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Preface 

Introduction 

The present document is the intended to support the laboratory sessions 
for the Pattern Recognition Systems course. It presents important 
methods from the fields of Image Processing, Pattern Recognition and 
Machine Learning. The main goal is to develop systems capable of 
perception and automatic scene representation from visual input in the 
form of images. 

Electronic support 

To access the additional files required for the practical work use the 
following link: 

https://cv.utcluj.ro/index.php/teaching.html 

The website contains the following: the starting project (for multiple 
versions of Visual Studio); an introduction to the OpenCV library; and 
the additional data files required for the programming assignments. 

Required software 

The recommended software to complete the assignments is Visual 
Studio 2013 or above. Visual Studio solution files along with sample 
functions are provided for multiple versions. For newer versions an 
automatic upgrade of the latest one should work. It is also possible to 
setup a project manually and link the OpenCV library to it. For this, 
consult the documentation of the library. Any other IDE with C++ 
support can be used such as Eclipse or CLion. The assignments can be 
programmed in other languages with OpenCV support, such as Python, 
although this document assumes C++ is used. 
  

https://cv.utcluj.ro/index.php/teaching.html
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Prerequisites 

The following are required to understand and to successfully complete 
the presented material: 

• Linear algebra – matrix operations, linear systems, eigenvalue 
decomposition; 

• Analytic geometry and trigonometry – parametric equations for 
curves/surfaces;  

• Real analysis – multivariate functions, partial derivatives, local and 
global minima; 

• Statistics and probability theory – characterization of random 
variables; 

• Data structures and algorithms – point lists/vectors, sorting 
arbitrary objects; 

• C++ programming – text file input/output, functions and 
arguments, memory access and dynamic allocation 
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1 Least Mean Squares 

1.1 Objectives 

In this assignment a line is fitted to a set of points using the Least Mean 
Squares method (linear regression). Both the iterative solution 
(gradient descent) and the closed form are presented. This laboratory 
work also introduces the OpenCV-based framework used throughout 
the course. 

1.2 Theoretical Background 

Consider the following problem: Given a set of data points of the form 
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) where 𝑖𝑖 = {1,2, … ,𝑛𝑛}, find the equation of the line which best 
fits the data. The solution to this problem is obtained via linear 
regression. In this setting, the set of points is considered the training 
set and the goal is to find a line model that best fits the data. We will 
consider three different model types.  

1.2.1 Model 1 – Slope-intercept form 

When trying to fit a model to data the first step is to establish the form 
of the model. Linear regression adopts a model that is linear in terms 
of the parameters (including a constant term). In this first part, we will 
adopt a simple model that expresses 𝑦𝑦 in terms of 𝑥𝑥: 

𝑓𝑓(𝑥𝑥) = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥 

This is the usual way this problem is solved. However, this 
representation cannot treat vertical lines, since then 𝜃𝜃1 → ∞. 
Nonetheless, it provides a good introduction to the method. A vector 
can be formed that contains all the parameters of the model 𝜽𝜽 =
[𝜃𝜃0,𝜃𝜃1]T (the intercept term 𝜃𝜃0 and the linear coefficient for  𝜃𝜃1). 

The Least Squares approach for determining the parameters states that 
the best fit to the model will be obtained when the following quadratic 
cost function is at its minimum: 

𝐽𝐽(𝜽𝜽) =
1
2
�(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
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The squared differences can be motivated by the assumption that the 
error in the data follows a normal distribution – see reference [1]. Note 
that, this minimizes the error only along the 𝑦𝑦-axis and not the actual 
distances of the points from the line. In order to minimize the cost 
function, we take its partial derivatives with respect to each parameter. 

𝜕𝜕
𝜕𝜕𝜃𝜃0

𝐽𝐽(𝜽𝜽) = �(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

𝜕𝜕
𝜕𝜕𝜃𝜃1

𝐽𝐽(𝜽𝜽) = �(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖 

The cost function attains its minimum when the gradient becomes zero. 
One general approach to find the minimum is to use gradient descent. 
Since the gradient shows the direction in which the function increases 
the most, if we take steps in the opposite direction we decrease the 
value of the function. By controlling the size of the step we can arrive 
at a local minimum of the function. Since the objective function in this 
case is quadratic, the function has a single minimum and so gradient 
descent will find it. 

To apply gradient descent start from an initial non-zero guess 𝜽𝜽 chosen 
randomly. Find the gradient in that point: 

∇𝐽𝐽(𝜽𝜽) = �
𝜕𝜕𝐽𝐽(𝜽𝜽)
𝜕𝜕𝜃𝜃0

,
𝜕𝜕𝐽𝐽(𝜽𝜽)
𝜕𝜕𝜃𝜃1

�
𝑇𝑇

 

Then apply the following update rule until convergence: 

𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜽𝜽 − 𝛼𝛼∇𝐽𝐽(𝜽𝜽), 

where 𝛼𝛼 is the learning rate and it is chosen appropriately to ensure the 
cost function decreases at each iteration. When the change between the 
parameter values is small enough, the algorithm stops. 

The gradient descent approach is appropriate when the roots of the 
gradient are hard to find. But in this case an explicit solution can be 
deduced. By setting the gradient components equal to 0 we obtain the 
following system: 
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⎩
⎪
⎨

⎪
⎧ 𝜃𝜃0𝑛𝑛 + 𝜃𝜃1�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= �𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝜃𝜃0�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝜃𝜃1�𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= �𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

which is a linear system with two equations and two unknowns and 
can be solved directly to obtain the values for 𝜽𝜽:  

⎩
⎪
⎨

⎪
⎧𝜃𝜃1 =

𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 )2  

𝜃𝜃0 =
1
𝑛𝑛
��𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝜃𝜃1�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
 

In general, for higher dimensional data, the minimization problem for 
this model can be written in matrix form: 

‖𝐴𝐴𝜽𝜽 − 𝒃𝒃‖2 = (𝐴𝐴𝜽𝜽 − 𝒃𝒃)𝑇𝑇(𝐴𝐴𝜽𝜽 − 𝒃𝒃) 

In our case, for two-dimensional data, the matrix 𝐴𝐴 is of size 𝑛𝑛 𝑥𝑥 2, 
with each row i containing the value 1 followed by the value xi and 𝒃𝒃 
is an 𝑛𝑛 𝑥𝑥 1 column vector containing the values 𝑦𝑦𝑖𝑖. In this case the 
closed form solution is given directly by: 

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝒃𝒃 

For more details and derivation consult [2]. 

1.2.2 Model 2 – Normal form 

In order to address the issue of vertical lines we introduce another 
model that is capable of dealing with every possible line orientation. 
Consider the following parameterization of a line in 2D: 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) = 𝜌𝜌 

This describes a line with unit normal vector [𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽), 𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽)] which 
is at a distance of 𝜌𝜌 from the origin. The cost function we wish to 
minimize in this case is the sum of squared distances of each point 
from the line. This is given by: 



6 
 

𝐽𝐽(𝛽𝛽,𝜌𝜌) =
1
2
�(𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) − 𝜌𝜌)2
𝑛𝑛

𝑖𝑖=1

 

Note, that this is the actual error term that we want to minimize and 
that in the previous section we have considered only the error along 
the 𝑦𝑦-axis, which is incorrect. 

The components of the gradient need to be evaluated to perform 
gradient descent: 

𝜕𝜕𝐽𝐽
𝜕𝜕𝛽𝛽

= �(𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽)− 𝜌𝜌)�−𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽)�
𝑛𝑛

𝑖𝑖=1

 

𝜕𝜕𝐽𝐽
𝜕𝜕𝜌𝜌

= −�(𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) − 𝜌𝜌)
𝑛𝑛

𝑖𝑖=1

 

A closed form solution can be obtained, although not as easily as in the 
previous case. The solution is given as: 

𝛽𝛽 = −
1
2
𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2�2�𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
2
𝑛𝑛
�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,�(𝑦𝑦𝑖𝑖2 − 𝑥𝑥𝑖𝑖2) +
1
𝑛𝑛
��𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
2

−
1
𝑛𝑛
��𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
2𝑛𝑛

𝑖𝑖=1

� 

𝜌𝜌 =
1
𝑛𝑛
�cos(𝛽𝛽)�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽)�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 

1.2.3 Model 3 – Standard form 

There is a third possibility for the form of the model. If we adopt a 
parameterization with 3 free parameters for a line: 

𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑥𝑥 = 0 

The cost function can be defined as: 
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𝐽𝐽(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) =
1
2
�(𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑦𝑦𝑖𝑖 + 𝑥𝑥)2
𝑛𝑛

𝑖𝑖=1

 

which can be written in matrix form as the squared norm of a vector: 

𝐽𝐽(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) = (𝐴𝐴𝜽𝜽)𝑇𝑇𝐴𝐴𝜽𝜽 

where 𝐴𝐴 is a matrix with 𝑛𝑛 𝑥𝑥 3 elements, each row containing 
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 1) and 𝜽𝜽 = [𝑎𝑎, 𝑏𝑏, 𝑥𝑥]𝑇𝑇 is the parameter vector (column vector 
with 3 elements).  

We need to minimize this norm to obtain the parameter values. 
Working with this model which has 3 parameters has two important 
consequences. First, all possible lines can be modeled. Second, we will 
have a family of parameter values which correspond to the same line. 
To solve the second issue we will seek the parameter vector with unit 
norm. Finding the null-space of a matrix 𝐴𝐴 with unit norm is a classical 
problem and it is solved with Singular Value Decomposition. We have: 

𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑈𝑈 

where 𝑈𝑈 and 𝑈𝑈 are orthogonal matrices and 𝑈𝑈 contains values only on 
the main diagonal (called singular values). From here the optimal value 
for the parameter vector will correspond to the last column of the 
matrix 𝑈𝑈 (which is the eigenvector of 𝐴𝐴𝑇𝑇𝐴𝐴 corresponding to the 
smallest eigenvalue). The interested reader can consult [2] for a 
demonstration and further details. 

1.3 Practical Background 

Download the Visual Studio project which is provided. It contains the 
some sample functions and includes the OpenCV library for image 
processing. Consider using the following code snippets in your work. 

Reading from a text file: 
FILE* f = fopen(“filename.txt”,”r”); 
float x,y; 
fscanf(f,”%f%f”, &x,&y); 
fclose(f); 

Creating a color image – 8 unsigned bits with 3 channels: 
Mat img(height, width, CV_8UC3);  
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Accessing the pixel at position  row i and column j: 
Vec3b pixel = img.at<Vec3b>(i,j);  
//byte vector with 3 elements 

Modifying the pixel at row i and column j: 
img.at<Vec3b>(i,j)[0] = 255; //blue channel 
img.at<Vec3b>(i,j)[1] = 255; //green channel 
img.at<Vec3b>(i,j)[2] = 255; //red channel 

Draw a line between two points: 
line(img, Point(x1, y1), Point(x2, y2), 
Scalar(Blue,Green,Red)); 

Viewing the image: 
imshow(“title”, img); 
waitKey(); 

1.4 Practical Work 
1. Read the input data from the given file. The first line contains the 

number of points. Each line afterwards contains an (𝑥𝑥, 𝑦𝑦) pair. 
2. Plot the points on a white 500x500 background image. For better 

visibility draw circles, crosses or squares centered at the points. Be 
careful to consider how the coordinate system in the image is 
defined. Some points may have negative coordinates. Either do not 
plot them at all or shift the whole graph. The fitting method itself 
is not affected by points having negative coordinates. 

3. Optionally, use model 1 and gradient descent to fit a line to the 
points. Visualize the line at each k-th step. Output and visualize the 
value of the cost function at each step. Choose the learning rate so 
that the cost function is decreasing. 

4. Use model 1 and the closed form equation to calculate the 
parameters 𝜃𝜃0 and 𝜃𝜃1. Visualize both the final line from step 3 and 
this one and compare the parameter values. 

5. Optionally, use model 2 and gradient descent to fit a line to the 
points. Visualize the line at each k-th step. Output and visualize the 
value of the cost function at each step. Choose the learning rate so 
that the cost function is decreasing. 

6. Use model 2 and the closed form to calculate the parameters 𝛽𝛽 and 
𝜌𝜌. Compare the results with those from step 5. 

7. Optionally, find the parameters with model 3 and SVD. 



9 
 

1.5 Example Results 

 

Figure 1.1 – Example Results using model 2 on data from files points1 and points2 

1.6 References 

[1] Stanford Machine Learning - course notes 1 
http://cs229.stanford.edu/notes/cs229-notes1.pdf  

[2] Tomas Svoboda - Least-squares solution of Homogeneous 
Equations 
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lec
tures/Supporting/constrained_lsq.pdf 

  

http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
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2 RANSAC 

2.1 Objectives 

This laboratory work discusses the RANSAC method and applies it to 
the problem of fitting a line to a set of 2D data points. 

2.2 Theoretical Background 

Consider the following problem: given 𝑈𝑈 a set of 2D data points, find 
the line which minimizes the sum of distances of the points to the line 
(orthogonal regression). The data may be contaminated by outliers 
(noisy or incorrect points), thus fitting a line with the Least Mean 
Squares on all the points would lead to incorrect results – see Figures 
2.1.a-b. 
 

 

Figure 2.1.a – Line obtained via Least Mean Squares fit on the whole data 
 

 

Figure 2.1.b – Two possible lines considered by the RANSAC approach 
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Random Sample Consensus (RANSAC) is a paradigm for fitting a 
model to experimental data, introduced by Martin A. Fischler and 
Robert C. Bolles in [1]. RANSAC addresses the previous issue and 
automatically determines the set of inlier points and proceeds to fit a 
model only on this subset. As stated by the authors: "The RANSAC 
procedure is opposite to that of conventional smoothing techniques: 
Rather than using as much of the data as possible to obtain an initial 
solution and then attempting to eliminate the invalid data points, 
RANSAC uses as small an initial data set as feasible and enlarges this 
set with consistent data when possible". 

The general RANSAC algorithm based on [2] is given below: 
Algorithm RANSAC 
1. Randomly select a sample containing a number of 𝑥𝑥 data points 

from 𝑈𝑈 and instantiate the model from this subset. 
2. Determine the set of data points 𝑈𝑈𝑖𝑖 which is within a distance 

threshold 𝑎𝑎 of the model. The set 𝑈𝑈𝑖𝑖 is the consensus set of the 
sample and defines the inliers for model 𝑖𝑖.  

3. If the size of 𝑈𝑈𝑖𝑖 (the number of inliers) is greater than some 
threshold 𝑇𝑇, re-estimate the model using all the points in 𝑈𝑈𝑖𝑖 and 
terminate. 

4. If the size of 𝑈𝑈𝑖𝑖 is less than 𝑇𝑇, select a new subset and repeat from 
step 1. 

5. After 𝑁𝑁 trials the largest consensus set 𝑈𝑈𝑖𝑖 is selected, and the 
model is re-estimated using all the points in the subset 𝑈𝑈𝑖𝑖. 

The definition of the parameters appearing in the previous algorithm 
is given next: 
• 𝑥𝑥 – the size of the subset selected for model fitting, i.e. the 

number of points; 
• 𝑈𝑈 – the whole input point set; 
• 𝑈𝑈𝑖𝑖 – the subset of the inlier points for the i-th trial, or support set; 
• 𝑎𝑎 – threshold value for maximum admissible distance from the 

model; 
• 𝑇𝑇 – threshold value for signaling a sufficiently good data fit; 
• 𝑁𝑁 – maximum number of trials; 

The general algorithm can be adapted to the problem of line fitting on 
2D points. The first step is to select 𝑥𝑥 = 2 points randomly, these 
points define a line. The support or consensus set 𝑈𝑈𝑖𝑖 for this line 
consists of the points that lie closer than a distance threshold 𝑎𝑎 to the 
line. This random selection is repeated a number of times and the line 
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with biggest support set is retained. The points within the threshold 
distance are denoted as the inliers (and constitute the eponymous 
consensus set).  

The method works one supposition that if one of the points is an outlier 
then the line will not gain much support. Scoring a line by its support 
set size has the advantage of favoring better fits. For example, the line 
passing through points a and b from Figure 1-b has a support of 10, 
whereas the line passing through points c and d has a support of only 
2. We can probably deduce from this that c or d is an outlier point. 

Next we address some questions regarding the approach and parameter 
selection: 
• Why is the method randomized? Exhaustively trying all subsets 

is possible only for a small dataset. For example, for a dataset of 
size |𝑈𝑈| = 𝑛𝑛 we have 𝑛𝑛(𝑛𝑛 − 1)/2 point pairs to check for 
possible lines. This quickly becomes intractable for values of 𝑛𝑛 
on the order of 105. If the model is fitted using more than 2 
points the possible subsets is even larger. By repeatedly selecting 
two random points we avoid checking all possible subsets. 

• How many trials should we perform? The value for the number 
of trials 𝑁𝑁 should be chosen such that there is a high enough 
probability 𝑝𝑝 that at least one from the 𝑁𝑁 trials is outlier-free. 
Consider the following: 

o 𝑞𝑞 – is the estimated probability that a point is an inlier 
o 𝑞𝑞𝑠𝑠 – is the probability the all 𝑥𝑥 points are inliers 
o 1 − 𝑞𝑞𝑠𝑠 – is the probability that at least one point is an 

outlier 
o (1 − 𝑞𝑞𝑠𝑠)𝑁𝑁- is the probability that there is at least an 

outlier in each of the N trials 
o 𝑝𝑝 = 1 − (1 − 𝑞𝑞𝑠𝑠)𝑁𝑁 – is the probability that at least one 

trial is outlier-free 
o The value of 𝑁𝑁 can be calculated based on a fixed value 

for the desired 𝑝𝑝 
o 𝑁𝑁 = log(1 − 𝑝𝑝) /log (1 − 𝑞𝑞𝑠𝑠) 

• How to choose the distance threshold 𝑎𝑎? We would like to 
choose the distance threshold 𝑎𝑎, such that a point is an inlier with 
a given probability 𝑞𝑞. For this we require the probability 
distribution for the distance of an inlier from the model 
(measurement error model). In practice, the distance threshold is 
usually chosen empirically. However, if it is assumed that the 
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measurement error is Gaussian with zero mean and standard 
deviation 𝜎𝜎, then a value for t may be set to 3𝜎𝜎. 

• How large is an acceptable consensus set? A rule of thumb is to 
terminate if the size of the consensus set is similar to the number 
of inliers believed to be in the data set, given the assumed 
proportion of outliers, i.e. for 𝑛𝑛 data points 𝑇𝑇 = 𝑞𝑞 ⋅ 𝑛𝑛 

2.2.1 Line model 

The equation of a line through two distinct points (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) 
is given by: 

(𝑦𝑦1 − 𝑦𝑦2)𝑥𝑥 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 + 𝑥𝑥1𝑦𝑦2 − 𝑥𝑥2𝑦𝑦1 = 0 

The distance from a point (𝑥𝑥0, 𝑦𝑦0) to a line given by the equation 𝑎𝑎𝑥𝑥 +
𝑏𝑏𝑦𝑦 + 𝑥𝑥 =  0 is: 

𝑑𝑑 =
|𝑎𝑎𝑥𝑥0 + 𝑏𝑏𝑦𝑦0 + 𝑥𝑥|

√𝑎𝑎2 + 𝑏𝑏2
 

2.3 Practical Background 

Opening an image with automatic grayscale conversion: 
Mat img = imread(“filename”, 
CV_LOAD_IMAGE_GRAYSCALE); 
 
Creating a grayscale image named dst: 
Mat dst(height, width, CV_8UC1);  
//8bit unsigned 1 channel 
 
Accessing the pixel at row i and column j: 
uchar pixel = img.at<uchar>(i,j);  
//unsigned char type 
 
A black point from the image at row i and column j corresponds 
to a point at coordinates (x=j, y=i) – this is the OpenCV library’s 
convention for point coordinates  
if (img.at<uchar>(i,j)==0){ 
 Point p; p.x = j; p.y = i; 
} 
 
Modifying the pixel at row i and column j: 
img.at<uchar>(i,j) = 255; //white 
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Selecting a random point from an array of n points (requires stdlib.h): 
Point p = points[rand()%n]; 
 
Draw a line between two points: 
line(img, Point(x1, y1), Point(x2, y2), 
Scalar(B,G,R)); 
 
Viewing the image: 
imshow(“title”, img); 
waitKey(); 

2.4 Practical Work 
1. Open the input image and construct the input point set by finding 

the positions of all black points. 
2. Calculate the parameters 𝑁𝑁 and 𝑇𝑇 starting from the recommended 

values: 
3. 𝑎𝑎 = 10, 𝑝𝑝 = 0.99, 𝑞𝑞 = 0.7 and 𝑥𝑥 = 2. For points1.bmp use 𝑞𝑞 =

0.3. 
4. Apply the RANSAC method: 

a. Choose two different points; 
b. Determine the equation of the line passing through the selected 

points; 
c. Find the distances of each point to the line; 
d. Count the number of inliers; 
e. Save the line parameters (𝑎𝑎, 𝑏𝑏, 𝑥𝑥) if the current line has the 

highest number of inliers so far; 
5. Write the correct termination conditions based on the size of the 

consensus set and the maximum number of iterations. 
6. Optionally, estimate the line parameters using Least Mean Squares 

on the best consensus set. 
7. Draw the optimal line found by the method.  

2.5 References 

[1] Fischler, Martin A., and Robert C. Bolles. "Random sample 
consensus: a paradigm for model fitting with applications to image 
analysis and automated cartography." Communications of the 
ACM 24, no. 6 (1981): 381-395. 

[2] Hartley, Richard, and Andrew Zisserman. Multiple view geometry 
in computer vision. Cambridge university press, 2003. 
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3 Hough Transform 

3.1 Objectives 

The main objective of this laboratory session is to implement the 
Hough Transform for line detection from edge images. 

3.2 Theoretical Background 

The classical Hough transform is a method that solves an important 
image processing problem: finding lines in an image that contains a set 
of interest points. The straightforward method of computing lines from 
each pair of points has an increased computational complexity of 
𝑂𝑂(𝑛𝑛2), and is unusable for a large number of points. 

The Hough transform was first proposed and patented by Peter Hough 
in [1]. It proposes to count how many points are placed on each 
possible line in the image. The original method relies on the 
representation of the lines in the slope-intercept form (𝑦𝑦 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏), 
and on the building of the line parameter space, also called Hough 
accumulator. For each image interest point, all possible lines are 
considered, and the corresponding elements in the line parameter space 
are incremented. Relevant image lines are found at the locations of the 
local maxima in the line parameter space. 

The initial proposal was focused on the detection of lines from video 
sequences, based on a slope and free-term line representation. This 
representation is not optimal because it is not bounded: in order to 
represent all the possible lines in an image, the slope and the intercept 
terms should vary between -∞ and +∞. The work of Duda and Hart 
from [2] made the Hough transform more popular in the computer 
vision field. The main problem of the original Hough transform 
(unbounded parameters) is solved by using the so-called normal 
parameterization. The normal parameterization of a line consists of 
representing the line by its normal vector and the distance from origin 
to the line. The normal representation (1) is sometimes referred to as 
the 𝜌𝜌 − 𝜃𝜃 representation (Figure 3.1). 
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Figure 3.1 – Line represented by its normal vector, at angle 𝜽𝜽, and its distance 

𝝆𝝆 from the origin 

The equation satisfied by a point on the line (x,y) is then given by: 

𝜌𝜌 = 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥(𝜃𝜃) + 𝑦𝑦 𝑥𝑥𝑖𝑖𝑛𝑛(𝜃𝜃) 

Parameter quantization plays an important role in decreasing the 
computational complexity of the method. Quantization determines the 
size of the Hough accumulator. For each of the two line parameters, a 
quantization level must be established, depending on the desired 
accuracy. The accuracy of 𝜌𝜌 can be of 10, 1 or 0.5 pixels etc, and the 
accuracy of 𝜃𝜃 can be of 10, 1 or 0.5 degrees etc. The parameters 𝜌𝜌 and 
𝜃𝜃 have a limited range because the image has a limited size. The 
maximum value for 𝜌𝜌 is the diagonal of the image. Depending on the 
interval selected for θ, there are mainly two equivalent configurations 
for the line parameter range. The first one is proposed in the original 
work and we will employ the second one: 

𝜃𝜃 ∈ [0°, 180°),𝜌𝜌 ∈ [−𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚] 

𝜃𝜃 ∈ [0,360°),𝜌𝜌 ∈ [0, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚] 
   
Let us assume that the Hough accumulator 𝐻𝐻 represents the quantized 
line parameter space. The quantization steps for 𝜌𝜌 and 𝜃𝜃 are Δ𝜌𝜌 and 
Δ𝜃𝜃, respectively. Their maximum values are 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚. The 
accumulator will have a size of (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 /Δ𝜌𝜌, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚/Δ𝜃𝜃). H is built with 
the following simple steps: 
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Algorithm Hough Transform 

Initialize 𝐻𝐻 with 0 
For each edge point 𝑃𝑃(𝑥𝑥,𝑦𝑦)  

For each 𝜃𝜃 from 0 to 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  (with a step of Δθ)   
  

Compute 𝜌𝜌 = 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥(𝜃𝜃) + 𝑦𝑦 𝑥𝑥𝑖𝑖𝑛𝑛(𝜃𝜃) 
If 𝜌𝜌 ∈ [0,𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚] increment 𝐻𝐻(𝜌𝜌,𝜃𝜃)    

The increment operation of a Hough location can also be weighted, if 
different weights are desired for each interest point. Once the 
accumulator is built, relevant lines are extracted as the local peaks of 
the accumulator. Local peaks are found at places where the 
accumulator is larger than all neighboring cells. 

An example of line detection based on the Hough transform is 
presented below (Figure 3.2). The parameter ranges for this example 
are [0, 360) degrees for θ , [0, 144] pixels for ρ.  The parameter 
accuracy is 1 degree for θ  and 1 pixel for ρ. 

Choosing the correct level of quantization is important. If the 
quantization is too fine, then the resolution increases, but so does the 
processing time. A high resolution and also raises the chances of 
collinear points falling into different accumulator bins (this might 
cause multiple detections and the fragmentation of certain lines).  

Although the Hough transform is widely used for line detection, it can 
also work with more complex curves, as long as an adequate 
parameterization is available. Duda and Hart [2] also proposed the 
detection of circles based on the Hough transform. In this case a 3D 
parameter space is needed and each interest point is transformed into a 
right circular cone in the parameter space (all the possible circles 
containing the point). Later, Ballard generalized the Hough transform 
to detect arbitrary non-analytical shapes in [3]. 
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3.3 Practical Background 

Use the simplest configuration for parameter quantization: 1 pixel for 
𝜌𝜌 and 1 degree for 𝜃𝜃. Use the second option for the parameter range 
from formula (2). The size of the Hough accumulator will have D + 1 
rows and 360 columns, where D is the image diagonal rounded to the 
nearest integer.  
 
Mat Hough(D+1, 360, CV_32SC1); //matrix with 
int values 
 
Initialize the accumulator to zero using: 
 
Hough.setTo(0); 
 
Modify the accumulator like: 
 
Hough.at<int>(ro, theta)++; 
 
The accumulator needs to be normalized to have values in the range 0-
255 to be viewed as a grayscale image. Use the normalize method 
or find the maximum from the accumulator and call the following 
function. Note that the subsequent operations must be performed on 
the original accumulator. 
 
Mat houghImg; 
Hough.convertTo(houghImg, CV_8UC1, 
255.f/maxHough); 
 
In order to locate peaks in the accumulator, you will test for each 
Hough element if it is a local maximum in a squared window (n x n) 
centered on that element. Use the following custom structure to store 
and sort the local maxima. The < operator of the structure has been 
overwritten to use the > operator between the peak values specifically 
to sort descending when the sort method from the algorithm 
library is called. 
 
struct peak{ 

int theta, ro, hval; 
bool operator < (const peak& o) const { 

return hval > o.hval; 
} 

}; 
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3.4 Practical Work 
1. Compute the Hough accumulator based on the edge image and 

display it as a grayscale image. 
2. Locate the k largest local maxima from the accumulator. Try using 

different window sizes such as: 3x3, 7x7 or 11x11. 
3. Draw lines that correspond to the peaks found. Use both the 

original image and the edge image for visualization. 

3.5 Example Results 

     
    a.                                     b.                                      c. 

 
d. 

 
e. 

Figure 3.2 - a. An image containing a pattern with straight borders corrupted by 
salt-and-pepper like noise, b. The edges detected with the Canny edge detector, c. 

The most relevant image lines are displayed with green, associated to the most 
relevant 8 peaks from the Hough accumulator, d. The Hough accumulator 

displayed using an intensity encoding, e. The Hough accumulator displayed in 3D, 
using color encoding. 
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3.6 References 
[1] P. Hough, “Method and means for recognizing complex patterns”, 

US patent 3,069,654, 1962. 
[2] R. O. Duda and P. E. Hart, "Use of the Hough Transformation to 

Detect Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp. 
11–15, 1972. 

[3] D. H. Ballard, "Generalizing the Hough Transform to Detect 
Arbitrary Shapes", Pattern Recognition, Vol.13, No.2, p.111-122, 
1981. 
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4 Distance Transform 

4.1 Objectives 
In this laboratory session we will study an algorithm that calculates the 
Distance Transform of a binary image (object and background). Our 
goal is to evaluate the pattern matching score between a known 
template object (e.g. a pedestrian contour) and an unknown object (e.g. 
the contour of a different object) in order to decide if the unknown 
object is similar or not to the template object. The less the pattern 
matching score is, the more similar is the unknown object is to the 
template. 

4.2 Theoretical Background 

4.2.1 The Distance Transform 

A distance transform, also known as distance map or distance field, is 
a representation of a digital image. The term transform or map is used 
depending on whether the initial image is transformed, or it is simply 
endowed with an additional map or field. The map will contain at each 
pixel the distance to the nearest obstacle pixel. The most common type 
of obstacle pixel is a boundary pixel from a binary image.  

The distance transform is an operator normally only applied to binary 
images. The result of the transform is a grayscale image that looks 
similar to the input image, except that the intensities at each point show 
the distance to the closest boundary point. 

One way to think about the distance transform is to first imagine that 
foreground regions in the input binary image are made of some 
uniform slow burning flammable material. Then consider 
simultaneously starting a fire at all points on the boundary of a 
foreground region and letting the fire burn its way into the interior. If 
we then label each point in the interior with the amount of time that the 
fire took to first reach that point, then we have effectively computed 
the distance transform of that region. 

See the next image for an example of a chessboard distance transform 
on a binary image containing a simple rectangular shape. In the left 
image the pixels with value “0” represent object pixels (boundary 
pixels) and those with value “1” background pixels. In the right image 
is the result of applying the Distance Transform using the chessboard 

http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Binary_image
http://en.wikipedia.org/wiki/Chessboard_distance
http://en.wikipedia.org/wiki/Binary_image
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metric, where each value encodes the minimum distance to an object 
pixel (boundary pixel): 

 

Figure 4.1 – On the left: binary input image; on the right: distance transform of the 
image, every position shows the checkerboard distance to the closest boundary 

point (0 values in the input image) [1] 
 

Usually the transform is qualified with the chosen metric. For example, 
one may speak of Manhattan Distance Transform, if the underlying 
metric is Manhattan distance. Common metrics are: 

- Euclidean distance; 
- Taxicab geometry, also known as City block distance or 

Manhattan distance; 
- Chessboard distance. 

There are several algorithms for implementing DT: 
- Chamfer based DT; 
- Euclidian DT; 
- Voronoi diagram based DT. 

We will present the Chamfer based DT which is a simple and very 
fast method (it requires only two scans of the binary image) and it is 
an approximation of the Euclidian DT. The sketch of the algorithm is 
the following: 

Algorithm Chamfer Distance Transform 

- A 3x3 weight mask is chosen which is has values proportional to 
the Euclidean distances from the middle element. The simplest and 
smallest such values are 2 for lateral displacement and 3 for 
diagonal displacement. In this way the distances obtained will be 
equal to approximately twice the actual Euclidean distances. 

𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑥𝑥 = �
3 2 3
2 0 2
3 2 3

� 
 

http://en.wikipedia.org/wiki/Metrics
http://en.wikipedia.org/wiki/Manhattan_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Taxicab_geometry
http://en.wikipedia.org/wiki/Chessboard_distance
http://en.wikipedia.org/wiki/File:Distance_Transformation.gif
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- The distance transform map has the same size as the input image 
and is initialized with zeroes and large values based on the 
positions of edge points: 

𝐷𝐷𝑇𝑇(𝑖𝑖, 𝑗𝑗) =  �0 𝑖𝑖𝑖𝑖𝑤𝑤(𝑖𝑖, 𝑗𝑗) ∈ 𝑂𝑂𝑏𝑏𝑗𝑗𝑤𝑤𝑥𝑥𝑎𝑎
∞ 𝑖𝑖𝑖𝑖𝑤𝑤(𝑖𝑖, 𝑗𝑗) ∉ 𝑂𝑂𝑏𝑏𝑗𝑗𝑤𝑤𝑥𝑥𝑎𝑎 

- A double scan (first top-down, left-right and second bottom-up, 
right-left) of the image (with the corresponding two parts of the 
mask – see the figure below) is required to update the minimum 
distance. On the first traversal the central element is compared to 
the neighbors corresponding yellow elements, and on the second 
traversal, with green elements: 

 
- The next update operation should be performed on the DT image 

while scanning (forward and then backward) the source image. 
Only the a subset of neighbors are used and so the minimum is 
calculated based on the previous values with regards to traversal 
direction: 
𝐷𝐷𝑇𝑇(𝑖𝑖, 𝑗𝑗) = 𝑖𝑖𝑖𝑖𝑛𝑛

(𝑘𝑘,𝑙𝑙)∈𝑀𝑀𝑚𝑚𝑠𝑠𝑘𝑘
𝐷𝐷𝑇𝑇(𝑖𝑖 + 𝑘𝑘 − 1, 𝑗𝑗 + 𝑙𝑙 − 1) + 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑥𝑥(𝑘𝑘, 𝑙𝑙) 

It is worth noting, that the center element with weight 0 belongs to both 
masks, and so, the minimum is always compared to the existing value 
from the DT map. 

If we apply DT on a binary image, where the value 0 signifies object 
pixels and the value 255 encodes the background, and we want to 
obtain a grayscale DT image (8 bits/pixel), the value ∞ from the 
algorithm should be substituted with the value 255. 

4.2.2 Pattern Matching using DT 

Our goal in this part is to compute the pattern matching score between 
a template, which represents a known object, and an unknown object. 
The score can be used to quantify the similarity between the contours 
of the template and that of unknown object. We consider that both the 
template and the unknown object images have the same dimensions. 
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The steps for computing the pattern matching score: 
- compute the DT image of the template object; 
- superimpose the unknown object image over the DT image of the 

template; 
- the pattern matching score is the average of all the values from 

the DT image that lie under the unknown object contour. 

Example: Consider that the template object is a leaf contour and the 
unknown object is a pedestrian contour: 
- Compute the DT image of the leaf: 
- Superimpose the pedestrian image over the DT image of the leaf;  
- Evaluate the matching score as the average values from the DT 

image from the positions indicated by the pedestrian contour 

 

Figure 4.2 – From left to right: contour of a leaf; contour of a pedestrian; the 
pedestrian superimposed on the distance transform of the leaf 

4.3 Practical Background 
Opening the source image as a grayscale image: 
Mat img = imread(“filename”, 
IMREAD_GRAYSCALE); 
 
Initializing the DT image as a copy of the source image: 
Mat dt = src.clone(); 
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Convenient 8-neighborhood access at position (i,j): 
int di[9] = {-1,-1,-1,0,0,0,1,1,1}; 
int dj[9] = {-1,0,1,-1,0,1,-1,0,1}; 
int weight[9] = {3,2,3,2,0,2,3,2,3}; 
for(int k=0; k<9; k++) 

uchar pixel = img.at<uchar>(i+di[k], 
                            j+dj[k]); 

4.4 Practical Work 
1. Implement the Chamfer Distance Transform algorithm. Compute 

and visualize the DT images for: contour1.bmp, contour2.bmp, 
contour3.bmp. Results should coincide with the ones presented in 
the text. Object pixels are black and background pixels are white. 

2. Compute the DT image for template.bmp. Evaluate the matching 
score between the template and each of the two unknown objects 
(unknown_object1.bmp – pedestrian contour, 
unknown_object2.bmp – leaf contour). The matching score is 
given as the average of the DT image values that lie under the 
contour points from the object image. 

3. Compute the matching score by switching the roles of template and 
unknown object. Are the scores the same? 

4. Before calculating the matching score, translate the unknown 
object such that its center of mass coincides with template’s center 
of mass. Estimate the center of mass based on the contour points 
only.  

5. Optionally, implement the true Euclidean Distance Transform. 
Why is the Chamfer Distance Transform different? 
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4.5 Example Results 

Examples of DT image results using Chamfer method using the 
suggested weight matrix.  

 

 

Figure 4.3 – Upper row: input binary images; lower row: corresponding DT images 

4.6 References 

[1] Wikipedia The Free Encyclopedia – Distance Transform, 
http://en.wikipedia.org/wiki/Distance_transform 

[2] Compendium of Computer Vision – Distance Transform, 
http://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm 

  

http://en.wikipedia.org/wiki/Distance_transform
http://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm
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5 Statistical Data Analysis 

5.1 Objectives 

The purpose of this laboratory session is to explore methods for 
analyzing statistical data. We will study the mean, standard deviation, 
covariance and the Gaussian probability density function. The 
experiments will be performed on a set of images containing faces. The 
covariance matrix will be used to establish the correlations between 
different pixels. 

5.2 Theoretical Background 

5.2.1 Definitions 
A random variable 𝑋𝑋 is a function that assigns a real number 𝑋𝑋(𝜁𝜁) to 
each outcome 𝜁𝜁 in the sample space of a random experiment (see figure 
below). This function 𝑋𝑋(𝜁𝜁) is performing a mapping from all the 
possible elements in the sample space onto the real line (real numbers). 
Random variables can be: 

- Discrete: the resulting number after rolling a dice; 
- Continuous: the weight of a person. 

 

 
Figure 5.1 Random variable example 

 
A random variable vector 𝑋𝑋 is a function that assigns a vector of real 
numbers to each outcome 𝑋𝑋(𝜁𝜁) in the sample space 𝑈𝑈. The notion of 
a random vector is an extension to that of a random variable: 

𝑿𝑿 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁]𝑇𝑇 
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5.2.2 Statistical Characterization of Random variables 

A random variable with probability density function 𝑓𝑓𝑚𝑚(𝑥𝑥) can be 
partially characterized by: 

1. Expectation: represents the center of mass. 

𝐸𝐸[𝑋𝑋] = 𝜇𝜇 = � 𝑥𝑥𝑓𝑓𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞

 

2. Variance: represents the spread about the mean. 

𝑈𝑈𝐴𝐴𝑉𝑉[𝑋𝑋] = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2] = �(𝑥𝑥 − 𝜇𝜇)2𝑓𝑓𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞

 

3. Standard deviation: The square root of the variance. It has the 
same units as the random variable. 

𝑈𝑈𝑇𝑇𝐷𝐷[𝑋𝑋] = 𝑈𝑈𝐴𝐴𝑉𝑉[𝑋𝑋]1/2  

5.2.3 Statistical Characterization of Random Vectors 

We can describe a random vector with the following measures: 
1. Mean vector: 

𝐸𝐸[𝑿𝑿] = �𝐸𝐸[𝑋𝑋1],𝐸𝐸[𝑋𝑋2], … ,𝐸𝐸[𝑋𝑋𝑁𝑁]� = [𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑁𝑁] = 𝝁𝝁 
2. Covariance matrix: 

𝐶𝐶𝑂𝑂𝑈𝑈[𝑿𝑿] = 𝚺𝚺 =  𝐸𝐸[(𝑿𝑿 − 𝝁𝝁)(𝑿𝑿− 𝝁𝝁)𝑇𝑇] 

= �
𝐸𝐸[(𝑋𝑋1 − 𝜇𝜇1)(𝑋𝑋1 − 𝜇𝜇1)𝑇𝑇] … 𝐸𝐸[(𝑋𝑋1 − 𝜇𝜇1)(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)𝑇𝑇]

… … …
𝐸𝐸[(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)(𝑋𝑋1 − 𝜇𝜇1)𝑇𝑇] … 𝐸𝐸[(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)𝑇𝑇]

�

= �
𝜎𝜎12 … 𝑥𝑥1𝑁𝑁
… … …
𝑥𝑥𝑁𝑁1 … 𝜎𝜎𝑁𝑁2

� 

 
The covariance matrix indicates the tendency of each pair of random 
variables (dimensions in a random vector) to vary together, i.e., to co-
vary. The covariance has several important properties: 

- If 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑘𝑘 tend to increase together, then 𝑥𝑥𝑖𝑖𝑘𝑘 > 0 
- If 𝑋𝑋𝑖𝑖 tends to decrease when 𝑋𝑋𝑘𝑘 increases, then 𝑥𝑥𝑖𝑖𝑘𝑘 < 0 
- If 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑘𝑘 are uncorrelated, then 𝑥𝑥𝑖𝑖𝑘𝑘 = 0 
- �𝑥𝑥𝑖𝑖𝑖𝑖� < 𝜎𝜎𝑖𝑖𝜎𝜎𝑖𝑖 , where 𝜎𝜎𝑖𝑖 is the standard deviation of 𝑋𝑋𝑖𝑖   
- 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑈𝑈𝐴𝐴𝑉𝑉[𝑋𝑋𝑖𝑖] 
- 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 
 

The elements of the covariance matrix can be expressed as: 
𝑥𝑥𝑖𝑖𝑘𝑘 = 𝐸𝐸[(𝑋𝑋𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝑋𝑋𝑘𝑘 − 𝜇𝜇𝑘𝑘)] 
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𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2 
𝑥𝑥𝑖𝑖𝑘𝑘 = 𝜌𝜌𝑖𝑖𝑘𝑘𝜎𝜎𝑖𝑖𝜎𝜎𝑘𝑘 

where 𝜌𝜌𝑖𝑖𝑘𝑘 is called the correlation coefficient. 
 
The next figures represent the correlation charts between two 
features, 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑘𝑘. 

 

Figure 5.2 – Examples of 2D samples with different correlation coefficients 
 

5.3 Practical Background 

You are given p=400 images that contain human faces. The figure 
below shows a montage of all the input images: 

 

Figure 5.3 – Input image dataset containing portraits 

Let 𝑰𝑰 be the feature matrix which will hold all the intensity values from 
the image set. 𝑰𝑰 is of dimension 𝑝𝑝 × 𝑁𝑁, where p is the number of 
images and N is the number of pixels in each image. The kth row 
contains all the pixel values from the kth image in row-major order. The 
row-major order for a 3x3 matrix is: 
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�
𝐴𝐴00 𝐴𝐴01 𝐴𝐴02
𝐴𝐴10 𝐴𝐴11 𝐴𝐴12
𝐴𝐴20 𝐴𝐴21 𝐴𝐴22

� → [𝐴𝐴00,𝐴𝐴01,𝐴𝐴02,𝐴𝐴10,𝐴𝐴11,𝐴𝐴12,𝐴𝐴20,𝐴𝐴21,𝐴𝐴22] 

Each image in the set has the dimension of 19x19 pixels. The 
interpretation of the feature matrix I is that each row holds a sample 
for the N dimensional random variable 𝑿𝑿 which is drawn from the 
distribution underlying the dataset. 

Your task will be to compute the covariance matrix of the given set of 
images and to study how different features vary with respect to each 
other.  

The mean value of a feature located at position i in the image is:  

𝜇𝜇𝑖𝑖 =
1
𝑝𝑝
�𝐼𝐼𝑘𝑘𝑖𝑖

𝑜𝑜

𝑘𝑘=1

 

Where 𝐼𝐼𝑘𝑘𝑖𝑖 represents the value of feature i in image k. The standard 
deviation of a feature i is: 

𝜎𝜎𝑖𝑖 = �
1
𝑝𝑝
� (𝐼𝐼𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)2

𝑜𝑜

𝑘𝑘=1
 

The elements of the covariance matrix, 𝑥𝑥𝑖𝑖𝑖𝑖 can be computed by: 

𝑥𝑥𝑖𝑖𝑖𝑖 =
1
𝑝𝑝
�(𝐼𝐼𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝐼𝐼𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)
𝑜𝑜

𝑘𝑘=1

 

The correlation coefficient is: 

𝜌𝜌𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖
𝜎𝜎𝑖𝑖𝜎𝜎𝑖𝑖

 

Note that 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2 and 𝜌𝜌𝑖𝑖𝑖𝑖 = 1. 

5.4 Practical Work 

1. Load the 400 images and store the intensity values as rows in the 
feature matrix I. The code that loads several images from a folder 
is: 
char folder[256] = “faces”; 
char fname[256]; 
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for(int i=1; i<=400; i++){ 
 sprintf(fname,”%s/face%05d.bmp”, folder, i); 
 Mat img = imread(fname,0); 
} 

2. Compute mean values for each feature and save them to a csv text 
file (comma separated values). Write the components in a text file 
separated by commas and save it with a csv extension. Csv files 
are viewable in Microsoft Excel as tables. 

3. Compute the covariance matrix and save it to a csv text file. 
4. Compute the correlation coefficients matrix and save it to a csv text 

file. 
5. Compute the correlation coefficient and display the correlation 

chart between selected intensity feature pairs. The correlation chart 
between the ith and jth features is a 256x256 white image with black 
points at locations (𝐼𝐼𝑘𝑘𝑖𝑖, 𝐼𝐼𝑘𝑘𝑖𝑖), for each possible k. Use the following 
coordinate pairs (row, column) which must be linearized 
(transformed to a single value using the row-major order presented 
above) to find the correct column index from I: 
a. (5,4) and (5,14). These points correspond to pixels belonging 

to left eye and right eye. Your result should resemble the one 
in figure below having the correlation coefficient ~ 0.94. 

b. (10,3) and (9, 15). These points correspond to pixels belonging 
to left cheek and right cheek. Your result should resemble the 
one in figure below having the correlation coefficient ~ 0.84. 

c. (5,4) and (18,0). These points correspond to pixels belonging 
to left eye and the left bottom corner of the face images (notice 
these points are not highly correlated). Your result should 
resemble the one in figure below having the correlation 
coefficient ~ 0.07. 

6. Plot the probability density function for a selected feature having 
the form of a one dimensional Gaussian probability density 
function: 

𝑓𝑓𝑚𝑚(𝑥𝑥) =
1

√2𝜋𝜋𝜎𝜎
𝑤𝑤𝑥𝑥𝑝𝑝 �−

(𝑥𝑥 − 𝜇𝜇)2

2𝜎𝜎2
� 

where μ is the mean and σ is the standard deviation for the selected 
feature. Normalize the density values so that the peak reaches the 
height of the image. 

7. Optionally, plot the 2D probability density function as a grayscale 
image for two selected features using the 2D Gaussian probability 
density function: 
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𝑝𝑝�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖� =
1

2𝜋𝜋�det (𝐶𝐶𝑖𝑖𝑖𝑖)
𝑤𝑤𝑥𝑥𝑝𝑝 �−0.5 ��𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖, 𝑥𝑥𝑖𝑖

− 𝜇𝜇𝑖𝑖�𝐶𝐶𝑖𝑖𝑖𝑖−1 �
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖��� 

where μi is the mean for feature i and 𝐶𝐶𝑖𝑖𝑖𝑖 is the covariance matrix 
between features i and j. Normalize the density values to fit inside 
the range 0:255. 

5.5 Example Results 

   
a 

  
b 

 
c 

Figure 5.3 – From left to right, Example Results for tasks 5 a, b and c 
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5.6 References 

[1] MIT CBCL FACE dataset  
http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz  
  

http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz
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6 Principal Component Analysis 
6.1 Objectives 

This laboratory work describes the Principal Component Analysis 
method. It is applied as a means of dimensionality reduction, 
compression and visualization. A library capable of providing the 
eigenvalue decomposition of a matrix is required. 

6.2 Theoretical Background 

You are given a set of data points lying in a high dimensional space. 
Each point can represent the features of a training instance. Our goal 
is to reduce the dimensionality of the data points while preserving as 
much information as possible. 

We begin with a simple 2D example. We plot the points corresponding 
to data collected about how different people enjoy certain activities and 
their skill in the respective domain. Figure 1 shows a cartoon example, 
from [2].  

Consider now the two vectors u1 and u2. If we project the 2D points 
onto the vector u2 we obtain scalar values with a small spread (standard 
deviation). If instead, we project it onto u1 the spread is much larger. 
If we had to choose a single vector we would prefer to project onto u1 
since the points can still be discerned from each other. 

 

Figure 6.1 – Visualizing the projection of 𝒙𝒙 along the 𝒖𝒖1 axis 

More formally, each 2D point can be written as: 

𝒙𝒙 = 〈𝒙𝒙,𝒖𝒖1〉𝒖𝒖1 ‖𝒖𝒖1‖ +⁄ 〈𝒙𝒙,𝒖𝒖2〉𝒖𝒖2 ‖𝒖𝒖2‖⁄  

Here we have projected x onto each vector and then added the 
corresponding terms. The dot product 〈𝒙𝒙,𝒖𝒖𝑖𝑖〉 gives the magnitude of 
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the projection, it needs to be normalized by the length of the vector 
‖𝒖𝒖𝑖𝑖‖ and the two vectors give the directions. This is possible since u1 
and u2 are perpendicular. If we impose that they be also unit vectors 
then the normalization term disappears. See [4] for a better 
visualization. 

The idea behind reducing the dimensionality of the data is to use only 
the largest projections. Since the projections onto u2 will be smaller we 
can approximate x with only the first term: 

𝒙𝒙�𝟏𝟏 = 〈𝒙𝒙,𝒖𝒖1〉𝒖𝒖1 ‖𝒖𝒖1‖⁄  

In general, given an orthonormal basis for a d-dimensional vector 
space called B with basis vectors bi we can write any vector as: 

𝒙𝒙 = �〈𝒙𝒙,𝒃𝒃𝑖𝑖〉𝒃𝒃𝑖𝑖 = �(𝒙𝒙𝑇𝑇𝒃𝒃𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

𝑑𝑑

𝑖𝑖=1

𝒃𝒃𝑖𝑖 

The question arises of how to determine the basis vectors onto which 
to perform the projections. Since we are interested in maximizing the 
preserved variance the covariance matrix could offer useful 
information. The covariance of two features is defined as: 

𝐶𝐶(𝑖𝑖, 𝑗𝑗) =
1

𝑛𝑛 − 1
�(𝑥𝑥𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑥𝑥𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖�
𝑛𝑛

𝑘𝑘=1

 

where 𝜇𝜇𝑖𝑖 is the mean for feature i and 𝑥𝑥𝑘𝑘𝑖𝑖 is the i-th feature of the k-th 
point. The covariance matrix contains covariance values for all pairs. 
It can be shown that it can be expressed as a simple matrix product: 

𝐶𝐶 =
1

𝑛𝑛 − 1
(𝑋𝑋 − 𝝁𝝁𝟏𝟏1𝑚𝑚𝑛𝑛)𝑇𝑇(𝑋𝑋 − 𝝁𝝁𝟏𝟏1𝑚𝑚𝑛𝑛) 

where 𝝁𝝁 is a vector containing all mean values and 𝟏𝟏1𝑚𝑚𝑛𝑛 is a row vector 
containing only ones. If we extract the mean from the data as a 
preprocessing step the formula simplifies further: 

𝐶𝐶 =
1

𝑛𝑛 − 1
𝑋𝑋𝑇𝑇𝑋𝑋 

The next step is to find the axes along which the covariance is 
maximal. Eigenvalue decomposition of a matrix offers such 
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information. Intuitively, (almost) any matrix can be viewed as a 
rotation followed by a stretching along the axes and the inverse 
rotation. The eigenvalue decomposition returns such a decomposition 
for the matrix: 

𝐶𝐶 = 𝑄𝑄Λ𝑄𝑄𝑇𝑇 = �𝜆𝜆𝑖𝑖𝑄𝑄𝑖𝑖𝑄𝑄𝑖𝑖𝑇𝑇
𝑑𝑑

𝑖𝑖=1

 

where Q is a dxd rotation matrix (orthonormal) and 𝛬𝛬 contains 
elements only on the diagonal representing stretching along each axis. 
The elements are called eigenvalues and each corresponding column 
from Q is its eigenvector. Since we want to preserve the projections 
with the largest variance we order the eigenvalues according to 
magnitude and pick the first k corresponding eigenvalues. In this way 
C can be approximated as: 

�̃�𝐶𝑘𝑘 = 𝑄𝑄1:𝑘𝑘Λ1:𝑘𝑘𝑄𝑄1:𝑘𝑘
𝑇𝑇 = �𝜆𝜆𝑖𝑖𝑄𝑄𝑖𝑖𝑄𝑄𝑖𝑖𝑇𝑇

𝑘𝑘

𝑖𝑖=1

 

where 𝑄𝑄1:𝑘𝑘 is a dxk matrix with the first k eigenvectors and Λ1:𝑘𝑘 is a 
kxk diagonal matrix with the first k eigenvalues. If k equals d we obtain 
the original matrix and as we decrease k we get increasingly poorer 
approximations for C. 

Thus we have found the axes along which the variance of the 
projections is maximized. Then, for a general vector its approximate 
using k vectors can be evaluated as: 

𝒙𝒙�𝒌𝒌 = �〈𝒙𝒙,𝑄𝑄𝑖𝑖〉𝑄𝑄𝑖𝑖 = �(𝒙𝒙𝑇𝑇𝑄𝑄𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

𝑄𝑄𝑖𝑖 

where 𝑄𝑄𝑖𝑖 is the ith column of the rotation matrix Q. 

The PCA coefficients can be calculated as: 

𝑋𝑋𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 = 𝑋𝑋𝑄𝑄 
PCA approximation can be performed on all the input vectors at once 
(if they are stored as rows in X) using the following formulas: 

𝑿𝑿�𝒌𝒌 = �𝑋𝑋𝑄𝑄𝑖𝑖𝑄𝑄𝑖𝑖𝑜𝑜 = �𝑋𝑋𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑖𝑖𝑄𝑄𝑖𝑖
𝑜𝑜

𝑘𝑘

𝑖𝑖=1

= 𝑋𝑋𝑄𝑄1:𝑘𝑘𝑄𝑄1:𝑘𝑘
𝑇𝑇

𝒌𝒌

𝒊𝒊=𝟏𝟏

= 𝑋𝑋𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐1:𝑘𝑘𝑄𝑄1:𝑘𝑘
𝑇𝑇  
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where 𝑄𝑄1:𝑘𝑘 signifies the first k columns from the matrix 𝑄𝑄. It is 
important to distinguish the approximation from the coefficients; the 
approximation is the sum of coefficients multiplied by the principal 
components. 

We will end the theoretical description by giving several applications 
of PCA: 
• reducing the dimensionality of features - in some cases a large 

feature vector may prohibit fast prediction; 
• visualizing the data - we can inspect only data in 3D and 2D, for 

higher dimensional data a projection is necessary; 
• approximating the data vectors; 
• detecting redundant features and linear dependencies between 

features; 
• noise reduction - if the noise term has less variance then the data 

(high signal-to-noise ratio) PCA eliminates the noise from the 
input 

6.3 Practical Background 

Declare and allocate an nxd matrix with double precision floating point 
values: 
Mat X(n,d,CV_64FC1); 
 
Calculate the covariance matrix after the means have been subtracted: 
Mat C = X.t()*X/(n-1); 
 
Perform eigenvalue decomposition on the covariance matrix C, 
Lambda will contain the eigenvalues and Q will contain the 
eigenvectors along columns. The transpose operation is necessary to 
follow the notation from the theoretical discussion. 
Mat Lambda, Q; 
eigen(C, Lambda, Q); 
Q = Q.t(); 
 
Dot product is implemented as normal multiplication. Note that due to 
0 indexing the first row is row(0). The dot product between row i of X 
and column i of Q is given by: 
Mat prod = X.row(i)*Q.col(i);  
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6.4 Practical Work 

1. Open the input file and read the list of data points. The first line 
contains the number of points n and the dimensionality of the data 
d. The following n lines each contain a single point with d 
coordinates. 

2. Calculate the mean vector and subtract it from the data points. 
3. Calculate the covariance matrix as a matrix product. 
4. Perform the eigenvalue decomposition on the covariance matrix. 
5. Print the eigenvalues. 
6. Calculate the PCA coefficients and kth approximate 𝑋𝑋�𝑘𝑘 for the input 

data. 
7. Evaluate the mean absolute difference between the original points 

and their approximation using k principal components.  
8. Find the minimum and maximum values along the columns of the 

coefficient matrix. 
9. For the input data from pca2d.txt select the first two columns from 

Xcoef and plot the data as black 2D points on a white background. 
To obtain positive coordinates subtract the minimum values. 

10. For input data from pca3d.txt select the first three columns from 
Xcoef and plot the data as a grayscale image. Use the first two 
components as x and y coordinates and the third as intensity values. 
To obtain positive coordinates subtract the minimum values from 
the first two coordinates. Normalize the third component to the 
interval 0:255 

11. Automatically select the required k which retains a given percent 
of the original variance. For example, find k for which the kth 
approximate retains 99% of the original variance. The percentage 
of variance retained is given by ∑ 𝜆𝜆𝑖𝑖𝑘𝑘

𝑖𝑖=1 ∑ 𝜆𝜆𝑖𝑖𝑑𝑑
𝑖𝑖=1⁄ . 

6.5 Example Results 

For pca2d 
• First eigenvalue is approximately 8090 
• Mean absolute difference using only one dimension: 22.43 

For pca3d 
• First eigenvalue is 5462.3301 
• Mean absolute difference using only one dimension: 14.5 
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Figure 6.2 – Visualization of 2D points resulting from applying PCA on data from 
pca2d.txt 

6.6 References 
[1] Wikipedia article PCA -  
https://en.wikipedia.org/wiki/Principal_component_analysis 
[2] Stanford Machine Learning course notes – 
http://cs229.stanford.edu/notes/cs229-notes10.pdf 
[3] Lindsay Smith - PCA tutorial – 
http://faculty.iiit.ac.in/~mkrishna/PrincipalComponents.pdf  
[4] PCA in R (animation of projection) - 
https://poissonisfish.wordpress.com/2017/01/23/principal-

component-analysis-in-r/ 
  

https://en.wikipedia.org/wiki/Principal_component_analysis
http://cs229.stanford.edu/notes/cs229-notes10.pdf
http://faculty.iiit.ac.in/%7Emkrishna/PrincipalComponents.pdf
https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/
https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/
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7 K-means Clustering 

7.1 Objectives 

This laboratory session deals with the problem of clustering a set of 
points. This is a machine learning task that is unsupervised, i.e. the 
class labels of the points are not known and not required. Successful 
methods will identify the underlying structure in the data and group 
similar points together. 

7.2 Theoretical Background 

Cluster analysis or clustering is the task of grouping a set of objects in 
such a way that objects in the same group (also called a cluster) are 
more similar (in some sense or another) to each other than to those in 
other groups (clusters). It is a main task of exploratory data mining, 
and a common technique for statistical data analysis, used in many 
fields, including machine learning, pattern recognition, image analysis, 
information retrieval, bioinformatics, data compression, and computer 
graphics [1]. 

The input for the method is the set of data points: 𝑋𝑋 = {𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1:𝑛𝑛}. 
Each point is d-dimensional 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑑𝑑). The goal of the k-
means clustering method is to partition the points into K sets denoted 
by 𝑈𝑈 = {𝑈𝑈𝑘𝑘|𝑘𝑘 = 1:𝐾𝐾}. The mean value of the points in each set is 
named 𝑖𝑖𝑘𝑘. The partitioning must minimize the following objective 
function: 

𝐽𝐽(𝑋𝑋, 𝑈𝑈) = � � 𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥,𝑖𝑖𝑘𝑘)
𝑚𝑚∈𝑆𝑆𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

where 𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(. , . ) is the Euclidean distance function in d-dimensional 
space: 

𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥,𝑦𝑦) = �� (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑑𝑑

𝑖𝑖=1
 

This is an NP-hard problem but there are several approximations that 
provide good results. Lloyd’s method proposes to divide the problem 
into two parts. If we have the partitioning we can calculate the means, 
but we cannot know the partitions if the cluster centers are unknown. 
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The idea is to start with a random set of cluster centers and iteratively 
refine these. The algorithm is guaranteed to converge to a local 
minimum but it may not be the global minimum [2]. 

Let L denote the membership function for each point, so 𝐿𝐿(𝑖𝑖) ∈
1:𝐾𝐾, 𝑖𝑖 = 1:𝑛𝑛. The membership function returns the cluster of the ith 
point. Start by assigning the cluster centers to random points from the 
dataset: 𝑖𝑖𝑘𝑘 = 𝑥𝑥𝑟𝑟𝑘𝑘, where 𝑟𝑟𝑘𝑘 is uniformly distributed random integer 
from 1:n. In order to ensure better convergence more advanced 
initialization techniques can be applied. In [3] the authors define the k-
means++ method. This relies on drawing the point with a given 
distribution that disfavors points that are close together. 

Afterwards, perform several iterations of assignment steps and update 
steps. When the membership does not change or the maximum number 
of iterations is reached, the algorithm is halted. The steps of the method 
are given in the following algorithm. 

K-means algorithm 

Initialization – Randomly select the K centers from the set of input 
points. Let each 𝑟𝑟𝑘𝑘 be a uniformly distributed random integer from 1:n, 
then the initial means are chosen as: 

𝑖𝑖𝑘𝑘 = 𝑥𝑥𝑟𝑟𝑘𝑘 

Assignment - Assign each point from the input dataset to the closest 
cluster center found so far. The membership function will take the 
value of the index of the closest center: 

𝐿𝐿(𝑖𝑖) = 𝑎𝑎𝑟𝑟𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛𝑘𝑘𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥𝑖𝑖,𝑖𝑖𝑘𝑘) 

Update – Recalculate the cluster centers based on the membership 
function. The new cluster centers are the means of the points from the 
cluster. In the following, summation is performed on all elements that 
are in cluster k, i.e. they have membership of L(i) = k. 

𝑖𝑖𝑘𝑘 =
∑ 𝑥𝑥𝑖𝑖𝐿𝐿(𝑖𝑖)=𝑘𝑘

∑ 1𝐿𝐿(𝑖𝑖)=𝑘𝑘
=
∑ 𝑥𝑥𝑚𝑚∈𝑆𝑆𝑘𝑘

|𝑈𝑈𝑘𝑘|  
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Halting condition - If there is no change in the membership function 
then the algorithm can be halted because further calculation will lead 
to no changes in the mean values. A maximum number of iterations 
can also be enforced. If none of the above conditions are met the 
algorithm continues with the assignment step.  

7.3 Practical Background 

Generating a random integer with uniform distribution between a and 
b (inclusive): 
#include <random> 
 
default_random_engine gen; 
uniform_int_distribution<int> distribution(a, 
b); 
int randint = distribution(gen); 
 
Creating a color image: 
Mat img(height, width, CV_8UC3); 
 
Assigning random colors to clusters:  
const int K = 3; 
Vec3b colors[K]; 
for(int i = 0; i<K; i++) 
 colors[i] = { (uchar)distribution(gen),  

    (uchar)distribution(gen),      
    (uchar)distribution(gen) }; 

 
Assigning colors[k] to position (i,j): 
img.at<Vec3b>(i,j) = colors[k]; 

7.4 Practical Work 

1. Implement K-means on general input data (d dimensional points). 
Stop the algorithm once no change in the membership function is 
observed or after a certain number of maximum iterations. The 
number of clusters, K, is given by the user. 

2. Apply K-means on a set of 2D points (input files points*.bmp) – in 
this case d=2. 
a. Choose random colors to visualize the clusters based on the 

resulting membership function. 
b. Color the neighborhood of points for better visualization. 
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c. Draw the Voronoi tessellation corresponding to the obtained 
cluster centers. For this picture you must color each image 
position (including the background) according to which is the 
closest center to it. 

3. Apply K-means on a grayscale image. Use the intensity as the 
single feature for the input points – in this case d=1. 

4. Recolor the input image based on the mean intensity of each 
cluster. 

5. Apply K-means on a color image. Use the color components as the 
features for the input points – in this case d=3. 

6. Recolor the input image based on the mean color of each cluster. 
7. Optionally, implement the k-means++ initialization technique 

from [3]. 

7.5 Example Results 

In the case of d=2, when K-means is run on a set of 2D points: 

   
points2 - K = 3 points2 - K =  4 points2 - K = 5 

  
points4 points4 - Voronoi tesselation 

K=3 

Figure 7.1 – Input 2D points and clusterization results with different K values 
 
In the case of d=1, when K-means is run on a grayscale image: 
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Figure 7.2 – Input grayscale image and its segmentation using K=3 and K=10 
centers 

In the case of d=3, when K-means is run on a color image: 

     

Figure 7.3 – Input color image and its segmentation using K=3 and K=10 centers 

7.6 References 
[1] Cluster analysis Wikipedia article - 

https://en.wikipedia.org/wiki/Cluster_analysis 
[2] K-means Wikipedia article - https://en.wikipedia.org/wiki/K-

means_clustering 
[3] Arthur, David, and Sergei Vassilvitskii. "k-means++: The 

advantages of careful seeding." Proceedings of the eighteenth 
annual ACM-SIAM symposium on Discrete algorithms. Society 
for Industrial and Applied Mathematics, 2007.  

[4] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. „Contour 
Detection and Hierarchical Image Segmentation”, IEEE TPAMI, 
Vol. 33, No. 5, pp. 898-916, May 2011. 

[5] Image segmentation dataset: 
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/groupin
g/resources.html 
  

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
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8 K-Nearest Neighbor Classifier 

8.1 Objectives 

The purpose of this laboratory work is to introduce perhaps the 
simplest classifier: the k-Nearest Neighbor classifier. The classifier is 
applied on a small image dataset with multiple classes. 

8.2 Theoretical Background 

8.2.1 Introduction 

The purpose of a classifier is to assign a class to an unknown sample. 
Each sample is described by a feature vector. Perhaps one the simplest 
classifiers is the k-NN classifier. It makes the decision about the input 
sample based on the K nearest neighbors from a labeled training 
dataset. The next figure illustrates this by showing the sample as a blue 
square among the labeled samples. A circle enclosing the 5 closest 
neighbors indicates the region which is used to infer the class of the 
test sample. The radius of the circle is variable and always encloses K 
neighbors. 

 

Figure 8.1 – 5-NN classifier example with three classes 

The k-NN classifier is a non-parametric classifier, meaning that it does 
not construct a model for the classes it tries to distinguish. Instead it 
remembers the whole training set and at classification time the test 
instance is classified online. It can be labeled as a type of instance-
based learning, or lazy learning, since the classifier function is only 
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approximated locally and all computation is deferred until 
classification. 

8.2.2 Classification algorithm 

Let the training dataset be defined in the form of a matrix of 
dimensions nxd denoted by X. Each line from X contains a single d 
dimensional feature vector called Xi, corresponding to a training 
instance. Also, let y denote the vector containing class labels. The 
dimension of y is nx1, each training instance having a class assigned to 
it. The elements of y are restricted to the set {1,2,…,C}, where C is the 
number of classes. 

For an unknown test instance x the distance from each training 
example is calculated: 

𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥,𝑋𝑋𝑖𝑖) 

The distances are sorted in ascending order and the closest K instances 
are considered based on the distance. Each instance casts a vote for 
their class which is known from y. The instance is classified as the 
class which has the most votes. A more formal description follows. 

Let p be the permutation that sorts the distances in increasing order: 

𝑑𝑑𝑜𝑜1 < 𝑑𝑑𝑜𝑜2 < ⋯ < 𝑑𝑑𝑜𝑜𝑛𝑛 

The vote histogram is a Cx1 vector constructed as: 

𝒉𝒉 = �𝟏𝟏�𝑦𝑦𝑜𝑜𝑘𝑘�
𝐾𝐾

𝑘𝑘=1

 

where 𝟏𝟏�𝑦𝑦𝑜𝑜𝑘𝑘� is a Cx1 the indicator vector containing 1 only at the 
position 𝒚𝒚𝑜𝑜𝑘𝑘 and 0 elsewhere. The sum accumulates the votes from the 
K closest neighbors. The class of the unknown instance is selected as: 

𝑥𝑥 = 𝑎𝑎𝑟𝑟𝑤𝑤𝑖𝑖𝑎𝑎𝑥𝑥𝑖𝑖𝒉𝒉𝑖𝑖 

There are multiple versions of the algorithm depending on the distance 
function used and the voting scheme. For example, votes can be 
weighed based on inverse distance using the following formula: 
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𝒉𝒉 = �
𝟏𝟏�𝑦𝑦𝑜𝑜𝑘𝑘�
1 + 𝑑𝑑𝑜𝑜𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

where we have added 1 to the distance to avoid division by 0 and to 
obtain a weight of 1 for distances equal 0. 

The parameter K controls how many neighbors are considered. If K=1, 
only the nearest neighbor is considered. Increasing its value reduces 
the effect of noise on the result but makes the boundaries between the 
classes less distinct. In the extreme case when K=n, the whole training 
set is considered. If the votes are not weighted, this would classify an 
instance based on the prior distribution of the classes from the training 
set. In practice K is chosen to be an odd number to break ties when 
there are only two classes. Tests are performed on a validation set to 
obtain a proper value for K (hyper-parameter optimization). 

The presented approach can also be used to perform regression if 
instead of choosing the class. In this case, we need to construct a 
weighted sum of the training instances as a response. The error rate of 
a k-NN classifier approaches that of the ideal Bayes error rate and is 
bounded by twice the Bayes error for two classes and for 𝑛𝑛 → ∞. 

8.2.3 Global image features 

Color images can be characterized by a global feature vector for the 
purpose of classification. A global feature vector of fixed dimension 
for any input image enables the process of classification. Global 
features usually describe certain relevant statistics of the image but 
lose information about the spatial layout of the image. 

The image histogram can be viewed as a global feature vector for the 
image. The basic definition for a histogram of a grayscale image is that 
of a vector which counts the occurrences of each gray level intensity. 
It is a vector of dimension 256. In general, the histogram can be a 
vector of length m if we divide the [0,255] interval in m equal parts. In 
this case each bin in the histogram vector counts the number of gray 
level intensities falling in that particular bin. For example: if m=8, the 
first bin would count all intensities between 0 and 256/m - 1=31; the 
second bin between 32 and 63; and so on. The histogram for a color 
image can be formed by concatenating the individual histograms for 
the separate channels. The size of the resulting histogram is of 3 x m. 
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8.2.4 Evaluation of classifiers 

Multiple metrics can be calculated to evaluate the performance of the 
classifier. The confusion matrix for a labeled dataset can be defined 
as a matrix containing in each cell Mij the number of instances 
classified by the classifier into class i while having true class j. The 
ideal classifier would assign all instances to their correct class and 
would have large entries on the diagonal of the confusion matrix Mii. 
In general, the values show which classes are confused with each other 
and can help to improve the classifier performance by identifying 
specific features that aid the discrimination between the two classes. 

  

Real Class: 
Positive 

Real Class: 
Negative 

Predicted class: 
Positive 

TP (True Positive) FP (False Positive) 

Predicted class:  
Negative 

FN (False Negative) TN (True Negative) 

Figure 8.2 – Confusion matrix 

The accuracy for the classifier on a labeled test set is defined as the 
percentage of correctly classified instances. It is the complementary 
metric to the error rate. It does not offer relevant information if the 
class distribution is skewed. If the number of instances is unbalanced, 
a classifier that always predicts the most prevalent class will have a 
high accuracy. This is the typical situation, for example: pedestrian 
classifiers deal with a highly skewed distribution of much more 
background image samples than pedestrian samples. In this case, more 
relevant metrics are precision and recall for each class. 

The accuracy can be calculated from the confusion matrix as: 

𝐴𝐴𝑥𝑥𝑥𝑥 =
∑ 𝑀𝑀𝑖𝑖𝑖𝑖
𝐶𝐶
𝑖𝑖=1

∑ ∑ 𝑀𝑀𝑖𝑖𝑖𝑖
𝐶𝐶
𝑖𝑖=1

𝐶𝐶
𝑖𝑖=1

 

8.2.5 Scene Recognition Dataset Statistics 

The dataset for this session is for scene recognition. It contains 6 
different classes: beach, city, desert, forest, landscape and snow. 
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Images for each class are stored in subfolders and named as six digit 
numbers. The dataset is slightly imbalanced, the number of examples 
for each class ranging from 35 to 277. The training set contains 672 
files, and the test set contains 85 files. Sample images from each class 
are given below: 

 

   
 

  

beach city desert forest landscape snow 
      

Figure 8.3 – Sample images 

8.3 Practical Background 

Suggestion for the histogram function header (the hist array is 
allocated previously): 
void calcHist(Mat img, int nr_bins, int* hist) 
 
Define the class names: 
const int nrclasses = 6; 
char classes[nrclasses][10] =  
{"beach", "city", "desert", "forest", "landscape", 
"snow"}; 
 
Allocate the feature matrix and the label vector: 
Mat X(nrinst, feature_dim, CV_32FC1); 
Mat y(nrinst, 1, CV_8UC1); 

 
Read all images from class c, calculate the histogram and insert the 
values in X: 
int c = 0, fileNr = 0, rowX = 0; 
while(1){ 

sprintf(fname, "train/%s/%06d.jpeg", classes[c], 
fileNr++); 
 Mat img = imread(fname); 
 if (img.cols==0) break; 
 
 //call function to calculate the histogram in 
hist 
 
 for(int d=0; d<hist_size; d++) 
  X.at<float>(rowX, d) = hist[d]; 
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 y.at<uchar>(rowX) = c; 
rowX++; 

} 
 
Allocate the confusion matrix: 
Mat C(nrclasses, nrclasses, CV_32FC1); //or CV_32SC1 

8.4 Practical Work 
1. Implement a function for extracting the color histogram of an 

image. 
2. Read all the images from the training set. For each image 

compute the color histogram with general bin size m and save it 
as a row in the feature matrix 𝑿𝑿. Save the corresponding class 
label in the label vector 𝒚𝒚. 

3. Implement the k-NN classifier for an unknown image and for a 
general K value. 

4. Evaluate the classifier on the test set by calculating the confusion 
matrix and the overall accuracy. 

5. Try out different values for the number of bins for the histogram 
and the parameter K to see which feature attains the best 
performance. Aim for over 65% accuracy. 

6. Convert the input image into Luv or HSV color-space before 
histogram calculation. 

7. Optionally, try out more complex features (such as histograms on 
image regions) or other distance metrics (Manhattan distance, 
weighted Euclidean). 

8.5 References 
[1] Wikipedia article - k-NN classifier  
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm  
[2] Andrew Ng - Machine Learning: Nonparametric methods & 
Instance-based learning 
http://www.cs.cmu.edu/~epxing/Class/10701-
08s/Lecture/lecture2.pdf 
  

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/Lecture/lecture2.pdf
http://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/Lecture/lecture2.pdf
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9 Naive Bayes Classifier 

9.1 Objectives 

In this laboratory session we will study the Naive Bayes Classifier and 
we will apply it to a specific recognition problem: we will learn to 
distinguish between images of handwritten digits. 
 

9.2 Theoretical Background 

The Naive Bayes classifier takes as input a list of features, applies the 
Bayes rule and assumes that the features are independent to calculate 
the posterior probability of each class. The class with the highest 
probability is chosen as the output. 

Due to the independence assumption, it can handle an arbitrary number 
of independent variables whether continuous or categorical. Given a 
set of random variables, 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑}, we want to construct the 
posterior probability for the random variable C, having the set of 
possible outcomes 𝐶𝐶 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐽𝐽�. Using different terminology, the 
elements x are the predictors or features and C is the set of categorical 
levels or classes present in the dependent variable. Using Bayes' rule 
we can write: 

𝑝𝑝(𝑥𝑥|𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) ∝ 𝑃𝑃(𝑥𝑥)𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑|𝑥𝑥) 

where 𝑝𝑝(𝑥𝑥|𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) is the posterior probability of class 
membership, i.e., the probability that x belongs to C given the features; 
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑|𝑥𝑥) is the likelihood and 𝑃𝑃(𝑥𝑥) is the prior. Naive Bayes 
assumes that the feature values are independent given the class so we 
can decompose the likelihood into a product of terms:  

𝑝𝑝(𝒙𝒙|𝑥𝑥) = �𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥)
𝑑𝑑

𝑘𝑘=1

 

and rewrite the posterior probability as:  

𝑝𝑝(𝑥𝑥|𝒙𝒙) ∝ 𝑃𝑃(𝑥𝑥)�𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥)
𝑑𝑑

𝑘𝑘=1
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Using Bayes' rule from above, we can implement a classifier that 
predicts the class based on the input features x. This is achieved by 
selecting the class c that achieves the highest posterior probability.  

𝑥𝑥∗ = 𝑎𝑎𝑟𝑟𝑤𝑤𝑖𝑖𝑎𝑎𝑥𝑥𝑖𝑖𝑝𝑝(𝑥𝑥𝑖𝑖|𝒙𝒙) 

Although the assumption that the predictor variables (features) are 
independent is not always accurate, it does simplify the classification 
task dramatically, since it allows the class conditional densities 
𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥) to be calculated separately for each variable. In effect, Naive 
Bayes reduces a high-dimensional density estimation task to multiple 
one-dimensional kernel density estimations. Furthermore, the 
assumption does not seem to affect the posterior probabilities, 
especially in regions near decision boundaries, thus, it leaves the 
classification task unaffected. The probability density functions can be 
modeled in several different ways including normal, log-normal, 
gamma and Poisson density functions and discrete versions.  
 

9.3 Practical Background  

9.3.1 MNIST handwritten dataset 

We will use a standard benchmark for digit recognition to evaluate the 
performance of the classifier. The MNIST dataset was assembled by 
Yann LeCun from multiple datasets. The training set contains 60000 
images of handwritten digits from approximately 250 writers. The test 
set contains 10000 instances. The distribution of the digits is roughly 
uniform. For more details visit the link from [2]. We will use binomial 
probability distributions to model the probability density functions. 

9.3.2 Training algorithm 

Let X denote the feature matrix for the training set, as usual. In this 
case X contains on every row the binarized values of each training 
image to either 0 or 255 based on a selected threshold. X has the 
dimension n x d, where n is the number of training instances and d=28 
x 28 is the number of features which is equal to the size of an image. 
The class labels are stored in the vector y of dimension n. 

The prior for class i is calculated as the fraction of instances from class 
i from the total number of instances: 

𝑃𝑃(𝐶𝐶 = 𝑖𝑖) = 𝑛𝑛𝑖𝑖 𝑛𝑛�  
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The likelihood of having feature j equal to 255 given class i is given 
by the fraction of the training instances which have feature j equal to 
255 and are from class i: 

𝑝𝑝�𝑥𝑥𝑖𝑖 = 255�𝐶𝐶 = 𝑖𝑖� =
𝑥𝑥𝑥𝑥𝑐𝑐𝑛𝑛𝑎𝑎�𝑋𝑋𝑘𝑘𝑖𝑖 = 255 ∧ 𝑦𝑦𝑘𝑘 = 𝑖𝑖�

𝑛𝑛𝑖𝑖
 

The likelihood of having feature j equal to 0 is the complementary 
event so: 

𝑝𝑝�𝑥𝑥𝑖𝑖 = 0�𝐶𝐶 = 𝑖𝑖� = 1 − 𝑝𝑝�𝑥𝑥𝑖𝑖 = 255�𝐶𝐶 = 𝑖𝑖� 

To avoid multiplication by zero in the posterior probability, likelihoods 
having the value of 0 need to be treated carefully. A simple solution is 
to change all values smaller than 10-5 to 10-5. Another alternative is to 
use Laplace smoothing, where |C| signifies the number of classes: 

𝑝𝑝�𝑥𝑥𝑖𝑖 = 255�𝐶𝐶 = 𝑖𝑖� =
𝑥𝑥𝑥𝑥𝑐𝑐𝑛𝑛𝑎𝑎�𝑋𝑋𝑘𝑘𝑖𝑖 = 255 ∧ 𝑦𝑦𝑘𝑘 = 𝑖𝑖� + 1

𝑛𝑛𝑖𝑖 + |𝐶𝐶|
 

9.3.3 Classification algorithm 

Once the likelihood values and priors are calculated classification is 
possible. The values for the likelihood are in the interval [0,1] and the 
posterior is a product of 784 numbers each less than 1. To avoid 
precision problems, it is recommended to work with the logarithm of 
the posterior. Denote the test vector as T and its elements as Tj. These 
are the binarized values from the test image in the form of a vector. 
The log posterior of each class can be evaluated as: 

log�𝑝𝑝(𝐶𝐶 = 𝑖𝑖|𝑇𝑇)� ∝ log�𝑃𝑃(𝐶𝐶 = 𝑖𝑖)� + � log �𝑝𝑝�𝑥𝑥𝑖𝑖 = 𝑇𝑇𝑖𝑖�𝐶𝐶 = 𝑖𝑖��
𝑑𝑑

𝑖𝑖=1

 

Since the ordering of the posteriors does not change when the log 
function is applied, the predicted class will be the one with the highest 
log posterior probability value. The log of the total probability can be 
ignored since it is a constant. 

9.3.4 Implementation details 

Load the first 100 images from class c:  
char fname[256]; 
int c = 1; 
int index = 0; 
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while(index<100){ 
 sprintf(fname, "train/%d/%06d.png", c, index); 
 Mat img = imread(fname, 0); 
 if (img.cols==0) break; 
 //process img 
 index++; 
} 
 
The prior is a Cx1 vector: 
const int C = 3; //number of classes 
Mat priors(C,1,CV_64FC1); 
 

The likelihood is a Cxd vector (we only store the likelihood for 255): 
const int d = 28*28; 
Mat likelihood(C,d,CV_64FC1); 
 
Header suggestion for the classifier: 
int classifyBayes(Mat img, Mat priors, Mat likelihood); 

9.4 Practical Work 
1. Load each image from the training set, perform binarization and 

save the values in the training matrix X. Save the class label in the 
label vector y. For the initial version use only the first 100 images 
from the first two classes. 

2. Implement the training method.  
a. Compute and save the priors for each class.  
b. Compute and save the likelihood values for each class and 

each feature. Apply Laplace smoothing to avoid zero values. 
3. Implement the Naive Bayes classifier for an unknown image.  
4. Display the log posterior for each class. Optionally, convert the 

values to proper probabilities. 
5. Evaluate the classifier on the test images and calculate the 

confusion matrix and the error rate. The error rate is the fraction 
of misclassified test instances (the complementary metric to the 
accuracy). 

6. Train and evaluate on the full dataset 

9.5 References 
[1] Electronic Statistics Textbook – 
http://www.statsoft.com/textbook/stnaiveb.html 
[2] LeCun, Yann, Corinna Cortes, and Christopher JC Burges. "The 
MNIST database." (1998) http://yann.lecun.com/exdb/mnist  
  

http://www.statsoft.com/textbook/stnaiveb.html
http://yann.lecun.com/exdb/mnist
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10 Perceptron Classifier  

10.1 Objectives 

This laboratory session presents the perceptron learning algorithm for 
the linear classifier. We will apply gradient descent and stochastic 
gradient descent procedure to obtain the weight vector for a two-class 
classification problem. 

10.2 Theoretical Background 

The goal of classification is to separate items into different classes or 
groups. A linear classifier achieves this goal via a discriminant 
function that is the linear combination of the features. 

10.2.1 Definitions 

Define a training set as the tuple (X,Y), where 𝑋𝑋 ∈ 𝑀𝑀𝑛𝑛×𝑚𝑚(𝑉𝑉) and Y is 
a vector 𝑌𝑌 ∈ 𝑀𝑀𝑛𝑛×1(𝐷𝐷), where D is the set of class labels. X represents 
the concatenation the feature vectors for each sample from the training 
set, where each row is an m dimensional vector representing a sample. 
Y is the vector the desired outputs for the classifier. A classifier is a 
map from the feature space to the class labels: 𝑓𝑓:𝑉𝑉𝑚𝑚 → 𝐷𝐷. 

Thus a classifier partitions the feature space into |D| decision regions. 
The surface separating the classes is called decision boundary. If we 
have only two dimensional feature vectors the decision boundaries are 
lines or curves. In the following we will discuss binary classifiers. In 
this case the set of class labels contains exactly two elements. We will 
denote the labels for classes as D={-1,1}. 
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Figure 10.1. Example of a linear classifier for a two-class classification problem. 
Each sample is characterized by two features. The decision boundary is a line. 

10.2.2 General form of a linear classifier 

The simplest classifier is a linear classifier. A linear classifier outputs 
the class labels based on a linear combination of the input features. 
Considering 𝒙𝒙 ∈ 𝑀𝑀𝑚𝑚×1(𝑉𝑉) as a feature vector we can write the linear 
decision function as: 

𝑤𝑤(𝒙𝒙) = 𝑤𝑤0 + �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙 

Where  
• 𝒘𝒘 is the 𝑖𝑖 × 1 weight column vector 
• 𝑤𝑤0 is the bias or the threshold weight 

A schematic view of the linear classifier is given in the next figure. 

 

Figure 10.2 – Schematic view of a linear classifier for multidimensional data  

For convenience, we will absorb the intercept 𝑤𝑤0 into 𝒘𝒘 by 
augmenting the feature vector x with an additional constant dimension 
(let the bar over a variable denote the augmented version of the vector): 
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𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙 = [𝑤𝑤0 𝒘𝒘𝑻𝑻] �1𝒙𝒙� = 𝒘𝒘�𝑇𝑇𝒙𝒙� 

A two-category linear classifier (or binary classifier) implements the 
following decision rule: 

( ) 0 1
( ) 0 1

if g x decide that sample x belongs to class
if g x decide that sample x belongs to class

> +
 < −

  

or 

0

0

1
1

T

T

if w x w decide that sample x belongs to class
if w x w decide that sample x belongs to class

 > − +


< − −
 

If 𝑤𝑤(𝒙𝒙)  =  0, x can ordinarily be assigned to either class. 

 
Figure 10.3 – Image for 2D case depicting: decision regions (red and blue), linear 

decision boundary (dashed line), weight vector (𝒘𝒘) and bias (𝒘𝒘𝟎𝟎 = 𝒅𝒅 ⋅ ‖𝒘𝒘‖). 

10.2.3 Learning algorithms for linear classifiers 

We will present two learning algorithms for linear classifiers. In order 
to perform learning we transform the task into an optimization 
problem. For this we define a loss function 𝐿𝐿. The loss function applies 
a penalty for every instance that is classified into the wrong class. The 
perceptron algorithm adopts the following form for the loss function: 

𝐿𝐿(𝒘𝒘�) =
1
𝑛𝑛
�𝑖𝑖𝑎𝑎𝑥𝑥(0,−𝑦𝑦𝑖𝑖𝒘𝒘�𝑇𝑇 ∙ 𝒙𝒙�𝑖𝑖) =

1
𝑛𝑛
�𝐿𝐿𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝒘𝒘�)
𝑛𝑛

𝑖𝑖=1
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If an instance 𝑖𝑖 is classified correctly, no penalty is applied because the 
expression −𝑦𝑦𝑖𝑖𝒘𝒘�𝑇𝑇 ∙ 𝒙𝒙�𝑖𝑖 is negative. In the case of a misclassification, 
the previous expression will be positive and it will be added to the 
function value. The objective now is to find the weights that minimize 
the loss function.  

Gradient descent can be employed to find the global minimum of the 
loss function. This relies on the idea that a differentiable multivariate 
function decreases fastest in the opposite direction of the gradient. The 
update rule according to this observation is: 

𝒘𝒘�𝑘𝑘+1 ← 𝒘𝒘�𝑘𝑘 − 𝜂𝜂𝛁𝛁𝑳𝑳(𝒘𝒘�𝑘𝑘) 

where 𝒘𝒘�𝑘𝑘 is the weight vector at time k, 𝜂𝜂 is a parameter that controls 
the step size and is called the learning rate, and 𝛁𝛁𝑳𝑳(𝒘𝒘�) is the gradient 
vector of the loss function at point 𝒘𝒘�𝑘𝑘. The gradient of the loss function 
is: 

𝛁𝛁𝑳𝑳(𝒘𝒘�) =
1
𝑛𝑛
�𝛁𝛁𝑳𝑳𝒊𝒊(𝒘𝒘�)
𝑛𝑛

𝑖𝑖=1

 

𝛁𝛁𝑳𝑳𝒊𝒊(𝒘𝒘�) =  � 0, 𝑖𝑖𝑓𝑓  𝑦𝑦𝑖𝑖𝒘𝒘�𝑇𝑇 ∙ 𝒙𝒙�𝑖𝑖 > 0
−𝑦𝑦𝑖𝑖𝒙𝒙�𝑖𝑖 , 𝑥𝑥𝑎𝑎ℎ𝑤𝑤𝑟𝑟𝑤𝑤𝑖𝑖𝑥𝑥𝑤𝑤

  
  

In the standard gradient descent approach we update the weights only 
after visiting all the training examples. This is also called the batch-
update learning algorithm. We can use stochastic gradient descent 
instead. This entails updating the weights after visiting each training 
example resulting in the classical online perceptron learning algorithm 
from [1]. In this case the update rule becomes: 

𝒘𝒘�𝑘𝑘+1 ← 𝒘𝒘�𝑘𝑘 − 𝜂𝜂𝛁𝛁𝑳𝑳𝒊𝒊(𝒘𝒘�) 
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Algorithm:  
Batch Perceptron 
 
init w, η, Elimit, 
max_iter 
for iter=1:max_iter 
  E = 0, L = 0  
  𝛁𝛁𝑳𝑳 = [0,0,0] 
  for i=1:n 
    𝑧𝑧𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖=0  
    if 𝑧𝑧𝑖𝑖 ⋅ 𝑦𝑦𝑖𝑖 ≤ 0 
      𝜵𝜵𝑳𝑳 ← 𝜵𝜵𝑳𝑳 − 𝑦𝑦𝑖𝑖𝑿𝑿𝑖𝑖   
      𝐸𝐸 ← 𝐸𝐸 + 1 

𝐿𝐿 ← 𝐿𝐿 − 𝑦𝑦𝑖𝑖𝑧𝑧𝑖𝑖 
    endif 
  endfor 
  𝐸𝐸 ← 𝐸𝐸/𝑛𝑛 
  𝐿𝐿 ← 𝐿𝐿/𝑛𝑛 
  𝜵𝜵𝑳𝑳 ← 𝜵𝜵𝑳𝑳 /𝑛𝑛 
  if 𝐸𝐸 < 𝐸𝐸𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜 
    break   
  𝒘𝒘 ← 𝒘𝒘− 𝜂𝜂𝜵𝜵𝑳𝑳  
endfor 

Algorithm:  
Online Perceptron 
 
init w, η, Elimit, 
max_iter 
for iter=1:max_iter 
  E = 0 
  for i=1:n 
    𝑧𝑧𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖=0  
    if 𝑧𝑧𝑖𝑖 ⋅ 𝑦𝑦𝑖𝑖 ≤ 0 
      𝒘𝒘 ← 𝒘𝒘 + 𝜂𝜂𝑿𝑿𝑖𝑖𝑦𝑦𝑖𝑖    
      𝐸𝐸 ← 𝐸𝐸 + 1 
    endif 
  endfor 
  𝐸𝐸 ← 𝐸𝐸/𝑛𝑛 
  if 𝐸𝐸 < 𝐸𝐸𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜 
    break   
endfor 

 
 
 
 

10.3 Practical Background 

In this laboratory session we will find a linear classifier that 
discriminates between two sets of points. The points in class 1 are 
colored in red and the points in class 2 are colored in blue. 

Each point is described by the color (that denotes the class label) and 
the two coordinates, x1 and x2. 

The augmented weight vector will have the form 𝑤𝑤� =  [𝑤𝑤0 𝑤𝑤1 𝑤𝑤2]. 
The augmented feature vector will be �̅�𝑥 =  [1 𝑥𝑥1 𝑥𝑥2].  
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10.4 Practical Work 

1. Read the points from a single file test0*.bmp and construct the training set 
(X,Y). Assign the class label +1 to red points and -1 to blue points. 

2. Implement and apply the online perceptron algorithm to find the linear 
classifier that divides the points into two groups. Suggestion for 
parameters:  
𝜂𝜂 = 10−4,𝑤𝑤0 =  [0.1, 0.1, 0.1],𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 10−5,𝑖𝑖𝑎𝑎𝑥𝑥_𝑖𝑖𝑎𝑎𝑤𝑤𝑟𝑟 =  105. 

Note: for a faster convergence use a larger learning rate only for 𝑤𝑤0 
3. Draw the final decision boundary based on the weight vector 𝒘𝒘. 
4. Implement the batch perceptron algorithm and find suitable parameters 

values. Show the loss function at each step. It must decrease slowly.  
5. Visualize the decision boundary at intermediate steps, while the learning 

algorithm is running. 
6. Change the starting values for the weight vector 𝒘𝒘, the learning rate and 

terminating conditions to observe what happens in each case. What does 
an oscillating cost function signal? 

10.5 Numerical example 
Consider the points from the file points00 as (x,y) pairs or (column, row):  

• Red points: (23, 5), (15,11) – class +1 
• Blue points: (14, 21), (27,23), (20, 27) – class -1 

The steps for the online perceptron algorithm are given below: 
 

 
Learning rate = 0.01 
 
Iteration 0 
i=0: w=[1.000000 1.000000 -1.000000] xi=[1 23 5]   yi = 1  zi=19.000000 
i=1: w=[1.000000 1.000000 -1.000000] xi=[1 15 11] yi = 1  zi=5.000000 
i=2: w=[1.000000 1.000000 -1.000000] xi=[1 14 21] yi = -1 zi=-6.000000 
i=3: w=[1.000000 1.000000 -1.000000] xi=[1 27 23] yi = -1 zi=5.000000 
wrong 

update w0 = w0 - 0.01, w1 = w1 - 27*0.01, w2 = w2 – 23*0.01 
i=4: w=[0.990000 0.730000 -1.230000] xi=[1 20 27] yi = -1 zi=-17.620000 
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Iteration 1 
i=0: w= [0.990000 0.730000 -1.230000] xi= [1 23 5]   yi = 1  zi=11.630000 
i=1: w= [0.990000 0.730000 -1.230000] xi= [1 15 11] yi = 1  zi=-1.590000 
wrong 
 update w0 = w0 + 0.01, w1 = w1 + 15*0.01, w2 = w2 + 11*0.01 
i=2: w= [1.000000 0.880000 -1.120000] xi= [1 14 21] yi = -1 zi=-10.200000 
i=3: w= [1.000000 0.880000 -1.120000] xi= [1 27 23] yi = -1 zi=-1.000000 
i=4: w= [1.000000 0.880000 -1.120000] xi= [1 20 27] yi = -1 zi=-11.640000 
 

 
 
Iteration 2 
i=0: w= [1.000000 0.880000 -1.120000] xi= [1 23 5] yi = 1 zi=15.640000 
i=1: w= [1.000000 0.880000 -1.120000] xi= [1 15 11] yi = 1 zi=1.880000 
i=2: w= [1.000000 0.880000 -1.120000] xi= [1 14 21] yi = -1 zi=-10.200000 
i=3: w= [1.000000 0.880000 -1.120000] xi= [1 27 23] yi = -1 zi=-1.000000 
i=4: w= [1.000000 0.880000 -1.120000] xi= [1 20 27] yi = -1 zi=-11.640000 
All classified correctly 

10.6 References 
[1] Rosenblatt, Frank (1957), The Perceptron - a perceiving and recognizing 

automaton. Report 85-460-1, Cornell Aeronautical Laboratory. 
[2] Richard O. Duda, Peter E. Hart, David G. Stork: Pattern Classification 

2nd ed. 
[3] Xiaoli Z. Fern, Machine Learning and Data Mining Course, Oregon 

University -  
http://web.engr.oregonstate.edu/~xfern/classes/cs434/slides/perceptron-
2.pdf 

[4] Gradient Descent - http://en.wikipedia.org/wiki/Gradient_descent 
[5] Avrim Blum, Machine Learning Theory, Carnegie Mellon University -   

https://www.cs.cmu.edu/~avrim/ML10/lect0125.pdf 

http://web.engr.oregonstate.edu/%7Exfern/classes/cs434/slides/perceptron-2.pdf
http://web.engr.oregonstate.edu/%7Exfern/classes/cs434/slides/perceptron-2.pdf
http://en.wikipedia.org/wiki/Gradient_descent
https://www.cs.cmu.edu/%7Eavrim/ML10/lect0125.pdf
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11 AdaBoost Method 

11.1 Objectives 

In this laboratory session we will study a method for obtaining an ensemble 
classifier called AdaBoost (Adaptive Boosting). We will apply it for a binary 
classification problem on 2D points. 

11.2 Theoretical Background 

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm 
formulated by Yoav Freund and Robert Schapire in [1], who won the 2003 
Gödel Prize for their work [2]. In this session the goal will be to separate 2D 
points into two classes, the class membership is given by the color of the 
points. 

 

Figure 11.1 – Example of samples from two classes (red and blue points) 

The general idea of the AdaBoost algorithm is to build a strong classifier 
𝐻𝐻𝑇𝑇(𝒙𝒙) which is the sign of the linear combination of 𝑇𝑇 weak classifiers (or 
weak learners) ℎ𝑜𝑜:  

𝐻𝐻𝑇𝑇(𝒙𝒙) = 𝑥𝑥𝑖𝑖𝑤𝑤𝑛𝑛 ��𝛼𝛼𝑜𝑜ℎ𝑜𝑜(𝒙𝒙)
𝑇𝑇

𝑜𝑜=1

� 

Each weak learner returns either +1 or -1 and is weighted by 𝛼𝛼𝑜𝑜. The final class 
is given by the sign of the strong classifier 𝐻𝐻𝑇𝑇(𝒙𝒙). In this work, we will use 
decision stumps as weak learners. A decision stump classifies an instance by 
looking at a particular feature, if this feature is below a threshold, the instance 
is classified as class +1 and -1 otherwise.  



63 
 

We are given the training set in the following form: 𝑿𝑿 is the feature matrix of 
dimension 𝑛𝑛 𝑥𝑥 𝑖𝑖 and contains 𝑛𝑛 the training samples, each row being an 
individual sample of dimension 𝑖𝑖. In our case, 𝑖𝑖 =  2 and the features are 
the rows and columns at which the points are found in the input image. The 
class vector 𝒚𝒚 of dimension 𝑛𝑛 contains +1 for each red point and -1 for each 
blue point. 

For this method we will associate a weight with each example. We will store 
the weights in the weight vector 𝒘𝒘 of dimension 𝑛𝑛. Initially all samples have 
an equal weight of 1/𝑛𝑛. The following algorithm describes the high level 
AdaBoost procedure which finds the strong classifier 𝐻𝐻𝑇𝑇. 

Algorithm AdaBoost 
 
init wi=1/n 
for t=1:T 
  //also returns the weighted training error 𝝐𝝐𝒕𝒕: 
  [ℎ𝑜𝑜, 𝜖𝜖𝑜𝑜 ] = findWeakLearner(X,y,w) 
  𝛼𝛼𝑜𝑜 = 0.5 ln �1−𝜖𝜖𝑡𝑡

𝜖𝜖𝑡𝑡
� 

  s = 0 
  for i=1:n 
    //wrongly classified examples obey: 𝒚𝒚𝒊𝒊𝒉𝒉𝒕𝒕(𝑿𝑿𝒊𝒊) < 𝟎𝟎 
    //their weights will become larger 
    𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 ⋅ 𝑤𝑤𝑥𝑥𝑝𝑝(−𝛼𝛼𝑜𝑜𝑦𝑦𝑖𝑖ℎ𝑜𝑜(𝑋𝑋𝑖𝑖)) 
    s += 𝑤𝑤𝑖𝑖 
  endfor 
  //normalize the weights 
  for i=1:n 
    𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖/𝑥𝑥 
  endfor   
endfor 
//returns all the alpha values  
//and the weak learners 
return [𝜶𝜶,𝒉𝒉] 
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[ℎ𝑜𝑜, 𝜖𝜖𝑜𝑜 ] = findWeakLearner(X,y,w) 
best_h = {} 
best_err = ∞ 
for j=1:X.cols  
  for threshold=0:max(img.cols, img.rows) 
    for class_label={-1,1} 
      e=0 
      for i=1:X.rows 
        if X(i,j)<threshold 
          zi=class_label 
        else 
          zi=-class_label 
        endif 
        if ziyi < 0 
  e += wi 
        endif 
      endfor 
      if e<best_err 
        best_err = e 
        best_h = {j, threshold, class_label, e} 
      endif 
    endfor 
  endfor 
endfor 
return [best_h, best_err] 

 
The underlying idea behind this algorithm is to find the best simple (weak) 
classifier and then to modify the importance of the examples. Missclassified 
examples will get a higher weight and correctly classified examples will get a 
lower weight. An example is classified as the wrong class if the sign of the 
expression 𝑦𝑦𝑖𝑖ℎ𝑜𝑜(𝑋𝑋𝑖𝑖) is negative (the predicted and correct class labels have 
different signs).  

In the following step, when we search for the next weak learner, it will be 
more important to correctly classify the examples which have higher weights 
since they contribute more to the weighted training error. 

Each weak learner contributes to the final score of the classifier. The 
contribution is weighted by how well the weak learner performed in terms of 
the weighted training error. 
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11.3 Practical Background 
Suggested structure for a single weak leaner (assumes 𝑋𝑋 stores floats): 
struct weaklearner{ 
  int feature_i; 
  int threshold; 
  int class_label; 
  float error; 
  int classify(Mat X){ 
    if (X.at<float>(feature_i)<threshold) 
      return class_label; 
    else 
      return –class_label; 
  } 
}; 
 
Header for function that finds the best weak learner – note that the 
weaklearner structure stores the weighted error: 
weaklearner findWeakLearner(Mat X, Mat y, Mat w) 
 
Suggested structure for the strong classier (MAXT is a constant): 
struct classifier{ 
  int T; 
  float alphas[MAXT]; 
  weaklearner hs[MAXT]; 
  int classify(Mat X){ 
    return 0; 
  } 
}; 
 
Header for function which draws the decision boundary (keep the original 
image unmodified): 
void drawBoundary(Mat img, classifier clf) 
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11.4 Practical Work 

1. Read the training set from one of the input files (points*.bmp). Each row 
from the feature matrix 𝑿𝑿 should contain the row and column of each 
colored point from the image. The class vector 𝒚𝒚 contains +1 for red and -
1 for blue points. 

2. Implement the decision stump weak learner – the weaklearner 
structure. 

3. Implement the findWeakLearner function. 
4. Implement the drawBoundary function which colors the input image 

showing the decision boundary by changing the background color (white 
pixels) based on the classification result. Use yellow for +1 background 
and teal for -1 background pixels. Test the function with a strong classifier 
formed by a single weak learner. 

5. Implement the AdaBoost algorithm to find the strong classifier with T 
weak learners. Visualize the decision boundary. For each input image find 
the value of T which results in zero classification error. What are the 
limitations of the presented method? 

11.5 Example Results 

   

Figure 11.2 – Sample results on points1 with number of weak learners T=1 (left) and T=13 
(right) 

11.6 References 
[1] Robert E. Schapire, The Boosting Approach to Machine Learning, An 

Overview, 2001 
[2] AdaBoost - https://en.wikipedia.org/wiki/AdaBoost  
  

https://en.wikipedia.org/wiki/AdaBoost
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12 Support Vector Machine 

12.1 Objectives 

In this lab session we will implement the simple linear classifier described in 
the previous lab and we will study the mechanisms of support vector 
classification based on soft margin classifiers. 

12.2 Theoretical Background 

12.2.1 Hard-margin classifiers 

We will start the discussion from a simple problem of separating a set of points 
into two classes, as depicted in Figure 12.1igure 12.1: 

 
Figure 12.1 – A set of linearly separable points  

The question here is how can we classify these points using a linear 
discriminant function in order to minimize the training error rate? We have an 
infinite number of answers, as shown in Figure 12.2: 

 
Figure 12.2 – Linear classifiers that correctly discriminate between the two classes 
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From the multitude of solutions we need to find which the best one is. One 
possible answer is given by the linear discriminant function with the maximum 
margin. Informally, the margin is defined as the width by which the boundary 
can be increased by before hitting a data point, see Figure 12.3.  

 
Figure 12.3 – The margin of a linear classifier 

Such a classifier is robust to outliners and thus has strong generalization 
ability. 

12.2.2 Optimization problem 
Given a set of data points 𝒙𝒙𝑖𝑖 with their class labels 𝑦𝑦𝑖𝑖 for 𝑖𝑖 = 1,2, … ,𝑛𝑛 our 
goal is to find 𝒘𝒘 such that for any 𝑖𝑖:  

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 > 0 if 𝑦𝑦𝑖𝑖 = 1 
𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 < 0 if 𝑦𝑦𝑖𝑖 = −1 

With a scale transformation on both 𝒘𝒘 and b, the above is equivalent to: 

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1 if 𝑦𝑦𝑖𝑖 = 1 
𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≤ −1 if 𝑦𝑦𝑖𝑖 = −1 

Choosing two points from the positive and negative sides of the boundary we 
know that: 

 𝒘𝒘𝑇𝑇𝒙𝒙+ + 𝑏𝑏 = 1 
𝒘𝒘𝑇𝑇𝒙𝒙− + 𝑏𝑏 = −1 
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Figure 12.4 – Positive and negative samples nearest to the separation boundary – support 

vectors 

Based on this the width of the margin is: 

𝑀𝑀 = (𝒙𝒙+ − 𝒙𝒙−) ∙ 𝒏𝒏 = (𝒙𝒙+ − 𝒙𝒙−) ∙
𝒘𝒘

||𝒘𝒘||
=

2
||𝒘𝒘||

 

This margin should be maximized. The maximization problem is difficult to 
solve because it depends on ||𝒘𝒘||, the norm of 𝒘𝒘, which involves a square 
root. Fortunately it is possible to alter the equation by substituting ||𝒘𝒘|| with 
1
2
‖𝒘𝒘‖2 without changing the solution (the minimum of the original and the 

modified equation have the same 𝒘𝒘 and 𝑏𝑏).  

The resulting problem is a quadratic programming (QP) optimization problem. 
It can be stated as: 

minimize 1
2
‖𝒘𝒘‖2 such that: 

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1, if 𝑦𝑦𝑖𝑖 = 1 
 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≤ −1, if 𝑦𝑦𝑖𝑖 = −1 

 
Which can be written more succinctly as: 
 

minimize 1
2
‖𝒘𝒘‖2 such that: 

𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1 . 
 
The solution to this optimization problem is found by Lagrangian multipliers, 
but its derivation is not the purpose of this work. 
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12.2.3 Soft-margin classifiers 

In 1995, Corinna Cortes and Vladimir Vapnik suggested a modified maximum 
margin idea that allows some mislabeled examples. If there exists no 
hyperplane that can split the "yes" and "no" examples, the Soft Margin method 
will choose a hyperplane that splits the examples as cleanly as possible, while 
still maximizing the distance to the nearest correctly classified examples. The 
method introduces slack variables, 𝜉𝜉𝑖𝑖, which measure the degree of 
misclassification on the samples 𝒙𝒙𝑖𝑖. 

 
Figure 12.5 – Classification using soft margin 

Using the slack variables we define the following optimization problem: 
𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 if 𝑦𝑦𝑖𝑖 = 1 

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≤ −1 + 𝜉𝜉𝑖𝑖 if 𝑦𝑦𝑖𝑖 = −1 
𝜉𝜉𝑖𝑖 ≥ 0 

Which is equivalent to: 
minimize 1

2
‖𝒘𝒘‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑛𝑛

𝑖𝑖=1  such that 
𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖≥0. 

Parameter C can be viewed as a tradeoff parameter between error and 
margin.  

12.2.4 Kernel trick 

If the data points are not linearly separable a transformation can be applied to 
each sample 𝒙𝒙𝑖𝑖.which performs a mapping into a higher dimensional space 
where they are linearly separable. Denoting this transformation by 𝜙𝜙 we can 
write the following optimization problem: 

minimize 1
2
‖𝒘𝒘‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑛𝑛

𝑖𝑖=1  such that 
𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖≥0. 
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Since the solution for the SVM requires only dot products between instances 
the usage of the transformation 𝜙𝜙 can be avoided if we define the following 
kernel function: 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖� =< 𝜙𝜙(𝑥𝑥𝑖𝑖),𝜙𝜙�𝑥𝑥𝑖𝑖� > 

12.3 Practical Work 

For the Practical Work you will be given a framework called SVM-toy that 
provides a C++ implementation of soft-margin classifiers using different types 
of kernels. 

1. Download TestSVM.zip. Compile SVM-toy and run it. Its interface 
should look like:  

 
The buttons of the interface have the following meaning: 

• ‘Change’ button: the application allows the user to add points 
in the classification space (the white window) by mouse left 
click; this button allows to change the color of the points 
(each color corresponds to a class). A maximum number of 
three colors is allowed (hence three classes) 

• ‘RunSVM’ button – runs the SVM classifier with the 
parameters specified in the edit box  

• ‘Clear’ button – clears the classification space 
• ‘Save’ button – saves the points (normalized coordinates) 

from the classification space to a file 
• ‘Load’ button – loads a bitmap image (loads and draws the 

points into the classification space) 
• The Edit box where parameters are specified, the default 

values are  
‘–t 2 –c 100’ 
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The application allows several parameters, but we will use two 
of them: 

• ‘-t kernel_type’ specifies the kernel type: set type of 
kernel function (default 2); ‘kernel_type’ can be one 
of the following: 

  0 – linear  kernel: < 𝒖𝒖,𝒗𝒗 >= 𝒖𝒖𝑇𝑇𝒗𝒗 
  1 –polynomial kernel: (𝛾𝛾 < 𝒖𝒖,𝒗𝒗 > +𝑥𝑥)𝑑𝑑    
  2 – radial basis function: exp (−𝛾𝛾|𝒖𝒖 − 𝒗𝒗|2) 
  3 – sigmoid: tanh (𝛾𝛾 < 𝒖𝒖,𝒗𝒗 > +𝑥𝑥) 

• ‘-c cost’ specifies the parameter 𝐶𝐶 from the soft 
margin classification problem  

• ‘SimpleClassifier’ button – implements the simple classifier. 
2. For each image in svm_images.zip run the default SVM classifier 

(with different kernels and costs) 
3. Implement the ‘SimpleClassifier’ code and compare it to the SVM 

classifier that uses a linear kernel. 
 
Write the code in the file svm-toy.cpp for the case branch:  
 
case ID_BUTTON_SIMPLE_CLASSIFIER: 
{ 
/* ****************************************  
 TO DO: 
 WRITE YOUR CODE HERE FOR THE SIMPLE CLASSIFIER 
**************************************** */ 
} 
 
For implementing the simple classifier you should know that in the 
svm_toy.cpp file the coordinates of the points are stored in the structure  
 
list<point> point_list;  
 
and a point is defined by the structure: 
 

 struct point { 
  double x, y; 
  signed char value; 

}; 
 
The variable ‘value’ represents the class label. 
 
The coordinates  of the points are normalized between 0 and 1 and 
the (0,0) point is located in the top left corner. 
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Notice that the dimension of the classification space is XLEN x YLEN. 
Hence to a normalized point (x,y) we have other coordinates in the 
classification space (drawing space) which are (x*XLEN, y*YLEN). 
 
The drawing of a segment between two points is done by the method:  
DrawLine(window_dc,x1, y1, x2, y2, RGB(255,0,0)); 
 

In order to iterate over all the points and count how many points are in 
class ‘1’ and in class ‘2’ you should do the following: 
//declare an iterator 
list<point>::iterator p; 
int nrSamples1=0; 
int nrSamples2=0; 
double xC1=0,xC2=0,yC1=0,yC2=0; 
 
for(p = point_list.begin(); p != point_list.end(); p++) 
{ 
 if ((*p).value==1) //point from class ‘1’ 
 { 
   nrSamples1++; 
  xC1 =(*p).x;  

//normalized x coordinate of the current point  
  yC1 =(*p).y;  

//normalized y coordinate of the current point  
 
 } 
 if ((*p).value==2)  //point from class ‘2’ 
 { 
  nrSamples2++; 
  xC2 =(*p).x;  

//normalized x coordinate of the current point 
  yC2 =(*p).y;  

//normalized y coordinate of the current point 
 }  
}      
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12.4 Sample result: 
 

 

Details: 
- 2D points to be classified 
- 2 classes, 2 features (x1 and x2) 
- Red line separation obtained by 

implementing the ‘Simple 
Classifier’ algorithm 

- Cyan/Brown line separation 
obtained by SVM linear kernel 
(-t 0) and cost C=100 (-c 100) 

Observe: 
- The maximized margin obtained 

with SVM 
- The points incorrectly classified 

by simple classifier 

12.5 References 
[1] J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis. 
Pattern Analysis (Chapter 1) 
[2] B. Scholkopf, A. Smola: Learning with Kernels. A Tutorial Introduction 
(Chapter 1), MIT University Press. 
[3] LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
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