging more samples for stable measured values.
- Modify the input number in the StaticIO and read the output voltage in the scope measurements pane.

Task 1. Starting from the measured voltages, write down the equations and calculate the actual values of $\varepsilon_{o f f s e t}, \varepsilon_{g a i n}, V^{\prime}{ }_{F S}$ and $V^{\prime}{ }_{L S B}$.
Hint: The ideal DAC equation is:

$$
\begin{equation*}
V_{o}=V_{F S} \cdot\{A\} \tag{4.22}
\end{equation*}
$$

Considering the offset and gain errors, the DAC equation becomes:

$$
\begin{align*}
& V_{o}=\varepsilon_{o f f, a b s}+V_{F S}^{\prime} \cdot\{A\} \tag{4.23}\\
& \qquad \begin{array}{l}
V_{o}=\varepsilon_{o f f, a b s}+\left(V_{F S}+\varepsilon_{\text {gain,abs }}\right) \cdot\{A\} \\
\\
\quad=\varepsilon_{o f f, a b s}+\left(1+\varepsilon_{\text {gain }, \text { rel }}\right) \cdot V_{F S} \cdot\{A\}
\end{array} \tag{4.24}
\end{align*}
$$

4.2.1.2 Dynamic DAC experiment

On the experimental board:

- Place jumpers at:
- $J 3=2-3$ - shorts $I_{\text {out } 2}$ to GND.
- $J 4=1-2-$ disconnects U1A.
- Place scope probe wires:
- Channel 1 to $J 8-3=V B-=U 1 B$ inverting input (virtual $G N D$).
- Channel 2 to $J 8-2=V B o=V_{\text {out }}$.

In the WaveForms software:

- In Wavegen, W1, set a constant, positive voltage for $V_{r e f}$.
- Make sure StaticIO is closed or set a LEDs for bits DIO7...DIO0.
- In Patterns, set a binary counter on DIO7...DIO0. Set the clock frequency to 1 MHz .
- In Supplies, activate both +/-V user voltage supplies. (If the WaveForms software reports an "Overcurrent condition" and stops the user power supplies, try starting the supplies one by one: first the positive supply and, after few seconds, the negative one).
- In Scope, Add/Digital/Bus DIO7...DIOO. Set Trigger Source to Digital and set Trigger condition to DIO7 Falling Edge.
- In scope, Add/Math/Simple: C2-C1, Math1 shows the voltage drop over $R_{F B}$.
- In Scope, set appropriate time base to see several saw-tooth periods of $V_{\text {out }}$.

Applications

Figure 4.5 Dynamic DAC experiment (unipolar operation) - scope view

- Play with the values of $V_{\text {ref }}$ (in Wavegen1), clock Frequency (in Patterns), Time/Base (in Scope). Observe the effects and understand the mechanisms.
- Identify the non-idealities and errors in the scope image: settling time, overshoot, glitches. Prepare to change the time base and channel range for more detailed observation and measurements.

Settling time, $\boldsymbol{t}_{\text {set }}$, is the time from changing the digital input value to a stable value of the output voltage, within the acceptable error band (accuracy).
Task 2. Measure the actual value of $\boldsymbol{t}_{\text {set }}$, at $\pm 10 \mathrm{mV}$ accuracy.
Hint: The worst case is at the maximal voltage trip; for a saw tooth signal, from $V_{F S}$ to 0 , when the input number rolls over. This is easy to synchronize with the falling edge of the MSB in the digital bus on the scope. Change the time base and position, respectively the range and offset to optimize the view, as in Figure 4.6. Eventually use zoom windows in the scope (View/Add Zoom and use right and left drag over the Zoom window axes to change the zoom factor and position). Change the frequency in the Pattern generator (if
needed), to make the period longer than the settling time. Notice the ringing due to the large voltage trip and understand that, for this particular circuit, the big component of the $t_{\text {set }}$ is given by the incompletely compensated operational amplifier. Notice that the scope wire probes influence the signal shapes (independent/ribbon/twisted wires).

Figure 4.6 Overshoot and settling time measurement

Applications

Ringing is the damped oscillation following a step of the output voltage. The amplitude (overshoot) and the frequency of the ringing depends on the circuit frequency characteristics. Ringing denotes insufficient phase compensation, while overcompensation would lead to an exponential time characteristic, as in Figure 4.7, where a 39 pF capacitor was placed parallel to C_{15}.

Overshoot, $V_{\text {set }}$, is the time period from changing the digital input value to a stable value of the output voltage, within the acceptable error band.
Task 3. Measure the actual value of the overshoot and ringing frequency.
Notice the glitch on V_{B-} (channel 1 of the scope). Theoretically, this should be virtual $G N D$, due to the negative feedback of U1B. The negative feedback should force $V_{B o}$ to such a voltage that makes V_{B-} null:

$$
\begin{equation*}
V_{B-}=V_{B o}-I_{F B} \cdot R_{F B}=0 V \tag{4.25}
\end{equation*}
$$

However, when $V_{B o}$ cannot have the required value, V_{B-} is not zero; in this case, $V_{B o}$ would be required to change faster than the operational amplifier Slew Rate, which is impossible, generating a pulse on V_{B}.

Figure 4.7 Overcompensated output stage behavior

Glitch is the $V_{\text {out }}$ pulse due to mismatched switching time of multiple bits changing at the same time. The glitch is measured either as amplitude or as "energy"- the area closed by the glitch pulse in μV^{*} sec.

The worst situation is when all bits switch at once, from $0111 \ldots$ to $1000 \ldots$ (for example at midscale of a binary counter), or reverse. This is easy to synchronize on the rising edge of the MSB, in the digital bus on the scope. Change the time base and position, respectively the range and offset to optimize the view, as in Figure 4.8. Notice $V_{B o}$ should theoretically change from $127 V_{L S B}$ to $128 V_{L S B}$, with a delta of $V_{L S B}$. The glitch amplitude is much bigger. Notice again that the $V_{B o}$ variation should theoretically be faster than the operational amplifier Slew Rate, so the $V_{B o}$ speed is limited to Slew Rate and the difference is taken by V_{B-}.
Task 4. Measure the actual value of the glitch amplitude and visually approximate the glitch energy.
Hint: for glitch energy, approximate the area underneath the glitch pulse to a triangle. Change the time base and position, respectively voltage range and offset as convenient.

Task 5. Identify the glitch(es) with the second amplitude. Explain.

Figure 4.8 Glitch

Applications

4.2.1.3 Multiplying DAC experiment

On the experimental board:

- Place jumpers at:
- J3 $=2-3$ - shorts $I_{\text {out } 2}$ to GND.
- $J 4=1-2-$ disconnects U1A.
- Place scope probe wires:
- Channel 1 to $J 9-2=V_{\text {ref }}=W 1$.
- Channel 2 to $J 8-2=V B o=V_{\text {out }}$

In the WaveForms software:

- In Wavegen, W1, set a 3 kHz sinus voltage for $V_{r e f}$, with null offset and 2 V amplitude.
- Make sure StaticIO is closed or set a LEDs for bits DIO7 ...DIOO.
- In Patterns, set a binary counter on DIO7...DIOO. Set the clock frequency to 100 kHz . This will generate a saw-tooth digital signal with the frequency $100 \mathrm{kHz} / 2^{8}$.
- In Supplies, activate both +/-V user voltage supplies.
- In Scope, Add/Digital/Bus DIO7...DIOO. Set Trigger Source to Digital and set Trigger condition to DIO7 Falling Edge. Expand the Bus line in the digital view of the scope, to see the graphical

Figure 4.9 Multiplying unipolar DAC (two quadrant multiplier)
representation of the bus value, as in Figure 4.12. Notice that the graphical representation depends on the Format chosen for the bus (Binary/Vector/Signed/Ones Complement/2sComplement...). Choose any Unipolar representation since the DAC is unipolar.

- In Scope, set appropriate time base and voltage Range.

Notice that the output voltage is the product between the bipolar $V_{\text {ref }}$ and the unipolar input number. The circuit works with both polarities of $V_{r e f}$ since the CMOS switches allow current flow in both directions.

Task 6. Produce a product of two sinus signals: $3 \mathrm{kHz} \boldsymbol{V}_{\text {ref }}$ and 100 Hz input number.

Hint: generate a 100 Hz sinus with custom samples in the Pattern Generator:

- Prepare a .csv file with 1000 lines. In column A, place integer values from to $0 \ldots 999$. In the cell B 1 , write the following formula: $=128+\operatorname{INT}(127 * \operatorname{SIN}(2 * \operatorname{PI}() * \mathrm{~A} 1 / 1000))$. Copy cell B1 to cells B2...B1000. This calculates 1000 integer 8 -bit samples of a sinus period, with $2 * \pi / 1000$ phase resolution. Save the .csv file. When saving the file as .csv, the formulas are replaced by numerical values.
- In Patterns, change the bus type to Custom and edit it. Click Import and select the .csv file prepared above. Select column 2 to be loaded for the whole bus, as in Figure 4.10. This way, the decimal values in column B of the .csv file are converted to binary, and each bit is loaded into the appropriate signal of the bus.
- Make sure, there are exactly 1000 samples in the buffer.

Figure 4.10 Importing a .csv file to Patterns generator

Applications

Figure 4.11 Edit a bus in Patterns

- Set the frequency to 100 kHz . The sinus frequency will be $100 \mathrm{kHz} / 1000$ samples $=100 \mathrm{~Hz}$.
- Run all instruments and observe the scope image. Notice that the output voltage has opposite polarity to $V_{\text {ref }}$, due to the inverting output stage.
- Slightly change the $V_{\text {ref }}$ frequency (ex. to 3.003 kHz). Notice the effect and explain.

Figure 4.12 Multiplying unipolar DAC (two quadrant multiplier) - sinus

4.2.2 Bipolar Operation

In Figure 4.13, J3 and J4 jumpers were moved to connect U1A in the circuit. The schematic is similar to the one paragraph 4.1.2. The circuit is a $7+1$-bit, bipolar, Binary Offset DAC and can work as a four quadrant multiplier, with:

- $\quad V_{\text {ref }}=W 1$, the AWG channel 1 of the Analog Discovery.
- Data bits = DIO7 (MSB=Sign Bit) ...DIOO(LSB) of Analog Discovery

4.2.2.1 Static DAC experiment

On the experimental board:

- Place jumpers at:
- $J 3=1-2$ - connects $I_{\text {out } 2}$ to U1A current mirror.
- $J 4=2-3-$ connects U1A in the circuit.
- Place scope probe wires:
- Channel 1 to J9-2 = WI $=V_{\text {ref }}$.
- Channel 2 to $J 8-2=V B o=V_{\text {out }}$.

Figure 4.13 DAC CMOS, unipolar operation - experimental board schematic

Applications

In the WaveForms software:

- In Wavegen, W1, set a constant, positive or negative voltage for $V_{\text {ref }}$.
- In StaticIO, set a slider for bits DIO7...DIOO. The static IO instrument in WaveForms encodes the 8 bits above as an unsigned integer. However, in this configuration, the experimental board encodes the same bits as a 7+1 bipolar, binary offset integer. For the Binary Offset value, always subtract 128 from the number displayed on the right side of the slider.
- In Supplies, activate both +/-V user voltage supplies. (If the WaveForms software reports an "Overcurrent condition" and stops the user power supplies, try starting the supplies one by one: first the positive supply and, after few seconds, the negative one).
- In Scope, open Measurements for channel 1 Average and channel 2 Average. Set a low sampling rate (i.e. $100 \mathrm{~ms} / \mathrm{div}$). This results in averaging more samples for stable measured values.
- Modify the input number in the StaticIO and read the output voltage in the scope measurements pane. Notice that the output voltage polarity changes when the input number polarity changes.

4.2.2.2 Dynamic DAC experiment

On the experimental board:

- Keep jumpers at:
- $J 3=1-2-$ connects $I_{o u t 2}$ to U1A current mirror.
- $J 4=2-3-$ connects U1A in the circuit.
- Place scope probe wires:
- Channel 1 to $J 8-3=V B-=U 1 B$ inverting input (virtual $G N D$).
- Channel 2 to $J 8-2=V B o=V_{\text {out }}$.

In the WaveForms software:

- In Wavegen, W1, set a constant, positive or negative voltage for $V_{\text {ref }}$.
- Make sure StaticIO is closed or set a LEDs for bits DIO7...DIOO.
- In Patterns, set a binary counter on DIO7...DIO0. Set the clock frequency to 1 MHz .
- In Supplies, activate both +/-V user voltage supplies. (If the WaveForms software reports an "Overcurrent condition" and stops the user power supplies, try starting the supplies one by one: first the positive supply and, after few seconds, the negative one).
- In Scope, Add/Digital/Bus DIO7...DIO0. Set Trigger Source to Digital and set Trigger condition to DIO7 Falling Edge.
- In scope, Add/Math/Simple: C2-C1, Mathl shows the voltage drop over $R_{F B}$.
- In Scope, set appropriate time base to see several saw-tooth periods of $V_{\text {out }}$.
- Play with the values of $V_{\text {ref }}$ (in Wavegen1), clock Frequency (in Patterns), Time/Base (in Scope). Observe the effects and understand the mechanisms.
- Notice that the $V_{\text {out }}$ amplitude is double compared to the unipolar operation, for the same value of $V_{r e f}$.
- Identify the non-idealities and errors in the scope image: settling time, overshoot, glitches. Change the time base and channel range for more detailed observation and measurements.

4.2.2.3 Multiplying DAC experiment

On the experimental board:

- Keep jumpers at:
- J3 $=1-2$ - connects $I_{\text {out }}$ to U1A current mirror.
- $J 4=2-3-$ connects U1A in the circuit.
- Place scope probe wires:
- Channel 1 to $J 9-2=V_{\text {ref }}=W 1$.
- Channel 2 to $J 8-2=V B o=V_{\text {out }}$.

In the WaveForms software:

- In Wavegen, W1, set a 3 kHz sinus voltage for $V_{\text {ref, }}$, with null offset and 2 V amplitude.
- Make sure StaticIO is closed or set a LEDs for bits DIO7 ...DIOO.
- In Patterns, set a binary counter on DIO7...DIOO. Set the clock frequency to 100 kHz . This will generate a saw-tooth digital signal with the frequency $100 \mathrm{kHz} / 2^{8}$.
- In Supplies, activate both +/-V user voltage supplies.
- In Scope, Add/Digital/Bus DIO7...DIOO. Set Trigger Source to Digital and set Trigger condition to DIO7 Falling Edge. Expand the Bus line in the digital view of the scope, to see the graphical representation of the bus value, as in Figure 4.12. Notice that the graphical representation depends on the Format chosen for the bus (Binary/Vector/Signed/Ones Complement/2sComplement...). Choose

Applications

any unipolar representation since Binary Offset uses the same code sequence.

- In Scope, set appropriate time base and voltage range.

Notice that the output voltage is the product between the bipolar $V_{\text {ref }}$ and the bipolar input number. The circuit works with both polarities of $V_{\text {ref }}$ since the CMOS switches allow current flow in both directions. Since the input number is also bipolar, the circuit works in all 4 quadrants.

Task 7. Produce a product of two sinus signals: $3 \mathrm{kHz} \boldsymbol{V}_{\text {ref }}$ and 100 Hz input number.

Hint: follow the same exact steps as for the unipolar experiment. Since Binary Offset use the same code sequence as unipolar, the same sample string will work in this configuration as a correct Binary Offset one.

- Run all instruments and observe the scope image. Output voltage polarity depends both on the input number and $V_{\text {ref }}$ polarities.
- Slightly change the $V_{\text {ref }}$ frequency (ex. to 3.003 kHz). Notice the effect and explain.

Figure 4.14 Multiplying Bipolar DAC (four quadrant multiplier)

5 Digitally controlled filter

5.1 Background

Figure 5.1 Digitally controlled filter schematics
In Figure 5.1, $U 1 D$ is an inverting adder, $U 2$ and $U 1 A$ build a typical inverting, voltage output, multiplying DAC stage, $U 1 B$ is an inverting integrator.

The unipolar binary number at the DAC input can be understood either as "fractional", built of bits a_{i}, with $i=1 \ldots n, n=8, a_{l}=M S B \ldots a_{8}=L S B$:

$$
\begin{equation*}
\{A\}=0 . a_{1} \ldots a_{(n-1)} a_{n}=\sum_{i=1}^{n} a_{i} \cdot 2^{-i} \tag{5.1}
\end{equation*}
$$

Or, as "integer", built of bits b_{i}, with $i=0 \ldots n-1, n=8, b_{7}=M S B \ldots b_{0}=L S B$:

$$
\begin{equation*}
\{N\}=b_{n-1} \ldots b_{1} b_{0}=\sum_{i=0}^{n-1} b_{i} \cdot 2^{i} \tag{5.2}
\end{equation*}
$$

Where: $b_{n-i}=a_{i} \forall i=1 \ldots n$. The two representations are tied by:

$$
\begin{equation*}
\{N\}=2^{n} \cdot\{A\} \tag{5.3}
\end{equation*}
$$

The Laplace complex equations are:

$$
\begin{gather*}
V_{2}(s)=-V_{i n}(s)-V_{3}(s) \tag{5.4}\\
V_{A o}(s)=-\{A\} \cdot V_{2}(s)=-\frac{\{N\}}{2^{n}} \cdot V_{2}(s) \tag{5.5}
\end{gather*}
$$

Applications

$$
\begin{equation*}
V_{3}(s)=-\frac{V_{A o}(s)}{s \cdot R_{4} \cdot C_{1}} \tag{5.6}
\end{equation*}
$$

The Laplace transfer functions:

$$
\begin{align*}
& \frac{V_{3}(s)}{V_{i n}(s)}=-\frac{1}{1+s \cdot \frac{R_{4} \cdot C_{1}}{\{A\}}} \tag{5.7}\\
& \frac{V_{1}(s)}{V_{i n}(s)}=-\frac{s \cdot \frac{R_{4} \cdot C_{1}}{\{A\}}}{1+s \cdot \frac{R_{4} \cdot C_{1}}{\{A\}}} \tag{5.8}
\end{align*}
$$

Noting f_{o} a circuit constant and f_{c} depending on $\{A\}$ and reducing the Laplace variable s to the Fourier variable, $j \omega$ (for periodical signals only):

$$
\begin{gather*}
f_{0}=\frac{\omega_{0}}{2 \cdot \pi}=\frac{1}{2 \cdot \pi \cdot R_{4} \cdot C_{1}}=9.704 \mathrm{kHz} \tag{5.9}\\
f_{c}=\frac{\omega_{c}}{2 \cdot \pi}=\frac{\omega_{0} \cdot\{A\}}{2 \cdot \pi}=\frac{\{A\}}{2 \cdot \pi \cdot R_{4} \cdot C_{1}}=f_{0} \cdot\{A\} \tag{5.10}\\
s=j \cdot \omega=2 \cdot \pi \cdot f \cdot j \tag{5.11}
\end{gather*}
$$

The transfer functions become:

$$
\begin{align*}
& \frac{V_{3}(s)}{V_{\text {in }}(s)}=-\frac{1}{1+j \cdot \frac{f}{f_{0} \cdot\{A\}}}=-\frac{1}{1+j \cdot \frac{f}{f_{c}}} \tag{5.12}\\
& \frac{j \cdot \frac{f}{V_{0} \cdot\{A\}}}{V_{\text {in }}(s)}=-\frac{j \cdot \frac{f}{f_{c}}}{1+j \cdot \frac{f}{f_{0} \cdot\{A\}}}=-\frac{f}{1+j \cdot \frac{f}{f_{c}}} \tag{5.13}
\end{align*}
$$

Equation (5.12) describes a Low Pass Filter while (5.13) shows a High Pass Filter, both with the corner frequency of f_{c}.

Indeed, for V_{3}, the integrator is in the direct path, setting the LPF character of the transfer function. For V_{l} instead, the integrator is in the feedback path, which complements the behavior of the transfer function to a HPF.

5.2 Simulation

The AD7524 spice model is not available. For simulation, the DAC is modeled in Figure 5.2 with R_{15}, and $R_{16} . R_{16}$ is the direct image of the feedback resistor inside of AD7524. R_{15} is the equivalent resistance between $V_{\text {ref }}$ and Out $_{l}$ pins of AD7524. Its value depends on the input number $\{A\}$:

$$
\begin{align*}
& R_{16}=10 k \Omega \tag{5.14}\\
& R_{15}=\frac{10 k \Omega}{\{A\}} \tag{5.15}
\end{align*}
$$

When $\{A\}=0$, the gain of U1A stage is null. With $\{A\}=1$ (Full Scale, impossible), the gain of U1A stage would be unity.

Figure 5.3 shows the AC simulation results with Parameter Sweep: R_{15} sweeps in octave mode, from $20 \mathrm{k} \Omega$ to $2.56 \mathrm{M} \Omega$, with 3 points/octave. The 8 swept values correspond to a walking 1 among $\{A\}$ bits, from MSB to LSB:

$$
\begin{equation*}
R_{15, i}=10 \mathrm{k} \Omega \cdot 2^{i} \Leftrightarrow\{A\}=2^{-i} ; i=1 \ldots 8 \tag{5.16}
\end{equation*}
$$

The magnitude characteristics family include 8 pairs of LPF/HPF. Each pair has a unique corner frequency. The lowest corner frequency (at cursor 1) corresponds to $\{A\}_{\text {min }}=2^{-8}(\mathrm{LSB}=1$, all others $=0), R_{l 5, \max }=10 \mathrm{k} \Omega^{*} 2^{8}=2.56 \mathrm{M} \Omega$ and the highest corner frequency (at cursor 2) to $\{A\}_{\max }=2^{-1}$ (MSB $=1$, all others $=0) R_{l 5, \min }=10 \mathrm{k} \Omega^{*} 2^{1}=20 \mathrm{k} \Omega$.

Figure 5.2 Digitally controlled filter simulation schematic

$$
\begin{gather*}
f_{c, \min }=f_{0} \cdot 2^{-8}=9.704 \cdot 2^{-8}=37.9 \mathrm{~Hz} \tag{5.17}\\
f_{c, \max }=f_{0} \cdot 2^{-1}=9.704 \cdot 2^{-1}=4.852 \mathrm{KHz} \tag{5.18}
\end{gather*}
$$

The 8 corner frequencies are equidistant in exponential scale.
The phase characteristics correspond to the $8 \operatorname{LPF}\left(180^{\circ}\right.$ to $\left.90^{\circ}\right)$ and 8 HPF (90° to -180°).

Figure 5.3 Filter spectral characteristics: amplitude (up) and phase (down)

5.3 Experiment

Figure 5.4 shows the experimental board. J2 provides access to the scope inputs $1+$ and $2+$. The negative nodes of the differential scope inputs (1- and 2-) are hard tied to GND.

J3 and J4 expose schematic nodes. Use wires to connect these nodes to the scope inputs.

5.3.1 Filter characteristics

The wires in Figure 5.4 probe W_{1} and V_{3}. The WaweForms

Figure 5.4 Digitally controlled filter PCB instruments are set as below:

- Power Supplies: ON, +5 V and -5 V .
- Network: Scale: Logarithmic, Start: 20 Hz , Stop: 20 kHz, Samples: 100, Channel1: Use as reference. Using Channel 1 as reference means: - Channel 1 probes the input node in the network $\left(V_{i n}=W_{l}\right)$.
- The network analyzer displays the ratio of Channel2/Channel1 magnitudes, and the phase difference between Channel 2 and Channel1 (the actual network transfer characteristics).
- StaticIO: Slider. Click the "multiple windows" icon in the upper-right corner of the Static IO, to open in a separate window.

Run Supplies, Network, and Static IO instruments.

- Observe the network transfer characteristic.
- Identify the filter type (LPF or HPF).

Applications

Figure 5.5 The filter transfer characteristics: magnitude (up) and phase (down)

- Use a cursor, to identify the corner frequency of the filter (Magnitude $=-3 \mathrm{~dB}$, Phase $=135^{\circ}$).
- Move the slider in the Static IO and observe the change of the filter corner frequency.
- Move the Scope Channel2 probe to V_{2} and observe the complementary filter, with the same corner frequency.
- In the phase characteristics, notice that the phase for the Pass Band is 180°, due to the inverting structure of the circuit.

Figure 5.6. Characteristics family for different input numbers.
`To get a family of transfer characteristics, similar to the Figure 5.3 simulation:

- In the Static IO, set DIO7-0 as: BitIO/Switch/PushPull. In each step, set a single bit High, and all others Low. Do the step sequence: 7, 5, 3, 1 .
- For each step, wait for the network instrument to complete the characteristics, then click AddChannel/(Reference)Channel2. Then swap channel2 probe between V_{2} and V_{3} and add another reference.
- In 4 steps, add characteristics for both LPF and HPF, for all the input numbers 128, 32, 4, 1 (as set in the Static IO).
- The figure shows half of the Figure 5.3 simulated characteristics (the network analyzer can support max 8 reference channels).
To see both LPF and HPF at once, as in Figure 5.7, place the scope probes on V2 and V3 and uncheck Channel1/Use as reference. This results in:
- Two magnitude separate characteristics are shown for Channels 1 and 2 respectively.
- The magnitude characteristics are not related to a "reference" channel.
- The phase characteristic cannot be computed and displayed.

Task 1. Measure the corner frequency corresponding to the input number which is your birthday.

5.3.2 Audio experiment

Plug a high-quality headset in J5. Set the Network Analyzer as:

Figure 5.7 Magnitude characteristics

Figure 5.8 WaveGen Settle time

- Start: 55 Hz , Stop: 3.52 kHz . This covers 6 octaves, centered to 440 Hz , which is the frequency of A tone.
- Samples: 73. That divides the range above in 72 logarithmicequidistant intervals: 6 octaves X 12 semitones/octave. The frequencies generated during measurement will match all the tones and semitones in the range.
- in the WaveGen settings, set Settle time at 500 ms , as in Figure 5.8. This will keep each frequency long time enough for observation.
- in the WaveGen box, set the amplitude for a reasonable sound intensity (ex. 200 mV).
- Launch the Network analyzer.

Task 2. In the Static IO, adjust the DIO7-0 number to get the filters' corner frequency at 440 Hz (audio A tone, the logarithmic center of the chosen frequency range). Write the number in your report.
Run the Network analyzer and listen to the tones. Observe that the lower frequencies are louder in the left speaker, while the higher frequencies are louder in the right one. Play with the input number and notice the effect.
Notice that human senses are logarithmically scaled: exponentially equidistant stimuli parameters produce linear equidistant feeling. Ex: every musical octave corresponds to doubling the frequency of the sound. Same observation is true for sound intensity.

5.3.3 Music filtering

Plug a high-quality headset in J5. Play a song in WaveGen:

- Set WaveGen in Play mode.
- Click Import and choose the .wav file to play.
- Click Play.

Set the scope:

- Probe V_{2} and V_{3} with scope channels 1 and 2, respectively.
- Open an FFT view (View/FFT).
- Set the appropriate scope time base for displaying the audio spectrum in the FFT: i.e., $20 \mathrm{~ms} / \mathrm{div}=>40 \mathrm{kHz}$ sampling rate $=>$ $1 \mathrm{~Hz} . . .20 \mathrm{kHz}$ FFT range.
Listen the audio signal and observe the wave shape in the scope, as in Figure 5.9. Notice that V_{2} has predominant low frequency components (grave sounds), while V_{3} has more high frequency components (acute sounds):
- The scope time view shows lower frequencies on V_{2}.
- The FFT view shows higher amplitude for low frequencies on V_{2} and for high frequencies on V_{3}.
- The grave sounds are louder in the V_{2} speaker and the acute ones in the V_{3} speaker.

Figure 5.9 Music time signal (up) and spectrum (down) separated by the filter

Applications

6 Feedback ADC - voltage comparison

6.1 Background

6.1.1 Unipolar operation

The unipolar binary number in Figure 6.1 can be understood either as "fractional", composed of bits a_{i}, with $i=1 \ldots n, a_{1}=M S B \ldots a_{n}=L S B$:

$$
\begin{equation*}
\{A\}=0 . a_{1} \ldots a_{(n-1)} a_{n}=\sum_{i=1}^{n} a_{i} \cdot 2^{-i} ; \quad\{A\} \in[0 \ldots 1) \tag{6.1}
\end{equation*}
$$

Or, as "integer", built of bits b_{j}, with $j=0 \ldots n-1, b_{n-1}=M S B \ldots b_{0}=L S B$:

$$
\begin{equation*}
\{N\}=b_{n-1} \ldots b_{1} b_{0}=\sum_{j=0}^{n-1} b_{j} \cdot 2^{j} ; \quad\{N\} \in\left[0 \ldots 2^{n}\right) \tag{6.2}
\end{equation*}
$$

Where: $b_{n-i}=a_{i} \forall i=1 \ldots n$.

$$
\begin{equation*}
\{N\}=2^{n} \cdot\{A\} \tag{6.3}
\end{equation*}
$$

The equivalent resistance of pin $V_{\text {ref }}$ to GND is R; the current in pin $V_{\text {ref }}$ is:

$$
\begin{equation*}
I_{r e f}=\frac{V_{r e f}}{R_{e c h}} \tag{6.4}
\end{equation*}
$$

In Figure 6.1, the CMOS DAC with Operational Amplifier output stage generates a comparison voltage:

$$
\begin{gather*}
V_{\text {cmp }}=-I_{\text {out } 1} \cdot R_{f} \\
=-V_{\text {ref }} \cdot \frac{R_{f}}{R_{\text {ech }}} \tag{6.5}\\
=V_{F S} \cdot\{A\}=V_{L S B} \cdot\{N\} \\
V_{\text {cmp }}, V_{\text {in }} \in\left[0 \ldots+V_{F S}\right) \\
V_{L S B}=\frac{V_{F S}}{2^{n}}
\end{gather*}
$$

Figure 6.1 Feedback $A D C$, voltage comparison (example)
(6.7) The Command Logic Circuit implements a multi-step searching
algorithm, to find the best digital representation of the instantaneous value of $V_{i n}$, i.e. a number which, converted back to analog, generates a
comparison voltage close to $V_{i n}$ (with less than $l V_{L S B}$ difference). At the end of a conversion:

$$
\begin{align*}
& V_{c m p, \text { final }}=V_{F S} \cdot\{A\}_{\text {final }}=V_{L S B} \cdot\{N\}_{\text {final }} \cong V_{\text {in }} \\
& \left|V_{c m p}-V_{\text {in }}\right|<1 V_{L S B} \tag{6.8}
\end{align*}
$$

The search algorithm defines the command logic behavior.

6.1.1.1 Counter ADC

In Figure 6.2, the command logic core is a counter. Figure 6.3 explains the behavior of the $A D C$. The thin line is $V_{i n}$, the thick line shows both $V_{c m p}$ and $\{A\}$. The same graphic unit represents $V_{L S B}$, for voltages, respectively $1 L S B$, for number \{A\}.

Before the conversion begins, the counter is reset. In step $N=0$, the $D A C$ generates $V_{c m p, 0}=0$. At the end of step $0\left(t=T_{C K}\right)$:

$$
\begin{array}{r}
V_{\text {in }}\left(T_{C K}\right)>V_{c m p, 0}=0= \tag{6.9}\\
>V_{b i t}=1
\end{array}
$$

The counter is enabled, so each $C K$ active edge increments its content by $l L S B$, so $V_{\text {cmp }}$ grows by $V_{L S B}$.
The counter is disabled and the conversion ends at the clock period N, when:
$V_{i n}\left((N+1) \cdot T_{c k}\right)<V_{c m p, N}$
$=\{N\} \cdot V_{L S B}=\{A\} \cdot V_{F S} \rightarrow$
$V_{b i t}=0 \quad$ (6.10)
$\{N\}_{\text {final }}$ is the current content of the counter and is the final result of the AD conversion, proportional to $V_{i n}$ at the end of the conversion. $V_{b i t}$ can be used as $E O C$ (End Of Conversion), to validate $\{N\}_{\text {final }}$.

Figure 6.2 Counter $A D C$, voltage comparison (example)

Figure 6.3 4-bit counter $A D C$ behavior. Voltage comparison

Applications

$$
\begin{align*}
& \{N\}_{\text {final }} \cong \frac{V_{\text {in }}\left((N+1) \cdot T_{C K}\right)}{V_{L S B}} \tag{6.11}\\
& \{A\}_{\text {final }} \cong \frac{V_{\text {in }}\left((N+1) \cdot T_{C K}\right)}{V_{F S}} \tag{6.12}
\end{align*}
$$

The schematic is simple, but the conversion time is large and variable with $V_{i n}$. In the worst case ($V_{i n}=V_{F S}$):

$$
\begin{equation*}
t n_{C K_{C, \max }} \tag{6.13}
\end{equation*}
$$

6.1.1.2 Up-Down Counter (Delta) ADC

In Figure 6.4, the counter is reversible, with separate Count Up and Count Down enable pins. When $V_{i n}>V_{c m p}, C U$ is enabled and the counter increments the content at each $c k$

Figure 6.4 Up-Down Counter $A D C$, voltage comparison rising edge, otherwise $C D$ is enabled and the counter decrements at $c k$ edges. As result, $V_{c m p}$ always tend to follow $V_{i n}$, in steps of $\pm V_{L S B}$, each clock period.

The circuit generates a new correct numerical value each clock period, as long as the input voltage does not change faster than the maximum $V_{\text {cmp }}$ speed:
$\left(\frac{d V_{\text {in }}}{d t}\right)<\left(\frac{d V_{c m p}}{d t}\right) \frac{V_{L S B}}{T_{C K}}{ }_{\text {max }}$
If $V_{i n}$ slope exceeds the limit in (6.14), $V_{c m p}$ cannot "track" it, and digital values are not accurate, until "catching" back.

The Up-Down counter works as an integrator. Controlled by the $V_{b i t}$ signal, it adds or subtracts a quantum (delta $=1 L S B$) to the previous accumulated value.

For this reason, the circuit can be also labeled as Delta ADC.
$V_{\text {bit }}$ and $f_{C K}$ signals can be sent to a remote system, which replicates the local command

Figure 6.5 4-bit Up-Down counter $A D C$ behavior. Voltage comparison

logic structure. Working synchronously, the local and remote counters always have the same content. $V_{b i t}$ is the delta-modulated representation of $V_{i n}$.

6.1.1.3 Successive Approximation Register ADC

It is the most used feedback $A D C$. The command logic implements a Successive Approximation Register (SAR), (as in Figure 6.7) which also names the whole converter.
$V_{\text {cmp }}$ (and number $\{A\}$) "searches" the $V_{\text {in }}$ value using a halving algorithm: each conversion step, the $S A R$ generates a partial result $\{A\}$, which approximates better and better the final result $\{A\}_{\text {final }}$. Figure 6.6 exemplifies the principal behavior for a 4-bit SAR ADC.

Two presumptions are accepted:

- $V_{\text {in }}$ belongs to its’ definition range (initial searching interval):

$$
\begin{equation*}
V_{i n} \in\left[0 \ldots V_{F S}\right) \tag{6.15}
\end{equation*}
$$

- $\quad V_{\text {in }}$ is constant during each conversion:
$V_{\text {in }}(t)=c s t \forall t \in\left[0 \ldots t_{c}\right]$
In Figure 6.6, the (6.16) presumption is violated, by purpose.

It takes n steps ($c k$ periods) to complete an n-bit binary conversion, one bit per step, starting with the $M S B$. In the first step, all bits of $\{A\}$ are set " 0 ", but $M S B$ is set " 1 ". This generates $V_{c m p}=V F S / 2$, halving the initial searching interval. At the end of the first step, $M S B$ remains " 1 " if $V_{\text {bit }}=$ " 1 ", otherwise is set to " 0 ". The next bit is set " 1 ", so the searching interval is halved by the appropriate value of $V_{\text {cmp }}$. At the end of each step, the current bit takes the value of

Figure 6.7 SAR ADC example. Voltage comparison

Figure 6.6 4-bit SAR ADC behavior. Voltage comparison

Applications

$V_{\text {bit, }}$ the next bit becomes " l " and all the other bits stay unchanged, as shown in the Figure 6.8 state diagram.
The bolded transitions correspond to the first conversion shown in Figure 6.6. The state variables (also used as output signals) are the bits of number \{A\}.

The conversion time is constant, an n-bit conversion takes n clock periods:

$$
\begin{equation*}
t_{c}=n \cdot T_{C K} \tag{6.17}
\end{equation*}
$$

An additional state might be added to deliver the final conversion result.
The SAR ADC needs a Sample and Hold circuit, in order to keep the input voltage constant during the whole conversion, as shown in the (6.16) presumption.

In the third conversion of Figure 6.6, the (6.16) presumption does not hold:

- during the first conversion step, $V_{i n}$ is in the upper half of the definition range, $M S B$ is assigned $a_{l}=1$, leading to a final result $\{A\}_{\text {final }} \geq 1 / 2$.
- during all the subsequent steps, $V_{i n}$ is "searched" in the $\left[V_{F S} / 2 \ldots V_{F S}\right.$) sub-range (or sub-sub-ranges of it).
- during the conversion, $V_{i n}$ decreases below $V_{F S} / 2$.
- the final result, $\{A\}_{\text {final }}=1 / 2$ reflects neither the value $V_{\text {in }}$ had at the conversion begin, nor the one at the end.

If a Sample and Hold circuit is added, it samples the $V_{\text {in }}$ signal before the conversion begins. The final result then represents the $V_{i n}$ value at the sampling moment.

Figure 6.8 4-bit Successive Approximation Register state diagram

6.1.2 Bipolar operation

OA_{2} in Figure 6.9 is a current mirror, so:

$$
\begin{gathered}
I_{2}=I_{1}=I_{\text {out } 2} \\
I_{f}=I_{\text {out } 1}-I_{2}=I_{\text {out } 1}-I_{\text {out } 2}=I_{\text {ref }} \cdot\left(\{A\}_{U}-\{\bar{A}\}_{U}\right) \\
\cong \\
\cong I_{\text {ref }} \cdot\left(2 \cdot\{A\}_{U}-1\right)=I_{\text {ref }} \cdot\left\{A^{\prime}\right\}_{B O}
\end{gathered}
$$

$$
\begin{equation*}
\left\{A^{\prime}\right\}_{B O}=\left(2 \cdot\{A\}_{U}-1\right) \tag{6.20}
\end{equation*}
$$

$$
\begin{equation*}
R_{f}=R_{e c h}=\frac{V_{r e f}}{I_{r e f}} \tag{6.21}
\end{equation*}
$$

$$
V_{c m p}=-I_{f} \cdot R_{f}
$$

$$
\begin{equation*}
=-V_{r e f} \tag{6.22}
\end{equation*}
$$

$$
\cdot\left\{A^{\prime}\right\}_{B O}
$$

$V_{c m p}$ is generated by an n-bit Binary Offset, bipolar DAC. The whole circuit in Figure 6.9 is an n-bit Binary Offset, bipolar ADC.

$$
\begin{gather*}
V_{F S}^{\prime}=V_{F S}=-V_{r e f} \tag{6.23}\\
\left\{A^{\prime}\right\}_{B O, \text { final }}=\frac{V_{i n}}{V_{F S}} \in[-1 ; 1) \tag{6.24}\\
V_{i n}, V_{c m p} \in\left[-V_{F S} ; V_{F S}\right) \tag{6.25}
\end{gather*}
$$

Figure 6.9 Binary Offset bipolar Feedback $A D C$, voltage comparison (example)

$$
\begin{align*}
& \left\{N^{\prime}\right\}_{B O, f i n a l}=\frac{V_{\text {in }}}{V^{\prime}} \tag{6.26}\\
& \in\left[-2^{n-1} ; 2^{n-1}\right) \\
& \left\{N^{\prime}\right\}_{B O}=2^{n-1} \cdot\left\{A^{\prime}\right\}_{B O} \tag{6.27}\\
& V^{\prime}{ }_{L S B}=\frac{2 \cdot V_{F S}}{2^{n}}=2 \cdot V_{L S B} \tag{6.28}
\end{align*}
$$

Since the Binary Offset code uses the same bit combinations, in the same

Applications

order (from lowest to highest values) as the Unipolar Code, the Command Logic Circuit is identical to the unipolar one, for all the three cases above (counter, up-down counter, RAS).
If the final result is needed in 2 's Complement code, the $M S B$ of number $\left\{A^{\prime}\right\}_{B O}$ needs to be complemented.

6.2 Experiment and measurements

The AD7524 CMOS DAC is used on the experimental board. It has a similar structure with AD7520, except:

- It has only 8-bit of resolution.
- Data Latches are provided for compatibility to a microprocessor data bus. If not used, ChipSelect and Write pins must be tied to GND.

6.2.1 Unipolar Operation

Figure 6.10 shows the schematic of the experimental board. Notice that $J 3$ is loaded with a jumper on pins 2-3, to tie $O u t_{2}$ of $U 2$ to $G N D$, and $J 4$ is loaded with a jumper on pins $1-2$, to insulate U1A. Similarly, J5 is loaded with a jumper on pins 2-3, to tie $O u t_{2}$ of $U 4$ to $G N D$, and $J 6$ is loaded with a jumper on pins 1-2, to insulate $U 1 C$. This way, both $U 2$ and $U 1 B$, respectively $U 4$ and $U 1 D$ work as unipolar DA convertors.
$U 5, U 2$ and $U 1 B$ build a circuit equivalent to Figure 6.1, with:

- $V_{\text {ref }}=W 1$, the AWG channel 1 of the Analog Discovery.
- $V_{i n}=W 2$, the AWG channel 2 of the Analog Discovery. $V_{\text {in }}$ passes through the Sample-And-Hold circuit (U6 and associate circuitry) and generates $V_{S H}$ for the actual feedback ADC.
- Command Logic Circuit is included in the Analog Discovery Patterns generator, as ROM Logic. It uses:

Figure 6.10 Feedback ADC, unipolar operation - experimental board schematic

Applications

- $C m p=D I O 9$; input from the comparator U5.
- Data bits = DIO7 (MSB) ...DIO0 (LSB); outputs for $U 2$.
- $\mathrm{SnH}=\mathrm{DIO10}$, Sample/Hold command; output for U6.
- $S t b=$ DIO11, Strobe to latch the conversion result; output for $U 3$.
- $E o C=D I O 8$, End of Conversion; output.

Additional to the circuits in Figure 6.1, the experimental board includes:

- the Sample and Hold stage, U6 and associate circuitry.
- the latch for the final conversion results, $U 3$.
- the DAC circuitry to rebuild the acquired signal, $U 4, U 1 D$ and $U 1 C$.

Notice C15, C16, C17 and C18, added to compensate $U 1 B, U 1 A, U 1 D$ and $U 1 C$ respectively. They reduce ringing and oscillation risk for the high speed AD8567 operational amplifiers.

Figure 6.11 shows the experimental board prepared with jumpers and scope probe wires for the unipolar experiment. Notice that the same board is used for several other experiments.

Counter ADC

On the experimental board:

- Place jumpers at:
- $J 3=2-3-$ ties $I_{\text {out } 2}$ to GND.
- $J 4=1-2-$ disconnects U1A.
- $J 5=2-3-$ ties $I_{\text {out } 2}$ to GND.
- J6 = 1-2 - disconnects UlC.
- Place scope probe wires:
- Channel 1 to $J 10-2=W 1=V_{\text {in }}$
- Channel 2 to $J 8-2=V B o=V_{c m p}$

Scope probes will be moved during the experiments, to see various signals.
In the WaveForms software, open workspace FeedbackADC_Sinus. It has all instruments prepared for beginning the experiment:

- Supplies: both +/-V user voltage supplies active. (If the WaveForms software reports an "Overcurrent condition" and stops the user power

Figure 6.11 DAC CMOS
experimental board
supplies, try starting the supplies one by one: first the positive supply and, after few seconds, the negative one)

- Wavegen:
- W1= DC, Offset: -2V (constant, negative voltage) for $V_{\text {ref }}$.
- W2=Sinus, Frequency: 1kHz, Amplitude: 0.9V, Offset: 1V, Symmetry: 50\%, Phase: 0°.
- Patterns1:
- ROM Logic; State Machine for Counter $A D C ; 1 M H z$ clock.
- Inputs: Cmp (DIO9).
- StateBits/Outputs:
- EOC (DIO8) = End of Conversion.
- $s 7 \ldots s 0($ DIO7 $\div D I O O)=$ intermediate results of the conversion.
- ROM Logic for generating $\mathrm{SnH} ; 2 \mathrm{MHz}$ clock.
- Inputs: EOC (DIO8).
- Outputs: $\operatorname{SnH}($ DIO10 $)=$ Sample/Hold command for the SH circuit. 0.5μ s delayed version of $E O C$.
- ROM Logic for generating Stb; $2 M H z$ clock.
- Inputs: EOC (DIO8).
- Outputs: Stb $($ DIO10 $)=$ Strobe command for the final result Latch. $0.5 \mu \mathrm{~s}$ delayed version of EOC.
- StaticIO: set SnH (DIO10) Open-Source Switch = " 1 ", to override the SnH generated by the ROM logic, and force VSH to permanently follow $V_{i n}$. ("Z" would allow normal behavior of SnH ROM logic).
- Scope:
- AddChannel/Digital/Signal: Stb=DIO11, SnH=DIO10, Cmp=DIO9
- AddChannel/Digital/Bus DIO7...DIOO. Expand the Bus line in the digital view, to see the graphical representation of the bus values.
- Time: $500 \mu \mathrm{~s} / \mathrm{div}, \mathrm{Ch} 1, \mathrm{Ch} 2$ Range: $500 \mathrm{mV} / \mathrm{div}$.
- Spectrum: ChannelOptions/both channels: Offset: 0V, Range: 5 V

Patterns2 and Patterns3 will be used in later experiments.

Applications

Figure 6.12 Unipolar Counter ADC experiment
Run Supplies, Wavegen1, Patterns1, Static IO, and Scope. Observe Scope, as in Figure 6.12:

- In the analog Time view:
- $V_{\text {in }}$ is scaled to almost all the definition range $(0.1 V \div 1.9 \mathrm{~V})$.
- $V B o=V_{c m p}$ starts from zero in each conversion and rises to $V_{i n}$, with constant slope $V_{L S B} / T_{c k}$.
- In the digital Time view:
- Individual bits Cmp, EOC, Stb and the bus. Observe the graphical representation of the bus values, similar to $V_{c m p}$.
Task 1. Change the Scope Time Base to detail the End of Conversion moments. Use cursors to read $V_{i n}, V_{c m p}$ and $\{N\}$ at the start of EOC pulse. Verify the equation (6.11). Repeat for 3 successive conversions.

Figure 6.13 Unipolar Counter ADC - Re-constructed signal
Task 2. Identify the beginning and the end of the conversions above. Use cursors to read the conversion time, t_{c}. Verify that t_{c} is proportional to $V_{i n}$ and $\{N\}$. Write the t_{c} equation.
Move scope channel 2 probe to J9-3, to observe the re-constructed, 0-degree interpolated VDo signal, as in Figure 6.13. Identify the beginning and the end of the conversions.

Run the Spectrum Analyzer as in Figure 6.14. Measure Channel 2 THD, ENOB and SNR (View/Measure/Add/Trace2/). Observe:

Figure 6.14 Unipolar Counter ADC - Spectrum of the re-constructed signal

- The sampling frequency is higher than required by the Nyquist theorem, but too low for high quality acquisition; see THD, ENOB, SNR values.

Applications

- Non-uniform sampling generates multiple spectral components of VDo.

6.2.1.1 Up/Down Counter ADC

- Patterns2 (WaveForms allows more instruments of same type, but only one can Run at a time):
- ROM Logic; FSM for Up/Down Counter ADC; $1 M H z$ clock.
- Inputs: Cmp (DIO9).
- StateBits/Outputs:
- $E O C($ DIO8 $)=$ End of Conversion $=$ permanently active.
- $s 7 \ldots s 0(D I O 7 \ldots D I O 0)=$ intermediate results of the conversion
- ROM Logic for generating $\operatorname{SnH} ; 2 \mathrm{MHz}$ clock.
- Inputs: EOC (DIO8).
- Outputs: SnH (DIO10) = Sample/Hold command for the SH circuit. Permanent active, for continuous Sampling (no Hold).
- Clock for generating Stb; 2 MHz clock. Generates pulses for continuously update the output latch.

Figure 6.15 Unipolar Up/Down Counter ADC experiment

Data Acquisition Systems Fundamentals

Figure 6.16 Unipolar Up/Down Counter ADC - Spectrum of the reconstructed signal
Run Supplies, Wavegen1, Patterns2, Static IO, and Scope. For comparison, both $V_{i n}$ and ADC clock are same as in the previous experiment. Observe Scope, as in Figure 6.15:

- $V D o$ (re-constructed signal) is identical to $V B o=V_{\text {cmp }}$.
- VDo looks very close to $V_{i n}$. The spectrum and measurements in Figure 6.16 show much higher quality acquisition, compared to the Counter ADC.
- Doubling the frequency of $V_{i n}$ shows the Up/Down Counter ADC limitation, as in Figure 6.17: $V_{i n}$ is changing faster than (6.14), so $V_{c m p}$ cannot follow it effectively. Due to condition (6.14), the Up/Down Counter ADC performance is close to the regular Counter ADC.

Figure 6.17 Unipolar Up/Down Counter ADC -2 kHz re-constructed signal

Applications

6.2.1.2 Successive Approximation Register ADC

- Wavegen: return to $1 \mathrm{kHz} V_{\text {in }}$ for comparison under the same conditions.
- Patterns3:
- ROM Logic; State Machine for SAR ADC; $1 M H z$ clock.
- Inputs: Cmp (DIO9).
- StateBits/Outputs:
- $E O C(\mathrm{DIO} 8)=$ End of Conversion.
- $s 7 \div 50($ DIO \ldots DIOO $)=$ intermediate results of the conversion.
- ROM Logic for generating $\mathrm{SnH} ; 2 \mathrm{MHz}$ clock.
- Inputs: EOC (DIO8).
- Outputs: SnH (DIO10) = Sample/Hold command for the SH circuit. $0.5 \mu \mathrm{~s}$ delayed version of $E O C$.
- ROM Logic for generating Stb; 2 MHz clock.
- Inputs: EOC (DIO8).
- Outputs: Stb $($ DIO11 $)=$ Strobe command for the final result Latch. $0.5 \mu \mathrm{~s}$ delayed version of $E O C$.
- StaticIO: set SnH (DIO10) Open-Source Switch = " 1 ", to override the SnH generated by the ROM logic, and force $V S H$ to permanently follow $V_{i n}$. (" Z " would allow normal behavior of SnH ROM logic).
Run Supplies, Wavegen1, Patterns3, Static IO, and Scope. Vin and ADC clock are the same as in the previous experiment. Observe Scope, as in Figure 6.18.
Use an extended Time Base ($2 \mu \mathrm{~s} / \mathrm{div}$) to analyze the steps within an analog-to-digital conversion. Observe:
- A new conversion always begins with $V_{c m p}=1 / 2 V_{F S}=1 \mathrm{~V}$.
- The second conversion step brings $V_{c m p}$ to either $1 / 4 V_{F S}=0.5 \mathrm{~V}$ or to $3 / 4 V_{F S}=1.5 \mathrm{~V}$ to halve the lower half or the upper half of the $V_{\text {in }}$ range.
- Next steps halve successive subranges of $V_{F S}$, to finally get a $V_{L S B}$ range.
- The largest $V_{c m p}$ trip happens in the first step: from the old conversion result to $1 / 2 V_{F S}$. The worst cases are from 0 to $1 / 2 V_{F S}$ or from $V_{F S}$ to $1 / 2 V_{F S}$. The $V_{c m p}$ trip speed is limited by the U1B Slew Rate. The $c k$ frequency should be low enough for this trip to finish in one $c k$ period (step).
- A new conversion begins every $9 c k$ periods: 8 periods for conversion, the $9^{\text {th }}$ one (shown by EOC) to register the result (on Stb rising edge).
- the SAR searching algorithm:
- bit by bit - bits $7 \ldots 0$ of the bus, in the Digital view
- the number $\{N\}$ - hexadecimal and graphic, in the Digital view.
- $V_{c m p}$ - in the analog view.

Task 3. Calculate the sampling frequency.

Figure 6.18 Unipolar SAR ADC experiment
Set the scope Time Base to $200 \mu \mathrm{~s} / \mathrm{div}$, to compare the sampling rate in Figure 6.19 to the Counter ADC (for same $c k$ frequency), in Figure 6.12.

Figure 6.19 Unipolar SAR ADC - $V_{i n}$ and $V_{c m p}$

Applications

Move scope Channel 2 to probe the re-constructed signal VDo, as in Figure 6.20. Compare with the Counter ADC, in Figure 6.13.

The frequency range in the spectrum analyzer was changed in Figure 6.21 to $0 \ldots 500 \mathrm{kHz}$, to fit the sampling frequency and mirror images. Even so, the spectral image and measured parameters show a much higher acquisition quality compared to the Counter ADC.

For more visible spectral components, change the $V_{\text {in }}$ frequency to 10 kHz , as in Figure 6.22. Observe the $V_{\text {in }}$ mirror images at $\pm 10 \mathrm{kHz}$ around the sampling frequency and its $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ harmonics.

Figure 6.20 Unipolar SAR ADC - reconstructed signal

Figure 6.21 Unipolar SAR ADC -1 kHz reconstructed signal spectrum

Figure 6.22 also emphasizes a phenomenon which is difficult to observe in the time domain: the SAR ADC needs a Sample and Hold stage to provide constant $V_{\text {in }}$ during the conversion, as explained in paragraph 6.1.1.3. Both spectral image and measured parameters are better if an $S H$ stage is active (in the Static IO, switch DIO10 to Z, to allow Patterns 3 to generate SnH).

Figure 6.22 Unipolar SAR ADC - 10kHz reconstructed signal spectrum: without Sample and Hold (up) and with Sample and Hold (down)

Applications

6.2.2 Bipolar operation

On the experimental board:

- Place jumpers at:
- $J 3=1-2-$ ties $I_{\text {out } 2}$ to $U 1 A$ inverting input.
- $J 4=2-3$ - connects $U 1 A$ to the $I_{\text {outl }}$ node.
- $J 5=1-2-$ ties $I_{\text {out } 2}$ to UlC inverting input.
- $J 6=2-3-$ connects $U 1 C$ to the $I_{\text {out } 1}$ node.

This transforms both $U 2$ and $U 4$ to Binary Offset bipolar DACs.
In the WaveForms software:

- Wavegen:
- W1= DC, Offset: - $2 V$ (constant, negative voltage) for $V_{r e f} . V_{F S}=-V_{r e f}$.
- W2=Sinus, Frequency: 1 kHz , Amplitude: 1.9V, Offset: 0 V , Symmetry: 50\%, Phase: 0°.
- Scope (both channels): Offset: 0V, Range: $500 \mathrm{mV} / \mathrm{div}$.

As explained in paragraph 6.1.2, since the Binary Offset code uses the same bit combinations, in the same order (from lowest to highest values) as the Unipolar Code, the Command Logic Circuit is identical to the unipolar one, for all the three cases above (counter, up/down counter, RAS).

As result, all the experiments performed in paragraph 6.2.1 can be repeated as bipolar, with similar observations and conclusions.

The following figures are bipolar replica of unipolar similar figures in the previous paragraph. Same order (Counter, Up/Down Counter, SAR) is used. Most of the experiment parameters are also unchanged, except:

- WaveGen, Ch2. amplitude and offset (for a bipolar range [-1.9V...1.9V)
- Scope amplitude and offset (for same reason)

Most of the text comments for unipolar converters hold true for bipolar ones, so they are not written again. Just the differences are emphasized below.

$$
\begin{gather*}
V_{F S}=-V_{r e f}=2 \mathrm{~V} \tag{6.29}\\
V_{L S B}^{\prime}=\frac{2 \cdot V_{F S}}{2^{8}}=15.625 \mathrm{mV} \tag{6.30}
\end{gather*}
$$

Observe in all figures that the $V_{i n}$ and $V_{c m p}$ ranges are double, compared to the unipolar experiments $\left[-V_{F S} ; V_{F S}\right) . V^{\prime}{ }_{L S B}$ is also double, since one of the 8 bits became "sign" bit.

6.2.2.1 Counter ADC

Move scope channel 2 probe to J9-3, to observe the re-constructed, 0-degree interpolated VDo signal, as in Figure 6.23.

Figure 6.24 Bipolar Counter ADC experiment

Figure 6.23 Bipolar Counter ADC - reconstructed signal

6.2.2.2 Up/Down Counter ADC

Figure 6.25 Bipolar Up/Down Counter ADC experiment
Double the frequency of $V_{\text {in }}$ to see the Up/Down Counter ADC limitation, as in Figure 6.17.

Figure 6.26 Bipolar Up/Down Counter ADC -2 kHz re-constructed signal

6.2.2.1 Successive Approximation Register ADC

Use an extended Time Base ($2 \mu \mathrm{~s} / \mathrm{div}$) to analyze the steps within an analog-to-digital conversion. Observe:

- A new conversion always begins with $V_{c m p}=0 V$, which is $V_{\text {in }}$ midrange.
- The second conversion step brings $V_{c m p}$ to either $-1 / 2 V_{F S}=-1 V$ or to $1 / 2 V_{F S}=1 V$ to halve the lower or upper half of the $V_{i n}$ range.
- Next steps halve successive subranges, to finally get a $V^{\prime}{ }_{L S B}$ range. The largest $V_{\text {cmp }}$ trip happens in the first step: from the old conversion result to $O V$. The worst cases are from $-V_{F S}$ to $O V$ or from $V_{F S}$ to $O V$. The $V_{c m p}$ trip speed is limited by the U1B Slew Rate. The $c k$ frequency should be low enough for this trip to finish in one $c k$ period (step).
Task 4. Use Cursors to measure the U1B Slew Rate. Calculate the max $c k$ frequency. Calculate the max sampling frequency

Figure 6.27 Bipolar SAR ADC experiment

Applications

Figure 6.30 Bipolar SAR ADC - $V_{i n}$ and $V_{c m p}$

Figure 6.29 Bipolar SAR ADC - reconstructed signal.

Figure 6.28 Unipolar SAR ADC - 1 kHz reconstructed signal spectrum Observe the $S A R$ sampling rate as in Figure 6.30. Observe the re-constructed signal $V D o$, as in Figure 6.29. Observe the 1 kHz reconstructed signal
spectrum, as in Figure 6.28. Observe the 10 kHz reconstructed signal with and without a Sample and Hold stage, in Figure 6.31.

Figure 6.31 Bipolar SAR ADC -10 kHz reconstructed signal spectrum: without Sample and Hold (up) and with Sample and Hold (down).

Applications

7 Voltage Controlled Oscillator

7.1 Background

Figure 7.1 shows a voltage to frequency converter (VCO) example. $U_{I C}$ is a repeater, $U_{1 B}$ is an inverter (with $R_{l}=R_{2}$):

$$
\begin{equation*}
V_{1}=V_{i n} ; \quad V_{2}=-V_{i n} \tag{7.1}
\end{equation*}
$$

$U_{I A}$ is a non-inverting Schmidt Trigger. AD8567 is a rail-to-rail operational amplifier. Conform to the data sheet, V_{5} can trip as close as 20 mV to both positive and negative power voltages, for $I_{\text {load }}=1 \mathrm{~mA}$.

$$
\begin{align*}
& V_{5, H}=V_{\text {sup }+}-20 \mathrm{mV} \approx V_{\text {sup }+}=+5 \mathrm{~V} \\
& V_{5, L}=V_{\text {sup }-}+20 \mathrm{mV} \approx V_{\text {sup }-}=-5 \mathrm{~V} \tag{7.2}
\end{align*}
$$

The Schmidt trigger thresholds and hysteresis are:

$$
\begin{align*}
& V_{4, H}=-V_{5, L} \cdot \frac{R_{4}}{R_{5}} \\
& V_{4, L}=-V_{4, H}=-V_{5, H} \cdot \frac{R_{4}}{R_{5}} \tag{7.3}\\
& \Delta V_{4}=V_{4, H}-V_{4, L}
\end{align*}
$$

Figure 7.1. Voltage Controlled Oscillator schematic

Figure 7.2. VCO behavior. Constant input voltage

The Cmp signal drives the U 2 switch:
Phase 1: $C m p=$ High $=>$

$$
\begin{equation*}
V_{3}=V_{1}=V_{i n} \tag{7.4}
\end{equation*}
$$

Phase 2: $\mathrm{Cmp}=$ Low $=>$

$$
V_{3}=V_{2}=-V_{i n}
$$

$U_{I D}$ is used in an inverting integrator stage.
Phase 1 begins at time t_{0}, with $V_{4}\left(t_{0}\right)=V_{4, H}$.

$$
V_{4}\left(t_{0}+t\right)=V_{4, H}-\frac{1}{R_{3} \cdot C_{1}}
$$

$$
\begin{equation*}
\cdot \int_{t_{0}}^{t} V_{i n}(t) \cdot d t \tag{7.5}
\end{equation*}
$$

Phase 1 ends at time $t_{0}+T_{1}$, with $V_{4}\left(t_{0}+T_{1}\right)=V_{4, L}$:

$$
\begin{gather*}
V_{4}\left(t_{0}+T_{1}\right)=V_{4, L}=V_{4, H}-\frac{1}{R_{3} \cdot C_{1}} \cdot \int_{t_{0}}^{t_{0}+T_{1}} V_{\text {in }}(t) \cdot d t \tag{7.6}\\
\Delta V_{4}=V_{4, H}-V_{4, L}=\frac{1}{R_{3} \cdot C_{1}} \cdot \int_{t_{0}}^{t_{0}+T_{1}} V_{i n}(t) \cdot d t \tag{7.7}
\end{gather*}
$$

Phase 2 begins at time $t_{0}+T_{1}$, with $V_{4}\left(t_{0}+T_{1}\right)=V_{4, L}$:

$$
\begin{equation*}
V_{4}\left(t_{0}+T_{1}+t\right)=V_{4, L}+\frac{1}{R_{3} \cdot C_{1}} \cdot \int_{t_{0}+T_{1}}^{t} V_{\text {in }}(t) \cdot d t \tag{7.8}
\end{equation*}
$$

Phase 2 ends at time $t_{0}+T_{1}+T_{2}$, with $V_{4}\left(t_{0}+T_{1}+T_{2}\right)=V_{4, H}$:

$$
\begin{gather*}
V_{4}\left(t_{0}+T_{1}+T_{2}\right)=V_{4, H}=V_{4, L}+\frac{1}{R_{3} \cdot C_{1}} \cdot \int_{t_{0}+T_{1}}^{t_{0}+T_{1}+T_{2}} V_{\text {in }}(t) \cdot d t \tag{7.9}\\
\Delta V_{4}=V_{4, H}-V_{4, L}=\frac{1}{R_{3} \cdot C_{1}} \cdot \int_{t_{0}+T_{1}}^{t_{0}+T_{1}+T_{2}} V_{i n}(t) \cdot d t \tag{7.10}
\end{gather*}
$$

A long conversion time, t_{c}, includes $\{N\}$ pulses of $V_{4}\left(\right.$ or $\left.V_{5}\right)$. For variable $V_{i n}$, the pulses are not strictly periodical and successive instances of T_{1} and T_{2} are not equal to each other. However, $\{N\}$ successive instances of (7.7) and (7.10) can be concatenated to get a continuous integral from t_{0} to $t_{0}+t_{c}$:

$$
\begin{equation*}
t_{c}=\sum_{i=1}^{N}\left(T_{1, i}+T_{2, i}\right) \tag{7.11}
\end{equation*}
$$

Applications

$$
\begin{gather*}
2 \cdot\{N\} \cdot \Delta V_{4}=\frac{1}{R_{3} \cdot C_{1}} \cdot \int_{t_{0}}^{t_{0}+t_{c}} V_{i n}(t) \cdot d t \tag{7.12}\\
f=\frac{\{N\}}{t_{c}}=\frac{1}{2 \cdot R_{3} \cdot C_{1} \cdot \Delta V_{4}} \cdot \frac{1}{t_{c}} \int_{t_{0}}^{t_{0}+t_{c}} V_{i n}(t) \cdot d t \tag{7.13}
\end{gather*}
$$

Output frequency is proportional to the integral average of $V_{i n}$, over the conversion time t_{c}.
If $V_{i n}$ is constant:

$$
\begin{align*}
& T=T_{1}+T_{2}=2 \cdot T_{1}=\frac{2 \cdot R_{3} \cdot C_{1} \cdot \Delta V_{4}}{V_{i n}} ; \\
& f=\frac{\{N\}}{t_{c}}=\frac{V_{i n}}{2 \cdot R_{3} \cdot C_{1} \cdot \Delta V_{4}} \tag{7.14}
\end{align*}
$$

7.2 Experiment

Figure 7.3 shows the experimental board built on schematic in Figure 7.1. The board is designed for direct connection to Analog Discovery, via J1.

Several test points in the schematic can be connected with wires to the scope inputs, $1+$ and $2+$. The digital signal Cmp is hard connected to DIO7 pin of Analog Discovery.

Figure 7.4 shows the scope with the Schmidt trigger signals. Both power supplies are enabled (+5 V and -5 V). The AWG channel W1 is set with a constant voltage of 2.5 V . The scope shows V_{4} on channel $1+$ and V_{+}on channel $2+$. In the first step, V_{5} was probed with channel $2+$, and stored as a reference (AddCannel/Channel2). The digital signal Cmp is added in the scope time view (DIO7). An XY view shows the hysteresis cycle of the Schmidt trigger. To understand which part in the time diagram corresponds to which segment in the XY view, stop the acquisition

Figure 7.3. VCO experimental board
and then drag the time view image left and right, as in the lower image of Figure 7.4.
Task 1. Based on V_{4} and V_{5} amplitudes, determine the ratio of R_{4} / R_{5}.
Task 2. Use V_{5} to determine the Slew Rate of the operational amplifier.
Hint: add two X-cursors and use View X-cursors, Show $\mathrm{C} 2 \Delta \mathrm{Y} / \Delta \mathrm{X}$.
Task 3. Use V_{3} to determine the switching time of the analog switch.
Hint: add two X-cursors and use View X-cursors, Show C2 2 X .
Task 4. Determine the polarity of $V_{\text {in }}$ for correct behavior. Determine the Full Scale values $V_{i n, F S}$ and $f_{F S}$.

Figure 7.4 Schmidt trigger: full view (UP) and shifted view (down)

Applications

Hint: Browse $V_{i n}$ and observe the behavior. Use
View/Measure/Add/DefinedMeasurement/Channel2/Horizontal/Frequency.
Task 5. Set $V_{i n}$ to be a 200 Hz sinus from 0 to 5 V . Visualize $V_{i n}$ on Channel 2, and V_{4} on Channel 1 of the scope, as in Figure 7.5. Explain the figure. Explain the V_{4} shape for $V_{i n}$ close to zero.

Hint: Measure the min and max values of $V_{i n}$. Notice that the calibration of Analog Discovery is not ideal: even if not supposed, $V_{i n}$ gets negative values. (if $\boldsymbol{V}_{i n}$ never gets negative value on your Analog Discovery, do force that by slightly decreasing the DC component of $V_{i n}$).

Task 6. Play with $V_{i n}$ shape, frequency, amplitude, offset and with scope time base, to get nice Lissajoux figures on the XY view.

Figure 7.5. VCO with variable input voltage

8 Charge Compensated Modulator

8.1 Background

In Figure 8.1, $O A$ is an integrator, Co compares the V_{l} signal to 0 V . The D flip-flop stores the CMP value only at active (rising) clock edges. PDM controls the switch, which intermittently connects the $I_{\text {ref }}$ current.
Figure 8.2 shows the time Figure 8.1 Charge compensated modulator diagrams. Required conditions:

Phase 1 (switch $=O F F)$, begins at time $t_{0, k}$, with $V_{l}\left(t_{0, k}\right)=V_{2, H, k}>0 . V_{l}(t)$ is falling:

$$
\begin{equation*}
V_{1}(t)=V_{1, H, k}-\frac{1}{C} \int_{t_{0, k}}^{t} I_{\text {in }}(t) d t \tag{8.3}
\end{equation*}
$$

When $V_{l}(t)$ becomes negative, $C M P$ becomes $H I G H$, but the flip-flop only changes $P D M$ at the next active edge of the clock. Phase 1 ends at time $t_{0, k}+T_{l, k}$, with $V_{l}\left(t_{0, k}+T_{l, k}\right)=V_{l, L, k}<0$, where $T_{l, k}$ is an
Figure 8.2 Time diagrams integer multiple of $T_{C K}$.

Phase 2 (switch $=O N, V_{l}(t)$ rising) begins at $t_{0, k}+T_{1, k}$, with $V_{l}\left(t_{0, k}+T_{l, k}\right)=V_{l, L, k .}:$

$$
\begin{equation*}
V_{1}(t)=V_{1, L, k}-\frac{1}{C} \int_{t_{0, k+} T_{1, k}}^{t}\left(I_{i n}(t)-I_{r e f}\right) d t \tag{8.4}
\end{equation*}
$$

When $V_{l}(t)$ becomes positive, $C M P$ gets $L O W$, but the flip-flop only changes $P D M$ at the next active edge of the clock. Phase 2 ends at $t_{0, k}+T_{l, k}+T_{2, k}$ time, with $V_{l}\left(t_{0, k}+T_{1, k}+T_{2, k}\right)=V_{l, H, k+l}>0$, where $T_{2, k}$ is an integer multiple of $T_{C K}$.

Applications

The capacitor accumulates electrical charge as result of two opposite currents: - the input current $I_{i n}$, which flows continuously and - the reference current $I_{r e f}$, which flows during phase 2 periods only.

A long measuring time, $t_{c} \gg T_{C K}$ is considered. An n-bit conversion takes:

$$
\begin{equation*}
t_{c}=2^{n} \cdot T_{\text {СК }} \tag{8.5}
\end{equation*}
$$

During t_{c}, the switch was open for $\{N\}$ clock periods (cumulated Phase 2 periods). At the end of t_{c}, the integrator output voltage is about the same as the initial voltage, meaning the electrical charge injected by the input current was balanced by the electrical charge extracted by the reference current:

$$
\begin{align*}
& \text { All phases } 1 \text { and } 2: Q_{i n}=\int_{t_{0}}^{t_{0}+t_{c}} I_{i n}(t) \cdot d t=\frac{1}{R} \cdot \int_{t_{0}}^{t_{0}+t_{c}} V_{i n}(t) \cdot d t \tag{8.6}\\
& \text { All phases } 2: Q_{\text {ref }}=\{N\} \cdot I_{r e f} \cdot T_{C K}=\{N\} \cdot \frac{V_{F S}}{R} \cdot \frac{t_{c}}{2^{n}}=\{N\} \cdot \frac{V_{L S B}}{R} \cdot t_{c} \tag{8.7}\\
& \qquad Q_{i n}=Q_{r e f} \tag{8.8}\\
& \qquad\{N\}=\frac{1}{V_{L S B}} \cdot \frac{1}{t_{c}} \cdot \int_{t_{0}}^{t_{0}+t_{c}} V_{i n}(t) \cdot d t=\frac{V_{i n, \text { med }}}{V_{L S B}} \tag{8.9}\\
& \qquad\{A\}=\frac{\{N\}}{2^{n}}=\frac{V_{i n, \text { med }}}{V_{F S}} \tag{8.10}
\end{align*}
$$

$\{N\}$ (n-bit unsigned binary integer) is the cumulated number of clock periods

Figure 8.3. DF measuring with $P D M=H I G H$, during t_{c} and is proportional to the mean $V_{i n}$ value over t_{c}. This defines a $D F$ intermediate quantity integrative $A D C .\{A\}$ (n-bit unsigned binary fractional) is the normalized representation of $\{N\}$. Equation (8.5) shows the conversion time for such an n-bit resolution ADC.

The circuit in Figure 8.3 measures $\{N\}$.
A StC (Start Conversion) pulse resets both counters. The Q_{n} of N_{l} enables both counters, for $t_{c}=2^{n} \cdot T_{c k}$. N_{2} only counts the clock pulses for which $P D M=H I G H$.

After t_{c}, both counters freeze: N_{l} has $Q_{n}=H I G H$ (End of Conversion) and all other bits $L O W, N_{2}$ has the value of $\{N\}$, as defined in (8.9).
Variations of the schematic in Figure 8.1 can be used in sigma-delta ADCs. In this case, $f_{c k}$ is the oversampling frequency, which is decimated within a digital filtering algorithm down to the final sampling frequency.
The average duty factor of the PDM signal is:

$$
\begin{equation*}
D F_{\text {med }}=\frac{\{N\} \cdot T_{C K}}{t_{c}}=\frac{\{N\} \cdot T_{C K}}{2^{n} \cdot T_{C K}}=\{A\}=\frac{V_{i n, \text { med }}}{V_{F S}} \tag{8.11}
\end{equation*}
$$

Defining DF as the instantaneous probability of the PDM signal to be HIGH, equation (8.11) can be re-written for instantaneous values of DF and $V_{\text {in }}$ defining the same circuit as a PDM modulator:

$$
\begin{equation*}
D F=\frac{V_{i n}}{V_{F S}} \tag{8.12}
\end{equation*}
$$

In this approach, $V_{i n}$ is the modulator signal, $P D M$ is the $D F$ modulated signal, and the carrier is a spread spectrum rectangular signal, with a frequency range from $0 H z$ to $f_{C K} / 2$:

$$
\begin{gather*}
V_{i n}=0=>D F=0=>f_{P D M}=0 \tag{8.13}\\
V_{\text {in }}=V_{F S}=>D F=1=>f_{P D M}=0 \tag{8.14}\\
V_{\text {in }}=0.5 \cdot V_{F S}=>D F=0.5=>f_{P D M}=0.5 \cdot f_{C K} \tag{8.15}\\
V_{\text {in }} \in\left(0 \ldots V_{F S}\right)=>f_{P D M} \in\left(0 \ldots 0.5 \cdot f_{C K}\right) \tag{8.16}
\end{gather*}
$$

The simplest demodulator is a Low Pass Filter. An ideal LPF should remove the carrier frequencies and recover the unaffected modulator. A real filter attenuates the carrier frequencies and keeps the modulator almost unaffected. The lowest carrier frequency must be (much) higher than the modulator frequency, which implies limiting $V_{i n}$ to less than in (8.16).

$$
\begin{gather*}
V_{i n}=V_{F S} / k=>D F=1 / k=>f_{P D M}=f_{C K} / k \tag{8.17}\\
V_{\text {in }}=(1-1 / k) \cdot V_{F S}=>D F=(1-1 / k)=>f_{P D M}=f_{C K} / k \tag{8.18}\\
V_{\text {in }} \in\left(V_{F S} / k \ldots(1-1 / k) \cdot V_{F S}\right)=>f_{P D M} \in\left(f_{C K} / k \ldots 0.5 f_{C K}\right) \tag{8.19}\\
f_{P D M, \min }=f_{C K} / k \gg f_{\text {in }} \tag{8.20}
\end{gather*}
$$

Applications

8.2 Simulation

Figure 8.4 shows the Multisim schematic for simulation. The signal generator W 1 , the clock generator ck, and the D flip-flop are simulation-only components. Both CMP and PDM are 5 V logic signals. All the other components and connections are realized on the Charge Compensated Modulator experimental board.
When the analog switch ADG601 is ON, it connects the resistor R_{3} to -5 V , which acts as a current supply of:

$$
\begin{equation*}
I_{r e f}=\frac{0-\mathrm{VEE}}{R 3}=\frac{5 \mathrm{~V}}{1 \mathrm{k} \Omega}=5 \mathrm{~mA} \tag{8.21}
\end{equation*}
$$

The full-scale voltage of the modulator is:

$$
\begin{equation*}
V_{i n, F S}=I_{\text {ref }} \cdot R 1=5 \mathrm{~mA} \cdot 1 \mathrm{k} \Omega=5 \mathrm{~V} \tag{8.22}
\end{equation*}
$$

R_{2} and C_{2} build a simple Low Pass filter which re-constructs a copy of $V_{i n}$, based on the PDM signal.

Figure 8.5 shows the transient simulation results for the input signal, $V_{i n}$, set at $90 \%, 50 \%$ and 10% of the $V_{F S}$. The $c k$ frequency is $f_{c k}=200 \mathrm{kHz}$.

Figure 8.4. Charge Compensated Modulator schematic

Figure 8.5. Charge Compensated Modulator simulation - constant $V_{\text {in }}$ V1 falls slower and rises faster when Vin is higher, reverse when Vin is closer to zero, and has symmetrical slopes when $V_{i n}=V_{F S} / 2$. CMP is the asynchronous output of the comparator, while PDM is the synchronized version of it; both LOW (phase 1) and HIGH (phase 2) pulses take integer number of clock periods. DF is equal to the $V_{i n} / V_{F S}$ ratio, as shown by (8.12). In Figure 8.6, the input signal, $V_{i n}$, is a $f_{\text {in }}=2 \mathrm{kHz}$ sinus, with a DC component of $2.5 \mathrm{~V}=V_{F S} / 2$ and 2 V amplitude; $V_{\text {in }}$ range is 10% to 90% of the $V_{F S}$.

$$
\begin{equation*}
V_{\text {in }}=2.5 V+2 V \cdot \sin \left(2 \pi f_{\text {in }} t\right) \tag{8.23}
\end{equation*}
$$

The duty factor of the PDM signal is proportional to $V_{i n}$: $\mathrm{DF}=50 \%$ when $V_{i n}=V_{F S} / 2$. The DF range is 10% to $90 \% . f_{P D M}$ range is $\left(f_{c k} / 10 \ldots f_{c k} / 2\right)$.
$V_{\text {out }}$ is the re-construction of the $V_{\text {in }}$, using the output filter $R_{2} C_{2}$. An ideal output filter would completely eliminate the carrier frequencies and not affect the demodulated signal. The ideal range of $V_{\text {out }}$ results from the PDM amplitude (5 V) and PDM DF range:

$$
\begin{gather*}
V_{\text {out }, \text { ideal }} \in(10 \% \cdot 5 \mathrm{~V} \ldots 90 \% \cdot 5 \mathrm{~V})=(0.5 \mathrm{~V} \ldots 4.5 \mathrm{~V}) \tag{8.24}\\
V_{\text {out }, \text { ideal }}=2.5 \mathrm{~V}+2 \mathrm{~V} \cdot \sin \left(2 \pi f_{\text {in }} t\right) \tag{8.25}
\end{gather*}
$$

Applications

$R_{2} C_{2}$ is a first order low-pass filter, with the corner frequency below f.

$$
\begin{equation*}
f_{\text {corner }}=\frac{1}{2 \pi R_{2} C_{2}}=1.59 \mathrm{kHz} \tag{8.26}
\end{equation*}
$$

The DC component is not affected, the AC amplitude is attenuated, and the carrier frequencies are incompletely removed:

$$
\begin{gather*}
V_{\text {out }, \text { ampl }}=\frac{V_{P D M, a m p l}}{\left|1+2 j \pi f_{\text {in }} R_{2} C_{2}\right|}=\frac{2 \mathrm{~V}}{1.6}=1.24 \mathrm{~V} \tag{8.27}\\
V_{\text {out }, \text { real }} \approx 2.5 \mathrm{~V}+1.24 \mathrm{~V} \cdot \sin \left(2 \pi f_{\text {in }} t\right) \tag{8.28}
\end{gather*}
$$

The ratio between the $f_{P D M, \text { min }}$ and $f_{\text {in }}$ frequency is far too low: it allowed waveforms visualization for a detailed analysis of the circuit behavior, but resulted in a low quality re-constructed signal.

For a high quality PDM modulation which can serve for better re-construction of $V_{i n}$, a much higher ratio should be used: either higher $f_{P D M, \text { min }}$ or lower $f_{\text {in }}$ or both. Higher $f_{P D M, \text { min }}$ means either higher $f_{c k}$, lower k (lower fraction of $V_{F S}$ used), or both in (8.19) and (8.20). The re-construction filter should be higher order and have the $f_{\text {corner }}$ between $f_{\text {in,max }}$ and $f_{P D M, \text { min }}$.

Figure 8.6. Charge Compensated Modulator simulation - sinusoidal $V_{\text {in }}$

8.3 Experiment

Figure 5.4Figure 8.7 shows the experimental board. J2 header provides access to the Analog Discovery scope inputs $1+$ and $2+$. The negative nodes of the differential scope inputs (1- and 2-) are hard connected to GND.

TP0...TP7 headers are schematic test points. Use wires to connect these nodes to the scope inputs.

Figure 8.7 Charge Compensated Modulator experimental PCB

The wire setup shown in Figure 8.7 probes $V_{i n}$ and V.
In Figure 8.9, the WaweForms instruments are set as below:

- Power Supplies: ON, +5 V and -5 V .
- WaveGen: constant $(D C)=4.5 \mathrm{~V}$.
- Patterns Generator:
- DIO11: clock, 200 kHz , Duty $=50 \%$, Phase $=0$.
- DIO10: ROM logic, 200kHz, DIO10 <= DIO9 (see Figure 8.8).

This configuration synchronizes $\mathrm{DIO9}$ (Cmp) by clock clk, to get PDM (DIO10). It simulates a D Flip-Flop with the falling edge active clock DIO11.

Figure 8.8 ROM logic for PDM
The scope is set as shown in Figure 8.9. Ref 1 shows $V_{i n}$, Channel 1 shows V_{l}, Channel 2 shows $V_{\text {out }}$. A noise band around scope signals suggests that an oscillation happens in the circuit; the input capacitance of the scope probe is

Applications

too large for the OA, which becomes unstable. To avoid oscillation, a series 100Ω resistor was added in the tip of the V_{1} scope probe, which insulated the scope capacitance and removed the oscillation.

Three digital signals are added in the scope window: $D I O 9=C m p$, $D I O 10=P D M$ and DIO11=clk. Although DIO11 is not actually the clock of the ROM logic D flip-flop, it has the same frequency and phase with it, so it is shown as reference. Notice that the ROM logic synchronizes to the end of each clock period, which is the falling edge of DIO11. This is a difference compared to the Multisim simulation, where the D Flip-Flop is active on the rising clock edge.
$V_{i n, F S}=5 \mathrm{~V}$, as shown in (8.22). The Analog Discovery DIO signals are CMOS 3 V 3 compatible, so $V_{\text {out }, F S}=3.3 \mathrm{~V}$ (the $V_{\text {out }}$ Value when $\mathrm{DF}=1$).
In Figure $8.9, V_{i n}=4.5 \mathrm{~V}=90 \% \cdot V_{i n, F S}$; the rising slopes of V_{l} are 9 time slower than the falling ones, the $P D M \quad D F=90 \%, \quad f_{P D M}=f_{c k} / 10$ and $V_{\text {out }}=2.92 \mathrm{~V} \approx 0.9 \cdot V_{\text {out }, F S}$. In Figure 8.11, $V_{\text {in }}=0.5 \mathrm{~V}=10 \% \cdot V_{\text {in, }, S S} ;$ the V_{l} slopes are reversed, the $P D M D F=10 \%, f_{P D M}=f_{c k} 10$ and $V_{\text {out }}=0.3 V \approx 0.1 \cdot V_{\text {out }, F S}$.

Figure 8.9 Charge Compensated Modulator experiment $-V_{\text {in }}=0.9 \cdot \mathrm{~V}_{\text {in }, \mathrm{FS}}$

Figure 8.10 Charge Compensated Modulator experiment $-V_{i n}=0.5 \cdot \mathrm{~V}_{\mathrm{in}, \mathrm{FS}}$

Figure 8.11. Charge Compensated Modulator experiment $-V_{i n}=0.1 \cdot \mathrm{~V}_{\mathrm{in}, \mathrm{FS}}$

Applications

Figure 8.12 Charge Compensated Modulator experiment- sinusoidal $V_{i n}$
In Figure $8.10, V_{i n}=2.5 \mathrm{~V}=50 \% \cdot V_{i n, F S}$; the V_{1} slopes are symmetrical, the PDM DF $=50 \%, f_{P D M}=f_{c k} / 2$ and $V_{\text {out }}=1.61 V \approx 0.5 \cdot V_{\text {out }}, F S$.
In Figure $8.12, V_{i n}=2.5 \mathrm{~V}+2 \mathrm{~V} \cdot \sin \left(2 \pi f_{i n} t\right)$, with $f_{\text {in }}=2 \mathrm{kHz}$; the V_{l} rising slopes are slower when $V_{i n}$ is higher, faster when $V_{i n}$ is lower. The falling slopes are reversed. The PDM DF changes between 10% and $90 \%, f_{P D M}$ changes between $f_{c k} / 10$ and $f_{c k} / 2$.

Equations (8.23)...(8.28) can be written with $V_{\text {out }, F S}=3.3 V$:

$$
\begin{gather*}
V_{\text {in }}=2.5 \mathrm{~V}+2 \mathrm{~V} \cdot \sin \left(2 \pi f_{\text {in }} t\right) \tag{8.29}\\
V_{\text {out }, \text { ideal }} \in(10 \% \cdot 3.3 \mathrm{~V} \ldots 90 \% \cdot 3.3 \mathrm{~V})=(0.33 \mathrm{~V} \ldots 2.97 \mathrm{~V}) \tag{8.30}\\
V_{\text {out }, \text { ideal }}=1.65 \mathrm{~V}+1.32 \mathrm{~V} \cdot \sin \left(2 \pi f_{\text {in }} t\right) \tag{8.31}\\
f_{\text {corner }}=\frac{1}{2 \pi R_{2} C_{2}}=1.59 \mathrm{kHz} \tag{8.32}\\
V_{\text {out }, \text { ampl }}=\frac{V_{P D M, \text { ampl }}}{\left|1+2 j \pi f_{\text {in }} R_{2} C_{2}\right|}=\frac{1.32 \mathrm{~V}}{1.6}=0.822 \mathrm{~V} \tag{8.33}\\
V_{\text {out }, \text { real }} \approx 1.65 \mathrm{~V}+0.822 \mathrm{~V} \cdot \sin \left(2 \pi f_{\text {in }} t\right) \tag{8.34}
\end{gather*}
$$

Task 1. Increase the AWG signal amplitude to cover more of the definition range. Explain the wave shape V_{l}. Export to your report document the scope

Figure 8.13 Signal reconstruction
image for $V_{i n}$ covering the whole definition range.
As in the simulation, the ratio of the clock frequency to the $V_{i n}$ frequency is far too low to allow high quality $V_{\text {out }}$ re-build. This ratio allows visualizing the signals and understanding the basics of the circuit. In a real application, the clock (oversampling) frequency is chosen to be much higher than the highest spectral component of $V_{i n}$.
A better approximation is shown in Figure 8.13. Here, the clock frequency is 200 kHz , and the $V_{\text {in }}$ frequency is 10 Hz .
However, if the clock period becomes comparable to the switching time for $I_{\text {ref }}$, this generates linearity errors, and the re-built signal is distorted, as shown below.

Applications

8.4 Design considerations

8.4.1 $\quad V_{\text {in }}$ dynamic range

V_{I} swing range needs to be within the OA output range, which depends on the supply voltages and rail margins of the OA.
Lowest negative value of V_{l} happens during phase 1, when:

- $\quad V_{l}$ becomes negative immediately after an active edge of $c k$ (see $V\left(V_{l}\right)$ in Figure 8.5, the slope beginning at time $750 \mu \mathrm{~s}$), and
- $\quad V_{i n}=V_{i n, F S} ;$

From (8.3):

$$
\begin{equation*}
V_{1, \min }=-\frac{V_{i n, F S}}{R \cdot C} \cdot T_{c k} \tag{8.35}
\end{equation*}
$$

Similarly, highest positive value of V_{l} happens during phase 2 , when:

- $\quad V_{I}$ becomes positive immediately after an active edge of $c k$ (see $V\left(V_{I}\right)$ in Figure 8.5, the slope beginning at time $\sim 1.08 \mathrm{~ms}$), and
- $\quad V_{\text {in }}=0 ;$

From (8.4):

$$
\begin{equation*}
V_{1, \max }=\frac{I_{r e f}}{C} \cdot T_{c k}=\frac{V_{i n, F S}}{R \cdot C} \cdot T_{c k} \tag{8.36}
\end{equation*}
$$

Equations (8.35) and (8.36) need to be considered when designing $R, C, T_{c k}$, in conjunction with the OA output voltage range.

8.4.2 Clock frequency

For high bandwidth, short t_{c} and high resolution, $T_{c k}$ should be as short as possible. However, if $T_{c k}$ becomes comparable to the switching time of $I_{r e f}$, the linearity of the ADC is affected.

Figure 8.14 to Figure 8.16 use triangular $V_{i n}$ shape, for linearity estimation. The clock frequency is $f_{c k}=100 \mathrm{kHz}$ in Figure $8.14, f_{c k}=1 \mathrm{MHz}$ in Figure 8.15, $f_{c k}=10 \mathrm{MHz}$ in Figure 8.16. The scope vertical scaling and vertical position are set to overlap $V_{\text {out }}$ to $V_{\text {in }}$ (same rate as $V_{\text {in, }, \text { SS }} / V_{\text {out }, F S}=5 \mathrm{~V} / 3.3 \mathrm{~V}$).
When the clock frequency is low, the $V_{\text {out }}$ LPF cannot effectively remove the carrier frequencies, visible in $V_{\text {out }}$.

At medium clock frequency, the LPF works much better except at extreme values of $V_{i n}\left(0\right.$ and $\left.V_{F S}\right)$, where the modulator frequency is low. A small linearity error is visible for $V_{i n}$ around midrange: the $I_{r e f}$ switching frequency is highest there $\left(f_{c k} / 2\right)$ and the switching period becomes comparable with the switching time of the $S 1$ switch. The integrated value of $I_{\text {ref }}$ is affected.
At high clock frequencies, the LPF works even better, but the linearity error increases.

Figure $8.1410 \mathrm{~Hz}, 5 V_{v v}\left(V_{i n, E S}\right)$ triangular $V_{i n} \boldsymbol{f}_{c k}=100 \mathbf{k H z}$

Applications

Figure 8.16 $10 \mathrm{~Hz}, 5 V_{v v}\left(V_{i n, F S}\right)$ triangular $V_{i n} f_{c k}=1 \mathbf{M H z}$

Figure 8.15 $10 \mathrm{~Hz}, 5 V_{v v}\left(V_{i n, F S}\right)$ triangular $V_{i n} f_{c k}=\mathbf{1 0 M H z}$

Data Acquisition Systems Fundamentals

1 Sampling Theory 1
1.1 Background 1
1.1.1 Signal Spectrum 1
1.1.2 Sampling Rate 3
1.1.3 Alias 4
1.2 Experiment 7
1.2.1 Signal Spectrum Experiment 8
1.2.2 Sampling rate experiment 9
1.2.3 Alias experiment 12
2 Sample and Hold 17
2.1 Background 17
2.1.1 Sample and Hold Circuits Parameters and Errors 17
2.2 Simulation 20
2.2.1 General behavior - Simulation 21
2.2.2 "Sample" phase - Simulation 21
2.2.3 "Hold" to "Sample"- Simulation 23
2.2.4 "Sample" to "Hold" - Simulation 24
2.2.5 "Hold" phase - Simulation 25
2.3 Experiment 26
2.3.1 General behavior 27
2.3.2 "Sample" phase - Experiment 28
2.3.3 "Hold" to "Sample"- Experiment 30
2.3.4 "Sample" to "Hold" - Experiment 31
2.3.5 "Hold" phase - Experiment 32
3 Resistor Networks 33
3.1 Binary weighted resistors network, voltage switching, no load 33
3.1.1 Background 33
3.1.2 Simulation 34
3.1.3 Experiment and measurements 39
3.2 Binary ladder resistors network, voltage switching, no load 49
3.2.1 Background 49
3.2.2 Simulation 49
3.2.3 Experiment and measurements 52
3.3 Combined resistors network, voltage switching, no load 53
3.3.1 Background 53
3.3.2 Simulation 55
3.3.3 Experiment and measurements 59

Applications

3.4 Operational Amplifier Output Stage for Voltage Switching Resistor Networks 68
3.4.1 Background 68
3.4.2 Simulation 70
3.4.3 Experiment and measurements 72
4 DAC CMOS 79
4.1 Background 79
4.1.1 Unipolar operation 79
4.1.2 Bipolar operation 81
4.2 Experiment and measurements 83
4.2.1 Unipolar Operation 83
4.2.2 Bipolar Operation. 93
5 Digitally controlled filter 97
5.1 Background 97
5.2 Simulation 99
5.3 Experiment 101
5.3.1 Filter characteristics 101
5.3.2 Audio experiment 103
5.3.3 Music filtering 104
6 Feedback ADC - voltage comparison 106
6.1 Background 106
6.1.1 Unipolar operation 106
6.1.2 Bipolar operation 111
6.2 Experiment and measurements 112
6.2.1 Unipolar Operation 113
6.2.2 Bipolar operation 124
7 Voltage Controlled Oscillator 130
7.1 Background 130
7.2 Experiment 132
8 Charge Compensated Modulator 135
8.1 Background 135
8.2 Simulation 138
8.3 Experiment 141
8.4 Design considerations 146
8.4.1 $V_{\text {in }}$ dynamic range 146
8.4.2 Clock frequency 146

