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Foreword 

 

The current guide appeared as a necessity regarding the modernization of classical 

mechanics laboratory papers for the 1st and 2nd university years, but also as the need to add 

new data to them, compared to previous editions. In addition, there was a need to edit them 

in an international language as well, due to the mechanical specializations taught in another 

language of international circulation, as well as the flow of foreign students who attend the 

faculty with Erasmus scholarships. 

Theoretical Mechanics is a basic discipline that lays the foundations of the future 

mechanical engineer, for this reason it is taught in all specializations of the 1st and 2nd years of 

study.  

The presented laboratory papers are clearly designed, having the following parts: - the 

theme and requirement of the paper, - the theoretical concept part and - the experimental 

part containing either measurements or the graphic part. 

The editing of the book was realized by the authors, both in terms of the text and the 

graphical part. 

The authors thank to all those who supported them, both within the department and 

outside. 

                      2022                                                                            Authors, 
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ANALITICAL AND GRAPHICAL REDUCTION OF A COPLANAR 

SYSTEM OF FORCES 

1. Purpose of the work 

There is considered a rectangular plate, on which is acting a system of five forces, 

located in the plate`s plane as can be seen in Figure 1. Determine: 

a) Analytically the wrench (force-couple system) ( )an an
O OR , M = , the equations of 

“equipollent screwdriver” line of action and the distance and from point O to its line. 

b) Graphically the wrench (force-couple system) ( )grgr
O OR , M = , the resultant 

vector grR  and the distance grd  from point O to the “equipollent screwdriver” line of 

action; 

c) Compare the analytical and graphical obtained results, by computing the relative 

errors 
d

r  and 
R

r . 

 

 

 

 

 

 

The input data are:  

                                              ; 

 

                                                  

      

                                                                                                    (1) 

where, n is the student order number in the group, and m  the semigroup number. 

Figure 1 

 

6[ ]m4

12 [ ]m

1F

1

3 [ ]m
2[ ]m

6[ ]m
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3F

2F
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2A

3A4A 5A
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2. Theoretical considerations 

There is considered in Figure 2, a rigid body ( )S on which a system of = →1i n  forces is 

acting, denoted iF  in points iA , each force being linked to origin O with the position vector ir . 

 
Figure 2 

The wrench (force-couple system) O , is having the following components: 

O

O

R

M


 
= − − 
  

                                                                         (2) 

where R  is the resultant vector of the forces, and OM  is the resultant moment (couple) 

with respect to point O, known by components as: 

x y zR R i R j R k=  +  +                                                       (3) 

=  +  + O x y zM M i M j M k                                                      (4) 

Hence, the scalar components of the force-couple system (wrench) (2), which have to be 

determined are: 

x y z

O

Ox Oy Oz

R R R

M M M


 
= − − − − − − − − − − 
  

                                                        (5) 

The components of the wrench (5) are expressed as: 

1 1 1

n n n

x ix y iy z iz
i i i

R F R F R F
= = =

= = =                                                    (6) 

1

1

1

n

Ox i iz i iy
i
n

Oy i ix i iz
i
n

Oz i iy i ix
i

M y F z F

M z F x F

M x F y F

=

=

=

=  − 

=  − 

=  − 







                                                               (7) 



9 

In expressions (6)-(7) is well known the fact that, , ,ix iy izF F F  are the projections of the 

forces on the reference system axis, and , , ,i i ix y z  are the coordinates of each point iA . 

The modules of the two vectors are: 

2 2 2an
x y zR R R R= + +                                                     (8) 

= + +2 2 2
Ox Oy OzOM M M M                                                     (9) 

The expressions of the equations of “equipollent screwdriver” line of action are 

obtained from: 

−  +  −  +  −  + 
= =

z y x z

y z

Ox Oy Oz y x

x

M y R z R M z R x R M x R y R

R R R
                         (10) 

In the case of the rectangular plate considered in Figure 1, on which is acting a 

system of coplanar forces in the plate`s plane, i.e. ( ) 0ixOy z = , in concordance with 

Figure 3, there can be written that: 

  =

= = 

 0,  0,  0

 0,  0,  0

x y z

Ox Oy Oz

R R R

M M M
                                               (11) 

According to (11), the expressions of equipollent screwdriver line of action are: 

= −  + −  
= = → 

−  +  + =

0
 

0 0

y Oz y xx

x y y x Oz

zz R M x R y Rz R

R R x R y R M
                    (12) 

 

 

 

 

 

 

 

 

Figure 3 

(S) Equipollent screwdriver line of action 
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With respect to O, the forces system is reducible to a wrench (force-couple system) 

( ),O OR M = , and with respect to equipollent screwdriver line of action, to a simplest 

resultant of a force-couple system “equipollent screwdriver” ( ) = min
min R, M . 

The minimum value of the resultant moment is obtained by projecting the moment OM  

on the resultant force R  support axis. It results: 


=min OM

M
R

R
                                                                  (13) 

When  0, 0OM R  and  = 0OM R , means that ⊥OM R . The previous expression becomes: 

min 0M = , resulting that the system of forces, from mechanical point of view, is equivalent 

with a unique resultant, whose support axis is the equipollent screwdriver line of action, 

defined by (10). 

Hence, considering the Varignon`s Theorem; according to which: when the system 

of forces is mechanically equivalent to a unique resultant, the resultant moment of a system of 

forces with respect to O is also equal to the moment of resultant of the system of forces 

determined with respect to the same pole, it can be established analytically the distance from 

the point O to the equipollent screwdriver line of action as: 

=an O
an

M
d

R
                                                                    (14) 

3. Development of the laboratory work  

Each student establishes his own input data based on order number in the group 

and semigroup number with (1). 

Using expressions (6)-(9), (12) and (14), there are computed the analytical results 

for resultant vector and resultant moment, the expression of equipollent screwdriver 

line of action, and the distance from the reference`s system origin to its line of action. 

The results are filled in Table 1. 

Table 1 

 

 

 
Equipollent screwdriver equations 
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For the graphical determination, (see Figure 4) the following steps are considered: 

1. Using a drawing scale i.e.  1 / 1Lk cm m= , the plate is represented. Then without 

taking into account the magnitudes, in the points iA  are represented the forces iF ,   

considering the angles i  established in (1), measured with the protractor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 4 

 

2. There is considered a scale for the forces, i.e.  1 / 10Fk cm N= . Using the head-to-

tail method (force`s polygon) there are determined graphically the resultant vector for 

the five forces. There are denoted the vertices of the force’s polygon with A, B, C, D, E 

and F. The last side of the polygon AF R=  is measured. To obtain the real magnitude 

for the resultant vector grR , the measured resultant vector R is multiplied by Fk : 

 * ....gr
FR R k N ==                                                       (15) 

bp

B

C

A

D

d

F
4

O

y

x

c



a

E

2

P

1

1
2



4R

3' 3

 

2A1' 1

e

2' 2

f' 

d

1F 2F

4F

3F

5F

3

1
2

4

1A

3A4A

5A

4 ' 4
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3. There is considered an arbitrary point P near the force`s polygon. The point P 

merges with the polygon vertices A, B, C, D, E, F, noting the first joint  , the last   , 

and the intermediates with 1, 2, 3 and 4, respecting the vertices order. 

4. Is constructed the funicular polygon of the forces, characteristic to iF  as: 

✓ There is considered an arbitrary point p  located in the plate`s plane in the 

vicinity of  A1 . Through point p is drawn the line α`|| α which intersects the 

support axis of  F1  in point  a. 

✓ In a there is sketched the parallel line  1` || 1, which intersects the support axis of  

F2  in point  b. 

✓ In b there is sketched the parallel line  2` || 2, which intersects the support axis of  

F3  in point  c. 

✓ In c  there is sketched the parallel line  3` || 3, which intersects the support axis 

of  F4  in point  d. 

✓ In d  there is sketched the parallel line  4` || 4, which intersects the support axis 

of  F5  in point  e. 

✓ In e  there is sketched the parallel line  ω` || ω, which intersects α` in point  f. 

5. The point f, is a point belonging to the equipollent screwdriver line of action. The 

polygon pabcdef , represents the funicular polygon, and funicular polygon method allows 

the determination of a point belonging to the equipollent screwdriver line of action. 

6. There is known that equipollent screwdriver line of action has the same 

orientation as the support axis of resultant vector R , so that through point f, will be 

sketched a parallel line to R , representing the equipollent screwdriver line of action for 

the forces . 

7. From the point O, will be drawn a perpendicular d   to the equipollent 

screwdriver line of action. 

8. There is measured d , the real distance from the origin of the reference system to 

the equipollent screwdriver line of action will be: 

 * ....gr
Ld d k m ==                                                       (16) 
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The relative errors are obtained by comparing the analytical values noted (an) with 

graphical values noted (gr), according to: 

 100 .......  %

an gr

an

R

r

R R

R


−
=  =                                                (17) 

 100  ..... %

an gr

an

d

r

d d

d


−
=  =                                                     (18) 
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ANALYTICAL AND GRAPHICAL DETERMINATION 

OF THE MASS CENTER FOR A PLANE PLATE 

 

1.The purpose of the work 

A homogeneous plane plate is considered in Figure 1. The mass center always 

coincides with the centroid for a body with constant density.  

 

 

 

 

 

 

 

 

 

 

Determine: 

a) By analytical method, the centroid of the plate (Can); 

b) By graphical method, the centroid of the plate (Cgr); 

c) Compare the analytical results with the graphical ones by calculating the relative 

errors xc
  and yc

 . 

The composite plate dimensions are given, as: 

= +    a 10 0.5 n  cm   

= +    2R 7 0.1 n  cm  ;       
 = 2 45 [ ]

  

= + 3R 8 0.2 n [cm]  ;     
 = + 3 40 m [ ]

 

where: 

n –is the student order number from the group 

m – represents the number of the semigroup. 

a

a

2
2R

3R

3

Figure 1 

B

A

O
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2. Theoretical considerations 

A homogeneous plate having a complex shape is divided into simpler 

geometric parts, hence the position vector of the mass center for a complex shape 

plate is: 

n

C iii 1
C n

i
i 1

r A
r

A

=

=






=                                                                              (1) 

where: n – is the number of parts into which the composite plate is divided, 
i

A are 

their areas, and  
Ci
r  position vector of the centroid of each component part “i”. 

In the case of the composite plate considered in Figure 1, it will be divided into 

three simple geometric bodies, as can be observed in Figure 2:  

1. a rectangular triangle AOB (solid material) (with the centroid C1 

( )C C C1 1 1
x ,y ,z 0=  at the intersection of the medians),  

2. a circle sector of radius R2 (missing or empty material) (with centroid C2 

( )C C C2 2 2
x ,y ,z 0=  on its axis of symmetry); 

 3. a circle sector of radius R3 (filled material) (with center of weight C3 

( )C C C3 3 3
x ,y ,z 0=  on the axis of symmetry). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

a

a

2
2R

3R

3

3C

1C

2C

3Cx
1Cx

2Cx

1Cy

2Cy
3Cy

O

y

x

B

A
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According to Figure 2, the composite plate being flat, the reference system to which it 

will refer, will also be flat, and the relation (1) will be equivalent with two scalar 

relations as: 

−

  − +
=

+

C 1 C 2 C 3an
C

1 2 3

1 2 3
x A x A x A

x
A A A

         
−

  − +
=

+

C 1 C 2 C 3an
C

1 2 3

1 2 3
y A y A y A

y
A A A

     (2) 

where the coordinates of the centers of gravity and the areas of the parts are given by 

the relations: 

Triangle AOB:           C C1 1

a
x y

3
= =                

2

1

a
A

2
=                                                         (3)  

Circle sector of radius 2R  (angles are taken in radians): 

2 2

22 2
2 2 2 2

2 2
C C2 2

sin sin
2 22 2

x R , y a R cos , A   R
3 3 2 2

2 2

     
   

        
=  = −   =    

         
   
   

            (4) 

Circle sector of radius 3R : 

3 3

23 3 3
C 3 3 3 3 3

3 3
3

sin sin
2 22 2

x a R cos , y R sin , A    R
3 4 2 3 4 2 2

2 2

     
   

            
= −   + =   + =      

          
   
   

    (5) 

To transform the angles from degrees in radians, there is used the expression:  

rad

180


 = . 

 

 

3. Development of the laboratory work 

The dimensions of the composite plate, given in Figure 1, are calculated by each 

student: in according to order number from the group, using the dimensioning 

relationships. Are calculated (analytically), with the help of relations (2)-(5), the 

centers of gravity Ci(xi, yi, zi) (i = 1, 2, 3) of the component parts of the composite plate, 

respectively their coordinates, and is filled the Table 1,  with analytical results: 
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Table 1 

 

For the graphic determination of the mass center, there will be proceeded as 

follows (see Figure3): 

1. Is considered that the gravity force of a part is proportional to its area: Gi = kAi. 

Conveniently is chosen the constant of proportionality k=1, and the numerical values 

of the force Gi will be taken equal to the numerical values of the areas Ai. For the 

missing part, the direction of force will be taken in the opposite sense. There is drawn 

the complex plate at a chosen scale, i.e. L 1cm / 1mk = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 

B

C

2A

A

3G

3C

1C

2C

gr
CxO

y

x

gr
Cy

3G

2G

2G

1G

1G

Ox

Oy

1A

1B

1C

1D

1P

1

11

12

12B 2C2D

2P

2
21

22
2

1p

1a

1 1 

1 11 1

1b

1 12 2

1 1 

1c

1d

2p

2 2 

2a

2 21 1

2b

2 22 2

2c

2 2 

2d ( )2 2Ox A D

( )1 1Oy A D1u

2u
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2. On the plate sketch, there are marked the centers of gravity Ci of each part and 

are fixed the forces Gi, further named gravity forces. 

Note: On the drawing, the size of the gravity forces does not matter! 

 

3. The polygon of forces  A1B1C1D1 is constructed with the forces Gi represented on 

a convenient scale, i.e. L 1cm / 10Nk = .  

Note: In the drawing of the polygon of forces the size of forces doesn`t matters! 

 

4. Since all forces are proportional to weights, are parallel forces, and the 

polygon of forces becomes into points situated on the same axis. A point P1 is chosen 

arbitrary and joined with the vertices of the polygon. The obtained segments are 

noted in order with α1, 11, 21 and ω1. 

 

5. The funicular polygon will be drawn as follows: 

• Is choosen, arbitrarily, a point p1 through which we pass a straight line α`|| α1 

which will intersect the gravity force support G1 in a1.  

• Through a1 goes the line 1`||11 which intersects the gravity force supporting 

axis of G2 in b1.  

• Through b1 goes the line 2`||21 which intersects the gravity force supporting 

axis G3 in c1. 

•  Finally, it goes through c1 the line ω`|| ω1 that intersects the line α` at the 

point d1 belonging to the equipollent screwdriver line of action. This is how the 

funicular polygon p1a1b1c1d1 was built. 

6. Through d1, the equipollent screwdriver line of action parallel to the gravity 

forces is drawn, noted 1u . 

7. The steps from the forces range and the funicular range will be resumed with 

a new direction of the forces. Hence, all forces will be rotated 90° clockwise. The new 

polygon of these forces is denoted by A2B2C2D2. There will be chosen a point P2 that 

forms with the vertices of the polygon the segments denoted by α2, 12, 22 and ω2. A 
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new funicular polygon p2a2b2c2d2 is constructed, using the same procedure as 

described previously, which has point d2  on the new equipollent screwdriver line of 

action. Through d2 is drawn 2u parallel to the new direction of the gravity forces. 

8. The axes ( 1u ) and ( 2u ) will intersect in the center of the parallel forces,  

respectively in the centroid of the complex shape plate C( )C C Cx ,y ,z 0= .  

The coordinates gr
Cx  and gr

Cy  on the drawing will be strictly measured and 

compared with the values from the Table 1 of analytical results, then are calculated 

the relative errors according to: 

gran
C C

x an
C

c

x x
100  [%]

x

−
  ==                     

gran
C C

y an
C

c

y y
100  [%]

y

−
 =  =             (6). 
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DETERMINATION OF BEAM REACTIONS SIMPLY SUPPORTED 

 

1. The purpose of the paper 

The purpose of this paper is to determine the reactions of a simply supported 

beam and to compare the theoretical results with the experimental ones by 

calculating the relative errors. 

 

2. Theoretical considerations 

A beam is the horizontal component of a structure (building), usually fixed on 

supports (walls or pillars), and placed at the ends or inside the beam. As example, in 

Figure 1, is presented the roof beam of an industrial hall or the beam of a drawbridge. 

 

      Figure 1 

 

As presented in Figure 2, if a beam is leaning on two supports A and B and has 

no fixing (locking) devices, it`s said that is simply supported. If a localized load (F) acts 

on the beam, it`s said that the load is concentrated, and if the load acts on a certain 

portion of the length of the beam, is called a distributed load. 

 

 

 

 

 

 

Q  

1 

2 

3 

5 

4 6 

7 

1 – Foundation; 

2 – Pillar; 

3 – Running beam; 
4 – Trolley; 

5 – Roof beam; 

6 – Beam of the drawbridge; 

7 – Load. 

Figure 2  

AR BR
F

1l 2l
A B
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According to Figure 2, the forces are planar, and the beam (considered rigid 

body in the plane) to be in equilibrium, three scalar equilibrium equations are 

written: two for forces and one for moments, as follows. 

x lx

y ly

z lz

R R 0

R R 0

M M 0

 + =



+ =


+ =

                                                          (1) 

To solve the system of equations (1), it should be easier if each equation 

contains only one unknown. This is achieved if instead of the equation of horizontal 

force projections (the normal reactions do not have horizontal projections), there is 

written a second equation of moments relative to the other support of the beam, as: 

( )

( )

A B

B 1 2 1

A 1 2 2

R R F 0

R l l F l 0

R l l F l 0

 + − =


+ −  =


+ −  =

                                                     (2) 

The unknowns are the reactions in beam RA and RB , assuming that are known 

the loads. In this case, the equation of vertical force projections can be use for 

verification.  

Customizing the relations (2) it will result eight systems of equations 

characteristic to the beam loading, according to the eight cases presented in Test 1-8. 

 

3. Development of the laboratory work 

There is considered eight experiments/tests, (according to Figure3) depending 

on the location of the supports and loads, denoted Test 1-8. It must be determined for 

each experiment/test, the reactions theor
AR  and theor

BR .  

Note:   - all lengths are in millimeters and loads in Newtons. 

- the uniformly distributed load EX8A is 0.0255 N/mm over a length of 100 

mm and represents a system of parallel forces that could be reduced in relation to the 

central axis to a single resultant placed exactly in the middle of the length; 
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Figure 3  

1 –Dynamometer, 2 – Weight with distributed loads (EX8A), 3 – Weight with a concentrated mass of 

5N and 2N  

- the weight of the beam can be removed from the equations with the help of a 

spring device (which keeps the beam in a horizontal position, the elastic force 

compensating for the beam`s weight). 

The equilibrium equations for moments calculated to the ends A and B of the 

beams, for each loading presented in Test 1-8, are as follows: 

Test 1 

A: 5.1∙250-RB
theor∙500 = 0 → RB

theor=5.1∙250/500 = 2.55 N 

B: 5.1∙250-RA
theor∙500 = 0 → RA

theor=5.1∙250/500 = 2.55 N 

 

 

 

 

Test 2 

A: 5.1∙250-RB
theor∙500 = 0 → RB

theor=5.1∙250/500 = 2.55 N 

B: 5.1∙250-RA
theor∙500 = 0 → RA

theor=5.1∙250/500 = 2.55 N 

 

 

 

 

Test 1  

250  

5.1 [N] 

250  

500  

B A 

RA RB 

A B 

150  

 EX 8A 

100  100  

500  

 EX 8A 

RA RB 150  

Test 2  
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Test 3 

A: 10.2∙250-RB
theor∙500 = 0 → RB

theor=10.2∙250/500 = 5.1 N 

B: 10.2∙250-RA
theor∙500 = 0 → RA

theor=10.2∙250/500 = 5.1 N 

 

 

 

 

 

Test 4 

A: 5.1∙250+2.1∙150+2.1∙50-RB
theor∙500 = 0 → RB

theor =1600.5/500 = 3.20 N 

B: 5.1∙250+2.1∙350+2.1∙450-RA
theor∙500 = 0 → RA

theor = 2955/500 = 5.91 N 

 

 

 

 

Test 5 

A: 2.55∙100+2.55∙300-RB
theor∙500 = 0 → RB

theor =1020/500 = 2.04 N 

B: 2.55∙200+2.55∙400-RA
theor∙500 = 0 → RA

theor = 1530/500 = 3.06 N 

 

 

 

Test 6 

A: 2.55∙100+2.55∙250+2.55∙300+2.55∙450-RB
theor∙500 = 0 → RB

theor =2805/500 = 5.61N 

B: 2.55∙250+2.55∙50+2.55∙200+2.55∙400-RA
theor∙500 = 0 → RA

theor = 2295/500 = 4.59 N 

 

 

 

 

 

A 
 EX 8A  EX 8A 

5.1 [N] 

150  150  100  100  

500  

B 

RB RA 

Test 3  

A B 

2.1 [N] 2.1 [N] 5.1 [N] 

50  100  100  250  RA RB 

500  

Test 4  

A B 

500  

 EX 8A  EX 8A 

50  100  100  100  150  RA RB 

Test 5  

RA RB 50  100  50  100  100  100  

500  

 EX 8A  EX 8A 

2.1 [N] 2.1 [N] 

A B 

Test 6  
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Test 7 

A: 2.55∙100+2.55∙250+2.55∙300+2.55∙450-RB
theor∙400 = 0 → RB

theor =2805/400 = 7.01N 

B: 2.55∙300+2.55∙150+2.55∙100+2.55∙50-RA
theor∙400 = 0 → RA

theor = 1530/400 = 3.82 N 

 

 

 

 

Test 8 

A: 5.1∙150+2.55∙150+2.55∙300-2.55∙75-RB
theor∙250 = 0 → RB

theor =2088.75/250 = 8.35 N 

B: 5.1∙150+2.55∙150+2.55∙325-2.55∙50-RA
theor∙250 = 0 → RA

theor = 2103.75/250 = 8.41 N 

 

 

 

 

 

The Table 1 will be fulfilled with the experimental data obtained from the tests, 

and the obtained values are compared by calculating the relative errors between the 

theoretical and experimental values as: 

exptheor
A A

R theorA
A

R R
100  [%]

R

−

 =  =             

exptheor
B B

R theorB
B

R R
100  [%]

R

−

 =  =            (3) 

                              Table 1 

 Test 

1 

Test  

2 

Test 

 3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 

8 

RAexp[N]         

RBexp[N]         

RAtheor[N]         

RBtheor [N]         

𝜀𝑅𝐴 [%]         

𝜀𝑅𝐵 [%]         

 

  

B 
 EX 8A  EX 8A 

2,1 [N] 2,1 [N] 

A 

400  

50  50  50  50  100  100  100  

Test 7  

RB RA 

2
5

  

 EX 8A  EX 8A 

2,1 [N] 
5,1 [N] 

A B 

2
5

  

100  100  100  

250  

50  50  50  

Test 8  

RB RA 
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STUDY OF THE RIGID BODY PLACED ON AN INCLINED PLANE 

 

1. The purpose of the work 

The aim of the laboratory is on one hand to measure the angle of friction and to 

determine the coefficient of friction, and on the other hand to study the equilibrium 

of a body on an inclined plane. 

  
2. Theoretical considerations 

When an object (body), having a mass m  is placed on a horizontal plane, all its 

weight presses on the plane (see Figure 1), with a force called gravitational force 

G m g=  . To force G , is opposing a normal force, N  equal in modulus, but with 

opposite sense.  

 

 

 

 

If the horizontal plane is rough, to a horizontal force F , is opposing a resistance 

force, called frictional force, generally denoted T , or fF . It is found that initially the 

body is in equilibrium on the surface until is reached a maximum value of the force 

F  at which the body goes out of equilibrium and starts moving. At first the body 

stands still due to friction with the surface (frictional force). 

The equilibrium equations on the axes of the reference system are: 

 − =

− =

0

0

F T

N G                                                             (1) 

At those expressions, it must be added the condition at the limit of sliding 

friction:  T N , where µ is called the coefficient of sliding friction, a dimensionless 

parameter, which takes values in )0,...,1  interval. 

O

F

G

N

Figure 1 

T

y

x
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Coulomb's laws or laws of dry friction: 

-The maximum friction force does not depend on the size of the surfaces in contact. 

-The maximum friction force is proportional to the value of the normal reaction. 

-The maximum friction force depends on the nature of the surfaces in contact and on 

the degree of their processing. 

-The maximum frictional force does not depend on the relative speed of the surfaces 

in contact. 

Mathematically, the Coulomb's laws or laws of dry friction can be expressed as: 

                                                  NF maxf =                                                               (3) 

and are highlighting that the coefficient of proportionality between the maximum 

friction force (Tmax or Ffmax) and the normal reaction N is µ called the coefficient of sliding 

friction. 

In practice, there are built devices based on a inclined plane used for lifting 

weights or bringing them down. An example is shown in Figure 1 with a boat pulled 

out from water. 

 

Figure 2 

When a rigid body is placed on an inclined plane at a certain angle (see Figure 

3), a part of the weight of the rigid will act parallel to the plane (noted tG  called 

tangential component), and another part will generate pressure on the plane (noted 

nG called normal component).  

The plane reacts on the body, according to the principle of action and reaction, with a 

force called reaction denoted N . Another force parallel and opposite to the motion 
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on the plane is called frictional force T , or fF . It is denoted by  , the angle of 

inclination of the plane at which the sliding starts, it will be shown that the angle   

is the angle of friction. 

 

 

 

 

 

 

 

 

In the case of equilibrium, the following expressions are obvious: 

n

t

N G G cos

T G G sin

T N

 = =  


= =  


=  

                                                               (4) 

When the angle of inclination of the plane reaches the maximum value, for which is 

possible the equilibrium ( ) =  , the equalities contained in (4) are becoming: 

                       
n

max t

N G G cos

T G G sin

= =  

= =  
                                                            (5) 

According to Coulomb’s law, there can be established the coefficient of sliding 

friction as: 

 =   → = =
sin

sin cos
cos

G G tg


    


                                         (6)  

The angle   whose tangent is equal to the coefficient µ is called friction angle. 

There can be observed, that the body is sliding freely downwards if    . 

If a certain weight must be climbed on an inclined plane, it is necessary to apply 

a traction force (F) that overcomes both the friction force (T) as well as the component 

of the weight parallel to the plane tG , see Figure 4. 



T

nG

tG

G

N



Figure 3 
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According to Figure 4, when ascending, the equilibrium equations at the limit of 

friction are: 

       0 0t nF G T = ; N G = ; T = μ N− − −                                  (7) 

where:                                      sintG G =   and cosnG G =                                          (8) 

Replacing (8) in (7) results that: 

( )sin cosF G   =  +                                                    (9) 

When descending, also in the case of equilibrium at the limit, the direction of 

the force of friction (T) is reversed and the same expression (9) will result, but with 

the minus sign between the components. 

 

3. Development of the laboratory work 

It is used the assembly from Figure 5 composed of: plate, inclined plane, wire  

and hook  with a weight of 0.1N . 

 

 

 

 

 

 

 

 



F

T

nG

tG

G

N



Figure 4 

Figure 5 

 

 

 

  

  

 

 

 plate 

 inclined plane 

 wire 

 0.1N weight 

 hook 
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A body having the mass “m*” is placed on the inclined plane. The angle of the 

plane is changed starting from the horizontal, slightly pushing the body to overcome 

the static (sticking) friction, until the body starts to slide. It is read on the protractor, 

mounted on the plane, the angle of inclination of the plane, which in this case is the 

friction angle  =  . Three tests are performed for each of the possible combinations 

of rigid material and inclined plane material. The measurements are filled in Table 1. 

 

Table 1 

Surface of contact φ[°] φ medium[°] μ = tg φ medium 

Aluminum-Steel 

 

   

 

Aluminum – Aluminum 

 

   

 

Wood – Steel 

 

   

 

Wood – Aluminum 

 

   

 

Wood– Wood 

 

   

 

Aluminum – Rubber 

 

   

 

Wood - Rubber 
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In the specialized literature, the adhesion and sliding friction coefficients have 

the values presented in Table 2. 

                                                                                          

Table 2 

Surface of contact 
Adhesion 

(μ) 
Sliding (μ) 

Metal - Metal 0.15-0.25 0.09-0.15 

Metal - Wood 0.4 0.3-0.4 

Wood - Wood Longitudinal on the fiber 0.62 

Transverse on the fiber 0.43 

0.48 

Rubber – Brass 0.65 

Smooth wheel 0.49 

Notched wheel 0.76 

0.19-0.34 

Smooth wheel    0.28 

Notched wheel  0.55 

 

A wire is attached to the body that has at the other end a hook. It is chosen one 

of the combinations of materials from Table 1. Are set different values for the 

inclination angle of the plane, taking care that one of them is exactly the value of the 

friction angle. The hook is loaded with various weights, pushing the body gently to 

overcome static (sticking) friction, until it begins to go up. Three experiments  are 

made for each value of the angle of plane. The weight of the loaded hook is filled in 

Table 3 at Fexp. With relation (9), the theoretical value of the force of traction Ftheor is 

determined and it is also filled in Table 3. Then the relative error (εr) between the 

analytically and the experimental values, is determined with the expression: 

 

 
exp

100 ......... %

theor

r theor

F F

F


−
=  =                                                         (10) 
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Table 3 

MATERIALS 

Nr.                   α[°]                                    Fexp [N]                             Fmedium[N]             Ftheor[N]                     εr[%]                                

  

ϕ° 

    

  

  

  

20° 

    

  

  

  

30° 

    

  

  

                      ... 

 

    

  

  

 

* The mass of the body is: m = 71g = 0.071kg. 
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Figure 1  
 

A B 

DETERMINATION OF SLIDING AND ROLLING FRICTION 

COEFFICIENTS 

1. The purpose of the paper 

The aim of the paper is, on the one hand, the experimental determination of the 

dry sliding friction coefficient (μ) for different materials in contact, and on the other 

hand, the determination of the rolling friction coefficient (s). 

 

2.  The Experimental Stand 

The friction study device, shown in Figure 1, can be used for: 

•  determining the friction force, respectively the normal reaction and the sliding 

friction coefficient between two surfaces in contact; 

•  comparing the sliding friction coefficient values between two surfaces in contact 

using different materials; 

•  comparing the values obtained for the sliding friction coefficient for dry or 

lubricated surfaces; 

•  comparing the values obtained for the friction forces in the case of sliding 

friction with the values obtained in the case of rolling friction. 
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The stand used in experimental determinations of friction coefficients  consists 

of two steel discs with equal diameters, denoted by A and B. Disc A is used for the 

experiments intended to study wet friction (oil bath), and disc B is used in the study 

of dry friction. To perform the experiments, the so-called friction clogs, made of 

different materials (eg cast steel, copper, iron, nylon and rubber) will be used. 

The sketch of the device used for experiments,  is presented  in the Figure 2. 

 

 

 

 

 

 

 

 

 

3. Theoretical considerations 

When a body having the mass m, is placed on a horizontal plane, located in a 

gravitational field, the force of gravity G  m g=   acts on it, whose orientation is 

towards the center of the Earth. According to the principle of action and reaction, to 

force of gravity, it opposes the reaction force of the plane, noted N , opposite in 

direction, but equal in modulus, as shown in Figure 3. 

 

 

 

 

A B 

x

1l

2l

1r
2r

2G

1G 1G

1r 2r

1m

2m

1m

2 

1 

Figure 2  
 

Figure 3  
 

Uniform motion 

N

G

T
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If a constant (horizontal) force acts on the body, parallel to the plane, the rigid body 

will move uniformly in the direction of the force F . If the surface of the plane is 

rough, the movement of the body is opposing frictional force denoted by T . 

From theoretical point of view, the sliding friction coefficient (μ) is defined as the 

ratio between the friction force and the normal reaction occurring at the contact surface 

between the bodies, as: 

T

N
 =                                          (1) 

In the case of the system of bodies from Figure 2, to determine the normal 

reaction (N) and the sliding friction force (T) between the two bodies in contact, the 

method of separation of bodies is applied (in the analyzed case, body 1 and 2). Therefore, 

the bodies are separated (the lever with the brake are considered body 1 and disc B is 

body 2), the linkage forces are introduced, after which three equilibrium equations 

are written, two for forces and one for moments (relative to point O - for the body 1,  

and relative to point 1O  - for the body 2) ( see Figure 4). 
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x  

1l  
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T  

O  

H  
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2G  
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Note: In study was neglect the lever weight. 

Body 1:       2

1 2 2

:  0;

:  0;

: 0

Ox T H

Oy N V G

O N l T x G l

− =

− − =

 +  −  =

                              (2) 

                                                  T N=                             

Body 2:         
1

1 1

1 2 1 1

:  0

:  0

: 0

Ox H T

Oy V N G

O T r G r

− =

− − =

 −  =

                                                                    (3) 

In keeping with (2) and (3) it results the forces N , T and sliding friction coefficient 

(μ), according to: 

1 1
2 2

2

1

G r x
G l

r
N

l

 
−

=



;        1 1

2

G r
T

r


=                                          (4) 

1 1 1

2 2 2 1 1 1

G r l

G r l G r l x


 

   
=

−
                                                             (5) 

The constructive dimensions of the laboratory equipment, are: 

2 2 2 2 3
1 2 1 26 10  [ ],   18 10  [ ], 6 10  [ ], 10  [ ],   37 10  [ ]=l m l m r r m x m r m− − − − −=   = = = =   

using the same stand, the rolling friction can be also studied, by mounting a roller 

instead of the sliding shoe. The scheme of the device in this case is shown in Figure 5. 

2r

 

 

 

 

 

Figure 5  
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To determine the coefficient of rolling friction (s) between the roller and the 

disc, the separation of bodies  method is applied again. According to Figure 6, there 

are three bodies: the lever (1), the roller (2) and disc B (3). There are represented the 

mechanical sketches of forces and are written the equilibrium equations at the limit 

of sliding and rolling friction in conformance of Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Rolling is assumed to be without sliding:    fF N                                    

The equilibrium equations are written as: 

Body 1                                                    

1

1 2

1 1 2 2

:  0

:  0

: 0

Ox H H

Oy V N G

O N l G l

− =

+ − =

−  + =

                                                  (6) 

Figure 6  
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1N

1N
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Body 2:                                             

1

1

1

:   0

:   0

:    0

;     

r

r

Ox H T

Oy N N

O T r M

T N M s N

− + =

− + =

 − =

=  = 

                                                  (7) 

Body 3:                                          
2

2 1

2 1

:   0

:   0

:   0r

Ox H T

Oy V N G

O G r T r M

+ =

− − =

−  +  − =

                                             (8)  

According to expressions (6)-(8) the sliding friction and rolling friction 

coefficients are: 

      
( )

1 1 1

2 2 2

G r l

G l r r


 

 
=

+
          

( )
1 1 1

2 2 2

G r l r

l
s

G r r

 
=

  +


                                     (9) 

 

3. Development of the laboratory work 

A series of experiments will be carried out, with the scope of determining the 

relationship that is established between the friction force (T) and the normal force (N) 

that characterizes the surfaces in contact. The values obtained for the friction forces 

and the corresponding normal forces using different materials will be compared. 

Before performing any experiment must be checked the condition of the disc B 

and the shoe to be used (their surfaces must be dry and clean). If at the beginning of 

the experiment the mass 2m is not attached, the normal force will be the result of the 

action of the gravity force of the shoe, and for equilibrium, the corresponding mass 

1m  must be determined. 

To determine the coefficients of rolling friction (s), instead of the shoes, an 

aluminum or rubber roller is mounted, and then the methodology from the previous 

experiment will be repeated. 

It is found that steel steel steel steels
− −

   and steel steel rubber steels s
− −

 .  

In the case of determining the coefficient of sliding friction for each set of 

materials used, three measurements will be made, and are noted the related gravity 
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forces in Table 1. Then with the help of expressions (4) and (5) the value of the 

sliding friction coefficient is determined, the normal reaction and the frictional force 

in each case, the values are filled in Table 1. 

Table 1 

Materials     medium  N [N] T [N] 

Steel-Steel 

   

 

  

     

     

Brass-Steel 

   

 

  

     

     

Plastic-Steel 

   

 

  

     

     

Ferodo-Steel 

   

 

  

     

     

Rubber-Steel 

   

 

  

     

     

 

 

The graphic representation of the friction force as a function of the normal 

reaction, highlights a linear variation, like the example from Figure 7. With the values 

of the two forces, from Table 1, there are five curves for each combination of materials 

on the same graph. 
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Figure  7 

In the case of determining the rolling friction coefficient, three sets of 

measurements are performed for each set of materials, noting the gravitational forces 

values in Table 2. With relations (9), are calculated the sliding friction and rolling 

friction coefficients, the obtained values, being filled in the same Table 2. 

Table 2 

Materials        

Steel-Steel 

      

    

    

Brass-Steel       

 

N [N] 

T [N] 

T = μN 

O 
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DETERMINATION OF THE MECHANICAL ADVANTAGE OF LEVERS 

 

1. The purpose of the work 

In the paper will be determined the mechanical advantage (MA) by calculating 

the ratio between the resisting force and the active force (Fr/Fa) ) for different types 

of levers. 

 

2. Theoretical considerations 

The lever – is a rigid bar that rests on a fixed point (fulcrum) and on which an 

active force (effort) and a resistant force (load) are exerted (assuming friction is 

neglected). In practice, levers are frequently used to lift weights or are part of 

mechanisms that lift weights (see Figure1). 

 

 

 

 

 

 

 

 

There is considered a force F applied on a point A and a point O, arbitrarily 

chosen. The moment vector of the force F , related to O , is denoted with OM  and 

expressed vectorial by the relation: 

                    OM r F=                                                                  (1)  

where r  is the position vector of force F related to point  O. 

Being a vectorial quantity OM  is perpendicular on the plane determined by 

position vector r and force F , the direction being given by right-hand rule (on the 

point where  r and F meet the drill is placed perpendicular on the plane of the two 

Figure 1 

Active force (Effort) Resistant Force 

(Load) 

Fulcrum 
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vectors and is rotated so that, the first vector will  overlap the second vector, on the 

shortest path). The direction of the drill is the direction of the polar moment, and the 

modulus is given by the product of the force and the force arm.  

In the following applications, it is considered that an active force 
aF , acts on the 

lever, which rotates the lever around a point O and which is opposed by a resisting or 

loading force rF . The positions of the application points of the forces (A for the 

active force, and B for the resisting force) and the position of point O (fulcrum), are 

determining  the three types of levers (Figure 2):  

- Lever of type I -fulcrum, is located between rF  and aF  (AOB). Examples: balance 

with equal arms, crowbar, nail pliers, scissors, etc. 

- Lever of type II - the load rF   is located between fulcrum and the active force aF  

(OBA). Examples: wheelbarrow, nutcracker, nut wrench, etc. 

- Lever of type III- the force aF   is located between fulcrum, and the load rF  (OAB). 

Examples: tweezers, tongs, steam boiler safety valve, sewing machine pedal, etc. 

 

 

 

 

 

Figure 2 

In keeping with the definition of a moment (1), for the mechanical system to be 

in equilibrium, the sum of the moments that the two forces (active and resisting) are 

giving, related to point,  must be zero.  

According to Figure 2, there is noted with “a” the distance from the fulcrum 

(point O) to the resistant force (load) rF , and by “b” the distance the active force aF  

to point O (“a” and “b”  are called arms of the lever). Hence, there can be written: 

                             bFaF ar =                                                         (3) 

Type II 

B B 
B 

A

B A 

A 

aF

 

aF

 
O 

Type I 

a b 

aF

 
O 

a 

O 

Type III 

b 

b a 

rF
rF

rF
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The ratio rF / aF  is named active force multiplication factor or the mechanical 

advantage (MA), of the lever: 

 r

a

F b
MA

F a
                                                              (4) 

which can be calculated either as a ratio of forces, or as a ratio of arms. 

If MA >1 there is amplification of forces/lever arms ratio; 

If MA<1 there is reduction forces/lever arms ratio. 

 

3. Development of the laboratory work 

In the following experiments, there are considered known the resistive forces 

(i.e. 1,1; 2,1; 3,1; 4,1; 5,1 [N]), and the distances “a” and “b”. There is requested to 

determine the active forces, the mechanical advantage, and to calculate the relative 

errors for the mechanical advantage and fill them in the same table. 

 

Lever of type I (see Figure 3a) 

Two hooks are attached to the lever in the left and the right of the support point 

O. There is measured the distance “a” and “b” and is reminded that the weight of a 

hook is 0.1N. On the left hook, there are attached weights of 1-5[N], and in each case, 

on the right hook there are attached weights to get balance (the lever should be 

horizontal). The obtained values are filled in Table 1.  

 

 

 

 

 

 

 

 

 

Figure 3 
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Table 1 

Lever of type I a [mm] = b [mm] = 

rF  [N] aF [N] MA b f

r b

MA MA
100 %

MA

−
 =      

MAf= rF / aF  MAb=b/a 

1.1     

2.1    

3.1    

4.1    

5.1    

 

Lever of type II (see Figure  3b) 

A hook is inserted in a lower hole located to the right of fulcrum at a distance 

“a” and a dynamometer is also mounted in an upper hole also to the right at a 

distance b a . There are measured the distances “a” and “b”. The hook is loaded 

with a weight of 1 [N], representing the loading/resistive force. The position of the 

dynamometer is adjusted until the lever reaches a horizontal position. The 

measurement is filled in Table 2. The measurements are repeated for weights of 2-

5[N], all the values of the active forces being registered in Table 2. 

Table 2. 

Lever of type II a [mm] = b [mm] = 

rF  [N] aF [N] MA b f

r b

MA MA
100 %

MA

−
 =      

MAf= rF / aF  MAb=b/a 

1.1     

2.1    

3.1    

4.1    

5.1    
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Lever of type III (see Figure 3c) 

In the experiment shown in Figure 3c, a hook is inserted into a hole in the lower 

part of the extremity of the right arm of the lever, at a distance “a”, representing the 

load. A dynamometer is mounted, in an upper hole, also on the extremity of the right 

arm of the lever, at distance b, so that b a . Adjust the position of the dynamometer, 

on an adjustable hook, so that the lever reaches a horizontal position. The values of 

the active forces aF , given by the dynamometer, and the arms “a” and “b” of the 

forces, values measured from the point of the lever's support to the hanging hooks, 

are recorded. The experiment is repeated for different resistance forces, and the 

values are filled  in Table 3. 

Table 3 

Lever of type  III a [mm] = b [mm] = 

rF  [N] aF [N] MA −
 =    

b f

r b

MA MA
100 %

MA
 

MAf= rF / aF  MAb=b/a 

1.1     

2.1    

3.1    

4.1    

5.1    
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DETERMINATION OF EFFORTS 

FROM THE BARS OF A TRUSS  

 

1. The purpose of the paper 

There is considered in Figure 1, a truss, on which are applied the forces F1 and 

F2, under the given angles α1 and α2. 

There is required: 

a) To determine if the beam is rigid and statically determined. 

b) To determine the efforts in the truss bars by the method of joints. 

c) To determine the efforts in trusses 4, 5 and 6 by the method of sections/Ritter. 

d) To determine the graphical reactions and compare them analytically with the 

graphical ones. 

 

 

 

 

 

 

The input data are:  

F1 = 100m + 10n [daN]        α1 = 45 + n [°]         

F2 = 300m + 10n [daN]        α2 = 45 − n [°]             a = 6.5+n [m] 

 

where:    n – order number of the student in the group 

               m – semigroup number. 

 

 

Figure 1 
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2. Theoretical considerations 

A truss is a truss that spans a roof or other structure and is designed to carry a 

higher load than other trusses in the same construction. A truss is a structural 

member whose components are only ever in tension or compression but not 

bending. Additional plates and posts, in addition to those in standard trusses 

spanning the same distance, provide added strength against bending and shear. 

The simple truss is a plane structure constituted from members (bars) joined in 

pins. The simplest non-deformable (rigid truss) has a triangle shape form by three 

bars and three pins (see Figure 2). If there is added another node/pin to keep it rigid, 

two more bars are needed and so on. 

 

 

 

 

 

Denoting with N the number of nodes/pins and with b the number of bars, it 

results the condition of rigidity (in plane), as: b = 2N-3. 

The unknowns are the efforts in the bars when it is subject to the action of 

external forces. Connections with the exterior are materialized through planar joints 

and through planar simple supports. Denoting with ar  the number of joints (two 

unknowns/joint) and with sr  the number of simple support (one unknown/simple 

support) the static determination condition can be expressed (number of equations = 

number of unknowns): a s2 N b 2 r r +  += , because for each pin it can be written two 

scalar equilibrium equations. 

• Convention: If the bar is on tension stress, the effort in the bar comes out of the 

node! 

 

2

3

Figure 2 
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The nodes are symbolized with Roman numerals and bars with Arabic numerals (see 

Figure 3). 

 

 

 

 

 

a. Method of joints 

Step: I. There are determined the reaction forces from the external links, releasing the 

truss by external links, and introducing the linkage forces in their place (Figure 4) 

and writing the equilibrium equations as follows: an equation of force projections on 

horizontally, and two equations of moments reported to points A and B.  

 

 

 

 

 

 

 

In equilibrium equations for moments, the positive sense can be adopted arbitrarily, 

but once chosen, it remains the same for the entire equations. Hence, in concordance 

with Figure 4, it can be written: 

𝐻𝐴 + 𝐹1𝑐𝑜𝑠𝛼1 − 𝐹2𝑐𝑜𝑠𝛼2 = 0 

B:𝑉𝐴 ∙ 2𝑎 + 𝐹1𝑐𝑜𝑠𝛼1 ∙ 𝑎 𝑠𝑖𝑛60 − 𝐹1𝑠𝑖𝑛𝛼1 ∙
3𝑎

2
− 𝐹2𝑐𝑜𝑠𝛼2 ∙ 𝑎 𝑠𝑖𝑛60 − 𝐹2𝑠𝑖𝑛𝛼2 ∙

𝑎

2
= 0        (1) 

A:𝑁𝐵 ∙ 2𝑎 − 𝐹1𝑐𝑜𝑠𝛼1 ∙ 𝑎 𝑠𝑖𝑛60 − 𝐹1𝑠𝑖𝑛𝛼1 ∙ 𝑎 𝑐𝑜𝑠60 + 𝐹2𝑐𝑜𝑠𝛼2 ∙ 𝑎 𝑠𝑖𝑛60 − 𝐹2𝑠𝑖𝑛𝛼2 ∙
3𝑎

2
= 0 

Figure 3 

x 

y 

Figure 4 

BN
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The equilibrium equations (1) were considered such that, to have only one 

unknown in an equation to simplify the solution of system (1). There are resulting 

the unknowns: HA, VA and NB. 

Step II. The stresses in the bars are determined starting from one node and then 

passing through all the other nodes, hence that are resulting: S1, S2, S3, S4, S5, S6 and S7. 

Step II.1 Thus, there is considered a node where are only two bars (two 

unknowns), for example, node I (see Figure 5) and are written two equilibrium 

equations for the node, from which the efforts S1 and S2 are resulting as: 

 

    𝑆1𝑐𝑜𝑠60 + 𝑆2 + 𝐻𝐴 = 0                                        (2) 

                                                                        𝑉𝐴 + 𝑆1𝑠𝑖𝑛60 = 0               S1, S2 

 

 

Step II.2 There is considered the next node with only two unknowns (node II) (see 

Figure 6). Solving the system of equations resulting S3 and S4. 

 

     𝐹1𝑐𝑜𝑠𝛼1 − 𝑆1𝑐𝑜𝑠60 + 𝑆3𝑐𝑜𝑠60 + 𝑆4 = 0                       (3) 

                                                            𝐹1𝑠𝑖𝑛𝛼1 + 𝑆1𝑠𝑖𝑛60 + 𝑆3𝑠𝑖𝑛60 = 0            →    S3, S4 

 

 

Step II.3 The next node with only two unknowns is node (III) (the efforts S2, S3 

being already known) (see Figure 7). There are written the following equilibrium 

equations, resulting S5 and S6. 

 

                                     𝑆6 + 𝑆5𝑐𝑜𝑠60 − 𝑆3𝑐𝑜𝑠60 − 𝑆2 = 0                             (4) 

                                                                𝑆3𝑠𝑖𝑛60 + 𝑆5𝑠𝑖𝑛60 = 0                            → S5, S6 

Figure 5 

Figure 6 

Figure 7 
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Step II.4 The effort S7 remains to be determined. There is considered node IV , 

equivalent in number of unknowns to node V, see Figure 8. There can be written two 

equilibrium equations, which contains the unknown S7: 

 

  𝑆7𝑐𝑜𝑠60 − 𝐹2𝑐𝑜𝑠𝛼2 − 𝑆4 − 𝑆5𝑐𝑜𝑠60 = 0                     (5) 

  𝐹2𝑠𝑖𝑛𝛼2 + 𝑆5𝑠𝑖𝑛60 + 𝑆7𝑠𝑖𝑛60 = 0               S7 

 

 

Step II.5 It is found that three equations remained unused (one from node IV and 

two from node V), which we can use to check the results. Their non-using is 

explained by the prior determination of the reactions (three unknowns). 

 

b. Method of sections (Ritter method) 

Step: I. There are determined the reactions in A and B, respectively HA, VA, NB. 

Step II. The stresses in only certain bars are determined (as opposed to the 

previous method which gives the stresses in all bars). 

Step II.1 There is sectioned the truss from Figure 1, respecting the following 

conditions: do not cut more than three bars, and the bars must not be concurrent in 

the same node or parallel to each other (as seen in Figure 9). 

 

 

 

 

 

 

 

 

 

Figure 8 

Figure 9 
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Step II.2 There is isolated a part of the sectioned truss (for example the right side 

of Figure 10), introducing instead of the sectioned bars the stresses in the bars.  

 

 

 

 

 

 

 

There are written three scalar equilibrium equations for this part of the beam, 

taking care that from the considered equations to be chosen only those that contain 

only one unknown per equation (the equation of forces on vertical direction, and the 

moment equations with respect to nodes III and IV). 

𝑁𝐵 − 𝑆5𝑠𝑖𝑛60 − 𝐹2𝑐𝑜𝑠𝛼2 = 0 

  𝑆4 ∙ 𝑎 𝑠𝑖𝑛60 + 𝑁𝐵𝑎 − 𝐹2𝑠𝑖𝑛𝛼2 ∙ 𝑎 𝑠𝑖𝑛60 + 𝐹2𝑐𝑜𝑠𝛼2 ∙ 𝑎 𝑠𝑖𝑛60 = 0                     (6) 

𝑆6 ∙ 𝑎 𝑠𝑖𝑛60 − 𝑁𝐵 ∙ 𝑎 𝑐𝑜𝑠60 = 0          

Step II.3 The solving of the three equations, conduct to establishing of efforts S4, S5 

and S6 , without the need to traverse the entire beam, from node to node, as in the 

method of joints. 

 

3. Development of the laboratory work 

• From the topology analysis of the truss from Figure 1. It results that the system has 

b = 7 (bars), and n = 5 (pins/nodes), ar 1=  joint, and sr 1=  simple support. 

• The truss rigidity is to be determined as:   

b 2 N 3=  −  namely: 7 2 5 3=  −  results the truss is rigid (in plane) 

• The condition of static determination is to be verified: 

a s2 N b 2 r r= +  +  namely: 7 2 1 1 2 5+  + =   results that the truss is statically determined. 

Figure 10 
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Analytical part  

The method of joints is applied and the stresses in the bars S1, S2, S3, S4, S5, S6, S7 

of the truss are calculated, and then with the Ritter method are checked the stresses 

S4, S5, S6 . 

- It is filled Table 1, with the obtained results. 

Table 1 

Input data Truss  reactions 

n =  (order number of student in group) 

m =      (semigroup number) 

𝐹1 =            [𝑑𝑎𝑁] 

𝐹2 =            [𝑑𝑎𝑁] 

𝛼1 =            [°] 

𝛼2 =            [°] 

𝑎 =            [𝑚] 

 

𝐻𝐴
𝑎𝑛 =               [𝑑𝑎𝑁] 

𝑉𝐴
𝑎𝑛 =               [𝑑𝑎𝑁] 

𝑅𝐴
𝑎𝑛 =  √(𝐻𝐴

𝑎𝑛)2 + (𝑉𝐴
𝑎𝑛)2 =            [𝑑𝑎𝑁] 

 

𝑁𝐵
𝑎𝑛 =               [𝑑𝑎𝑁] 

 

Method of joints Method of sections 

𝑆1 =            [𝑑𝑎𝑁] 

𝑆2 =            [𝑑𝑎𝑁] 

𝑆3 =            [𝑑𝑎𝑁] 

𝑆4 =            [𝑑𝑎𝑁] 

𝑆5 =            [𝑑𝑎𝑁] 

𝑆6 =            [𝑑𝑎𝑁] 

𝑆7 =            [𝑑𝑎𝑁] 

𝑆4 =            [𝑑𝑎𝑁] 

𝑆5 =            [𝑑𝑎𝑁] 

𝑆6 =            [𝑑𝑎𝑁] 

 

 

Graphical part   

The reactions will be determined graphically, neglecting the weights of the 

truss bars, as follows: 

• The truss is considered as a rigid solid which will be in equilibrium, if the 

vectorial conditions of forces and moments are satisfied: 
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l

O lO

R R 0

M M 0

+ =

+ =
                                                    (7) 

According to (7), there results: 

𝐹̅1 + 𝐹̅2 + 𝐻̅𝐴 + 𝑉̅𝐴 + 𝑁𝐵 = 0  →     𝑅̅ + 𝑅̅𝐴 + 𝑁𝐵 = 0              (7) 

where:   𝐹̅1 + 𝐹̅2 = 𝑅̅ 

𝐻̅𝐴 + 𝑉̅𝐴 = 𝑅̅𝐴                                                               (8) 

𝑅̅ 𝑎𝑛𝑑 𝑅̅𝑙 – represents the resultant of external forces (𝐹̅1 + 𝐹̅2) and of the linkage 

forces (𝐻̅𝐴 + 𝑉̅𝐴 + 𝑁𝐵); 

𝑀̅0 𝑎𝑛𝑑 𝑀̅𝑙𝑜 – are the resulting momentum of output forces and the binding forces.                          

The geometric image presented in Figure 11, of the relation (7) is a triangle, 

which is built as follows: 

- The beam is drawn to the length scale Lk , i.e. L 1cm / 1mk = ; 

- The forces F1 and F2 are sliding (drawn on the force scale fk , i.e. 

f 500 daNk 1cm /= ) on their support until they are intersecting; 

- These two forces are composed according to the parallelogram rule, obtaining 

their resultant 𝑅̅ (see Figure 11) on the drawing of the beam and on the forces 

polygon abc; 

- The direction of 𝑅̅ intersects the direction of the normal reaction 𝑁𝐵, at a point 

O on the beam drawing. 

- The moments of the two forces (R and NB) are zero with respect to point O 

(both supports pass through point O). In this case, for the truss to be in 

equilibrium, and the second condition for equilibrium of moments to be 

fulfilled, the reaction 𝑅̅𝐴 must pass through the same point O, which leads to 

the determination of the support of 𝑅̅𝐴. 

- The triangle of forces acd knowing one side and the directions of the other two, 

can be sketched. 

- The reaction force RA can be projected horizontally and vertically, obtaining the 

HA and VA components (points f and e in the force polygon). 
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- Measuring the segments cd, ad, ce and cf and multiplying them with the force 

scale fk , the real reaction forces values are obtained. 

-  

The analytical values are compared with the graphical ones, calculating the 

relative errors between the values determined analytical and the one determined 

graphical:                                 𝜀𝑟 =
|V𝑎𝑛−V𝑔𝑟|

V𝑎𝑛 ∙ 100 =      [%] 

 

Has to be fulfilled Table 2 as: 

Table 2 

Graphically results Relative errors 

𝑅𝐴
𝑔𝑟

=               [𝑑𝑎𝑁] 

𝐻𝐴
𝑔𝑟

=               [𝑑𝑎𝑁] 

𝑉𝐴
𝑔𝑟

=               [𝑑𝑎𝑁] 

𝑁𝐵
𝑔𝑟

=               [𝑑𝑎𝑁] 

 

𝜀𝑟𝑅𝐴
=

|𝑅𝐴
𝑎𝑛 − 𝑅𝐴

𝑔𝑟
|

𝑅𝐴
𝑎𝑛 ∙ 100 =      [%] 

𝜀𝑟𝐻𝐴
=

|𝐻𝐴
𝑎𝑛 − 𝐻𝐴

𝑔𝑟
|

𝐻𝐴
𝑎𝑛 ∙ 100 =      [%] 

𝜀𝑟𝑉𝐴
=

|𝑉𝐴
𝑎𝑛 − 𝑉𝐴

𝑔𝑟
|

𝑉𝐴
𝑎𝑛 ∙ 100 =      [%] 

𝜀𝑟𝑁𝐵
=

|𝑁𝐵
𝑎𝑛 − 𝑁𝐵

𝑔𝑟
|

𝑁𝐵
𝑎𝑛 ∙ 100 =      [%] 

 

              R support 

NA support 

NB support 

Figure 11 
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FIXED AND MOVABLE PULLEY SYSTEMS 

 

1. The purpose of the paper 

The aim of the paper is to understand the functioning of simple and mobile 

pulleys and their combinations. It is analyzed also, the mechanical advantage 

obtained in case of using different types of pulleys. 

 

2. Theoretical considerations 

A pulley is a simple device consisting of a disk/wheel that can rotate around its 

own axis, on the periphery of which a cable is wired that allows a change in the 

direction of a force or an economy of force. 

The pulley can be fixed (its own axis does not change its position with related to a 

fixed coordinate system) or it can be mobile (its own axis is mobile). The mobile pulleys 

are supported by the wires that pass under them. 

By combining fixed and mobile pulleys, heavy weights can be lifted with less 

effort, which leads to a mechanical advantage (MA). Such combinations are found in 

lifting equipment and systems (see Figure 1). 

 

                                                              

                 Figure 1  

 

The pulley system is a combination of fixed and mobile pulleys to exploit the 

properties of fixed pulleys to change the direction of the resistive force (Fr) and those 

of the movable pulleys to reduce the driving force (Fm). 
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In the case of the fixed pulley (Figure 2a), if the stiffness of the wires and the 

friction from the pulley axis are considered, then the driving force required to 

overcome the resisting force is: 

 m rF k F=                                                                   (1) 

where:   1k  is a coefficient also called the multiplication factor of  resistive force. 

2
1

r
k

R




 
= + +                                                          (2) 

and                   
( )

= = 
+1 2

1

 
wirek d

R

 
 ,      is due to the stiffness of the wire/cord/cable  

 (k1 = 0.002...0.006 m-2 for hemp cords and k1 = 0.03...0.09 m-2 for steel cables), where ε1 

, ε2 are the eccentricities of the wires. The friction from the pulley axis is given by the 

parameter 2μr/R where μ is the coefficient of sliding friction; r is the radius of the 

spindle, and R  represents the radius of the pulley. 

 

Figure 2     

In general case, the performance of the pulley is:                     

                                                                      0

m

F

F
 =                                                            (3) 

where  0F  is the driving force in the ideal case, the mechanical advantage is 

calculated with:                                         = r

m

F
MA

F
                                                  (4) 
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In case of fixed pulley   1/ k =  and mechanical advantage = MA = 1/ k . It is 

observed that  1k and that is a multiplication of the resistive force. 

If the fixed pulley is ideal the wire/cable stiffness and shaft friction are neglected, 

then k = 1, and the driving force is equal to the resistive force. 

For the mobile pulley (Figure 2b):        
1

   
1

1
m rF F

k

= 

+

                                              (5) 

The coefficient being subunitary, it is about a demultiplication of the driving 

force, meaning that a lower driving force is needed to overcome the resistive force. 

The pulley will move the same way with the motion of the point of application of the 

driving force. It can be seen that in this case the displacement of the resistive force is 

smaller compared to the displacement of the driving force. 

If the mobile pulley is ideal then k = 1;  0,5m rF F=  , the mechanical advantage is AM = 2. 

The most common pulley systems are hoists or pulley blocks , see Figure 3. 

 

                  

                 Figure 3  

 

The hoists are used for lifting heavy weights, being operated either manually or 

with motors (for cranes). In order to have a high mechanical advantage (MA), 

combinations of yoke pulleys are used. 

The yoke pulley is a combination of several pulleys fixed to the same fork. 

Fixation on the fork can be done on the same axis (the pulleys have the same 

diameter) or on parallel axes (the pulleys have different diameters). 
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The hoist is made up of two yoke pulleys, one fixed and one mobile. Each yoke 

pulley contains an equal number of pulleys mounted on the same fork. The hoist can 

be done in two versions (Figure 4) in both of them, the calculation of the driving 

force and the multiplication coefficient being made in the same way. 

 

                 Figure 4  

For example, for the hoist with six pulleys having two yoke pulleys, the driving 

force is: 

𝐹𝑚 =
𝑘6

1 + 𝑘 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 ∙ 𝐹𝑟 =
𝑘6 ∙ (𝑘 − 1)

𝑘6 − 1
∙ 𝐹𝑟                                     (6) 

In general case, with two pulleys and two yoke pulleys driving force is: 

( )2

2

1

1

n

m rn

k k
F F

k

 −
= 

−
                                                            (7) 

In the ideal situation (k = 1) an indeterminate form appears, which will be 

solved applying l'Hospital's Rule: 

( ) ( )

( )

( ) ( )

+

−= =

−

−= =

 
  −

=  
 
 

+  −  

−

=   =

−

=  = =
+  

−  




2 1 2
2

2 11 1 2

2 2 1

2 11 1

lim lim

1

1
lim li

1

2 1 2 1

2 22
m

2
1

n n
n

m r rnk k n

n n

r r rnk k

d
k k

k dkF F F
dk k
dk

k

n n n

nn

k k k
F F F

nk

                          (8) 
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Note: It can be observed that, the coefficient of the resistive force is subunitary, 

meaning that is about demultiplication, results that a lower driving force is needed 

to overcome the resistive force. 

 

3. Experimental stand description 

The experimental stand consists of the panel (EX10) mounted in a vertical 

position with different components: 

• Four fixing nuts (P1); 

• Two teflon pulleys (P12), one fixed (80g) and one mobile (30/43g); 

• A simple pulley hook (P15); 

• Two hooks for weights (P10);  

• A 10 N dynamometer (P8); 

• A set of weights (P7);  

•  Two hoists (P5) one with two pulleys (172g) and one with three pulleys 

(214g). 

 

 

 

 

 

 

 

 

 

4. Development of the laboratory work  

The stand from the Figure 5 is used, and are made three assemblies: 

- Fixed pulley. 

- Mobile pulley. 

- Hoist. 

Figure  5 

Adjustable 
Hooks 

Dynamometer 
Pulley 

Hoist Mobile Pulley P1 , P5 

Fr Fm 
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For each assembly, there is considered the resistive force, as in Table 1. There 

are measurements of the driving force (Fm), which are read on the dynamometer and 

filled in Table 1. In each case the mechanical advantage is calculated with (4). 

The relative percent error between the theoretical and experimental mechanical 

advantage is calculated with the relation: 

 

−
=   100

theor exp

r theor

MA MA

MA
                                                                 (9) 

  

                                                                                                                              Table 1 

 Fr [N] Fm [N] MAexp MAtheor εr [%] 

Fixed pulley 0,5    

1 

 

2,1    

5,1    

Mobile 

pulley 

1,1    

0,5 

 

2,1    

5,1    

Hoist 

equipment 

2,1    

0,125 

 

3,1    

5,1    
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THE KINEMATIC STUDY  

OF THE SLIDER - CRANK MECHANISM 

 

1. Purpose of the work 

 In Figure 1 there is considered the slider - crank mechanism.  Considering that 

the driving crank OA rotates with a constant revolution n, it is required: 

a) To determine the motion law of the piston, as well as the variation laws of velocity 

(v) and acceleration (a). 

b) To analyze the functions s(φ), v(φ) and a(φ) established in the previous point, by 

determining all the characteristic points and, to represent graphic all these functions. 

c) Determine from the diagram the values for s, v and a for the given angle φ0 and 

verify them analytically. 

 

 

 

 

 

 

Figure 1 

In the Figure 1 are used the followings notations: 

r = OA – the crank length, r = 100+5i [mm],  

where i is the number of each student in the group; 

 l = AB – connecting rod length [mm]; 

 
𝑟

𝑙
=

1

3+0.1 𝑖
   

ω – angular velocity of the crank [rad/s] 

n = 200 + 2ij [RPM] ,  j – number of the semigroup; 

s –the position of the piston relative to the outer "dead" point (the elongation of 

piston B); 

A 

O 

B B’ s 
r+l 

r l 

φ ψ 

ω 

A’ 
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φ – the angle of the crank OA related to the direction of movement of the piston 

B (initially  φ0 = 25 + 5i [°]); 

a [m/s2], v [m/s] – the velocity and acceleration in point B for piston. 

 

2. Theoretical considerations 

a) The position of the mechanism in the Figure 1 is unique determined by the 

position of the angle φ(t) as:                  𝜑 = 𝜔𝑡 =
𝜋𝑛

30
𝑡                                                       (1) 

The position s of the piston B reported at the “dead” point outside B’, in 

conformity with the figure it is:3 

𝑠 = 𝑟 + 𝑙 − 𝑂𝐵 = 𝑟 + 𝑙 − (𝑟𝑐𝑜𝑠𝜑 + 𝑙𝑐𝑜𝑠ψ)                                                   (2) 

Expressing AA' with the sin function from the two rectangular formed, conducts to: 

sin 𝜓 =
𝑟

𝑙
sin 𝜑                                                                  (3)  

Knowing that: sin2(α) + cos2(α) = 1 results: 

     𝑐𝑜𝑠𝜓 = √1 − (
𝑟

𝑙
)

2

𝑠𝑖𝑛2 𝜑 = 1 −
1

2
(

𝑟

𝑙
)

2

𝑠𝑖𝑛2 𝜑 +
1

8
(

𝑟

𝑙
)

4

𝑠𝑖𝑛4 𝜑 − ⋯            (4)    

Considering the experimental values of the ratio (
𝑟

𝑙
), it can be approximated that 

sum of the first two terms of the development of power series (4) as: 

            𝑐𝑜𝑠𝜓 = 1 −
1

2
(

𝑟

𝑙
)

2

𝑠𝑖𝑛2 𝜑                                                                   (5)  

Using the above approximation, the displacement s of the relation (2) becomes: 

𝑠(𝜑) = 𝑟 (1 − 𝑐𝑜𝑠𝜑 +
1

2
(

𝑟

𝑙
) 𝑠𝑖𝑛2 𝜑)                                                      (6) 

Hence, the moving law s(t) of the piston B is: 

𝑠(𝑡) = 𝑟 (1 − cos (𝜔𝑡) +
1

2
(

𝑟

𝑙
) 𝑠𝑖𝑛2 (𝜔𝑡))                                                    (7) 

To find the variation moving law of the velocity v(t) and acceleration a(t), the relation 

(7) is derived as: 

v =
𝑑𝑠

𝑑𝑡
=

𝑑𝜑

𝑑𝑡
∙

𝑑𝑠

𝑑𝜑
= 𝜔 ∙

𝑑𝑠

𝑑𝜑
                                                                (8) 

v(𝜑) = 𝜔𝑟 (𝑠𝑖𝑛 𝜑 +
1

2
(

𝑟

𝑙
) 𝑠𝑖𝑛2𝜑)                                                            (9) 
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v(𝑡) = 𝜔𝑟 (sin (𝜔𝑡) +
1

2
(

𝑟

𝑙
) 𝑠𝑖𝑛2(𝜔𝑡))                                         (10) 

and, for determining of the acceleration a(t) of the piston B, in keeping with (8)-(10) 

results:   

𝑎 =
𝑑v

𝑑𝑡
=

𝑑𝜑

𝑑𝑡
∙

𝑑v

𝑑𝜑
= 𝜔 ∙

𝑑v

𝑑𝜑
                                                              (11) 

𝑎(𝜑) = 𝜔2𝑟 (𝑐𝑜𝑠𝜑 +
𝑟

𝑙
𝑐𝑜𝑠2𝜑)                                                          (12) 

𝑎(𝑡) = 𝜔2𝑟 (𝑐𝑜𝑠𝜔𝑡 +
𝑟

𝑙
𝑐𝑜𝑠2𝜔𝑡)                                                       (13) 

 

3. Development of the work 

a) For the analysis of the functions on the interval [0, 2𝜋], s(φ), v(φ) and a(φ), it is 

observed that the motion is periodical, having the period: 

    𝑇 =
2𝜋

𝜔
                                                                           (14) 

the piston having the elongation 2r.  

There are determined the extreme values of the function a(φ) in keeping with: 

𝑑𝑎

𝑑𝜑
= −𝜔2𝑟 𝑠𝑖𝑛𝜑(1 + 4

𝑟

𝑙
𝑐𝑜𝑠𝜑) = 0                                                   (15) 

where: 
𝑑𝑎

𝑑𝜑
= 0 if φ8=0, φ9 = 𝜋, φ10 = 2 𝜋 and  φ11,12 = arccos (

−𝑙

4𝑟
), if 

𝑟

𝑙
>

1

4
. 

The variation of the functions s(φ), v(φ), a(φ) and 
𝑑𝑎

𝑑𝜑
 are given the Table 1 as: 

                                                                                                                     Table1  

φ 0 φ6 φ11 𝝅 φ12 φ7 2𝝅 

s(φ) Min (0) 

 

 Max 

(2r) 

 Min (0) 

v(φ) 0 

 

Max  0  Min 0 

a(φ) Max 

 

0 (Min)     (Max) 

     Min 

 

(Min) 

0 Max 

𝒅𝒂

𝒅𝝋
 

 

0 

  

      (0) 

 

0 

 

(0) 

  

0 
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b) There are established the theoretical values for 𝑠𝑡ℎ𝑒𝑜𝑟 , 𝑣𝑡ℎ𝑒𝑜𝑟 , and 𝑎𝑡ℎ𝑒𝑜𝑟 , with 

(6), (9), (12), replacing φ with angle φ0. 

c) There are calculated the functions s(φ), v(φ), a(φ), computed in the interval 0°-

360°, with step of 10°. The functions are graphically represented as in Figure 2. 

d) For a given angle φ0, the parameters s(φ0), v(φ0), a(φ0), are determined from 

graphic, as: 

 

 

 

 

 

 

 

                                                            

 Figure. 2 

- From abscissa φ = φ0  the ordinates (ys, yv, ya) are measured in millimeters; 

- The values of 𝑠𝑔𝑟 , 𝑣𝑔𝑟 , and 𝑎𝑔𝑟 , in the diagram will be: 

=  ,gr ss y r =  ,gr v rv y =  2 ,gr a ra y                                         (16) 

e) The values obtained by relation (16) will be compared with those calculated in 

relations (6), (9) and (12) replacing the angle φ with φ0. The relative errors εr will be 

calculated by: 

 

𝜀𝑟𝑠
=

|𝑠−𝑠𝑔𝑟|

𝑠
∙ 100 [%];       𝜀𝑟v

=
|v−v𝑔𝑟 |

v
∙ 100 [%];       𝜀𝑟𝑎

=
|𝑎−𝑎𝑔𝑟|

𝑎
∙ 100 [%]      (17) 

 

s 

v 

a 

 

 
O 

 

 

φ6 

 

 

φ7 

 

 

φ11 

 

 

φ12 

 

 

π 

 

2π 

 
φ 

v(φ) 

 

s(φ) 

 

a(φ) when 
𝑟

𝑙
>

1

4
 

 

a(φ) when 
𝑟

𝑙
≤

1

4
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CENTRODES OF THE PLANAR MOVEMENT 

 

1. Purpose of the work 

In the paper there will be determined analytical and graphical the centroids of 

the planar motion of two bars. 

 

2. Theoretical considerations 

The plane-parallel motion of a rigid (C) is defined in terms of the displacement 

of three non-collinear points remaining in a fixed plane during motion. The three 

points are determining a mobile plane, a section of the rigid (Γ), which moves in the 

fixed plane, called the director plane see Figure 1.  

Therefore, all sections of the rigid body parallel to (Γ), will move in parallel 

planes to the director plane, hence the movement is called plane-parallel motion. If is 

taken a line (Δ) belonging to the rigid body, perpendicular to the plane (Γ), then 

during the movement the line will also move, remaining all the time normal to (Γ), 

respectively to the director plane and at the same time parallel to himself. Therefore, 

the line (Δ) will perform a pure translational motion. All its points will have the same 

instantaneous velocities and acceleration, and their trajectories will be identical curves, 

located in planes parallel to each other, but also with the section (Γ), corresponding to 

the director plane. 

Space centrode on these considerations, the plane-parallel motion study can be 

reduced to the study of motion of the section (Γ) in the director plane.  From the 

mechanical point of view, the section (Γ) is a plate, and its motion in the director 

plane is call plane motion (motion of a plate in a plane).   

In the Figure 1, there is considered a plate (Γ) moving in the fixed plane O1x1y1, 

identical to the director plane. A mobile Oxy system is attached to the plate. In planar 

motion, the plate (Γ) has three degrees of freedom because its position in the fixed 
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plane is determined by three independent parameters: x and y coordinates in the 

plane and a rotation angle φ. On the plate, there is also considered a point M.  

 

According to the same Figure 1, there can be written: 

𝑟̅1 = 𝑟̅0 + 𝑟̅                                                                      (1) 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 1  

 

By deriving the relation (1) with respect to time, it will be obtained: 

𝑟̅1̇ = 𝑟̅0̇ + 𝑟̇                                                                 (2) 

where                                             𝑟̅1̇ = v̅  şi  𝑟̅0̇ = v̅0                                                           (3) 

are the absolute velocities of the points M and O relative to the fixed system O1x1y, 

and                                                 𝑟̇ = 𝜔̅ × 𝑟̅                                                                         (4) 

represents the velocity of point M due to the change in the orientation of the position 

of the vector r, constantly. 

The angular velocity of the plane is: 

    𝜔̅ = 𝜔𝑘̅ = 𝜑̇𝑘̅                                                             (5) 

O1 x1I 

y1I I 

O’ 

M 

x1 

y1 

x’ 

y’ 

x 

y 

φ 

ω 

ω 

yI 

xI 

𝑟̅0 

𝑟̅1 

𝑟̅𝐼 

𝑟̅ 
𝜔̅ × 𝑟̅ 

v̅0 

v̅0 

v̅ 

(σ) 
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Substituting (3) and (4) in relation (2), results: 

    v̅ = v̅0 + 𝜔̅ × 𝑟̅                                                                    (6)     

The relation (6) allows the determination of the velocity for any point belonging 

the plate (Γ), knowing the velocity of point O and the plate angular velocity ω. 

Relation (6) is called Euler's relation for velocities and describes the distribution (field) 

of velocities in plane-parallel motion. The velocity, or distribution/field is called the 

totality of the instantaneous velocities vectors of the points belonging to the plate or a 

rigid body. 

 

Properties of the velocity distribution 

a. The velocity distribution in plane-parallel motion is composed of two terms, one 

specific to translational motion v̅0 and one specific to pure rotational motion                 

𝜔̅ × 𝑟̅    with    𝜔̅ ⊥ v̅0.  

 

b. The instantaneous value of the angular velocity  𝜔̅  is an invariant of plane motion, 

in other words, all points of the plate (Γ) at a given moment have the same 

instantaneous value of the angular velocity  𝜔̅ . 

 

c. In plane motion there is a point having zero instantaneous velocity, a point called 

the Instantaneous Center of Velocity (ICV) denoted by I. To prove this statement, is 

considered (6), projected it onto the mobile reference frame Oxy. Substituting v̅ =

v̅I = 0, results:  

{
vox − 𝜔𝑦𝐼 = 0
voy − 𝜔𝑥𝐼 = 0                                                             (7) 

There is obtained a system with the two equations and two unknowns. The condition 

for the existence of a unique solution is: 

                                                                   Δ≠0                                                                  (8) 

|
0 −𝜔
𝜔 0

| = 𝜔2 ≠ 0                                                         (9) 
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In these conditions, the system (7) validates the relation (9), it is compatible 

determinate, having the unique solutions. 

𝑥𝐼 = −
voy

𝜔
;        𝑦𝐼 =

vox

𝜔
                                                       (10) 

The relations contained in (10) represents the coordinates of point I, so there is, 

at a given time, only one point that has zero velocity. 

 

d. The velocities distribution law with respect to I, can be obtained successively 

applying relation (6) to points M and I and taking into account that vI = 0. Hence: 

v̅𝐼 = 0 = v̅0 + 𝜔̅ × 𝑟̅𝐼                                                     (11)    

where:  𝑟̅𝐼  is the position vector of the point I reported of the mobile plane.  

Subtracting the relations (6) and (11) results the distribution of relative velocity 

law with respect to point I: 

                                    v̅ = 𝜔̅ × (𝑟̅ − 𝑟̅𝐼) = 𝜔̅ × 𝐼𝑀̅̅ ̅̅                                                (12) 

 Space centrode on (12), it can be stated that relative to point I, the velocity 

distribution is identical to the velocity distribution in rotational motion, as if the plate 

rotates around I. In addition, relation (12) becomes space centrode on ICV the 

method of determining the velocities in planar movement (graphic-analytical 

method). 

 

e.  Planar motion centrodes 

In (10), the velocity components of point O are dependent of time: 

𝑥𝐼 = 𝑥𝐼(𝑡);       𝑦𝐼 = 𝑦𝐼(𝑡)                                                  (13) 

The relations (13) are called parametric equations (with parameter t) of a curve. They 

represent the geometric locus of the successive positions of the ICV relative to the 

mobile system and are called the Body Centrode (R). The equation of the trajectory 

for (R) is obtained by eliminating the parameter (t) from (13), respectively: 

(𝑅):         𝑓(𝑥𝐼 , 𝑦𝐼) = 0                                                              (14) 

Applying the relation (1) of the I point, will result: 

𝑟̅1𝐼 = 𝑟̅0 + 𝑟̅𝐼                                                                    (15) 
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The relation (15) is projected on the fixed reference frame, and this will lead of 

the relation where all the coordinates are time functions: 

{
𝑥1𝐼 = 𝑥0 + 𝑥𝐼𝑐𝑜𝑠𝜑 − 𝑦𝐼𝑠𝑖𝑛𝜑
𝑦1𝐼 = 𝑦0 + 𝑥𝐼𝑠𝑖𝑛𝜑 + 𝑦𝐼𝑐𝑜𝑠𝜑

                                                  (16) 

𝑥1𝐼 = 𝑥1𝐼(𝑡);        𝑦1𝐼 = 𝑦1𝐼(𝑡)                                                  (17) 

The relations (17) are the parametric equations of another curve. They represent the 

geometric place of the successive positions of the ICV referred to the fixed system 

and is called the Space Centrode noted (B). The equation of the Space Centrode 

trajectory is obtained by removing the time parameter (t) from relations (17), 

respectively:                           (𝐵):         𝑓(𝑥1𝐼, 𝑦1𝐼) = 0                                                       (18) 

 

f. The Body Centrode rolls without slipping on the Space Centrode. 

 

3. Development of the laboratory work 

There are considered two bars as presented in Figures 2, and 3. The free end of 

the bars, denoted A, moves on the fixed axis O1x1 with the constant velocity (v). 

As input data, according to Figures 2 and 3, there are considered:  

l = 5 + 0.1n [cm] 

h = 6 – 0.1n [cm], where n – is the ordering number of the student in group. 

 

 

           Figure 2  - A, B slides.                                        Figure. 3 - A slide, B slide joint.  

 

A 

B 

y1 

O1 

l 

θ 

v̅ 

x1 
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There is asked to determine: 

 a) Analytical the moving of centrodes regarding the two bars from Figures 2 and 3. 

 b) Graphical the motion of centrodes regarding the two bars of Figures 2 and 3.  

 

3.1 Analytical determination of Centrodes of the bar 

a. For the bar presented in Figure 2, the Instantaneous Center of Velocity (I/ICV) is 

determined at the intersection of the perpendiculars in points A and B on the support 

axis of the velocities at these points (see Figure 4). To bar AB, will be attached the 

reference mobile system Axy. With respect to the fixed 1 1 1O x y , and mobile Axy, 

reference frames, the point I has the coordinates: 

{
𝑥1𝐼 = 𝐴𝐵 𝑠𝑖𝑛𝜃 = 𝑙 𝑠𝑖𝑛𝜃
𝑦1𝐼 = 𝐴𝐵 𝑐𝑜𝑠𝜃 = 𝑙 𝑐𝑜𝑠𝜃

                                                          (19) 

{
𝑥𝐼 = 𝐼𝐴 𝑠𝑖𝑛𝜃 = 𝑙 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 =

1

2
𝑠𝑖𝑛2𝜃

𝑦𝐼 = 𝐼𝐴 𝑐𝑜𝑠𝜃 = 𝑙 𝑐𝑜𝑠2𝜃 =
1

2
(1 + 𝑐𝑜𝑠2𝜃)

                                        (20) 

 

 

 

 

 

 

 

 

 

                                                                     

Figure 4 

 

Considering the angle θ as a parameter, the expressions (19) and (20) are the 

parametric equations of the space centrode (B) and body centrode (R). Their 

Cartesian equations are obtained by removing the parameter θ. Hence, there are 

obtained: 

(R) 

(B) 

A 

B 

x 

y 

x1 

y1 

O1 

C 

I 

v̅ 

θ 
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(B):                                      𝑥1𝐼
2 + 𝑦1𝐼

2 = 𝑙2                                                      (21) 

𝑠𝑖𝑛2𝜃 =
2𝑥𝐼

𝑙
 ;                        𝑐𝑜𝑠2𝜃 =

2𝑦𝐼

𝑙
− 1                               (22) 

(
2𝑥𝐼

𝑙
)

2

+ (
2𝑦𝐼

𝑙
− 1)

2

= 1                                                   (23) 

(R):                          𝑥𝐼
2 + (𝑦𝐼 −

1

2
)

2

= (
𝑙

2
)

2

                                                    (24) 

From the relations (21) and (24) corresponding to the Space centrode and Body centrode, it 

can be remarked the fact that there are circles of radius (l) and center at O1; and a circle of 

radius ½ with center at C (center of gravity of bar AB). 

b. For the bar from Figure 3, the Instantaneous Center of Velocity (I) is established at the 

intersection of the perpendiculars taken in points A and B on the support axis of the 

velocities in these points. According to Figure 5, to the bar AB, will be attached the 

reference mobile frame Axy. Related to the fixed 1 1 1O x y , and mobile Axy, reference 

frames the point I has the coordinates: 

{
𝑥1𝐼 = 𝑂1𝐴 = ℎ 𝑡𝑔𝜑

𝑦1𝐼 = 𝐼𝐴 =
ℎ

𝑐𝑜𝑠𝜑

1

𝑐𝑜𝑠𝜑
=

ℎ

𝑐𝑜𝑠2𝜑

                                                  (25) 

{
𝑥𝐼 = 𝐼𝐴 𝑠𝑖𝑛𝜑 =

ℎ 𝑠𝑖𝑛𝜑

𝑐𝑜𝑠2𝜑
=

ℎ

𝑐𝑜𝑠𝜑
𝑡𝑔𝜑

𝑦𝐼 = 𝐴𝐵 =
ℎ

𝑐𝑜𝑠𝜑

                                        (26) 

Considering the angle φ as a parameter, relations (25) and (26) are the parametric 

equations of the space centrode (B) and the body centrode (R) of the bar from Figure 

3. Their Cartesian equations are obtained by removing the parameter φ from (25) and 

(26) (see Figure 5). 

 

                                                            Figure 5 

h 
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{
𝑡𝑔 𝜑 =

𝑥1𝐼

ℎ
1

𝑐𝑜𝑠2𝜑
=

𝑦1𝐼

ℎ

                                                                 (27) 

1 +
𝑥1𝐼

2

ℎ2 =
𝑦1𝐼

ℎ
                                                                 (28) 

 (B):                    𝑦1𝐼 =
𝑥1𝐼

2

ℎ2 + ℎ                                                                  (29) 

{
𝑡𝑔 𝜑 =

𝑥𝐼

𝑦𝐼

1

𝑐𝑜𝑠2𝜑
=

𝑦𝐼
2

ℎ2

                                                                    (30) 

1 +
𝑥𝐼

2

𝑦𝐼
2 =

𝑦𝐼
2

ℎ2                                                                    (31) 

 (R):         ℎ2𝑥𝐼
2 − 𝑦𝐼

2(𝑦𝐼
2 − ℎ2) = 0                                                         (32) 

 

From (29) and (32) it can be seen that the space centrode (B) is a parabola 

symmetrical to the axis O1y1 with the peak in B, and the body centrode (R) is a fourth 

- degree spatial curve in yI. 

 

3.2 Determination of centrodes by graphical method 

The space centrodes, graphically are determined as follows: 

- The bars are considered in various positions, for each being determined the ICV at 

the intersection of the normal on the velocities, hence is obtained for each bar a string 

of positions I1, I2, ...In. Joining the points Ii from each set of strings, the two space 

centrodes should be obtained as presented in Figure 6a and Figure 6b. 

 

 

 

 

 

 

 

 

                 Figure 6a.                                                                         Figure 6b. 
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To determine graphically the body centrodes, there is used tracing paper for 

each bar.  

On tracing paper, the bars and mobile reference systems are sketched. The 

tracing paper will be overlapped over the bar so that it coincides for each AiBi 

position, marking the Ii points on the tracing paper (for each bar, around 20 positions 

of point I will be marked). In this way, a string of Ii points will be obtained on each 

tracing paper sheet. The above obtained points will be joined resulting the two 

mobile (rolling) centroids for the bars of Figures 2 and 3 (Figure 7a and Figure 7b). 
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                                         Figure 7a. 
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Figure. 7b. 
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STUDY OF VELOCITY DISTRIBUTION IN CARDANIC 

MOVEMENT OF A BAR 

1. The purpose of the paper 

There is considered a straight bar AB, having the length l, which ends A and B 

are moving on the axes of a Cartesian reference frames Ox and Oy , as can be seen in 

Figure  1). It is required to determine the velocities of points A, B, C, of the bar AB 

(VA, VB, VC). 

 

 

 

  

 

 

 

 

 

 

 

 

 

2. Theoretical considerations 

The parallel-plane motion is the movement, in which three non-collinear points 

of a rigid are permanently in a fixed plane, known as movement plane. The three 

points also defining a plane, known as mobile plane, hence, the mobile plane is 

moving in the fixed plane. If the rigid body is a plate, the motion is called plane 

motion.  

A rigid which is performing a parallel-plane motion, has three degrees of freedom:  

( ) ( ) ( )1A 1A 1A 1Ax x t ;    y y t ; t= =  =                                        (1) 
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y 
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Figure 1 
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 The movement of the bar is a plane-parallel movement in the xOy plane, hence 

between the velocities v̅A and v̅B of points A and B,  there is established the 

relationship: 

v̅B = v̅A + v̅BA                                                                 (2) 

where: v̅BA represents the relative velocity of point B to A. Expression (2) is known as 

Euler's formula for velocities and represents the velocities distribution law in the 

planar movement of the bar AB. The velocity distribution in the planar movement of 

the bar AB is reducible to a velocity distribution specific to a rotational movement, 

around the Instantaneous Center of Velocity. Due to this property, the velocity v̅C of 

a point C belonging to the bar (representing the center of gravity of the bar AB), can 

be calculated: 

                                           v̅C = ω̅ × IC ̅̅̅̅                             vC = ω ∙ IC                                     (3) 

There is notated with φ the angle between bar AB and O1x1 axis. In conformity 

with the Figure 1, it can be written: 

A Bv v
ω

l  cosφ l  sinφ
= =

 
                                                  (4) 

The Instantaneous Center of Velocity (I/ICV) is determined intersecting the 

perpendiculars from the application points of the velocities, on the direction of 

velocities. The geometrical locus of ICV related to the fix reference frame 1 1 1O x y  is 

called Space Centrode (B), and the geometrical locus of ICV related to a mobile 

reference frame xBy , attached to the bar AB, is called Body Centrode (R). Space 

Centrode and Body Centrode are tangent, the Body Centrode is rolling on Space 

Centrode without slipping. The parametric expressions for Space Centrode and 

Body Centrode are: 

1I 1

1I 1

x O B=l cosφ

y O A=l sinφ

 = 


= 

                                                                      (5) 
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( )

I 1

2
I 1

x IB  cos O A  cos l  cos   sin sin2
2

y IB  sin O A  sin l  sin 1

l

l
cos2

2


=   =   =     =  


 =   =   =   = − 


                      (6) 

From (5) and (6), by eliminating the parameter , results: 

2 2 2
1I 1Ix y l+ =                                                                               (7) 

• the equation of the Space Centrode, representing a circle having the center in 

1O  of radius l; 

2 2
2
I I

l l
x y

2 2

   
+ − =   
   

                                                                    (8) 

• the equation of the Body Centrode, representing a circle having the center in 

bar mass center and radius 
l

2
. 

 

3. Description of the Experimental Stand  

For the study of bar motion, there is used the device shown in Figure 2 . 
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The components of the experimental stand are: 

1-  The bar AB, having the length l=400 [mm]; 

2-  The sliders A and B; 

3-  Device for adjusting the position of the bar AB (adjusting the angle φ); 

4-  Optical sensors; 

5-  Device for adjusting the position of the bar’s angle for establishing the position 

of point C (the mass center position); a=205 [mm]; 

6,8 – Indicators of the angle φ; 

7 – Screw for adjustment of device 3; 

9- Mobile plan fixed on bar AB; 

10- Adjustment screw for 5; 

11- Selector for setting of measuring points (A,B or C); 

12- Electronic Assembly. 

13- Crank for the bar AB; 

14- Transformer 220V/24V for powering the optical sensors 4; 

15- Bars symbolizing the normal velocities of points A and B. 

 

 

The experimental stand is represented symbolically in Figure 3. 
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4. Development of the laboratory work 

With the help of crank 13, the bar AB is raised to a certain height. With 11, is set 

up the measuring point A, B, or C (is connected the optical sensor 4, at the Electronic 

Assembly 12). With the same 13, there is unlocked the bar, which falls under the 

action of its own weight, executing a parallel-plane movement in a vertical plane. 

When the bar passes through the position given by the angle φ (selected by the 

devices 3 and 5), the Electronic Assembly 12 starts the timer, for the period when the 

light beam of the optical sensor 4 is interrupted. The timer displays the time Δt. 

Knowing the length Δl, there can be established the chosen point A,B, or C with the 

expression: 

                                             v =
∆𝑙

∆𝑡
     [mm/s]                                                            (9) 

where: ∆𝑙 = 20 [𝑚𝑚], is the length of the lamella which interrupts the light beam at 

the sensors; ∆𝑡 is the interrupting time of the light beam at the sensors, displayed by 

timer. 

Hence, there are experimental determined the velocities of the points A,B and C: 

exp exp exp
BA C

A B C

l l l
v ; v ; v

t t t

  
= = =                                           (10) 

There can be calculated the experimental value of the angle φ, as: 

exp A

B

t
tan

t
 = , or exp A

B

t
arctan

t
 =                                           (11) 

The velocities for the points A,B and C can be theoretically determined using the ICV  

Method, by:  

                                    v̅A = ω̅ × IA ̅̅̅̅                       vA
theor = ω ∙ IA                                          (12) 

                 v̅B = ω̅ × IB ̅̅̅̅                        vB
theor = ω ∙ IB                                          (13) 

In keeping with (3), the theoretical value for the velocity of point C, is established as: 

                                    v̅C = ω̅ × IC ̅̅̅̅                            vC
theor = ω ∙ IC                                      (14) 
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where:          

( ) ( )

2 2

2 2 2 2

π
IC IB BC 2 IB BC cos( φ)

2

l sin a 2 l sin a sin l l 2 a sin a

= + −    − =

=   + −      =  −   +

             (15) 

The same velocity of point C, can be calculated, using the coordinates of the point: 

 
( )

1C

1

1

C

x O B-BC  cos l -a cos  

y BC  sin a  sin

 =   =  


=   =  

                                     (16) 

Applying the time derivative on (16), there is obtained: 

( )
1C

1C

x l -a sin  

y a  co s

 = −  


=   

                                                   (17) 

Hence, based on expressions contained in (16), there is obtained: 

( ) ( )22 2 2teor
C 1C 1C

2 2 2 2x y l -a sin a cos l l -2 a siv n a+   +   =    = = +         (18) 

From (12) there can be determined , which is introduced in (13), resulting the 

expression:  

B A A A
l  sinφ

v v v v φ
IA l  cosφ

IB
tan


=  =


 =                                   (19) 

which conducts to:                                 teor B

A

tan
v

φ
v

=                                                    (20) 

Considering (11) with (20), there is determined the relative error for φ, with: 

exptheor

theor

tanφ tanφ
100[ ]

tanφ

−
= rε  %                                    (21) 

The above calculated results are registered in Table 1. 

Table 1 

Experiment theorφ  

t  expφ  r
ε  

At [s]  Bt [s]  Ct [s]    

1       

2       

3       
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Having determined the velocities for points A, B and C, there will be filled 

Table 2, and then there is calculated the relative error for velocity Cv , with: 

 

exptheor
C C

theorvC
C

v v
100[ ]

v

−
= rε  %                                   (22) 

 

Table 2 

Experiment theorφ  
theor
Av  

theor
Bv  

theor
Cv  

exp
Cv  vC

rε  

1       

2       

3       
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GRAPHICAL DETERMINATION OF THE VELOCITIES AND 

ACCELERATIONS 

IN THE MOVEMENT OF A PLANAR MECHANISM 

 

1. The purpose of the work 

 The aim of the paper is the graphical determination of the velocities and 

accelerations in the case of a planar mechanism, based on Euler's laws for velocities 

and accelerations.  

 

2. Theoretical considerations 

It is considered a rigid body in motion, (see Figure 1) so that three non-collinear 

points of it (related to the body) remains in a fixed plane throughout the body 

motion, this type of motion being called plane-parallel motion. The three points are 

defining a mobile plane (a section of the rigid) (π) that moves in a fix plane, named 

directional plane. 

 

 

Therefore, all sections of the rigid that are parallel to (π) will move in planes that are 

parallel to the directional plane, fact suggested by the name of plane-parallel motion. 
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In the plane-parallel motion the rigid has three degrees of freedom, the coordinates 

of a point inside the plane and the rotation angle.  

If a straight line (Δ) belonging to the rigid is taken, perpendicular to the plane 

(π), then during plane parallel motion the line (Δ) it will also move, remaining all 

time normal to the (π), respectively to the directional plane, and parallel to itself in 

the same time. So, the straight line will perform a pure translational motion. All its 

points will have the same velocity and the same instantaneous acceleration, and their 

trajectories will be identical curves but located in parallel planes with each other and 

with the section (π), respectively with the directional plane. 

On these considerations the study of plane-parallel motion can be reduced to 

the study of section (π) motion in the directional plane. From the mechanical point of 

view, section (π) is a plate, and its movement in the directional plane is called planar 

motion (the movement of a plate in a plane). 

Let be a material point M, belonging to the rigid. Between the coordinates x1, y1, 

z1 and x, y, z of this point recorded in relation to a fixed system, respectively to a 

mobile system, solitary with the rigid one, there is the relationship matrix: 

(

𝑥1

𝑦1

𝑧1

1

) = [

cos 𝜃 −sin 𝜃 0 𝑥1𝐴

sin 𝜃 cos 𝜃 0 𝑦1𝐴

0 0 1 0
0 0 0 1

] ∙ (

𝑥
𝑦
𝑧
1

)                                                              (1)  

From relation (1) it is observed that z1 does not depend on time, but only on the 

height of point M, which confirms the three degrees of freedom and the fact that the 

trajectories of the points on the straight line (Δ) are identical curves located in 

parallel planes. 

Examples of parallel-plane motions include: the movement of the connecting 

rod in a connecting slider-crank mechanism, the movement of a vehicle wheel on a 

straight road, the cardanic movement of a straight bar, the movement of cam and 

gear mechanisms. 
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3. Development of the laboratory work 

There is considered the mechanism from Figure 2, composed by: 

1. Equalizer bar ; 

3. Crank driven; 

4. Triangular plate; 

5. Connecting rod; 

6. Piston, in a configuration given by angle φ. 

There are known as input data the following: 

- the angle 𝜑 = 35 + 2𝑛  [°]; 

- the rotation of the Driving crank O1A, n1 = 300 + 10n = const., n being the 

order number of the student in group.  

− 𝑂1𝐴 = 30 𝑐𝑚, 𝑂1𝑂2 = 30 𝑐𝑚,   𝑂2𝐵 = 30 𝑐𝑚  𝐴𝐵 = 40 𝑐𝑚,    𝐴𝐶 = 20 𝑐𝑚,

𝐶𝐷 = 20 𝑐𝑚 

It is required to determine graphically the configuration of the mechanism 

defined by the angle φ, the velocity and acceleration of point D, by using the velocity 

and acceleration plane method. 
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a. Determination of the velocity v̄D  

 The velocity of the piston will be determined by the velocity plane method. In 

this sense, after determining the velocity of the point A belonging to the crank, the 

velocities of the points B, C, D are successively determined, by writing the Euler`s 

relations for the velocities, for the pairs of points belonging to the same element. The 

order of operations is as follows: 

- There is calculated the angular velocity: 

   1π  n rad
ω     [ ]

30 s


=                                                          (2) 

-  It is calculated the velocity of the point A (v̄A), belonging to the crank O1A by: 

     vA = 𝜔 ⋅ 𝑂1𝐴.                                                            (3) 

The vector v̄A has a normal direction on the O1A and the sense given by  . 

- It is represented the mechanism at a scale, into configuration given by the angle . 

It is noted with Lk  the length scale coefficient, represented as a ratio between 

the given length and the drawn length:  

𝑘𝐿 =
𝐿𝑟𝑒𝑎𝑙 (𝑐𝑚)

𝐿𝑑𝑟𝑎𝑤𝑛(𝑐𝑚)
=

𝑂1𝐴

𝑂1𝐴𝑑𝑟𝑎𝑤𝑛
                                                         (4) 

- There is represented the velocity of point A on the mechanism plane, as being 

equal with drawn length of the crank:                vAdrawn
= 𝑂1𝐴𝑑𝑟𝑎𝑤𝑛                              (5) 

Hence, results the scale coefficient of the velocities kv: 

    𝑘𝑣 =
vreal

vdrawn
=

𝜔⋅𝑂1𝐴

𝑂1𝐴𝑑𝑟𝑎𝑤𝑛
= 𝜔 ⋅ 𝑘𝐿.                                  (6) 

-there is determined the velocity of point B, taking in account the relations: 

                        v̄B = v̄A + v̄BA,        v̄BA = 𝜔̄3 × 𝐴𝐵          v̄B = 𝜔̄2 × 𝑂2𝐵.                       (7) 

The vector v̄A is known, as magnitude and direction, and the vectors v̄BA ⊥ 𝐵𝐴, 

and v̄B ⊥ 𝑂2𝐵 are known only as direction. 

For the graphical building of the velocity plane, is considered an arbitrarily point o, (see 

Figure 3). In point o, the velocity 𝑣̄𝐴 is represented to scale. It is noted by a the extremity of 

the vector 𝑣̄𝐴. Through the extremity a of 𝑣̄𝐴 a perpendicular is drawn to AB, and through o a 
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perpendicular is drawn to O2B. The point of intersection of these perpendiculars, denoted by 

b, represents the extremity of the absolute velocity vector 𝑣̄𝐵. 

Note: As can be seen from the sketch, a relation for velocities has as image a triangle. 

 

Based on following Euler`s expressions for velocities, there is determined the 

velocity of point C, noted v̄C,  expressed related to v̄A and v̄B: 

         v̄C = v̄A + v̄CA, v̄CA = ω̄2 × AC, v̄CA ⊥ AC.                            (8) 

           v̄C = v̄B + v̄CB, v̄CB = ω̄3 × BC, v̄CB ⊥ BC.                  (9) 

In the velocities plane, a perpendicular to AC is drawn through point a, respectively 

through b another one perpendicular to BC. These perpendiculars intersect in point c, which 

represents the extremity of the absolute velocity vector  𝑣̄𝐶. 

- On basis of the expressions: 

      v̄D = v̄C + v̄DC, v̄DC = ω̄4 × CD, v̄D ⊥ CD.                                       (10)  
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v̄D‖O1D.                                                                   (11) 

is determined the velocity of point D. 

In the velocity plane, a perpendicular to CD is drawn through point c, which intersects 

in d the parallel taken through o to O1D. The point d represents the extremity of the absolute 

velocity vector𝑣̄𝐷.. Following relations (7)-(11) and Figure 3, the polygons starting from o to 

b, c and d are closed, resulting the vectors 𝑣̄𝐵𝐴, 𝑣̄𝐵, 𝑣̄𝐶𝐴, 𝑣̄𝐶𝐵, 𝑣̄𝐶 , 𝑣̄𝐷𝐶 , 𝑣̄𝐷. 

The value of the velocity v̄D is calculated as: 

    vD = 𝑘𝑉 ⋅ vDdrawn
 .                    (12) 

- It can be calculated the angular velocities of the elements 2, 3, 4, as: 

    𝜔2 =
vB

𝑂2𝐵
=

vB

𝐵𝑂2
,     𝜔3 =

vBA

𝐴𝐵
=

vCA

AC
,      𝜔4 =

vDC

𝐶𝐷
.                  (13) 

or: 

         𝜔2 = 𝜔
vBdrawn

𝑂2𝐵𝑑𝑟𝑎𝑤𝑛
,     𝜔3 = 𝜔

vBA𝑑𝑟𝑎𝑤𝑛

𝐴𝐵𝑑𝑟𝑎𝑤𝑛
= 𝜔

vCA𝑑𝑟𝑎𝑤𝑛

𝐴𝐶𝑑𝑟𝑎𝑤𝑛
,      𝜔4 = 𝜔

vDC𝑑𝑟𝑎𝑤𝑛

𝐶𝐷𝑑𝑟𝑎𝑤𝑛
.                 (14) 

 The directions of the angular velocities are given by the direction in which the 

relative rotational velocities rotate the segments to which they refer. 

 

b) Determination of the acceleration 𝑎̅𝐷 of the point D 

The acceleration of point D will be determined by the acceleration plan 

method. In this sense, after determining the absolute acceleration of point A 

belonging to the O1A, the accelerations of points B, C, D are successively determined, 

writing Euler relations for accelerations at pairs of points belonging to the same 

element. 

The steps for building the acceleration plan are as follows: 

• The acceleration of point A, belonging to the crank is calculated, in keeping with 

the fact that ,0= hence it has only the normal component with the sense from A to 

O1.  

𝑎𝐴 = 𝑎𝐴
𝜈 = 𝜔2 ∙ 𝑂1𝐴                                                            (15) 
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Note: 𝒂̅𝑨 is determined graphically by the Rectangular Triangle Method. (see Figure 4) 

There is represented to scale the velocity of point A, then the point O1 is joined with the 

extremity of 𝑣̄𝐴, and in a there is drawn a normal on 𝑂1𝑎 which intersects 𝑂1𝐴 in b. The 

segment Ab is folded 180° on 𝑂1𝐴, hence resulting the point c. the segment Ac is the vector 

𝑎𝐴
𝜈̅̅ ̅ of the point A.  

 

 

 

 

 

 

 

 

In the right-angle triangle 𝑂1𝐴𝑏, 𝐴𝑎 is a height, and according to the Altitude/Height 

Theorem, results: 

 2
1Aa O A Ab=   ,                                                                  (16) 

 hence:                                      
22
A

a
1 1

vAa
Ab a

O A O A
= = =  ,                                                        (17) 

On the mechanism plane there is represented the acceleration of point A, such 

that to be equal with the length of the crank, respectively: 

aAdrawn
= O1Adrawn                                                           (18) 

Results the accelerations scale coefficient ka:   

ka =
areal

adrawn
=

ω2⋅O1A

O1Adrawn
= ω2 ⋅ kL                                            (19) 

• There is determined the acceleration of point B, that belongs to the connecting rod, 

by the Euler`s formula for accelerations, as: 

                               𝑎̅𝐵 = 𝑎̅𝐴 + 𝑎̅𝐵𝐴 = 𝑎̅𝐴 + 𝑎̅𝐵𝐴
𝜏 + 𝑎̅𝐵𝐴

𝜈                                            (20) 

b
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Av
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                                               𝑎̅𝐵 = 𝑎̅𝐵
𝜏 + 𝑎̅𝐵

𝜈                                                       (21) 

where: 

▪ 𝑎̅𝐴 is known as magnitude and direction;     

▪ 𝑎̅𝐵𝐴
𝜈  and 𝑎̅𝐵

𝜈   are normal components of accelerations, determined by 

Rectangular Triangle Method using the velocities v̄BA and v̄B, known as magnitude 

and direction; 

▪ 𝑎̅𝐵𝐴
𝜏  and 𝑎̅𝐵

𝜏  are tangential components of accelerations having known 

directions – perpendicular on AB and O2B. ( 𝑎̅𝐵𝐴
𝜏 ⊥  𝐴𝐵,̅̅ ̅̅̅   𝑎̅𝐵

𝜏 ⊥  O2B̅̅ ̅̅ ̅) 

Note: The Euler expression for accelerations has as geometrical image a quadrilateral in 

acceleration plane. 

To create the acceleration plane, there is arbitrarily chosen a point o' where is 

represented the acceleration Aa  of point A, it`s extremity being noted a'. Through the 

extremity a' is drawn at acceleration scale from B towards A, the vector 
BAa . Thru its 

extremities is drawn a perpendicular to AB then, through of o', is drawn, with the direction 

from B towards O2, to the scale the vector 
Ba . Through its extremity 

Ba  goes a perpendicular to 

O2B, which meets in b' the perpendicular to AB. The point b' thus established, is the 

extremity of the absolute acceleration vector Ba . 

Following the relations (20)-(21) and Figure 5, are closed the polygons starting from o' 

to b', thus being obtained the vectors: 𝑎𝐵𝐴
𝜏 , 𝑎𝐵

𝜏  , 𝑎𝐵𝐴,  𝑎𝐵 . 

 

• The acceleration of point C, belonging to element 3 can be determined on the basis 

of Euler`s expressions for accelerations, as: 

𝑎̅𝐶 = 𝑎̅𝐴 + 𝑎̅𝐶𝐴 = 𝑎̅𝐴 + 𝑎̅𝐶𝐴
𝜏 + 𝑎̅𝐶𝐴

𝜈                                             (22) 

𝑎̅𝐶 = 𝑎̅𝐵 + 𝑎̅𝐶𝐵 = 𝑎̅𝐵 + 𝑎̅𝐶𝐵
𝜏 + 𝑎̅𝐶𝐵

𝜈                                            (23) 

where: 

▪ a̅A  and a̅B are known as magnitude and direction;   
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▪ 𝑎̅𝐶𝐴
𝜈  and 𝑎̅𝐶𝐵

𝜈   are normal components of accelerations, determined by 

Rectangular Triangle Method using the velocities v̄CA and v̄CB, known as magnitude 

and direction; 

▪ 𝑎̅𝐶𝐴
𝜏  and 𝑎̅𝐶𝐵

𝜏  are tangential components of accelerations having known 

directions – perpendicular on AC and BC. ( 𝑎̄𝐶𝐴
𝜏 ⊥ 𝐶𝐴,    𝑎̄𝐶𝐵

𝜏 ⊥ 𝐶𝐵  𝑎̅𝐵
𝜏 ⊥  O2B̅̅ ̅̅ ̅). 
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To determine the acceleration Ca  of the point C, is drawn through a', with the 

direction from C towards A, the vector 
CAa obtained by the Rectangular Triangle Method. 

Through its extremity goes a perpendicular to AC. Then, through b', with the direction from 

C towards B, the vector 
CBa is drawn on the acceleration scale. Through the extremity of 


CBa is drawn a perpendicular ob BC, which meets in c' the perpendicular to AC. Hence the 

point c' represents the extremity of the absolute acceleration vector Ca . 

Following relations (22) and (23) and Figure 5, the polygons are closed starting from o' 

towards c', resulting in the vectors: 𝑎𝐶𝐴
𝜏 , 𝑎𝐶𝐵

𝜏  , 𝑎𝐶𝐴,  𝑎𝐶𝐵 ,  𝑎𝐶  . 

• The acceleration of point D is obtain based on the relations: 

𝑎̅𝐷 = 𝑎̅𝐶 + 𝑎̅𝐷𝐶 = 𝑎̅𝐶 + 𝑎̅𝐷𝐶
𝜏 + 𝑎̅𝐷𝐶

𝜗   ;  𝑎̅𝐷||𝑂1𝐷                                   (24)  

where: 

▪ a̅C   is known as magnitude and direction;   

▪ 𝑎̅𝐷𝐶
𝜈   is a normal component of acceleration, determined by Rectangular 

Triangle Method using the velocities v̄DC , known as magnitude and direction; 

▪ 𝑎̅𝐷𝐶
𝜏  is tangential component of acceleration having known direction – 

perpendicular on CD. ( 𝑎̄𝐷𝐶
𝜏 ⊥ 𝐷𝐶); 

▪ a̅D   is known as direction; (the point D is moving along O1y)  

 

To graphically determine the acceleration Da , through the point c' is drawn, on the 

acceleration scale the vector 
DCa . Through the extremity of 

DCa  is drawn a perpendicular to 

CD, which meets in d' the parallel taken through o' to O1y. Point d' represents the extremity 

of the absolute acceleration vector Da  . 

Following relations (24) and Figure 5, are closed the polygons starting from o' towards 

d', resulting the acceleration vectors: 𝑎𝐷𝐶
𝜏 ,  𝑎𝐷𝐶 ,  𝑎𝐷 .  
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The acceleration of point D is obtained by transposing the vector Da  from the 

acceleration plane to point D in the plane of the mechanism. The real value of this 

acceleration will be: 

𝑎𝐷 = 𝑘𝑎 ∙ 𝑎𝐷𝑑𝑟𝑎𝑤𝑛
                                                              (25) 

• The angular accelerations of the elements 2, 3, 4 can be determinate by: 

   𝜀2 =
𝑎𝐵𝐴

𝜏

𝐵𝐴
,   𝜀3 =

𝑎𝐵𝐶
𝜏

𝐵𝐶
=

𝑎𝐵
𝜏

𝐵𝐶
,         𝜀4 =

𝑎𝐷𝐶
𝜏

𝐷𝐶
                       (26) 

or 

    𝜀2 =
𝑎𝐵

𝜏

𝑂2𝐵
= 𝜔2 ∙

𝑎𝐵𝑑𝑟𝑎𝑤𝑛
𝜏

𝑂2𝐵𝑑𝑟𝑎𝑤𝑛
,   𝜀3 =

𝑎𝐵𝐴
𝜏

𝐴𝐵
= 𝜔2 ∙

𝑎𝐵𝐴𝑑𝑟𝑎𝑤𝑛
𝜏

𝐴𝐵𝑑𝑟𝑎𝑤𝑛
,         𝜀4 =

𝑎𝐷𝐶
𝜏

𝐷𝐶
= 𝜔2 ∙

𝑎𝐷𝐶𝑑𝑟𝑎𝑤𝑛
𝜏

𝐶𝐷𝑑𝑟𝑎𝑤𝑛
      (27) 

 

The accelerations 𝑎𝐵𝐴
𝜏 ,  𝑎𝐵

𝜏 ,  𝑎𝐷𝐶
𝜏  from the above expressions on scale representation are 

taken from the accelerations plane. 

 

Note:  According to Mehmke Theorem for velocities and accelerations, the polygon formed by 

points of the same element of the mechanism is similar as the polygon formed by homologous 

points from the acceleration and velocities plans. They allow the establishing of velocities and 

acceleration poles of the elements 3 and 4 of the mechanism being in planar movement. 
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GRAPHICAL DETERMINATION OF THE VELOCITIES AND 

ACCELERATIONS FOR THE POINTS OF A PLANE MECHANISM 

WITH ELEMENTS IN RELATIVE MOTION 

1. The purpose of the paper 

The paper studies the movement of a mechanism, having elements which are 

executing relative motion. There will be established graphical the velocities and 

accelerations, based on the laws of composition of velocities and accelerations in 

relative movement.  

 

2. Theoretical considerations 

The movement of a point relative to a fixed reference system is called absolute 

movement, characterized by the absolute trajectory(C𝑎), the absolute velocity (𝑣̅𝑎) 

and the absolute acceleration (𝑎̅𝑎). 

The movement of a point related to a mobile reference system is called relative 

movement, characterized by the relative trajectory (C𝑟), the relative velocity (𝑣̅𝑟) and 

the relative acceleration (𝑎̅𝑟). 

If imaginary, is considered that the material point is fixed to the mobile 

reference system, the movement performed together with the mobile system, is 

called transport movement, characterized by the transport trajectory (C𝑡), the 

transport velocity (𝑣̅𝑡) and transport acceleration (𝑎̅𝑡).  

On these three types of movements characterized by corresponding velocities 

and accelerations, are based the following laws of composition for the kinematic 

parameters:  

                                 v̅a = v̅r + v̅t          𝑎̅𝑎 = 𝑎̅𝑟 + 𝑎̅𝑡 + 𝑎̅𝐶                                       (1) 

where: 

• v̅a and 𝑎̅𝑎 are the absolute velocities and accelerations. 

• v̅t and 𝑎̅𝑡 are the transport velocities and accelerations. 

•  𝑎̅𝐶 is the Coriolis acceleration, expressed as:  

                                                𝑎̅𝐶 = 2 ∙ 𝜔̅𝑡𝑥v̅r                                    (2) 
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3. Development of the work 

It is considered the mechanism from Figure 1, at which the crank OA rotates 

with the constant, clockwise angular velocity 𝜔1. There is required to determine 

graphically the velocities and accelerations of the points A and B, for the position of 

the crank OA given by the angle related to the vertical direction 𝜑1 = 30 + 𝑛 [°] , “n” 

being the student order number in the group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The elements of the mechanism are given by: 

              𝜔1 = 0.5 +
𝑛

20
[
𝑟𝑎𝑑

𝑠
], 

     𝑂𝐴 = 2 + 0.25 ∙ 𝑛 [cm], 

OO1 = 5 + 0.30∙ n [cm], 

O1D = 11 + 0.5∙n [cm], 

O1B = 10 + 0.5∙ 𝑛 [cm]. 

𝑣̅𝐷 
z 

      D 

(CtB) 

      D0 z 

(CaB) 

(CrB) 

(CtA) 

x 

y 

A 

y 

B 

ω1 

(CaA) 

O 

x 

O1 

(CrA) 

Figure 1 

ϕ

1 

      B0 
𝑎̅ 
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Each student establishes own input data based on order number in the group, 

and after, calculates the input data with the above relations. 

Based on previous calculated input data, the mechanism considered in Figure 1, 

is drawn, for the configuration given by angle φ.  

There is introduced the notation Lk  representing the scale of length coefficient, 

which is a ratio between the real and the drawn length: 

real 1
L

drawn 1 drawn

L O A
k [cm]

L O A
= = . 

On the mechanism sketch, there is represented the velocity of point A equal 

with the drawn length of the crank, respectively: A 1 drawndrawn
v O A= . Hence, there 

is introduced the scale coefficient of velocities: real 1
v L

drawn 1 drawn

v O A
k k

v O A


= = =  . 

 

a) Distributions of accelerations for points A, B 

 

Point A 

The absolute trajectory (CaA) of point A is a circle, centered in O having the 

radius OA. Its circulary movement is with the constant angular velocity 𝜔1. The 

absolute angular velocity is normal to OA, and has the sense given by 𝜔1. The 

magnitude of the absolute velocity vector of point A is: 

   vaA = 𝜔1 ∙ 𝑂𝐴                                                                   (4) 

The relative trajectory (CrA) is rectilinear, along the linear guidance O1B (v̅rA‖𝑥𝑥). 

The transport trajectory (CtA) is obtained by considering point A fixed to the linear 

guidance O1B, thus obtaining a circle with the center in O1 of radius O1A. The 

velocity will be perpendicular to the guidance (v̅tA ⊥ 𝑥𝑥). 
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To determine the relative v̅rA and transport v̅tA velocities of point A, the 

absolute velocity v̅aA is decomposed into two directions: one parallel and the other 

perpendicular to the xx axis (see Figure 2), hence is written: 

                                                  v̅aA = v̅rA + v̅tA                                           (3) 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Point B 

The absolute trajectory (CaB) is a circle, centered at O1, with the radius O1B. The 

velocities distribution on bar O1B is proportional to the distance from the considered point 

to O1, so the absolute velocity of the point B is proportional to the transport velocity v̅tA . 

Figure 2 
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The relative trajectory (CrB) is on the guidance yy direction (v̅rB‖𝑦𝑦), and the 

transport trajectory (CtB) of point B is parallel to the guidance zz (v̅tB‖𝑧𝑧). To obtain 

the relative (v̅rB) and the transport (v̅tB) velocities, the absolute velocity of point B 

(v̅aB) is decomposed along two directions, one parallel to yy and one parallel to zz 

direction. 

Hence, the velocities distribution for point B, is: 

                                          v̅aB = v̅rB + v̅tB                             (5) 

 

b) Distribution of accelerations for points A, B 

For the point A the acceleration distribution law is: 

                                                     𝑎̅𝑎𝐴 = 𝑎̅𝑟𝐴 + 𝑎̅𝑡𝐴 + 𝑎̅𝐶𝐴                                               (6) 

where:                                                      𝑎̅𝑎𝐴 = 𝑎̅𝑎𝐴
𝜏 + 𝑎̅𝑎𝐴

𝜐                                                     (7) 

But, ω = ct., ε = 0, and      𝑎̅𝑎𝐴
𝜏 = 0 and        𝑎̅𝑎𝐴 = 𝑎̅𝑎𝐴

𝜐 = 𝜔1
2 ∙ 𝑂𝐴̅̅ ̅̅                                      (8) 

Hence, the modulus of 𝑎̅𝑎𝐴 has the same expression with (8), the direction 

parallel to OA and the sense from A to O. On the mechanism sketch, is represented 

the acceleration of point A equal with the drawn length of the crank, respectively: 

A 1 drawndrawn
a O A= . Hence, there is introduced the scale coefficient of 

accelerations:  

2
2real 1

a L
drawn 1 drawn

a O A
k k

a O A

 
= = =   . 

 

The relative trajectory of point A is on the guidance xx, therefore 𝑎̅𝑟𝐴 is parallel 

with xx direction, and the transport acceleration is. 

𝑎̅𝑡𝐴 = 𝑎̅𝑡𝐴
𝜏 + 𝑎̅𝑡𝐴

𝜐                                             (9) 

The normal component of acceleration is:     𝑎𝑎𝐴
𝜐 =

vtA
2

𝑂1𝐴
 ,                                            (10)  

the direction is parall with xx (O1A), and the sense from A to O1. 

The tangential component is perpendiculat to xx. 
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Note:  All the normal (perpendicular) components of the accelarations can be 

determined by using of Rectangular Triangle Method.  

 

To establish the Coriolis component of acceleration, on 𝑎𝑡𝐴
𝜐   is scketched a 

similar triangle with the velocities triangle for point A (see expression (3)), having vtA 

as homologous side. 

There is noted by u, the homologous side of vrA. In keeping with the similarity 

of triangles of velocities and accelerations, from one of the similarity ratios, will 

result: 

        
u

vrA
=

𝑎𝑡𝐴
𝜐

vtA
=

𝜔𝑡
2∙𝑂1𝐴

𝜔𝑡
2∙𝑂1𝐴

=
vrA

𝑎𝑡𝐴
𝜏 = 𝜔𝑡                                                (11) 

Hence:                         u = 𝜔𝑡 ∙ vrA =
1

2
𝑎𝑐𝐴  → 𝑎𝐶𝐴 = 2𝑢 = 2𝜔𝑡 ∙ vrA                              (12) 

The sense of 𝑎̅𝐶𝐴 is given by:                   𝑎̅𝐶𝐴 = 2𝜔̅𝑡 × v̅rA                                     (13) 

where,                                          𝜔𝑡𝐴 =
vtA

𝑂1𝐴
                                                                         (14) 

It has the meaning given by  v̅tA and is perpendicular to the plane of the figure, 

𝑎̅𝑐𝐴 is perpendicular to the plane determined by the vectors (𝜔̅𝑡 × v̅rA) by rotating 

𝜔̅𝑡 over v̅rA. 

In this way,             𝑎̅𝑎𝐴 = 𝑎̅𝑟𝐴 + 𝑎̅𝑡𝐴
𝜏 + 𝑎̅𝑡𝐴

𝜐 + 𝑎̅𝐶𝐴                                                          (15) 

Graphic, the expression(15) is a polygon of forces (see Figure 2) where are 

known: the sides 𝑎̅𝑡𝐴
𝜐, 𝑎̅𝐶𝐴 and only the directios for 𝑎̅𝑟𝐴 and 𝑎̅𝑡𝐴

𝜏 . The polygon is 

obtained if to 𝑎̅𝑡𝐴
𝜐, is added 𝑎̅𝐶𝐴 through which extremity is drawn a paralel axis to 

xx direction, and to the extremity of 𝑎̅𝑎𝐴 a perpendicula axis to xx direction. The two 

segments are closing the polygon allowing the establishment of the sizes for the 

known edges only as direction 𝑎̅𝑟𝐴 and 𝑎̅𝑡𝐴
𝜏. It can be composed 𝑎̅𝑡𝐴

𝜏 and 𝑎̅𝑡𝐴
𝜐, thus 

resulting 𝑎̅𝑡𝐴. 
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For the point B the acceleration distribution law is: 

                                              𝑎̅𝑎𝐵 = 𝑎̅𝑟𝐵 + 𝑎̅𝑡𝐵 + 𝑎̅𝑐𝐵                                                      (16) 

For the distribution of accelerations along the bar O1B, the theorem of similarity 

between the absolute acceleration 𝑎̅𝑎𝐵 and the transport acceleration of 𝑎̅𝑡𝐴 of points 

B and A. Because ωtB = 0, 𝑎̅𝑐𝐵 =  2𝜔̅𝑡𝐵 × v̅rB = 0, the absolute acceleration of point B 

(𝑎̅𝑎𝐵) have only two components: 𝑎̅𝑟𝐵 parallel to yy direction and 𝑎̅𝑡𝐵 parallel to zz. 

Hence: 

                                                        𝑎̅𝑎𝐵 = 𝑎̅𝑟𝐵 + 𝑎̅𝑡𝐵                                                           (17) 
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DETERMINATION OF GRAVITATIONAL ACCELERATION THROUGH THE 

SIMPLE PENDULUM METHOD 

 1. The purpose of the work 

It will be shown that the period of oscillations of a mathematical/simple 

pendulum depends only on its length, in the case of small oscillations (α <= 5°), and 

in the case of large oscillations (α > 5°) on its amplitude, both cases not being 

influenced by pendulum mass. The value of the gravitational acceleration will also be 

determined. 

 

 2. Theoretical considerations 

The mathematical pendulum or simple pendulum consists of a material point 

with mass (m), which is suspended by an ideal wire and allowed to oscillate in a 

vertical plane under the action of its own weight (see Figure 1). 

By measuring the period of oscillation of a pendulum, the value of the 

gravitational acceleration can be determined. 
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There is considered in Figure 1 a mathematical pendulum of mass (m) and 

length (l). The angle of rotation of the pendulum on the vertical axis is denoted by φ, 

considering that the pendulum starts from the angle α without initial velocity. 

It is desired to obtain the law of motion of the simple pendulum, as well as to 

determine the period (T) of its oscillation. The forces acting on the material point M 

are the gravitational force (G=mg), and the tension in the wire (S). There is 

considered the Newton's second law, which is projected onto the axes of an intrinsic 

system as: 

𝑚 ∙ 𝑎̅ = 𝑚 ∙ 𝑔̅ + 𝑆̅                                                                            (1) 

The scalar differential equations are: 

{
𝑚𝑎𝜏 = 𝑚𝑙𝜑̈ = −𝑚𝑔𝑠𝑖𝑛𝜑

𝑚𝑎𝜈 = 𝑚𝑙𝜑̇2 = 𝑆 − 𝑚𝑔𝑐𝑜𝑠𝜑
                                                                 (2) 

The first equation from (2), in the case of small oscillations (α<=5°), when sin φ = φ 

and cos φ = 1, becomes: 

𝜑̈ +
𝑔

𝑙
𝜑 = 0                                                                                (3) 

Relation (3), the differential equation of motion of the simple mathematical 

pendulum, is a homogeneous differential equation of second degree, from which, by 

integration, the law of motion is found as function of the angle φ, as follows: 

𝜑(𝑡) = 𝐶1𝑐𝑜𝑠(𝑝𝑡) + 𝐶2𝑠𝑖𝑛(𝑝𝑡)                                                (4) 

where in the relation (3), there is noted  𝑝 = √
𝑔

𝑙
. 

From the  initial conditions of the movement (at moment t = 0 𝜑 = 𝛼 and 𝜑̇ = 0) the 

constants of integration are: 

                                                          𝐶1 = 𝛼, 𝐶2 = 0                                                              (5) 

Relations (5) replaced in (4) will give the law of motion of the pendulum in the case 

of small oscillations:           𝜑 = 𝛼𝑐𝑜𝑠(𝑝𝑡)                                                                          (6) 

where α is angular amplitude, and p the pulsation. 
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The period of oscillation of a simple pendulum at small oscillations is given by 

relation: 

𝑇 =
2𝜋

𝑝
= 2𝜋√

𝑙

𝑔
                                                               (7) 

From relation (7) it can be noted that period (T) varies linearly with the radical 

of the length of the pendulum (l) and does not depend on its mass. 

If it is considered the case of large oscillations (α>5°) in accordance with the 

specialized literature the period is: 

                                                         𝑇 = 2𝜋√
𝑙

𝑔
(1 +

1

4
𝑠𝑖𝑛2 (

𝛼

2
))                                            (8) 

Noting with A the distance (A = M0M1) and  2 sin
2

A l


=   (see Figure 1) relation (8) 

becomes: 

𝑇 = 2𝜋√
𝑙

𝑔
(1 +

1

16

𝐴2

𝑙2 )                                                          (9) 

 

From relations (7) and (9) the gravitational accelerations g, in case of small and large 

oscillations, can be determined as: 

𝑔𝑚 =
4𝜋2𝑙

𝑇2 ;                                 𝑔𝑀 =
4𝜋2𝑙

𝑇2 (1 +
1

16

𝐴2

𝑙2 )
2

                          (10) 

 

3.  Development of the laboratory work 

There are mounted the pieces of the equipment on the frontal panel provided. 

According to Table 1, for different lengths of the wire (between 0.16-0.64 [m]), there 

will be determined the time for ten oscillations, making three measurements. After 

that will be established the time (Tmedium) for one oscillation, the obtained values being 

registered in Table 1.  
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Table 1  

No. 

Length of the 

pendulum (l) 

[m] 

√𝑙 
10 T 

[s] 

Tmedium  

[s] 
α [0] 

g* 

[m/s2] 
𝜀𝑟 =

|𝑔𝐶𝑙𝑢𝑗 − 𝑔∗|

𝑔𝐶𝑙𝑢𝑗
∙ 100 [%] 

1 0.16 0.4 

 

 

 

   

 

2 0.25 0.5 

 

    

 

3 0.36 0.6 

 

    

 

4 0.49 0.7 

 

    

 

5 0.64 0.8 

 

 -   

 

  

Note: We can measure the angle α (see the sixth column of the Table 1) using a 

protractor. 

The results are used to represent the period variation referred to length of 

pendulum wire.(see Figure 2) 

    

 

 

 

Figure 2 

T 

√𝑙 
O 
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There are used relations (10) to calculate gravitational acceleration g* in case of 

small/large oscillations. 

Knowing the values of gravitational acceleration at pole and equator: 

gpole = 9.831 m/s2 and gequator = 9.781 m/s2 

the geographical variation according with a degree of latitude can be determined as: 

Δgl = 
𝑔𝑝𝑜𝑙𝑒−𝑔𝑒𝑞𝑢𝑎𝑡𝑜𝑟

90° =
5

9
∙ 10−3   𝑚/𝑠2𝑔𝑟𝑎𝑑𝑒 

and knowing the northern latitude of Cluj-Napoca city  LCJ = 46.77° N, results the 

value of gravitational acceleration in the town: 

𝑔𝐶𝑙𝑢𝑗 =  𝑔𝑒𝑞𝑢𝑎𝑡𝑜𝑟 + Δ𝑔1 ∙ 𝐿𝐶𝐽 = 9.781 +
5

9
∙ 10−3 ∙ 46.77 = 9.807  𝑚/𝑠2 

with which can be calculated the relative error εr. 
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HIGHLIGHTING THE CORIOLIS INERTIAL FORCE 

 

1. The purpose of the paper 

The purpose of the paper is to highlight the Coriolis inertial force, by measuring 

the deformation (deflection/arrow) of an elastic bar, under the action of a force. 

 

2 Experimental Stand Description 

In Figure 1, is presented the scheme of the system used to determine the 

deformation of an elastic bar.  

 

 

Figure 1  

 

The components of the device are: 

1 – plate;  2 – elastic bar;  3 – mobile body;   4 – graduated ruler;   5 – cursor;  

6 – stopper;  7 – hindrance;  8 – electromagnet;  9 – electric motor;  

10 – belt transmission;  11 – hub;  12 – counterweight. 

The electric motor drives, through the transmission belt, the plate in the 

rotational motion with the angular velocity t cst. =  =  The elastic bar embedded in 

the hub rotates with the plate. The mobile body will move along the bar, from the 

initial position given by the hindrance put by the electromagnet, to the final position 

given by the stopper. 
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     2. Theoretical considerations 

The body (assimilated with a material point) moves with respect to the bar 

which is also in motion. The movement of the material point related to a mobile 

reference system (the bar) is called relative motion, and its movement in relation to a 

fixed reference system is called absolute motion. If is suppressed the relative motion 

(fix the body on the bar), the motion that remains is called transport motion. Each of 

the three motions have trajectory, velocity and acceleration corresponding to the 

motion. For the studied case, the relative motion is rectilinear, having the trajectory 

(Γr) being along the elastic bar. The transport motion is a uniform circular 

movement, with constant angular velocity, the trajectory being a circle (Γt). 

In the relative motion of the material point, the dynamic equation has the form: 

𝑚 ∙ 𝑎̅𝑟 = 𝑅̅ + 𝑅̅𝑙 + 𝐹̅𝑗𝑡 + 𝐹̅𝑗𝑐                                                       (1) 

where 𝑅̅ represents the resultant of active forces in the system, 𝑅̅𝑙 represents the 

resultant of linkage forces, 𝐹̅𝑗𝑡 is the transport inertial force, and 𝐹̅𝑗𝑐 is the Coriolis 

inertial force. The two inertial forces have directions opposite to their corresponding 

accelerations.  

According to Figure 2, there are considered two reference frames, 1 1 1 1O x y z -fixed, 

and Oxyz -mobile. The dynamic equation in relative motion (1), will be projected on 

the axes of the mobile systemOxyz . 

The mobile system has the Ox axis along the bar, the axis Oy normal to the bar, and 

the axis Oz is identical with Oz1 (axis of rotation) (see Figure 2).  

There is known that in relative motion, are appearing the relative and transport 

trajectories. First there are established the relative trajectory ( r  a rectilinear straight 

line), and the transport trajectory ( t a circle with radius x) as in Figure 2.  
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Figure 2   (Spatial view) 

Further, there will be established the forces direction on the body, in relative 

movement, as presented in Figure 2: 

- The active force is the gravitational force G  , opposite to zO  axis; 

- The linkage forces, 1N  (opposite to G ), and 2N  parallel to yO  axis; 

- The transport inertial force is defined as: 

   𝐹̄𝑗𝑡 = −𝑚𝑎̄𝑡.                                                        (3) 

From the expression (3), there is observed that the transport force, and transport 

acceleration have opposite directions. The transport acceleration, in keeping with the 

fact that the angular velocity is constant, has only the normal component, oriented on 

the diameter of the trajectory t , established as: 

𝑎̅𝑡 = −𝜔𝑡
2 ∙ 𝑂𝑀̅̅ ̅̅ ̅;                𝑎𝑡 =  𝜔2 ∙ 𝑂𝑀 = 𝜔2 ∙ 𝑥                               (4) 

Hence, considering (3), the transport force is oriented along xO  axis. 

- The Coriolis inertial force appears in the relative motion of the material point, 

due to the presence of the Coriolis acceleration. The Coriolis inertial force is defined: 

                                    𝐹̄𝑗𝑐 = −𝑚𝑎̄𝑐 = −2𝑚𝜔̄𝑡 ⨯ 𝑣̄𝑟                                                    (5) 

where: 

m – mass of the material point [kg] 
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ca   -  Coriolis acceleration  [m/s2] 

According to (5), there is observed that Coriolis inertial force, and correspondent 

acceleration are opposite. The Coriolis acceleration , determined with: 

𝑎̄𝑐 = 2𝜔̄𝑡 ⨯ 𝑣̄𝑟                                                    (5) 

where: 

t  - angular transport velocity [rad/s] 

rv - relative velocity [m/s] 

In keeping with the fact that the relative velocity rv  is oriented along xO  axis; there 

is established with (5) the orientation of Coriolis acceleration, parallel to yO  axis. 

According to (4), the Coriolis inertial force is oriented opposite to yO  axis direction. 

Based on previous considerations, expression (1) becomes: 

           𝑚 ∙ 𝑎̅𝑟 = ̄ 𝐺̄ + 𝑁̄1 + 𝑁̄2 + 𝐹̄𝑗𝑡 + 𝐹̄𝑗𝑐                                              (5) 

In keeping with the fact that the relative motion is along xO  axis, previous 

expression is projected on the axes of the mobile reference system Oxyz : 

                                {     

𝑚𝑥̈ = 𝐹𝑗𝑡

0 = 𝑁2 − 𝐹𝑗𝑐

0 = 𝑁1 − 𝐺

      →       {
𝑚𝑥̈ = 𝑚𝜔2𝑥

      0 = 𝑁2 − 2𝑚𝜔𝑥̇
0 = 𝑁1 − 𝑚𝑔

                            (6)  

First equation from system (6) will be written as: 

𝑥̈ − 𝜔2𝑥 = 0                                                                            (7) 

and its solution, considering the initial conditions of motion at time t=0, 

x(0)=x0  and  𝑥̇(0) = 𝑣0 = 0                                         (8) 

it will be exactly the law of relative motion: 

x(t) = x0ch(ω t)                                                             (9)                                               

The relative velocity will be:                       

                         ẋ = ωx0sh(ω t) = ω√x2 − x0
2                                               (10) 

The horizontal component of the normal reaction N2 from second expression of 

the system (6) becomes: 

N2 = 2mωẋ = 2mω2√x2 − x0
2                                             (11) 
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The component that bends the bar in a horizontal plane determines a deflection, 

equal to:  

                                                       f theor =
N2l1

2(
l1
3

+
l2
2

)

EIz
                                                      (13) 

where: l1, and l2- are presented in Figure 3 ;     

             E – longitudinal modulus of elasticity [N/m2];  

             zI  – geometric inertia moment (for the bar
4

z
d

I
64

) ; 

           
n

30


 =  angular velocity (rad/s). 

In keeping with previous consideration, the deflection is: 

                                           f theor =
16π

675

n2ml1
2√x2−x0

2(2l1+3l2)

Ed4                                         (14) 

  

 

Figure 3 

 

3. Development of the laboratory work 

1. The body is positioned at x0, initially stopped by the hindrance; 

2. The cursor on the ruler is brought to the zero position, so that it touches the 

elastic bar; 

3. The motor is started and is waiting for the velocity to stabilize; 
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4. The electromagnet is acted so it releases the body to move on the bar; 

5. The motor is stopped and waits for the device to stop. 

6. It is read on the ruler the displacement of the cursor (mm), which indicates 

the deformation of the elastic bar (arrow) under the action of the Coriolis 

force. Five values of these displacements will be measured, finally their 

arithmetic will be used, this being the experimental established deformation, 

which is compared with the theoretical one given by relation (14). The relative 

error is calculated by: 

                                         εr =
⌊ftheor−fexp⌋

ftheor ⋅ 100[%]                                  (15) 

 

The input data for theoretical establishing of deformation are: 

       m = 0.27   [kg] , d = 0.011 [m],  n = 350 [rot/min], l1= 0.315 [m],  l2 = 0.04 [m],                              

x = 0.38 [m],  x0 = 0.065 [m],  E = 2.1∙ 1011 [N/m2]. 

 

All measurements are filled in the Table 1 as below: 

                                                                                                Table 1 

No. ftheor (mm) fexp(mm) fmed (mm) 𝜀𝑟 (%) 

1     

2     

3     

4     

5     
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DETERMINATION OF MECHANICAL MOMENTS OF INERTIA 

USING THE PHYSICAL PENDULUM METHOD 

 

1. The purpose of the work 

There will be applied the physical pendulum method to determine the axial 

mechanical moments of inertia in two situations: 

a. For a body where the position of the center of gravity is known; 

b. For a body where the position of the center of gravity is not known but 

admits an axis of symmetry. 
 

2. Theoretical considerations 

A physical pendulum consists of a body with mass M, suspended in a point O, 

taken out of equilibrium, and allowed to oscillate freely. As can be seen in Figure 1, 

from mechanical point of view, the movement of the physical pendulum is a 

rotational movement around the axis (Δ). 

 

 

 

 

 

 

 

 

 

Figure 1 

The axial mechanical moment of inertia ( J ) is a scalar that characterizes a body 

in rotational motion about an axis and is equal to sum the product of the elementary 

masses and their distances to the axis of rotation.  

In Figure 1, there is considered a rigid body, having the mass m, being in 

rotational movement around axis (Δ). There must be determined, the value of inertia 

moment for the body, with respect to (ΔC), which passes through the mass center. 

O

( )

( )C

d

G


C
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There will be applied the kinetic moment theorem, applied in the case of 

rotation around a fixed axis for a rigid body: 

 
=K M                                                                  (1) 

The angular momentum for the rotation around (Δ) axis is : 

 
= K J                                                               (2) 

There is known that ω is the angular velocity [rad/s] and ε the angular 

acceleration [rad/s2]. The correspondence between the angular displacement 𝜑, and 

the above-mentioned cinematic parameters is: 

 = =                                                                       (3) 

Applying the time derivative on (2), considering (3), the left member from (1) is 

calculated as: 

 
= K J                                                                       (4) 

The moment of external forces is given by the moment of gravitational force, as: 


= −    M m g d sin                                                      (5) 

 

Substituting relations (4) and (5) in (1), passing all the terms in the left member, is 

obtained the equation: 


+     =J M g d sin 0                                                      (6) 

representing the differential equation of the movement of the physical pendulum. 

There is considered that the pendulum performs small oscillations, ( )5   , 

hence the following approximations can be made: 

   sin  and  cos 1 .                                                 (7) 

Based on (7) substituted in (6) is obtained a second order differential equation, 

homogeneous, which describes the small oscillations of the physical pendulum: 


+    =J M g d 0                                                        (8) 

There is introduced the notation: 

                    


 
= 2M g d

J
                                                               (9) 

and equation (8) takes the form:    +  =2 0                                                               (10) 
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Its solution or the motion law of the physical pendulum is a harmonic function: 

( ) =   cos t                                                        (11) 

where  is the amplitude of motion. 

Note: Expression (11) highlights the fact that the physical pendulum motion is an 

oscillation. 

The period is determined as:                 


 
= 

M g d
T 2

J
                                              (12) 

 

The mathematical pendulum (see Figure 2) 

A punctiform body (material point) of mass m, suspended in a point O by 

means of a flexible and inextensible wire of length l, taken out of equilibrium and 

allowed to oscillate freely, forms a mathematical pendulum.  

 

 

 

 

 

 

 

 

 

Figure 2 

The movement of the mathematical pendulum from Figure 2, is also a rotation 

motion around the axis (Δ), so can be applied the kinetic momentum theorem, with 

respect to (Δ) axis described by expression (1). The kinetic momentum of the 

pendulum is:                                     
=  =  2K J m l                                                   (13) 

The time derivative of (13), in keeping with (3) is: 


=  2K m l                                                              (14) 

O

( )

l

G


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The moment of external forces is given by the moment of gravitational force, as: 


= −    M m g l sin                                                       (15) 

There is considered that the pendulum is performing small oscillations, hence 

according to (7), there results: 


= −   M m g l                                                       (16) 

Replacing relations (16), (14) in (1), the differential equation of small oscillations of 

the mathematical pendulum takes the form: 

 +  =l g 0                                                              (17) 

With the notation:                                =2 g

l
,                                                                   (18) 

the equation (17) becomes:                +  =
g

0
l

                                                             (19) 

Its solution or the law of motion of the physical pendulum is a harmonic 

function, identical with(11), having the period:      2=
l

T π
g

                                     (20) 

 

     3. Development of the laboratory work 

a. For bodies where the position of the center of gravity is known (regular shaped 

bodies) 

From relation (12) it can be observed that if the position of the center of gravity 

(distance d) is known and the oscillation period of the physical pendulum fT  is 

timed, the axial moment of inertia J  can be determined. 

2

24
 =   

fT
J M g d

π
                                           (21) 

Applying Steiner's theorem results:            2
 = + cJ J M d                                          (22) 

The experimental value of the axial mechanical moment of inertia in relation to 

the axis   passing through the center of gravity of the disk (C) can be determined as: 

2
exp 2

24
 =    = −− 

f
c

T
J J M d M g d M d

π
                              (23) 
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For a disc of mass M, and diameter D (or radius R), the mechanical moment of axial 

inertia is:                                  
2 2

theor M R M D

2 8

 
= =cJ                                                    (24) 

Having two values for the inertia moment, there will be determined the relative 

error according to: 

exptheo

r

r

theor
100 [%] 



 =
−


c c

c

J J

J
                                              (25) 

The disc will be sited, as presented in Figure 3. There will be timed the period 

for 10 oscillations of the physical pendulum to reduce the error due to human 

reaction time (one tenth of a second for each actuation of the timer).  

 

 

 

 

 

 

 

Figure 3 

There is established the average period for one oscillation Tmed, then Table 1 will 

be completed with the data and results obtained with (21), (23), (24), (25). 

• The characteristics for the discs from laboratory are: 

- discM 6.7 [kg]= , d 0.138 [m]= , R 0.185 [m]= ; 

- discM 1.14 [kg]= , d 0.094 [m]= , R 0.124 [m]= . 

 

Table 1 

No. g  

[m/s2] 

Mdisk 

[kg] 

d  

[m] 

T [s] 𝐽∆   
[𝑘𝑔 𝑚2] 

𝐽∆𝑐
𝑒𝑥𝑝

 
 [𝑘𝑔 𝑚2] 

𝐽∆𝑐
𝑡ℎ𝑒𝑜𝑟   

[𝑘𝑔 𝑚2] 
εr  

[%] 10 T Tmed 

1          

2  

3  

4  

5  
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b. The bodies whose center of gravity is not known, but admitting an axis of 

symmetry, will be suspended in two opposite points (see Figure 4), located on the 

axis of symmetry. Thus are created two physical pendulums, whose periods T1 and T2 

are timed.  

 

 

 

 

 

 

Figure 4 

From the condition of synchronism (same period) of a physical pendulum with 

a mathematical one (Tf = Tm) based on relation (20), the lengths l1 and l2 of the 

mathematical pendulums synchronous with the physical ones are calculated as: 

2 2
1med 2med

1 22 2

g T g T
l ; l

4 4

 
= =

 
                                              (26) 

Equating relations (12) and (20) yields: 

     

=  J M d l                                                          (27) 

Relation (27) is replaced in (22) successively for the two positions of the physical 

pendulum, obtaining a system of three equations with the unknowns d1, d2 , and CJ


 

(see Figure 5), as follows: 

 

 

2
1 1 1

2
2 2 2

1 2





  = + 



 = + 


+ =








c

c

M d l J M d

M d l J M d

d d a

                                   (28) 

 

 

 

 

 
Figure 5 
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Solving the system (28) it results for the considered complex shaped body the 

following expression for calculation of the axial mechanical moment of inertia: 

1 2 1 2
2

1 2

( )( )( )

(2 )


− − + −
=

− −
c

Ma a l a l l l a
J

a l l
                                                   (29) 

 

There will be timed 10 oscillation periods of the physical pendulum, for each of 

the five determinations in each position of the body (see Figure 4). There will be 

calculated the average periods, T1med and T2med. With (26) are determined the lengths l1 

and l2 , which are included in (29), and conducts to the axial mechanical moment of 

inertia. All the obtained results are filled in Table 2. 

 

Table 2 

No. g  

[m/s2] 

M 

 [kg] 

a  

[m] 

T [s] 𝑙1 

[m] 

𝑙2 

[m] 
J∆c

exp
  

[𝑘𝑔 𝑚2] 10 T T1med T2med 

1       

 

   X 

  

 

      X 

 

2  

3  

4  

5  

6   

 

    X 

  

 

    X 

 

7  

8  

9  

10  

 

Note: The characteristics for the connecting rods from laboratory are: 

- M 2.9 [kg]= , a 0.323 [m]= ; 

 

- M 0.68 [kg]= , a 0.182 [m]= . 
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DETERMINATION OF MOMENTS OF MECHANICAL AXIAL 

INERTIA OF BODIES USING THE ROTATIONAL MOVEMENT 

 

1. The purpose of the work 

The aim of the work is to determine the moments of mechanical axial inertia 

for three types of objects (circular disk, tube and rod with two weights), using the 

rotational motion around a vertical axis as presented in Figures 1, 2, 3. 

 

 

 

 

2. Experimental Stand Description 

The experimental stand is presented in Figure 4, and the mechanical sketch in 

Figure 5. 

 

 

 

 

 

 

 

 

 

According to Figure 5, the body of which inertial moment must be 

determined, is fixed on the device, centrated with axis  . The object, and the 

device`s plate will rotate around the axis   with the angular acceleration  . On the 

reel of the device, is wired a cable, which has at the other end attached a known 

weight. The cable is passed through  a pulley, which is changing the wire direction.  

Figure 1 Figure 2 Figure 3 

Figure 4 Figure 5 

Switch STOP 

Switch START 

Body 

Device Weight 

Pulley 
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3. Theoretical considerations 

Since it is a matter of a material system in motion under the action of some 

forces, one of the principles of Analytical Mechanics can be applied, namely the 

D'Alembert's principle, which is stated as follows: The mechanical system is in 

fictitious dynamic equilibrium under the action of the given (active) forces, linkage forces 

and of  inertia forces. 

In case of a material point, the inertia force has an opposite sense to the 

acceleration, and D'Alembert's principle can be expressed by: 

                                                          𝑅̅ + 𝑅̅𝑙 + 𝐹̅𝑗 = 0                                                          (1) 

In case of a rigid body in general motion, each elementary mass has 

acceleration, the elementary inertia force having an opposite sense. Reducing the 

system of elementary inertia forces in the center of gravity C, the force - couple system 

of the inertia forces (Rj, Mjc) is obtained, and D'Alembert's principle is expressed by 

two vectorial equations as: 

𝑅̅ + 𝑅̅𝑙 + 𝐹̅𝑗 = 0                  𝑀̅𝑐 + 𝑀̅𝑙𝑐 + 𝑀̅𝑗𝑐 = 0                                 (2) 

Note:   

1. in translational motion – the force - couple system of inertia forces is reduced to 

a single resultant Rj; 

2. in rotational motion around the fixed axis that passes through C, the force - 

couple system  of inertia forces is reduced to a single torque Mjc.  

 

Appling the D'Alembert's principle to solve dynamic problems, there must be 

considered the kineto-static method (equilibrium equations are written as in statics 

to which kinematic relations are added). 

For the considered case, the friction will be neglected, the pulley will be 

considered ideal (with the role to change the direction of the wire). The bodies will 

be separated and introduced the active forces G (the gravitational force of the body 

of mass m); the connecting forces S (the tension in the wire), H and V (the reactions 

in the cylindrical joint of the device, located in the horizontal plane) and the inertia 

force Fj (related to the translational movement of the mass) and torque Mj (related 

to the  rotational movement of the device) (see Figure 6). The mass m descends with 

the acceleration a, and the device rotates with the angular acceleration ε. 
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The force and moment of inertia are: 

   𝐹̅𝑗 = −𝑚𝑎̅                                  𝑀̅𝑗 = −𝐽∆𝜀 ̅                                (3) 

with scalar quantities:                   𝐹𝑗 = 𝑚𝑎;                          𝑀𝑗 = 𝐽∆ε                                (4) 

 

 

 

 

 

 

 

 

 

For the body of mass (m) situated at the end of wire (which performs 

translational motion) is written an equation of vertical force projection. For the 

device (which performs rotational motion), an equation of moment in relation to 

point O. To the motion expressions, there is added the kinematic relation between a 

and ε (due to the wire): 

𝐺 − 𝑆 − 𝐹𝑗 = 0

𝑆 𝑟 − 𝑀𝑗 = 0
𝑎 = 𝜀 𝑟

                                                        (5) 

Considering the relations (4) and eliminating ε, system (5) takes the form: 

𝑚𝑔 − 𝑆 − 𝑚𝑎 = 0

𝑆 𝑟 − 𝐽∆
𝑎

𝑟
= 0

                                                        (6) 

From the second equation it results the tension in the wire:        𝑆 =
𝐽∆

𝑟2 𝑎                  (7) 

which, if replaced in the first equation, allows the calculation of the acceleration: 

 𝑎 =
𝑚𝑔𝑟2

𝐽∆+𝑚𝑟2                                                                      (8) 

 

It can be seen that the acceleration is constant, so the weight descends 

uniformly accelerated. 

Figure 6 
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The movement of the gravitational force G  is a rectilinear vertical 

translational movement with constant acceleration a. If is denoted by z the 

displacement related to the starting position, the following kinematic relationships 

are valid: 

𝑣 = 𝑧̇;         𝑎 = 𝑣̇ = 𝑧̈                                             (9) 

the last representing a 2nd grade differential equation related to time, that can be 

integrated as follows: 

𝑣̇ = 𝑎 =
𝑑𝑣

𝑑𝑡
       →      𝑑𝑣 = 𝑎𝑑𝑡      → 𝑣 = 𝑎𝑡 + 𝐶1                                  (10) 

                               𝑣 = 𝑧̇ = 𝑎 ∙ 𝑡 + 𝐶1   →  
𝑑𝑧

𝑑𝑡
= 𝑎𝑡 + 𝐶1    →   𝑑𝑧 = (𝑎𝑡 + 𝐶1)𝑑𝑡                         

          𝑧 =
𝑎∙𝑡2

2
+ 𝐶1𝑡 + 𝐶2                                                     (11) 

Constants of integration 𝐶1 and 𝐶2 are determined from the initial condition of 

motion at moment t = 0,  v = 0, a = 0 from which substituting in relations (7) and (8) 

results that: 

                                                                𝐶1 = 𝐶2 = 0                                                         (12) 

Thereby, relations (9) and (11) becomes: 

                                                 𝑣 = 𝑧̇ = 𝑎 ∙ 𝑡 ;            𝑧(𝑡) =
𝑎∙𝑡2

2
                                       (13) 

When the weight reaches the bottom, the condition t = tc and z(tc) = h are considered, 

as a result the acceleration is: 

                                                            𝑎 =
2ℎ

𝑡𝑐
2                                                                  (14) 

By comparing relation (8) with (14) the axial mechanical moment of axial 

inertia can be determined: 

𝐽∆ =
𝑚𝑔𝑟2𝑡𝑐

2

2ℎ
− 𝑚𝑟2                                                    (15) 

 

4. Development of laboratory work 

a.  A blank measurement (without a body on the device) will be performed finding 

for the mass m=m1, a fall time t1, determining the mechanical moment of axial 

inertia of the device, as: 
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𝐽∆0 =
𝑚1𝑔𝑟2𝑡1

2

2ℎ
− 𝑚1𝑟2                                                  (16) 

b. There is placed the body (disk) on the device plate and is changed the mass         

m = m2. There will be measured the fall time t2. The mechanical moment of axial 

inertia given by relation (16) is a sum of moments of inertia of the disk and the 

device: 

𝐽∆𝑐 + 𝐽∆𝑜 =
𝑚2𝑔𝑟2𝑡2

2

2ℎ
− 𝑚2𝑟2                                             (17) 

From (17) it results that the value of the experimental moment of mechanical 

axial inertia of the body: 

𝐽∆𝑐
𝑒𝑥𝑝 =

𝑚2𝑔𝑟2𝑡2
2

2ℎ
− 𝑚2𝑟2 − 𝐽∆0                                           (18) 

c. Repeat point b) for the tube and the rod with two bodies. A set of 

measurements is performed in each case, and the results are filled in Table 1. For 

the rod, step c) is repeated, considering three different distances (d) for each value 

of weight M2 = M3 (Figure 7), and the results are filled in Table 2. 

d. It is known that a disk of mass M and radius R, or diameter D has the moment 

of inertia: 

𝐽∆𝑐
𝑡ℎ𝑒𝑜𝑟 =

𝑀𝑅2

2
=

𝑀𝐷2

8
                                                        (19) 

e. For the body presented in Figure 2, that can be approximated with a tube of 

mass (M) and radius R, r, the moment of inertia in relation to the axis of symmetry 

is: 

𝐽∆𝑐
𝑡ℎ𝑒𝑜𝑟 =

𝑀(𝑅2+𝑟2)

2
=  

𝑀(𝐷2+𝑑2)

8
                                                   (20) 

f. The body from Figure 3 is considered composed of three parts (see Figure 7): 

bar/tube - 1 and two identical hollow cylinders 2 and 3. The moments of inertia of 

each part will be calculated in relation to its center of gravity and then with Steiner's 

theorem, the moments of inertia of these parts 2 and 3 are brought to the axis of 

rotation of the device; in the end all these will add up as follows: 

𝐽∆𝑐
𝑡ℎ𝑒𝑜𝑟 =

𝑀1

12
(3𝑟1

2 + 3𝑟2
2 + 𝐿2 ) + 2 [

𝑀2

12
(3𝑟2

2 + 3𝑟3
2 + 𝐿1

2) + 𝑀2𝑑2]                         (21) 
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g. With relations (19), (20) and (21) the theoretical mechanical moments of inertia 

are determined, which will be filled in Table 1 and Table 2. 

h. Finally, the relative error between the theoretical and the experimental axial 

mechanical moment of axial inertia can be calculated, for each individual 

experiment, as follows: 

𝜀𝑟 =
|𝐽∆𝑐

𝑡ℎ𝑒𝑜𝑟−𝐽∆𝑐
𝑒𝑥𝑝

|

𝐽∆𝑐
𝑡ℎ𝑒𝑜𝑟 ∙ 100 [%]                                                    (22) 

 

 

 

 

 

 

 

i. The input data for the three bodies are: 

• Body 1 (disk) – M = 0.943 [kg],   D = 0.12 [m]; 

• Body 2 (tube) – M = 0.9 [kg], D = 2R = 0.119 [m], d = 2r = 0.109 [m]; 

• Body 3 (tubular bar with two masses)  

                M1 = 0.125 [kg],   M2 = M3 = 0.1/0.2 /0.4  

                L = 0.55 [m] ,        L1 = 0.014/0.029/0.058 [m]; 

      d1 = 2r1=0.007 [m],         d2 = 2r2 = 0.01 [m],          d3 = 2r3 =0.035 [m] 

          r = 0.02 [m],                    h = 0.4 [m].  

Table 1 

Body h m1 m2 tfall [s] 𝑱∆𝑶 𝑱∆𝒄
𝒆𝒙𝒑

 𝑱∆𝒄
𝒕𝒉𝒆𝒐𝒓 εr 

[m] [kg] [kg] t1 t1med t2 t2med [N m] [N m] [N m] [%] 

Disk            

  

  

Tube       

  

Figure 7 
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Table 2 

Body M2 L1 d tfall [s] 𝑱∆𝑶 𝑱∆𝒄
𝒆𝒙𝒑

 𝑱∆𝒄
𝒕𝒉𝒆𝒐𝒓 εr 

[kg] [m] [m] t2 t2med [kg m] [kg m] [kg m] [%] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tubular 

bar 

with 

two 

masses 

 

 

 

 

0.1 

 

 

 

 

0.014 

       

 

 

      

 

 

      

 

 

 

 

 

 

0.2 

 

 

 

 

0.029 

      

 

 

      

 

 

      

 

 

 

 

 

 

0.4 

 

 

 

 

0.058 
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DETERMINATION OF THE COEFFICIENT OF DYNAMIC 

FRICTION ON THE INCLINED PLANE 
 

 

1. The purpose of the paper 

The aim of the work is to determine the coefficient of dynamic friction on the 

inclined plane. The method used consists in applying the Kinetic Energy Theorem in 

differential form to the mechanical system presented in the Figure 1, or Figure 2. 

 

 

 

 

 

  

 

 

 

 

2. Experimental Stand Description 

There is considered the laboratory stand presented in Figure 1, whose sketch is 

presented in Figure 2. The mechanical system is composed of two bodies, 1- situated 

on an inclined plane; 2 – is tied by 1, through a wire, passed over a pulley. Knowing 

that body 2, has a greater weight, it will vertically descend. At each of the two 

positions of the body 2, there are switches, which are connected to a data acquisition 

system, linked to a timer, which is registering the moving time on displacement h .  

 

3. Theoretical considerations 

For the study, according to the Figure 3, there is considered a rigid body 

1Q m g=  , situated on a rough inclined plane at angle  . The rigid Q , is tied through 

1 
START  

Switch  

Pulley  

Figure 2 

3  

2 

STOP  

Switch  

Timer  
Data 

Acquisition 

Board 

Figure 1 

3  
h 
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an ideal wire, which is passed on a pulley. At the other end of the wire, there is tied 

another rigid body 2P m g=  . When body P descending with the acceleration a, the 

body Q, is ascending on the inclined plane, with the same acceleration.  

 

 

 

 

 

 

 

 

The Theorem of Kinetic Energy will be applied in differential form as: 

dEc = dL                                                                     (1) 

For the above considered mechanical system, the kinetic energy is: 

Ec =
1

2

P

g
v2 +

1

2
m1v2 =

1

2
(m1 +

P

g
) ∙ v2                                             (2) 

The time derivative of kinetic energy determined in (2) is: 

𝑑𝐸𝑐 = (𝑚1 +
𝑃

𝑔
) ∙ vdv                                                            (3) 

The elementary mechanical work, corresponding to an elementary displacement dz  is: 

( )  Q Q [ Q ]=  +   −    = −  + dL P dz  sinα  dz μ cosα dz P sinα μcosα dz                 (4) 

There are equalized relations (3) with (4) and it results: 

( ) ( )1 2 2 1vdv [ ]+  = −  + m m m g m g sinα μcosα dz                                (5) 

The previous expression is divided with 𝑑𝑡, resulting: 

( ) ( )1 2 2 1v a v +   = −  +  m m m g m g sinα μcosα                                       (6) 

Simplifying with v, expression (6) becomes: 

( ) ( )1 2 2 1a  +  = − +  m m m m sinα μcosα  g                                   (7) 

From (7) results that the acceleration of the system is: 

2 1

2 1

( )−  +
= 

+

m m sinα μcosα
a g

m m
                                                      (9) 

Figure 3 

N
dz

dz

Q P

cosQ 

sinQ 

T 


0

;v a

;v a
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4. Development of the laboratory work  

The motion of weight P is a vertical rectilinear translational movement with 

constant acceleration a. If is denoted by z the motion from the initial starting position, 

the following kinematic relationships are valid: 

𝑣 = 𝑧̇;         𝑎 = 𝑣̇ = 𝑧̈                                            (10) 

The last expression representing a second order differential equation in relation 

to time, which can be integrated as it follows: 

𝑣̇ = 𝑎 =
𝑑𝑣

𝑑𝑡
       →      𝑑𝑣 = 𝑎𝑑𝑡      → 𝑣 = 𝑎𝑡 + 𝐶1                                  (11) 

𝑣 = 𝑧̇ = 𝑎 ∙ 𝑡 + 𝐶1   →  
𝑑𝑧

𝑑𝑡
= 𝑎𝑡 + 𝐶1    →   𝑑𝑧 = (𝑎𝑡 + 𝐶1)𝑑𝑡 

          𝑧 =
𝑎∙𝑡2

2
+ 𝐶1𝑡 + 𝐶2                                                        (12) 

The constants of integration 𝐶1 şi 𝐶2 are determined from initial conditions of the 

movement at time t = 0: v = 0, a = 0. Hence, replacing the initial conditions in relations 

(11) and (12), results:                                  𝐶1 = 𝐶2 = 0                                                     (13) 

Thus, the relations (11) and (12) are becoming: 

                                                 𝑣 = 𝑧̇ = 𝑎 ∙ 𝑡 ;        𝑧(𝑡) =
𝑎∙𝑡2

2
                                              (14) 

When the body P reaches the final position (down), there are set the following 

conditions in previous relation: t = tc and z(tc) = h. So the acceleration is:  

                                                                     
2

2
=

c

h
a

t
                                                               (15) 

Considering expressions (9) and (15), results: 

2 1
2

2 1

(sim m n

m

) 2

m

−  +
 =

+
c

α μcosα h
g

t
                                             (16) 

or:                                          
( )1 2

2 1 2

m
m

2
m ( )

g

 +
−  + =

c

h m
sinα μcosα

t
                              (17) 

From (13) results that the friction coefficient when sliding 𝜇: 

2 2
2

1 1m
1

m1 m

m

2  
  = − − + 
    c

h
sinα

cosα t g
                                            (18) 
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respectively: 

2
2 2

1

m

m

1 2 2
1

  
  = −  − −
     c c

h h
μ sinα

cosα t g t g
                                            (15) 

To measure de sliding friction coefficient (𝜇) the next steps must be followed: 

a. For the pair of materials (rigid body and inclined plane) and an initially 

established angle of inclination (α), the time and height of fall (tc and h) are 

measured. 

b. There are made three measurements and calculate the average fall time, filling the 

values in Table 1. 

c. With relation (15), is calculated the sliding friction coefficient (μ). 

d. Repeat steps a-c for each pair of materials. 

 

                                                                                                                     Table 1 

Materials in contact α[°] h[m] tc [s] tcmedium [s] μ 

 

Al-Steel 

     

 

 

Al – Al     

 

 

Wood – Steel     

 

 

Wood – Al     

 

 

Wood – Wood     

 

 

Al – Rubber     

 

 

Wood - Rubber     
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In the specialized literature, the sliding friction coefficients have the values 

indicated in Table 2. 

                                                                                         Table 2 

Surface of contact Sliding (μ) 

Metal - Metal 0.09-0.15 

Metal - Wood 0.3-0.4 

Wood - Wood 0.48 

Rubber – Bitumen 0.19-0.34 

Smooth wheel    0.28 

Tooted wheel  0.55 
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THE VARIATION OF THE COEFFICIENT OF DYNAMIC FRICTION  

WITH THE LINEAR SPEED OF A BAR 

 

1. The purpose of the paper 

In the paper, there will be highlighted the variation of the dynamic coefficient of 

friction related to the speed. The method used consists in the analysis of the oscillatory 

motion according to the mass center motion theorem. There is reminded that the dynamic 

friction is defined as the frictional force which appears between two surfaces when they 

are in a moving position. 

       

2. Experimental Stand Description 

There is considered a bar having the length l and gravitational force G , which 

rests freely on rollers 2 and 3, located at a distance 2a one from the other (see Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Roller 2 rotates counterclockwise, being driven by an electric motor through a belt 

drive. Roller 3 rotates clockwise being driven by roller 2 through a crossed belt. The two 

rollers, having the same diameter, will have the same revolution (RPM). Their 

Inductive  

transducer 

Crossed 

belt 
Bar  

Stroboscope  
Autotransformer  

Electrical 

motor  

Roller 3  
Roller 2  

Figure 1   
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revolution can be changed with the help of an autotransformer, that controls the supply 

voltage of the electric motor, and it is measured with an inductive transducer connected 

to a stroboscope with the role of a frequency meter. 

 

3.  Development of the laboratory work 

According to Figure 2, a bar is placed on the rollers, in an off-center position; when 

the rollers are rotating with n [RPM], the bar will begin to perform alternative motion 

related to the stable equilibrium position (point 0, where the center of mass is in the 

middle of the distance 2a between the axes of the two rollers). 

 

 

 

 

 

 

 

 

 

 

According to Figure 2, with the change of the mass center position, the values of 

the normal reactions 1N  and 2N , and the corresponding frictional forces 1T and 2T are 

modifying their values.   

For example, for the position shown in Figure 2, 1N  and 1T  are decreasing and 

2N  and 2T  are increasing. When the frictional force 1T  decreases low enough, the 

sliding of the bar on the rollers occurs, and with this, the direction of motion of the bar 

changes also (from right to left). For a certain position of the bar, characterized by the 

displacement x of the center of mass C related to point 0, the equation of motion of the center 

of mass is: 

21 TTxm −=                                                             (1) 

Figure 2 

A B

O C

A

x

y

Cx

G

R R
n n

2 a

1N
2N

1T
2T

a
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where:                                             2211 ; NTNT ==                                                  (2) 

By writing two moment equilibrium equations for points A and B, 

  == 0,0 BA MM , the reactions 1N  and 2N  are found as: 

( )

( )

2 2

1 1

a x
2a N G a x 0 N G;

2a
a x

2a N G a x 0 N G
2a

+
 −  + =  = 

−
 −  − =  = 

                                        (3) 

where, a is the distance from the equilibrium point 0 of the mass center C, to a one of 

the roller`s axes. 

On the basis of Coulomb`s law, results: 

a

xa
GT

a

xa
GT

2
;

2
21

+
=

−
=                                                 (4) 

Replacing (4) in (1), it is obtained: 

x
m x G 0

a
 +   =                                                                 (5) 

The solution of the differential equation (5) is: 

( ) += tx sin                                                                 (6) 

Note: 
a

g
= 2 ,  and at ( ) ( ) 00; 0 0; 0t x x x= = = . 

It results that the motion of bar`s mass center is a harmonic oscillatory motion 

with the center in O. 

The period of this motion is:         2
242

T
g

a
T =




=








                                          (7) 

 From (7), it results: 

2

22
24

T

K
TKT

g

a
==


= −−

                                          (8) 

where 2,1K  is a constant value. 

By measuring the period T of the oscillatory motion, the coefficient of friction is 

calculated with relation (8). To increase the accuracy of the calculations, the duration 

required for three complete oscillations of the bar is timed and are filled the values in 

Table 1. 
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To establish a link between the value of the sliding friction coefficient and the 

corresponding speed, the number of pulses per second emitted by the inductive transducer 

is read on the stroboscope indicator (on a scale of 0 ÷ 100). Knowing that six pulses are 

emitted at one rotation (because of the six screws assembled on the roller) by multiplying 

by 10 it is obtained the revolution (RPM) and then the speed is calculated as:  

R
n

v i
i 


=

30


                                                          (9) 

The bar is placed on a pair of rollers and three periods of oscillation at different 

revolutions are timed, filling the measured values in Table 1. There are repeated the 

operations described above for other rollers made of different materials. 

Table 1 

 

 

 

 

 

 

 

 

 

 

Using data from Table 1, on a system of axis, having on the abscissa speed v and on 

the ordinate the coefficient of friction on sliding , the curve  = f(v)  for different 

combinations of materials will be drawn (ex. Figure 3 - Steel-Aluminum or Figure 4 

Steel-Bronze). 

a = 302 [mm] R = 50 [mm] g = 9.81 [m/s2] 

No of set:                                       Materials: 

No. 
3T 

[s] 

Period 

T 

[s] 

Revolution 

n 

[rot/min] 

Coefficien

t of 

friction 

µ 

Velocity 

v 

[m/s] 

1      

2      

3      

4      

5      

Figure 3 Figure 4 
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DETERMINATION OF KINETIC ENERGY 

IN THE CASE OF A PLANE MECHANISM 

 

1. The purpose of the work 

Determination of the kinetic energy, the equivalent mechanical moment of 

inertia reduced to the axis of the crank and the angular momentum (kinetic moment) 

in relation to the axis of the crank. For the eccentric crank mechanism, supposing that 

the connecting rod being as an homogeneous bar, presented in Figure 1, in the 

position given by angle  , there will be determined analytically and graph-

analytically, the following : 

a) kinetic energy of the mechanism; 

b) the equivalent mechanical moment of inertia reduced to point O of the mechanism; 

c) the angular momentum of the mechanism in relation to point O; 

d) relative errors between analytical and graphic values in the case of kinetic energy and 

angular momentum. 

 

A

O

B

y

x

1

e

2

r
3

C



 

Figure 1  

According to Figure 1, the elements of the mechanical system, which will be 

analyzed, are: 1 – crank (m);  2 – connecting rod (b); 3 – piston (p). 

φ 

ω1 ω2 

C 
l 
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There will be considered as input data the following:  

             j101000n1 +=   [rot/min]    ( j – semigrup number); 

  i510 +=  [°]    ( i – serial number of the student in the semigrup); 

  40r =  [mm];            ℓ = 80 [mm];         5e =  [mm]; 

  mM 0.25  [kg];    bM 0.5  [kg];       pM 0.125  [kg]. 

 

2. Development of laboratory work 

2.1.  Analytical method 

Step 1. Depending on the number of the semigroup and the serial number in the 

semigroup, values of speed n1 and of angle are determined and filled in Table 1: 

                      Table 1 

 

 

 

Step 2. The connecting rod and the crank will be assimilated with homogeneous bars. 

The kinetic energy of the mechanism is equal to the sum of the kinetic energies of the 

component elements (crank, connecting rod and piston): 

                                           3C2C1CC EEEE ++=                                                  (1) 

where: 

2
101C J

2

1
E =                         -  the kinetic energy of the crank     

2
2C

2
Cb2C J

2

1
vM

2

1
E +=  -  the kinetic energy of the connecting rod                    (2)  

2
Bp3C vM

2

1
E =                        - the kinetic energy of the piston 

Step 3. The mechanical moments of inertia of the crank and connecting rod are 

calculated; 

            a) Calculation of the mechanical moment of inertia of the crank OA: 

                                                              
3

2

0

rM
J m =                                                          (3) 

i j n1   
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           b) Calculation of the mechanical moment of inertia of connecting rod AB: 

                                                             
12

M
J

2
b

C


=                                                            (4) 

Step 4. Calculation of the angular velocities of the connecting rod and the crank: 

a) angular velocity ω1: 

                                                                  
30

1
1

n
=


                                                   (5) 

b) the angular velocity of connecting rod AB is: 

                                                         
12

cos

cos





 =



r
                                                          (6) 

where: 

                               


esinr
sin

+
= ,                   −= 2sin1cos                                (7) 

Step 5. The value of the crank's kinetic energy will be calculated with: 

                2

101
2

1
= JEC                                                             (9) 

Step 6. Are determined the coordinates of points A, B and C in plane, used to 

determine the velocities of points A, B and C needed to calculate the kinetic energies 

of the connecting rod and piston. 

a) The coordinates of point A are: 

                  




=

=

sinry

cosrx

A

A                                                             (10) 

b) The coordinates of point B are: 

                 




−=

+=

ey

coscosrx

B

B 
                                               (11) 

c) The coordinates of point  C are: 

                 










−=

+=

esin
2

y

cos
2

cosrx

C

C





                                                   (12) 
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Step 7. Determination of the projections of the linear velocities of points B and C on 

the axes Ox and Oy, by using the expressions:                                       

                           
( )

( )



−−=

−+=

AB2AyBy

AB2AxBx

xxvv

yyvv
                                             (13) 

                            
( )

( )



−−=

−+=

AC2AyCy

AC2AxCx

xxvv

yyvv
                                          (14) 

where:      
Ax A 1

Ay A 1

v y

v x

 = − 


= 

  

Step 8. The modulus of the velocities of points B and C are: 

22

ByBxB vvv += ;          22

CyCxC vvv +=                                     (15) 

Step 9. The kinetic energies of the connecting rod and piston are calculated: 

          a) Kinetic energy of the connecting rod: 

                2
2C

2
Cb2C J

2

1
vM

2

1
E +=                                          (16) 

           b) Kinetic energy of the piston: 

                2
Bp3C vM

2

1
E =                                                        (17) 

Step 10. The analytical total kinetic energy of the mechanism will be: 

                 321 CCC

an

c EEEE ++=                                               (18) 

Step 11. The equivalent (reduce) mechanical moment of inertia reduced to point O is: 

                 
2
1

cred
0

E2
J




= [kg m2]                                                      (19) 

 

Note - The reduced equivalent moment of inertia is the moment of inertia of a fictitious 

body that has the same state of motion (kinetic energy) as the entire mechanism. 

 

Step 12. The kinetic moment relative to point O of each element of the mechanism 

(crank, connecting rod and piston) is calculated using the relations: 

10
)1(

0
JK =  

( ) 2CCxCCyCb
)2(

0
JvyvxMK −−=                                      (20) 
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( )BxBByBp
)3(

0 vyvxMK −=  

Step 13. The total (analytical) kinetic moment relative to point O of the mechanism 

will be calculated as a sum of the component kinetic moments: 

                )3(

0

)1(

0

)1(

0 KKKK an

O ++=    [kg m2 s-1]                            (21) 

 

 

2.2. The graph - analytical method (see Figure 2) 

The mechanism is represented on the length scale, chosen suitable for the input 

data, in the configuration given by the angle .The angular velocity 1 of the crank, 

the mechanical moment of inertia of the crank related to O, the mechanical moment 

of inertia of the connecting rod related to C are already calculated analytically (see 

relations (3)-(5)), and the velocity of point A is: 

                                      rv 1A =                                                            (22) 

Point A of the connecting rod moves on a circle of radius r, and point B on a line 

parallel to the Ox axis. The instantaneous center of velocity of the connecting rod I2 is 

found at the intersection of the normal at velocities taken to points A and B (the crank 

OA is extended and a perpendicular line to B on the Ox axis is drawn). 

In planar motion, the velocities distribution related to the instantaneous center 

of velocity I2 is specific to a rotational movement relative to this center. Hence: 

                              AIv,AIv 2A22A ⊥=                                    (23) 

      BIv,BIv 2B22B ⊥=                         (24) 

       CIv,CIv 2C22C ⊥=                         (25) 

The distances CI,BI,AI 222  are measured on the drawing and multiplied by the 

length scale. 

From (23)  results:                      
AI

v

2

A
2 =                                                                         (26) 

With relations (24) and (25) velocities of points B and C are graphically determined. 
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a) The total kinetic energy of the mechanism by graph - analytical method is 

determined with the relation: 

       22

2

22

10
2

1

2

1

2

1

2

1
BpCCb

gr

C vMJvMJE +++=                          (27) 

b) The graph-analytical kinetic moment relative to point O will be calculated with the 

relation:                                     )3(

0

)1(

0

)1(

0 KKKK gr

O ++=                                                       (28) 

where:                                                    10
)1(

0
JK =                                                          (29) 

            2CCb
)2(

0
JdvMK =                                                 (30) 

                         evMK Bp
)3(

0
=                                                     (31) 

The distance d that will be submitted in relation (30), is obtained by measuring 

the distance from point O to the support of the vector Cv on the drawing and 

multiplied by the scale. Also in relation (30), the sign (-) is taken when the direction 

of the velocity of point B is to the left, and the sign (+) when the direction of the 

velocity of point B is to the right. 

A

O

B

y

xe

C



I2

vA

vB

vC
d

 

Figure 2 

ω1 

ω2 

ω2 

φ 
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The relative errors, in general, are evaluated with the relation: 

                                                  %100
−

=
an

gran

r
V

VV
                                                   (32) 

where: V – is the analised component; 

Table 2 

𝑬𝑪
𝒂𝒏   [J] 

 

𝑬𝑪
𝒈𝒓

  [J] 𝜺𝒓𝑬𝒄 [%] 𝑲𝑶
𝒂𝒏 [kgm2s-1] 𝑲𝑶

𝒈𝒓
 [kgm2s-1] 𝜺𝒓𝑲𝒐 [%] 
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DETERMINATION OF THE RESTITUTION COEFFICIENT  

AT COLLISION 

1. The purpose of the work 

The aim of the laboratory work is the experimental determination of the 

coefficient of restitution due to the collision of two bodies of the same material or of 

different materials. 

 

2. Theoretical considerations 

In Figure 1 is presented the model of a mechanical system consisting of two 

bodies, body 1 of mass m1 moving on a circular trajectory in the vertical plane and 

body 2 of mass m2 fixed in a rigid mechanical structure of mass m2 >> m1, at rest . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1

O





2C(m )
1v



1

A1(m1) 

A0(t0) 

=2v 0

1A



Figure 2

O






1v

2

A0(t0) 

 =2v 0

A1(tfinal) 

A1 



143 

Body 1, is fixed on the end A of a rod OA of length l and negligible mass, 

articulated to a fixed horizontal axis at point O, thus forming a physical pendulum. 

To produce the collision, the mass m1 is released from the rest position OA0, performing 

a circular movement with the velocity v1, and after the collision with mass m2 

performing a motion in the opposite direction to the velocity v1 as in Figure 2. 

The collision is a mechanical phenomenon that occurs in a short period, with 

sudden variations of velocity and that generates very large forces called impacts 

expressed by relation (1). 

∫ 𝐹̅𝑑𝑡
𝑡1

𝑡0
= 𝑃̅                                                                 (1) 

Collision events are characterized by the collision coefficient of restitution (velocity of 

the same direction) and expressed as: 

𝑘 =
P2

P1
=

v2
′ −v1

′

v1−v2
                                                              (2) 

where: P1 represents the normal percussion before collision, and P2 the normal 

percussion after collision.  

Figure 1 shows the movement of mass m1 before collision, and Figure 2 shows 

the movement of mass m1 after the collision. It is considered that the velocities of body 2 

before and after the collision are zero, respectively: v2 = v2
′ = 0, which conducts to: 

𝑘 = −
v1

′

v1
                                                                      (3) 

To determine the velocity v1, the physical pendulum equation is solved 

according to Figure 1, on descendant motion: 

𝜑̈ +
𝑀𝑔𝑑

𝐽
𝑠𝑖𝑛φ = 0                                                                    (4) 

where M is the mass of pendulum, d is the distance from point O to the mass center, 

and J is the axial inertia moment with respect to horizontal axis which passes 

through point O. Changing the variable time with φ, and separating the variables, 

the differential equation becomes: 

𝑑 (
𝜑̇2

2
) = −

𝑀𝑔𝑑

𝐽
𝑠𝑖𝑛φdφ = 0                                                   (5) 

by integrating relation (5) it follows: 

                                                       
𝜑̇2

2
=

𝑀𝑔𝑑

𝐽
𝑐𝑜𝑠φ + 𝐶1                                                      (6) 
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If the initial conditions of the movement are imposed, at the moment t1 = 0, 

namely 𝜑(0) = 𝛼 and and 𝜑̇(0) = 0 , in equation (6) the integration constant C1 will 

be obtained as: 

 𝐶1 = −
𝑀𝑔𝑑

𝐽
𝑐𝑜𝑠α                                                            (7) 

By replacing relation (7) in (6) it will result the expression of velocity on descending 

zone, as: 

𝜑̇2

2
=

𝑀𝑔𝑑

𝐽
(𝑐𝑜𝑠φ − cosα) = 0                                                    (8)  

The expression of the velocity of body 1 before the collision is obtained by 

imposing the condition 𝜑 = 0 in relation (8): 

v1 = 𝑙𝜑̇ = 𝑙√2
𝑀𝑔𝑑

𝐽
(1 − 𝑐𝑜𝑠𝛼) = 2𝑙√

𝑀𝑔𝑑

𝐽
sin

𝛼

2
                                        (9)    

To determine the velocity v1
′ , after the collision, the equation of the physical 

pendulum (see Figure 2) will be solved on ascending zone, according to relations (4)-

(6) resulting the constant of integration C2.       

                                                      
𝜑̇2

2
=

𝑀𝑔𝑑

𝐽
𝑐𝑜𝑠φ + 𝐶2                                                         (10) 

If the initial conditions of the movement are imposed, at the moment t = final = 0, 

namely 𝜑 =  𝜑(𝑡𝑓𝑖𝑛𝑎𝑙) = 𝛽 and 𝜑(𝑡̇ 𝑓𝑖𝑛𝑎𝑙) = 0 , in equation (10) the constant of 

integration C2 will result as: 

 𝐶2 = −
𝑀𝑔𝑑

𝐽
𝑐𝑜𝑠β                                                                (11) 

By replacing relation (11) in (10) it will result: 

𝜑̇2

2
=

𝑀𝑔𝑑

𝐽
(𝑐𝑜𝑠φ − cosβ)                                                        (12)  

The expression of the velocity v1
′ = 𝑙𝜑̇ that body 1 has it after collision is obtained by 

imposing the condition 𝜑 = 0  in relation (12): 

v1
′ = 𝑙√2

𝑀𝑔𝑑

𝐽
(1 − 𝑐𝑜𝑠𝛽) = 2𝑙√

𝑀𝑔𝑑

𝐽
sin

𝛽

2
                                       (13)  
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Substituting relations (9) and (13) into relation (2) results the coefficient of 

restitution k: 

    
sin

2

sin
2

=




k                                                                   (14) 

3. Experimental Stand Description 

Figure 3 shows, the laboratory stand for the study of collisions, which is used to 

determine the measurements of angles α and β from expression (14) to determine the 

coefficient of restitution due to collision k. The bodies to collide are interchangeable 

(having mass 1m  and 2m ) and are used to analyze the collisions between the same 

material bodies or different materials bodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Development of the laboratory work  

A set of three measurements is performed for collisions between the same 

material (see Figure 4), and for different materials, measuring on the protractor the 

angles before and after the collision. Using expression (14), there is calculated the 

coefficient of restitution for them, and the obtained values are filled in Table 1. 

Mobile

component

(pendulum rod)
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Figure 3 
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(welded construction)
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Table 1 

 

 

 

 

 

No. Materials α 𝜷  𝒌𝒊 kmedium 

 

1 

 

Al-Al 

   

    

   

 

2 

 

Steel-Steel 

   

    

   

 

3 

 

Brass-Brass 

   

    

   

 

4 

 

Steel-Al 

   

    

   

5 Steel-Brass 

   

    

   

6 Brass-Al 

   

    

   

Brass

Figure 4 

Alu min um
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