

Sergiu NEDEVSCHI Robert VARGA
Florin ONIGA Raluca BREHAR
Ion GIOSAN Andra PETROVAI

Pattern
 Recognition

Systems

Laboratory Works
1st Edition

UTPRESS

Cluj-Napoca, 2023
 ISBN 978-606-737-637-1

 Editura UTPRESS
 Str. Observatorului nr. 34
 400775 Cluj-Napoca
 Tel.: 0264-401.999
 e-mail: utpress@biblio.utcluj.ro
 www.utcluj.ro/editura

 Director: ing. Dan COLȚEA

 Recenzia: Prof.dr.ing. Dorian Gorgan
 Prof.dr.ing. Vasile Dădârlat

 Pregătire format electronic on-line: Gabriela Groza

Copyright © 2023 Editura UTPRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte
este posibilă numai cu acordul prealabil scris al editurii UTPRESS.

ISBN 978-606-737-637-1

 Table of contents

Preface... 1
1 Least Mean Squares.. 3
2 RANSAC.. 10
3 Hough Transform.. 15
4 Distance Transform... 21
5 Statistical Data Analysis.. 27
6 Principal Component Analysis.. 34
7 K-means Clustering... 40
8 K-Nearest Neighbor Classifier.. 45
9 Naive Bayes Classifier... 51
10 Perceptron Classifier... 55
11 AdaBoost Method.. 62
12 Support Vector Machine... 67
References... 75

1

Preface

Introduction

The present document is the intended to support the laboratory sessions
for the Pattern Recognition Systems course. It presents important
methods from the fields of Image Processing, Pattern Recognition and
Machine Learning. The main goal is to develop systems capable of
perception and automatic scene representation from visual input in the
form of images.

Electronic support

To access the additional files required for the practical work use the
following link:

https://cv.utcluj.ro/index.php/teaching.html

The website contains the following: the starting project (for multiple
versions of Visual Studio); an introduction to the OpenCV library; and
the additional data files required for the programming assignments.

Required software

The recommended software to complete the assignments is Visual
Studio 2013 or above. Visual Studio solution files along with sample
functions are provided for multiple versions. For newer versions an
automatic upgrade of the latest one should work. It is also possible to
setup a project manually and link the OpenCV library to it. For this,
consult the documentation of the library. Any other IDE with C++
support can be used such as Eclipse or CLion. The assignments can be
programmed in other languages with OpenCV support, such as Python,
although this document assumes C++ is used.

https://cv.utcluj.ro/index.php/teaching.html

2

Prerequisites

The following are required to understand and to successfully complete
the presented material:

• Linear algebra – matrix operations, linear systems, eigenvalue
decomposition;

• Analytic geometry and trigonometry – parametric equations for
curves/surfaces;

• Real analysis – multivariate functions, partial derivatives, local and
global minima;

• Statistics and probability theory – characterization of random
variables;

• Data structures and algorithms – point lists/vectors, sorting
arbitrary objects;

• C++ programming – text file input/output, functions and
arguments, memory access and dynamic allocation

3

1 Least Mean Squares

1.1 Objectives

In this assignment a line is fitted to a set of points using the Least Mean
Squares method (linear regression). Both the iterative solution
(gradient descent) and the closed form are presented. This laboratory
work also introduces the OpenCV-based framework used throughout
the course.

1.2 Theoretical Background

Consider the following problem: Given a set of data points of the form
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) where 𝑖𝑖 = {1,2, … ,𝑛𝑛}, find the equation of the line which best
fits the data. The solution to this problem is obtained via linear
regression. In this setting, the set of points is considered the training
set and the goal is to find a line model that best fits the data. We will
consider three different model types.

1.2.1 Model 1 – Slope-intercept form

When trying to fit a model to data the first step is to establish the form
of the model. Linear regression adopts a model that is linear in terms
of the parameters (including a constant term). In this first part, we will
adopt a simple model that expresses 𝑦𝑦 in terms of 𝑥𝑥:

𝑓𝑓(𝑥𝑥) = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥

This is the usual way this problem is solved. However, this
representation cannot treat vertical lines, since then 𝜃𝜃1 → ∞.
Nonetheless, it provides a good introduction to the method. A vector
can be formed that contains all the parameters of the model 𝜽𝜽 =
[𝜃𝜃0,𝜃𝜃1]T (the intercept term 𝜃𝜃0 and the linear coefficient for 𝜃𝜃1).

The Least Squares approach for determining the parameters states that
the best fit to the model will be obtained when the following quadratic
cost function is at its minimum:

𝐽𝐽(𝜽𝜽) =
1
2
�(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

4

The squared differences can be motivated by the assumption that the
error in the data follows a normal distribution – see reference [1]. Note
that, this minimizes the error only along the 𝑦𝑦-axis and not the actual
distances of the points from the line. In order to minimize the cost
function, we take its partial derivatives with respect to each parameter.

𝜕𝜕
𝜕𝜕𝜃𝜃0

𝐽𝐽(𝜽𝜽) = �(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝜕𝜕
𝜕𝜕𝜃𝜃1

𝐽𝐽(𝜽𝜽) = �(𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖

The cost function attains its minimum when the gradient becomes zero.
One general approach to find the minimum is to use gradient descent.
Since the gradient shows the direction in which the function increases
the most, if we take steps in the opposite direction we decrease the
value of the function. By controlling the size of the step we can arrive
at a local minimum of the function. Since the objective function in this
case is quadratic, the function has a single minimum and so gradient
descent will find it.

To apply gradient descent start from an initial non-zero guess 𝜽𝜽 chosen
randomly. Find the gradient in that point:

∇𝐽𝐽(𝜽𝜽) = �
𝜕𝜕𝐽𝐽(𝜽𝜽)
𝜕𝜕𝜃𝜃0

,
𝜕𝜕𝐽𝐽(𝜽𝜽)
𝜕𝜕𝜃𝜃1

�
𝑇𝑇

Then apply the following update rule until convergence:

𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜽𝜽 − 𝛼𝛼∇𝐽𝐽(𝜽𝜽),

where 𝛼𝛼 is the learning rate and it is chosen appropriately to ensure the
cost function decreases at each iteration. When the change between the
parameter values is small enough, the algorithm stops.

The gradient descent approach is appropriate when the roots of the
gradient are hard to find. But in this case an explicit solution can be
deduced. By setting the gradient components equal to 0 we obtain the
following system:

5

⎩
⎪
⎨

⎪
⎧ 𝜃𝜃0𝑛𝑛 + 𝜃𝜃1�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= �𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝜃𝜃0�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝜃𝜃1�𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= �𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

which is a linear system with two equations and two unknowns and
can be solved directly to obtain the values for 𝜽𝜽:

⎩
⎪
⎨

⎪
⎧𝜃𝜃1 =

𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1)2

𝜃𝜃0 =
1
𝑛𝑛
��𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝜃𝜃1�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�

In general, for higher dimensional data, the minimization problem for
this model can be written in matrix form:

‖𝐴𝐴𝜽𝜽 − 𝒃𝒃‖2 = (𝐴𝐴𝜽𝜽 − 𝒃𝒃)𝑇𝑇(𝐴𝐴𝜽𝜽 − 𝒃𝒃)

In our case, for two-dimensional data, the matrix 𝐴𝐴 is of size 𝑛𝑛 𝑥𝑥 2,
with each row i containing the value 1 followed by the value xi and 𝒃𝒃
is an 𝑛𝑛 𝑥𝑥 1 column vector containing the values 𝑦𝑦𝑖𝑖. In this case the
closed form solution is given directly by:

𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝒃𝒃

For more details and derivation consult [2].

1.2.2 Model 2 – Normal form

In order to address the issue of vertical lines we introduce another
model that is capable of dealing with every possible line orientation.
Consider the following parameterization of a line in 2D:

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) = 𝜌𝜌

This describes a line with unit normal vector [𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽), 𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽)] which
is at a distance of 𝜌𝜌 from the origin. The cost function we wish to
minimize in this case is the sum of squared distances of each point
from the line. This is given by:

6

𝐽𝐽(𝛽𝛽,𝜌𝜌) =
1
2
�(𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) − 𝜌𝜌)2
𝑛𝑛

𝑖𝑖=1

Note, that this is the actual error term that we want to minimize and
that in the previous section we have considered only the error along
the 𝑦𝑦-axis, which is incorrect.

The components of the gradient need to be evaluated to perform
gradient descent:

𝜕𝜕𝐽𝐽
𝜕𝜕𝛽𝛽

= �(𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽)− 𝜌𝜌)�−𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽)�
𝑛𝑛

𝑖𝑖=1

𝜕𝜕𝐽𝐽
𝜕𝜕𝜌𝜌

= −�(𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥(𝛽𝛽) + 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽) − 𝜌𝜌)
𝑛𝑛

𝑖𝑖=1

A closed form solution can be obtained, although not as easily as in the
previous case. The solution is given as:

𝛽𝛽 = −
1
2
𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛2�2�𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
2
𝑛𝑛
�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,�(𝑦𝑦𝑖𝑖2 − 𝑥𝑥𝑖𝑖2) +
1
𝑛𝑛
��𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
2

−
1
𝑛𝑛
��𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
2𝑛𝑛

𝑖𝑖=1

�

𝜌𝜌 =
1
𝑛𝑛
�cos(𝛽𝛽)�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑥𝑥𝑖𝑖𝑛𝑛(𝛽𝛽)�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�

1.2.3 Model 3 – Standard form

There is a third possibility for the form of the model. If we adopt a
parameterization with 3 free parameters for a line:

𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑥𝑥 = 0

The cost function can be defined as:

7

𝐽𝐽(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) =
1
2
�(𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑦𝑦𝑖𝑖 + 𝑥𝑥)2
𝑛𝑛

𝑖𝑖=1

which can be written in matrix form as the squared norm of a vector:

𝐽𝐽(𝑎𝑎, 𝑏𝑏, 𝑥𝑥) = (𝐴𝐴𝜽𝜽)𝑇𝑇𝐴𝐴𝜽𝜽

where 𝐴𝐴 is a matrix with 𝑛𝑛 𝑥𝑥 3 elements, each row containing
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 1) and 𝜽𝜽 = [𝑎𝑎, 𝑏𝑏, 𝑥𝑥]𝑇𝑇 is the parameter vector (column vector
with 3 elements).

We need to minimize this norm to obtain the parameter values.
Working with this model which has 3 parameters has two important
consequences. First, all possible lines can be modeled. Second, we will
have a family of parameter values which correspond to the same line.
To solve the second issue we will seek the parameter vector with unit
norm. Finding the null-space of a matrix 𝐴𝐴 with unit norm is a classical
problem and it is solved with Singular Value Decomposition. We have:

𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑈𝑈

where 𝑈𝑈 and 𝑈𝑈 are orthogonal matrices and 𝑈𝑈 contains values only on
the main diagonal (called singular values). From here the optimal value
for the parameter vector will correspond to the last column of the
matrix 𝑈𝑈 (which is the eigenvector of 𝐴𝐴𝑇𝑇𝐴𝐴 corresponding to the
smallest eigenvalue). The interested reader can consult [2] for a
demonstration and further details.

1.3 Practical Background

Download the Visual Studio project which is provided. It contains the
some sample functions and includes the OpenCV library for image
processing. Consider using the following code snippets in your work.

Reading from a text file:
FILE* f = fopen(“filename.txt”,”r”);
float x,y;
fscanf(f,”%f%f”, &x,&y);
fclose(f);

Creating a color image – 8 unsigned bits with 3 channels:
Mat img(height, width, CV_8UC3);

8

Accessing the pixel at position row i and column j:
Vec3b pixel = img.at<Vec3b>(i,j);
//byte vector with 3 elements

Modifying the pixel at row i and column j:
img.at<Vec3b>(i,j)[0] = 255; //blue channel
img.at<Vec3b>(i,j)[1] = 255; //green channel
img.at<Vec3b>(i,j)[2] = 255; //red channel

Draw a line between two points:
line(img, Point(x1, y1), Point(x2, y2),
Scalar(Blue,Green,Red));

Viewing the image:
imshow(“title”, img);
waitKey();

1.4 Practical Work
1. Read the input data from the given file. The first line contains the

number of points. Each line afterwards contains an (𝑥𝑥, 𝑦𝑦) pair.
2. Plot the points on a white 500x500 background image. For better

visibility draw circles, crosses or squares centered at the points. Be
careful to consider how the coordinate system in the image is
defined. Some points may have negative coordinates. Either do not
plot them at all or shift the whole graph. The fitting method itself
is not affected by points having negative coordinates.

3. Optionally, use model 1 and gradient descent to fit a line to the
points. Visualize the line at each k-th step. Output and visualize the
value of the cost function at each step. Choose the learning rate so
that the cost function is decreasing.

4. Use model 1 and the closed form equation to calculate the
parameters 𝜃𝜃0 and 𝜃𝜃1. Visualize both the final line from step 3 and
this one and compare the parameter values.

5. Optionally, use model 2 and gradient descent to fit a line to the
points. Visualize the line at each k-th step. Output and visualize the
value of the cost function at each step. Choose the learning rate so
that the cost function is decreasing.

6. Use model 2 and the closed form to calculate the parameters 𝛽𝛽 and
𝜌𝜌. Compare the results with those from step 5.

7. Optionally, find the parameters with model 3 and SVD.

9

1.5 Example Results

Figure 1.1 – Example Results using model 2 on data from files points1 and points2

1.6 References

[1] Stanford Machine Learning - course notes 1
http://cs229.stanford.edu/notes/cs229-notes1.pdf

[2] Tomas Svoboda - Least-squares solution of Homogeneous
Equations
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lec
tures/Supporting/constrained_lsq.pdf

http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf

10

2 RANSAC

2.1 Objectives

This laboratory work discusses the RANSAC method and applies it to
the problem of fitting a line to a set of 2D data points.

2.2 Theoretical Background

Consider the following problem: given 𝑈𝑈 a set of 2D data points, find
the line which minimizes the sum of distances of the points to the line
(orthogonal regression). The data may be contaminated by outliers
(noisy or incorrect points), thus fitting a line with the Least Mean
Squares on all the points would lead to incorrect results – see Figures
2.1.a-b.

Figure 2.1.a – Line obtained via Least Mean Squares fit on the whole data

Figure 2.1.b – Two possible lines considered by the RANSAC approach

11

Random Sample Consensus (RANSAC) is a paradigm for fitting a
model to experimental data, introduced by Martin A. Fischler and
Robert C. Bolles in [1]. RANSAC addresses the previous issue and
automatically determines the set of inlier points and proceeds to fit a
model only on this subset. As stated by the authors: "The RANSAC
procedure is opposite to that of conventional smoothing techniques:
Rather than using as much of the data as possible to obtain an initial
solution and then attempting to eliminate the invalid data points,
RANSAC uses as small an initial data set as feasible and enlarges this
set with consistent data when possible".

The general RANSAC algorithm based on [2] is given below:
Algorithm RANSAC
1. Randomly select a sample containing a number of 𝑥𝑥 data points

from 𝑈𝑈 and instantiate the model from this subset.
2. Determine the set of data points 𝑈𝑈𝑖𝑖 which is within a distance

threshold 𝑎𝑎 of the model. The set 𝑈𝑈𝑖𝑖 is the consensus set of the
sample and defines the inliers for model 𝑖𝑖.

3. If the size of 𝑈𝑈𝑖𝑖 (the number of inliers) is greater than some
threshold 𝑇𝑇, re-estimate the model using all the points in 𝑈𝑈𝑖𝑖 and
terminate.

4. If the size of 𝑈𝑈𝑖𝑖 is less than 𝑇𝑇, select a new subset and repeat from
step 1.

5. After 𝑁𝑁 trials the largest consensus set 𝑈𝑈𝑖𝑖 is selected, and the
model is re-estimated using all the points in the subset 𝑈𝑈𝑖𝑖.

The definition of the parameters appearing in the previous algorithm
is given next:
• 𝑥𝑥 – the size of the subset selected for model fitting, i.e. the

number of points;
• 𝑈𝑈 – the whole input point set;
• 𝑈𝑈𝑖𝑖 – the subset of the inlier points for the i-th trial, or support set;
• 𝑎𝑎 – threshold value for maximum admissible distance from the

model;
• 𝑇𝑇 – threshold value for signaling a sufficiently good data fit;
• 𝑁𝑁 – maximum number of trials;

The general algorithm can be adapted to the problem of line fitting on
2D points. The first step is to select 𝑥𝑥 = 2 points randomly, these
points define a line. The support or consensus set 𝑈𝑈𝑖𝑖 for this line
consists of the points that lie closer than a distance threshold 𝑎𝑎 to the
line. This random selection is repeated a number of times and the line

12

with biggest support set is retained. The points within the threshold
distance are denoted as the inliers (and constitute the eponymous
consensus set).

The method works one supposition that if one of the points is an outlier
then the line will not gain much support. Scoring a line by its support
set size has the advantage of favoring better fits. For example, the line
passing through points a and b from Figure 1-b has a support of 10,
whereas the line passing through points c and d has a support of only
2. We can probably deduce from this that c or d is an outlier point.

Next we address some questions regarding the approach and parameter
selection:
• Why is the method randomized? Exhaustively trying all subsets

is possible only for a small dataset. For example, for a dataset of
size |𝑈𝑈| = 𝑛𝑛 we have 𝑛𝑛(𝑛𝑛 − 1)/2 point pairs to check for
possible lines. This quickly becomes intractable for values of 𝑛𝑛
on the order of 105. If the model is fitted using more than 2
points the possible subsets is even larger. By repeatedly selecting
two random points we avoid checking all possible subsets.

• How many trials should we perform? The value for the number
of trials 𝑁𝑁 should be chosen such that there is a high enough
probability 𝑝𝑝 that at least one from the 𝑁𝑁 trials is outlier-free.
Consider the following:

o 𝑞𝑞 – is the estimated probability that a point is an inlier
o 𝑞𝑞𝑠𝑠 – is the probability the all 𝑥𝑥 points are inliers
o 1 − 𝑞𝑞𝑠𝑠 – is the probability that at least one point is an

outlier
o (1 − 𝑞𝑞𝑠𝑠)𝑁𝑁- is the probability that there is at least an

outlier in each of the N trials
o 𝑝𝑝 = 1 − (1 − 𝑞𝑞𝑠𝑠)𝑁𝑁 – is the probability that at least one

trial is outlier-free
o The value of 𝑁𝑁 can be calculated based on a fixed value

for the desired 𝑝𝑝
o 𝑁𝑁 = log(1 − 𝑝𝑝) /log (1 − 𝑞𝑞𝑠𝑠)

• How to choose the distance threshold 𝑎𝑎? We would like to
choose the distance threshold 𝑎𝑎, such that a point is an inlier with
a given probability 𝑞𝑞. For this we require the probability
distribution for the distance of an inlier from the model
(measurement error model). In practice, the distance threshold is
usually chosen empirically. However, if it is assumed that the

13

measurement error is Gaussian with zero mean and standard
deviation 𝜎𝜎, then a value for t may be set to 3𝜎𝜎.

• How large is an acceptable consensus set? A rule of thumb is to
terminate if the size of the consensus set is similar to the number
of inliers believed to be in the data set, given the assumed
proportion of outliers, i.e. for 𝑛𝑛 data points 𝑇𝑇 = 𝑞𝑞 ⋅ 𝑛𝑛

2.2.1 Line model

The equation of a line through two distinct points (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2)
is given by:

(𝑦𝑦1 − 𝑦𝑦2)𝑥𝑥 + (𝑥𝑥2 − 𝑥𝑥1)𝑦𝑦 + 𝑥𝑥1𝑦𝑦2 − 𝑥𝑥2𝑦𝑦1 = 0

The distance from a point (𝑥𝑥0, 𝑦𝑦0) to a line given by the equation 𝑎𝑎𝑥𝑥 +
𝑏𝑏𝑦𝑦 + 𝑥𝑥 = 0 is:

𝑑𝑑 =
|𝑎𝑎𝑥𝑥0 + 𝑏𝑏𝑦𝑦0 + 𝑥𝑥|

√𝑎𝑎2 + 𝑏𝑏2

2.3 Practical Background

Opening an image with automatic grayscale conversion:
Mat img = imread(“filename”,
CV_LOAD_IMAGE_GRAYSCALE);

Creating a grayscale image named dst:
Mat dst(height, width, CV_8UC1);
//8bit unsigned 1 channel

Accessing the pixel at row i and column j:
uchar pixel = img.at<uchar>(i,j);
//unsigned char type

A black point from the image at row i and column j corresponds
to a point at coordinates (x=j, y=i) – this is the OpenCV library’s
convention for point coordinates
if (img.at<uchar>(i,j)==0){
 Point p; p.x = j; p.y = i;
}

Modifying the pixel at row i and column j:
img.at<uchar>(i,j) = 255; //white

14

Selecting a random point from an array of n points (requires stdlib.h):
Point p = points[rand()%n];

Draw a line between two points:
line(img, Point(x1, y1), Point(x2, y2),
Scalar(B,G,R));

Viewing the image:
imshow(“title”, img);
waitKey();

2.4 Practical Work
1. Open the input image and construct the input point set by finding

the positions of all black points.
2. Calculate the parameters 𝑁𝑁 and 𝑇𝑇 starting from the recommended

values:
3. 𝑎𝑎 = 10, 𝑝𝑝 = 0.99, 𝑞𝑞 = 0.7 and 𝑥𝑥 = 2. For points1.bmp use 𝑞𝑞 =

0.3.
4. Apply the RANSAC method:

a. Choose two different points;
b. Determine the equation of the line passing through the selected

points;
c. Find the distances of each point to the line;
d. Count the number of inliers;
e. Save the line parameters (𝑎𝑎, 𝑏𝑏, 𝑥𝑥) if the current line has the

highest number of inliers so far;
5. Write the correct termination conditions based on the size of the

consensus set and the maximum number of iterations.
6. Optionally, estimate the line parameters using Least Mean Squares

on the best consensus set.
7. Draw the optimal line found by the method.

2.5 References

[1] Fischler, Martin A., and Robert C. Bolles. "Random sample
consensus: a paradigm for model fitting with applications to image
analysis and automated cartography." Communications of the
ACM 24, no. 6 (1981): 381-395.

[2] Hartley, Richard, and Andrew Zisserman. Multiple view geometry
in computer vision. Cambridge university press, 2003.

15

3 Hough Transform

3.1 Objectives

The main objective of this laboratory session is to implement the
Hough Transform for line detection from edge images.

3.2 Theoretical Background

The classical Hough transform is a method that solves an important
image processing problem: finding lines in an image that contains a set
of interest points. The straightforward method of computing lines from
each pair of points has an increased computational complexity of
𝑂𝑂(𝑛𝑛2), and is unusable for a large number of points.

The Hough transform was first proposed and patented by Peter Hough
in [1]. It proposes to count how many points are placed on each
possible line in the image. The original method relies on the
representation of the lines in the slope-intercept form (𝑦𝑦 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏),
and on the building of the line parameter space, also called Hough
accumulator. For each image interest point, all possible lines are
considered, and the corresponding elements in the line parameter space
are incremented. Relevant image lines are found at the locations of the
local maxima in the line parameter space.

The initial proposal was focused on the detection of lines from video
sequences, based on a slope and free-term line representation. This
representation is not optimal because it is not bounded: in order to
represent all the possible lines in an image, the slope and the intercept
terms should vary between -∞ and +∞. The work of Duda and Hart
from [2] made the Hough transform more popular in the computer
vision field. The main problem of the original Hough transform
(unbounded parameters) is solved by using the so-called normal
parameterization. The normal parameterization of a line consists of
representing the line by its normal vector and the distance from origin
to the line. The normal representation (1) is sometimes referred to as
the 𝜌𝜌 − 𝜃𝜃 representation (Figure 3.1).

16

Figure 3.1 – Line represented by its normal vector, at angle 𝜽𝜽, and its distance

𝝆𝝆 from the origin

The equation satisfied by a point on the line (x,y) is then given by:

𝜌𝜌 = 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥(𝜃𝜃) + 𝑦𝑦 𝑥𝑥𝑖𝑖𝑛𝑛(𝜃𝜃)

Parameter quantization plays an important role in decreasing the
computational complexity of the method. Quantization determines the
size of the Hough accumulator. For each of the two line parameters, a
quantization level must be established, depending on the desired
accuracy. The accuracy of 𝜌𝜌 can be of 10, 1 or 0.5 pixels etc, and the
accuracy of 𝜃𝜃 can be of 10, 1 or 0.5 degrees etc. The parameters 𝜌𝜌 and
𝜃𝜃 have a limited range because the image has a limited size. The
maximum value for 𝜌𝜌 is the diagonal of the image. Depending on the
interval selected for θ, there are mainly two equivalent configurations
for the line parameter range. The first one is proposed in the original
work and we will employ the second one:

𝜃𝜃 ∈ [0°, 180°),𝜌𝜌 ∈ [−𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚]

𝜃𝜃 ∈ [0,360°),𝜌𝜌 ∈ [0, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚]

Let us assume that the Hough accumulator 𝐻𝐻 represents the quantized
line parameter space. The quantization steps for 𝜌𝜌 and 𝜃𝜃 are Δ𝜌𝜌 and
Δ𝜃𝜃, respectively. Their maximum values are 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚. The
accumulator will have a size of (𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 /Δ𝜌𝜌, 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚/Δ𝜃𝜃). H is built with
the following simple steps:

17

Algorithm Hough Transform

Initialize 𝐻𝐻 with 0
For each edge point 𝑃𝑃(𝑥𝑥,𝑦𝑦)

For each 𝜃𝜃 from 0 to 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 (with a step of Δθ)

Compute 𝜌𝜌 = 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥(𝜃𝜃) + 𝑦𝑦 𝑥𝑥𝑖𝑖𝑛𝑛(𝜃𝜃)
If 𝜌𝜌 ∈ [0,𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚] increment 𝐻𝐻(𝜌𝜌,𝜃𝜃)

The increment operation of a Hough location can also be weighted, if
different weights are desired for each interest point. Once the
accumulator is built, relevant lines are extracted as the local peaks of
the accumulator. Local peaks are found at places where the
accumulator is larger than all neighboring cells.

An example of line detection based on the Hough transform is
presented below (Figure 3.2). The parameter ranges for this example
are [0, 360) degrees for θ , [0, 144] pixels for ρ. The parameter
accuracy is 1 degree for θ and 1 pixel for ρ.

Choosing the correct level of quantization is important. If the
quantization is too fine, then the resolution increases, but so does the
processing time. A high resolution and also raises the chances of
collinear points falling into different accumulator bins (this might
cause multiple detections and the fragmentation of certain lines).

Although the Hough transform is widely used for line detection, it can
also work with more complex curves, as long as an adequate
parameterization is available. Duda and Hart [2] also proposed the
detection of circles based on the Hough transform. In this case a 3D
parameter space is needed and each interest point is transformed into a
right circular cone in the parameter space (all the possible circles
containing the point). Later, Ballard generalized the Hough transform
to detect arbitrary non-analytical shapes in [3].

18

3.3 Practical Background

Use the simplest configuration for parameter quantization: 1 pixel for
𝜌𝜌 and 1 degree for 𝜃𝜃. Use the second option for the parameter range
from formula (2). The size of the Hough accumulator will have D + 1
rows and 360 columns, where D is the image diagonal rounded to the
nearest integer.

Mat Hough(D+1, 360, CV_32SC1); //matrix with
int values

Initialize the accumulator to zero using:

Hough.setTo(0);

Modify the accumulator like:

Hough.at<int>(ro, theta)++;

The accumulator needs to be normalized to have values in the range 0-
255 to be viewed as a grayscale image. Use the normalize method
or find the maximum from the accumulator and call the following
function. Note that the subsequent operations must be performed on
the original accumulator.

Mat houghImg;
Hough.convertTo(houghImg, CV_8UC1,
255.f/maxHough);

In order to locate peaks in the accumulator, you will test for each
Hough element if it is a local maximum in a squared window (n x n)
centered on that element. Use the following custom structure to store
and sort the local maxima. The < operator of the structure has been
overwritten to use the > operator between the peak values specifically
to sort descending when the sort method from the algorithm
library is called.

struct peak{

int theta, ro, hval;
bool operator < (const peak& o) const {

return hval > o.hval;
}

};

19

3.4 Practical Work
1. Compute the Hough accumulator based on the edge image and

display it as a grayscale image.
2. Locate the k largest local maxima from the accumulator. Try using

different window sizes such as: 3x3, 7x7 or 11x11.
3. Draw lines that correspond to the peaks found. Use both the

original image and the edge image for visualization.

3.5 Example Results

 a. b. c.

d.

e.

Figure 3.2 - a. An image containing a pattern with straight borders corrupted by
salt-and-pepper like noise, b. The edges detected with the Canny edge detector, c.

The most relevant image lines are displayed with green, associated to the most
relevant 8 peaks from the Hough accumulator, d. The Hough accumulator

displayed using an intensity encoding, e. The Hough accumulator displayed in 3D,
using color encoding.

20

3.6 References
[1] P. Hough, “Method and means for recognizing complex patterns”,

US patent 3,069,654, 1962.
[2] R. O. Duda and P. E. Hart, "Use of the Hough Transformation to

Detect Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp.
11–15, 1972.

[3] D. H. Ballard, "Generalizing the Hough Transform to Detect
Arbitrary Shapes", Pattern Recognition, Vol.13, No.2, p.111-122,
1981.

21

4 Distance Transform

4.1 Objectives
In this laboratory session we will study an algorithm that calculates the
Distance Transform of a binary image (object and background). Our
goal is to evaluate the pattern matching score between a known
template object (e.g. a pedestrian contour) and an unknown object (e.g.
the contour of a different object) in order to decide if the unknown
object is similar or not to the template object. The less the pattern
matching score is, the more similar is the unknown object is to the
template.

4.2 Theoretical Background

4.2.1 The Distance Transform

A distance transform, also known as distance map or distance field, is
a representation of a digital image. The term transform or map is used
depending on whether the initial image is transformed, or it is simply
endowed with an additional map or field. The map will contain at each
pixel the distance to the nearest obstacle pixel. The most common type
of obstacle pixel is a boundary pixel from a binary image.

The distance transform is an operator normally only applied to binary
images. The result of the transform is a grayscale image that looks
similar to the input image, except that the intensities at each point show
the distance to the closest boundary point.

One way to think about the distance transform is to first imagine that
foreground regions in the input binary image are made of some
uniform slow burning flammable material. Then consider
simultaneously starting a fire at all points on the boundary of a
foreground region and letting the fire burn its way into the interior. If
we then label each point in the interior with the amount of time that the
fire took to first reach that point, then we have effectively computed
the distance transform of that region.

See the next image for an example of a chessboard distance transform
on a binary image containing a simple rectangular shape. In the left
image the pixels with value “0” represent object pixels (boundary
pixels) and those with value “1” background pixels. In the right image
is the result of applying the Distance Transform using the chessboard

http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Binary_image
http://en.wikipedia.org/wiki/Chessboard_distance
http://en.wikipedia.org/wiki/Binary_image

22

metric, where each value encodes the minimum distance to an object
pixel (boundary pixel):

Figure 4.1 – On the left: binary input image; on the right: distance transform of the
image, every position shows the checkerboard distance to the closest boundary

point (0 values in the input image) [1]

Usually the transform is qualified with the chosen metric. For example,
one may speak of Manhattan Distance Transform, if the underlying
metric is Manhattan distance. Common metrics are:

- Euclidean distance;
- Taxicab geometry, also known as City block distance or

Manhattan distance;
- Chessboard distance.

There are several algorithms for implementing DT:
- Chamfer based DT;
- Euclidian DT;
- Voronoi diagram based DT.

We will present the Chamfer based DT which is a simple and very
fast method (it requires only two scans of the binary image) and it is
an approximation of the Euclidian DT. The sketch of the algorithm is
the following:

Algorithm Chamfer Distance Transform

- A 3x3 weight mask is chosen which is has values proportional to
the Euclidean distances from the middle element. The simplest and
smallest such values are 2 for lateral displacement and 3 for
diagonal displacement. In this way the distances obtained will be
equal to approximately twice the actual Euclidean distances.

𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑥𝑥 = �
3 2 3
2 0 2
3 2 3

�

http://en.wikipedia.org/wiki/Metrics
http://en.wikipedia.org/wiki/Manhattan_distance
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Taxicab_geometry
http://en.wikipedia.org/wiki/Chessboard_distance
http://en.wikipedia.org/wiki/File:Distance_Transformation.gif

23

- The distance transform map has the same size as the input image
and is initialized with zeroes and large values based on the
positions of edge points:

𝐷𝐷𝑇𝑇(𝑖𝑖, 𝑗𝑗) = �0 𝑖𝑖𝑖𝑖𝑤𝑤(𝑖𝑖, 𝑗𝑗) ∈ 𝑂𝑂𝑏𝑏𝑗𝑗𝑤𝑤𝑥𝑥𝑎𝑎
∞ 𝑖𝑖𝑖𝑖𝑤𝑤(𝑖𝑖, 𝑗𝑗) ∉ 𝑂𝑂𝑏𝑏𝑗𝑗𝑤𝑤𝑥𝑥𝑎𝑎

- A double scan (first top-down, left-right and second bottom-up,
right-left) of the image (with the corresponding two parts of the
mask – see the figure below) is required to update the minimum
distance. On the first traversal the central element is compared to
the neighbors corresponding yellow elements, and on the second
traversal, with green elements:

- The next update operation should be performed on the DT image

while scanning (forward and then backward) the source image.
Only the a subset of neighbors are used and so the minimum is
calculated based on the previous values with regards to traversal
direction:
𝐷𝐷𝑇𝑇(𝑖𝑖, 𝑗𝑗) = 𝑖𝑖𝑖𝑖𝑛𝑛

(𝑘𝑘,𝑙𝑙)∈𝑀𝑀𝑚𝑚𝑠𝑠𝑘𝑘
𝐷𝐷𝑇𝑇(𝑖𝑖 + 𝑘𝑘 − 1, 𝑗𝑗 + 𝑙𝑙 − 1) + 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑎𝑎𝑥𝑥(𝑘𝑘, 𝑙𝑙)

It is worth noting, that the center element with weight 0 belongs to both
masks, and so, the minimum is always compared to the existing value
from the DT map.

If we apply DT on a binary image, where the value 0 signifies object
pixels and the value 255 encodes the background, and we want to
obtain a grayscale DT image (8 bits/pixel), the value ∞ from the
algorithm should be substituted with the value 255.

4.2.2 Pattern Matching using DT

Our goal in this part is to compute the pattern matching score between
a template, which represents a known object, and an unknown object.
The score can be used to quantify the similarity between the contours
of the template and that of unknown object. We consider that both the
template and the unknown object images have the same dimensions.

24

The steps for computing the pattern matching score:
- compute the DT image of the template object;
- superimpose the unknown object image over the DT image of the

template;
- the pattern matching score is the average of all the values from

the DT image that lie under the unknown object contour.

Example: Consider that the template object is a leaf contour and the
unknown object is a pedestrian contour:
- Compute the DT image of the leaf:
- Superimpose the pedestrian image over the DT image of the leaf;
- Evaluate the matching score as the average values from the DT

image from the positions indicated by the pedestrian contour

Figure 4.2 – From left to right: contour of a leaf; contour of a pedestrian; the
pedestrian superimposed on the distance transform of the leaf

4.3 Practical Background
Opening the source image as a grayscale image:
Mat img = imread(“filename”,
IMREAD_GRAYSCALE);

Initializing the DT image as a copy of the source image:
Mat dt = src.clone();

25

Convenient 8-neighborhood access at position (i,j):
int di[9] = {-1,-1,-1,0,0,0,1,1,1};
int dj[9] = {-1,0,1,-1,0,1,-1,0,1};
int weight[9] = {3,2,3,2,0,2,3,2,3};
for(int k=0; k<9; k++)

uchar pixel = img.at<uchar>(i+di[k],
 j+dj[k]);

4.4 Practical Work
1. Implement the Chamfer Distance Transform algorithm. Compute

and visualize the DT images for: contour1.bmp, contour2.bmp,
contour3.bmp. Results should coincide with the ones presented in
the text. Object pixels are black and background pixels are white.

2. Compute the DT image for template.bmp. Evaluate the matching
score between the template and each of the two unknown objects
(unknown_object1.bmp – pedestrian contour,
unknown_object2.bmp – leaf contour). The matching score is
given as the average of the DT image values that lie under the
contour points from the object image.

3. Compute the matching score by switching the roles of template and
unknown object. Are the scores the same?

4. Before calculating the matching score, translate the unknown
object such that its center of mass coincides with template’s center
of mass. Estimate the center of mass based on the contour points
only.

5. Optionally, implement the true Euclidean Distance Transform.
Why is the Chamfer Distance Transform different?

26

4.5 Example Results

Examples of DT image results using Chamfer method using the
suggested weight matrix.

Figure 4.3 – Upper row: input binary images; lower row: corresponding DT images

4.6 References

[1] Wikipedia The Free Encyclopedia – Distance Transform,
http://en.wikipedia.org/wiki/Distance_transform

[2] Compendium of Computer Vision – Distance Transform,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm

http://en.wikipedia.org/wiki/Distance_transform
http://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm

27

5 Statistical Data Analysis

5.1 Objectives

The purpose of this laboratory session is to explore methods for
analyzing statistical data. We will study the mean, standard deviation,
covariance and the Gaussian probability density function. The
experiments will be performed on a set of images containing faces. The
covariance matrix will be used to establish the correlations between
different pixels.

5.2 Theoretical Background

5.2.1 Definitions
A random variable 𝑋𝑋 is a function that assigns a real number 𝑋𝑋(𝜁𝜁) to
each outcome 𝜁𝜁 in the sample space of a random experiment (see figure
below). This function 𝑋𝑋(𝜁𝜁) is performing a mapping from all the
possible elements in the sample space onto the real line (real numbers).
Random variables can be:

- Discrete: the resulting number after rolling a dice;
- Continuous: the weight of a person.

Figure 5.1 Random variable example

A random variable vector 𝑋𝑋 is a function that assigns a vector of real
numbers to each outcome 𝑋𝑋(𝜁𝜁) in the sample space 𝑈𝑈. The notion of
a random vector is an extension to that of a random variable:

𝑿𝑿 = [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁]𝑇𝑇

28

5.2.2 Statistical Characterization of Random variables

A random variable with probability density function 𝑓𝑓𝑚𝑚(𝑥𝑥) can be
partially characterized by:

1. Expectation: represents the center of mass.

𝐸𝐸[𝑋𝑋] = 𝜇𝜇 = � 𝑥𝑥𝑓𝑓𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞

2. Variance: represents the spread about the mean.

𝑈𝑈𝐴𝐴𝑉𝑉[𝑋𝑋] = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2] = �(𝑥𝑥 − 𝜇𝜇)2𝑓𝑓𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

−∞

3. Standard deviation: The square root of the variance. It has the
same units as the random variable.

𝑈𝑈𝑇𝑇𝐷𝐷[𝑋𝑋] = 𝑈𝑈𝐴𝐴𝑉𝑉[𝑋𝑋]1/2

5.2.3 Statistical Characterization of Random Vectors

We can describe a random vector with the following measures:
1. Mean vector:

𝐸𝐸[𝑿𝑿] = �𝐸𝐸[𝑋𝑋1],𝐸𝐸[𝑋𝑋2], … ,𝐸𝐸[𝑋𝑋𝑁𝑁]� = [𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑁𝑁] = 𝝁𝝁
2. Covariance matrix:

𝐶𝐶𝑂𝑂𝑈𝑈[𝑿𝑿] = 𝚺𝚺 = 𝐸𝐸[(𝑿𝑿 − 𝝁𝝁)(𝑿𝑿− 𝝁𝝁)𝑇𝑇]

= �
𝐸𝐸[(𝑋𝑋1 − 𝜇𝜇1)(𝑋𝑋1 − 𝜇𝜇1)𝑇𝑇] … 𝐸𝐸[(𝑋𝑋1 − 𝜇𝜇1)(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)𝑇𝑇]

… … …
𝐸𝐸[(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)(𝑋𝑋1 − 𝜇𝜇1)𝑇𝑇] … 𝐸𝐸[(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)(𝑋𝑋𝑁𝑁 − 𝜇𝜇𝑁𝑁)𝑇𝑇]

�

= �
𝜎𝜎12 … 𝑥𝑥1𝑁𝑁
… … …
𝑥𝑥𝑁𝑁1 … 𝜎𝜎𝑁𝑁2

�

The covariance matrix indicates the tendency of each pair of random
variables (dimensions in a random vector) to vary together, i.e., to co-
vary. The covariance has several important properties:

- If 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑘𝑘 tend to increase together, then 𝑥𝑥𝑖𝑖𝑘𝑘 > 0
- If 𝑋𝑋𝑖𝑖 tends to decrease when 𝑋𝑋𝑘𝑘 increases, then 𝑥𝑥𝑖𝑖𝑘𝑘 < 0
- If 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑘𝑘 are uncorrelated, then 𝑥𝑥𝑖𝑖𝑘𝑘 = 0
- �𝑥𝑥𝑖𝑖𝑖𝑖� < 𝜎𝜎𝑖𝑖𝜎𝜎𝑖𝑖 , where 𝜎𝜎𝑖𝑖 is the standard deviation of 𝑋𝑋𝑖𝑖
- 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑈𝑈𝐴𝐴𝑉𝑉[𝑋𝑋𝑖𝑖]
- 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖

The elements of the covariance matrix can be expressed as:
𝑥𝑥𝑖𝑖𝑘𝑘 = 𝐸𝐸[(𝑋𝑋𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝑋𝑋𝑘𝑘 − 𝜇𝜇𝑘𝑘)]

29

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2
𝑥𝑥𝑖𝑖𝑘𝑘 = 𝜌𝜌𝑖𝑖𝑘𝑘𝜎𝜎𝑖𝑖𝜎𝜎𝑘𝑘

where 𝜌𝜌𝑖𝑖𝑘𝑘 is called the correlation coefficient.

The next figures represent the correlation charts between two
features, 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑘𝑘.

Figure 5.2 – Examples of 2D samples with different correlation coefficients

5.3 Practical Background

You are given p=400 images that contain human faces. The figure
below shows a montage of all the input images:

Figure 5.3 – Input image dataset containing portraits

Let 𝑰𝑰 be the feature matrix which will hold all the intensity values from
the image set. 𝑰𝑰 is of dimension 𝑝𝑝 × 𝑁𝑁, where p is the number of
images and N is the number of pixels in each image. The kth row
contains all the pixel values from the kth image in row-major order. The
row-major order for a 3x3 matrix is:

30

�
𝐴𝐴00 𝐴𝐴01 𝐴𝐴02
𝐴𝐴10 𝐴𝐴11 𝐴𝐴12
𝐴𝐴20 𝐴𝐴21 𝐴𝐴22

� → [𝐴𝐴00,𝐴𝐴01,𝐴𝐴02,𝐴𝐴10,𝐴𝐴11,𝐴𝐴12,𝐴𝐴20,𝐴𝐴21,𝐴𝐴22]

Each image in the set has the dimension of 19x19 pixels. The
interpretation of the feature matrix I is that each row holds a sample
for the N dimensional random variable 𝑿𝑿 which is drawn from the
distribution underlying the dataset.

Your task will be to compute the covariance matrix of the given set of
images and to study how different features vary with respect to each
other.

The mean value of a feature located at position i in the image is:

𝜇𝜇𝑖𝑖 =
1
𝑝𝑝
�𝐼𝐼𝑘𝑘𝑖𝑖

𝑜𝑜

𝑘𝑘=1

Where 𝐼𝐼𝑘𝑘𝑖𝑖 represents the value of feature i in image k. The standard
deviation of a feature i is:

𝜎𝜎𝑖𝑖 = �
1
𝑝𝑝
� (𝐼𝐼𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)2

𝑜𝑜

𝑘𝑘=1

The elements of the covariance matrix, 𝑥𝑥𝑖𝑖𝑖𝑖 can be computed by:

𝑥𝑥𝑖𝑖𝑖𝑖 =
1
𝑝𝑝
�(𝐼𝐼𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝐼𝐼𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)
𝑜𝑜

𝑘𝑘=1

The correlation coefficient is:

𝜌𝜌𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖
𝜎𝜎𝑖𝑖𝜎𝜎𝑖𝑖

Note that 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2 and 𝜌𝜌𝑖𝑖𝑖𝑖 = 1.

5.4 Practical Work

1. Load the 400 images and store the intensity values as rows in the
feature matrix I. The code that loads several images from a folder
is:
char folder[256] = “faces”;
char fname[256];

31

for(int i=1; i<=400; i++){
 sprintf(fname,”%s/face%05d.bmp”, folder, i);
 Mat img = imread(fname,0);
}

2. Compute mean values for each feature and save them to a csv text
file (comma separated values). Write the components in a text file
separated by commas and save it with a csv extension. Csv files
are viewable in Microsoft Excel as tables.

3. Compute the covariance matrix and save it to a csv text file.
4. Compute the correlation coefficients matrix and save it to a csv text

file.
5. Compute the correlation coefficient and display the correlation

chart between selected intensity feature pairs. The correlation chart
between the ith and jth features is a 256x256 white image with black
points at locations (𝐼𝐼𝑘𝑘𝑖𝑖, 𝐼𝐼𝑘𝑘𝑖𝑖), for each possible k. Use the following
coordinate pairs (row, column) which must be linearized
(transformed to a single value using the row-major order presented
above) to find the correct column index from I:
a. (5,4) and (5,14). These points correspond to pixels belonging

to left eye and right eye. Your result should resemble the one
in figure below having the correlation coefficient ~ 0.94.

b. (10,3) and (9, 15). These points correspond to pixels belonging
to left cheek and right cheek. Your result should resemble the
one in figure below having the correlation coefficient ~ 0.84.

c. (5,4) and (18,0). These points correspond to pixels belonging
to left eye and the left bottom corner of the face images (notice
these points are not highly correlated). Your result should
resemble the one in figure below having the correlation
coefficient ~ 0.07.

6. Plot the probability density function for a selected feature having
the form of a one dimensional Gaussian probability density
function:

𝑓𝑓𝑚𝑚(𝑥𝑥) =
1

√2𝜋𝜋𝜎𝜎
𝑤𝑤𝑥𝑥𝑝𝑝 �−

(𝑥𝑥 − 𝜇𝜇)2

2𝜎𝜎2
�

where μ is the mean and σ is the standard deviation for the selected
feature. Normalize the density values so that the peak reaches the
height of the image.

7. Optionally, plot the 2D probability density function as a grayscale
image for two selected features using the 2D Gaussian probability
density function:

32

𝑝𝑝�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖� =
1

2𝜋𝜋�det (𝐶𝐶𝑖𝑖𝑖𝑖)
𝑤𝑤𝑥𝑥𝑝𝑝 �−0.5 ��𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖, 𝑥𝑥𝑖𝑖

− 𝜇𝜇𝑖𝑖�𝐶𝐶𝑖𝑖𝑖𝑖−1 �
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖���

where μi is the mean for feature i and 𝐶𝐶𝑖𝑖𝑖𝑖 is the covariance matrix
between features i and j. Normalize the density values to fit inside
the range 0:255.

5.5 Example Results

a

b

c

Figure 5.3 – From left to right, Example Results for tasks 5 a, b and c

33

5.6 References

[1] MIT CBCL FACE dataset
http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz

http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz

34

6 Principal Component Analysis
6.1 Objectives

This laboratory work describes the Principal Component Analysis
method. It is applied as a means of dimensionality reduction,
compression and visualization. A library capable of providing the
eigenvalue decomposition of a matrix is required.

6.2 Theoretical Background

You are given a set of data points lying in a high dimensional space.
Each point can represent the features of a training instance. Our goal
is to reduce the dimensionality of the data points while preserving as
much information as possible.

We begin with a simple 2D example. We plot the points corresponding
to data collected about how different people enjoy certain activities and
their skill in the respective domain. Figure 1 shows a cartoon example,
from [2].

Consider now the two vectors u1 and u2. If we project the 2D points
onto the vector u2 we obtain scalar values with a small spread (standard
deviation). If instead, we project it onto u1 the spread is much larger.
If we had to choose a single vector we would prefer to project onto u1
since the points can still be discerned from each other.

Figure 6.1 – Visualizing the projection of 𝒙𝒙 along the 𝒖𝒖1 axis

More formally, each 2D point can be written as:

𝒙𝒙 = 〈𝒙𝒙,𝒖𝒖1〉𝒖𝒖1 ‖𝒖𝒖1‖ +⁄ 〈𝒙𝒙,𝒖𝒖2〉𝒖𝒖2 ‖𝒖𝒖2‖⁄

Here we have projected x onto each vector and then added the
corresponding terms. The dot product 〈𝒙𝒙,𝒖𝒖𝑖𝑖〉 gives the magnitude of

35

the projection, it needs to be normalized by the length of the vector
‖𝒖𝒖𝑖𝑖‖ and the two vectors give the directions. This is possible since u1
and u2 are perpendicular. If we impose that they be also unit vectors
then the normalization term disappears. See [4] for a better
visualization.

The idea behind reducing the dimensionality of the data is to use only
the largest projections. Since the projections onto u2 will be smaller we
can approximate x with only the first term:

𝒙𝒙�𝟏𝟏 = 〈𝒙𝒙,𝒖𝒖1〉𝒖𝒖1 ‖𝒖𝒖1‖⁄

In general, given an orthonormal basis for a d-dimensional vector
space called B with basis vectors bi we can write any vector as:

𝒙𝒙 = �〈𝒙𝒙,𝒃𝒃𝑖𝑖〉𝒃𝒃𝑖𝑖 = �(𝒙𝒙𝑇𝑇𝒃𝒃𝑖𝑖)
𝑑𝑑

𝑖𝑖=1

𝑑𝑑

𝑖𝑖=1

𝒃𝒃𝑖𝑖

The question arises of how to determine the basis vectors onto which
to perform the projections. Since we are interested in maximizing the
preserved variance the covariance matrix could offer useful
information. The covariance of two features is defined as:

𝐶𝐶(𝑖𝑖, 𝑗𝑗) =
1

𝑛𝑛 − 1
�(𝑥𝑥𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑥𝑥𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖�
𝑛𝑛

𝑘𝑘=1

where 𝜇𝜇𝑖𝑖 is the mean for feature i and 𝑥𝑥𝑘𝑘𝑖𝑖 is the i-th feature of the k-th
point. The covariance matrix contains covariance values for all pairs.
It can be shown that it can be expressed as a simple matrix product:

𝐶𝐶 =
1

𝑛𝑛 − 1
(𝑋𝑋 − 𝝁𝝁𝟏𝟏1𝑚𝑚𝑛𝑛)𝑇𝑇(𝑋𝑋 − 𝝁𝝁𝟏𝟏1𝑚𝑚𝑛𝑛)

where 𝝁𝝁 is a vector containing all mean values and 𝟏𝟏1𝑚𝑚𝑛𝑛 is a row vector
containing only ones. If we extract the mean from the data as a
preprocessing step the formula simplifies further:

𝐶𝐶 =
1

𝑛𝑛 − 1
𝑋𝑋𝑇𝑇𝑋𝑋

The next step is to find the axes along which the covariance is
maximal. Eigenvalue decomposition of a matrix offers such

36

information. Intuitively, (almost) any matrix can be viewed as a
rotation followed by a stretching along the axes and the inverse
rotation. The eigenvalue decomposition returns such a decomposition
for the matrix:

𝐶𝐶 = 𝑄𝑄Λ𝑄𝑄𝑇𝑇 = �𝜆𝜆𝑖𝑖𝑄𝑄𝑖𝑖𝑄𝑄𝑖𝑖𝑇𝑇
𝑑𝑑

𝑖𝑖=1

where Q is a dxd rotation matrix (orthonormal) and 𝛬𝛬 contains
elements only on the diagonal representing stretching along each axis.
The elements are called eigenvalues and each corresponding column
from Q is its eigenvector. Since we want to preserve the projections
with the largest variance we order the eigenvalues according to
magnitude and pick the first k corresponding eigenvalues. In this way
C can be approximated as:

�̃�𝐶𝑘𝑘 = 𝑄𝑄1:𝑘𝑘Λ1:𝑘𝑘𝑄𝑄1:𝑘𝑘
𝑇𝑇 = �𝜆𝜆𝑖𝑖𝑄𝑄𝑖𝑖𝑄𝑄𝑖𝑖𝑇𝑇

𝑘𝑘

𝑖𝑖=1

where 𝑄𝑄1:𝑘𝑘 is a dxk matrix with the first k eigenvectors and Λ1:𝑘𝑘 is a
kxk diagonal matrix with the first k eigenvalues. If k equals d we obtain
the original matrix and as we decrease k we get increasingly poorer
approximations for C.

Thus we have found the axes along which the variance of the
projections is maximized. Then, for a general vector its approximate
using k vectors can be evaluated as:

𝒙𝒙�𝒌𝒌 = �〈𝒙𝒙,𝑄𝑄𝑖𝑖〉𝑄𝑄𝑖𝑖 = �(𝒙𝒙𝑇𝑇𝑄𝑄𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

𝑄𝑄𝑖𝑖

where 𝑄𝑄𝑖𝑖 is the ith column of the rotation matrix Q.

The PCA coefficients can be calculated as:

𝑋𝑋𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 = 𝑋𝑋𝑄𝑄
PCA approximation can be performed on all the input vectors at once
(if they are stored as rows in X) using the following formulas:

𝑿𝑿�𝒌𝒌 = �𝑋𝑋𝑄𝑄𝑖𝑖𝑄𝑄𝑖𝑖𝑜𝑜 = �𝑋𝑋𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑖𝑖𝑄𝑄𝑖𝑖
𝑜𝑜

𝑘𝑘

𝑖𝑖=1

= 𝑋𝑋𝑄𝑄1:𝑘𝑘𝑄𝑄1:𝑘𝑘
𝑇𝑇

𝒌𝒌

𝒊𝒊=𝟏𝟏

= 𝑋𝑋𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐1:𝑘𝑘𝑄𝑄1:𝑘𝑘
𝑇𝑇

37

where 𝑄𝑄1:𝑘𝑘 signifies the first k columns from the matrix 𝑄𝑄. It is
important to distinguish the approximation from the coefficients; the
approximation is the sum of coefficients multiplied by the principal
components.

We will end the theoretical description by giving several applications
of PCA:
• reducing the dimensionality of features - in some cases a large

feature vector may prohibit fast prediction;
• visualizing the data - we can inspect only data in 3D and 2D, for

higher dimensional data a projection is necessary;
• approximating the data vectors;
• detecting redundant features and linear dependencies between

features;
• noise reduction - if the noise term has less variance then the data

(high signal-to-noise ratio) PCA eliminates the noise from the
input

6.3 Practical Background

Declare and allocate an nxd matrix with double precision floating point
values:
Mat X(n,d,CV_64FC1);

Calculate the covariance matrix after the means have been subtracted:
Mat C = X.t()*X/(n-1);

Perform eigenvalue decomposition on the covariance matrix C,
Lambda will contain the eigenvalues and Q will contain the
eigenvectors along columns. The transpose operation is necessary to
follow the notation from the theoretical discussion.
Mat Lambda, Q;
eigen(C, Lambda, Q);
Q = Q.t();

Dot product is implemented as normal multiplication. Note that due to
0 indexing the first row is row(0). The dot product between row i of X
and column i of Q is given by:
Mat prod = X.row(i)*Q.col(i);

38

6.4 Practical Work

1. Open the input file and read the list of data points. The first line
contains the number of points n and the dimensionality of the data
d. The following n lines each contain a single point with d
coordinates.

2. Calculate the mean vector and subtract it from the data points.
3. Calculate the covariance matrix as a matrix product.
4. Perform the eigenvalue decomposition on the covariance matrix.
5. Print the eigenvalues.
6. Calculate the PCA coefficients and kth approximate 𝑋𝑋�𝑘𝑘 for the input

data.
7. Evaluate the mean absolute difference between the original points

and their approximation using k principal components.
8. Find the minimum and maximum values along the columns of the

coefficient matrix.
9. For the input data from pca2d.txt select the first two columns from

Xcoef and plot the data as black 2D points on a white background.
To obtain positive coordinates subtract the minimum values.

10. For input data from pca3d.txt select the first three columns from
Xcoef and plot the data as a grayscale image. Use the first two
components as x and y coordinates and the third as intensity values.
To obtain positive coordinates subtract the minimum values from
the first two coordinates. Normalize the third component to the
interval 0:255

11. Automatically select the required k which retains a given percent
of the original variance. For example, find k for which the kth
approximate retains 99% of the original variance. The percentage
of variance retained is given by ∑ 𝜆𝜆𝑖𝑖𝑘𝑘

𝑖𝑖=1 ∑ 𝜆𝜆𝑖𝑖𝑑𝑑
𝑖𝑖=1⁄ .

6.5 Example Results

For pca2d
• First eigenvalue is approximately 8090
• Mean absolute difference using only one dimension: 22.43

For pca3d
• First eigenvalue is 5462.3301
• Mean absolute difference using only one dimension: 14.5

39

Figure 6.2 – Visualization of 2D points resulting from applying PCA on data from
pca2d.txt

6.6 References
[1] Wikipedia article PCA -
https://en.wikipedia.org/wiki/Principal_component_analysis
[2] Stanford Machine Learning course notes –
http://cs229.stanford.edu/notes/cs229-notes10.pdf
[3] Lindsay Smith - PCA tutorial –
http://faculty.iiit.ac.in/~mkrishna/PrincipalComponents.pdf
[4] PCA in R (animation of projection) -
https://poissonisfish.wordpress.com/2017/01/23/principal-

component-analysis-in-r/

https://en.wikipedia.org/wiki/Principal_component_analysis
http://cs229.stanford.edu/notes/cs229-notes10.pdf
http://faculty.iiit.ac.in/%7Emkrishna/PrincipalComponents.pdf
https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/
https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/

40

7 K-means Clustering

7.1 Objectives

This laboratory session deals with the problem of clustering a set of
points. This is a machine learning task that is unsupervised, i.e. the
class labels of the points are not known and not required. Successful
methods will identify the underlying structure in the data and group
similar points together.

7.2 Theoretical Background

Cluster analysis or clustering is the task of grouping a set of objects in
such a way that objects in the same group (also called a cluster) are
more similar (in some sense or another) to each other than to those in
other groups (clusters). It is a main task of exploratory data mining,
and a common technique for statistical data analysis, used in many
fields, including machine learning, pattern recognition, image analysis,
information retrieval, bioinformatics, data compression, and computer
graphics [1].

The input for the method is the set of data points: 𝑋𝑋 = {𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1:𝑛𝑛}.
Each point is d-dimensional 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑑𝑑). The goal of the k-
means clustering method is to partition the points into K sets denoted
by 𝑈𝑈 = {𝑈𝑈𝑘𝑘|𝑘𝑘 = 1:𝐾𝐾}. The mean value of the points in each set is
named 𝑖𝑖𝑘𝑘. The partitioning must minimize the following objective
function:

𝐽𝐽(𝑋𝑋, 𝑈𝑈) = � � 𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥,𝑖𝑖𝑘𝑘)
𝑚𝑚∈𝑆𝑆𝑘𝑘

𝐾𝐾

𝑘𝑘=1

where 𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(. , .) is the Euclidean distance function in d-dimensional
space:

𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥,𝑦𝑦) = �� (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑑𝑑

𝑖𝑖=1

This is an NP-hard problem but there are several approximations that
provide good results. Lloyd’s method proposes to divide the problem
into two parts. If we have the partitioning we can calculate the means,
but we cannot know the partitions if the cluster centers are unknown.

41

The idea is to start with a random set of cluster centers and iteratively
refine these. The algorithm is guaranteed to converge to a local
minimum but it may not be the global minimum [2].

Let L denote the membership function for each point, so 𝐿𝐿(𝑖𝑖) ∈
1:𝐾𝐾, 𝑖𝑖 = 1:𝑛𝑛. The membership function returns the cluster of the ith
point. Start by assigning the cluster centers to random points from the
dataset: 𝑖𝑖𝑘𝑘 = 𝑥𝑥𝑟𝑟𝑘𝑘, where 𝑟𝑟𝑘𝑘 is uniformly distributed random integer
from 1:n. In order to ensure better convergence more advanced
initialization techniques can be applied. In [3] the authors define the k-
means++ method. This relies on drawing the point with a given
distribution that disfavors points that are close together.

Afterwards, perform several iterations of assignment steps and update
steps. When the membership does not change or the maximum number
of iterations is reached, the algorithm is halted. The steps of the method
are given in the following algorithm.

K-means algorithm

Initialization – Randomly select the K centers from the set of input
points. Let each 𝑟𝑟𝑘𝑘 be a uniformly distributed random integer from 1:n,
then the initial means are chosen as:

𝑖𝑖𝑘𝑘 = 𝑥𝑥𝑟𝑟𝑘𝑘

Assignment - Assign each point from the input dataset to the closest
cluster center found so far. The membership function will take the
value of the index of the closest center:

𝐿𝐿(𝑖𝑖) = 𝑎𝑎𝑟𝑟𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛𝑘𝑘𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥𝑖𝑖,𝑖𝑖𝑘𝑘)

Update – Recalculate the cluster centers based on the membership
function. The new cluster centers are the means of the points from the
cluster. In the following, summation is performed on all elements that
are in cluster k, i.e. they have membership of L(i) = k.

𝑖𝑖𝑘𝑘 =
∑ 𝑥𝑥𝑖𝑖𝐿𝐿(𝑖𝑖)=𝑘𝑘

∑ 1𝐿𝐿(𝑖𝑖)=𝑘𝑘
=
∑ 𝑥𝑥𝑚𝑚∈𝑆𝑆𝑘𝑘

|𝑈𝑈𝑘𝑘|

42

Halting condition - If there is no change in the membership function
then the algorithm can be halted because further calculation will lead
to no changes in the mean values. A maximum number of iterations
can also be enforced. If none of the above conditions are met the
algorithm continues with the assignment step.

7.3 Practical Background

Generating a random integer with uniform distribution between a and
b (inclusive):
#include <random>

default_random_engine gen;
uniform_int_distribution<int> distribution(a,
b);
int randint = distribution(gen);

Creating a color image:
Mat img(height, width, CV_8UC3);

Assigning random colors to clusters:
const int K = 3;
Vec3b colors[K];
for(int i = 0; i<K; i++)
 colors[i] = { (uchar)distribution(gen),

 (uchar)distribution(gen),
 (uchar)distribution(gen) };

Assigning colors[k] to position (i,j):
img.at<Vec3b>(i,j) = colors[k];

7.4 Practical Work

1. Implement K-means on general input data (d dimensional points).
Stop the algorithm once no change in the membership function is
observed or after a certain number of maximum iterations. The
number of clusters, K, is given by the user.

2. Apply K-means on a set of 2D points (input files points*.bmp) – in
this case d=2.
a. Choose random colors to visualize the clusters based on the

resulting membership function.
b. Color the neighborhood of points for better visualization.

43

c. Draw the Voronoi tessellation corresponding to the obtained
cluster centers. For this picture you must color each image
position (including the background) according to which is the
closest center to it.

3. Apply K-means on a grayscale image. Use the intensity as the
single feature for the input points – in this case d=1.

4. Recolor the input image based on the mean intensity of each
cluster.

5. Apply K-means on a color image. Use the color components as the
features for the input points – in this case d=3.

6. Recolor the input image based on the mean color of each cluster.
7. Optionally, implement the k-means++ initialization technique

from [3].

7.5 Example Results

In the case of d=2, when K-means is run on a set of 2D points:

points2 - K = 3 points2 - K = 4 points2 - K = 5

points4 points4 - Voronoi tesselation

K=3

Figure 7.1 – Input 2D points and clusterization results with different K values

In the case of d=1, when K-means is run on a grayscale image:

44

Figure 7.2 – Input grayscale image and its segmentation using K=3 and K=10
centers

In the case of d=3, when K-means is run on a color image:

Figure 7.3 – Input color image and its segmentation using K=3 and K=10 centers

7.6 References
[1] Cluster analysis Wikipedia article -

https://en.wikipedia.org/wiki/Cluster_analysis
[2] K-means Wikipedia article - https://en.wikipedia.org/wiki/K-

means_clustering
[3] Arthur, David, and Sergei Vassilvitskii. "k-means++: The

advantages of careful seeding." Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 2007.

[4] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. „Contour
Detection and Hierarchical Image Segmentation”, IEEE TPAMI,
Vol. 33, No. 5, pp. 898-916, May 2011.

[5] Image segmentation dataset:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/groupin
g/resources.html

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

45

8 K-Nearest Neighbor Classifier

8.1 Objectives

The purpose of this laboratory work is to introduce perhaps the
simplest classifier: the k-Nearest Neighbor classifier. The classifier is
applied on a small image dataset with multiple classes.

8.2 Theoretical Background

8.2.1 Introduction

The purpose of a classifier is to assign a class to an unknown sample.
Each sample is described by a feature vector. Perhaps one the simplest
classifiers is the k-NN classifier. It makes the decision about the input
sample based on the K nearest neighbors from a labeled training
dataset. The next figure illustrates this by showing the sample as a blue
square among the labeled samples. A circle enclosing the 5 closest
neighbors indicates the region which is used to infer the class of the
test sample. The radius of the circle is variable and always encloses K
neighbors.

Figure 8.1 – 5-NN classifier example with three classes

The k-NN classifier is a non-parametric classifier, meaning that it does
not construct a model for the classes it tries to distinguish. Instead it
remembers the whole training set and at classification time the test
instance is classified online. It can be labeled as a type of instance-
based learning, or lazy learning, since the classifier function is only

46

approximated locally and all computation is deferred until
classification.

8.2.2 Classification algorithm

Let the training dataset be defined in the form of a matrix of
dimensions nxd denoted by X. Each line from X contains a single d
dimensional feature vector called Xi, corresponding to a training
instance. Also, let y denote the vector containing class labels. The
dimension of y is nx1, each training instance having a class assigned to
it. The elements of y are restricted to the set {1,2,…,C}, where C is the
number of classes.

For an unknown test instance x the distance from each training
example is calculated:

𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑥𝑥𝑎𝑎(𝑥𝑥,𝑋𝑋𝑖𝑖)

The distances are sorted in ascending order and the closest K instances
are considered based on the distance. Each instance casts a vote for
their class which is known from y. The instance is classified as the
class which has the most votes. A more formal description follows.

Let p be the permutation that sorts the distances in increasing order:

𝑑𝑑𝑜𝑜1 < 𝑑𝑑𝑜𝑜2 < ⋯ < 𝑑𝑑𝑜𝑜𝑛𝑛

The vote histogram is a Cx1 vector constructed as:

𝒉𝒉 = �𝟏𝟏�𝑦𝑦𝑜𝑜𝑘𝑘�
𝐾𝐾

𝑘𝑘=1

where 𝟏𝟏�𝑦𝑦𝑜𝑜𝑘𝑘� is a Cx1 the indicator vector containing 1 only at the
position 𝒚𝒚𝑜𝑜𝑘𝑘 and 0 elsewhere. The sum accumulates the votes from the
K closest neighbors. The class of the unknown instance is selected as:

𝑥𝑥 = 𝑎𝑎𝑟𝑟𝑤𝑤𝑖𝑖𝑎𝑎𝑥𝑥𝑖𝑖𝒉𝒉𝑖𝑖

There are multiple versions of the algorithm depending on the distance
function used and the voting scheme. For example, votes can be
weighed based on inverse distance using the following formula:

47

𝒉𝒉 = �
𝟏𝟏�𝑦𝑦𝑜𝑜𝑘𝑘�
1 + 𝑑𝑑𝑜𝑜𝑘𝑘

𝐾𝐾

𝑘𝑘=1

where we have added 1 to the distance to avoid division by 0 and to
obtain a weight of 1 for distances equal 0.

The parameter K controls how many neighbors are considered. If K=1,
only the nearest neighbor is considered. Increasing its value reduces
the effect of noise on the result but makes the boundaries between the
classes less distinct. In the extreme case when K=n, the whole training
set is considered. If the votes are not weighted, this would classify an
instance based on the prior distribution of the classes from the training
set. In practice K is chosen to be an odd number to break ties when
there are only two classes. Tests are performed on a validation set to
obtain a proper value for K (hyper-parameter optimization).

The presented approach can also be used to perform regression if
instead of choosing the class. In this case, we need to construct a
weighted sum of the training instances as a response. The error rate of
a k-NN classifier approaches that of the ideal Bayes error rate and is
bounded by twice the Bayes error for two classes and for 𝑛𝑛 → ∞.

8.2.3 Global image features

Color images can be characterized by a global feature vector for the
purpose of classification. A global feature vector of fixed dimension
for any input image enables the process of classification. Global
features usually describe certain relevant statistics of the image but
lose information about the spatial layout of the image.

The image histogram can be viewed as a global feature vector for the
image. The basic definition for a histogram of a grayscale image is that
of a vector which counts the occurrences of each gray level intensity.
It is a vector of dimension 256. In general, the histogram can be a
vector of length m if we divide the [0,255] interval in m equal parts. In
this case each bin in the histogram vector counts the number of gray
level intensities falling in that particular bin. For example: if m=8, the
first bin would count all intensities between 0 and 256/m - 1=31; the
second bin between 32 and 63; and so on. The histogram for a color
image can be formed by concatenating the individual histograms for
the separate channels. The size of the resulting histogram is of 3 x m.

48

8.2.4 Evaluation of classifiers

Multiple metrics can be calculated to evaluate the performance of the
classifier. The confusion matrix for a labeled dataset can be defined
as a matrix containing in each cell Mij the number of instances
classified by the classifier into class i while having true class j. The
ideal classifier would assign all instances to their correct class and
would have large entries on the diagonal of the confusion matrix Mii.
In general, the values show which classes are confused with each other
and can help to improve the classifier performance by identifying
specific features that aid the discrimination between the two classes.

Real Class:
Positive

Real Class:
Negative

Predicted class:
Positive

TP (True Positive) FP (False Positive)

Predicted class:
Negative

FN (False Negative) TN (True Negative)

Figure 8.2 – Confusion matrix

The accuracy for the classifier on a labeled test set is defined as the
percentage of correctly classified instances. It is the complementary
metric to the error rate. It does not offer relevant information if the
class distribution is skewed. If the number of instances is unbalanced,
a classifier that always predicts the most prevalent class will have a
high accuracy. This is the typical situation, for example: pedestrian
classifiers deal with a highly skewed distribution of much more
background image samples than pedestrian samples. In this case, more
relevant metrics are precision and recall for each class.

The accuracy can be calculated from the confusion matrix as:

𝐴𝐴𝑥𝑥𝑥𝑥 =
∑ 𝑀𝑀𝑖𝑖𝑖𝑖
𝐶𝐶
𝑖𝑖=1

∑ ∑ 𝑀𝑀𝑖𝑖𝑖𝑖
𝐶𝐶
𝑖𝑖=1

𝐶𝐶
𝑖𝑖=1

8.2.5 Scene Recognition Dataset Statistics

The dataset for this session is for scene recognition. It contains 6
different classes: beach, city, desert, forest, landscape and snow.

49

Images for each class are stored in subfolders and named as six digit
numbers. The dataset is slightly imbalanced, the number of examples
for each class ranging from 35 to 277. The training set contains 672
files, and the test set contains 85 files. Sample images from each class
are given below:

beach city desert forest landscape snow

Figure 8.3 – Sample images

8.3 Practical Background

Suggestion for the histogram function header (the hist array is
allocated previously):
void calcHist(Mat img, int nr_bins, int* hist)

Define the class names:
const int nrclasses = 6;
char classes[nrclasses][10] =
{"beach", "city", "desert", "forest", "landscape",
"snow"};

Allocate the feature matrix and the label vector:
Mat X(nrinst, feature_dim, CV_32FC1);
Mat y(nrinst, 1, CV_8UC1);

Read all images from class c, calculate the histogram and insert the
values in X:
int c = 0, fileNr = 0, rowX = 0;
while(1){

sprintf(fname, "train/%s/%06d.jpeg", classes[c],
fileNr++);
 Mat img = imread(fname);
 if (img.cols==0) break;

 //call function to calculate the histogram in
hist

 for(int d=0; d<hist_size; d++)
 X.at<float>(rowX, d) = hist[d];

50

 y.at<uchar>(rowX) = c;
rowX++;

}

Allocate the confusion matrix:
Mat C(nrclasses, nrclasses, CV_32FC1); //or CV_32SC1

8.4 Practical Work
1. Implement a function for extracting the color histogram of an

image.
2. Read all the images from the training set. For each image

compute the color histogram with general bin size m and save it
as a row in the feature matrix 𝑿𝑿. Save the corresponding class
label in the label vector 𝒚𝒚.

3. Implement the k-NN classifier for an unknown image and for a
general K value.

4. Evaluate the classifier on the test set by calculating the confusion
matrix and the overall accuracy.

5. Try out different values for the number of bins for the histogram
and the parameter K to see which feature attains the best
performance. Aim for over 65% accuracy.

6. Convert the input image into Luv or HSV color-space before
histogram calculation.

7. Optionally, try out more complex features (such as histograms on
image regions) or other distance metrics (Manhattan distance,
weighted Euclidean).

8.5 References
[1] Wikipedia article - k-NN classifier
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
[2] Andrew Ng - Machine Learning: Nonparametric methods &
Instance-based learning
http://www.cs.cmu.edu/~epxing/Class/10701-
08s/Lecture/lecture2.pdf

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/Lecture/lecture2.pdf
http://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/Lecture/lecture2.pdf

51

9 Naive Bayes Classifier

9.1 Objectives

In this laboratory session we will study the Naive Bayes Classifier and
we will apply it to a specific recognition problem: we will learn to
distinguish between images of handwritten digits.

9.2 Theoretical Background

The Naive Bayes classifier takes as input a list of features, applies the
Bayes rule and assumes that the features are independent to calculate
the posterior probability of each class. The class with the highest
probability is chosen as the output.

Due to the independence assumption, it can handle an arbitrary number
of independent variables whether continuous or categorical. Given a
set of random variables, 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑}, we want to construct the
posterior probability for the random variable C, having the set of
possible outcomes 𝐶𝐶 = �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐽𝐽�. Using different terminology, the
elements x are the predictors or features and C is the set of categorical
levels or classes present in the dependent variable. Using Bayes' rule
we can write:

𝑝𝑝(𝑥𝑥|𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) ∝ 𝑃𝑃(𝑥𝑥)𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑|𝑥𝑥)

where 𝑝𝑝(𝑥𝑥|𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) is the posterior probability of class
membership, i.e., the probability that x belongs to C given the features;
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑|𝑥𝑥) is the likelihood and 𝑃𝑃(𝑥𝑥) is the prior. Naive Bayes
assumes that the feature values are independent given the class so we
can decompose the likelihood into a product of terms:

𝑝𝑝(𝒙𝒙|𝑥𝑥) = �𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥)
𝑑𝑑

𝑘𝑘=1

and rewrite the posterior probability as:

𝑝𝑝(𝑥𝑥|𝒙𝒙) ∝ 𝑃𝑃(𝑥𝑥)�𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥)
𝑑𝑑

𝑘𝑘=1

52

Using Bayes' rule from above, we can implement a classifier that
predicts the class based on the input features x. This is achieved by
selecting the class c that achieves the highest posterior probability.

𝑥𝑥∗ = 𝑎𝑎𝑟𝑟𝑤𝑤𝑖𝑖𝑎𝑎𝑥𝑥𝑖𝑖𝑝𝑝(𝑥𝑥𝑖𝑖|𝒙𝒙)

Although the assumption that the predictor variables (features) are
independent is not always accurate, it does simplify the classification
task dramatically, since it allows the class conditional densities
𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥) to be calculated separately for each variable. In effect, Naive
Bayes reduces a high-dimensional density estimation task to multiple
one-dimensional kernel density estimations. Furthermore, the
assumption does not seem to affect the posterior probabilities,
especially in regions near decision boundaries, thus, it leaves the
classification task unaffected. The probability density functions can be
modeled in several different ways including normal, log-normal,
gamma and Poisson density functions and discrete versions.

9.3 Practical Background

9.3.1 MNIST handwritten dataset

We will use a standard benchmark for digit recognition to evaluate the
performance of the classifier. The MNIST dataset was assembled by
Yann LeCun from multiple datasets. The training set contains 60000
images of handwritten digits from approximately 250 writers. The test
set contains 10000 instances. The distribution of the digits is roughly
uniform. For more details visit the link from [2]. We will use binomial
probability distributions to model the probability density functions.

9.3.2 Training algorithm

Let X denote the feature matrix for the training set, as usual. In this
case X contains on every row the binarized values of each training
image to either 0 or 255 based on a selected threshold. X has the
dimension n x d, where n is the number of training instances and d=28
x 28 is the number of features which is equal to the size of an image.
The class labels are stored in the vector y of dimension n.

The prior for class i is calculated as the fraction of instances from class
i from the total number of instances:

𝑃𝑃(𝐶𝐶 = 𝑖𝑖) = 𝑛𝑛𝑖𝑖 𝑛𝑛�

53

The likelihood of having feature j equal to 255 given class i is given
by the fraction of the training instances which have feature j equal to
255 and are from class i:

𝑝𝑝�𝑥𝑥𝑖𝑖 = 255�𝐶𝐶 = 𝑖𝑖� =
𝑥𝑥𝑥𝑥𝑐𝑐𝑛𝑛𝑎𝑎�𝑋𝑋𝑘𝑘𝑖𝑖 = 255 ∧ 𝑦𝑦𝑘𝑘 = 𝑖𝑖�

𝑛𝑛𝑖𝑖

The likelihood of having feature j equal to 0 is the complementary
event so:

𝑝𝑝�𝑥𝑥𝑖𝑖 = 0�𝐶𝐶 = 𝑖𝑖� = 1 − 𝑝𝑝�𝑥𝑥𝑖𝑖 = 255�𝐶𝐶 = 𝑖𝑖�

To avoid multiplication by zero in the posterior probability, likelihoods
having the value of 0 need to be treated carefully. A simple solution is
to change all values smaller than 10-5 to 10-5. Another alternative is to
use Laplace smoothing, where |C| signifies the number of classes:

𝑝𝑝�𝑥𝑥𝑖𝑖 = 255�𝐶𝐶 = 𝑖𝑖� =
𝑥𝑥𝑥𝑥𝑐𝑐𝑛𝑛𝑎𝑎�𝑋𝑋𝑘𝑘𝑖𝑖 = 255 ∧ 𝑦𝑦𝑘𝑘 = 𝑖𝑖� + 1

𝑛𝑛𝑖𝑖 + |𝐶𝐶|

9.3.3 Classification algorithm

Once the likelihood values and priors are calculated classification is
possible. The values for the likelihood are in the interval [0,1] and the
posterior is a product of 784 numbers each less than 1. To avoid
precision problems, it is recommended to work with the logarithm of
the posterior. Denote the test vector as T and its elements as Tj. These
are the binarized values from the test image in the form of a vector.
The log posterior of each class can be evaluated as:

log�𝑝𝑝(𝐶𝐶 = 𝑖𝑖|𝑇𝑇)� ∝ log�𝑃𝑃(𝐶𝐶 = 𝑖𝑖)� + � log �𝑝𝑝�𝑥𝑥𝑖𝑖 = 𝑇𝑇𝑖𝑖�𝐶𝐶 = 𝑖𝑖��
𝑑𝑑

𝑖𝑖=1

Since the ordering of the posteriors does not change when the log
function is applied, the predicted class will be the one with the highest
log posterior probability value. The log of the total probability can be
ignored since it is a constant.

9.3.4 Implementation details

Load the first 100 images from class c:
char fname[256];
int c = 1;
int index = 0;

54

while(index<100){
 sprintf(fname, "train/%d/%06d.png", c, index);
 Mat img = imread(fname, 0);
 if (img.cols==0) break;
 //process img
 index++;
}

The prior is a Cx1 vector:
const int C = 3; //number of classes
Mat priors(C,1,CV_64FC1);

The likelihood is a Cxd vector (we only store the likelihood for 255):
const int d = 28*28;
Mat likelihood(C,d,CV_64FC1);

Header suggestion for the classifier:
int classifyBayes(Mat img, Mat priors, Mat likelihood);

9.4 Practical Work
1. Load each image from the training set, perform binarization and

save the values in the training matrix X. Save the class label in the
label vector y. For the initial version use only the first 100 images
from the first two classes.

2. Implement the training method.
a. Compute and save the priors for each class.
b. Compute and save the likelihood values for each class and

each feature. Apply Laplace smoothing to avoid zero values.
3. Implement the Naive Bayes classifier for an unknown image.
4. Display the log posterior for each class. Optionally, convert the

values to proper probabilities.
5. Evaluate the classifier on the test images and calculate the

confusion matrix and the error rate. The error rate is the fraction
of misclassified test instances (the complementary metric to the
accuracy).

6. Train and evaluate on the full dataset

9.5 References
[1] Electronic Statistics Textbook –
http://www.statsoft.com/textbook/stnaiveb.html
[2] LeCun, Yann, Corinna Cortes, and Christopher JC Burges. "The
MNIST database." (1998) http://yann.lecun.com/exdb/mnist

http://www.statsoft.com/textbook/stnaiveb.html
http://yann.lecun.com/exdb/mnist

55

10 Perceptron Classifier

10.1 Objectives

This laboratory session presents the perceptron learning algorithm for
the linear classifier. We will apply gradient descent and stochastic
gradient descent procedure to obtain the weight vector for a two-class
classification problem.

10.2 Theoretical Background

The goal of classification is to separate items into different classes or
groups. A linear classifier achieves this goal via a discriminant
function that is the linear combination of the features.

10.2.1 Definitions

Define a training set as the tuple (X,Y), where 𝑋𝑋 ∈ 𝑀𝑀𝑛𝑛×𝑚𝑚(𝑉𝑉) and Y is
a vector 𝑌𝑌 ∈ 𝑀𝑀𝑛𝑛×1(𝐷𝐷), where D is the set of class labels. X represents
the concatenation the feature vectors for each sample from the training
set, where each row is an m dimensional vector representing a sample.
Y is the vector the desired outputs for the classifier. A classifier is a
map from the feature space to the class labels: 𝑓𝑓:𝑉𝑉𝑚𝑚 → 𝐷𝐷.

Thus a classifier partitions the feature space into |D| decision regions.
The surface separating the classes is called decision boundary. If we
have only two dimensional feature vectors the decision boundaries are
lines or curves. In the following we will discuss binary classifiers. In
this case the set of class labels contains exactly two elements. We will
denote the labels for classes as D={-1,1}.

56

Figure 10.1. Example of a linear classifier for a two-class classification problem.
Each sample is characterized by two features. The decision boundary is a line.

10.2.2 General form of a linear classifier

The simplest classifier is a linear classifier. A linear classifier outputs
the class labels based on a linear combination of the input features.
Considering 𝒙𝒙 ∈ 𝑀𝑀𝑚𝑚×1(𝑉𝑉) as a feature vector we can write the linear
decision function as:

𝑤𝑤(𝒙𝒙) = 𝑤𝑤0 + �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙

Where
• 𝒘𝒘 is the 𝑖𝑖 × 1 weight column vector
• 𝑤𝑤0 is the bias or the threshold weight

A schematic view of the linear classifier is given in the next figure.

Figure 10.2 – Schematic view of a linear classifier for multidimensional data

For convenience, we will absorb the intercept 𝑤𝑤0 into 𝒘𝒘 by
augmenting the feature vector x with an additional constant dimension
(let the bar over a variable denote the augmented version of the vector):

57

𝑤𝑤0 + 𝒘𝒘𝑇𝑇𝒙𝒙 = [𝑤𝑤0 𝒘𝒘𝑻𝑻] �1𝒙𝒙� = 𝒘𝒘�𝑇𝑇𝒙𝒙�

A two-category linear classifier (or binary classifier) implements the
following decision rule:

() 0 1
() 0 1

if g x decide that sample x belongs to class
if g x decide that sample x belongs to class

> +
 < −

or

0

0

1
1

T

T

if w x w decide that sample x belongs to class
if w x w decide that sample x belongs to class

 > − +

< − −

If 𝑤𝑤(𝒙𝒙) = 0, x can ordinarily be assigned to either class.

Figure 10.3 – Image for 2D case depicting: decision regions (red and blue), linear

decision boundary (dashed line), weight vector (𝒘𝒘) and bias (𝒘𝒘𝟎𝟎 = 𝒅𝒅 ⋅ ‖𝒘𝒘‖).

10.2.3 Learning algorithms for linear classifiers

We will present two learning algorithms for linear classifiers. In order
to perform learning we transform the task into an optimization
problem. For this we define a loss function 𝐿𝐿. The loss function applies
a penalty for every instance that is classified into the wrong class. The
perceptron algorithm adopts the following form for the loss function:

𝐿𝐿(𝒘𝒘�) =
1
𝑛𝑛
�𝑖𝑖𝑎𝑎𝑥𝑥(0,−𝑦𝑦𝑖𝑖𝒘𝒘�𝑇𝑇 ∙ 𝒙𝒙�𝑖𝑖) =

1
𝑛𝑛
�𝐿𝐿𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝒘𝒘�)
𝑛𝑛

𝑖𝑖=1

58

If an instance 𝑖𝑖 is classified correctly, no penalty is applied because the
expression −𝑦𝑦𝑖𝑖𝒘𝒘�𝑇𝑇 ∙ 𝒙𝒙�𝑖𝑖 is negative. In the case of a misclassification,
the previous expression will be positive and it will be added to the
function value. The objective now is to find the weights that minimize
the loss function.

Gradient descent can be employed to find the global minimum of the
loss function. This relies on the idea that a differentiable multivariate
function decreases fastest in the opposite direction of the gradient. The
update rule according to this observation is:

𝒘𝒘�𝑘𝑘+1 ← 𝒘𝒘�𝑘𝑘 − 𝜂𝜂𝛁𝛁𝑳𝑳(𝒘𝒘�𝑘𝑘)

where 𝒘𝒘�𝑘𝑘 is the weight vector at time k, 𝜂𝜂 is a parameter that controls
the step size and is called the learning rate, and 𝛁𝛁𝑳𝑳(𝒘𝒘�) is the gradient
vector of the loss function at point 𝒘𝒘�𝑘𝑘. The gradient of the loss function
is:

𝛁𝛁𝑳𝑳(𝒘𝒘�) =
1
𝑛𝑛
�𝛁𝛁𝑳𝑳𝒊𝒊(𝒘𝒘�)
𝑛𝑛

𝑖𝑖=1

𝛁𝛁𝑳𝑳𝒊𝒊(𝒘𝒘�) = � 0, 𝑖𝑖𝑓𝑓 𝑦𝑦𝑖𝑖𝒘𝒘�𝑇𝑇 ∙ 𝒙𝒙�𝑖𝑖 > 0
−𝑦𝑦𝑖𝑖𝒙𝒙�𝑖𝑖 , 𝑥𝑥𝑎𝑎ℎ𝑤𝑤𝑟𝑟𝑤𝑤𝑖𝑖𝑥𝑥𝑤𝑤

In the standard gradient descent approach we update the weights only
after visiting all the training examples. This is also called the batch-
update learning algorithm. We can use stochastic gradient descent
instead. This entails updating the weights after visiting each training
example resulting in the classical online perceptron learning algorithm
from [1]. In this case the update rule becomes:

𝒘𝒘�𝑘𝑘+1 ← 𝒘𝒘�𝑘𝑘 − 𝜂𝜂𝛁𝛁𝑳𝑳𝒊𝒊(𝒘𝒘�)

59

Algorithm:
Batch Perceptron

init w, η, Elimit,
max_iter
for iter=1:max_iter
 E = 0, L = 0
 𝛁𝛁𝑳𝑳 = [0,0,0]
 for i=1:n
 𝑧𝑧𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖=0
 if 𝑧𝑧𝑖𝑖 ⋅ 𝑦𝑦𝑖𝑖 ≤ 0
 𝜵𝜵𝑳𝑳 ← 𝜵𝜵𝑳𝑳 − 𝑦𝑦𝑖𝑖𝑿𝑿𝑖𝑖
 𝐸𝐸 ← 𝐸𝐸 + 1

𝐿𝐿 ← 𝐿𝐿 − 𝑦𝑦𝑖𝑖𝑧𝑧𝑖𝑖
 endif
 endfor
 𝐸𝐸 ← 𝐸𝐸/𝑛𝑛
 𝐿𝐿 ← 𝐿𝐿/𝑛𝑛
 𝜵𝜵𝑳𝑳 ← 𝜵𝜵𝑳𝑳 /𝑛𝑛
 if 𝐸𝐸 < 𝐸𝐸𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜
 break
 𝒘𝒘 ← 𝒘𝒘− 𝜂𝜂𝜵𝜵𝑳𝑳
endfor

Algorithm:
Online Perceptron

init w, η, Elimit,
max_iter
for iter=1:max_iter
 E = 0
 for i=1:n
 𝑧𝑧𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖=0
 if 𝑧𝑧𝑖𝑖 ⋅ 𝑦𝑦𝑖𝑖 ≤ 0
 𝒘𝒘 ← 𝒘𝒘 + 𝜂𝜂𝑿𝑿𝑖𝑖𝑦𝑦𝑖𝑖
 𝐸𝐸 ← 𝐸𝐸 + 1
 endif
 endfor
 𝐸𝐸 ← 𝐸𝐸/𝑛𝑛
 if 𝐸𝐸 < 𝐸𝐸𝑙𝑙𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜
 break
endfor

10.3 Practical Background

In this laboratory session we will find a linear classifier that
discriminates between two sets of points. The points in class 1 are
colored in red and the points in class 2 are colored in blue.

Each point is described by the color (that denotes the class label) and
the two coordinates, x1 and x2.

The augmented weight vector will have the form 𝑤𝑤� = [𝑤𝑤0 𝑤𝑤1 𝑤𝑤2].
The augmented feature vector will be �̅�𝑥 = [1 𝑥𝑥1 𝑥𝑥2].

60

10.4 Practical Work

1. Read the points from a single file test0*.bmp and construct the training set
(X,Y). Assign the class label +1 to red points and -1 to blue points.

2. Implement and apply the online perceptron algorithm to find the linear
classifier that divides the points into two groups. Suggestion for
parameters:
𝜂𝜂 = 10−4,𝑤𝑤0 = [0.1, 0.1, 0.1],𝐸𝐸𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 = 10−5,𝑖𝑖𝑎𝑎𝑥𝑥_𝑖𝑖𝑎𝑎𝑤𝑤𝑟𝑟 = 105.

Note: for a faster convergence use a larger learning rate only for 𝑤𝑤0
3. Draw the final decision boundary based on the weight vector 𝒘𝒘.
4. Implement the batch perceptron algorithm and find suitable parameters

values. Show the loss function at each step. It must decrease slowly.
5. Visualize the decision boundary at intermediate steps, while the learning

algorithm is running.
6. Change the starting values for the weight vector 𝒘𝒘, the learning rate and

terminating conditions to observe what happens in each case. What does
an oscillating cost function signal?

10.5 Numerical example
Consider the points from the file points00 as (x,y) pairs or (column, row):

• Red points: (23, 5), (15,11) – class +1
• Blue points: (14, 21), (27,23), (20, 27) – class -1

The steps for the online perceptron algorithm are given below:

Learning rate = 0.01

Iteration 0
i=0: w=[1.000000 1.000000 -1.000000] xi=[1 23 5] yi = 1 zi=19.000000
i=1: w=[1.000000 1.000000 -1.000000] xi=[1 15 11] yi = 1 zi=5.000000
i=2: w=[1.000000 1.000000 -1.000000] xi=[1 14 21] yi = -1 zi=-6.000000
i=3: w=[1.000000 1.000000 -1.000000] xi=[1 27 23] yi = -1 zi=5.000000
wrong

update w0 = w0 - 0.01, w1 = w1 - 27*0.01, w2 = w2 – 23*0.01
i=4: w=[0.990000 0.730000 -1.230000] xi=[1 20 27] yi = -1 zi=-17.620000

61

Iteration 1
i=0: w= [0.990000 0.730000 -1.230000] xi= [1 23 5] yi = 1 zi=11.630000
i=1: w= [0.990000 0.730000 -1.230000] xi= [1 15 11] yi = 1 zi=-1.590000
wrong
 update w0 = w0 + 0.01, w1 = w1 + 15*0.01, w2 = w2 + 11*0.01
i=2: w= [1.000000 0.880000 -1.120000] xi= [1 14 21] yi = -1 zi=-10.200000
i=3: w= [1.000000 0.880000 -1.120000] xi= [1 27 23] yi = -1 zi=-1.000000
i=4: w= [1.000000 0.880000 -1.120000] xi= [1 20 27] yi = -1 zi=-11.640000

Iteration 2
i=0: w= [1.000000 0.880000 -1.120000] xi= [1 23 5] yi = 1 zi=15.640000
i=1: w= [1.000000 0.880000 -1.120000] xi= [1 15 11] yi = 1 zi=1.880000
i=2: w= [1.000000 0.880000 -1.120000] xi= [1 14 21] yi = -1 zi=-10.200000
i=3: w= [1.000000 0.880000 -1.120000] xi= [1 27 23] yi = -1 zi=-1.000000
i=4: w= [1.000000 0.880000 -1.120000] xi= [1 20 27] yi = -1 zi=-11.640000
All classified correctly

10.6 References
[1] Rosenblatt, Frank (1957), The Perceptron - a perceiving and recognizing

automaton. Report 85-460-1, Cornell Aeronautical Laboratory.
[2] Richard O. Duda, Peter E. Hart, David G. Stork: Pattern Classification

2nd ed.
[3] Xiaoli Z. Fern, Machine Learning and Data Mining Course, Oregon

University -
http://web.engr.oregonstate.edu/~xfern/classes/cs434/slides/perceptron-
2.pdf

[4] Gradient Descent - http://en.wikipedia.org/wiki/Gradient_descent
[5] Avrim Blum, Machine Learning Theory, Carnegie Mellon University -

https://www.cs.cmu.edu/~avrim/ML10/lect0125.pdf

http://web.engr.oregonstate.edu/%7Exfern/classes/cs434/slides/perceptron-2.pdf
http://web.engr.oregonstate.edu/%7Exfern/classes/cs434/slides/perceptron-2.pdf
http://en.wikipedia.org/wiki/Gradient_descent
https://www.cs.cmu.edu/%7Eavrim/ML10/lect0125.pdf

62

11 AdaBoost Method

11.1 Objectives

In this laboratory session we will study a method for obtaining an ensemble
classifier called AdaBoost (Adaptive Boosting). We will apply it for a binary
classification problem on 2D points.

11.2 Theoretical Background

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm
formulated by Yoav Freund and Robert Schapire in [1], who won the 2003
Gödel Prize for their work [2]. In this session the goal will be to separate 2D
points into two classes, the class membership is given by the color of the
points.

Figure 11.1 – Example of samples from two classes (red and blue points)

The general idea of the AdaBoost algorithm is to build a strong classifier
𝐻𝐻𝑇𝑇(𝒙𝒙) which is the sign of the linear combination of 𝑇𝑇 weak classifiers (or
weak learners) ℎ𝑜𝑜:

𝐻𝐻𝑇𝑇(𝒙𝒙) = 𝑥𝑥𝑖𝑖𝑤𝑤𝑛𝑛 ��𝛼𝛼𝑜𝑜ℎ𝑜𝑜(𝒙𝒙)
𝑇𝑇

𝑜𝑜=1

�

Each weak learner returns either +1 or -1 and is weighted by 𝛼𝛼𝑜𝑜. The final class
is given by the sign of the strong classifier 𝐻𝐻𝑇𝑇(𝒙𝒙). In this work, we will use
decision stumps as weak learners. A decision stump classifies an instance by
looking at a particular feature, if this feature is below a threshold, the instance
is classified as class +1 and -1 otherwise.

63

We are given the training set in the following form: 𝑿𝑿 is the feature matrix of
dimension 𝑛𝑛 𝑥𝑥 𝑖𝑖 and contains 𝑛𝑛 the training samples, each row being an
individual sample of dimension 𝑖𝑖. In our case, 𝑖𝑖 = 2 and the features are
the rows and columns at which the points are found in the input image. The
class vector 𝒚𝒚 of dimension 𝑛𝑛 contains +1 for each red point and -1 for each
blue point.

For this method we will associate a weight with each example. We will store
the weights in the weight vector 𝒘𝒘 of dimension 𝑛𝑛. Initially all samples have
an equal weight of 1/𝑛𝑛. The following algorithm describes the high level
AdaBoost procedure which finds the strong classifier 𝐻𝐻𝑇𝑇.

Algorithm AdaBoost

init wi=1/n
for t=1:T
 //also returns the weighted training error 𝝐𝝐𝒕𝒕:
 [ℎ𝑜𝑜, 𝜖𝜖𝑜𝑜] = findWeakLearner(X,y,w)
 𝛼𝛼𝑜𝑜 = 0.5 ln �1−𝜖𝜖𝑡𝑡

𝜖𝜖𝑡𝑡
�

 s = 0
 for i=1:n
 //wrongly classified examples obey: 𝒚𝒚𝒊𝒊𝒉𝒉𝒕𝒕(𝑿𝑿𝒊𝒊) < 𝟎𝟎
 //their weights will become larger
 𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖 ⋅ 𝑤𝑤𝑥𝑥𝑝𝑝(−𝛼𝛼𝑜𝑜𝑦𝑦𝑖𝑖ℎ𝑜𝑜(𝑋𝑋𝑖𝑖))
 s += 𝑤𝑤𝑖𝑖
 endfor
 //normalize the weights
 for i=1:n
 𝑤𝑤𝑖𝑖 ← 𝑤𝑤𝑖𝑖/𝑥𝑥
 endfor
endfor
//returns all the alpha values
//and the weak learners
return [𝜶𝜶,𝒉𝒉]

64

[ℎ𝑜𝑜, 𝜖𝜖𝑜𝑜] = findWeakLearner(X,y,w)
best_h = {}
best_err = ∞
for j=1:X.cols
 for threshold=0:max(img.cols, img.rows)
 for class_label={-1,1}
 e=0
 for i=1:X.rows
 if X(i,j)<threshold
 zi=class_label
 else
 zi=-class_label
 endif
 if ziyi < 0
 e += wi
 endif
 endfor
 if e<best_err
 best_err = e
 best_h = {j, threshold, class_label, e}
 endif
 endfor
 endfor
endfor
return [best_h, best_err]

The underlying idea behind this algorithm is to find the best simple (weak)
classifier and then to modify the importance of the examples. Missclassified
examples will get a higher weight and correctly classified examples will get a
lower weight. An example is classified as the wrong class if the sign of the
expression 𝑦𝑦𝑖𝑖ℎ𝑜𝑜(𝑋𝑋𝑖𝑖) is negative (the predicted and correct class labels have
different signs).

In the following step, when we search for the next weak learner, it will be
more important to correctly classify the examples which have higher weights
since they contribute more to the weighted training error.

Each weak learner contributes to the final score of the classifier. The
contribution is weighted by how well the weak learner performed in terms of
the weighted training error.

65

11.3 Practical Background
Suggested structure for a single weak leaner (assumes 𝑋𝑋 stores floats):
struct weaklearner{
 int feature_i;
 int threshold;
 int class_label;
 float error;
 int classify(Mat X){
 if (X.at<float>(feature_i)<threshold)
 return class_label;
 else
 return –class_label;
 }
};

Header for function that finds the best weak learner – note that the
weaklearner structure stores the weighted error:
weaklearner findWeakLearner(Mat X, Mat y, Mat w)

Suggested structure for the strong classier (MAXT is a constant):
struct classifier{
 int T;
 float alphas[MAXT];
 weaklearner hs[MAXT];
 int classify(Mat X){
 return 0;
 }
};

Header for function which draws the decision boundary (keep the original
image unmodified):
void drawBoundary(Mat img, classifier clf)

66

11.4 Practical Work

1. Read the training set from one of the input files (points*.bmp). Each row
from the feature matrix 𝑿𝑿 should contain the row and column of each
colored point from the image. The class vector 𝒚𝒚 contains +1 for red and -
1 for blue points.

2. Implement the decision stump weak learner – the weaklearner
structure.

3. Implement the findWeakLearner function.
4. Implement the drawBoundary function which colors the input image

showing the decision boundary by changing the background color (white
pixels) based on the classification result. Use yellow for +1 background
and teal for -1 background pixels. Test the function with a strong classifier
formed by a single weak learner.

5. Implement the AdaBoost algorithm to find the strong classifier with T
weak learners. Visualize the decision boundary. For each input image find
the value of T which results in zero classification error. What are the
limitations of the presented method?

11.5 Example Results

Figure 11.2 – Sample results on points1 with number of weak learners T=1 (left) and T=13
(right)

11.6 References
[1] Robert E. Schapire, The Boosting Approach to Machine Learning, An

Overview, 2001
[2] AdaBoost - https://en.wikipedia.org/wiki/AdaBoost

https://en.wikipedia.org/wiki/AdaBoost

67

12 Support Vector Machine

12.1 Objectives

In this lab session we will implement the simple linear classifier described in
the previous lab and we will study the mechanisms of support vector
classification based on soft margin classifiers.

12.2 Theoretical Background

12.2.1 Hard-margin classifiers

We will start the discussion from a simple problem of separating a set of points
into two classes, as depicted in Figure 12.1igure 12.1:

Figure 12.1 – A set of linearly separable points

The question here is how can we classify these points using a linear
discriminant function in order to minimize the training error rate? We have an
infinite number of answers, as shown in Figure 12.2:

Figure 12.2 – Linear classifiers that correctly discriminate between the two classes

68

From the multitude of solutions we need to find which the best one is. One
possible answer is given by the linear discriminant function with the maximum
margin. Informally, the margin is defined as the width by which the boundary
can be increased by before hitting a data point, see Figure 12.3.

Figure 12.3 – The margin of a linear classifier

Such a classifier is robust to outliners and thus has strong generalization
ability.

12.2.2 Optimization problem
Given a set of data points 𝒙𝒙𝑖𝑖 with their class labels 𝑦𝑦𝑖𝑖 for 𝑖𝑖 = 1,2, … ,𝑛𝑛 our
goal is to find 𝒘𝒘 such that for any 𝑖𝑖:

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 > 0 if 𝑦𝑦𝑖𝑖 = 1
𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 < 0 if 𝑦𝑦𝑖𝑖 = −1

With a scale transformation on both 𝒘𝒘 and b, the above is equivalent to:

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1 if 𝑦𝑦𝑖𝑖 = 1
𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≤ −1 if 𝑦𝑦𝑖𝑖 = −1

Choosing two points from the positive and negative sides of the boundary we
know that:

 𝒘𝒘𝑇𝑇𝒙𝒙+ + 𝑏𝑏 = 1
𝒘𝒘𝑇𝑇𝒙𝒙− + 𝑏𝑏 = −1

69

Figure 12.4 – Positive and negative samples nearest to the separation boundary – support

vectors

Based on this the width of the margin is:

𝑀𝑀 = (𝒙𝒙+ − 𝒙𝒙−) ∙ 𝒏𝒏 = (𝒙𝒙+ − 𝒙𝒙−) ∙
𝒘𝒘

||𝒘𝒘||
=

2
||𝒘𝒘||

This margin should be maximized. The maximization problem is difficult to
solve because it depends on ||𝒘𝒘||, the norm of 𝒘𝒘, which involves a square
root. Fortunately it is possible to alter the equation by substituting ||𝒘𝒘|| with
1
2
‖𝒘𝒘‖2 without changing the solution (the minimum of the original and the

modified equation have the same 𝒘𝒘 and 𝑏𝑏).

The resulting problem is a quadratic programming (QP) optimization problem.
It can be stated as:

minimize 1
2
‖𝒘𝒘‖2 such that:

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1, if 𝑦𝑦𝑖𝑖 = 1
 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≤ −1, if 𝑦𝑦𝑖𝑖 = −1

Which can be written more succinctly as:

minimize 1
2
‖𝒘𝒘‖2 such that:

𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1 .

The solution to this optimization problem is found by Lagrangian multipliers,
but its derivation is not the purpose of this work.

70

12.2.3 Soft-margin classifiers

In 1995, Corinna Cortes and Vladimir Vapnik suggested a modified maximum
margin idea that allows some mislabeled examples. If there exists no
hyperplane that can split the "yes" and "no" examples, the Soft Margin method
will choose a hyperplane that splits the examples as cleanly as possible, while
still maximizing the distance to the nearest correctly classified examples. The
method introduces slack variables, 𝜉𝜉𝑖𝑖, which measure the degree of
misclassification on the samples 𝒙𝒙𝑖𝑖.

Figure 12.5 – Classification using soft margin

Using the slack variables we define the following optimization problem:
𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 if 𝑦𝑦𝑖𝑖 = 1

𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≤ −1 + 𝜉𝜉𝑖𝑖 if 𝑦𝑦𝑖𝑖 = −1
𝜉𝜉𝑖𝑖 ≥ 0

Which is equivalent to:
minimize 1

2
‖𝒘𝒘‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑛𝑛

𝑖𝑖=1 such that
𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖≥0.

Parameter C can be viewed as a tradeoff parameter between error and
margin.

12.2.4 Kernel trick

If the data points are not linearly separable a transformation can be applied to
each sample 𝒙𝒙𝑖𝑖.which performs a mapping into a higher dimensional space
where they are linearly separable. Denoting this transformation by 𝜙𝜙 we can
write the following optimization problem:

minimize 1
2
‖𝒘𝒘‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑛𝑛

𝑖𝑖=1 such that
𝑦𝑦𝑖𝑖(𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖≥0.

71

Since the solution for the SVM requires only dot products between instances
the usage of the transformation 𝜙𝜙 can be avoided if we define the following
kernel function:

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖� =< 𝜙𝜙(𝑥𝑥𝑖𝑖),𝜙𝜙�𝑥𝑥𝑖𝑖� >

12.3 Practical Work

For the Practical Work you will be given a framework called SVM-toy that
provides a C++ implementation of soft-margin classifiers using different types
of kernels.

1. Download TestSVM.zip. Compile SVM-toy and run it. Its interface
should look like:

The buttons of the interface have the following meaning:

• ‘Change’ button: the application allows the user to add points
in the classification space (the white window) by mouse left
click; this button allows to change the color of the points
(each color corresponds to a class). A maximum number of
three colors is allowed (hence three classes)

• ‘RunSVM’ button – runs the SVM classifier with the
parameters specified in the edit box

• ‘Clear’ button – clears the classification space
• ‘Save’ button – saves the points (normalized coordinates)

from the classification space to a file
• ‘Load’ button – loads a bitmap image (loads and draws the

points into the classification space)
• The Edit box where parameters are specified, the default

values are
‘–t 2 –c 100’

72

The application allows several parameters, but we will use two
of them:

• ‘-t kernel_type’ specifies the kernel type: set type of
kernel function (default 2); ‘kernel_type’ can be one
of the following:

 0 – linear kernel: < 𝒖𝒖,𝒗𝒗 >= 𝒖𝒖𝑇𝑇𝒗𝒗
 1 –polynomial kernel: (𝛾𝛾 < 𝒖𝒖,𝒗𝒗 > +𝑥𝑥)𝑑𝑑
 2 – radial basis function: exp (−𝛾𝛾|𝒖𝒖 − 𝒗𝒗|2)
 3 – sigmoid: tanh (𝛾𝛾 < 𝒖𝒖,𝒗𝒗 > +𝑥𝑥)

• ‘-c cost’ specifies the parameter 𝐶𝐶 from the soft
margin classification problem

• ‘SimpleClassifier’ button – implements the simple classifier.
2. For each image in svm_images.zip run the default SVM classifier

(with different kernels and costs)
3. Implement the ‘SimpleClassifier’ code and compare it to the SVM

classifier that uses a linear kernel.

Write the code in the file svm-toy.cpp for the case branch:

case ID_BUTTON_SIMPLE_CLASSIFIER:
{
/* **
 TO DO:
 WRITE YOUR CODE HERE FOR THE SIMPLE CLASSIFIER
** */
}

For implementing the simple classifier you should know that in the
svm_toy.cpp file the coordinates of the points are stored in the structure

list<point> point_list;

and a point is defined by the structure:

 struct point {
 double x, y;
 signed char value;

};

The variable ‘value’ represents the class label.

The coordinates of the points are normalized between 0 and 1 and
the (0,0) point is located in the top left corner.

73

Notice that the dimension of the classification space is XLEN x YLEN.
Hence to a normalized point (x,y) we have other coordinates in the
classification space (drawing space) which are (x*XLEN, y*YLEN).

The drawing of a segment between two points is done by the method:
DrawLine(window_dc,x1, y1, x2, y2, RGB(255,0,0));

In order to iterate over all the points and count how many points are in
class ‘1’ and in class ‘2’ you should do the following:
//declare an iterator
list<point>::iterator p;
int nrSamples1=0;
int nrSamples2=0;
double xC1=0,xC2=0,yC1=0,yC2=0;

for(p = point_list.begin(); p != point_list.end(); p++)
{
 if ((*p).value==1) //point from class ‘1’
 {
 nrSamples1++;
 xC1 =(*p).x;

//normalized x coordinate of the current point
 yC1 =(*p).y;

//normalized y coordinate of the current point

 }
 if ((*p).value==2) //point from class ‘2’
 {
 nrSamples2++;
 xC2 =(*p).x;

//normalized x coordinate of the current point
 yC2 =(*p).y;

//normalized y coordinate of the current point
 }
}

74

12.4 Sample result:

Details:
- 2D points to be classified
- 2 classes, 2 features (x1 and x2)
- Red line separation obtained by

implementing the ‘Simple
Classifier’ algorithm

- Cyan/Brown line separation
obtained by SVM linear kernel
(-t 0) and cost C=100 (-c 100)

Observe:
- The maximized margin obtained

with SVM
- The points incorrectly classified

by simple classifier

12.5 References
[1] J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis.
Pattern Analysis (Chapter 1)
[2] B. Scholkopf, A. Smola: Learning with Kernels. A Tutorial Introduction
(Chapter 1), MIT University Press.
[3] LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/

75

REFERENCES

Global references:

1. Richard O. Duda, Peter E. Hart , David G . Stork, "Pattern
Clasification", John Wiley and Sons, 2001.

2. Kevin P. Murphy, “Machine Learning: A Probabilistic
Perspective”, The MIT Press, 2012

3. Kevin P. Murphy, “Probabilistic Machine Learning: An
Introduction”, The MIT Press, 2022

4. C.M. Bishop, “Pattern Recognition and Machine Learning”, second
edition, Springer, 2016

5. S. Nedevschi, “Pattern Recognition Systems – Lecture Notes”,
TUCN 2022

References per lab works:

1.1 Stanford Machine Learning CS229 - lecture notes 1 –
https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf

1.2 Tomas Svoboda - Least-squares solution of Homogeneous Equation
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectu
res/Supporting/constrained_lsq.pdf

2.1 Robert C. Bolles, Martin A. Fischler: A RANSAC-Based Approach
to Model Fitting and Its Application to Finding Cylinders în Range
Data, 1981

2.2 Richard Hartley, Andrew Zisserman: Multiple View Geometry în
Computer Vision, 2003

3.1 P. Hough, “Method and means for recognizing complex patterns”,
US patent 3,069,654, 1962.

3.2 R. O. Duda and P. E. Hart, "Use of the Hough Transformation to
Detect Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–
15, 1972.

https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://cmp.felk.cvut.cz/cmp/courses/XE33PVR/WS20072008/Lectures/Supporting/constrained_lsq.pdf
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Bolles:Robert_C=.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/ijcai/ijcai81.html#BollesF81

76

3.3 D. H. Ballard, "Generalizing the Hough Transform to Detect
Arbitrary Shapes", Pattern Recognition, Vol.13, No.2, p.111-122,
1981.

3.4 https://en.wikipedia.org/wiki/Hough_transform

4.1 Wikipedia The Free Encyclopedia – Distance Transform,
http://en.wikipedia.org/wiki/Distance_transform

4.2 Compendium of Computer Vision – Distance Transform,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm

5.1 MIT CBCL FACE dataset,
http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz

6.1 Wikipedia article PCA -
https://en.wikipedia.org/wiki/Principal_component_analysis

6.2 Stanford CS229 Machine Learning course notes -
https://cs229.stanford.edu/main_notes.pdf

6.3 Lindsay Smith - PCA tutorial -
http://faculty.iiit.ac.in/~mkrishna/PrincipalComponents.pdf

6.4 PCA in R (animation of projection) -
https://poissonisfish.wordpress.com/2017/01/23/principal-
component-analysis-in-r/

7.1 Cluster analysis Wikipedia article -
https://en.wikipedia.org/wiki/Cluster_analysis

7.2 K-means Wikipedia article -
https://en.wikipedia.org/wiki/K-means_clustering

7.3 Arthur, David, and Sergei Vassilvitskii. "k-means++: The
advantages of careful seeding." Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 2007.

7.4 P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. „Contour Detection
and Hierarchical Image Segmentation”, IEEE TPAMI, Vol. 33, No.
5, pp. 898-916, May 2011.

https://en.wikipedia.org/wiki/Hough_transform
http://en.wikipedia.org/wiki/Distance_transform
http://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm
http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz
https://en.wikipedia.org/wiki/Principal_component_analysis
https://cs229.stanford.edu/main_notes.pdf
http://faculty.iiit.ac.in/%7Emkrishna/PrincipalComponents.pdf
https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/
https://poissonisfish.wordpress.com/2017/01/23/principal-component-analysis-in-r/
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/K-means_clustering

77

7.5 Image segmentation dataset:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/group
ing/resources.html

8.1 Wikipedia article - k-NN classifier
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

8.2 Andrew Ng - Machine Learning: Nonparametric methods &
Instance-based learning
http://www.cs.cmu.edu/~epxing/Class/10701-08s/Lecture/
lecture2.pdf

9.1 Data Science Textbook –
https://docs.tibco.com/data-science/textbook

9.2 LeCun, Yann, Corinna Cortes, and Christopher JC Burges. "The
MNIST database." URL http://yann. lecun. com/exdb/mnist (1998).

10.1 Rosenblatt, Frank (1957), The Perceptron - a perceiving and
recognizing automaton. Report 85-460-1, Cornell Aeronautical
Laboratory.

10.2 Richard O. Duda, Peter E. Hart, David G. Stork: Pattern
Classification 2nd ed.

10.3 Xiaoli Z. Fern, Machine Learning Course, Oregon University –
http://web.engr.oregonstate.edu/~xfern/classes/cs434/slides/percept
ron-2.pdf

10.4 Gradient Descent - http://en.wikipedia.org/wiki/Gradient_descent

10.5 Avrim Blum, Machine Learning Theory, Carnegie Mellon

University - https://www.cs.cmu.edu/~avrim/ML10/lect0125.pdf

11.1 Robert E. Schapire, The Boosting Approach to Machine Learning,
An Overview, 2001

11.2 AdaBoost - https://en.wikipedia.org/wiki/AdaBoost

12.1 J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern
Analysis. Pattern Analysis (Chapter 1)

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/Lecture/%20lecture2.pdf
http://www.cs.cmu.edu/%7Eepxing/Class/10701-08s/Lecture/%20lecture2.pdf
https://docs.tibco.com/data-science/textbook
http://web.engr.oregonstate.edu/%7Exfern/classes/cs434/slides/perceptron-2.pdf
http://web.engr.oregonstate.edu/%7Exfern/classes/cs434/slides/perceptron-2.pdf
http://en.wikipedia.org/wiki/Gradient_descent
https://www.cs.cmu.edu/%7Eavrim/ML10/lect0125.pdf
https://en.wikipedia.org/wiki/AdaBoost

78

12.2 B. Scholkopf, A. Smola: Learning with Kernels. A Tutorial
Introduction (Chapter 1), MIT University Press.

12.3 LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/

	Pattern Recognition.pdf
	Preface
	Introduction
	Electronic support
	Required software
	Prerequisites

	1 Least Mean Squares
	1.1 Objectives
	1.2 Theoretical Background
	1.2.1 Model 1 – Slope-intercept form
	1.2.2 Model 2 – Normal form
	1.2.3 Model 3 – Standard form

	1.3 Practical Background
	1.4 Practical Work
	1.5 Example Results
	1.6 References

	2 RANSAC
	2.1 Objectives
	2.2 Theoretical Background
	2.2.1 Line model

	2.3 Practical Background
	2.4 Practical Work
	2.5 References

	3 Hough Transform
	3.1 Objectives
	3.2 Theoretical Background
	3.3 Practical Background
	3.4 Practical Work
	3.5 Example Results
	3.6 References

	4 Distance Transform
	4.1 Objectives
	4.2 Theoretical Background
	4.2.1 The Distance Transform
	4.2.2 Pattern Matching using DT

	4.3 Practical Background
	4.4 Practical Work
	4.5 Example Results
	4.6 References

	5 Statistical Data Analysis
	5.1 Objectives
	5.2 Theoretical Background
	5.2.1 Definitions
	5.2.2 Statistical Characterization of Random variables
	5.2.3 Statistical Characterization of Random Vectors

	5.3 Practical Background
	5.4 Practical Work
	5.5 Example Results
	5.6 References

	6 Principal Component Analysis
	6.1 Objectives
	6.2 Theoretical Background
	6.3 Practical Background
	6.4 Practical Work
	6.5 Example Results
	6.6 References

	7 K-means Clustering
	7.1 Objectives
	7.2 Theoretical Background
	7.3 Practical Background
	7.4 Practical Work
	7.5 Example Results
	7.6 References

	8 K-Nearest Neighbor Classifier
	8.1 Objectives
	8.2 Theoretical Background
	8.2.1 Introduction
	8.2.2 Classification algorithm
	8.2.3 Global image features
	8.2.4 Evaluation of classifiers
	8.2.5 Scene Recognition Dataset Statistics

	8.3 Practical Background
	8.4 Practical Work
	8.5 References

	9 Naive Bayes Classifier
	9.1 Objectives
	9.2 Theoretical Background
	9.3 Practical Background
	9.3.1 MNIST handwritten dataset
	9.3.2 Training algorithm
	9.3.3 Classification algorithm
	9.3.4 Implementation details

	9.4 Practical Work
	9.5 References

	10 Perceptron Classifier
	10.1 Objectives
	10.2 Theoretical Background
	10.2.1 Definitions
	10.2.2 General form of a linear classifier
	10.2.3 Learning algorithms for linear classifiers

	10.3 Practical Background
	10.4 Practical Work
	10.5 Numerical example
	10.6 References

	11 AdaBoost Method
	11.1 Objectives
	11.2 Theoretical Background
	11.3 Practical Background
	11.4 Practical Work
	11.5 Example Results
	11.6 References

	12 Support Vector Machine
	12.1 Objectives
	12.2 Theoretical Background
	12.2.1 Hard-margin classifiers
	12.2.2 Optimization problem
	12.2.3 Soft-margin classifiers
	12.2.4 Kernel trick

	12.3 Practical Work
	12.4 Sample result:
	12.5 References

	REFERENCES

	637-1 coperta.pdf
	Page 1

