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Preface

This book is addressed to engineering students studying Linear Algebra, Analytic

and Differential Geometry in the first year of college.

The book is structured in several chapters, each of them starting with a brief

presentation of theoretical notions: definitions, properties, theorems, etc., without

pretending to have gone into detail in their presentation or to be rigorously proved,

many of the theorems being given only as a statement. After the theoretical part

follows a section in which problems solved in detail are presented and then a series

of problems proposed to be solved.

The purpose of the book is for the readers to be able to go through the mathe-

matical concepts presented as comfortably as possible, often perceived as difficult,

both through their succinct presentation and their highlighting through illustrative

figures and through the examples and solved problems, and then to have acquired

the skills and the working techniques for solving other exercises and problems, but

also for their application in engineering-specific study subjects.

Last but not least, the author gratefully acknowledge the support of Prof. Daniela

Inoan and Prof. Adela Capătă who have carefully read the manuscript suggesting

valuable improvements.



1
Matrices. Determinants. Systems of linear

equations

1.1 Determinants

For every square matrix A � raijsi�1,n
j�1,n

P MnpRq one can assign a scalar denoted

detpAq called the determinant of A. In extended form we write

detpAq �

������������

a11 a12 � � � a1n

a21 a22 � � � a2n
...

...
...

...

an1 an2 � � � ann

������������
.

Definition 1.1. Let A P MnpRq. The determinant of A is the scalar defined by

the equation

detpAq �
¸
σPSn

sgn pσq a1σp1q � a2σp2q � . . . � anσpnq.

Let A P MnpRq and let k be an integer, 1 ¤ k ¤ n. Consider the rows i1 . . . ik

and the columns j1 . . . jk of A. By deleting the other rows and columns we obtain a
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submatrix of A of order k, whose determinant is called a minor of A and is denoted

by M j1...jk
i1...ik

. By deleting the rows i1 . . . ik and the columns j1 . . . jk of A we obtain

the complementary minor of M j1...jk
i1...ik

denoted by CM j1...jk
i1...ik

.

A method of calculating determinants is called row expansion and column ex-

pansion and it is derived from Laplace Theorem.

Theorem 1.2. Let A PMnpRq. Then

(i) detpAq � °n
k�1 aikp�1qi�kCMk

i , - expansion by row i;

(ii) detpAq � °n
k�1 akjp�1qk�jCM j

k , - expansion by column j.

Definition 1.3. A square matrix A P MnpRq is called singular if its determinant

is 0, detpAq � 0. If detpAq � 0 the matrix A is called nonsingular.

Properties of the determinant.

Let A,B PMnpRq and let a P R. Then:

(1) detpAJq � detpAq.

(2) A permutation of the rows, (respectively columns) of A multiplies the deter-

minant by the sign of the permutation.

(3) A determinant with two equal rows (or two equal columns) is zero.

(4) The determinant of A is not changed if a multiple of one row (or column) is

added to another row (or column).

(5) detpA�1q � 1

detpAq .

(6) detpABq � detpAq detpBq.
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(7) detpaAq � an detpAq.

(8) If A is a triangular matrix, i.e. aij � 0 whenever i ¡ j (aij � 0 whenever

i   j), then its determinant equals the product of the diagonal entries, that is

detpAq � a11 � a22 � . . . � ann �
±n

i�1 aii.

1.2 Rank of a matrix

Rank. Elementary transformations.

A natural number r is called the rank of the matrix A PMm,npRq if

1. There exists a square submatrix M P MrpRq of A which is nonsingular (that

is detpMq � 0).

2. If p ¡ r, for every submatrix N PMppRq of A one has detpNq � 0.

We denote rank pAq � r.

Definition 1.4. The following operations are called elementary row transformations

on the matrix A PMm,npRq:

1. Interchanging of any two rows.

2. Multiplication of a row by any non-zero number.

3. The addition of one row to another row.

Similarly one can define the elementary column transformations.

We use elementary transformation in order to compute the rank.

Namely, given a matrix A PMm,npRq we transform it by an appropriate succes-

sion of elementary transformations into a matrix B called the echelon form of the

initial matrix, such that:
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� the diagonal entries of B are either 0 or 1, all the 1’s preceding all the 0’s on

the diagonal.

� all the other entries of B are 0.

Since the rank is invariant under elementary transformations, we have rank pAq �
rank pBq, but it is clear that the rank of B is equal to the number of 1’s on the

diagonal.

Matrix Invertion

For a square matrix A PMnpRq, the matrix B PMnpRq that satisfies

AB � In and BA � In

(if it exists) is called the inverse of A and is denoted by B � A�1. Not all square

matrices admit an inverse (are invertible). An invertible square matrix is called

nonsingular and a square matrix with no inverse is called singular matrix.

Theorem 1.5. If a square matrix is reduced to the identity matrix by a sequence

of elementary row operations, the same sequence of elementary row transformations

performed on the identity matrix produces the inverse of the given matrix.

1.3 Systems of linear equations

Recall that a system of m linear equations in n unknowns can be written as$''''''&''''''%

a11x1 � a12x2 � � � � a1nxn � b1

a21x1 � a22x2 � � � � a2nxn � b2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
am1x1 � am2x2 � � � � amnxn � bm.
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Here x1, x2, . . . , xn are the unknowns, a11, a12, . . . , amn are the coefficients of the

system, and b1, b2, . . . , bm are the constant terms.

A systems of linear equations may be written as Ax � b, with A � paijqi�1,m
j�1,n

P
Mm,npRq, x PMn,1pRq and b PMm,1pRq.

The matrix A is called the coefficient matrix, while the matrix rA|bs PMm,n�1pRq,

rA|bsij �
$&% aij if j � n� 1

bi if j � n� 1

is called the augmented matrix of the system.

We say that x1, x2, ..., xn is a solution of a linear system if x1, x2, ..., xn satisfy

each equation of the system. A linear system is consistent if it has a solution,

and inconsistent otherwise. According to the Rouché-Capelli theorem, a system

of linear equations is:

� inconsistent if rankpAq ¡ rankpAq, which means that the system has no

solution.

� consistent if rankpAq � rankpAq, which means that the system must have

at least one solution.

– The solution is unique if and only if rankA � n, where n is the number

of variable.

– The system has infinitely many solutions if rankA   n. In this case

the general solution has k free parameters where k � n� rankA.

In row reduction, the linear system is represented as an augmented matrix rA|bs.
This matrix is then modified using elementary row operations until it reaches reduced

row echelon form. Because these operations are reversible, the augmented matrix
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produced always represents a linear system that is equivalent to the original. In this

way one can easily read the solutions.

A homogeneous system is equivalent to a matrix equation of the form

Ax � O,

where O PMm,1 is the matrix having all the entries zeros. Obviously a homogeneous

system is consistent, having the trivial solution x1 � x2 � � � � � xn � 0.

It can be easily realized that a homogeneous linear system has a non-trivial

solution if and only if the number of leading coefficients in echelon form is less than

the number of unknowns, in other words, the coefficient matrix is singular.

1.4 Solved Problems

Problem 1.1. Compute the following determinant D �

������������

1 2 �1 3

2 �1 3 1

�1 4 �1 0

0 2 1 1

������������
.

Solution : We will apply the expansion by a row/column. In order to do that,

is more efficient to use properties of determinants to obtain on a row or column as

many of zero’s we can. So, we choose a11 as leading coefficient and we transform

the elements of the first column in 0.

D �

������������

1 2 �1 3

2 �1 3 1

�1 4 �1 0

0 2 1 1

������������
�2R1�R2,R1�R3�

������������

1 2 �1 3

0 �5 5 �5
0 6 �2 3

0 2 1 1

������������
�
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� 1 � p�1q1�1

���������
�5 5 �5
6 �2 3

2 1 1

��������� � 5

���������
�1 1 �1
6 �2 3

2 1 1

���������
C2�C1,C2�C3� 5

���������
0 1 0

4 �2 1

3 1 2

��������� �
� 5 � 1 � p�1q1�2

������ 4 1

3 2

������ � �5p8� 3q � �25.

Problem 1.2. Solve the equation

���������
�2� a �1 1

5 �1� a 4

5 1 2� a

��������� � 0.

Solution: Of course, we can apply triangle or Sarrus rule, but, is much easier

if we apply properties of determinants so that we have the decomposition of the

determinant into factors.���������
�2� a �1 1

5 �1� a 4

5 1 2� a

��������� � 0
C2�C3ðñ

���������
�2� a �1 0

5 �1� a 3� a

5 1 3� a

��������� � 0ðñ

p3� aq

���������
�2� a �1 0

5 �1� a 1

5 1 1

��������� � 0
�R2�R3ðñ p3� aq

���������
�2� a �1 0

5 �1� a 1

0 2� a 0

��������� � 0ðñ

p3 � aqp2 � aqp�1q3�2

������ �2� a 0

5 1

������ � 0 ðñ �p3 � aqp2 � aqp�2 � aq � 0 ùñ

a P t�2, 3u.

Problem 1.3. Compute the rank of the following matrices using Gauss-Jordan

elimination method.

A �

��������
2 0 2 0 2

0 1 0 1 0

2 1 0 2 1

0 1 0 1 0

�������� ;B �

��������
2 1 3 �1
3 �1 2 0

1 3 4 �2
4 �3 1 1

�������� .
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Solution : We will apply row transformation so that the last matrix fulfill the

two conditions:

C.1 The elements below the diagonal are all zero.

C.2 All non-zero elements on the diagonal are in front of the zeroes.��������
2 0 2 0 2

0 1 0 1 0

2 1 0 2 1

0 1 0 1 0

��������
�R1�R3,

1
2
R1�

��������
1 0 1 0 1

0 1 0 1 0

0 1 �2 2 �1
0 1 0 1 0

��������
�R2�R3,�R2�R4�

��������
1 0 1 0 1

0 1 0 1 0

0 0 �2 1 �1
0 0 0 0 0

�������� .

The rank of A is rank pAq � 3 (we count the non-zero rows in the last form, after

we check the conditions C.1 and C.2).

For the matrix B we will apply the same procedure.��������
2 1 3 �1
3 �1 2 0

1 3 4 �2
4 �3 1 1

��������
R1ØR3�

��������
1 3 4 �2
3 �1 2 0

2 1 3 �1
4 �3 1 1

��������
�3R1�R2,�2R1�R3,�4R1�R4�

��������
1 3 4 �2
0 �10 �10 6

0 �5 �5 3

0 �15 �15 9

��������
� 1

2
R2�R3,�3R2�2R4�

��������
1 3 4 �2
0 �10 �10 6

0 0 0 0

0 0 0 0

�������� .

The conditions C.1 and C.2 are fulfilled so, rank pBq � 2.

Problem 1.4. Find the inverses of the matrix A by using the Gauss-Jordan elimi-
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nation method, A �

��������
1 �1 0 2

0 �1 3 �1
�1 1 0 �1
2 �1 �1 1

�������� .

Solution : We will apply row transformation to the matrix A and to I4 so that

the matrix A is transformed into identity matrix I4. The matrix in which I4 changes

after the same succession of row transformations will be the inverse of A, i.e. A�1.��������
1 �1 0 2

0 �1 3 �1
�1 1 0 �1
2 �1 �1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

��������
R1�R3,�2R1�R4�

��������
1 �1 0 2

0 �1 3 �1
0 0 0 1

0 1 �1 �3

1 0 0 0

0 1 0 0

1 0 1 0

�2 0 0 1

��������
R2�R4�

��������
1 �1 0 2

0 �1 3 �1
0 0 0 1

0 0 2 �4

1 0 0 0

0 1 0 0

1 0 1 0

�2 1 0 1

��������
1
2
R4,R3ØR4,�R2�

��������
1 �1 0 2

0 1 �3 1

0 0 1 �2
0 0 0 1

1 0 0 0

0 �1 0 0

�1 1
2

0 1
2

1 0 1 0

��������
2R4�R3,�R4�R2,�2R4�R1�
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��������
1 �1 0 0

0 1 �3 0

0 0 1 0

0 0 0 1

�1 0 �2 0

�1 �1 �1 0

1 1
2

2 1
2

1 0 1 0

��������
3R3�R2�

��������
1 �1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

�1 0 �2 0

2 1
2

5 3
2

1 1
2

2 1
2

1 0 1 0

��������
R2�R1�

��������
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1
2

3 3
2

2 1
2

5 3
2

1 1
2

2 1
2

1 0 1 0

��������

We obtain in the left hand side the identity matrix I4, so A
�1 �

��������
1 1

2
3 3

2

2 1
2

5 3
2

1 1
2

2 1
2

1 0 1 0

�������� .

Problem 1.5. Solve the following systems of linear equations by using Gauss-Jordan

elimination method.

pS1q

$'''&'''%
x1 � 2x2 � 4x3 � 4

5x1 � x2 � 2x3 � �7
3x1 � x2 � x3 � �6

pS2q

$''''''&''''''%

x� y � z � 2t � 1

�2x� 2y � 3z � 3t � 2

x� y � 2z � 5t � �1
�x� y � 3z � 2t � 4

pS3q

$''''''&''''''%

x1 � 2x2 � 3x3 � 4x4 � 0

�x1 � x2 � x3 � 2x4 � 0

x2 � 2x3 � 2x4 � 0

x1 � 3x2 � 5x3 � 6x4 � 0

Solution :



1.4 Solved Problems 16

(S1): We write the system pS1q using the matrix form and we will transform it

using elementary row transformation so we can read easier the rank of the system

matrix and the rank of the augmented matrix.�����
1 2 4

5 1 2

3 �1 1

4

�7
�6

����� �5R1�R2,�3R1�R3�

�����
1 2 4

0 �9 �18
0 �7 �11

4

�27
�18

����� � 1
9
R2�

�����
1 2 4

0 1 2

0 �7 �11

4

3

�18

����� 7R2�R3�

�����
1 2 4

0 1 2

0 0 3

4

3

3

����� � 1
3
R3,�2R3�R2,�4R3�R1�

�����
1 2 0

0 1 0

0 0 1

0

1

1

����� �2R2�R1�

�����
1 0 0

0 1 0

0 0 1

�2
1

1

�����
rank pAq � rank pAq � 3, we have 3 unknowns, so the system have a unique

solution and we can read it from the last form, which is x1 � �2, x2 � 1, x3 � 1.

pS2q:

��������
1 �1 1 2

�2 2 �3 3

1 �1 2 5

�1 1 �3 2

1

2

�1
4

��������
2R1�R2,�R1�R3,R1�R4�

��������
1 �1 1 2

0 0 �1 7

0 0 1 3

0 0 �2 4

1

4

�2
5

��������
R2�R3,�2R2�R4�

��������
1 �1 1 2

0 0 �1 7

0 0 0 10

0 0 0 �10

1

4

2

�3

��������
R3�R4�

��������
1 �1 1 2

0 0 �1 7

0 0 0 10

0 0 0 0

1

4

2

�1

��������
We can observe that rank pAq � 3, rank pAq � 4, so the system is inconsistent.
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Remark: if we rewrite the system from the last matrix form, we will get

pS2q

$''''''&''''''%

x� y � z � 2t � 1

�3z � 7t � 4

10t � 2

0 � �1
and is obviously that the last equation is false, so it doesn’t exists x, y, z, t P R such

that the equations of pS2q are fulfilled.

(S3): This system is an homogenous one, so it will have at least the trivial

solution x1 � x2 � x3 � x4 � 0. We verify the rank of this matrix to determine if

the system has another solutions.��������
1 �2 3 4

�1 1 �1 �2
0 1 �2 �2
1 �3 5 6

0

0

0

0

��������
R1�R2,�R1�R4�

��������
1 �2 3 4

0 �1 2 2

0 1 �2 �2
0 �1 2 2

0

0

0

0

��������
R2�R3,�R2�R4�

��������
1 �2 3 4

0 �1 2 2

0 0 0 0

0 0 0 0

0

0

0

0

�������� .

rank pAq � rank pAq � 2, but we have 4 unknowns. So, 2 of them will become

free variables, for example x3 � α, x4 � β (the rank is 2 because the minor formed

from the coefficients of x1 and x2 and the first two equations is not zero,

������ 1 �2
0 �1

������ �
�1 � 0, so, x1 and x2 remain unknowns).

We rewrite the system from the last matrix form and we will get:
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pS3q
$&% x1 � 2x2 � �3α � 4β

�x2 � �2α � 2β
.

We can calculate x1 � α and x2 � 2α � 2β. So, the general solution of the

system pS3q is S3 � tpα, 2α � 2β, α, βq|α, β P Ru.

1.5 Problems

Problem 1.6. Compute the following determinants.

D1 �

���������
4� x �5 2

5 �7� x 3

6 �9 4� x

��������� , D2 �

���������
1� x �1 �1
�3 �4� x �3
4 7 6� x

��������� ,

D3 �

������������

1 1 0 1

1 0 0 �1
1 �1 0 �1
0 0 �1 1

������������
, D4 �

������������

1 �1 0 2

0 �1 3 �1
�1 1 0 �1
2 �1 �1 1

������������
.

Problem 1.7. Compute the rank of the following matrices by using the Gauss-

Jordan elimination method.

A �

�����
2 �3 0 4

1 �1 5 2

5 �7 5 10

����� , B �

��������
1 �1 2 3

�2 1 4 �1
0 �1 8 5

2 �2 4 6

�������� ,

C �

�����������

2 1 0 �1
�1 2 1 �1
1 0 �1 1

0 2 0 0

2 3 0 �1

�����������
, D �

�����������

1 �1 2 3 4

2 1 �4 2 0

�1 2 1 1 3

1 5 �8 �5 �12
3 �7 8 9 13

�����������
.
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Problem 1.8. Solve the following systems of linear equations by using Gauss-Jordan

elimination method.

pS1q

$''''''&''''''%

x� 2y � 4z � 3t � 0

3x� 5y � 6z � 4t � 0

3x� 8y � 24z � 19t � 0

4x� 5y � 2z � 3t � 0

; pS2q

$'''&'''%
x� y � z � t � 0

�x� y � 2z � t � 0

x� y � z � t � 0

;

pS3q

$''''''&''''''%

x1 � x2 � x3 � 2x4 � 3x5 � 0

�x1 � 3x2 � x3 � 2x4 � x5 � 0

�x1 � x2 � x3 � x5 � 0

x1 � x2 � x4 � x5 � 0

; pS4q

$''''''&''''''%

x� 2y � 3z � 0

x� y � 2z � t � 0

�2x� y � z � t � 0

�x� 8y � 13z � 2t � 0

.

Problem 1.9. Find the inverses of the following matrices by using the Gauss-Jordan

elimination method.

A �

�����
2 2 3

1 �1 0

�1 2 1

����� , B �

�����
1 2 3

0 1 2

2 2 1

����� , C �

��������
1 1 0 1

1 0 0 �1
1 �1 0 �1
0 0 �1 1

�������� ,

D �

��������
1 �1 0 2

0 �1 3 �1
�1 1 0 �1
2 �1 �1 1

�������� .



2
Vector spaces

2.1 Definitions and Properties

Definition 2.1. A vector space V over a field F (or F vector space) is a set V

with an addition � (internal composition law) such that pV,�q is an abelian group

and a scalar multiplication � : F�V Ñ V, pα, vq Ñ α�v � αv, satisfying the following

properties:

(1) αpv � wq � αv � αw, @α P F, @v, w P V

(2) pα � βqv � αv � βv, @α, β P F, @v P V

(3) αpβvq � pαβqv
(4) 1 � v � v, @v P V

� The elements of V are called vectors.

� The elements of F are called scalars.

� The scalar multiplication depends upon F.

� If F � R we have the vector space over R or the real vector space.
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� If F � C we have the vector space over C or the complex vector space.

In what follows we will consider F � R, so we will deal with the real vector space.

Remark. From the definition of a vector space V over R the following rules for

calculus are easily deduced:

� α � 0V � 0V

� 0R � v � 0V

� α � v � 0V ñ α � 0R or v � 0V .

Definition 2.2. Let V be a vector space over R. A subset U � V is called subspace

of V over R if it is stable with respect to the composition laws, that is,

1. v � u P U , @v, u P U

2. αv P U , @α P R, v P U

and the induced operations verify the properties from the definition of a vector space

over R.

Propozition 2.3. Let V be a R vector space and U � V a nonempty subset. U is

a vector subspace of V over R iff the following conditions are met:

� v � u P U,@v, u P U

� αv P U,@α P R, @v P U

Propozition 2.4. Let V be a R vector space and U � V a nonempty subset. U is

a vector subspace of V over R iff

αv � βu P U, @α, β P R, @u, v P U.
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Remark 2.5. 0R is a scalar, so @u P U we have that 0R � u � 0V P U . Therefore

each vector subspace of V has at least one element, namely 0V .

Propozition 2.6. Let V be a vector space and U,W � V two vector subspaces. The

sets

U XW � tv|v P U and v P W u

and

U �W � tu� w|u P U,w P W u

are subspaces of V .

� The subspace U XW is called the intersection vector subspace.

� The subspace U �W is called the sum vector subspace.

Definition 2.7. Let V be a vector space and U1, U2 � V subspaces. The sum U1�U2

is called direct sum and is denoted by U1`U2, if every u P U1�U2 can be written

uniquely as u � u1 � u2 where u1 P U1, u2 P U2.

Propozition 2.8. Let V be a vector space and U,W � V be subspaces. The sum

U �W is a direct sum iff U XW � t0V u.

Definition 2.9. The sum α1v1 � α2v2 . . . αnvn is called a linear combination of

v1, . . . , vn P V , V is R vector space with scalars α1, . . . , αn in R.

Definition 2.10. A nonempty set L � tv1, . . . , vnu � V is called a linearly inde-

pendent set of vectors if

α1v1 � . . . αnvn � 0V ùñ αi � 0

for all i � 1, n, αi P R.

A nonempty set of vectors which is not linearly independent is called linearly

dependent.
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Definition 2.11. Let V be an R vector space. A nonempty set S � V is called

system of generators for V if for every v P V there exists a finite subset

tv1, . . . , vnu � V and the scalars α1, . . . , αn P R such that v � α1v1 � � � � � αnvn.

Propozition 2.12. Let V be a vector space over R and U � V nonempty, U �
tv1, v2, . . . vnu. The set

xUy �
#

ņ

i�1

αivi : αi P R and vi P U,@i � 1, n, n P N

+

is a vector subspace over R of V .

The set xUy is the subspace generated by U and is also denoted by

xUy � spantv1, v2, . . . vnu � tα1v1 � α2v2 � � � � � αnvn|αi P R, i � 1, nu.

Definition 2.13. A subset B � V is called basis of V if it is both a system of

generators and linearly independent. In this case every vector v P V can be uniquely

written as a linear combination of vectors from B.

Some important theorems regarding the notion of basis are enumerated in the

sequel.

If V is a finitely generated R vector space and S a finite system of generators of

V then:

� Every vector space V � 0 has a basis.

� From every finite system of generators S, S � t0u one can extract a basis.

� Every linearly independent set L � S can be completed to a basis of V .

� Every basis of V is finite and has the same number of elements.
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Definition 2.14. Let V � t0u be an R vector space finitely generated. The number

of elements in a basis of V is called the dimension of V , is denoted by dim RV ,

and it does not depend on the choice of the basis.

For V � t0u , dim RV � 0.

Corolary 2.15. Let V be a vector space over R of finite dimension, dim RV � n.

1. Any linearly independent system of n vectors is a basis. Any system of m

vectors, m ¡ n is linearly dependent.

2. Any system of generators of V which consists of n vectors is a basis. Any

system of m vectors, m   n is not a system of generators.

Remark 2.16. The dimension of a finite dimensional vector space is equal to any

of the following:

� The number of the vectors in a basis.

� The minimal number of vectors in a system of generators.

� The maximal number of vectors in a linearly independent system.

Theorem 2.17. If U and W are two subspaces of a finite dimensional vector space

V , then

dim pU �W q � dimU � dimW � dim pU XW q .

Remark 2.18. For V � Rn the vector space over R, a vector x P Rn has the form

x �

��������
x1

x2

. . .

xn

��������, or x � px1, x2, . . . , xnq. We will use both of the notations in what

follows, as is convenient.
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The internal operation � is defined by

x� y �

��������
x1 � y1

x2 � y2

. . .

xn � yn

�������� ,

where y �

��������
y1

y2

. . .

yn

��������.
The scalar multiplication (the external operation) is defined by

αx � α

��������
x1

x2

. . .

xn

�������� �

��������
αx1

αx2

. . .

αxn

�������� , α P R.

The dimension of Rn is dimRn � n, and the canonical basis of Rn is

Be �

$''''''&''''''%
e1 �

��������
1

0

. . .

0

�������� , e2 �

��������
0

1

. . .

0

�������� , . . . , en �

��������
0

0

. . .

1

��������

,//////.//////-
.

ei is such that has a 1 on the i’th position and 0 in the rest.
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2.2 Local computations

Let Rn be the R vector space, with the basis B � te1, . . . , enu. Any vector v P Rn

can be uniquely represented as

v �
ņ

i�1

aiei � a1e1 � � � � � anen.

The scalars a1, . . . , an are called the coordinates of the vector v in the basis B.

If we have another basis B
1 � te11, . . . , e1nu, the coordinates of the same vector in

the new basis change.

We have

v � a1e1 � � � � � anen � b1e
1

1 � � � � � bne
1

n.

vB �

��������
a1

a2

. . .

an

�������� is the representation of the vector v in the basis B and

vB1 �

��������
b1

b2

. . .

bn

�������� is the representation of the vector v in the new basis B
1

.

If we consider the representation of the vectors e
1

1, . . . , e
1

n with respect to the

basis B, we have:

e
1

1 � a11e1 � � � � � a1nen

. . .

e
1

n � an1e1 � � � � � annen

Let A � raijsi�1,n
j�1,n

be the matrix formed by the coefficients in the above equations.
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The columns of this matrix are given by the coordinates of the vectors of the

new basis B
1

with respect to the old basis B.

The matrix At - i.e. the transpose of the matrix A - is called the transition

matrix from B to B
1

and is denoted by PB1,B.

Remarks

� The transition matrix from a new basis Bv � tv1, v2, . . . , vnu to the canonical

basis Be � te1, e2, . . . , enu is the matrix having as columns the components of

the vectors v1, v2, . . . , vn.

� If we consider the change of the basis from B
1

to B with the matrix PB,B
1

and

the change of the basis from B
2

to B
1

with the matrix PB
1

,B
2

, the change of

the basis from B
2

to B is:

PB,B
2 � PB,B

1 � PB
1

,B
2

.

� If B
2 � B one has

PB,B
1

PB
1

,B � In ðñ pPB
1

,Bq�1 � PB,B
1

.

� The relation between the representation of the same vector in two bases, B

and B
1

is:

vB � PB,B
1 � vB1 .

2.3 Solved Problems

Problem 2.1. Determine which of the following sets are vector subspaces of R3

over R:

� S1 � tpx1, x2, x3q P R3|x1 � 5x2 � 4x3 � 0u;
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� S2 � tpx1, x2, x3q P R3|x1 � 5x2 � 4x3 � 1u;

� S3 � tpx1, x2, x3q P R3|x1�4
�2

� x2�3
3

� x3�1
5
u;

� S4 � tpx1, x2, x3q P R3| x1

�2
� x2

3
� x3

5
u;

� S5 � tpx1, x2, x3q P R3||x2| � x1 � x3u;

� S6 � tpx1, x2, x3q P R3|x1 � 3x2 � 2x2
3 � 0u.

Solution : Using the Remark 2.5 we can easily observe that p0, 0, 0q is not an
element for S2 and S3, so these two sets are not vector subspaces of R3 over R.

It can be proven that only the sets having the conditions given as an homogeneous

system of linear equations are vector subspaces of Rn. So, the sets S5 and S6 are

not vector subspaces of R3. In what follows we prove that S5 and S6 are not vector

subspaces of R3.

Because in the definition 2.2 it is use @, we can prove that S5 and S6 are not

vector subspaces of R3 by just choosing some examples that doesn’t satisfy at least

one of the conditions in the definition.

For S5 let’s choose u � p1, 4, 3q P S5 and v � p1,�4, 3q P S5, but we can see that

u� v � p2, 0, 6q R S5 (because |0| � 2� 6).

For S6 we can choose u � p1, 1, 1q P S5 and v � p1, 1,�1q P S6, but it is clear

that u� v � p2, 2, 0q R S6 (because 2� 3 � 2� 2 � 02 � 0).

Let’s prove now that S1 and S4 are vector subspaces of R3 over R.

S1: We will use the Proposition 2.4. So, let x � px1, x2, x3q and y � py1, y2, y3q P
S1, so we have x1 � 5x2 � 4x3 � 0 and y1 � 5y2 � 4y3 � 0. That means that

αpx1 � 5x2 � 4x3q � 0 and βpy1 � 5y2 � 4y3q � 0 for all α, β P Rðñ

αpx1 � 5x2 � 4x3q � βpy1 � 5y2 � 4y3q � 0 for all α, β P Rðñ
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αx1 � 5αx2 � 4αx3 � βy1 � 5βy2 � 4βy3 � 0 for all α, β P Rðñ

αx1 � βy1 � 5pαx2 � βy2q � 4pαx3 � βy3q � 0 for all α, β P Rðñ

αx� βy � pαx1 � βy1, αx2 � βy2, αx3 � βy3q P S1, so S1 is a vector subspace

of R3 over R.

S4: We will rewrite the condition in the definition of S4, i.e. x1

�2
� x2

3
� x3

5

equivalently

$'&'%3x1 � 2x2 � 0

5x2 � 3x3 � 0 .

Let x � px1, x2, x3q and y � py1, y2, y3q P S4, so we have

$'&'%3x1 � 2x2 � 0

5x2 � 3x3 � 0

and

$'&'%3y1 � 2y2 � 0

5y2 � 3y3 � 0

ðñ

$'&'%3x1 � 2x2 � 3y1 � 2y2 � 0

5x2 � 3x3 � 5y2 � 3y3 � 0

ðñ

$'&'%3px1 � y1q � 2px2 � y2q � 0

5px2 � y2q � 3px3 � y3q � 0

ðñ x� y � px1 � y1, x2 � y2, x3 � y3q P S4.

Let x � px1, x2, x3q and α P R.$'&'%3x1 � 2x2 � 0

5x2 � 3x3 � 0

ðñ

$'&'%αp3x1 � 2x2q � 0

αp5x2 � 3x3q � 0

ðñ

$'&'%3αx1 � 2αx2 � 0

5αx2 � 3αx3 � 0

ðñ

αx � pαx1, αx2, αx3q P S4.

We just proved both x� y P S4 and αx P S4, so S4 is a vector subspace of R3

over R.

Problem 2.2. Prove that B �

$'''&'''%v1 �

�����
2

1

�3

����� , v2 �

�����
3

2

�5

����� , v3 �

�����
1

�1
1

�����
,///.///- is
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a basis for R3. Determine the coordinates of the vector v �

�����
4

4

�9

����� in the basis B.

Solution : B is a basis for R3 if the cardinal of B is 3, which is obvious, and

if the vectors v1, v2, v3 are linearly independent.

v1, v2, v3 are linearly independent if av1 � bv2 � cv3 � 0R3 ðñ a � b � c � 0.

av1 � bv2 � cv3 � 0R3 ðñ

a

�����
2

1

�3

������ b

�����
3

2

�5

������ c

�����
1

�1
1

����� �

�����
0

0

0

�����ðñ

�����
2a

a

�3a

������
�����

3b

2b

�5b

������
�����

c

�c
c

����� �

�����
0

0

0

�����ðñ

�����
2a� 3b� c

a� 2b� c

�3a� 5b� c

����� �

�����
0

0

0

�����ðñ

$'''&'''%
2a� 3b� c � 0

a� 2b� c � 0

�3a� 5b� c � 0

.

The vectors are linearly independent if a � b � c � 0 is the unique solution of

this system of linear equations. So, we will compute the rank of the system matrix.

In this case is faster if we just determine the determinant of the matrix, since is

obviously that the rank is at least 2.

D �

���������
2 3 1

1 2 �1
�3 �5 1

���������
R2�R3,R2�R1�

���������
3 5 0

1 2 �1
�2 �3 0

��������� � p�1qp�1q2�3

������ 3 5

�2 �3

������ �
�9� 10 � 1 � 0.
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The rank � 3 equals the number of the unknowns and we have that the system

has a unique solution a � b � c � 0 and we can conclude that the vectors are

linearly independent therefore they form a basis in R3.

The vector v �

�����
4

4

�9

����� is given in the canonical basis of R3, i.e.

Be �

$'''&'''%e1 �

�����
1

0

0

����� , e2 �

�����
0

1

0

����� , e3 �

�����
0

0

1

�����
,///.///-.

The coordinates of v with respect to the basis B are vB �

�����
α1

α2

α3

����� such that

v � α1v1 � α2v2 � α3v3.�����
4

4

�9

����� � α1

�����
2

1

�3

������ α2

�����
3

2

�5

������ α3

�����
1

�1
1

�����ðñ

�����
4

4

�9

����� �

�����
2α1

α1

�3α1

������
�����

3α2

2α2

�5α2

������
�����

α3

�α3

α3

�����ðñ

�����
4

4

�9

����� �

�����
2α1 � 3α2 � α3

α1 � 2α2 � α3

�3α1 � 5α2 � α3

�����ðñ

$'''&'''%
2α1 � 3α2 � α3 � 4

α1 � 2α2 � α3 � 4

�3α1 � 5α2 � α3 � �9
.

We can solve it using Gauss-Jordan elimination method.
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�����
2 3 1

1 2 �1
�3 �5 1

4

4

�9

����� R1ØR2�

�����
1 2 �1
2 3 1

�3 �5 1

4

4

�9

����� R2�2R1,3R1�R3�

�����
1 2 �1
0 �1 3

0 1 �2

4

�4
3

����� R2�R3�

�����
1 2 �1
0 �1 3

0 0 1

4

�4
�1

�����ðñ

$'''&'''%
α1 � 2α2 � α3 � 4

�α2 � 3α3 � �4
α3 � �1

We calculate α1 � 1, α2 � 1, α3 � �1, so vB �

�����
1

1

�1

�����.
Problem 2.3. Find the dimension and a basis for the subspace U � R4

U � span

$''''''&''''''%
u1 �

��������
1

0

0

�1

�������� , u2 �

��������
1

1

1

1

�������� , u3 �

��������
2

1

1

0

�������� , u4 �

��������
0

1

2

�3

��������

,//////.//////-
.

Solution : By definition of U , the vectors form a system of generators of U . We

need to determine if they are linearly independent or, if not, the maximum number

of linearly independent vectors from this set. We compute a linear combination of

u1, u2, u3, u4 to determine this.

au1 � bu2 � cu3 � du4 � 0R4 ðñ

a

��������
1

0

0

�1

��������� b

��������
1

1

1

1

��������� c

��������
2

1

1

0

��������� d

��������
0

1

2

3

�������� �

��������
0

0

0

0

��������ðñ
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��������
a

0

0

�a

���������
��������

b

b

b

b

���������
��������

2c

c

c

0

���������
��������

0

d

2d

3d

�������� �

��������
0

0

0

0

��������ðñ

��������
a� b� 2c

b� c� d

b� c� 2d

�a� b� 3d

�������� �

��������
0

0

0

0

��������ðñ

$''''''&''''''%

a� b� 2c � 0

b� c� d � 0

b� c� 2d � 0

�a� b� 3d � 0

.

The vectors are linearly independent if a � b � c � d � 0 is the unique solution

of this system of linear equations. So, we will compute the rank of the system

matrix.��������
1 1 2 0

0 1 1 1

0 1 1 2

�1 1 0 3

��������
R1�R4�

��������
1 1 2 0

0 1 1 1

0 1 1 2

0 2 2 3

��������
�R2�R3,2R2�R4�

��������
1 1 2 0

0 1 1 1

0 0 0 1

0 0 0 �1

��������
R3�R4�

��������
1 1 2 0

0 1 1 1

0 0 0 1

0 0 0 0

�������� .

We can observe that rank � 3. That means that we have more than one solution

(rank pAq � 3   the number of the unknowns � 4), so the vectors are not linearly

independent. Because the rank is 3, that means that there are 3 linearly independent

vectors from the list. We will choose 3 of the vectors such that the rank of the

matrix formed by their components is 3. For instance, we can choose u1, u2, u4.

BU � tu1, u2, u4u and dim pUq � 3.

Problem 2.4. Find a basis in the real space of solutions of the following systems
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of linear equations:

(S1)

$''''''''&''''''''%

x� y � z � t � 0

x� y � 2z � t � 0

2x� y � z � t � 0

x� 2y � 3z � 0

(S2)

$'''''&'''''%
x� y � z � t � 0

x� y � z � 2t � 0

x� 3y � z � 0.

Solution : We will apply Gauss-Jordan elimination method for finding the

general solution of the system pS1q.

pS1q :

��������
1 1 �1 1

1 �1 2 �1
2 1 �1 �1
1 2 �3 0

0

0

0

0

��������
R2�R1,2R1�R3,R4�R1�

��������
1 1 �1 1

0 �2 3 �2
0 1 �1 3

0 1 �2 �1

0

0

0

0

��������
R2�2R3,R2�2R4�

��������
1 1 �1 1

0 �2 3 �2
0 0 1 4

0 0 �1 �4

0

0

0

0

��������
R3�R4�

��������
1 1 �1 1

0 �2 3 �2
0 0 1 4

0 0 0 0

0

0

0

0

��������
The rankpAq � rank pAq � 3 and we have 4 unknowns, so we have 1 free variable,

t � α.
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The system is equivalent to$'''''&'''''%
x� y � z � �α

�2y � 3z � 2α

z � �4α.
We can calculate �2y � �3z�2α � 12α�2αñ y � �7α, and x � �y�z�α �

7α � 4α � α � 2α.

The general solution is

S1 �

$''''''&''''''%

��������
2α

�7α
�4α
α

�������� | α P R

,//////.//////-
�

$''''''&''''''%
α

��������
2

�7
�4
1

�������� | α P R

,//////.//////-
� span

$''''''&''''''%

��������
2

�7
�4
1

��������

,//////.//////-
.

So, a basis for S1 is BS1 �

$''''''&''''''%

��������
2

�7
�4
1

��������

,//////.//////-
and the dimension is dim pS1q � 1.

Now we determine the general solution for the second system.

pS2q :

�����
1 �1 1 �1
1 1 1 �2
1 �3 1 0

0

0

0

����� R1�R2,R1�R3�

�����
1 �1 1 �1
0 �2 0 1

0 2 0 �1

0

0

0

����� R2�R3�

�����
1 �1 1 �1
0 �2 0 1

0 0 0 0

0

0

0

�����
The rankpAq � 2 and we have 4 unknowns, so we have 2 free variables, x � α and

y � β. The system is equivalent to

$'&'%z � t � �α � β

t � 2β

, therefore z � �α�β� t �

�α � 3β.
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The general solution is

S2 �

$''''''&''''''%

��������
α

β

�α � 3β

2β

�������� | α, β P R

,//////.//////-
�

$''''''&''''''%

��������
α

0

�α
0

���������
��������

0

β

3β

2β

�������� | α, β P R

,//////.//////-

�

$''''''&''''''%
α

��������
1

0

�1
0

��������� β

��������
0

1

3

2

�������� | α, β P R

,//////.//////-
� span

$''''''&''''''%

��������
1

0

�1
0

�������� ,

��������
0

1

3

2

��������

,//////.//////-
.

A basis for pS2q is BS2 �

$''''''&''''''%

��������
1

0

�1
0

�������� ,

��������
0

1

3

2

��������

,//////.//////-
and the dimension is dim pS2q � 2.

Problem 2.5. Determine a basis and the dimension for each of the vector subspaces

U � V and U X V , if

V � tpx, y, z, tq P R4 | x� 2y � z � t � 0u

and

U � span

$''''''&''''''%
u1 �

��������
1

2

1

1

�������� , u2 �

��������
0

1

1

0

�������� , u3 �

��������
2

1

1

�2

�������� , u4 �

��������
3

4

3

�1

��������

,//////.//////-
.

Solution :

U � V � tu� v|u P U and v P V u.
If u P U and a basis of U is BU � tu1, . . . , uku then u � α1u1 � . . . αkuk, αi P R,

i P t1, . . . ku.
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If v P V and a basis of V is BV � tv1, . . . , vlu then v � β1v1 � . . . βlvl, βi P R,

i P t1, . . . lu.
Hence,

U � V � tu� v|u P U and v P V u
� tα1u1 � . . . αkuk � β1v1 � . . . βlvl|αi P R, i � 1, k, βj P R, j � 1, lu
� spantu1, . . . , uk, v1, . . . , vlu.

In what follows we will determine a basis in each of the subspaces U and V .

The dimension of the vector subspace U equals the rank of the matrix having as

columns the vectors u1, u2, u3, u4:��������
1 0 2 3

2 1 1 4

1 1 1 3

1 0 �2 �1

��������
2R1�R2,R1�R3,R1�R4�

��������
1 0 2 3

0 �1 3 2

0 �1 1 0

0 0 4 4

��������
R2�R3�

��������
1 0 2 3

0 �1 3 2

0 0 2 2

0 0 4 4

��������
2R3�R4�

��������
1 0 2 3

0 �1 3 2

0 0 2 2

0 0 0 0

�������� .

The rank of the matrix is 3, so dimU � 3. A basis for U is

BU �

$''''''&''''''%
u1 �

��������
1

2

1

1

�������� , u2 �

��������
0

1

1

0

�������� , u3 �

��������
2

1

1

�2

��������

,//////.//////-
.

For the vector subspace V we will write the general solution of the equation

x � 2y � z � t � 0. The rank is obviously 1, we have 4 unknowns, therefore the

general solution has 3 free unknowns, y � α, z � β and t � γ and we calculate

x � 2α � β � γ. The general solution of the equation is
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V �

$''''''&''''''%

��������
2α � β � γ

α

β

γ

�������� | α, β, γ P R

,//////.//////-

�

$''''''&''''''%

��������
2α

α

0

0

���������
��������

β

0

β

0

���������
��������
�γ
0

0

γ

�������� | α, β, γ P R

,//////.//////-

�

$''''''&''''''%
α

��������
2

1

0

0

��������� β

��������
1

0

1

0

��������� γ

��������
�1
0

0

1

�������� | α, β, γ P R

,//////.//////-

V � span

$''''''&''''''%
v1 �

��������
2

1

0

0

�������� , v2 �

��������
1

0

1

0

�������� , v3 �

��������
�1
0

0

1

��������

,//////.//////-
.

A basis for V is BV � tv1, v2, v3u.
U � V � spantu1, u2, u3, v1, v2, v3u.
The dimension of U � V equals the rank of the matrix:��������

1 0 2 2 1 �1
2 1 1 1 0 0

1 1 1 0 1 0

1 0 �2 0 0 1

��������
2R1�R2,R1�R3,R1�R4�

��������
1 0 2 2 1 �1
0 �1 3 3 2 �2
0 �1 1 2 0 �1
0 0 4 2 1 �2

��������
R2�R3�
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��������
1 0 2 2 1 �1
0 �1 3 3 2 �2
0 0 2 1 2 �1
0 0 4 2 1 �2

��������
2R3�R4�

��������
1 0 2 2 1 �1
0 �1 3 3 2 �2
0 0 2 1 2 �1
0 0 0 0 3 0

��������
The rank is 4, hence dim pU�V q � 4. A basis for U�V is BU�V � tu1, u2, u3, v2u.
The dimension of the subspace S X V is

dimU X V � dimU � dimV � dim pU � V q � 3� 3� 4 � 2.

If v P U X V then v can be uniquely written as a linear combination of vectors

from both BU and BV . Therefor, for v P U X V ñ v � α1u1 � α2u2 � α3u3 �
β1v1 � β2v2 � β3v3, which leads us to the system:$''''''''&''''''''%

α1 � 2α3 � 2β1 � β2 � β3

2α2 � α2 � α3 � β1

α1 � α2 � α3 � β2

α1 � 2α3 � β3

ÞÑ

��������
1 0 2

2 1 1

1 1 1

1 0 �2

2 1 �1
1 0 0

0 1 0

0 0 1

���������
��������

1 0 2

0 �1 3

0 0 2

0 0 0

2 1 �1
3 2 �2
1 2 �1
0 3 0

�������� (see the rank of U � V ).

The rank of the matrix is 4, and because the system has 6 unknowns, two of

them will be free unknowns, β1 � a and β3 � b.

The system is equivalent to:$''''''''&''''''''%

α1 � 2α3 � β2 � 2a� b

�α2 � 3α3 � 2β2 � 3a� 2b

2α3 � 2β2 � a� b

0 � β2

.
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Because we only need one of the writings v � α1u1 � α2u2 � α3u3 or v �
β1v1�β2v2�β3v3 is easy to choose the second one where β1 � a, β2 � 0 and β3 � b,

so

v � av1 � 0v2 � bv3 � a

��������
2

1

0

0

��������� b

��������
�1
0

0

1

�������� ùñ v P span

$''''''&''''''%

��������
2

1

0

0

�������� ,

��������
�1
0

0

1

��������

,//////.//////-

Therefore, a basis for U X V is BUXV �

$''''''&''''''%

��������
2

1

0

0

�������� ,

��������
�1
0

0

1

��������

,//////.//////-
.

Problem 2.6. Prove that B �

$'''&'''%v1 �

�����
1

1

1

����� , v2 �

�����
1

1

2

����� , v3 �

�����
0

1

2

�����
,///.///- is a basis

for R3. Determine the transition matrix from the canonical basis to B. Determine

the coordinates of the vector v �

�����
6

3

8

����� given in the canonical basis in the new

basis B.

Solution : The rank of the matrix having the coordinates of v1, v2, v3 as columns

is 3 since the determinant

D �

���������
1 1 0

1 1 1

1 2 2

���������
�C3�C2�

���������
1 1 0

1 0 1

1 0 2

��������� � �1 � 0.

Hence, the vectors are linearly independent therefore they form a basis in R3.
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The vector v �

�����
6

3

8

����� is given in the canonical basis of R3,

e �

$'''&'''%e1 �

�����
1

0

0

����� , e2 �

�����
0

1

0

����� , e3 �

�����
0

0

1

�����
,///.///-.

The coordinates of v with respect to the basis B are vB �

�����
a

b

c

����� such that

v � av1 � bv2 � cv3.�����
6

3

8

����� � a

�����
1

1

1

������ b

�����
1

1

2

������ c

�����
0

1

2

�����ðñ

$'''&'''%
6 � a� b

3 � a� b� c

8 � a� 2b� 2c

.

We can solve it using Gauss-Jordan elimination method, or, we can use the

transition matrix from the new basis B to the canonical basis, P e,B �

�����
1 1 0

1 1 1

1 2 2

�����
to determine the coordinates of v with respect to the new basis B.

As a matrix multiplication, the previous system can be written as�����
6

3

8

����� �

�����
1 1 0

1 1 1

1 2 2

�����
�����

a

b

c

����� ùñ ve � P e,B � vB ùñ vB � pP e,Bq�1 � ve, where
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P e,B �

�����
1 1 0

1 1 1

1 2 2

�����
We need to compute the inverse of the matrix P e,B which is the matrix PB,e i.e.

the transition matrix from the canonical basis e to the new basis B.�����
1 1 0

1 1 1

1 2 2

1 0 0

0 1 0

0 0 1

����� R1�R2,R1�R3�

�����
1 1 0

0 0 �1
0 �1 �2

1 0 0

1 �1 0

1 0 �1

����� R2ØR3�

�����
1 1 0

0 �1 �2
0 0 �1

1 0 0

1 0 �1
1 �1 0

����� 2R3�R2�

�����
1 1 0

0 1 0

0 0 �1

1 0 0

1 �2 1

1 �1 0

����� �R2�R1,�R3�

�����
1 0 0

0 1 0

0 0 1

0 2 �1
1 �2 1

�1 1 0

����� .

So, PB,e �

�����
0 2 �1
1 �2 1

�1 1 0

����� .

We can now determine the coordinates of v in the new basis B:

vB �

�����
0 2 �1
1 �2 1

�1 1 0

�����
�����

6

3

8

����� �

�����
�2
8

�3

����� .

Remark. Using the transition matrix we can now have the coordinates of any

vector v from R3 in the new basis B by just multiplying by v the matrix PB,e.

Problem 2.7. In the space R3 we consider the basisB �

$'''&'''%
�����

1

0

0

����� ,

�����
1

1

0

����� ,

�����
1

1

1

�����
,///.///-
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and B1 �

$'''&'''%
�����

1

1

�1

����� ,

�����
3

2

�3

����� ,

�����
�2
0

3

�����
,///.///-. Determine the transition matrix from B

to B1. Determine the coordinates of the vector v �

�����
�1
�4
4

����� in the basis B1. Which

are the coordinates of the vector v in the basis B?

Solution : We can write the transition matrix from both B and B1 to the

canonical basis, i.e.

P e,B �

�����
1 1 1

0 1 1

0 0 1

����� , P e,B1 �

�����
1 3 �2
1 2 0

�1 �3 3

����� .

We know that PB1B � PB1,B2 � PB2,B, and we use as B2 the canonical basis e.

Therefore, PB1B � PB1,e � P e,B � pP e,B1q�1 � P e,B.

We calculate the inverse of the matrix P e,B1

.�����
1 3 �2
1 2 0

�1 �3 3

1 0 0

0 1 0

0 0 1

����� R1�R2,R1�R3�

�����
1 3 �2
0 1 �2
0 0 1

1 0 0

1 �1 0

1 0 1

����� 2R3�R2,2R3�R1�

�����
1 3 0

0 1 0

0 0 1

3 0 2

3 �1 2

1 0 1

����� �3R2�R1�

�����
1 0 0

0 1 0

0 0 1

�6 3 �4
3 �1 2

1 0 1

����� .

So, the transition matrix from B to B1 is
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PB1,B � PB1,e � P e,B �

�����
�6 3 �4
3 �1 2

1 0 1

�����
�����

1 1 1

0 1 1

0 0 1

����� �

�����
�6 �3 �7
3 2 4

1 1 2

����� .

We can now determine the coordinates of v in the basis B1:

vB1 � PB1,e � ve �

�����
�6 3 �4
3 �1 2

1 0 1

�����
�����
�1
�4
4

����� �

�����
�22
9

3

����� .

We can determine the coordinates of v with respect to B using vB � PB,e � ve

or vB � PB,B1 � vB1 . Is easier to compute PB,e � pP e,Bq�1 �

�����
1 �1 0

0 1 �1
0 0 1

����� , so

vB �

�����
1 �1 0

0 1 �1
0 0 1

�����
�����
�1
�4
4

����� �

�����
3

�8
4

����� .

2.4 Problems

Problem 2.8. Prove that pV,`q is a vector space over pR,�, �q, where V � R�
�,

the internal composition law (internal operation) is x ` y � x � y, and the scalar

multiplication (external operation) is α � x � xα, α P R, x P V .

Problem 2.9. Determine which of the following sets are vector subspaces of R3

over R:

� A1 � tpx1, x2, x3q P R3|x1 � x2 � x3 � 0u;

� A2 � tpx1, x2, x3q P R3|x1 � x2 � x3 � 1u;

� A3 � tpx1, x2, x3q P R3|x1 � 2x2 � 3x3 � 0u;

� A4 � tpx1, x2, x3q P R3|x1�1
3

� x2

�2
� x3�2

2
u;
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� A5 � tpx1, x2, x3q P R3|x1

3
� x2

�2
� x3

2
u;

� A6 � tpx1, x2, x3q P R3||x1| � x2 � x3u;

� A7 � tpx1, x2, x3q P R3|x2
1 � x2 � x3 � 0u;

� A8 � tpx1, x2, x3q P R3|x2
1 � x2 � x3 � 0;x2

1 � 2x2 � 4x3 � 0u;

� A9 � tpx1, x2, x3q P R3|x2
1 � x2 � x3 � 2;x2

1 � 2x2 � 4x3 � �1u.

Problem 2.10. Determine if the following sets are linearly independent sets of

vectors:

a) S1 � tv1 � 1�X, v2 � 2�X, v3 � 2� 3Xu, S1 � RrXs;

b) S2 �
$&%v1 �

�� 1 3

0 1

�� , v2 �
�� 1 2

0 0

�� , v3 �
�� 1 �1

2 0

�� , v4 �
�� 1 1

0 1

��,.-,

S2 �M2pRq;

c) S3 �

$'''&'''%v1 �

�����
�1
2

1

����� , v2 �

�����
�1
2

�11

����� , v3 �

�����
2

�4
10

�����
,///.///-, S3 � R3;

d) S4 �

$''''''&''''''%
v1 �

��������
1

1

0

1

�������� , v2 �

��������
1

0

1

2

�������� , v3 �

��������
3

1

2

4

�������� , v4 �

��������
1

0

0

2

��������

,//////.//////-
, S4 � R4.

Problem 2.11. Consider V a vector space over R, and v1, v2, v3 P V are linearly

independent vectors. Prove that the vectors w1 � v1� v2� v3, w2 � �v1� 2v2� 3v3

and w3 � �v1 � v2 � v3 are linearly independent.
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Problem 2.12. Prove that the vectors v1 �

��������
1

2

�2
1

��������, v2 �
��������

0

1

1

�5

��������, v3 �
��������

1

1

0

2

��������

and v4 �

��������
�2
1

0

�3

�������� are linearly dependent. Write the vector v4 as a linear combination

of the vectors v1, v2, v3.

Problem 2.13. Find the coordinates of the vector v in the basis B (prove that B

is a basis of R3, respectively R4) if:

a) v �

�����
2

0

�1

����� and B �

$'''&'''%
�����

1

1

0

����� ,

�����
0

1

2

����� ,

�����
1

0

3

�����
,///.///-;

b) v �

�����
�2
3

�3

����� and B �

$'''&'''%
�����

1

0

4

����� ,

�����
1

3

0

����� ,

�����
�2
0

1

�����
,///.///-;

c) v �

�����
0

1

3

����� and B �

$'''&'''%
�����

2

1

2

����� ,

�����
3

2

1

����� ,

�����
1

�1
0

�����
,///.///-;

d) v �

��������
1

�1
3

�4

�������� and B �

$''''''&''''''%

��������
1

2

1

0

�������� ,

��������
1

1

0

1

�������� ,

��������
1

0

1

�2

�������� ,

��������
0

2

�1
1

��������

,//////.//////-
;
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e) v �

��������
1

3

2

2

�������� and B �

$''''''&''''''%

��������
0

�2
�3
�1

�������� ,

��������
1

1

�1
1

�������� ,

��������
1

2

0

1

�������� ,

��������
0

1

2

1

��������

,//////.//////-
.

Problem 2.14. Find the dimension and a basis for the subspaces generated by the

following sets of vectors:

a) U1 �

$''''''&''''''%

��������
1

1

0

2

�������� ,

��������
1

1

0

3

�������� ,

��������
3

�5
6

3

�������� ,

��������
1

�7
4

�1

��������

,//////.//////-
, U1 � R4;

b) U2 �

$''''''&''''''%

��������
0

1

�1
1

�������� ,

��������
1

2

2

�3

�������� ,

��������
2

6

�2
1

�������� ,

��������
�1
1

2

0

��������

,//////.//////-
, U2 � R4;

c) U3 �

$''''''&''''''%

��������
2

0

�1
�1

�������� ,

��������
3

1

0

1

�������� ,

��������
4

1

0

0

�������� ,

��������
1

1

1

2

�������� ,

��������
0

1

1

3

��������

,//////.//////-
, U3 � R4;

d) U4 �

$'''''''''&'''''''''%

�����������

0

1

1

2

0

�����������
,

�����������

�1
1

�1
0

�1

�����������
,

�����������

0

2

0

1

�1

�����������
,

�����������

�1
1

5

6

2

�����������
,

�����������

�1
�1
�1
1

0

�����������

,/////////./////////-
, U4 � R5;



2.4 Problems 48

e) U5 �

$''''''&''''''%

��������
2

1

1

0

�������� ,

��������
�3
1

2

2

�������� ,

��������
�1
2

�1
2

�������� ,

��������
1

3

2

�1

��������

,//////.//////-
, U5 � R4;

f) U6 �

$'''&'''%
�����

1

1

1

����� ,

�����
1

1

0

����� ,

�����
1

1

3

�����
,///.///-, U6 � R3;

g) U7 �

$'''&'''%
�����
�1
1

2

����� ,

�����
�2
2

4

����� ,

�����
0

0

0

�����
,///.///-, U7 � R3;

h) U8 �
$&%
�� 1

�2

�� ,

�� �4
�5

�� ,

�� 10

3

��,.-, U8 � R2.

Problem 2.15. Find a basis in the real space of solutions of the following systems:

(S1)

$'&'%x� 2y � z ��t � 0

x� y � z � 0.

(S2)

$'''''&'''''%
x� y � z � 2t � 0

x� y � 2t � 0

y ��z � t � 0.

(S3)

$''''''''&''''''''%

x� y � z � t � 0

2x� 3y � 3z � t � 0

3x� 2y � 4z � 2t � 0

x� 4y � 2z � 0.
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(S4)

$'''''&'''''%
x� y � z � t � 0

x� y � 2z � t � 0

x� 5y � z � t � 0.

(S5)

$'''''&'''''%
x� y � t � 0

x� z � 2t � 0

y � z � t � 0.

(S6)

$''''''''&''''''''%

x� y � 2z � 4t � 0

�x� 2y � z � 0

x� t � 0

y � z � 0.

Problem 2.16. Find the dimension and a basis of the union (sum) S � V and

intersection S X V of the linear subspaces S and V if:

a) S � span

$'''&'''%
�����

1

0

1

����� ,

�����
1

0

�1

����� ,

�����
0

0

1

�����
,///.///-,

V � span

$'''&'''%
�����

2

1

�1

����� ,

�����
1

2

�2

����� ,

�����
1

1

�1

�����
,///.///-;

b) S � span

$'''&'''%
�����

1

1

1

����� ,

�����
1

2

�1

����� ,

�����
1

2

1

�����
,///.///-, V � span

$'''&'''%
�����

1

0

1

����� ,

�����
1

�1
1

�����
,///.///-;
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c) S � span

$''''''&''''''%

��������
1

0

�1
1

�������� ,

��������
1

0

�2
�2

�������� ,

��������
1

1

�1
�1

�������� ,

��������
0

�1
�1
�1

��������

,//////.//////-
,

V � span

$''''''&''''''%

��������
0

1

1

1

�������� ,

��������
2

2

0

�1

�������� ,

��������
2

1

�1
0

��������

,//////.//////-
;

d) S � span

$''''''&''''''%

��������
1

2

0

1

�������� ,

��������
1

1

�1
0

�������� ,

��������
1

1

�1
1

��������

,//////.//////-
,

V � tpx, y, z, tq P R4|x� y � 2z � t � 0u;

e) S � tpx, y, zq P R3| � x� y � z � 0u,

V � tpx, y, zq P R3|2x� y � 2z � 0u;

f) S � tpx, y, zq P R3|x� 2y � 5z � 0u,

V � tpx, y, zq P R3| � 3x� y � z � 0u;

g) S � tpx, y, z, tq P R4|x�y�2z� t � 0;x�2y�z� t � 0;x�5y�4z�3t � 0u,

V � span

$''''''&''''''%

��������
0

1

�1
3

�������� ,

��������
1

�3
�3
6

�������� ,

��������
�1
2

0

3

��������

,//////.//////-
;
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h) S � span

$''''''&''''''%

��������
1

1

1

�1

�������� ,

��������
1

�1
0

�2

�������� ,

��������
2

1

1

1

�������� ,

��������
0

1

0

�4

��������

,//////.//////-
,

V � span

$''''''&''''''%

��������
3

1

2

�4

�������� ,

��������
�1
0

0

�2

�������� ,

��������
�5
�1
�2
0

��������

,//////.//////-
.

Problem 2.17. Prove that each of the two sets of vectors is a basis in R3 and

find the relationship between the coordinates of one and the same vector in the two

bases: B �

$'''&'''%a1 �

�����
1

1

2

����� , a2 �

�����
2

3

3

����� , a3 �

�����
3

1

7

�����
,///.///-

and

B1 �

$'''&'''%b1 �

�����
3

4

1

����� , b2 �

�����
5

1

2

����� , b3 �

�����
1

�6
1

�����
,///.///-.

Problem 2.18. Prove that each of the two sets of vectors is a basis in the space

of polynomials of degree ¤ 3 with real coefficients and find the transition matrix

between the two bases:

B � te1 � 1, e2 � X, e3 � X2, e4 � X3u

and

B1 � te11 � 1�X, e12 � 1�X2, e13 � X2 �X, e14 � X3 �X2u.

Problem 2.19. In the space R3 we consider the bases
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B �

$'''&'''%
�����

0

0

1

����� ,

�����
0

1

1

����� ,

�����
1

1

1

�����
,///.///-

and

B1 �

$'''&'''%
�����

2

0

3

����� ,

�����
4

1

�1

����� ,

�����
2

5

3

�����
,///.///- .

Determine the transition matrix from B to B1. Determine the coordinates of the

vector v �

�����
4

�4
�1

����� in the basis B1. Which are the coordinates of the vector v in

the basis B?

Problem 2.20. Prove that each of the two sets of vectors is a basis in the space

R2rXs and find the transition matrix between the two bases if

B � tX2, X �X2, 1�X �X2u

and

B1 � t2� 3X2, 4�X �X2, 2� 5X � 3X2u.

Determine the transition matrix from B to B1. Find the coordinates of the polyno-

mial 4� 4X �X2 in both of the basis B and B1.



3
Inner product spaces

3.1 Definitions and Properties

Definition 3.1. An inner product on a vector space V over the field F is a

function (bilinear form) x�, �y : V � V Ñ R with the properties:

1. xv, vy ¥ 0 and xv, vy � 0 iff v � 0. - positivity and definiteness

2. xu�v, wy � xu,wy�xv, wy, for all u, v, w P V. - additivity in the first slot

3. xαv, wy � αxv, wy for all α P F and v, w P V. - homogeneity in the first

slot

4. xv, wy � xw, vy for all v, w P V. - conjugate symmetry.

An inner product space is a pair pV, x�, �yq, where V is vector space and x�, �y is

an inner product on V .

Properties. From the definition one can easily deduce the following properties

of an inner product:
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1. xv, 0y � x0, vy � 0,

2. xu, v � wy � xu, vy � xu,wy,

3. xu, αvy � αxu, vy,

for all u, v, w P V and α P R.

The most important example of an inner product space is Rn.

Definition 3.2. Let v �

��������
v1

v2
...

vn

�������� and w �

��������
w1

w2

...

wn

�������� P Rn. The the Euclidean

inner product of v and w is defined by

xv, wy � v1w1 � � � � � vnwn.

When Rn is referred to as an inner product space, one should assume that the

inner product is the Euclidean one, unless explicitly stated otherwise.

Norm and distances

Definition 3.3. Let V be a vector space over R. A function

} � } : V Ñ R

is called a norm on V if:

1. }v} ¥ 0, v P V, }v} � 0ô v � 0V

2. }αv} � |α| � }v}, @α P R, @v P V

3. }u� v} ¤ }u} � }v}, @u, v P V.
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A normed space is a pair pV, } � }q, where V is a vector space and } � } is a norm

on V .

Example 3.4. Let x �

��������
x1

x2

...

xn

�������� P Rn. On the real linear space Rn one can define a

norm in several ways.

1. The Euclidian norm

}x}2 �
b
x2
1 � x2

2 � � � � � x2
n �

a
xx, xy.

2. The p�norm, for any p P R, p ¥ 1

}x}p � p|x1|p � |x2|p � � � � � |xn|pq
1
p .

3. The maximum norm

}x}max � maxt|x1|, |x2|, . . . , |xn|u.

Definition 3.5. Let X be a nonempty set. A function d : X � X Ñ R satisfying

the following properties:

� dpx, yq ¥ 0, @x, y P X and dpx, yq � 0ô x � y

� dpx, yq � dpy, xq, @x, y P X

� dpx, yq ¤ dpx, zq � dpz, yq, @x, y, z P X

is called a metric or distance on X.

A set X with a metric defined on it is called a metric space.
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Example 3.6. Let x �

��������
x1

x2

...

xn

�������� , y �

��������
y1

y2
...

yn

�������� P Rn. On Rn are can be defined the

following distances:

1. The euclidian distance is defined as

d2px, yq �
a
px1 � y1q2 � px2 � y2q2 � � � � � pxn � ynq2 � }x� y}2.

2. The Minkowski distance or Manhattan distance is defined as

d1px, yq � |x1 � y1| � |x2 � y2| � � � � � |xn � yn|.

3. The Chebyshev distance is defined as

dmaxpx, yq � max
1¤i¤n

|xi � yi|.

Definition 3.7. Two vectors u, v P V are said to be orthogonal and we denote

uKv if xu, vy � 0.

In a real inner product space we can define the angle of two vectors as

{pv, wq � arccos
xv, wy
}v} � }w}

We have

vKw ô xv, wy � 0ô{pv, wq � π

2
.

Theorem 3.8. (Parallelogram law) Let V be an inner product space and u, v P
V . Then

}u� v}2 � }u� v}2 � 2p}u}2 � }v}2q.
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Proof.

}u� v}2 � xu� v, u� vy (3.1)

� xu, u� vy � xv, u� vy
� xu, uy � xu, vy � xv, uy � xv, vy
� }u}2 � xu, vy � xv, uy � }v}2

}u� v}2 � xu� v, u� vy (3.2)

� xu, u� vy � xv, u� vy
� xu, uy � xu, vy � pxv, uy � xv, vyq
� }u}2 � xu, vy � xv, uy � }v}2

By adding (3.1) and (3.2) we obtain }u� v}2 � }u� v}2 � 2p}u}2 � }v}2q.

Theorem 3.9. (Pythagorean Theorem) Let V be an inner product space, and

u, v P V orthogonal vectors. Then

}u� v}2 � }u}2 � }v}2.

Proof.

}u� v}2 � xu� v, u� vy
� xu, u� vy � xv, u� vy
� xu, uy � xu, vy � xv, uy � xv, vy
� }u}2 � xu, vy � xv, uy � }v}2.

Since u K v then xu, vy � 0 so, we have }u� v}2 � }u}2 � }v}2.
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3.2 Orthonormal Bases

Definition 3.10. Let pV, x�, �yq be an inner product space and let I be an arbitrary

index set. A family of vectors A � tei P V |i P Iu is called an orthogonal family, if

xei, ejy � 0 for every i, j P I, i � j. The family A is called orthonormal if it is

orthogonal and }ei} � 1 for every i P I.

One of the reason that one studies orthonormal families is that in such special

bases the computations are much more simple.

Propozition 3.11. If te1, e2, . . . , emu is an orthonormal family of vectors in V , then

}α1e1 � α2e2 � � � � � αmem}2 � |α1|2 � |α2|2 � � � � � |αm|2

for all α1, α2, . . . , αm P R.

Proof. From Pythagorean Theorem we have

}α1e1 � α2e2 � � � � � αmem}2 � }α1e1}2 � }α2e2}2 � � � � � }αmem}2

� |α1|2}e1}2 � |α2|2}e2}2 � � � � � |αm|2}em}2

� |α1|2 � |α2|2 � � � � � |αm|2.

Corolary 3.12. Every orthonormal list of vectors is linearly independent.

Proof. Let tv1, v2, . . . , vnu be an orthonormal family. Then, by definitions, vi K vj

for all i � j, i, j � 1, n, and }ei} � 1, @i � 1, n.

The vectors v1, v2, . . . , vn are linearly independent if

α1e1 � α2e2 � � � � � αnen � 0V ðñ α1 � α2 � � � � � αn � 0.
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}α1e1�α2e2�� � ��αnen}2 � }0V }2 � 0ðñ |α1|2�|α2|2�� � �� |αm|2 � 0. Since

|αi|2 ¥ 0 @i � 1, n, we have that α1 � α2 � � � � � αn � 0 which implies that the

vectors v1, v2, . . . , vn are linearly independent.

Theorem 3.13. (Gram-Schmidt) If tv1, v2, . . . , vku is a linearly independent set

of vectors in V , then there exists an orthonormal set of vectors te1, . . . , eku in V,

such that

spantv1, v2, . . . , vku � spante1, e2 . . . , eku

k P t1, 2, . . . ,mu.

Proof. We will determine first an orthogonal set of vectors u1, u2, . . . , uk.

Let u1 � v1. We will determine u2 as a linear combination of v2 and u1, u2 �
v2 � α1u1 such that u1 K u2.

We have xu1, u2y � 0 ðñ xv2 � αu1, u1y � 0 ðñ xv2, u1y � αxu1, u1y � 0 ùñ
α � � xv2,u1y

xu1,u1y .

So, u2 � v2 � xv2,u1y
xu1,u1yu1 and we have that u1 K u2.

Next we will write u3 as a linear combination of v3, u1 and u2 such that u3 K u1

and u3 K u2, that is u3 � v3 � α1u1 � α2u2 and xu3, u1y � 0, xu3, u2y � 0.

xu3, u1y � 0ðñ xv3 � α1u1 � α2u2, u1y � 0

ðñ xv3, u1y � α1xu1, u1y � α2xu2, u1y � 0

ðñ xv3, u1y � α1xu1, u1y � 0

ðñ α1 � �xv3, u1y
xu1, u1y .
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xu3, u2y � 0ðñ xv3 � α1u1 � α2u2, u2y � 0

ðñ xv3, u2y � α1xu1, u2y � α2xu2, u2y � 0

ðñ xv3, u2y � α2xu2, u2y � 0

ðñ α2 � �xv3, u2y
xu2, u2y .

So, u3 � v3 � xv3,u1y
xu1,u1yu1 � xv3,u2y

xu2,u2yu2, and u3 K u1, u3 K u2.

By induction, we will have that

uk � vk � xvk,u1y
xu1,u1yu1 � xvk,u2y

xu2,u2yu2 � � � � � xvk,uk�1y
xuk�1,uk�1yuk�1.

Because the set tu1, u2, . . . , uku is orthogonal, then the set te1 � u1

}u1} , e2 �
u2

}u2} . . . , ek �
uk

}uk}u is orthonormal.

We can summarise the Gram-Schmidt process for the orthogonalization of the

vectors v1, v2, . . . , vn in the following:

� u1 � v1;

� u2 � v2 � xv2,u1y
xu1,u1yu1;

� u3 � v3 � xv3,u1y
xu1,u1yu1 � xv3,u2y

xu2,u2yu2;

. . .

� un � vn � xvn,u1y
xu1,u1yu1 � xvn,u2y

xu2,u2yu2 � � � � � xvn,un�1y
xun�1,un�1yun�1.

Corolary 3.14. Every finitely dimensional inner product space has an orhtonormal

basis.

Orthogonal complement

Let U � V be a subset of an inner product space V . The orthogonal complement of

U , denoted by UK is the set of all vectors in V which are orthogonal to every vector
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in U i.e.:

UK � tv P V |xv, uy � 0, @u P Uu.

Theorem 3.15. If U is a subspace of V , then

V � U ` UK.

3.3 Solved Problems

Problem 3.1. Let R4 be the inner product space with the canonical inner product.

Apply the Gram-Schmidt orthogonalization method to construct orthogonal basis

for the subspace

V � span

$''''''&''''''%
v1 �

��������
1

2

2

�1

�������� , v2 �

��������
1

1

�5
3

�������� , v3 �

��������
3

2

8

�7

��������

,//////.//////-
.

Solution : We will apply Gram-Schmidt orthogonalization method on v1, v2, v3.

u1 � v1 �

��������
1

2

2

�1

�������� .

u2 � v2 � xv2, u1y
xu1, u1yu1

�

��������
1

1

�5
3

���������
1� 2� 10� 3

1� 4� 4� 1

��������
1

2

2

�1

�������� �

��������
1

1

�5
3

���������
��������

1

2

2

�1

�������� �

��������
2

3

�3
2

�������� .
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u3 � v3 � xv3, u1y
xu1, u1yu1 � xv3, u2y

xu2, u2yu2

�

��������
3

2

8

�7

���������
3� 4� 16� 7

1� 4� 4� 1

��������
1

2

2

�1

���������
6� 6� 24� 14

4� 9� 9� 4

��������
2

3

�3
2

��������

�

��������
3

2

8

�7

��������� 3

��������
1

2

2

�1

���������
��������

2

3

�3
2

�������� �

��������
2

�1
�1
�2

�������� .

We can easily verify that u1 K u2, u1 K u3 and u2 K u3 by computing xu1, u2y � 0,

xu1, u3y � 0 and xu2, u3y � 0.

So, an orthogonal basis for V is

BV �

$''''''&''''''%

��������
1

2

2

�1

�������� ,

��������
2

3

�3
2

�������� ,

��������
2

�1
�1
�2

��������

,//////.//////-
.

Problem 3.2. Let S be the solutions of the system

pSq :

$'''''&'''''%
x� y � z � t � 0

x� 2y � 3z � w � 0

x� y � 3z � 3t� 2w � 0.

Find an orthonormal basis in S.

Solution : We will determine first a basis from the general solution of the

system pSq.
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�����
1 1 1 �1 0

1 2 3 0 1

1 �1 �3 �3 �2

0

0

0

����� L1�L2,L1�L3�

�����
1 1 1 �1 0

0 �1 �2 �1 �1
0 2 4 2 2

0

0

0

����� 2L2�L3�

�����
1 1 1 �1 0

0 �1 �2 �1 �1
0 0 0 0 0

0

0

0

����� .

rank pAq � 2 and there are 5 unknowns, so z � α, t � β and w � γ are free

variables. We can determine x and y solving the system

$'&'%x� y � �α � β

�y � 2α � β � γ

.

Hence, x � α � 2β � γ and y � �2α � β � γ.

S �

$'''''''''&'''''''''%

�����������

α � 2β � γ

�2α � β � γ

α

β

γ

�����������
| α, β, γ P R

,/////////./////////-

�

$'''''''''&'''''''''%
α

�����������

1

�2
1

0

0

�����������
� β

�����������

2

�1
0

1

0

�����������
� γ

�����������

1

�1
0

0

1

�����������
| α, β, γ P R

,/////////./////////-
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� span

$'''''''''&'''''''''%
s1 �

�����������

1

�2
1

0

0

�����������
, s2 �

�����������

2

�1
0

1

0

�����������
, s3 �

�����������

1

�1
0

0

1

�����������

,/////////./////////-
.

BS � ts1, s2, s3u is a basis for S.

In order to obtain an orthogonal basis, we will apply Gram-Schmidt algorithm

for s1, s2, s3.

u1 � s3 �

�����������

1

�1
0

0

1

�����������

u2 � s2 � xs2, u1y
xu1, u1yu1 �

�����������

2

�1
0

1

0

�����������
� 3

3

�����������

1

�1
0

0

1

�����������
�

�����������

1

0

0

1

�1

�����������
u13 � s1 � xs3, u1y

xu1, u1yu1 � xs3, u2y
xu2, u2yu2

�

�����������

1

�2
1

0

0

�����������
� 3

3

�����������

1

�1
0

0

1

�����������
� 1

3

�����������

1

0

0

1

�1

�����������
�

�����������

�1
3

�1
1

�1
3

�2
3

�����������
.
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Now we can choose u3 � 3u13 �

�����������

�1
�3
3

�1
�2

�����������
.

We can easily verify that u1 K u2, u1 K u3 and u2 K u3 by computing xu1, u2y � 0,

xu1, u3y � 0 and xu2, u3y � 0.

For an orthonormal basis we divide each of u1, u2, u3 by its norm, i.e.

n1 � u1

}u1} � 1?
3

�����������

1

�1
0

0

1

�����������
�

�����������

1?
3

� 1?
3

0

0

1?
3

�����������
,

n2 � u2

}u2} � 1?
3

�����������

1

0

0

1

�1

�����������
�

�����������

1?
3

0

0

1?
3

� 1?
3

�����������
,

n3 � u3

}u3} � 1
2
?
6

�����������

�1
�3
3

�1
�2

�����������
�

�����������

� 1
2
?
6

� 3
2
?
6

3
2
?
6

� 1
2
?
6

� 1?
6

�����������
.

Therefore, an orthonormal basis for S is Bn � tn1, n2, n3u.

Problem 3.3. Let S � tpx, y, z, tq P R4|2x � y � z � 3t � 0u be a vector subspace

of R4. Determine bases in S and in the orthogonal complement SK.



3.3 Solved Problems 66

Solution : The general solution of the equation 2x � y � z � 3t � 0 can be

written if one choose x � α, z � β and t � γ and we calculate y � 2α � β � 3γ.

S �

$''''''&''''''%

��������
α

2α � β � 3γ

β

γ

�������� | α, β, γ P R

,//////.//////-

�

$''''''&''''''%
α

��������
1

2

0

0

��������� β

��������
0

�1
1

0

��������� γ

��������
0

3

0

1

�������� | α, β, γ P R

,//////.//////-

� span

$''''''&''''''%
s1 �

��������
1

2

0

0

�������� , s2 �

��������
0

�1
1

0

�������� , s3 �

��������
0

3

0

1

��������

,//////.//////-
.

In order to obtain an orthogonal basis, we will apply Gram-Schmidt algorithm on

s1, s2 and s3.

u1 � s2 �

��������
0

�1
1

0

��������
u2 � s1 � xs1, u1y

xu1, u1yu1
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u2 �

��������
1

2

0

0

���������
�2
2

��������
0

�1
1

0

�������� �

��������
1

1

1

0

��������
u13 � s3 � xs3, u1y

xu1, u1yu1 � xs3, u2y
xu2, u2yu2

�

��������
0

3

0

1

���������
�3
2

��������
0

�1
1

0

���������
3

3

��������
1

1

1

0

�������� �

��������
�1
1
2

1
2

1

�������� .

Now we can choose u3 � 2u13 �

��������
�2
1

1

2

��������.
We can easily verify that u1 K u2, u1 K u3 and u2 K u3 by computing xu1, u2y � 0,

xu1, u3y � 0 and xu2, u3y � 0.

For an orthonormal basis we divide each of u1, u2, u3 by its norm, i.e.

n1 � u1

}u1} � 1?
2
�

��������
0

�1
1

0

�������� �

��������
0

� 1?
2

1?
2

0

��������,

n2 � u2

}u2} � 1?
3

��������
1

1

1

0

�������� �

��������
1?
3

1?
3

1?
3

0

��������
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n3 � u3

}u3} � 1?
10

��������
�2
1

1

2

�������� �

��������
� 2?

10

1?
10

1?
10

2?
10

��������.
Therefore, an orthonormal basis for S is Bn � tn1, n2, n3u.

We have that dimS � 3 so, dimSK � 4� 3 � 1.

SK � tv P R4|xv, sy � 0, @s P Su
� tv P R4|xv, s1y � 0, xv, s2y � 0, xv, s3y � 0u
� tv � px1, x2, x3, x4q P R4|x1 � 2x2 � 0, �x2 � x3 � 0, 3x2 � x4 � 0u.

The matrix system has the rank 3, so one of the unknowns become free variable,

x2 � α, and we can determine x1 � �2α, x3 � α and x4 � �3α.

SK �

$''''''&''''''%

��������
�2α
α

α

�3α

�������� | α P R

,//////.//////-
� span

$''''''&''''''%

��������
�2
1

1

�3

��������

,//////.//////-
.

An orthogonal basis for BK
S �

$''''''&''''''%
s4 �

��������
�2
1

1

�3

��������

,//////.//////-
, an orthonormal basis is

BSK � tn4u, where n4 � s4
}s4} � 1?

15

��������
�2
1

1

�3

�������� �

��������
� 2?

15

1?
15

1?
15

� 3?
15

��������.
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Problem 3.4. Verify that the vectors v1 �

��������
1

0

2

�1

��������, v2 �
��������

1

2

0

1

�������� are orthogonal

and complete them to form orthogonal basis of R4.

Solution : Because xv1, v2y � 1 � 1� 0 � 2� 2 � 0� p�1q � 1 � 0 we can conclude

that v1 and v2 are orthogonal.

Because dimR4 � 4 we will choose another two vectors v3 and v4 such that each

of v3 and v4 is orthogonal on both v1 and v2.

Let v �

��������
x

y

z

t

�������� P R4 such that

$'&'%v K v1

v K v2

ðñ

$'&'%xv, v1y � 0

xv, v2y � 0

ðñ

$'&'%x� 2z � t � 0

x� 2y � t � 0

.

The general solution of the system if we denote y � α and z � β is

S �

$''''''&''''''%

��������
�α � β

α

β

β � α

�������� | α, β P R

,//////.//////-

�

$''''''&''''''%
α

��������
�1
1

0

�1

��������� β

��������
�1
0

1

1

�������� | α, β P R

,//////.//////-



3.4 Problems 70

� span

$''''''&''''''%
u1 �

��������
�1
1

0

�1

�������� , u2 �

��������
�1
0

1

1

��������

,//////.//////-
.

Because xu1, u2y � 0 ùñ u1 K u2, and we can choose v3 � u1 and v4 � u2.

We can conclude that tv1, v2, v3, v4u is an orthogonal basis of R4.

Remark. If xu1, u2y � 0 then we need to apply Gram Schmitd orthogonalization

method to obtain two orthogonal vectors.

3.4 Problems

Problem 3.5. Let S be the solutions of the system. Find an orthonormal basis in

S if:

a) pSq :

$'''''&'''''%
x� y � z � t � 0

x� 2y � 3z � 0

x� y � 3z � 3t � 0;

b) pSq :

$'''''&'''''%
x� y � t � 0

2x� y � z � 0

x� y � 2z � 3t � 0;

c) pSq :

$'''''&'''''%
x� y � z � t � 0

x� y � z � 2t � 0

x� 3y � z � 0.
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Problem 3.6. Let S be the set of solutions of the following systems. Find bases in

S and in the orthogonal complement of S, SK, if:

a) pSq :

$'''''&'''''%
x� y � 2z � 0

2x� 3y � z � 0

x� 2y � z � 0;

b) pSq :

$'&'%2x� y � z � t � 0

x� y � 3z � t � 0;

c) pSq :

$'''''&'''''%
x� y � z � t � 0

x� y � 3z � t � 0

x� y � 5z � 3t � 0.

Problem 3.7. Verify that the following sets of vectors are orthogonal and complete

them to form orthogonal basis of R4:

a) v1 �

��������
�2
1

3

1

��������, v2 �
��������

1

�2
1

1

�������� and v3 �

��������
1

1

0

1

��������;

b) v1 �

��������
1

1

�1
�2

�������� and v2 �

��������
2

�3
1

�1

��������;
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c) v1 �

��������
1

�1
1

2

�������� and v2 �

��������
1

�2
3

�3

��������;

d) v1 �

��������
�1
0

�2
1

�������� and v2 �

��������
�1
1

1

1

��������.

Problem 3.8. Let R4 be the inner product space with the canonical inner product.

Apply the Gram-Schmidt orthogonalizations to construct orthogonal bases for the

subspaces spanned by the following lists of vectors:

a)

��������
1

2

�2
�1

�������� ,

��������
1

1

5

3

�������� ,

��������
3

2

�8
�7

��������;

b)

��������
�1
1

�1
�2

�������� ,

��������
�5
8

�2
�3

�������� ,

��������
�3
9

3

8

��������;

c)

��������
1

�1
1

0

�������� ,

��������
1

2

1

1

�������� ,

��������
1

�1
1

1

�������� ,

��������
1

�11
0

1

��������;
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d)

��������
1

�1
1

�1

�������� ,

��������
1

�2
�2
�3

�������� ,

��������
�5
2

�2
�5

��������.

Problem 3.9. Let S be the set of solutions of the system$'''''&'''''%
x� 2y � z � t � 0

x� y � z � 2w � 0

x� y � 2z � t� w � 0.

Find an orthonormal basis in SK.

Problem 3.10. Let U � tpx, y, z, tq P R4|x� y� 3z� 2t � 0u be a vector subspace

of R4. Find an orthonormal basis for S and for SK.



4
Vectors

4.1 Space and Plane Coordinates

Coordinates in R2

In R2 we consider the Cartesian orthogonal coordinate system xOy. The cartesian

coordinates or rectangular coordinates of the point M P R2 is the ordered pair

px0, y0q. The polar coordinates of M are pr, θq where:

� r is the length of the line segment rOM s, r ¥ 0;

� θ is the angle between the positive direction of Ox and OM , θ P r0, 2πs.

The angle is measured in radians in the counterclockwise direction from the

Ox axis to OM .

r and θ can be converted to the Cartesian coordinates x and y by using the

trigonometric functions sine and cosine:$'&'%x � r cos θ,

y � r sin θ.
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Figure 4.1: The relationship between polar and Cartesian coordinates

Viceversa: $'&'%r �
a
x2 � y2,

tan θ � y

x
, x � 0.

If x � 0 and y ¡ 0 then θ � π

2
.

If x � 0 and y   0 then θ � 3π

2
.

Remark 4.1. When we include negative values, the Ox and Oy axes divide the

space up into 4 pieces Quadrants I, II, III and IV , numbered in a counter-clockwise

direction.

� In Quadrant I both x and y are positive.

� In Quadrant II x is negative y is positive.

� In Quadrant III x and y are negative.

� In Quadrant IV x is positive and y is negative.
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The trigonometric functions can be reduced to the first quadrant using the fol-

lowing relations:

� If θ P
�π
2
, π
	
ùñ θ � π�x, where x P

�
0,

π

2

	
ùñ

$'''''&'''''%
sinpπ � xq � sinpxq

cospπ � xq � � cospxq

tanpπ � xq � � tanpxq.

� If θ P
�
π,

3π

2



ùñ θ � π�x, where x P

�
0,

π

2

	
ùñ

$'''''&'''''%
sinpπ � xq � � sinpxq

cospπ � xq � � cospxq

tanpπ � xq � tanpxq.

� If θ P
�
3π

2
, 2π



ùñ θ � 2π�x, where x P

�
0,

π

2

	
ùñ

$'''''&'''''%
sinp2π � xq � � sinpxq

cosp2π � xq � cospxq

tanp2π � xq � � tanpxq.
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Space Coordinates

In R3 we consider the Cartesian orthogonal coordinate system Oxyz. The cartesian

coordinates of the point M P R3 is the ordered triple of real numbers px0, y0, z0q
and we denote this by Mpx0, y0, z0q.

The cylindrical coordinates of M are pr, θ, zq where:

� r is the length of the line segment rOM 1s, where M 1 is the projection on xOy

of M , r ¥ 0.

� θ is the angle between the positive direction of Ox and OM 1, θ P r0, 2πs.

We denote the cylindrical coordinates by Mpr, θ, zq.
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Figure 4.2: The cylindrical coordinates

The relationship between the Cartesian px, y, zq and cylindrical pr, θ, zq coordi-
nates are:$'''''&'''''%

x � r cos θ

y � r sin θ

z � z

;

$'''''&'''''%
r �

a
x2 � y2

tan θ � y

x
, x � 0

z � z.

.

If x � 0 and y ¡ 0 then θ � π

2
.

If x � 0 and y   0 then θ � 3π

2
.

The spherical coordinates to locate the point M is space are pρ, φ, θq where :

� ρ is the length of the line segment rOM s, ρ ¥ 0 distance;

� φ is the angle between the positive direction of Oz and OM , φ P r0, πs;
elevation;
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� θ is the angle between the positive direction of Ox and OM 1, where M 1 is the

projection on xOy plane of the point M , θ P r0, 2πs, azimuth.

We denote the spherical coordinates Mpρ, φ, θq.

Figure 4.3: The spherical coordinates

The relationship between the Cartesian px, y, zq and spherical pρ, φ, θq coordi-

nates are:$'''''&'''''%
x � ρ sinφ cos θ

y � ρ sinφ sin θ

z � ρ cosφ

;

$'''''&'''''%
r � ρ sinφ

z � ρ cosφ

θ � θ

.
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4.2 Vectors in space

A vector in space ÝÑv P R3 is determined by its:

� length, }ÝÑv } or |ÝÑv | (magnitude, absolute value) which is a nonnegative num-

ber;

� direction - a straight line which represents all the straight lines parallel to

the given one;

� sense in which the given straight line is directed.

The vectors are added by either the triangle law or the parallelogram law.

Figure 4.4: The parallelogram law Figure 4.5: The triangle rule

The set of all vectors in space is denoted by V3.

In talking about vectors, numbers are often called scalars.

Consider now the axes Ox, Oy, Oz, mutually perpendicular, forming a right-

handed rectangular Cartesian co-ordinate frame. Let
ÝÑ
i ,
ÝÑ
j ,

ÝÑ
k be the unit vectors

for this system. In vector spaces notations,
ÝÑ
i � p1, 0, 0q, ÝÑj � p0, 1, 0q and ÝÑk �

p0, 0, 1q and they represent the canonical basis of R3.

Every vector ÝÑv can be written, uniquely, in the form

ÝÑv � a
ÝÑ
i � b

ÝÑ
j � c

ÝÑ
k � pa, b, cq,

where a, b, c are scalars (the components of ÝÑv ).
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Any ordered pair of points ApxA, yA, zAq, BpxB, yB, zAq of the space define one

and only one vector

ÝÝÑ
AB � pxB � xAqÝÑi � pyB � yAqÝÑj � pzB � zAqÝÑk .

Let the point MpxM , yM , zMq P R3. Then the vector

ÝÝÑ
OM � xM

ÝÑ
i � yM

ÝÑ
j � zM

ÝÑ
k

is called the position vector of the point M .

For ÝÑv1 � a1
ÝÑ
i � b1

ÝÑ
j � c1

ÝÑ
k and ÝÑv2 � a2

ÝÑ
i � b2

ÝÑ
j � c2

ÝÑ
k we have:

� }ÝÑv1} �
a
a21 � b21 � c21 - magnitude, length, absolute value;

�
ÝÑv1 �ÝÑv2 � pa1 � a2qÝÑi � pb1 � b2qÝÑj � pc1 � c2qÝÑk - addition of two vectors;

� αÝÑv1 � αa1
ÝÑ
i � αb1

ÝÑ
j � αc1

ÝÑ
k , α P R - multiplication of a vector by a scalar;

�
ÝÑv1 ∥ ÝÑv2 ô a1

a2
� b1

b2
� c1

c2
ô Dα P R� such that ÝÑv1 � αÝÑv2 .

The set V3 is a vector space over the field of the real numbers, where the in-

ternal operation is the addition of the vectors, and the external operation is the

multiplication by scalars, both defined above.

Scalar product

One associates with any two vectors ÝÑv1 and ÝÑv2 a number called their scalar product

(inner product) and denoted by ÝÑv1 � ÝÑv2 .

ÝÑv1 � ÝÑv2 def� }ÝÑv1} � }ÝÑv2} � cosα,

where α P r0, πs is the angle between ÝÑv1 and ÝÑv2 .
Properties. For all ÝÑv1 ,ÝÑv2 P V3, α P R we have:
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1. ÝÑv1 � ÝÑv2 � ÝÑv2 � ÝÑv1 - comutativity ;

2. ÝÑv1 � pÝÑv2 �ÝÑv3q � ÝÑv1 � ÝÑv2 �ÝÑv1 � ÝÑv3 - distributivity over the addition of the vectors ;

3. pαÝÑv1q � ÝÑv2 � αpÝÑv1 � ÝÑv2q;

4. ÝÑv1 � ÝÑv1 ¥ 0, ÝÑv1 � ÝÑv1 � 0ðñ ÝÑv1 � ÝÑ
0 .

By the definition of the scalar product we have:

� cosα �
ÝÑv1 � ÝÑv2

}ÝÑv1} � }ÝÑv2} .

�
ÝÑv1 K ÝÑv2 ô ÝÑv1 � ÝÑv2 � 0.

�
ÝÑv � ÝÑv � }ÝÑv }2.

� prÝÑv1ÝÑv2 � | cosα| � }v2}, where α � ?pÝÑv1 ,ÝÑv2q.

The absolute value for cos is required when the angle between the vectors is

grater than
π

2
.

Figure 4.6: The projection when the

angle α P p0, π
2
q

Figure 4.7: The projection when the

angle α P pπ
2
, πq

If ÝÑv1 � a1
ÝÑ
i � b1

ÝÑ
j � c1

ÝÑ
k and v2 � a2

ÝÑ
i � b2

ÝÑ
j � c2

ÝÑ
k , we have the following

formula for computing the scalar product of ÝÑv1 and ÝÑv2 :

ÝÑv1 � ÝÑv2 � a1a2 � b1b2 � c1c2.
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Vector Product

The vector product of the vectors ÝÑv1 and ÝÑv2 is the vector ÝÑv1 � ÝÑv2 , characterized
by:

� the length |ÝÑv1 �ÝÑv2 | � |ÝÑv1 | � |ÝÑv2 | � sinα;

� the direction ÝÑv1 �ÝÑv2 is perpendicular to both ÝÑv1 and ÝÑv2 ;

� the sense such that the triad of vectors tÝÑv1 ,ÝÑv2 ,ÝÑv1 � ÝÑv2u is oriented like the

triad tÝÑi ,ÝÑj ,ÝÑk u.

Figure 4.8: The vector product

Properties. For all ÝÑv1 ,ÝÑv2 ,ÝÑv3 P V3 and α P R we have:

1. ÝÑv1 �ÝÑv2 � �ÝÑv2 �ÝÑv1 ;

2. pαÝÑv1q � ÝÑv2 � αpÝÑv1 �ÝÑv2q;

3. ÝÑv1 � pÝÑv2 �ÝÑv3q � ÝÑv1 �ÝÑv2 �ÝÑv1 �ÝÑv3 ;

4. ÝÑv1 ∥ ÝÑv2 ô ÝÑv1 �ÝÑv2 � ÝÑ
0 ;
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5. The magnitude of the vector product equals the numerical value of the area

of the parallelogram constructed on ÝÑv1 and ÝÑv2 , AÝÑv1ÝÑv2 � |ÝÑv1 �ÝÑv2 |.

By the definition of the vector product we have

ÝÑv1 �ÝÑv2 ÝÑ
i

ÝÑ
j

ÝÑ
k

ÝÑ
i

ÝÑ
0

ÝÑ
k �ÝÑj

ÝÑ
j �ÝÑk ÝÑ

0
ÝÑ
i

ÝÑ
k

ÝÑ
j �ÝÑi ÝÑ

0

If ÝÑv1 � a1
ÝÑ
i � b1

ÝÑ
j � c1

ÝÑ
k and ÝÑv2 � a2

ÝÑ
i � b2

ÝÑ
j � c2

ÝÑ
k , we have the following

formula for computing the vector product of ÝÑv1 and ÝÑv2

ÝÑv1 �ÝÑv2 � pb1c2 � c1b2qÝÑi � pc1a2 � a1c2qÝÑj � pa1b2 � a2b1qÝÑk

or, using a symbolic determinant:

ÝÑv1 �ÝÑv2 �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣∣ .

Triple scalar product

The triple scalar product of the vectors ÝÑv1 , ÝÑv2 and ÝÑv3 is defined by

pÝÑv1 ,ÝÑv2 ,ÝÑv3q � ÝÑv1 � pÝÑv2 �ÝÑv3q.

Properties. For all ÝÑv1 ,ÝÑv2 ,ÝÑv3 P V3 and α P R we have:

1. pÝÑv1 ,ÝÑv2 ,ÝÑv3q � pÝÑv3 ,ÝÑv1 ,ÝÑv2q � pÝÑv2 ,ÝÑv3 ,ÝÑv1q;

2. pÝÑv1 ,ÝÑv2 ,ÝÑv3q � �pÝÑv2 ,ÝÑv1 ,ÝÑv3q;
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3. pαÝÑv1 ,ÝÑv2 ,ÝÑv3q � αpÝÑv1 ,ÝÑv2 ,ÝÑv3q.

Geometry applications.

1. The absolute value of the triple scalar product equals the numerical value of

the volume of the parallelepiped constructed on ÝÑv1 ,ÝÑv2 ,ÝÑv3 .

2. The volume of the tetrahedron constructed on the vectors ÝÑv1 ,ÝÑv2 ,ÝÑv3 equals
1

6
|pÝÑv1 ,ÝÑv2 ,ÝÑv3q|.

3. pÝÑv1 ,ÝÑv2 ,ÝÑv3q � 0 ô ÝÑv1 ,ÝÑv2 ,ÝÑv3 are parallel to the same plane (the vectors are

coplanar).

For ÝÑv1 � a1
ÝÑ
i � b1

ÝÑ
j � c1

ÝÑ
k , ÝÑv2 � a2

ÝÑ
i � b2

ÝÑ
j � c2

ÝÑ
k and ÝÑv3 � a3

ÝÑ
i � b3

ÝÑ
j � c3

ÝÑ
k

the formula for computing the triple scalar product of ÝÑv1 , ÝÑv2 and ÝÑv3 is:

pÝÑv1 ,ÝÑv2 ,ÝÑv3q �

∣∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣∣ .

Triple vector product

The triple vector product of the vectors ÝÑv1 , ÝÑv2 and ÝÑv3 is the vector ÝÑv1 � pÝÑv2 �ÝÑv3q.
It has no important geometrical meaning, but is expressed by the Gibbs formula

which is of use for applications:

ÝÑv1 � pÝÑv2 �ÝÑv3q � pÝÑv1 � ÝÑv3qÝÑv2 � pÝÑv1 � ÝÑv2qÝÑv3 �
∣∣∣∣∣∣
ÝÑv2 ÝÑv3

ÝÑv1 � ÝÑv2 ÝÑv1 � ÝÑv3

∣∣∣∣∣∣ .
4.3 Solved problems

Problem 4.1. Consider the pointsAp2, 0q, Bp�3, 0q, Cp�1, 1q,Dp0,�4q, Ep3,�3?3q
in R2. Convert rectangular coordinates to polar coordinates.
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Solution :

� Ap2, 0q ùñ x � 2, y � 0 ùñ

$'&'%r �
a
x2 � y2

tan θ � y

x

ùñ

$'&'%r � ?
22 � 02

tan θ � 0

2

ùñ
$'&'%r � 2

θ � 0

ùñ the polar coordinates of A are p2, 0q.

� Bp�3, 0q ùñ x � �3, y � 0 ùñ

$'&'%
r �ap�3q2 � 02

tan θ � 0

�3
ðñ

$'&'%r � 3

θ � π

ùñ

the polar coordinates of B are p3, πq.

� Cp�1, 1q ùñ x � �1, y � 1 ùñ

$'&'%
r �ap�1q2 � 12

tan θ � 1

�1 , θ P
�π
2
, π
	 ùñ

$'&'%r � ?
2

θ � π � arctanp1q � 3π

4

ùñ the polar coordinates of C are

�?
2,

3π

4



.

� Dp0,�4q ùñ x � 0, y � �4 ùñ

$'&'%r �a02 � p�4q2

θ � 3π

2

ùñ the polar coordi-

nates of D are

�
4,

3π

2



.

� Ep3,�3?3q ùñ x � �2, y � 2
?
3 ùñ

$''&''%
r �

b
p3q2 � p�3?3q2

tan θ � �3?3

3
, θ P

�
3π

2
, 2π




ùñ

$'&'%r � 6

θ � 2π � arctanp
?
3q � 2π � π

3
� 5π

3

ùñ the polar coordinates of E are

�
6,

5π

3



.
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Problem 4.2. Let A

�
3,

3π

4



, B

�
5,

4π

3



P R2 . Convert the polar coordinates of

the given points to cartesian coordinates.

Solution :

� A

�
3,

3π

4



ùñ r � 3, θ � 3π

4
ùñ

$'&'%x � r cos θ

y � r sin θ

ùñ

$'&'%
x � 3 cos

3π

4

y � 3 sin
3π

4

ùñ
$''&''%
x � 3

�
�
?
2

2



y � 3

?
2

2

ùñ the cartesian coordinates of A are

�
�3

?
2

2
,
3
?
2

2



.

� B

�
5,

4π

3



ùñ r � 5, θ � 4π

3
ùñ

$'&'%
x � 5 cos

4π

3

y � 5 sin
4π

3

ùñ

$''&''%
x � 5

�
�
?
3

2



y � 5

�
�1

2



ùñ the cartesian coordinates of B are

�
�5

?
3

2
,�5

2



.

Problem 4.3. Let A

�
4,

2π

3
,
7π

4



P R3. Convert the spherical coordinates of A to

cylindrical and cartesian coordinates.

Solution :

A

�
4,

2π

3
,
7π

4



ùñ ρ � 4, φ � 2π

3
, θ � 7π

4
ùñ

$'''''&'''''%
x � ρ sinφ cos θ

y � ρ sinφ sin θ

z � ρ cosφ

ùñ

$'''''&'''''%
x � 4 sin

2π

3
cos

7π

4

y � 4 sin
2π

3
sin

7π

4

z � 4 cos
2π

3

ùñ

$''''''&''''''%

x � 4 �
?
3

2
�
?
2

2

y � 4 �
?
3

2
�
�
�
?
2

2



z � 4 �

�
�1

2


 ùñ the cartesian coordi-

nates of A are p?6,�?6,�2q.



4.3 Solved problems 88

For the cylindrical coordinates we need to determine pr, θ, zq. We know θ � 7π

6
and z � �2. We calculate r �

a
x2 � y2 � ?

12 � 2
?
3 ùñ the cylindrical

coordinates of A are

�
2
?
3,

7π

4
,�2


.

Problem 4.4. Determine the cylindrical and spherical coordinates of A P R3

Ap�
?
2,
?
2, 2

?
3q, given in the cartesian coordinates.

Solution :

Ap�?2,
?
2, 2

?
3q ùñ

$'''''&'''''%
x � �?2

y � ?
2

z � 2
?
3

ùñ

$''''''&''''''%

ρ �
b
p�?2q2 � p?2q2 � p2?3q2

cosφ � 2
?
3

ρ
, φ P

�
0,

π

2

	
tan θ �

?
2

�?2
, θ P

�π
2
, π
	

ùñ

$'''''&'''''%
ρ � 4

cosφ � 2
?
3

4

θ � π � arctan 1,

ùñ

$'''''&'''''%
ρ � 4

φ � arccos

?
3

2
� π

6

θ � π � arctan 1 � π � π

4
� 3π

4
,

ùñ

the cartesian coordinates of A are

�
4,

π

6
,
3π

4



.

For the cylindrical coordinates we need to determine pr, θ, zq. We know θ � 3π

4
,

and z � 2
?
3. We calculate r �

a
x2 � y2 � ?

4 � 2 ùñ the cylindrical coordinates

of A are

�
2,

3π

4
, 2
?
3



.

Problem 4.5. Let M

�
5,

5π

3
,�3


P R3 given in cylindrical coordinates. Determine

the cartesian and spherical coordinates of M .

Solution :

M

�
5,

5π

3
,�4


ùñ

$'''''&'''''%
r � 5

θ � 5π

3

z � �4

ùñ

$'''''&'''''%
x � 5 cos

5π

3

y � 5 sin
5π

3

z � �4

ùñ

$'''''&'''''%
x � 5 � 1

2

y � 5 �
�
�
?
3

2



z � �4
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ùñ the cartesian coordinates of M are

�
5

2
,�5

?
3

2
,�4


.

For the spherical coordinates we need to determine pρ, φ, θq. We know θ � 5π

3
.

We calculate ρ �
a
x2 � y2 � z2 � ?

41 and cosφ � �4
ρ
� � 4?

41
, φ P

�π
2
, π
	
ùñ

φ � π � arccos
4?
29

.

The spherical coordinates of M are

�?
41, π � arccos

4?
41

,
5π

3



.

Problem 4.6. Decompose ÝÑv � ÝÑ
i �3

ÝÑ
j �5

ÝÑ
k as a linear combination of the vectors

ÝÑa � ÝÑ
i � 2

ÝÑ
j ,

ÝÑ
b � ÝÑ

i � 2
ÝÑ
k , ÝÑc � 2

ÝÑ
i �ÝÑ

j �ÝÑ
k .

Solution :

The decomposition is ÝÑv � αÝÑa � β
ÝÑ
b � γÝÑc ðñ

ÝÑ
i � 3

ÝÑ
j � 5

ÝÑ
k � αpÝÑi � 2

ÝÑ
j q � βpÝÑi � 2

ÝÑ
k q � γp2ÝÑi �ÝÑ

j �ÝÑ
k q ðñ$'''''&'''''%

α � β � 2γ � 1

2α � γ � 3

2β � γ � �5
The system has the solution α � 2, β � �3, γ � 1 so, the decomposition is

ÝÑv � 2ÝÑa � 3
ÝÑ
b �ÝÑc .

Problem 4.7. Let ÝÑa � 2
ÝÑ
i �3

ÝÑ
j �ÝÑk ,

ÝÑ
b � ÝÑ

j �2
ÝÑ
k , ÝÑc � ÝÑ

i �ÝÑj �2
ÝÑ
k . Calculate:

a) ÝÑa �ÝÑ
b .

b) }ÝÑc }.

c)
ÝÑ
b � ÝÑc .

d) ÝÑa �ÝÑ
b .

e) The angle between ÝÑa and
ÝÑ
b .
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f) ÝÑa � pÝÑb �ÝÑc q.

g) pÝÑa �ÝÑ
b q � ÝÑc .

h) The projection of ÝÑa on
ÝÑ
b , prÝÑ

b
ÝÑa .

Solution :

a) ÝÑa �ÝÑ
b � p2ÝÑi � 3

ÝÑ
j �ÝÑ

k q � pÝÑj � 2
ÝÑ
k q � 2

ÝÑ
i � 2

ÝÑ
j �ÝÑ

k .

b) }ÝÑc } �a12 � p�1q2 � 22 � ?
6.

c)
ÝÑ
b � ÝÑc � 0 � 1� 1 � p�1q � p�2q � 2 � �5.

d) ÝÑa �ÝÑ
b �

���������
ÝÑ
i

ÝÑ
j

ÝÑ
k

2 �3 1

0 1 �2

��������� � 5
ÝÑ
i � 4

ÝÑ
j � 2

ÝÑ
k .

e) cos?pÝÑa ,ÝÑb q �
ÝÑa � ÝÑb

}ÝÑa } � }ÝÑb } �
2 � 0� p�3q � 1� 1 � p�2q?

4� 9� 1
?
0� 1� 4

� � 5?
70

  0 ùñ

φ P
�π
2
, π
	
.

?pÝÑa ,ÝÑb q � π � arccos
5?
70

.

f)
ÝÑ
b �ÝÑc � ÝÑ

i .

ÝÑa � pÝÑb �ÝÑc q � p2ÝÑi � 3
ÝÑ
j �ÝÑ

k q � pÝÑi q � 2.

g) pÝÑa �ÝÑ
b q � ÝÑc � ÝÑc � pÝÑa �ÝÑ

b q � pÝÑc ,ÝÑa ,ÝÑb q �

���������
1 �1 2

2 �3 1

0 1 �2

��������� � 5.

h) φ � ?pÝÑa ,ÝÑb q ùñ prÝÑ
b
ÝÑa � | cosφ|}ÝÑa }.

cosφ �
ÝÑa � ÝÑb

}ÝÑa } � }ÝÑb } �
�5?
70

ùñ φ P
�π
2
, π
	
.
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prÝÑ
b
ÝÑa �

?
14 � 5?

70
�
?
5.

Problem 4.8. Consider the points Ap�2, 1, 0q, Bp2, 0, 3q, Cp�2, 0, 4q, Dp�4, 1, 3q.
Determine:

a) Area of the triangle △ABC.

b) The distance between the point D and the line BC.

c) ?pÝÝÑAB,
ÝÝÑ
CDq.

d) The volume of the tetrahedron ABCD.

e) The height of the tetrahedron ABCD having as basis the plane ABC.

Solution :

a) A△ABC � 1

2
}ÝÝÑAB �ÝÝÑ

AC}.
ÝÝÑ
AB � 4

ÝÑ
i �ÝÑ

j � 3
ÝÑ
k ;

ÝÝÑ
AC � �ÝÑj � 4

ÝÑ
k .

ÝÝÑ
AB �ÝÝÑ

AC �

���������
ÝÑ
i

ÝÑ
j

ÝÑ
k

4 �1 3

0 �1 4

��������� � �ÝÑi � 16
ÝÑ
j � 4

ÝÑ
k .

A△ABC � 1

2

?
1� 256� 16 � 1

2

?
273.

b) dpA,BCq � h, where h is the height on BC of the triangle .

A△ABC � h �BC

2
.

ÝÝÑ
BC � �4ÝÑi �ÝÑ

k ùñ }ÝÝÑBC} � ?
17.

h � A△ABC

}ÝÝÑBC} �
c

273

17
.
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c) cos?pÝÝÑAB,
ÝÝÑ
CDq �

ÝÝÑ
AB � ÝÝÑCD

}ÝÝÑAB} � }ÝÝÑCD} .
ÝÝÑ
CD � �2ÝÑi �ÝÑ

j �ÝÑ
k ;

cos?pÝÝÑAB,
ÝÝÑ
CDq � �12?

26
?
6
� � 6?

39
  0 ùñ φ P �π

2
, π
� ùñ

� π � arccos
6?
39

.

d) VABCD � 1

6
|pÝÝÑAB,

ÝÝÑ
AC,

ÝÝÑ
ADq| � 1

6
|

���������
4 �1 3

0 �1 4

�2 0 3

��������� | �
1

6
| � 10| � 5

3
.

e) VABCD � A△ABC � h
3

ùñ h � 3VABCD

AABC

� 3 � 5
3?

273
2

� 10?
273

.

Problem 4.9. Consider the vectors ÝÑu � ÝÑ
i � λ

ÝÑ
j � 3

ÝÑ
k , ÝÑv � λ

ÝÑ
i � ÝÑ

j � ÝÑ
k and

ÝÑw � 3
ÝÑ
i �ÝÑ

j �ÝÑ
k . Determine λ P R such that the vectors ÝÑu ,ÝÑv ,ÝÑw are coplanar.

Solution :

ÝÑu ,ÝÑv ,ÝÑw are coplanar ðñ pÝÑu ,ÝÑv ,ÝÑw q � 0ðñ

���������
1 �λ 3

λ �1 1

3 1 �1

��������� � 0

ðñ 9� λ2 � 0ðñ λ P t�3, 3u.

Problem 4.10. Determine λ P R such that the vectors ÝÑa � ÝÑ
i � 2λ

ÝÑ
j � pλ� 1qÝÑk

and
ÝÑ
b � p3� λqÝÑi �ÝÑ

j � 2
ÝÑ
k are perpendicular.

Solution :

ÝÑa K ÝÑ
b ðñ ÝÑa � ÝÑb � 0ðñ 1p3� λq � 2λ � 1� pλ� 1q2 � 0ðñ λ � 5.

Problem 4.11. Determine the angle between ÝÑu and ÝÑv if }ÝÑu } � 2, }ÝÑv } � 4 and

p2ÝÑu �ÝÑv q K p3ÝÑu � 2ÝÑv q.
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Solution : Let α � ?pÝÑu ,ÝÑv q.
p2ÝÑu �ÝÑv q K p3ÝÑu � 2ÝÑv q ðñ p2ÝÑu �ÝÑv q � p3ÝÑu � 2ÝÑv q � 0ðñ
6ÝÑu � ÝÑu � 4ÝÑu � ÝÑv � 3ÝÑv � ÝÑu � 2ÝÑv � ÝÑv � 0.

Applying the definition and the properties of the scalar product we have:

6}u}2 � }ÝÑu } � }ÝÑv } � cosα � 2}ÝÑv }2 � 0ðñ
6 � 4� 2 � 4 � cosα � 2 � 16 � 0ðñ
24� 8 cosα � 32 � 0ðñ cosα � �1ðñ α � π.

Problem 4.12. Consider ÝÑa � 5ÝÑp � 3ÝÑq and
ÝÑ
b � ÝÑp � 2ÝÑq , such that }ÝÑp } � 3,

}ÝÑq } � 2 and the angle between ÝÑp and ÝÑq equals π
3
.

a) Determine the length of the two diagonals of the parallelogram with the edges

ÝÑa and
ÝÑ
b .

b) Find the angle between the diagonals of the parallelogram with ÝÑa and
ÝÑ
b as

the edges.

c) Calculate the area of the parallelogram constructed on ÝÑa and
ÝÑ
b .

Solution :

a) We know from the parallelogram and triangle rule that the two diagonals of

a parallelogram is the sum and the difference of the two vectors on which the

parallelogram is constructed.

Let
ÝÑ
d1 � ÝÑa �ÝÑ

b and
ÝÑ
d2 � ÝÑa �ÝÑ

b

ÝÑ
d1 � 5ÝÑp � 3ÝÑq �ÝÑp � 2ÝÑq � 6ÝÑp �ÝÑq .
ÝÑ
d2 � 5ÝÑp � 3ÝÑq � pÝÑp � 2ÝÑq q � 4ÝÑp � 5ÝÑq .

In what follows we will use the formula ÝÑv �ÝÑv � }ÝÑv }2 to determine the length

of the diagonals.
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We evaluate:

}ÝÑd1}2 � }6ÝÑp �ÝÑq }2 � p6ÝÑp �ÝÑq q � p6ÝÑp �ÝÑq q
� 36ÝÑp � ÝÑp � 6ÝÑp � ÝÑq � 6ÝÑq � ÝÑp �ÝÑq � ÝÑq
� 36}ÝÑp }2 � 12}ÝÑp } � }ÝÑq } � cosp{ÝÑp ,ÝÑq q � }ÝÑq }2

� 36 � 9� 12 � 3 � 2 � cos π
3
� 4

� 292

So, }ÝÑd1} � 2
?
73.

}ÝÑd2}2 � }4ÝÑp � 5ÝÑq }2 � p4ÝÑp � 5ÝÑq q � p4ÝÑp � 5ÝÑq q
� 16ÝÑp � ÝÑp � 20ÝÑp � ÝÑq � 20ÝÑq � ÝÑp � 25ÝÑq � ÝÑq
� 16}ÝÑp }2 � 40}ÝÑp } � }ÝÑq } � cosp{ÝÑp ,ÝÑq q � 25}ÝÑq }2

� 16 � 9� 40 � 3 � 2 � cos π
3
� 25 � 4

� 124

So, }ÝÑd1} � 2
?
31.

b) Let ?pÝÑd1,ÝÑd2q � φ ùñ cosφ �
ÝÑ
d1 � ÝÑd2

}ÝÑd1} � }ÝÑd2}
.

ÝÑ
d2 � ÝÑd2 � p6ÝÑp �ÝÑq q � p4ÝÑp � 5ÝÑq q

� 24}ÝÑp }2 � 34}ÝÑp } � }ÝÑq } � cosp{ÝÑp ,ÝÑq q � 5}ÝÑq }2

� 24 � 9� 34 � 3 � 2 � 1
2
� 20

� 134

cosφ � 134

2
?
73 � 2?31

ùñ φ � arccos
67

2
?
73 � 31.
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c) AÝÑa ,
ÝÑ
b
� }ÝÑd1} � }ÝÑd2} � sin?pÝÑd1,ÝÑd2q

2
.

We determine sinφ �
a
1� cos2 φ �

c
1� 672

4 � 31 � 73 �
39
?
3

2
?
31 � 73.

Then,

AÝÑa ,
ÝÑ
b
�

2
?
73 � 2?31 � 39

?
3

2
?
31�73

2
� 39

?
3.

Problem 4.13. Prove that ÝÑa � 12
ÝÑ
i � 3

ÝÑ
j � 4

ÝÑ
k and

ÝÑ
b � 3

ÝÑ
i � 4

ÝÑ
j � 12

ÝÑ
k are

two of the edges of a cube. Determine ÝÑc such that ÝÑc is the third edge of this cube.

Solution :

ÝÑa and
ÝÑ
b are two of the edges of a cube iff:

1. }ÝÑa } � }ÝÑb }

2. ÝÑa K ÝÑ
b

}ÝÑa } � a122 � 32 � p�4q2 � 13, }ÝÑb } � ?
32 � 42 � 122 � 13 so the first condi-

tion is fulfilled.

ÝÑa K ÝÑ
b ðñ ÝÑa � ÝÑb � 0 ðñ 12 � 3 � 3 � 4 � p�4q � 12 � 0 ðñ 36 � 12 � 48 � 0

which is true, so ÝÑa K ÝÑ
b .

The third edge of the cube ÝÑc must fulfill

1. }ÝÑc } � }ÝÑa } � }ÝÑb } � 13,

2.

$'&'%
ÝÑc K ÝÑa
ÝÑc K ÝÑ

b

ùñ ÝÑc ∥ ÝÑa �ÝÑ
b .

ÝÑa �ÝÑ
b �

���������
ÝÑ
i

ÝÑ
j

ÝÑ
k

12 3 �4
3 4 12

��������� � 52
ÝÑ
i � 156

ÝÑ
j � 39

ÝÑ
k .
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Because }ÝÑa �ÝÑ
b } � AÝÑa ,

ÝÑ
b
� 132, and }ÝÑc } � 13, then,

ÝÑc � � 1

13
p52ÝÑi � 156

ÝÑ
j � 39

ÝÑ
k q � �p4ÝÑi � 12

ÝÑ
j � 3

ÝÑ
k q.

4.4 Problems

Problem 4.14. Consider the points Ap�3, 0q, Bp0,�4q, Cp4,�4q, Dp�7, 0q, Ep0, 6q
F p?3,�3q in R2. Convert rectangular coordinates to polar coordinates.

Problem 4.15. Let A

�
4,

5π

4



, B

�
2,

7π

6



and C

�
9,

π

3

	
points in R2. Convert

the polar coordinates of the given points to cartesian coordinates.

Problem 4.16. The point P is on a sphere of radius 4, O the centre of the sphere.

The angle between OP and Oz axis is 30�, the angle between OP 1 (P 1 � prxOyP )

and Ox is 60�. Determine the cylindrical and cartesian coordinates of P .

Problem 4.17. Consider the points A
�
8,

π

6
,
π

3

	
, B

�
12,

4π

3
,
5π

6



, C

�
4,

3π

4
,
2π

3



in R3. Convert the spherical coordinates of the given points to cylindrical and

cartesian coordinates.

Problem 4.18. Determine the cylindrical coordinates of Ap2, 2?3, 5q, Bp4,�4, 6q,
Cp�3,?3,�4q, Dp�3?3,�9, 0q, Ep0, 0, 4q given in the cartesian coordinates.

Problem 4.19. Convert the cartesian coordinates of Ap2?3, 6, 4q, Bp0,�6?3, 6q
and Cp�16, 0, 0q to spherical coordinates.

Problem 4.20. Consider the points A
�
3,

π

3
,�3
	
, B

�
5,

3π

4
,�6


, C

�
4,

7π

4
, 2



,

D
�
5,

π

3
, 2
	

in R3, given in cylindrical coordinates. Determine the cartesian and

spherical coordinates of these points.

Problem 4.21. Decompose ÝÑv � 2
ÝÑ
i � 3

ÝÑ
j � 5

ÝÑ
k as a sum of the vectors ÝÑv1 �

3
ÝÑ
i �ÝÑ

k , ÝÑv2 � �ÝÑj �ÝÑ
k and ÝÑv3 � �ÝÑi � 3

ÝÑ
k
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Problem 4.22. Decompose ÝÑv � ÝÑ
i �ÝÑj �2

ÝÑ
k as a linear combination of the vectors

ÝÑa � 2
ÝÑ
i �ÝÑ

j ,
ÝÑ
b � �ÝÑi � 3

ÝÑ
k and ÝÑc � �ÝÑi �ÝÑ

j �ÝÑ
k .

Problem 4.23. Let ÝÑa � 2
ÝÑ
i �ÝÑj , ÝÑb � �ÝÑi �3

ÝÑ
k , ÝÑc � �ÝÑi �ÝÑj �ÝÑk . Prove that

ÝÑa ,ÝÑb ,ÝÑc is a basis for V3. Determine the coordinates of
ÝÑ
d � 2

ÝÑ
i � ÝÑ

j � ÝÑ
k using

the basis tÝÑa ,ÝÑb ,ÝÑc u.

Problem 4.24. Consider three points Ap1,�1, 2q, Bp2, 1, 0q and Cp3, 2,�6q in

space. Find:

a) the length of the vector
ÝÝÑ
AB.

b) the scalar product
ÝÝÑ
AB � ÝÝÑBC

c) the area of ∆ABC.

Problem 4.25. Consider the vectors ÝÑu � 2
ÝÑ
i � 3

ÝÑ
j � 2

ÝÑ
k , ÝÑv � �ÝÑi � 4

ÝÑ
j � ÝÑ

k ,

ÝÑw � �2ÝÑj � 2
ÝÑ
k . Calculate:

a) ÝÑv �ÝÑw .

b) 2ÝÑu � 3ÝÑw .

c) ÝÑu � ÝÑv .

d) }ÝÑv }.

e) ÝÑu �ÝÑw .

f) the area of the parallelogram construct on the vectors ÝÑu and ÝÑv .

g) the hight of the parallelogram with the edges ÝÑu and ÝÑv , considering ÝÑv as the

basis.
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h) the volume of the tetrahedron with the edges ÝÑu ,ÝÑv and ÝÑw .

Problem 4.26. Consider the points Ap0, 1,�1q, Bp1, 1, 3q, Cp2, 1,�2q, Dp3,�1, 2q.
Calculate:

a) The volume of the tetrahedron ABCD.

b) The distance between the point D and the plane ABC.

c) ?pÝÝÑAB,
ÝÝÑ
CDq.

Problem 4.27. Determine λ P R such that ÝÑa � 2
ÝÑ
i � 3

ÝÑ
j � p2λ � 3qÝÑk and

ÝÑ
b � p2� 3λqÝÑi � λ

ÝÑ
j � 2

ÝÑ
k are perpendicular.

Problem 4.28. Find the angle between the vectors ÝÑa and
ÝÑ
b if }ÝÑa } � 4, }ÝÑb } � 2

and p3ÝÑa � 5
ÝÑ
b q K pÝÑa � 2

ÝÑ
b q.

Problem 4.29. Prove that ÝÑa � 6
ÝÑ
i � 2

ÝÑ
j � 3

ÝÑ
k and

ÝÑ
b � �3ÝÑi � 6

ÝÑ
j � 2

ÝÑ
k are

two of the edges of a cube. Determine ÝÑc such that ÝÑc is the third edge of this cube.

Problem 4.30. Consider the vectors ÝÑa � p2, 3, 1q, ÝÑb � p1, 1,�2q, ÝÑc � p�2, 1, 2q.
Calculate:

a) ÝÑa � pÝÑb �ÝÑc q;

b) ÝÑa � pÝÑb �ÝÑc q;

c) ÝÑa � pÝÑb �ÝÑc q;

d) ÝÑa � pÝÑb �ÝÑc q.

Problem 4.31. Consider four points A,B,C,D in space. Prove that:

a)
ÝÝÑ
DA � ÝÝÑBC �ÝÝÑ

DB � ÝÝÑCA�ÝÝÑ
DC � ÝÝÑAB � 0.
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b) If DA K BC and DB K CA then DC K AB.

Problem 4.32. Let G be the weight center of the triangle ABC. Prove that:

a)
ÝÝÑ
AG�ÝÝÑ

BG�ÝÝÑ
CG � ÝÑ

0 .

b) If M is an arbitrary point then 3
ÝÝÑ
MG � ÝÝÑ

MA�ÝÝÑ
MB �ÝÝÑ

MC.

Problem 4.33. Prove the Lagrange’s identity

}ÝÑa �ÝÑ
b }2 � pÝÑa � ÝÑb q2 � }ÝÑa }2}ÝÑb }2,

for any vectors ÝÑa and
ÝÑ
b .

Problem 4.34. Determine the vector ÝÑw such that }ÝÑw } � 3, ÝÑw is perpendicular on

the axis Oz and makes a 45� angle with the positive direction of Ox.

Problem 4.35. Find the angle between:

a) the vector ÝÑv � �
?
3

2

ÝÑ
i � 1

2

ÝÑ
j and Ox axis.

b)
ÝÝÑ
AB and

ÝÝÑ
AC where Ap3, 1,�2q, Bp2, 1,�1q and Cp3, 0,�1q.

Problem 4.36. Let ÝÑv � 3
ÝÑ
i �ÝÑ

j � 2
ÝÑ
k and ÝÑu � ÝÑ

j � 2
ÝÑ
k . Determine the height

of the parallelogram with the edges ÝÑv and ÝÑu , considering ÝÑv as the basis.

Problem 4.37. Let ÝÑa � 3
ÝÑ
i � ÝÑ

j � 2
ÝÑ
k ,

ÝÑ
b � ÝÑ

j � 2
ÝÑ
k and ÝÑc � ÝÑ

j � 4
ÝÑ
k .

Determine the height of the parallelepiped with the edges ÝÑa ,ÝÑb ,ÝÑc , considering the

parallelogram with the edges ÝÑa and
ÝÑ
b as the basis.

Problem 4.38. If ÝÑa � 3
ÝÑ
i �ÝÑj �α

ÝÑ
k ,

ÝÑ
b � ÝÑ

j �2
ÝÑ
k and ÝÑc � 3

ÝÑ
i �ÝÑk , determine

α P R such that the vector ÝÑa � pÝÑb �ÝÑc q is parallel to the plane yOz.

Problem 4.39. If ÝÑa � ÝÑ
i �ÝÑj � 2

ÝÑ
k ,

ÝÑ
b � 2

ÝÑ
i �ÝÑj � λ

ÝÑ
k and ÝÑc � ÝÑ

i � 2
ÝÑ
j �ÝÑk ,

determine λ P R such that the vector ÝÑa � pÝÑb �ÝÑc q is parallel to the plane xOy.
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Problem 4.40. Consider the vectors ÝÑa � ÝÑ
i �m

ÝÑ
j � 3

ÝÑ
k ,

ÝÑ
b � m

ÝÑ
i �ÝÑj �ÝÑk and

ÝÑc � 3
ÝÑ
i �ÝÑ

j �ÝÑ
k . Determine m P R such that the vectors ÝÑa ,ÝÑb ,ÝÑc are coplanar.

For m � 1, calculate the volume of the parallelepiped with the edges ÝÑa ,ÝÑb ,ÝÑc .

Problem 4.41. Consider the triangle ABC, AA1 K BC, A1 P BC, BB1 K AC,B1 P
AC, AA1 XBB1 � tHu. Prove that CH K AB.

Problem 4.42. Consider the vectors ÝÑv � 3ÝÑa � 2
ÝÑ
b and ÝÑw � 2ÝÑa � ÝÑ

b such that

}ÝÑa } � 2, }ÝÑb } � 3 and the angle between ÝÑa and
ÝÑ
b equals

π

3
.

a) Determine the angle between ÝÑv and ÝÑw .

b) Find the projection of ÝÑw on ÝÑv .

c) Calculate the area of the parallelogram with the edges ÝÑv and ÝÑw .

Problem 4.43. Consider ÝÑa � ÝÑm � 2ÝÑn and
ÝÑ
b � ÝÑm � 3ÝÑn such that }ÝÑm} � 5,

}ÝÑn } � 3 and the angle between ÝÑn and ÝÑm equals
π

2
.

a) Determine the length of the two diagonals of the parallelogram with the edges

ÝÑa and
ÝÑ
b .

b) Find the angle between the diagonals of the parallelogram with ÝÑa and
ÝÑ
b as

the edges.

c) Calculate the area of the parallelogram with ÝÑa and
ÝÑ
b as the edges.

Problem 4.44. Prove the identity of Jacobi

ÝÑa � pÝÑb �ÝÑc q � ÝÑc � pÝÑa �ÝÑ
b q � ÝÑ

b � pÝÑc �ÝÑa q � ÝÑ
0 ,

for any vectors ÝÑa ,ÝÑb ,ÝÑc .



5
Straight lines and Planes in space

5.1 Planes in space

We can determine the equation of a plane in several situations.

Plane determined by a point and a normal vector

Let M0px0, y0, z0q be a point in space and let ÝÑn � a
ÝÑ
i � b

ÝÑ
j � c

ÝÑ
k � ÝÑ

0 a vector.

Let pP q be the plane passing through M0 and is perpendicular to ÝÑn .

Figure 5.1: Plane determined by a point and a normal vector
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The point Mpx, y, zq will lie in the plane pP q if and only if the vector ÝÑn is

perpendicular to
ÝÝÝÑ
M0M .

ÝÑn K ÝÝÝÑ
M0M ðñ ÝÑn � ÝÝÝÑM0M � 0ðñ apx� x0q � bpy � y0q � cpz � z0q � 0.

So, the equation of the plane passing through the point M0px0, y0, z0q and having

as normal vector ÝÑn � a
ÝÑ
i � b

ÝÑ
j � c

ÝÑ
k � ÝÑ

0 is

pP q : apx� x0q � bpy � y0q � cpz � z0q � 0.

If we denote by d � �ax0 � by0 � cz0 we obtain the general equation of a plane

in space

pP q : ax� by � cz � d � 0.

The vector

ÝÑnP � a
ÝÑ
i � b

ÝÑ
j � c

ÝÑ
k

is called normal to the plane and is a vector having the direction perpendicular to

the plane pP q.
The point ApxA, yA, zAq is on the plane pP q if axA � byA � czA � d � 0.

Remark 5.1. In particular, the equations of the planes xOy, xOz, yOz are:

� xOy : z � 0;

� xOz : y � 0;

� yOz : x � 0.

Plane determined by three non-collinear points

LetApxA, yA, zAq, BpxB, yB, zBq, CpxC , yC , zCq be three non-collinear points in space.

Let pP q be the plane determined by these three points. We also consider Mpx, y, zq
an arbitrary point of pP q.



5.1 Planes in space 103

Figure 5.2: Plane determined by three non-collinear points

Hence, the points A,B,C andM are coplanar which implies that the triple scalar

product of the vectors
ÝÝÑ
MA,

ÝÝÑ
MB and

ÝÝÑ
MC is zero. Using the analytical expression

of the triple scalar product one has:∣∣∣∣∣∣∣∣∣
xA � x yA � y zA � z

xB � x yB � y zB � z

xC � x yC � y zC � z

∣∣∣∣∣∣∣∣∣ � 0ðñ

∣∣∣∣∣∣∣∣∣∣∣∣

x y z 1

xA � x yA � y zA � z 0

xB � x yB � y zB � z 0

xC � x yC � y zC � z 0

∣∣∣∣∣∣∣∣∣∣∣∣
� 0.

By adding the first row to the second, to the third and to the fourth, we will ob-

tain the equation of the plane determined by the non-collinear points ApxA, yA, zAq,
BpxB, yB, zBq, CpxC , yC , zCq:

pP q :

∣∣∣∣∣∣∣∣∣∣∣∣

x y z 1

xA yA zA 1

xB yB zB 1

xC yC zC 1

∣∣∣∣∣∣∣∣∣∣∣∣
� 0.

Plane determined by a point and two non-collinear vectors

Let pP q be the plane that passes through the point M0px0, y0, z0q and is parallel to

two non-collinear vectors ÝÑv1 � a1
ÝÑ
i � b1

ÝÑ
j � c1

ÝÑ
k and ÝÑv2 � a2

ÝÑ
i � b2

ÝÑ
j � c2

ÝÑ
k .
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Figure 5.3: Plane determined by the point and two non-collinear vectors

An arbitrary point Mpx, y, zq lies on the plane pP q if and only if the vectors
ÝÝÝÑ
M0M , ÝÑv1 and ÝÑv2 are coplanar, that is pÝÝÝÑM0M,ÝÑv1 ,ÝÑv2q � 0 which lead us to

pP q :

∣∣∣∣∣∣∣∣∣
x� x0 y � y0 z � z0

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣∣ � 0.

5.2 Straight lines in space

Let d be the line passing through the point ApxA, yA, zAq and is parallel to the vector

ÝÑvd � ÝÑ
0 , ÝÑvd � l

ÝÑ
i �m

ÝÑ
j �n

ÝÑ
k . Then a point Mpx, y, zq is on the line d if the vector

ÝÝÑ
MA is parallel to ÝÑvd .

Figure 5.4: Line determined by a point and a director vector

So, A P dðñ Dt P R such that
ÝÝÑ
AM � tÝÑvd ðñ

px� xAqÝÑi � py � yAqÝÑj � pz � zAqÝÑk � tplÝÑi �m
ÝÑ
j � n

ÝÑ
k q ðñ
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d :

$'''''&'''''%
x � lt� xA

y � mt� yA

z � nt� zA

, t P R

which are the parametric equations of the line d.

The vector ÝÑvd is also called the director vector of the line d while the compo-

nents of ÝÑvd i.e. pl,m, nq are called the director ratios of this direction. Any other

numbers proportional to pl,m, nq are also direction ratios for the same direction.

When t P R we have the line d, when t P ra, bs then we will obtain a line segment

form the point where t � a to the point where t � b.

When we eliminate t form the parametric equations, we obtain the cartesian

equations of the line d:

d :
x� xA

l
� y � yA

m
� z � zA

n
.

Remark 5.2. If one of the component of the director vector is zero, then, in the

cartesian equations of the line the corresponding numerator is also zero.

Example 5.3. The equations of the Ox axis are:

Ox :
x

1
� y

0
� z

0

or, equivalent

Ox :

$'''''&'''''%
x � t

y � 0

z � 0.

, t P R ðñ Ox :

$'&'%y � 0

z � 0.
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Similarly

Oy :
x

0
� y

1
� z

0
ðñ Oy :

$'''''&'''''%
x � 0

y � t

z � 0.

, t P R ðñ Oy :

$'&'%x � 0

z � 0.

Oz :
x

0
� y

0
� z

1
ðñ Oz :

$'''''&'''''%
x � 0

y � 0

z � t.

, t P R ðñ Oz :

$'&'%x � 0

y � 0.

Equations of the line joining two points

The line joining the points ApxA, yA, zAq and BpxB, yB, zBq is d � AB.

Figure 5.5: Line joining two points

If we write the equations of the line passing through A and having the director

vector
ÝÝÑ
AB � pxB � xAqÝÑi � pyB � yAqÝÑj � pzB � zAqÝÑk , we get

d :
x� xA

xB � xA

� y � yA
yB � yA

� z � zA
zB � zA

.
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Line determined by the intersection of two planes

The equations of the line d determined by the intersection of two planes pP1q and
pP2q are:

d :

$'&'%a1x� b1y � c1z � d1 � 0

a2x� b2y � c2z � d2 � 0

.

Figure 5.6: Line determined by the intersection of two planes

The normal vectors to pP1q and pP2q are ÝÑn1 � a1
ÝÑ
i � b1

ÝÑ
j � c1

ÝÑ
k and ÝÑn2 �

a2
ÝÑ
i � b2

ÝÑ
j � c2

ÝÑ
k , respectively. They are both perpendicular to d, so d is parallel

to ÝÑn � ÝÑn1 �ÝÑn2.

Therefore, ÝÑvd �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣∣ .
The direction-ratios of ÝÑvd are

��∣∣∣∣∣∣b1 c1

b2 c2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣c1 a1

c2 a2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣∣
�.
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5.3 Relative positions

Relative positions between two planes

Let pP1q : a1x� b1y� c1z� d1 � 0 and pP2q : a2x� b2y� c2z� d2 � 0 be two planes

in space.

� pP1q ∥ pP2q ðñ a1
a2
� b1

b2
� c1

c2
� d1

d2
ðñ ÝÑnP1 ∥ ÝÑnP2 .

Figure 5.7: Two parallel planes

� pP1q K pP2q ðñ ÝÑnP1 K ÝÑnP2 ðñ

$'&'%
ÝÑnP1 ∥ pP2q
ÝÑnP2 ∥ pP1q

.

Figure 5.8: Two perpendicular planes
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� pP1q � pP2q ðñ a1
a2
� b1

b2
� c1

c2
� d1

d2
.

Relative positions between two straight lines

Let

d1 :
x� x1

l1
� y � y1

m1

� z � z1
n1

and

d2 :
x� x2

l2
� y � y2

m2

� z � z2
n2

be two lines in space.

The director vector of d1 is ÝÑvd1 � l1
ÝÑ
i �m1

ÝÑ
j �n1

ÝÑ
k and the pointM1px1, y1, z1q P

d1 while the director vector of d2 is ÝÑvd2 � l2
ÝÑ
i � m2

ÝÑ
j � n2

ÝÑ
k and the point

M2px2, y2, z2q P d2.

� the lines are parallel, d1 ∥ d2 ðñ ÝÑvd1 ∥ ÝÑvd2 ðñ
l1
l2
� m1

m2

� n1

n2

.

Figure 5.9: Two parallel lines

� the lines coincide, d1 � d2 ðñ

$''&''%
l1
l2
� m1

m2

� n1

n2

x2 � x1

l1
� y2 � y1

m1

� z2 � z1
n1

.

� the lines are perpendicular, d1 K d2 ðñ ÝÑvd1 K ÝÑvd2 ðñ ÝÑvd1 � ÝÑvd2 � 0 ðñ
l1l2 �m1m2 � n1n2 � 0.
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Figure 5.10: Two perpendicular lines

� the lines are coplanar if the vectors ÝÑvd1 , ÝÑvd2 and
ÝÝÝÝÑ
M1M2 are parallel to the

same plane (are coplanar), which is equivalent to∣∣∣∣∣∣∣∣∣
x2 � x1 y2 � y1 z2 � z1

l1 m1 n1

l2 m2 n2

∣∣∣∣∣∣∣∣∣ � 0.

Figure 5.11: Two coplanar lines

� Two lines that are not coplanar are skew lines. Skew lines are lines that do

not intersect and are not parallel. The lines d1 and d2 are skew if:∣∣∣∣∣∣∣∣∣
x2 � x1 y2 � y1 z2 � z1

l1 m1 n1

l2 m2 n2

∣∣∣∣∣∣∣∣∣ � 0.



5.3 Relative positions 111

Figure 5.12: Two skew lines

Relative positions between straight lines and planes

Let d :
x� x0

l
� y � y0

m
� z � z0

n
be a line in space and pP q : ax� by � cz � d � 0

a plane in space.

We have:

� d ∥ pP q ðñ ÝÑvd K ÝÑnP ðñ al � bm� cn � 0.

Figure 5.13: A line parallel to a plane

� dX pP q � tMu ðñ ÝÑvd M ÝÑnP ðñ al � bm� cn � 0.
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� d � pP q ðñ

$'&'%
ÝÑvd K ÝÑnP

M0px0, y0, z0q P d ùñM0 P pP q

ðñ

$'&'%al � bm� cn � 0

ax0 � by0 � cz0 � d � 0.

5.4 Angles and distances

Distances

� The distance from the pointMpx0, y0, z0q to the plane pP q : ax�by�cz�d � 0

is

distpM,dq � |ax0 � by0 � cz0 � d|?
a2 � b2 � c2

.

Figure 5.14: Distance from a point to a plane

� The distance between two parallel planes pP1q and pP2q is the distance from

M2px2, y2, z2q P pP2q to the plane pP1q.
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Figure 5.15: Distance between two parallel planes

� The distance from the point A to the line d is

distpA, dq � }ÝÑvd �ÝÝÝÑ
M0A}

}ÝÑvd} ,

where M0 P d.

Figure 5.16: Distance from a point to a line

� The distance between two parallel lines d1 and d2 is

distpd1, d2q � distpM2, d1q,

where M2 P d2.
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Figure 5.17: Distance between two parallel lines

� The distance between the skew lines d1 and d2 is

distpd1, d2q � |pÝÑvd1 ,ÝÑvd2 ,ÝÝÝÝÑM1M2q|
}ÝÑvd1 �ÝÑvd2}

,

where M1 P d1 and M2 P d2.

Figure 5.18: Distance between skew lines

� If d ∥ pP q, the distance between the line d and the plane pP q, is

distpd, pP qq � distpA, pP qq,

where A P d.



5.4 Angles and distances 115

Figure 5.19: Distance between a line parallel to a plane

Angles

Let d1 :
x� x1

l1
� y � y1

m1

� z � z1
n1

and d2 :
x� x2

l2
� y � y2

m2

� z � z2
n2

be two lines

in space and

pP1q : a1x � b1y � c1z � d1 � 0 and pP2q : a2x � b2y � c2z � d2 � 0 two planes in

space.

� The angle between the planes pP1q and pP2q
?ppP1q, pP2qq � ?pÝÑnP1 ,

ÝÑnP2q � α, α P r0, π
2
s.

cosα � |a1a2 � b1b2 � c1c2|a
a21 � b21 � c21

a
a22 � b22 � c22

.

Figure 5.20: The angle between two planes
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� The angle between the lines d1 and d2 is

?pd1, d2q � ?pÝÑvd1 ,ÝÑvd2q � φ, φ P r0, π
2
s.

cosφ � |l1l2 �m1m2 � n1n2|a
l21 �m2

1 � n2
1

a
l22 �m2

2 � n2
2

.

Figure 5.21: The angle between two lines

� The angle between the line d1 and the plane pP1q is
?pd1, pP1qq � 90� �?pÝÑvd1 ,ÝÑnP1q � θ, θ P r0, π

2
s.

cosp?pÝÑvd1 ,ÝÑnP1qq � sinp90� �?pÝÑvd1 ,ÝÑnP1qq � sin θ,

sin θ � |l1a1 �m1b1 � n1c1|a
l21 �m2

1 � n2
1

a
a21 � b21 � c21

.

Figure 5.22: The angle between a plane and a line
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5.5 Solved Problems

Problem 5.1. Write the equation of the plane pP q if M1p1,�2,�1q and M2p3, 4, 1q
are symmetrical about the plane pP q.

Solution :

The information in our problem can be represented as the following figure shows.

If M1 and M2 are symmetrical about the plane pP q then M1M2 K pP q ùñ
ÝÝÝÝÑ
M1M2 ∥ ÝÑnP ùñ ÝÑnP � 1

2
p2ÝÑi � 6

ÝÑ
j � 2

ÝÑ
k q � ÝÑ

i � 3
ÝÑ
j �ÝÑ

k .

We can also deduce that the middle of the line segment rM1M2s denoted by M

is on the plane pP q. The coordinates of M are Mp2, 1, 0q.
We write the equation of the plane passing through Mp2, 1, 0q and having as

normal vector ÝÑn P � ÝÑ
i � 3

ÝÑ
j �ÝÑ

k , therefore the equation of the plane pP q is
pP q : x� 2� 3py � 1q � z � 0ðñ
pP q : x� 3y � z � 5 � 0.

Problem 5.2. Determine the equation of the plane pP q which passes through

Mp�4,�1, 3q and is parallel to the plane pQq : x� 2y � 3z � 7 � 0.

Solution :

A sketch of the problem is represented below.
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pP q ∥ pQq ùñ ÝÑnP ∥ ÝÑnQ ùñ ÝÑnP � αpÝÑi � 2
ÝÑ
j � 3

ÝÑ
k q. For α � 1, ÝÑnP � ÝÑnQ.

The equation of the plane passing through Mp�4,�1, 3q and having the normal

ÝÑnP is

pP q : px� 4q � 2py � 1q � 3pz � 3q � 0ðñ
pP q : x� 2y � 3z � 15 � 0.

Problem 5.3. Determine the equation of the plane pP q which passes through

Mp2, 1, 0q and pP q is perpendicular on both pP1q : x � y � z � 7 � 0 and pP2q :

2x� z � 3 � 0.

Solution :

A sketch of the problem is represented below.
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pP q K pP1q ùñ ÝÑnP1 ∥ pP q ùñ ÝÑ
i �ÝÑ

j �ÝÑ
k ∥ pP q,

pP q K pP2q ùñ ÝÑnP2 ∥ pP q ùñ 2
ÝÑ
i �ÝÑ

k ∥ pP q.
The equation of the plane passing through Mp2, 1, 0q and having two vectors

parallel to the plane, ÝÑnP1 and ÝÑn P2 , is

pP q :

∣∣∣∣∣∣∣∣∣
x� 2 y � 1 z

1 �1 1

2 0 1

∣∣∣∣∣∣∣∣∣ � 0ðñ

pP q : �x� y � 2z � 1 � 0.

Problem 5.4. Determine the parametric equations of the line d which passes

through Ap2,�3, 1q and Bp4, 1, 1q.
Solution :

We substitute in the equations of the line joining two points the coordinates of

A and B, i.e.

d :
x� 2

4� 2
� y � p�3q

1� p�3q �
z � 1

1� 1
� tðñ

d :

$'''''&'''''%
x � 2t� 2

y � 4t� 3

z � 1

, t P R.

Problem 5.5. Write the equations of the line d which passes through Ap1,�2, 5q
and is parallel to the line d1 :

x� 2

3
� y � 2

4
� z � 2

�5 .

Solution :

A sketch of the problem is represented below.
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d ∥ d1 ùñ ÝÑvd ∥ ÝÑvd1 ùñ ÝÑvd ∥ 3
ÝÑ
i � 4

ÝÑ
j � 5

ÝÑ
k ùñ ÝÑvd � αp3ÝÑi � 4

ÝÑ
j � 5

ÝÑ
k q. For

α � 1 the director vector of d is ÝÑvd � 3
ÝÑ
i � 4

ÝÑ
j � 5

ÝÑ
k .

The equations of the line passing through the point Ap1,�2, 5q and having as

director vector ÝÑvd � 3
ÝÑ
i � 4

ÝÑ
j � 5

ÝÑ
k are

d :
x� 1

3
� y � 2

4
� z � 5

�5 .

Problem 5.6. Write the equations of the line d which passes through Ap6,�2,�3q
and is perpendicular on the plane pP q : 2x� y � 7z � 9 � 0.

Solution :

A sketch of the problem is represented below.

d K pP q ùñ ÝÑvd ∥ ÝÑnP ùñ ÝÑvd ∥ 2
ÝÑ
i � ÝÑ

j � 7
ÝÑ
k ùñ ÝÑvd � αp2ÝÑi � ÝÑ

j � 7
ÝÑ
k q. For

α � 1 the director vector of d is ÝÑvd � 2
ÝÑ
i �ÝÑ

j � 7
ÝÑ
k .

The equations of the line passing through the point Ap6,�2,�3q and having as

director vector ÝÑvd � 2
ÝÑ
i �ÝÑ

j � 7
ÝÑ
k are

d :
x� 6

2
� y � 2

�1 � z � 3

7
.

Problem 5.7. Determine the parametric and cartesian equations of the line at the

intersection of the planes pP1q : 2x� 3y � z � 1 � 0 and pP2q : �x� 3z � 5 � 0.
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Solution :

pP1q X pP2q � d :

$'&'%2x� 3y � z � 1 � 0

�x� 3z � 5 � 0

.

ÝÑvd ∥ ÝÑnP1 �ÝÑnP2 �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

2 �3 1

�1 0 3

∣∣∣∣∣∣∣∣∣ � �9ÝÑi � 7
ÝÑ
j � 3

ÝÑ
k .

So, we can chose ÝÑvd � 9
ÝÑ
i � 7

ÝÑ
j � 3

ÝÑ
k .

The coordinates of a point ApxA, yA, zAq of the line d are a solution of the system$'&'%2x� 3y � z � 1 � 0

�x� 3z � 5 � 0

. Choosing z � 0 we obtain x � 5 and y � 3. So, a point

from the line is Ap5, 3, 0q.
The cartesian equations of the line passing through the point Ap5, 3, 0q and

having as director vector ÝÑvd � 9
ÝÑ
i � 7

ÝÑ
j � 3

ÝÑ
k are

d :
x� 5

9
� y � 3

7
� z

3
.

The parametric equations of the line d are:

d :

$'''''&'''''%
x � 9t� 5

y � 7t� 3

z � 3t

, t P R.

Problem 5.8. Determine the equations of the line d which lies in the plane

pP q : x � y � 3z � 5 � 0, d is perpendicular to the line d1 :

$'''''&'''''%
x � 3� t

y � �t� 1

z � 5

, t P R,

and passes through Mp1,�1, 1q.
Solution :
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A sketch of the problem is represented below.

The director vector of the line d1 is ÝÑvd1 � ÝÑ
i �ÝÑ

j .

d � pP q ùñ ÝÑvd K ÝÑnP ùñ ÝÑvd K ÝÑ
i �ÝÑ

j � 3
ÝÑ
k .

d K d1 ùñ ÝÑvd K ÝÑvd1 ùñ ÝÑvd K ÝÑ
i �ÝÑ

j .

ÝÑvd K ÝÑnP

ÝÑvd K ÝÑvd1

,.- ùñ ÝÑvd ∥ ÝÑnP �ÝÑvd1 �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

1 �1 3

1 �1 0

∣∣∣∣∣∣∣∣∣ � 3
ÝÑ
i � 3

ÝÑ
j .

We can chose ÝÑvd � 1
3
p3ÝÑi � 3

ÝÑ
j q � ÝÑ

i �ÝÑ
j

The cartesian equations of the line passing through the point Mp1,�1, 1q and
having as director vector ÝÑvd � ÝÑ

i �ÝÑ
j are

d :
x� 1

1
� y � 1

1
� z � 1

0
ðñ d :

$'&'%x� y � 2 � 0

z � 1

.

Problem 5.9. Determine the equation of the plane pP q which passes through

Ap2,�1, 3q and Bp�1, 1, 1q, and is parallel to the line d :
x

3
� y � 1

2
� z.

Solution :

A sketch of the problem is represented below.
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We present in what follows two methods of solving this problem.

The first method.

pP q ∥ d ùñ ÝÑnP K ÝÑvd ùñ ÝÑnP K 3
ÝÑ
i � 2

ÝÑ
j �ÝÑ

k .

A,B P pP q ùñ ÝÑnP K ÝÝÑ
AB ùñ ÝÑnP K �3ÝÑi � 2

ÝÑ
j � 2

ÝÑ
j .

ÝÑnP K ÝÑvd
ÝÑnP K ÝÝÑ

AB

,.- ùñ ÝÑnP ∥ ÝÑvd �ÝÝÑ
AB �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

3 2 1

�3 2 �2

∣∣∣∣∣∣∣∣∣ � �6ÝÑi � 3
ÝÑ
j � 12

ÝÑ
k .

We can chose ÝÑnP � 1
3
p�6ÝÑi � 3

ÝÑ
j � 12

ÝÑ
k q � �2ÝÑi �ÝÑ

j � 4
ÝÑ
k .

The equation of the plane passing through Ap2,�1, 3q and having the normal ÝÑnP

is

pP q : �2px� 2q � py � 1q � 4pz � 3q � 0ðñ
pP q : �2x� y � 4z � 7 � 0.

The second method.

pP q ∥ d ùñ pP q ∥ ÝÑvd ùñ pP q ∥ 3
ÝÑ
i � 2

ÝÑ
j �ÝÑ

k .

A,B P pP q ùñ pP q ∥ ÝÝÑAB ùñ pP q ∥ �3ÝÑi � 2
ÝÑ
j � 2

ÝÑ
j .

The equation of the plane passing through Mp2,�1, 3q and having two parallel

vectors to the plane, ÝÑvd and
ÝÝÑ
AB, is

pP q :

∣∣∣∣∣∣∣∣∣
x� 2 y � 1 z � 3

3 2 1

�3 2 �2

∣∣∣∣∣∣∣∣∣ � 0ðñ
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pP q : �6px� 2q � 3py � 1q � 12pz � 3q � 0ðñ
pP q : �2x� y � 4z � 7 � 0.

Problem 5.10. Determine the angle between the lines d1 :
x� 1

3
� y � 2

2
� z � 1

�1
and d2 :

x� 2

3
� y � 1

�1 � z � 5 .

Solution :

Let ?pd1, d2q � φ be the angle between the lines d1 and d2.

ÝÑvd1 � 3
ÝÑ
i � 2

ÝÑ
j �ÝÑ

k ,

ÝÑvd2 � 3
ÝÑ
i �ÝÑ

j �ÝÑ
k .

cosp?pÝÑvd1 ,ÝÑvd2qq �
ÝÑvd1 � ÝÑvd2

}ÝÑvd1} � }ÝÑvd2}
� 3 � 3� 2 � p�1q � 1 � p�1q?

9� 4� 1
?
9� 1� 1

� 6?
154

ùñ

φ � arccos
6?
154

.

Problem 5.11. Let pP q : x � 3y � 2z � 5 � 0 and pQq : αx � 3y � 2z � 5 � 0 be

two planes in space. Determine α P R such that pP q K pQq.
Solution :

pP q K pQq ðñ ÝÑnP K ÝÑnQ ðñ ÝÑnP � ÝÑnQ � 0.

ÝÑnP � ÝÑ
i � 3

ÝÑ
j � 2

ÝÑ
k ,

ÝÑnQ � α
ÝÑ
i � 3

ÝÑ
j � 2

ÝÑ
k .

ÝÑnP � ÝÑnQ � 0ðñ α � 9� 4 � 0ðñ α � �13.

Problem 5.12. Let d1 :
x� 2

3
� y � 3

2
� z � 1

�2 and d2 :
x� 2

a
� y � 3

�1 � z � 1

3
be two lines. Determine a P R such that d1 and d2 are coplanar.

Solution :

d1 and d2 are coplanar ðñ ÝÑvd1 , ÝÑvd2 , ÝÝÑAB are coplanar ðñ pÝÑvd1 ,ÝÑvd2 ,ÝÝÑABq � 0,

where A P d1 and B P d2.

ÝÑvd1 � 3
ÝÑ
i � 2

ÝÑ
j � 2

ÝÑ
k ,

ÝÑvd2 � a
ÝÑ
i �ÝÑ

j � 3
ÝÑ
k .
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Ap�2,�3,�1q P d1 obtained for the ratios in the line equations equal to 0,

and Bp2, 3,�1q P d2 obtained in the same way. The vector
ÝÝÑ
AB has the expresion

ÝÝÑ
AB � 4

ÝÑ
i � 6

ÝÑ
j .

We determine a P R such that pÝÑvd1 ,ÝÑvd2 ,ÝÝÑABq � 0.���������
3 2 �2
a �1 3

4 6 0

��������� � 0 ðñ �38� 12a � 0ðñ a � �19

6
.

Problem 5.13. Let d :

$'''''&'''''%
x � 2t� 1

y � 2� t

z � t� 2

, t P R be a line in space and pP q : pλ �

1qx � y � 3z � 5 � 0 a plane in space. Determine λ P R such that d ∥ pP q. For λ

determined, find the distance between d and pP q.
Solution :

d ∥ pP q ðñ ÝÑvd K ÝÑnP ðñ ÝÑvd � ÝÑnP � 0.

ÝÑvd � 2
ÝÑ
i �ÝÑ

j �ÝÑ
k ,

ÝÑnP � pλ� 1qÝÑi �ÝÑ
j � 3

ÝÑ
k .

ÝÑvd � ÝÑnP � 0ðñ 2pλ� 1q � 1� 3 � 0ðñ λ � �1.
The equation of the plane pP q for λ � �1 is pP q : �2x � y � 3z � 5 � 0 and

ÝÑnP � �2ÝÑi �ÝÑ
j � 3

ÝÑ
k .

Since d ∥ pP q, distpd, pP qq � distpA,P q, where A is a point belonging to d.

We have the parametric equations of the line d, so choosing for example t � 1,

we have Ap1, 1,�1q.
distpA, pP qq � | � 2 � 1� 1� 3 � p�1q � 5|?

4� 1� 9
� 11?

14
ùñ

distpd, pP qq � 11?
14

.
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Problem 5.14. Let

d :
x� β

1
� y � 1

4
� z � 2

α � 1

be a line in space and

pP q : 2x� 3y � 5z � 13 � 0

a plane in space. Determine α, β P R such that d � pP q.
Solution :

We can use one of the two conditions :

1. d � pP q ðñ

$'&'%
ÝÑvd K ÝÑnP

A P d ùñ A P pP q
or

2. d � pP q ðñ A and B P d ùñ A and B P pP q.
For this particular problem is easier to choose the first one.

ÝÑvd � ÝÑ
i � 4

ÝÑ
j � pα � 1qÝÑk ,

ÝÑnP � 2
ÝÑ
i � 3

ÝÑ
j � 5

ÝÑ
k .

ÝÑvd K ÝÑnP ðñ ÝÑvd � ÝÑnP � 0ðñ 2� 12� 5pα � 1q � 0 ùñ α � 3.

Apβ, 1,�2q P d ùñ A P pP q ðñ 2β � 3� 10� 13 � 0 ùñ β � 0.

Problem 5.15. Let d :
x� 2

4
� y � 1

3
� z

2
be a line in space and Mp7, 2,�3q.

Determine the distance from the point M to the line d.

Solution :

distpM,dq � }ÝÑvd �ÝÝÝÑ
MM0}

}ÝÑvd} , where M0 P d.
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ÝÑvd � 4
ÝÑ
i � 3

ÝÑ
j � 2

ÝÑ
k ,

M0 P d,M0p2, 1, 0q ùñ ÝÝÝÑ
MM0 � �5ÝÑi �ÝÑ

j � 3
ÝÑ
k .

ÝÑvd �ÝÝÝÑ
MM0 �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

4 3 2

�5 �1 3

∣∣∣∣∣∣∣∣∣ � 11
ÝÑ
i � 22

ÝÑ
j � 11

ÝÑ
k � 11pÝÑi � 2

ÝÑ
j �ÝÑ

k q.

distpM,dq � }11pÝÑi � 2
ÝÑ
j �ÝÑ

k q}
}4ÝÑi � 3

ÝÑ
j � 2

ÝÑ
k } � 11

?
6?

29
.

Problem 5.16. Consider d :

$'&'%x� 2y � z � 5 � 0

2x� 2z � 3 � 0

a line in space and pP q :

x � z � 3 � 0 a plane in space. Determine the relative position of d and pP q. If

d ∥ pP q find the distance between them, else determine the intersection of d and

pP q.
Solution :

d :

$'&'%x� 2y � z � 5 � 0

2x� 2z � 3 � 0

ùñ ÝÑvd ∥

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

1 2 �1
2 0 �2

∣∣∣∣∣∣∣∣∣ � �4ÝÑi � 4
ÝÑ
k .

The normal to the plane pP q is the vector ÝÑnP � ÝÑ
i �ÝÑ

k .

It is obviously that ÝÑvd ∥ ÝÑnP since ÝÑvd � �4ÝÑnP , so the line d is perpendicular to

the plane pP q.
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Let tMu � dX pP q. This implies that

$'&'%MpxM , yM , zMq P d

MpxM , yM , zMq P pP q
ðñ

$'''''&'''''%
xM � 2yM � zM � 5 � 0

2xM � 2zM � 3 � 0

xM � zM � 3 � 0

.

The solutions of the linear system are the coordinates of the point M , i.e.

Mp3
4
,�7

4
, 9
4
q.

Problem 5.17. Let d1 :

$'''''&'''''%
x � t� 1

y � 2t� 2

z � t� 3

, t P R and d2 :
x� 3

2
� y

3
� z be two lines

in space.

a) Prove that the lines are skew lines.

b) Determine the distance between d1 and d2.

c) Determine the equations of the common perpendicular of d1 and d2.

Solution :
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a) d1 and d2 are skew line if the lines are not coplanar ðñ pÝÑvd1 ,ÝÑvd2 ,ÝÝÝÝÑM1M2q � 0

where M1 P d1 and M2 P d2.

ÝÑvd1 � ÝÑ
i � 2

ÝÑ
j �ÝÑ

k .

ÝÑvd2 � 2
ÝÑ
i � 3

ÝÑ
j �ÝÑ

k .

M1p1,�2,�3q P d1 (we chose t � 0 in the parametric equations of d1).

M2p�3, 0, 0q P d2 (we determined x, y, z when each ratio in the cartesian equa-

tions of the line d2 equals 0).

ÝÝÝÝÑ
M1M2 � �4ÝÑi � 2

ÝÑ
j � 3

ÝÑ
k .

pÝÑvd1 ,ÝÑvd2 ,ÝÝÝÝÑM1M2q �

∣∣∣∣∣∣∣∣∣
1 2 1

2 3 1

�4 2 3

∣∣∣∣∣∣∣∣∣ � 3 � 0 ùñ d1 and d2 are skew lines.

b) distpd1, d2q � |pÝÑvd1 ,ÝÑvd2 ,ÝÝÝÝÑM1M2q|
}ÝÑvd1 �ÝÑvd2}

ÝÑvd1 �ÝÑvd2 �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

1 2 1

2 3 1

∣∣∣∣∣∣∣∣∣ � �ÝÑi �ÝÑ
j �ÝÑ

k ùñ }ÝÑvd1 �ÝÑvd2} �
?
3.

distpd1, d2q � 3?
3
�
?
3.

c) Let d be the common perpendicular. Hence,

$'&'%d K d1

d K d2

ùñ

$'&'%
ÝÑvd K ÝÑvd1
ÝÑvd K ÝÑvd2

ùñ

ÝÑvd ∥ ÝÑvd1 �ÝÑvd2 � �ÝÑi �ÝÑ
j �ÝÑ

k .
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d � A1A2 where tA1u � dX d1 and tA2u � dX d2.

Since we have the parametric equations of d1 the coordinates of the point A1

from d1 are A1pt� 1, 2t� 2, t� 3q.

The parametric equations of d2 are d2 :

$'''''&'''''%
x � 2m� 3

y � 3m

z � m

,m P R, so, the point

A2 P d2 has the coordinates A2p2m� 3, 3m,mq.
ÝÝÝÑ
A1A2 � p2m� t� 4qÝÑi � p3m� 2t� 2qÝÑj � pm� t� 3qÝÑk .

It’s obvious that ÝÑvd ∥ ÝÝÝÑA1A2 ðñ 2m� t� 4

�1 � 3m� 2t� 2

1
� m� t� 3

�1 ðñ$'&'%
2m� t� 4

�1 � 3m� 2t� 2

1
3m� 2t� 2

1
� m� t� 3

�1
ðñ

$'&'%5m� 3t � 2

�4m� 3t � 5

ðñ

$'&'%m � 7

t � 11

ùñ

A1p12, 20, 8q and A2p11, 21, 7q.

The equations of the common perpendicular are:

d � A1A2 :
x� 12

�1 � y � 20

1
� z � 8

�1 .
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Problem 5.18. Let d1 :
x� 1

�5 � y � 2 � z and d2 :
x� 4

�2 � y

0
� z be two lines in

space. Prove that d1 and d2 are skew lines and determine the common perpendicular

of the two lines.

Solution :

Let Ap1, 2, 0q P d1 and Bp4, 0, 0q P d2, so
ÝÝÑ
AB � 3

ÝÑ
i � 2

ÝÑ
j .

d1 and d2 are coplanar if ÝÑvd1 , ÝÑvd2 şi
ÝÝÑ
AB are coplanar, but pÝÑvd1 ,ÝÑvd2 ,ÝÝÑABq �∣∣∣∣∣∣∣∣∣

�5 1 1

�2 0 1

3 �2 0

∣∣∣∣∣∣∣∣∣ � �3 � 0, therefore d1 and d2 are skew lines.

Let d be the common perpendicular of d1 and d2.

ÝÑv d � ÝÑvd1 �ÝÑvd2 �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

�5 1 1

�2 0 1

∣∣∣∣∣∣∣∣∣ �
ÝÑ
i � 3

ÝÑ
j � 2

ÝÑ
k .

Let pP1q and pP2q be the planes determined by d1 and d, d2 and d respectively.

Therefore, d is at the intersection of pP1q and pP2q.
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pP1q :

∣∣∣∣∣∣∣∣∣
x� 1 y � 2 z

�5 1 1

1 3 2

∣∣∣∣∣∣∣∣∣ � 0ðñ pP1q : �x� 11y � 16z � 21 � 0.

pP2q :

∣∣∣∣∣∣∣∣∣
x� 4 y z

�2 0 1

1 3 2

∣∣∣∣∣∣∣∣∣ � 0ðñ pP2q : �3x� 5y � 6z � 12 � 0.

The equations of d as intersection of pP1q and pP2q are

d :

$'&'%�x� 11y � 16z � 21 � 0

�3x� 5y � 6z � 12 � 0

.

Solving the system we can write the parametric equations of the line d:

d :

$'''''&'''''%
x � t

3
� 53

7

y � t

z � 2t
3
� 25

14

, t P R.

Problem 5.19. Determine the projection of Mp1,�2, 3q on the plane pP q : x�3y�
z � 5 � 0.

Solution :

Let M 1 be the projection of M on pP q, M 1 � prpP qM .
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That implies that MM 1 K pP q ùñ ÝÝÝÑ
MM 1 ∥ ÝÑn P ùñ ÝÝÝÑ

MM 1 ∥ ÝÑi � 3
ÝÑ
j �ÝÑ

k .

We determine the equations of the line passing through M , perpendicular to the

plane pP q, which means that the line has the direction
ÝÑ
i � 3

ÝÑ
j �ÝÑ

k .

d :
x� 1

1
� y � 2

�3 � z � 3

1
.

The point M 1 is at the intersection of d and pP q.

$'&'%M 1 P dðñM 1pt� 1,�3t� 2, t� 3q

M 1 P pP q
ðñ

$''''''''&''''''''%

xM 1 � t� 1

yM 1 � �3t� 2

zM 1 � t� 3

xM 1 � 3yM 1 � zM 1 � 5 � 0

ðñ t� 1� 3p�3t� 2q � pt� 3q � 5 � 0ðñ t � � 5

11
ùñM 1

�
6

11
,� 7

11
,
28

11



.

Problem 5.20. Determine the symmetric of Ap�2, 1, 5q with respect to the line

d :
x� 1

2
� y � 2

3
� z � 1

�2 .

Solution :

If A1 is the symmetric of A with respect to d then AA1 K d and M , the middle

point of the line segment rAA1s, is in the line d.

M P dðñMp2t� 1, 3t� 2,�2t� 1q (from the parametric equations of the line d).
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ÝÝÑ
AM � p2t� 1qÝÑi � p3t� 1qÝÑj � p�2t� 6qÝÑk .

AM K d ðñ ÝÝÑ
AM � ÝÑvd � 0 ðñ 2p2t � 1q � 3p3t � 1q � 2p�2t � 6q � 0 ùñ t �

�1 ùñMp�3,�1, 1q (M is the projection of A on d, M � prdM).

Since M is the middle of the line segment rAA1s we have$'''''&'''''%
xM � xA � xA1

2

yM � yA � yA1

2

zM � zA � zA1

2

ðñ

$'''''&'''''%
�3 � �2� xA1

2

�1 � 1� yA1

2

1 � 5� zA1

2

ùñ A1p�4,�3,�3q.

Problem 5.21. Consider the line d :
x� 3

2
� y � 1

�2 � z � 3 and the plane pP q :
x� 3y � z � 9 � 0.

a) Determine the angle between the line and the plane.

b) Determine the projection of the line d on the plane pP q.

Solution :

a) The director vector of the line d is ÝÑvd � 2
ÝÑ
i � 2

ÝÑ
j �ÝÑ

k .

The normal to the plane is ÝÑnP � ÝÑ
i � 3

ÝÑ
j �ÝÑ

k .

We study the relative position of d and pP q.

(1) The line is perpendicular to the plane, d K pP q ðñ ÝÑvd ∥ ÝÑnP .

2

1
� �2
�3 �

1

1
, so the line d is not perpendicular to the plane.

(2) The line is parallel to the plane, d ∥ pP q ðñ ÝÑvd K ÝÑnP ðñ ÝÑvd � ÝÑnP � 0.

ÝÑvd � ÝÑnP � 2 � 1� p�2qp�3q � 1 � 1 � 9 � 0, so d ∦ pP q.

(3) We have the third situation when the angle between d and pP q, α P p0, π
2
q.
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α � 90� �?pÝÑvd ,ÝÑnP q.

cosp?pÝÑvd ,ÝÑnP qq �
ÝÑvd � ÝÑnP

}ÝÑvd} � }ÝÑnP } �
9

3
?
11

� 3?
11

.

cosp?pÝÑvd ,ÝÑnP qq � sinp90� �?pÝÑvd ,ÝÑnP qq � sinα � 3?
11

ùñ α � arcsin
3?
11

.

(b) The projection of a line d on a plane pP q is another line d1 which lies on the

plane pP q such that the plane pQq determined by the lines d and d1 is perpendicular

to pP q.
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The equation of the plane determined by d and d1, denoted by pQq, is a plane

passing through any point of d, for example Ap3,�1, 3q P d, and has two parallel

directions:

� the normal to the plane pP q: pP q K pQq ùñ ÝÑn P � ÝÑ
i � 3

ÝÑ
j �ÝÑ

k ∥ pQq;

� the director vector of the line d: d � pQq ùñ ÝÑv d � 2
ÝÑ
i � 2

ÝÑ
j �ÝÑ

k ∥ pQq.

pQq :

∣∣∣∣∣∣∣∣∣
x� 3 y � 1 z � 3

2 �2 1

1 �3 1

∣∣∣∣∣∣∣∣∣ � 0ðñ pQq : x� y � 4z � 8 � 0.

d1 � prpP qd � pP q X pQq :

$'&'%x� 3y � z � 9 � 0

x� y � 4z � 8 � 0

.

Solving the system we can write the parametric equations of the line

d1 :

$'''''&'''''%
x � 13

2
t� 15

2

y � 5

2
t� 1

2

z � t

, t P R.

We present in what follows another method for solving this problem.

We know that the projections of all the points of d on pP q form the projection

of d on pP q, which in our case form a line, d1 � prpP qd. We only need two points of

d1 and we can write the equations of the line joining the two points.

Is obvious that the intersection of the plane and the line tMu � dXpP q belongs
to the line d1.

The parametric equations of the line d are:

$'''''&'''''%
x � 2t� 3

y � �2t� 1

z � t� 3

, t P R

ùñMp2t� 3,�2t� 1, t� 3q.
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tMu � dXpP q ðñ

$''''''''&''''''''%

xM � 2t� 3

yM � �2t� 1

zM � t� 3

xM � 3yM � zM � 9 � 0

ðñ 2t�3�3p�2t�1q�t�3�9 � 0

ùñ t � �2 ùñMp�1, 3, 1q P d1.

For the second point we chose a point from the line d and then we will determine

then its projection on pP q.
For t � 0 in the parametric equations of d we obtain the point Ap3,�1, 3q P d.

Let’s find the coordinates of the projection of A on pP q, A1 � prpP qA.

AA1 K pP q ùñ ÝÝÑ
AA1 ∥ ÝÑn P � ÝÑ

i � 3
ÝÑ
j �ÝÑ

k ùñ

AA1 :
x� 3

1
� y � 1

�3 � z � 3

1
ðñ AA1 :

$'''''&'''''%
x � t� 3

y � �3t� 1

z � t� 3

, t P R.
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tA1u � AA1 X pP q ðñ

$''''''''&''''''''%

xA1 � t� 3

yA1 � �3t� 1

zA1 � t� 3

xA1 � 3yA1 � zA1 � 9 � 0

ðñ

t� 3� 3p�3t� 1q � t� 3� 9 � 0 ùñ t � �18

11
ùñ A1

�
15

11
,
43

11
,
15

11



.

d1 �MA1 :
x� 1
15
11
� 1

� y � 3
43
11
� 3

� z � 1
15
11
� 1

ðñ

d1 :
x� 1

13
� y � 3

5
� z � 1

2
.

Remark : We can notice that the parametric equations of

d1 :

$'''''&'''''%
x � 13p� 1

y � 5p� 3

z � 2p� 1

, p P R does not look like the ones obtained using the first

method, i.e.

d1 :

$'''''&'''''%
x � 13

2
t� 15

2

y � 5

2
t� 1

2

z � t

, t P R.

But z � t � 2p � 1, so we can express x and y using the parameter p in the

latter form, i.e.

x � 13t� 15

2
� 13p2p� 1q

2
� 15

2
� 13p� 1

y � 5t� 1

2
� 5p2p� 1q

2
� 1

2
� 5p� 3.

We can observe that the parametric equations of a line are not unique.

5.6 Problems

Problem 5.22. Write the equation of the plane pP q such that:
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a) Mp1,�2,�1q P pP q and Oz K pP q.

b) Mp0, 1,�3q P pP q, Oz ∥ pP q and Ox ∥ pP q.

c) Mp2,�2, 1q P pP q, pP q ∥ pQq : 2x� y � 6z � 5 � 0.

Problem 5.23. Write the equation of the plane pP q if Ap2,�2, 3q and A1p4, 2,�1q
are symmetrical about the plane pP q.

Problem 5.24. Write the equation of the plane which passes through the point

Mp3, 2,�1q and the axis Oy lies in pP q.

Problem 5.25. Determine the equation of the plane pP q which contains the points

Ap1, 0, 1q and Bp2,�1, 1q and is parallel to Ox.

Problem 5.26. Write the equation of the plane which contains Ap1, 2,�1q and is

perpendicular to the line AB, Bp2, 3, 5q. Calculate the distance between the point

B and the plane pP q.

Problem 5.27. Determine the equation of the plane pP q which passes through

the point Ap1, 0, 1q and is perpendicular to the planes pP1q : 3x � y � 1 � 0 and

pP2q : x� y � z � 1 � 0.

Problem 5.28. Determine the equation of the plane pP q which contains the points

Ap�1,�2, 0q and Bp1, 1, 2q and is perpendicular to the plane pP q : x�2y�2z�4 � 0.

Problem 5.29. Calculate the distance between the point Mp1, 1, 2q and the plane

pP q : x� 2y � 3z � 4 � 0.

Problem 5.30. Calculate the angle between the planes pP q : x � 3y � 2z � 4 � 0

and pQq : 3x� 2y � z � 1 � 0.
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Problem 5.31. Write the equation of the plane which passes through the point

Ap1, 2, 0q and is parallel to the plane pP q : x� 2y � 3z � 5 � 0.

Problem 5.32. Write the equation of the plane which contains the points Ap3, 0, 2q
and Bp1,�1, 2q and is parallel to Ox.

Problem 5.33. Write the equation of the plane which contains the point Ap1,�1, 1q
and is perpendicular to the planes pP1q : x�y�2z�3 � 0 and pP2q : �x�2y�z � 0.

Find the angle formed by the planes pP1q and pP2q.

Problem 5.34. Write the equation of the plane which is perpendicular to the plane

pP1q : x� 2y � 2z � 4 � 0 and contains the points M1p�1,�2, 0q and M2p1, 1, 2q.

Problem 5.35. Consider the line d :
x� 3

4
� y � 1

�3 � z � 2 in space.

(a) Write the direction vector of d.

(b) Write the parametric equations of d.

(c) Verify if the points Ap�1, 3,�4q and Bp�1, 2,�3q are points of d.

Problem 5.36. Consider Ap1, 2, 3q, Bp1, 1, 0q and Cp�1, 2, 1q three points in space.

Write the canonical and the parametric equations of lines di if:

(a) d1 � AB.

(b) d2 passes through C and is parallel to the line d1.

(c) d3 K d1, d3 K BC and passes through A.

(d) d4 :

$'&'%x� 2y � 3z � 1 � 0

�x� y � 2z � 5 � 0
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Problem 5.37. Write the equations of the line which passes through the point

Mp2,�5, 3q and:

a) is parallel to Oz;

b) is parallel to the line d :
x� 1

4
� y � 2

�3 � z � 3

2
.

c) is perpendicular to the plane pP q : 3x� 7y � z � 23 � 0.

Problem 5.38. Determine the equations of the line which is parallel to

d :

$'''''&'''''%
x � 3t� 4

y � 5� t

z � 4

, t P R

and passes through Ap1, 6,�3q.

Problem 5.39. Write the equations of the line AB if Ap�2, 5, 1q and Bp�2, 2, 5q.

Problem 5.40. Write the equations of the line which lies in the plane pP q : x �
y � z � 2 � 0, is perpendicular to the line d1 :

x� 1

2
� y � 2

3
� z � 2

�1 and passes

through the point Mp1, 0,�1q.

Problem 5.41. Consider the lines d1 and d2 such that d1 ∥ ÝÑv � �ÝÑi � ÝÑ
j and

d2 ∥ ÝÑu � ÝÑ
i �ÝÑ

k .

(a) Calculate mpzd1, d2q.
(b) Write the equations of the line d3 perpendicular to d1 and perpendicular to d2

and passes through Mp3, 2, 1q.

Problem 5.42. Write the equations of the line which passes through Ap2, 1, 1q and
is parallel to the line BC, Bp5, 2,�1q, Cp0, 1,�2q.
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Problem 5.43. Write the equations of the line which passes through Ap�1, 0, 1q

and is parallel to the line d :

$'&'%2x� 3y � z � 4 � 0

x� y � z � 5 � 0

.

Problem 5.44. Write the equations of the line which passes through Mp1, 2,�2q
and is perpendicular to the plane pP q : x� 3y � z � 5 � 0.

Problem 5.45. Determine the line which lies in the plane x � 2y � z � 5 � 0,

contains Ap1,�1, 2q and is perpendicular to the line d :

$'''''&'''''%
x � 4� t

y � 5� t

z � t� 2

, t P R.

Problem 5.46. Write the equation of the plane pP q which contains the line

d :

$'''''&'''''%
x � 2� 3t

y � 4� t

z � 1� 2t

, t P R

and passes through Ap�1, 0,�1q.

Problem 5.47. Determine the symmetric point of Mp�1, 2, 2q with respect to the

plane pP q : x� y � 2z � 2 � 0.

Problem 5.48. Determine the equation of the plane pP q which containsMp1,�1, 2q

and is perpendicular to the line d :

$'&'%x� y � 2z � 0

x� z � 3 � 0

.

Problem 5.49. Determine the equation of the plane pP q determined by the lines

d1 :

$'&'%x� y � z � 2 � 0

2x� y � z � 1 � 0

and d2 :

$'&'%x� 2y � 2z � 1 � 0

x� y � z � 0

.
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Problem 5.50. Find the projection ofMp1, 2,�3q on the plane pP q : x�3y�z�2 �
0 and calculate the distance from M to pP q.

Problem 5.51. Find the projection of the line d :
x� 3

2
� y � 1

�2 � z � 1

3
on the

plane pP q : x� y � z � 1 � 0.

Problem 5.52. Find the equation of the plane pP q which contains the line

d :

$'&'%x� y � 2z � 6 � 0

2x� 3y � z � 3 � 0

and is perpendicular to the plane pQq : x� y � z � 5 � 0.

Problem 5.53. Determine the symmetric point of Ap2, 4,�3q with respect to the

line d : x � 2y � z.

Problem 5.54. Find the distance between the point Mp1, 2,�3q and the line

d :
x� 1

2
� y � 3

�2 � z.

Problem 5.55. Determine the projection of Mp2,�1, 2q on the line

d :

$'''''&'''''%
x � t� 2

y � 2t� 1

z � 3t� 1

, t P R.

Problem 5.56. Write the equation of the line which passes through Mp2, 3, 1q and
is parallel to the line d :

x� 1

2
� y

�1 �
z � 2

3
.

Problem 5.57. Write the equation of the plane which passes through the point

Mp1,�1, 1q and is perpendicular to the line

(a) d :
x� 3

2
� y � 2 � �z � 2;
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(b) d :

$'&'%y � z � 4 � 0

2x� y � 0

.

Problem 5.58. Find the distance between two lines d1 and d2 and the equations

of the common perpendicular if it exists, for:

a) d1 :
x� 2

3
� y � 1 � z and d2 :

$'&'%2x� y � 3

z � 0

;

b) d1 :
x� 1

2
� y � 1

�2 � z

3
and d2 :

$'''''&'''''%
x � 2t� 3

y � 4� 2t

z � 3t� 4

;

c) d1 :
x� 2

2
� y � 1

2
� z � 3 and d2 :

x� 1

�4 � y � 1

2
� z � 3

�1 .

Problem 5.59. Consider the lines

d1 :
x� 1

2
� y � 1

0
� z

�3
and

d2 :
x� 2

3
� y � 1

λ
� z � 1

�1 .

Determine λ P R such that the lines are coplanar and find the intersection point of

d1 and d2.

Problem 5.60. Conisder the plane pP q : 2x � 3y � 5z � 13 � 0 and the line

d :
x

1
� y � 1

4
� z � 2

α � 1
. Determine α P R such that d � pP q.

Problem 5.61. Consider the plane pP q : 2x � 3y � 2z � 1 � 0 and the line d :
x� 1

3
� y � 2

α � 2
� z � 1

1� α
. Determine α P R such that d ∥ pP q.
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Problem 5.62. Let d1 :
x� 1

�5 � y � 2 � z and d2 :
x� 4

�2 � y

0
� z

1
be two lines

in space. Prove that d1 and d2 are skew and then determine the equations of their

common perpendicular. Calculate the distance between d1 and d2 and the angle

between the two lines.

Problem 5.63. Determine the relative position of

d1 :
x� 1

2
� y � 1

3
� z

and

d2 :
x� 1

3
� y

4
� z � 1

3

and then compute the distance between them.

Problem 5.64. Let pP q : 2x� 2y � 3z � 1 � 0 be a plane in space and

d :
x� 1

2
� y � 3

2
� z � 1

1� α

be a line in space. Determine α P R such that:

(a) pP q ∥ d;

(b) pP q K d.

Problem 5.65. Let Ap2, 4, 1q, Bp3, 7, 5q and Cp4, 10, 9q be three points in space.

Prove that the points are collinear.

Problem 5.66. Determine if the points are coplanar:

(a) Ap�2, 1, 2q, Bp�3, 5, 7q, Cp�4, 3, 12q şi Dp1, 1, 1q.

(b) Ap2,�1, 0q, Bp�1,�1,�5q, Cp2,�2,�3q şi Dp�4, 2,�1q.
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Problem 5.67. Determine the distance between Mp3, 1,�1q and the line

d :
x� 1

4
� y

�5 �
z � 2

3
.

Problem 5.68. Compute the distance between Mp�2, 3, 2q and the line

d :
x� 3

1
� y � 1

2
� z � 2

�1 .

Problem 5.69. Compute the distance between the point Mp1, 1, 2q and the plane

pP q : x� 2y � 3z � 4 � 0.

Problem 5.70. Determine the point M , M P d, d :
x

2
� y � 1

5
� z � 1 such that

the distance between M and pP1q : 4x�2y�z�6 � 0 equals to the distance between

M and pP2q : 2x� 4y � z � 5 � 0.

Problem 5.71. Determine the equations of the line d1 which is the symmetric of d

with respect to A if:

(a) d :

$'''''&'''''%
x � t� 2

y � 2t� 1

z � 3t� 1

, t P ; Ap�1,�1, 2q.

(b) d :
x� 1

3
� y

�2 � z � 1 ; Ap3,�2, 4q.

Problem 5.72. Determine the equations of the line d which is perpendicular to the

line d1 :
x� 1

2
� y

�1 �
z � 2

3
, passes through Mp2, 3, 1q and the lines d and d1 are

coplanar.

Problem 5.73. Determine the equations of the planes pP1q and pP2q if both contain

the line d :
x� 1

�2 � y � 2

3
� z � 2, pP1q K pP2q and Ap2,�1, 3q P pP2q.

Problem 5.74. Determine the relative position of the plane pP q and the line d and

then find the angle and the distance between the line and the plane if:
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(a) pP q : x� y � z � 5 � 0; d : x� 1 � y � 1

�1 � z � 3

�2 .

(b) pP q : 2x� 2y � 3z � 4 � 0; d :

$'''''&'''''%
x � 2t� 4

y � 5t� 4

z � 2t� 5

, t P R.

(c) pP q : x� 5y � z � 4 � 0; d :

$'''''&'''''%
x � 4

y � t� 4

z � 5� 2t

, t P R.



6
Conic sections, Cylinders and Quadric

Surfaces

6.1 Conic sections

A conic section is a curve obtained as the intersection of a plane with a cone. A

cone has two identically shaped parts called nappes. A right circular cone can be

generated by revolving a line passing through the origin around the y-axis. The

three types of conic section are the hyperbola, the parabola, the ellipse and the

circle which is a special case of the ellipse.
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Figure 6.1: Conic sections

The general equation of a conic is

Ax2 �Bxy � Cy2 �Bx� Ex� F � 0.

Circle

Definition 6.1. The circle is the set of the points that are a fixed distance from a

center point.

The distance is called radius and is denoted by r.

The general equation of a circle is

pCq : px� hq2 � py � kq2 � r2,

where Mph, kq is the center of the circle and r is the radius. The circle is denoted

by Cpph, kq, rq.
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Figure 6.2: The circle

The parametric equations of the circle Cpph, kq, rq are:

pCq :

$'&'%x � h� r cos θ

y � k � r sin θ

, r ¥ 0, θ P r0, 2πs.

The equation of the circle with the center at the origin is pCq : x2 � y2 � r2.

The tangent line at a point to the circle Cpph, kq, rq.

1. The tangent line at a point M0px0, y0q P pCq to the circle pCq is

tg : px� hqpx0 � hq � py � kqpy0 � kq � r2.

2. The tangent lines to the circle pCq having the slope m are

tg : y � k � mpx� hq � r
?
1�m2.
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3. The tangent lines to the circle pCq from an exterior point M0px0, y0q is

tg : y � y0 � mpx� x0q,

where m P tm1,m2u, m1 and m2 are the solutions of the equation

y0 � k � mpx0 � hq � r
?
1�m2.

Ellipse

Definition 6.2. The ellipse is a closed curve, the locus of a point such that the

sum of the distance from that point to two other fixed points F1, F2 called foci of the

ellipse, is constant.

The general equation of an ellipse is:

pEq : px� hq2
a2

� py � kq2
b2

� 1.

The parametric equations of the ellipse pEq are:

pEq :

$'&'%x � h� a cos θ

y � k � b sin θ

, a, b ¥ 0, θ P r0, 2πs.

If a ¡ b, then:

� The major axis is the longest width across the ellipse is on Ox (the ellipse is

horizontally oriented), the length of the major axis is 2a.

� The minor axis is the shortest width across the ellipse is on Oy, the length of

the minor axis is 2b.

� The center is the intersection of the two axes Mph, kq.
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� The foci F1, F2 are on the major axis F1ph � c, kq, F2ph � c, kq, where c �
?
a2 � b2.

� The vertices are the end points of the major axis V1ph� a, kq, V2ph� a, kq.

� The eccentricity is ϵ � c

a
  1. The eccentricity of an ellipse refers to how

flat or round the shape of the ellipse is. The more flattened the ellipse is, the

greater the value of its eccentricity. The more circular, the smaller the value

or closer to zero is the eccentricity.

If a ¡ b and h � k � 0 we have the ellipse horizontally oriented having the

center at the origin Op0, 0q:
pEq : x

2

a2
� y2

b2
� 1.

Figure 6.3: The ellipse horizontally oriented

If b ¡ a and h � k � 0 we have the ellipse vertically oriented having the center

at the origin Op0, 0q.
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� The major axis is on Oy, the length of the major axis is 2b.

� The minor axis is on Ox, the length of the minor axis is 2a.

� The foci F1, F2 are on the major axis F1p0,�cq, F2p0, cq, where c � ?
b2 � a2.

� The vertices are V1p0,�bq and V2p0, bq.

Figure 6.4: The ellipse vertically oriented

The tangent line at a point to the ellipse pEq.

1. The tangent line at a point M0px0, y0q P pEq to the ellipse pEq : x
2

a2
� y2

b2
� 1

is

tg :
xx0

a2
� yy0

b2
� 1.
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2. The tangent lines to the ellipse pEq having the slope m are

y � mx�
?
a2m2 � b2.

Hyperbola

Definition 6.3. The hyperbola is the set of all points such that the difference

between the distance to two focal points called foci F1, F2, is constant.

If we choose the foci on Ox axis, F1p�c, 0q, F2pc, 0q, the equation of the hyperbola

having Op0, 0q as its center is:

pHq : x
2

a2
� y2

b2
� 1.

Figure 6.5: The hyperbola opens left and right

� The transverse axis is F1F2 � Ox.

� The conjugate axis is perpendicular on F1F2 and passes through the center,

in this case is Oy axis.
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� The rectangle having the edges 2a and 2b symmetric with respect to the hy-

perbola axes is called the fundamental rectangle of the hyperbola.

� The asymptotes of the hyperbola y � � b

a
x are the diagonals of the of the

fundamental rectangle.

� The foci are F1p�c, 0q, F2pc, 0q, where c � ?
a2 � b2.

� The vertices, V1p�a, 0q and V2pa, 0q, are intercepts of the transversal axis with
the hyperbola.

� The eccentricity is ϵ � c

a
¡ 1.

The parametric equations of the hyperbola pHq are:

pHq :

$'&'%x � �a cosh t

y � b sinh t

, t P R,

where cosh t � et � e�t

2
, sinh � et � e�t

2
.

The tangent line at a point M0px0, y0q P pHq to the hyperbola pHq is

tg :
xx0

a2
� yy0

b2
� 1.

If we choose the foci on Oy then

pHq : y
2

a2
� x2

b2
� 1.
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Figure 6.6: The hyperbola opens up and down

� The transverse axis is on Oy.

� The conjugate axis is on Ox.

� The branches open up and down.

� The foci are at F1p0,�cq, F2p0, cq, where c � ?
a2 � b2.

� The vertices are at V1p0,�bq, V2p0, bq.

� The asymptotes are of equations y � �a

b
x.

The general equation of an hyperbola with the branches open left and right is:

pHq : px� hq2
a2

� py � kq2
b2

� 1.

For this hyperbola we have:

� The center is at Cph, kq.
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� The vertices are at V ph� a, kq.

� The foci are at F1,2ph� c, kq, where c � ?
a2 � b2.

� The asymptotes are of equations y � k � � b

a
px� hq.

� The transverse axis is F1F2, a parallel line to Ox passing through C.

� The conjugate axis is a parallel line passing through C and perpendicular to

the transverse axis.

The general equation of an hyperbola with the branches open up and down is:

pHq : py � kq2
a2

� px� hq2
b2

� 1.

For this hyperbola we have:

� The center is at Cph, kq.

� The vertices are at V ph, k � aq.

� The foci are at F1,2ph, k � cq, where c � ?
a2 � b2.

� The asymptotes are of equations y � k � �a

b
px� hq.

� The transverse axis is F1F2, a parallel line to Oy.

� The conjugate axis is a parallel line passing through C and perpendicular to

the transverse axis.

Rectangular hyperbola

A rectangular hyperbola is a hyperbola for which the asymptotes are perpendic-

ular, also called an equilateral hyperbola or right hyperbola.
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An equilateral hyperbola can be obtained when a � b, in this case the general

equation is x2 � y2 � a2 or y2 � x2 � a2.

If the asymptotes are Ox and Oy axis, then the equation of the rectangular

hyperbola is xy � c2.

Figure 6.7: Rectangular hyperbola xy � c2

� The rectangular hyperbola is the same shape as the standard hyperbola, but

rotated by 45�.

� The asymptotes are Ox and Oy axes.

� The vertices of the rectangular hyperbola are V1p�c,�cq, V2pc, cq.

� The eccentricity is ϵ � ?
2.

� The parametric equations of the rectangular hyperbola are

pHq :

$'&'%x � ct

y � c

t

, t P R�.
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Parabola

Definition 6.4. The parabola is the set of all points whose distance from a fixed

point called the focus is equal the distance from a fixed line called the directrix.

The point halfway between the focus and the directrix is called the vertex of the

parabola.

There are four types of parabolas on the coordinate planes. They can open down,

up, to the left and to the right.

1. pP q : px� hq2 � 4ppy � kq.
The parabola opens up if p ¡ 0 and opens down if p   0.

Figure 6.8: The parabola opens up Figure 6.9: The parabola opens down

� The vertex is V ph, kq.

� The directrix is y � k � p.

� The focal point is F ph, k � pq.
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� The parametric equations are:

$'&'%x � 2pt� h

y � pt2 � k

, t P R.

2. pP q : py � kq2 � 4ppx� hq.

The parabola opens right if p ¡ 0 and opens left if p   0.

Figure 6.10: The parabola opens right Figure 6.11: The parabola opens left

� The vertex is V ph, kq.

� The directrix is x � h� p.

� The focal point is F ph� p, kq.

� The parametric equations are

$'&'%x � pt2 � h

y � 2pt� k

, t P R.
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6.2 Cylinders

Definition 6.5. A cylinder is a surface that consists of all lines called rulings,

that are parallel to a given line and pass through a given plane curve.

Remark

� In R3 space, the equation of the cylinder has only two different variables.

These equations give a trace of the curve on the coordinates plane denoted by

the given variables.

� The curve is directed along the axis of the missing variable.

� The curve does not change along the direction axis.

Example 6.6. Graph the surface of equation z � x2 � 1.

� We don’t have y in the equation, so we will look at the trace on the xOz plane.

� In xOz plane z � x2 � 1 is a parabola opens up on Oz axis.

� We will obtain the full surface by assembling together the infinitely many

parabolas traced in each plane y � k.

Figure 6.12: Cylinder z � x2 � 1
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Example 6.7. Graph the surface of equation x2 � y2 � 4.

� We don’t have z in the equation, so we will look at the trace on the xOy plane.

� In xOy plane x2 � y2 � 4 is a circle with the center at the origin and r � 2.

� We will obtain the full surface by assembling together the infinitely many circles

traced in each plane z � k.

Figure 6.13: Cylinder x2 � y2 � 4

Example 6.8. Graph the surface of equation yz � 6.

� We don’t have x in the equation, so we will look at the trace on the yOz plane.

� In yOz plane yz � 6 is a rectangular hyperbola with the asymptotes Oy and

Oz.

� We will obtain the full surface by assembling together the infinitely many hy-

perbolas traced in each plane x � k.
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Figure 6.14: Cylinder yz � 6

6.3 Quadric Surfaces

A quadric surface is given by a degree two equation in the form

Ax2 �By2 � Cz2 �Dxy � Exz � Fyz �Gx�Hy � Iz � J � 0.

We will look at six basic surfaces that each of the following equations forms:

Ax2 �By2 � Cz2 � J � 0

Ax2 �By2 � Iz � 0

By rotating and translating these we can obtain more general surfaces. The terms

with xy, xz, zy are only when we dealing with a rotation of these quadric surfaces.

The six basic types of quadric surfaces are:

1. ellipsoid

2. hyperboloid of one sheet
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3. hyperboloid of two sheets

4. elliptic cone

5. elliptic paraboloid

6. hyperbolic paraboloid

The degree and sign of the degree two terms as well as which terms are present

help determine which of the six basic quadric surfaces is given.

To graph a quadric surface is it often helpful to graph the xy-trace, the xz-trace

and the yz-trace. These are the intersection of the surface with the three planes of

the coordinates system.

To determine the xy-trace we set z � 0.

To determine the xz-trace we set y � 0.

To determine the yz-trace we set x � 0.

A trace of a surface is the curve obtained by intersecting the surface with a plane

parallel to the coordinate plane, i.e. x � constant, y � constant, z � constant.

Ellipsoid

pEq : x
2

a2
� y2

b2
� z2

c2
� 1.

Characteristics:

� all three degree two terms are present;

� all three degree two terms are positive when equation equals 1;

� all three traces are ellipse;

� the intercepts are x � �a, y � �b, z � �c.
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Figure 6.15: Ellipsoid

The tangent plane at M0px0, y0, z0q P pEq to the ellipsoid is:

xx0

a2
� yy0

b2
� zz0

c2
� 1 � 0.

Sphere

The sphere is a special case of an ellipsoid when a � b � c.

Definition 6.9. The sphere is the locus of the points in space that are a fixed

distance called the radius, r, from a point called the center.

The equation of the sphere centered at M0px0, y0, z0q and having the radius r is:

pSq : px� x0q2 � py � y0q2 � pz � z0q2 � r2.

Hyperboloid of one sheet

pH1Sq : x
2

a2
� y2

b2
� z2

c2
� 1.

Characteristics:

� all three degree two terms are present;
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� two degree two terms are positive and one is negative when equation equals 1;

� one trace is an ellipse;

� two traces are hyperbolas;

� the axis of the hyperboloid of one sheet is parallel to the negative variable, i.e.

is directed along the axis with ”-”.

Figure 6.16: Hyperboloid of one sheet

The tangent plane at M0px0, y0, z0q P pH1Sq to the hyperboloid of one sheet is:

xx0

a2
� yy0

b2
� zz0

c2
� 1 � 0.

Two sheets Hyperboloid

pH2Sq : �x2

a2
� y2

b2
� z2

c2
� 1.

Characteristics:

� all three degree two terms are present;
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� one degree two term is positive and two are negative when equation equals 1;

� one trace is an ellipse parallel to the xOy plane (to the plane determined by

the negative variables);

� two traces are hyperbolas;

� the axis of the hyperboloid of two sheets is parallel to the positive variable

axis.

� the intercepts are z � �c (we set the negative variable 0).

Figure 6.17: Hyperboloid of two sheets

The tangent plane at M0px0, y0, z0q P pH2Sq to the hyperboloid of two sheets is:

�xx0

a2
� yy0

b2
� zz0

c2
� 1 � 0.
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Elliptical cone

pECq : x
2

a2
� y2

b2
� z2

c2
� 0.

If px, y, zq is a solution of the general equation of the elliptical cone we have that

pλx, λy, λzq is also a solution of the equation. That means that the surface is a

union of lines through the origin.

Characteristics:

� all three degree two terms are present;

� two degree two terms are positive and one is negative when equation equals 0;

� one trace is a point or an ellipse parallel to the xOy plane (to the plane

determined by the positive variables);

� two traces are two lines or two hyperbolas;

� the axis of the elliptical cone is parallel to the negative variable axis.

Figure 6.18: Elliptical cone
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Elliptic paraboloid

pEP q : x
2

a2
� y2

b2
� cz.

Characteristics:

� two degree two terms are present and are positive;

� one degree one term is present;

� one trace is an ellipse;

� two traces are parabolas;

� the axis is parallel to degree one variable axis.

� direction:

– if c ¡ 0 the elliptic paraboloid opens towards positive direction of degree

one variable axis.

– if c ¡ 0 the elliptic paraboloid opens towards negative direction of degree

one variable axis.

Figure 6.19: Elliptic paraboloid
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The tangent plane at M0px0, y0, z0q P pEP q to the elliptic paraboloid is:

xx0

a2
� yy0

b2
� c

2
pz � z0q.

Hyperbolic paraboloid

pHP q : x
2

a2
� y2

b2
� cz.

Characteristics:

� two degree two terms are present, one positive and one negative;

� one degree one term is present;

� one trace is a hyperbola;

� two traces are parabolas;

� the axis is parallel to degree one variable axis.

Figure 6.20: Hyperbolic paraboloid



6.4 Solved problems 171

The tangent plane at M0px0, y0, z0q P pEP q to the hyperbolic paraboloid is:

xx0

a2
� yy0

b2
� c

2
pz � z0q.

6.4 Solved problems

Problem 6.1. a) Put 2x2 � 8x� 2y2 � 4y � 8 � 0 into a standard circle form.

b) Determine the radius and the center of the circle.

c) Write the parametric equations of this circle.

d) Draw the circle.

e) Find two points on the circle and plug them into the equation to make sure

your drawing is correct.

f) Write the tangent line to the circle at one of the point previously determined.

Solution :

a) We divide by 2 the equation and we get:

x2 � 4x� y2 � 2y � 4 � 0ðñ

x2 � 4x� 4� y2 � 2y � 1� 4� 4� 1 � 0ðñ

px� 2q2 � py � 1q2 � 9

which is the standard circle form.

b) The circle pCq : px� 2q2 � py � 1q2 � 9 has the radius r � 3 and the center at

Ap2,�1q.
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c) The parametric equations of the circle are:

pCq :

$'&'%x � 2� 3 cos t

y � �1� 3 sin t

, t P r0, 2πs.

d) The graph of the circle is:

e) The points we chose are Bp5,�1q and Cp2,�4q. B P pCq if p5�2q2�p�1�1q2 �
9 which is true and C P pCq if p2 � 2q2 � p�4 � 1q2 � 9 which is also true, so

the chosen points are on the circle.

e) The tangent line at Bp5,�1q is

tg : px� 2qp5� 2q � py � 1qp�1� 1q � 9ðñ

tg : x � 5.

Problem 6.2. For the ellipse

pEq : px� 1q2
9

� py � 2q2
25

� 1

find the major axis and its length, the minor axis and its length, the center, the

vertices, the foci, write the parametric equations, find the intercepts of the ellipse

and then graph it.
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Solution :

We notice that 25 ¡ 9 so the major axis is along Oy, a � 5, b � 3. The length

of the major axis is 10, the minor axis is Ox with the length 6.

The center is at Cp�1, 2q.
The vertices are on a parallel line to Oy axis, x � �1, V1p�1, 7q and V2p�1,�3q.

(From the center of the ellipse Cp�1, 2q we go up and down a � 5 u.m.).

For the coordinates of the foci we need c � ?
a2 � b2 � ?

25� 9 � 4. The foci

are also on the major axis, c � 4 u.m. up and down from the center F p�1, 2 � 4q,
F1p�1, 6q and F2p�1,�2q.

The parametric equations of the ellipse are

pEq :

$'&'%x � �1� 3 cos t

y � 2� 5 sin t

, t P r0, 2πs.

The intercepts of the ellipse are:
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� pEq XOx : y � 0 ùñ px� 1q2
9

� 4

25
� 1ðñ px� 1q2 � 9 � 21

25
ðñ

x � �1� 3
?
21

5
. We have two intercepts on Ox axis A1

�
�1� 3

?
21

5
, 0



and

A2

�
�1� 3

?
21

5
, 0



.

� pEq X Oy : x � 0 ùñ 1

9
� py � 2q2

25
� 1 ðñ py � 2q2 � 200

9
ðñ y �

2 � 10
?
2

3
ùñ we have two intercepts on Oy axis B1

�
0, 2� 10

?
2

3



and

B2

�
0, 2� 10

?
2

3



.

Problem 6.3. For the hyperbola

pHq : x2 � 4y2 � 16 � 0

find the transverse and the conjugate axis, the center, the vertices, the foci, the

asymptotes, the eccentricity and then graph it. Write the parametric equations of

the hyperbola. Check if Mp2?5,�1q is on the hyperbola and write the equation of

the tangent line at M .

Solution :

We notice that the equation is not in the standard form so we divide by 16, and

we get pHq : x
2

16
� y2

4
� 1.

The center is at Op0, 0q.
Because the x term is positive when the equation equals 1, the transverse axis is

Ox, a � 4 and the conjugate axis is Oy, b � 2.

The vertex are on the transverse axis V1p�4, 0q and V2p4, 0q.
For the coordinates of the foci, we determine c � ?

a2 � b2 � ?
16� 4 � 2

?
5.

The foci are F1p�2
?
5, 0q and F1p2

?
5, 0q.

The asymptotes are the lines d1 : y � 1
2
x and d2 : y � �1

2
x, while the eccentricity

is ϵ � 2
?
5

4
�
?
5

2
.
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The parametric equations of the hyperbola are

pEq :

$'&'%x � �4 cosh t

y � 2 sinh t

, t P R.

Mp2?5,�1q P pHq if p2
?
5q2

16
� p�1q2

4
� 1ðñ 20

16
� 1

4
� 1 � 0 which is true so,

the tangent line to the hyperbola at M is

tg :
2
?
5x

16
� �1 � y

4
� 1ðñ

tg :
?
5x� 2y � 8 � 0.

Problem 6.4. Let pP q : y2 � 3x be a parabola. Determine the vertex, the fo-

cal point, the directrix and then graph it. Write the parametric equations of the

parabola. Determine the equation of the tangent line at Ap12,�6q.
Solution :

The vertex of the parabola is at Op0, 0q and due to the fact that the second order

term is at y, p � 3

4
, the focal point is on Ox axis at F

�
3

4
, 0



. The directrix is a

line parallel to Oy passing through x � �p so the directrix is x � �3

4
.
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The parametric equations of the parabola are

pP q :

$'&'%x � t2

3

y � t

, t P R.

Ap12,�6q P pP q since p�6q2 � 3 � 12. The tangent line to the parabola at A is

tg : y � p�6q � 3

2
px� 12q ðñ

tg : x� 4y � 12 � 0.

Problem 6.5. Identify and then graph the conic having the equation:

a) pC1q : 3x2 � y � 6x� 2 � 0.

b) pC2q : x2 � 4y2 � 10x� 16y � 25 � 0.

c) pC3q : x2 � y2 � 10x� 2y � 21 � 0.

d) pC4q : 4y2 � x2 � 40y � 12x� 60 � 0.

Solution :
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a) pC1q : 3x2 � y � 6x� 2 � 0ðñ

pC1q : 3px2 � 2x� 1q � �y � 2� 3ðñ

pC1q : px� 1q2 � �y � 5

3

which is the equation of a parabola along Oy axis, which opens down, having

the vertex at V p�1, 5q, and p � � 1

12
. The focal point is F

��1, 5� 1
12

�
.

When graphing the parabola, the number 4p which is called also latus rectum

is very helpful since the points at the ends of the line segment parallel to the

directrix having the length |4p| and having the middle point the focal point,

belong to the parabola. In our case the latus rectum is 1{3 so the points

A
��1� 1

6
, 5� 1

12

�
and B

��1� 1
6
, 5� 1

12

�
are on the parabola.
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b) pC2q : x2 � 4y2 � 10x� 16y � 25 � 0ðñ

pC2q : x2 � 10x� 25� 4py2 � 4y � 4q � 16 � 0ðñ

pC2q : px� 5q2 � 4py � 2q2 � 16ðñ

pC2q : px� 5q2
16

� py � 2q2
4

� 1

which is the equation of an ellipse centered at Ap�5, 2q, the major axis on a

line parallel to Ox, a � 4 and b � 2.

c) pC3q : x2 � y2 � 10x� 2y � 21 � 0ðñ

pC3q : x2 � 10x� 25� y2 � 2y � 1� 21� 25� 1 � 0ðñ

pC3q : px� 5q2 � py � 1q2 � 5

which is the equation of a circle centered at Ap5,�1q and having the radius

r � ?
5.
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d) pC4q : 4y2 � x2 � 40y � 12x� 60 � 0ðñ

pC4q : 4py2 � 10y � 25q � px2 � 12x� 36q � 60� 100� 36 � 0ðñ

pC4q : 4py � 5q2 � px� 6q2 � 4ðñ

pC4q : py � 5q2 � px� 6q2
4

� 1

which is the equation of the hyperbola having the transverse axis a line passing

through the center Ap�6, 5q and parallel to Oy. The vertex are V1p�6, 4q and
V2p�6, 6q. a � 1 and b � 2, so the fundamental rectangle has the length of

the edges 4 and 2 respectively and its diagonals are the asymptotes of the

hyperbola.
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Problem 6.6. Write the equation of the circle such that:

a) AB is the diameter of the circle, Ap�1,�2q and Bp5,�4q.

b) The center of the circle is at Ap2,�3q and the line d : 2x � 5y � 1 � 0 is

tangent to the circle.

Solution :

a) The center of the circle is the middle of the line segment rABs which is

Mp2,�3q and the radius is r � AB

2
�
?
62 � 22

2
�
?
10.

The equation of the circle is:

pCq : px� 2q2 � py � 3q2 � 10.

b) The radius is perpendicular to the tangent, therefore

r � distpA, dq � |4� 5 � p�3q � 1|?
4� 25

� 12?
29

.

The equation of the circle is:

pCq : px� 2q2 � py � 3q2 � 144

29
.

Problem 6.7. Write the equation of the ellipse centered at Op0, 0q such that:

a) The distance between the foci is 6 and the eccentricity is ε � 3
5
.

b) The point Mp�2?5, 2q is on the ellipse, the major axis is on Ox and the length

of the minor axis is 6.

Solution :
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a) 2c � 6 ùñ c � 3.

ε � c

a
� 3

5
ùñ a � 3 � 5

3
� 5.

b � ?
a2 � c2 � ?

25� 9 � 4.

The equation of the ellipse is:

pEq : x
2

25
� y2

16
� 1.

b) 2b � 6 ùñ b � 3 ùñ pEq : x
2

a2
� y2

9
� 1.

Mp�2
?
5, 2q P pEq ðñ 20

a2
� 4

9
� 1ðñ 20

a2
� 5

9
ùñ a2 � 36.

The equation of the ellipse is:

pEq : x
2

36
� y2

9
� 1.

Problem 6.8. Write the equation of the hyperbola centered at Op0, 0q such that:

a) One vertex is at V1p0,�2q and the eccentricity is ε � 3

2
.

b) The point M

�
9

2
,�1



is on the hyperbola, the equations of the asymptotes

are y � �2

3
x, and the transverse axis is on Ox.

Solution :

a) If the vertex is V1p0,�2q P Oy then the transverse axis is on Oy and a � 2.

ε � c

a
� 3

2
ùñ c � 3 � 2

2
� 3.

b � ?
c2 � a2 � ?

9� 4 � ?
5.

The equation of the hyperbola is:

pEq : y
2

4
� x2

5
� 1.
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b) y � �2

3
x ùñ b

a
� 2

3
ùñ a � 3k, b � 2k ùñ

pHq : x2

9k2
� y2

4k2
� 1.

M

�
9

2
,�1


P pHq ðñ 81

4 � 9k2
� 1

4k2
� 1 ùñ k2 � 2 ùñ a2 � 18, b2 � 8.

The equation of the hyperbola is:

pHq : x
2

18
� y2

8
� 1.

Problem 6.9. Write the equation of the parabola which is symmetrical about the

Oy axis, the vertex is at the origin and passes through Ap9, 6q.
Solution :

The general equation of the parabola is pP q : x2 � 4py.

Ap9, 6q P pP q ùñ 81 � 4 � p � 6 ùñ p � 27

8
.

The equation of the parabola is:

pP q : x2 � 27

2
y.

Problem 6.10. Write the equation of tangent to the parabola y2 � 2x perpendic-

ular to the line d : x� 2y � 4 � 0.

Solution :

tg K d ùñ mtgmd � �1 ùñ mtg � �1
1
2

� �2.
The tangent line at the point Mpx0, y0q to the parabola is tg : yy0 � x� x0 ùñ

mtg � 1

y0
ùñ y0 � �1

2
.

px0, y0q P pP q ùñ y20 � 2x0 ùñ x0 � 1

8
.

The equation of the tangent is

tg : yp�1

2
q � x� 1

8
tg : 8x� 4y � 1 � 0.
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Problem 6.11. Determine the equations of the tangent planes to the sphere

pSq : x2 � y2 � z2 � 4x� 2y � 6z � 8 � 0

at the intersection points with the line

d :
x� 1

1
� y

�1 �
z � 1

2
.

Solution :

We write the equation of the sphere in the standard form.

pSq : x2 � 4x� 4� y2 � 2y � 1� z2 � 6z � 9� 8� 4� 1� 9 � 0ðñ
pSq : px� 2q2 � py � 1q2 � pz � 3q2 � 6.

The tangent plane to the sphere at Mpx0, y0, z0q P pSq is
pPtgq : px� 2qpx0 � 2q � py � 1qpy0 � 1q � pz � 3qpz0 � 3q � 6.

Let M � pSq X d, M P d :

$'''''&'''''%
x � t� 1

y � �t

z � 2t� 1.

, t P R ùñMpt� 1,�t, 2t� 1q.

M P pSq ùñ pt� 1� 2q2 � p�t� 1q2 � p2t� 1� 3q2 � 6ðñ
6t2 � 12t � 0 ùñ tpt� 2q � 0 ùñ t1 � 0, t2 � 2.

For t � 0 we have M1p1, 0, 1q and the equation of the tangent plane at M1 is

Ptg : px� 2qp1� 2q � py � 1qp0� 1q � pz � 3qp1� 3q � 6

Ptg : �x� y � 2z � 3 � 0.

For t � 2 we have M2p3,�2, 5q and the equation of the tangent plane at M2 is

Ptg : px� 2qp3� 2q � py � 1qp�2� 1q � pz � 3qp5� 3q � 6

Ptg : x� y � 2z � 15 � 0.

Problem 6.12. Sketch the appropriate traces then sketch and identify each of the

following surfaces.
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a) pS1q : 9x2 � 4y2 � 9z2 � 0;

b) pS2q : 9x2 � 4y2 � z2 � 36;

c) pS3q : 4x2 � 4y2 � z2 � 4 � 0;

d) pS4q : x2 � 4y2 � 4;

e) pS5q : z � x2 � 4y2 � 4;

f) pS6q : 9x2 � 4y2 � 9z2 � 36;

g) pS7q : x2 � y2 � 4z � 4 � 0.

Solution :

a) pS1q : 9x2 � 4y2 � 9z2 � 0. If we divide the equation by 36 we get

pS1q : x2

4
� y2

9
� z2

4
� 0, which is an elliptical cone along Oy axis.

xy trace: z � 0 ùñ x2

4
� y2

9
� 0 ðñ 9x2 � 4y2 ðñ y � �3

2
x which are two

lines.

xz trace: y � 0 ùñ x � z � 0 ùñ Op0, 0, 0q.

yz trace: x � 0 ùñ �y2

9
� z2

4
� 0 ðñ 9z2 � 4y2 ðñ y � �3

2
z which are

two lines in yz plane.

If x � �2 ùñ �y2

9
� z2

4
� �1ðñ y2

9
� z2

4
� 1 which is an hyperbola having

the transverse axis on Oy.

If y � �3 ùñ x2

4
� z2

4
� 1 ðñ x2 � z2 � 4 which is a circle with the radius

2 in the planes y � 3 and y � �3.

If z � �2 ùñ �x2

4
� y2

9
� 1 which is a hyperbola having the transverse axis

on Oy.
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The traces are represented in the next figures.

Figure 6.21: xy trace Figure 6.22: yz trace

Figure 6.23: z � �2 trace Figure 6.24: y � �3 trace

The sketch of the elliptical cone is as the next figure shows.
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Figure 6.25: pS1q - elliptical cone

b) pS2q : 9x2 � 4y2 � z2 � 36, so we divide by 36 the equation and we get

pS2q : x2

4
� y2

9
� z2

36
� 1, which is an ellipsoid.

xy trace: z � 0 ùñ x2

4
� y2

9
� 1 an ellipse having the major axis on Oy.

xz trace: y � 0 ùñ x2

4
� z2

36
� 1 an ellipse having the major axis on Oz.

yz trace: x � 0 ùñ y2

9
� z2

36
� 1 an ellipse having the major axis on Oz.
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The traces are represented in the next figures.

Figure 6.26: xy trace Figure 6.27: xz trace Figure 6.28: yz trace

The sketch of the ellipsoid is as the next figure shows.

Figure 6.29: pS2q - ellipsoid
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c) pS3q : 4x2 � 4y2 � z2 � 4 � 0. If we divide by �4 the equation we get

pS3q : �x2 � y2 � z2

4
� 1, which is a two sheets hyperboloid along Oz axis.

xy trace: z � 0 ùñ �x2 � y2 � 1 is H.

If z � �2 ùñ x2 � y2 � 0 ùñ x � y � 0 ùñ Op0, 0q.

If z � �4 ùñ x2 � y2 � 3 ùñ a circle having the radius
?
3.

If z � �6 ùñ x2 � y2 � 8 ùñ a circle having the radius
?
8.

xz trace: y � 0 ùñ �x2 � z2

4
� 1 an hyperbola having the transverse axis on

Oz, and the vertex V1,2p0, 0,�2q.

yz trace: x � 0 ùñ �y2 � z2

4
� 1 an hyperbola having the transverse axis on

Oz, and the vertex V1,2p0, 0,�2q.

The traces are represented in the next figures.

Figure 6.30: z � �4 and

z � �6 traces

Figure 6.31: xz trace Figure 6.32: yz trace
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The sketch of the two sheet hyperboloid is as the next figure shows.

Figure 6.33: pS3q - two sheet hyperboloid

d) pS4q : x2 � 4y2 � 4 is a cylinder along Oz axis. The trace in xOy plane is
x2

4
� y2 � 1 an ellipse having the major axis on Ox. The trace is represented

in the next figures.

Figure 6.34: xy trace
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The sketch of the cylinder is as the next figure shows.

Figure 6.35: pS4q - cylinder

e) pS5q : z � x2� 4y2� 4ðñ z� 4 � x2� 4y2 is an elliptic paraboloid along Oz

axis.

xy trace: z � 0 ùñ x2� 4y2� 4 � 0ðñ x2

4
� y2 � 1 which is an ellipse with

the major axis on Ox.

If z � �4 ùñ x2 � 4y2 � 0 ùñ x � y � 0 ùñ V p0, 0,�4q is the vertex of the

elliptical paraboloid.

If z   �4 ùñ x2 � 4y2   0 ùñ H.

If z ¡ �4 ùñ x2 � 4y2 � z � 4 which is the equation of an ellipse.

xz trace: y � 0 ùñ z � 4 � x2 a parabola along the positive direction of Oz

axis and the vertex at V p0, 0,�4q.

yz trace: x � 0 ùñ z � 4 � 4y2 a parabola along the positive direction of Oz

axis and the vertex at V p0, 0,�4q.
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The traces are represented in the next figures.

Figure 6.36: xy trace Figure 6.37: xz trace Figure 6.38: yz trace

The sketch of the elliptic paraboloid is as the next figure shows.

Figure 6.39: pS5q - elliptic paraboloid

f) pS6q : 9x2 � 4y2 � 9z2 � 36. We divide by 36 and we get:

pS6q : x2

4
� y2

9
� z2

4
� 1 which is the equation of a one sheet hyperboloid along

Oy axis.
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xy trace: z � 0 ùñ x2

4
� y2

9
� 1 which is a hyperbola having the transverse

axis on Ox and the vertex at V1,2p�2, 0, 0q.

xz trace: y � 0 ùñ x2

4
� z2

4
� 1 a circle with the radius r � 2.

If y � �6 ùñ x2

4
� z2

4
� 5 a circle with the radius r � 2

?
5.

yz trace: x � 0 ùñ �y2

9
� z2

4
� 1 which is a hyperbola having the transverse

axis on Oz and the vertex at W1,2p0, 0,�2q.

The traces are represented in the next figures.

Figure 6.40: xy trace Figure 6.41: xz trace Figure 6.42: yz trace

The sketch of the one sheet hyperboloid is as the next figure shows.

Figure 6.43: pS6q - one sheet hyperboloid
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g) pS7q : x2 � y2 � 4z � 4 � 0. We divide the equation by 4 and we obtain:

pS7q : z � 1 � y2

4
� x2

4
which is the equation of a hyperbolic paraboloid.

xy trace: z � 0 ùñ x2

4
� y2

4
� 1 which is a hyperbola having the transverse

axis on Ox and the vertex at V1,2p�2, 0, 0q.

xz trace: y � 0 ùñ x2 � 4z � 4 a parabola along the positive direction of Oz

and the vertex W p0, 0, 1q.

yz trace: x � 0 ùñ y2 � �4z � 4 a parabola along the negative direction of

Oz axis and the vertex W p0, 0, 1q.

The traces are represented in the next figures.

Figure 6.44: xy trace Figure 6.45: xz trace Figure 6.46: yz trace

The sketch of the hyperbolic paraboloid is as the next figure shows.

Figure 6.47: pS7q - hyperbolic paraboloid
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6.5 Problems

Problem 6.13. Write the equation of the circle such that :

a) The center is at the origin and the radius is 3.

b) Ap2,�1q is the center and the radius is 4.

c) The center is at Bp2, 5q and passes through Cp�1, 2q.

d) The center is at Dp1,�1q and the line d : 5x � 12y � 9 � 0 is tangent to the

circle.

Problem 6.14. Write the equation of the circle having the diameter AB, where

Ap2, 3q, Bp4,�1q.

Problem 6.15. Determine the radius and the center of the circle

pCq : x2 � y2 � 4x� 6y � 5 � 0.

Write the equation of the tangent to the circle at Ap1,�2q.

Problem 6.16. Write the equation of the ellipse with the center at the origin such

that:

a) the length of the axes are 5 and 2 and is horizontally oriented;

b) the length of the major axis is 10, the focal distance is 2c � 8 and is horizontally

oriented;

c) the major axis is 24, the focal distance is 2c � 10 and is vertically oriented;

d) 2c � 6, the eccentricity is ϵ � 3

5
and is horizontally oriented;
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e) the length of the minor axis is 20, the eccentricity is ϵ � 12

13
and is vertically

oriented.

Problem 6.17. Write the equation of the ellipse pEq with the center at the origin

if:

a) Mp�2?5, 2q P pEq, b � 3 and is horizontally oriented;

b) Mp2,�2q P pEq, a � 4 and is horizontally oriented;

c) the ellipse pEq passes through M1p4,�
?
3q and M2p2

?
2, 3q;

d) Mp?15,�1q P pEq, 2c � 8 and is horizontally oriented;

e) Mp2,�5
3
q P pEq, the eccentricity is ϵ � 2

3
and is horizontally oriented.

Problem 6.18. Determine the major axis, the minor axis, the vertices, the foci,

the eccentricity for

a) pE1q : x
2

16
� y2

9
� 1 � 0;

b) pE2q : x2 � 16y2 � 16 � 0;

c) pE3q : x2 � 4y2 � 1 � 0;

then graph them.

Problem 6.19. Determine the relative position of the ellipse pEq : 2x2�5y2�88 � 0

and the line d : 3x� 5y � 14 � 0

Problem 6.20. Write the tangent lines to the ellipse pEq : x
2

10
� 2y2

5
�1 � 0 parallel

to the line 3x� 2y � 7 � 0.

Problem 6.21. Write the equation of the tangent line at Ap2, 0q to the ellipse
x2

4
� y2 � 1 � 0.
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Problem 6.22. Write the equation of the hyperbola with the center at the origin

and:

a) a � 5, b � 4 and the transverse axis is on Ox;

b) c � 5, a � 4 and the transverse axis is on Oy;

c) c � 3, eccentricity is ϵ � 3

2
and the transverse axis is on Ox;

d) a � 8 eccentricity is ϵ � 5

4
and the transverse axis is on Ox;

e) the asymptotes are y � �4

3
x, c � 13 and the transverse axis is on Ox.

Problem 6.23. Write the equation of the hyperbola pHq having the center at the

origin and:

a) Mp10,�?5q P pHq, a � ?
20, and the transverse axis is on Oy;

b) the hyperbola passes through M1p5, 154 q and M2p�4
?
2, 5q;

c) Mp4,�4
?
7

3
q P pHq, c � 5 and the transverse axis is on Ox;

d) Mp9
2
,�1q P pHq, the equations of the asymptotes are y � �2

3
x, and the

transverse axis is on Ox.

Problem 6.24. Determine the transverse axis, the conjugate axis, the vertices, the

foci, the eccentricity and the equations of the asymptotes for each of the hyperbolas

a) pH1q : x
2

9
� y2

4
� 1 � 0,

b) pH2q : x2 � y2 � 1 � 0,

c) pH3q : y2 � 4x2 � 16 � 0,

d) pH4q : 16x2 � 9y2 � 1 � 0,
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then graph them.

Problem 6.25. Determine the relative position of the line d : x � y � 4 � 0 and

the hyperbola pHq : x
2

12
� y2

3
� 1 � 0.

Problem 6.26. Write the equation of the tangent line of pHq : x
2

4
� y2 � 1 � 0 at

the point Ap�6, 2?2q.

Problem 6.27. Write the equation of the parabola such that

a) the parabola opens to the right, the vertex is the origin Op0, 0q and the foci is

F p2, 0q;

b) the parabola opens to the left, the vertex is Op0, 0q and the directrix is x � 5;

c) the parabola opens down, the vertex is Ap2,�3q and the foci is F p2,�6q;

d) the parabola opens up, the foci is F p�2, 5q and the directrix is y � 1.

Problem 6.28. Determine the vertex, the foci, the directrix for the parabolas

a) pP1q : py � 1q2 � 6px� 2q,

b) pP2q : x2 � 4py � 2q,

c) pP3q : x2 � �y,

d) pP4q : py � 2q2 � �4x,

e) pP5q : y2 � 6y � 8x� 1 � 0,

f) pP6q : x2 � 8x� 4y � 20 � 0,

then graph each one of them.
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Problem 6.29. Determine the equation of the parabola if:

a) is symmetric about Ox, passes through Ap9, 6q and the vertex is at the origin;

b) is symmetric about Oy, passes through Bp1, 1q and the vertex is at the origin.

Problem 6.30. Determine the relative position of the line and the parabola if:

a) d : x� y � 2 � 0, pP q : y2 � 8x;

b) d : 8x� 3y � 15 � 0, pP q : x2 � �3x;

c) d : 5x� y � 15 � 0, pP q : y2 � �5x.

Problem 6.31. Determine the center and the radius of the circle at the intersection

of the sphere pSq : x2�y2�4x�2y�6z�1 � 0 and the plane pP q : x�2y�z�3 � 0.

Problem 6.32. Determine the intersection of the line d : x � 3 � y � 1 � z � 6

3

with the hyperboloid
x2

4
� y2 � z2

9
� 1 � 0.

Problem 6.33. Determine the center and the radius of the sphere

pSq : x2 � y2 � z2 � x� 3y � 4z � 1 � 0.

Problem 6.34. Let pSq : x2 � y2 � z2 � 1 be the sphere and Mp1, 0, 0q be a point

that belongs to pSq. Determine a point N P pP q, pP q : z � 5 such that MN is

tangent to the sphere pSq.

Problem 6.35. Determine the intersection of the ellipsoid
x2

4
� y2

3
� z2

9
� 1 � 0

with the line x � y � z. Write the equation of the tangent plane to the ellipsoid at

these points.

Problem 6.36. Determine the intersection of the hyperboloid
x2

4
� y2

9
� z2

16
�1 � 0

with the coordinates planes and identify the conics.
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Problem 6.37. Determine the equations of the tangent planes to the surface of

a) the elliptic paraboloid
x2

5
� y2

3
� z;

b) the hyperbolic paraboloid x2 � y2

4
� 3z;

which are parallel to the plane pP q : x� 3y � 2z � 1 � 0.

Problem 6.38. Determine the equation of the sphere having the center at the point

Cp3,�5,�2q and is tangent to the plane pP q : 2x� y � 3z � 11 � 0.

Problem 6.39. Sketch the appropriate traces then sketch and identify the surface

a) 2x2 � y2 � 3z2 � 0;

b) x2 � y2 � 4z2 � 4y � 0;

c) �x2 � y2 � 2z2 � 1;

d) 2x2 � 3y2 � z2 � 1;

e) x2 � 2y2 � 1� z;

f) 2x2 � y2 � 3z2 � 1.



7
Generation of surfaces

7.1 Cylindrical surfaces

The surface formed by the motion of a line called the generator of the surface moving

parallel to itself and intersecting a given fixed curve called the directrix of the surface

is called cylindrical surface.

Let d be the generator line d :

$'&'%pP1q : a1x� b1y � c1z � d1 � 0

pP2q : a2x� b2y � c2z � d2 � 0

and the direc-

trix pΓq :

$'&'%F px, y, zq � 0

Gpx, y, zq � 0.

A straight line parallel to d is g :

$'&'%pP1q � α

pP2q � β

, α, β P R.

The line g intersects the directrix if φpα, βq � 0.

The equation of the cylindrical surface is

pSq : φppP1q, pP2qq � 0.
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7.2 Conical surfaces

A surface which is the union of all lines that pass through a fixed point called the

vertex or apex and intersect a fixed curve called the directrix that does not contain

the apex, is a conical surface. Each of the lines is called a generator for the conical

surface.

Let V be the vertex at the intersection of the planes$'''''&'''''%
pP1q : a1x� b1y � c1z � d1 � 0

pP2q : a2x� b2y � c2z � d2 � 0

pP3q : a3x� b3y � c3z � d3 � 0.

The generators are g :

$'&'%pP1q � αpP2q

pP2q � βpP3q
.

The compatibility condition is φpα, βq � 0, so the equation of the conical surface

is

pSq : φ
�pP1q
pP2q ,

pP2q
pP3q



� 0.

Remark 7.1. If the vertex is given by its coordinates V px0, y0, z0q and the directrix

is pΓq :

$'&'%fpx, y, zq � 0

gpx, y, zq � 0

then, the equations of the generator are

g :
x� x0

α
� y � y0

β
� z � z0

γ
, α, β, γ P R.

The generator intersect the curve pΓq if φpα, β, γq � 0, hence the equation of the

surface is

pSq : φpx� x0, y � y0, z � z0q � 0.
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7.3 Conoid

A conoid is a ruled surface, whose rulings fulfill the conditions:

� All rulings are parallel to a plane, called the directrix plane.

� All rulings intersect a fixed line, the axis.

� The rulings intersect a curve.

The conoid is a right conoid if its axis is perpendicular to its directrix plane.

Therefore all rulings are perpendicular to the axis.

Let pP q : ax� by � cz � d � 0, be the directrix plane and the axis

d :

$'&'%pP1q : a1x� b1y � c1z � d1 � 0

pP2q : a2x� b2y � c2z � d2 � 0.

The generators are of equations:

g :

$'&'%pP q � α

pP1q � βpP2q.

The compatibility condition is φpα, βq � 0, and the equation of the conoid surface

is

pSq : φ
�
pP q, pP1q

pP2q


� 0.

7.4 Surfaces of revolution

A surface of revolution is a surface created by rotating a curve called the gener-

atrix around an axis of rotation (axis of revolution).

� Sections of a surface of revolution perpendicular to this axis are circles, called

parallel circles or simply parallels.
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� Sections containing the axis are meridian sections, or simply meridians.

Let pΓq :

$'&'%F px, y, zq � 0

Gpx, y, zq � 0

be the generatrix, and the axis of revolution the line

d :
x� x0

l
� y � y0

m
� z � z0

n
.

A surface of revolution can also be generated by a circle C moving always perpen-

dicular to a fixed line d with its center on the fixed line and expanding or contracting

so as to continually pass through a curve pΓq which always lies in a plane with the

straight line.

C :

$'&'%px� x0q2 � py � y0q2 � pz � z0q2 � α2

lx�my � nz � β.

The circle C intersect the curve pΓq if φpα2, βq � 0.

The equation of the surface of revolution is

pSq : φppx� x0q2 � py � y0q2 � pz � z0q2, lx�my � nzq � 0.

7.5 Solved problems

Problem 7.1. Determine the equation of the cylindrical surface having as genera-

tors lines parallel to the direction ÝÑv � 5
ÝÑ
i � 3

ÝÑ
j � 2

ÝÑ
k and as directrix the curve

pΓq :

$'&'%x2 � y2 � 2 � 0

z � 0.

Solution :

Let us consider the line having as director vector ÝÑv :

d :
x

5
� y

3
� z

2
ðñ

$'&'%2x� 5z � λ

2y � 3z � µ

.
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pΓqXdðñ

$''''''''&''''''''%

2x� 5z � λ

2y � 3z � µ

x2 � y2 � 2 � 0

z � 0

ðñ

$''''''''&''''''''%

x � λ

2

y � µ

2

z � 0

λ2

4
� µ2

4
� 2 � 0

ðñ λ2�µ2�8 � 0.

The equation of the cylindrical surface is:

p2x� 5zq2 � p2y � 3zq2 � 8 � 0.

Figure 7.1: Cylindrical surface

Problem 7.2. Write the equation of the conical surface having the apex at p1, 1, 1q

and its directrix the curve pΓq :

$'&'%y2 � z2 � 1 � 0

x� y � z � 0.

Solution :
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The vertex is at V p1, 1, 1q ùñ

$'''''&'''''%
x � 1

y � 1

z � 1

ðñ g :

$'&'%x� 1 � λpz � 1q

y � 1 � µpz � 1q
.

g X pΓq ðñ

$''''''''&''''''''%

x� 1 � λpz � 1q

y � 1 � µpz � 1q

y2 � z2 � 1 � 0

x� y � z � 0

ðñ

$''''''''''''&''''''''''''%

x � 1� λpz � 1q

y � 1� µpz � 1q

x� y � 2 � pz � 1qpλ� µq

x� y � �z

y2 � z2 � 1 � 0

ðñ

$''''''''&''''''''%

x � 1� λpz � 1q

y � 1� µpz � 1q

pz � 1qpλ� µ� 1q � �3

y2 � z2 � 1 � 0

ðñ

$'''''''''&'''''''''%

x � 1� λpz � 1q

y � 1� µpz � 1q

z � 1� 3

λ� µ� 1

y2 � z2 � 1 � 0

ðñ

$'''''&'''''%
y � 1� µp1� 3

λ� µ� 1
� 1q

z � 1� 3

λ� µ� 1

y2 � z2 � 1 � 0

ðñ

$'''''&'''''%
y � 1� µ

3

λ� µ� 1

z � 1� 3

λ� µ� 1

y2 � z2 � 1 � 0

ùñ

p1� µ
3

λ� µ� 1
q2 � p1� 3

λ� µ� 1
q2 � 1 � 0.

The last condition can be rewritten as:�
λ� µ� 1� 3µ

λ� µ� 1


2

�
�
λ� µ� 1� 3

λ� µ� 1


2

� 1ðñ
pλ� 2µ� 1q2 � pλ� µ� 2q2 � pλ� µ� 1q2 ðñ
λ2 � 4µ2 � 4λµ� 4λ� 10µ� 4 � 0ðñ
pλ� 2µq2 � 4λ� 10µ� 4 � 0.



7.5 Solved problems 206

We know that

$'&'%
λ � x� 1

z � 1

µ � y � 1

z � 1

, therefore the equation of the conic surface is:

pSq :
�
x� 1

z � 1
� 2

y � 1

z � 1


2

� 4
x� 1

z � 1
� 10

y � 1

z � 1
� 4 � 0ðñ

pSq : px� 2y � 1q2 � 4px� 1qpz � 1q � 10py � 1qpz � 1q � 4pz � 1q2 � 0

Figure 7.2: Conical surface

Problem 7.3. Write the equation of the surface generated by a line passing through

Ap1, 0, 0q and the distance between the line and Bp1, 2, 3q is 2.

Solution :

We have a conical surface having the vertex at Ap1, 0, 0q. If the distance is

constant, then the lines are tangent to a sphere centered at B and having the radius

2, the generators of the surface are the tangent lines to the sphere.

The equation of the sphere is px� 1q2 � py � 2q2 � pz � 3q2 � 4.

The point Ap1, 0, 0q can be written as the intersection of the planes
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A :

$'''''&'''''%
x � 1

y � 0

z � 0

ùñ g :

$'&'%x� 1 � λz

y � µz.

g X pΓq ðñ

$'''''&'''''%
x� 1 � λz

y � µz

px� 1q2 � py � 2q2 � pz � 3q2 � 4

ðñ

λ2z2 � pµz � 2q2 � pz � 3q2 � 4ðñ z2pλ2 � µ2 � 1q � zp�4µ� 6q � 9 � 0.

g are tangent to the sphere if the equation has a unique solution which is equiv-

alent to ∆ � 16µ2 � 48µ� 36� 36pλ2 � µ2 � 1q � 0ðñ 9λ2 � 5µ2 � 12µ � 0.

The equation of the surface is:

pSq : 9
�
x� 1

z


2

� 5
y2

z2
� 12

y

z
� 0ðñ

pSq : 9px� 1q2 � 5y2 � 12yz � 0.

Figure 7.3: Conical surface
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Problem 7.4. Write the equation of the conoid generate by a line which is parallel

to the plane xOy, intersects the line d :

$'&'%x � 2

y � 0

and the hyperbola

pΓq :

$'&'%
x2

4
� z2

9
� 1

y � 2

.

Solution : The equation of xOy plane is z � 0.

The generators are of equations g :

$'&'%z � λ

y � µpx� 2q
.

g X pΓq ðñ

$''''''''&''''''''%

z � λ

y � µpx� 2q
x2

4
� z2

9
� 1

y � 2

ðñ

$'''''&'''''%
z � λ

x � 2� 2

µ
x2

4
� z2

9
� 1

ðñ

�
2� 2

µ

	2
4

� λ2

9
�

1ðñ 9p1� 1

µ
q2 � λ2 � 9.

The equation of the conoid is:

pSq : 9
�
1� x� 2

y


2

� z2 � 9ðñ
pSq : 9px� y � 2q2 � y2pz2 � 9q � 0.

Problem 7.5. Determine the equation of the graph of pΓq :

$'&'%z � ?
x

y � 0

revolved

about Ox axis and then about Oz axis. Graph the equation of the surface of

revolution in each case.

Solution :

When we rotate the parabola about Ox axis the generator circle is

pGq :

$'&'%x2 � y2 � z2 � α2

x � β

.
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pGq X pΓq ðñ

$''''''''&''''''''%

x2 � y2 � z2 � α2

x � β

z � ?
x

y � 0

ðñ β2 � β � α2.

The equation of the surface of revolution is

pSq : x2 � x � x2 � y2 � z2 ðñ
pSq : y2 � z2 � x which is an elliptic paraboloid.

Figure 7.4: Parabola rotated about Ox axis

When we rotate the parabola about Oz axis the generator circle is

pGq :

$'&'%x2 � y2 � z2 � α2

z � β

.
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pGq X pΓq ðñ

$''''''''&''''''''%

x2 � y2 � z2 � α2

z � β

z � ?
x

y � 0

ðñ β4 � β2 � α2.

The equation of the surface of revolution is

pSq : z4 � z2 � x2 � y2 � z2 ðñ
pSq : z4 � x2 � y2.

Figure 7.5: Parabola rotated about Oz axis

7.6 Problems

Problem 7.6. Determine the equation of the cylindric surface having as generator

the line d :

$'&'%x� y � 3 � 0

y � z � 2 � 0

and as directrix the curve pΓq :

$'&'%xy � 4

x � 0

.

Problem 7.7. Determine the equation of the cylindrical surface having the gen-
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erators parallel to the direction ÝÑv � 2
ÝÑ
i � 2

ÝÑ
j � ÝÑ

k and the directrix the curve

pΓq :

$'&'%x2 � 4z � 4 � 0

y � 0.

Problem 7.8. The curve pΓq :

$'&'%x � y2 � z2

x � 2z

is the directrix of the cylindical sur-

face pSq. Its generators are perpendicular to the plane of the curve pΓq. Determine

the equation of the surface pSq.

Problem 7.9. Determine the equation of the conical surface having the vertex at

the origin Op0, 0, 0q and the directrix pΓq :

$'&'%x2 � y2 � 1 � 0

x� y � z � 1 � 0

.

Problem 7.10. Write the equation of the conical surface having the apex at p1, 1, 1q

and its directrix the curve pΓq :

$'&'%y2 � z2 � 1 � 0

x� y � z � 0

.

Problem 7.11. Determine the equation of the conoid generated by a line passing

through the line d :

$'&'%x � 0

y � 0

, is parallel to xOy plane and intersect the hyperbola

pHq :

$'&'%
x2

4
� z2

9
� 1 � 0

y � 2

.

Problem 7.12. Determine the conoid generated by a line that mets the line d :

x � y � z, the curve pΓq :

$'&'%x4 � y4 � 16 � 0

z � 0

and is parallel to the plane pP q :

x� y � z � 1 � 0.

Problem 7.13. Consider the space curves:
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a) pΓq :

$'&'%y2 � 6z � 0

x � 0

;

b) pΓq :

$'&'%y2 � z2 � 9

x � 0

;

c) pΓq :

$'&'%
x2

4
� y2

9
� 1 � 0

x � 0

;

d) pΓq :

$'&'%
x2

16
� y2 � 1 � 0

x � 0

.

Determine the equation of the graph of pΓq revolved about Oz axis. Graph the

equation of the surface of revolution.



8
Plane curves

A plane curve is a curve that lies in a single plane.

8.1 Analytic representation of plane curves

A plane curve can be represented by:

� the explicit equation y � ypxq, x P I � R.

� the implicit equation F px, yq � 0.

� the parametric equations

$'&'%x � xptq

y � yptq
, t P I � R.

� the vector equation ÝÑr � ÝÑr ptq � xptqÝÑi � yptqÝÑj , t P I � R.

All the conic sections presented in the previous chapter are plane curves.

Example 8.1. The ellipse pEq : x
2

4
� y2 � 1 is given in the implicit form.
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Figure 8.1: The ellipse pEq : x
2

4
� y2 � 1

The explicit equations are y � �
c
1� x2

4
, x P r�2, 2s.

The parametric equations are

$'&'%x � 2 cos t

y � sin t

, t P r0, 2πs.

The vector equation is ÝÑr � ÝÑr ptq � 2 cos t
ÝÑ
i � sin t

ÝÑ
j , t P r0, 2πs.

Examples of plane curves

1. The astroid or hypocicloid is the locus described by a point on a circle of

radius
a

4
as it rolls inside of a fixed circle of radius a.

Figure 8.2: The astroid
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The implicit equation is x
2
3 � y

2
3 � a

2
3 .

The parametric equations of the astroid are

$'&'%x � a cos3 t

y � a sin3 t

, t P R.

2. The cycloid is the locus of a point on the rim of a circle of radius a rolling

along a straight line.

Figure 8.3: The cycloid

The parametric equations of the cycloid are

$'&'%x � apt� sin tq

y � ap1� cos tq
, t P R.

3. The cardioid is the plane curve traced by a point on the perimeter of a circle

that is rolling around a fixed circle of the same radius.

Figure 8.4: The cardioid
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The implicit equation of the cardioid is px2 � y2 � 2axq2 � 4a2px2 � y2q.

The parametric equations of the cardioid are

$'&'%x � 2ap1� cos tq cos t

y � 2ap1� cos tq sin t
, t P

r0, 2πs.

8.2 The tangent to a plane curve

In what’s follow, differential calculus is involved, so we shall make some hypothesis

on the functions involved in their analytic representation regarding:

� continuity of the functions;

� existence of and continuity of partial derivatives of certain order;

� regularity conditions.

If the plane curve is in the implicit form, pΓq : F px, yq � 0, Mpx0, y0q P pΓq is
a regular point if F 1

xpx0, y0q � 0 or F 1
ypx0, y0q � 0. Every other point is called

singular point.

For the plane curve given in the parametric form, pΓq :

$'&'%x � xptq

y � yptq
t P ra, bs �

R, xptq and yptq must have continuous derivatives on ra, bs and x12ptq � y12ptq � 0.

Definition 8.2. The tangent line to a regular curve pΓq at a point M0px0, y0q P pΓq
is defined as the limit of the secant MM0 when the point M approaches M0 on the

curve pΓq.
The line passing through M0 and is perpendicular to the tangent is called the

normal to the curve pΓq at the point M0.
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Figure 8.5: Tangent and normal to a curve at M0

Remark 8.3. Is is well know from analytic geometry in R2 that if two lines are

perpendicular then the product of their slopes is �1. So, if we have the equation of

the tangent line tg : y � y0 � mpx� x0q, is easy to write the equation of the normal

line as n : y � y0 � � 1

m
px� x0q.

In what follows we give the equations of the tangent line and the normal line

to a regular curve pΓq at a point M0 if the curve is given in one of the following

analytical expression.

1. If the curve is given in the explicit form, pΓq : y � fpxq.

� tg : y � y0 � y1px0qpx� x0q

� n : y � y0 � � 1

y1px0qpx� x0q

2. If the curve is given in the parametric form pΓq :

$'&'%x � xptq

y � yptq
, t P I.
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� tg :
x� xpt0q
x1pt0q � y � ypt0q

y1pt0q or

� n : y � ypt0q � �x1pt0q
y1pt0q px� xpt0qq

where t0 is such that xpt0q � x0 and ypt0q � y0.

3. If the curve is given in the implicit form pΓq : F px, yq � 0.

� tg : y � y0 � �
BF
Bx px0, y0q
BF
By px0, y0q

px� x0q

� n : y � y0 �
BF
By px0, y0q
BF
Bx px0, y0q

px� x0q

8.3 The length of a plane curve

Let pΓq :

$'&'%x � xptq

y � yptq
, t P I be a regular curve, and Apxpaq, ypaqq and Bpxpbq, ypbqq

two points on the curve pΓq.
The length of the arc

"

AB denoted by Lp
"

ABq is

Lp
"

ABq �
» b

a

a
x12ptq � y12ptqdt �

» b

a

}ÝÑr 1ptq}dt.

It is of interest to consider the length sptq of the curve from a fixed point

Apxpaq, ypaqq to a variable point Mpxptq, yptqq.
Then

s � sptq � Lp
"

AMq �
» t

a

a
x12pτq � y12pτqdτ

From the last equation we have that
ds

dt
�
a
x12ptq � y12ptq and the element of

arc (linear element) is

ds �
a
x12ptq � y12ptqdt.
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Figure 8.6: Element of arc

Remark 8.4. � If the curve is in its explicit form pΓq : y � fpxq, then the

element of arc is

ds �
a
1� y12pxqdx.

� Sometimes is useful to use s as a natural parameter so we will obtain the

natural parametrization of the curve ÝÑr psq � xpsqÝÑi �ypsqÝÑj , so the magnitude

of the tangent vector is a unit vector }ÝÑr1 psq} � 1.

The length of the curve pΓq when t P ra, bs is LpΓq �
» b

a

ds.

8.4 The curvature of a plane curve

The curvature, K, of the curve can be defined as the ratio of the rotation angle of

the tangent ∆α to the traversed arc length ∆s �MM1.

Definition 8.5. The mean curvature of the arc MM1 is defined by:

Km � ∆α

∆s
.
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The curvature K at a point is defined by

K � lim
∆tÑ0

∆α

∆s
.

Figure 8.7: The curvature

1. The curvature of pΓq :

$'&'%x � xptq

y � yptq
, t P R, at Mpxpt0q, ypt0qq is

K � y2pt0qx1pt0q � x2pt0qy1pt0q
px12pt0q � y12pt0qq 3

2

.

2. The curvature of pΓq : F px, yq � 0, at Mpx0, y0q is

K � F 1
y
2F 2

xx � 2F 1
xF

1
yF

2
xy � F 1

x
2F 2

yy

pF 1
x
2 � F 1

y
2q 3

2

�����
px0,y0q

.

3. The curvature of pΓq : y � fpxq at Mpx0, fpx0qq is

K � y2px0q
p1� y12px0qq 3

2

.
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Remark 8.6. From the definition it follows that the curvature at a point of a curve

characterises the speed of rotation of the tangent curve at this point (how quickly the

curve turns).

Definition 8.7. The inverse of the curvature K at a point of the curve is called the

radius curvature, R � 1

|K| .

Remark 8.8. � The radius curvature is the radius of the circular arc which best

approximates the curve at the point.

� The osculating circle is the circle with the radius and the center located on

the inner normal line and it will most closely approximate the plane curve at

the given point.

Figure 8.8: The osculating circle

� The equation of the osculating circle is:

px� hq2 � py � kq2 � r2,

where:

� r � 1

|K| �
px12ptq � y12ptqq 3

2

|y2ptqx1ptq � x2ptqy1ptq| .
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� h � xptq � y1ptq x12ptq � y12ptq
y2ptqx1ptq � x2ptqy1ptq .

� k � yptq � x1ptq x12ptq � y12ptq
y2ptqx1ptq � x2ptqy1ptq .

Remark 8.9. 1. The curvature of a circle having the radius r is K � 1

r
.

2. The curvature of a straight line is 0.

8.5 The contact of plane curves

Let pΓ1q : y � y1pxq and pΓ2q : y � y2pxq be two plane curves.

They have common points (or they intersect) if the equation y1pxq � y2pxq has

solutions.

If x0 is a solution of the above equation, x0 is:

� 0th-order contact if the curves have a simple crossing (not tangent).

� 1st-order contact if the two curves are tangent.

� 2nd-order contact if the curvatures of the curves are equal. Such curves are

said to be osculating.

Definition 8.10. The curves pΓ1q : y � y1pxq and pΓ2q : y � y2pxq have an k order

contact at Mpx0, y0q if
y1px0q � y2px0q,
y11px0q � y12px0q,
y21px0q � y22px0q,
...

y
pkq
1 px0q � y

pkq
2 px0q,

y
pk�1q
1 px0q � y

pk�1q
2 px0q.
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(a) (b) (c)

Figure 8.9: (a) 0th-order contact (b) 1th-order contact (c) 2th-order contact

Remark 8.11. The osculating circle of the curve pΓq at M0 is the circle having

two-point contact with pΓq at M0.

8.6 Solved problems

Problem 8.1. Determine the element of arc, the arc length and the natural param-

eter of the cycloid pΓq :

$'&'%x � apt� sin tq

y � ap1� cos tq
, t P r0, 2πs.

Solution :

The derivatives of the two components of the curve are:

$'&'%x1 � ap1� cos tq

y1 � a sin t

.
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ds �
b
a2p1� 2 cos t� cos2 tq � a2 sin2 tdt

�
a
a2p2� 2 cos tqdt

� a

c
4 sin2 t

2
dt

� 2a| sin t

2
|dt

We applied the trigonometric formulas sin2 x�cos2 x � 1 and sin2 t � 1� cos 2t

2
.

Because t P r0, 2πs ùñ t

2
P r0, πs ùñ sin

t

2
¥ 0 @t P r0, 2πs.

LpΓq �
»
pΓq

ds �
» 2π

0

2a sin
t

2
dt � �4a cos t

2

����2π
0

� 8a.

The natural parameter is

s �
» t

0

2a sin
u

2
du � �2a cos t

2
� 2a � 2a

�
1� cos

t

2



.

So, s � 2a

�
1� cos

t

2



ùñ cos

t

2
� 1� s

2a
ùñ t � 2 arccos

�
1� s

2a

	
.

The natural parametrization of the cycloid is

$'&'%x � a
�
2 arccos

�
1� s

2a

�� sin
�
2 arccos

�
1� s

2a

���
y � a

�
1� cos

�
2 arccos

�
1� s

2a

���
.

.

Problem 8.2. Write the equation of the tangent line and the equation of the normal

line to the curve pΓq : x3�xy2� 2x� y� 3 � 0 � 0 at its intersection with Ox axis.

Solution :

pΓq XOx � Apa, 0q ùñ a2 � 2a� 3 � 0 ùñ x � 1 ùñ Ap1, 0q.
We have the implicit form for the equation of the curve, so, the slope of the

tangent is mtg � �F 1
xp1, 0q

F 1
yp1, 0q

, where F px, yq � x3 � xy2 � 2x� y � 3.

F 1
xpx, yq � 3x2 � y2 � 2 ùñ F 1

xp1, 0q � 5.
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F 1
ypx, yq � �2xy � 1 ùñ F 1

yp1, 0q � 1.

y1p1q � �5

1
� �5 � mtg.

The equation of the tangent line at A is:

tg : py � 0q � �5px� 1q ðñ
tg : 5x� y � 5 � 0.

The slope of the normal is mn � � 1

mtg

� 1

5
. The equation of the normal line is:

n : py � 0q � 1

5
px� 1q ðñ

n : �x� 5y � 1 � 0.

Problem 8.3. Write the equation of the tangent line and the equation of the normal

line to the curve pΓq :

$'&'%x � t2 � t� 2

y � t3 � 3t2 � 4

, t P R at the point corresponding to

t � �1.
Solution :

We have the parametric form of the equation of the curve, so, the slope of the

tangent is mtg � y1p�1q
x1p�1q .

The point corresponding to t � �1 is A pxp�1q, yp�1qq ùñ Ap�2,�2q.
x1ptq � 2t� 1 ùñ x1p�1q � �1.
y1ptq � 3t2 � 6t ùñ y1p�1q � �3.
The slope of the tangent is mtg � 3 while the slope of the normal is mn � �1

3
.

The equation of the tangent line at A is:

tg : py � p�2qq � 3px� p�2qq ðñ
tg : 3x� y � 4 � 0.

The equation of the normal line is

n : py � p�2qq � �1

3
px� p�2qq ðñ

n : x� 3y � 8 � 0.



8.6 Solved problems 226

Problem 8.4. Write the equation of the tangent line to the curve

pΓq :

$'&'%x � t2 � 1

y � t3 � 1

, t P R

parallel to the line d : 2x� y � 3 � 0.

Solution :

Let Mpx0, y0q be the point on pΓq such that at this point the tangent line is

parallel to d, Mpt20 � 1, t30 � 1q.
The slope of the tangent line is mtg � y1pt0q

x1pt0q .

x1ptq � 2t, y1ptq � 3t2, so mtg � 3t20
2t0

� 3

2
t0.

tg ∥ dðñ mtg � md ùñ 3

2
t0 � 2 ùñ t0 � 4

3
.

x

�
4

3



� 7

9
, y

�
4

3



� 91

27
.

The equation of the tangent line is:

tg : y � 91

27
� 2

�
x� 7

9



ðñ

tg : 2x� y � 49

27
� 0.

Problem 8.5. Determine the curvature and the radius of curvature for the curve

pΓq at the given point.

1. pΓq :

$'&'%x � 2pt� sin tq

y � 2p1� cos tq
at Apt � πq.

2. pΓq : y � x4 � 4x3 � x2 at Op0, 0q.

Solution :

1.

$'&'%x1ptq � 2� 2 cos t

y1ptq � 2 sin t

ùñ

$'&'%x1pπq � 4

y1pπq � 0

.
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$'&'%x2ptq � 2 sin t

y2ptq � 2 cos t

ùñ

$'&'%x2pπq � 0

y1pπq � �2
.

K � x1pπqy2pπq � x2pπqy1pπq
px1pπq2 � y1pπq2q 3

2

� 4 � p�2q � 0 � 0
p42 � 02q 3

2

� �8
43

� �1

8
.

R � 1

|K| � 8.

2. Since we have the curve in the explicit form, the formula of the curvature is

K � y2p0q
p1� y1p0q2q 3

2

.

y1pxq � 4x3 � 12x2 � 2x ùñ y1p0q � 0.

y2pxq � 12x2 � 24x� 2 ùñ y2p0q � �2.

The curvature is K � �2
1
� �2 ùñ the radius of curvature is R � 1

2
.

Problem 8.6. Determine the order of contact for the curves

pΓ1q : y1pxq � ex � x� 1

and

pΓ2q : y2pxq � 2x� 1

2
x2 � 1

6
x3 � x4

at x � 0.

Solution :

We determine the derivatives of y1 and y2 at x � 0.

y1p0q � 0

y11pxq � ex � 1 ùñ y11p0q � 2

y21pxq � ex ùñ y11p0q � 1

y31 pxq � ex ùñ y31 p0q � 1

y
p4q
1 pxq � ex ùñ y

p4q
1 p0q � 1

y2p0q � 0

y12pxq � 2�x� 1
2
x2�4x3 ùñ y12p0q � 2

y22pxq � 1� x� 12x2 ùñ y22p0q � 1

y32 pxq � 1� 24x ùñ y32 p0q � 1

y
p4q
2 pxq � 24 ùñ y

p4q
2 p0q � 24
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y
pnq
1 p0q � y

pnq
2 p0q, @n P t0, 1, 2, 3u and y

p4q
1 p0q � y

p4q
2 p0q, therefore, the order of

contact of pΓ1q and pΓ2q is 3.

Problem 8.7. Determine the equation of the osculating circle of the curve pΓq :

ÝÑr ptq � pt2 � 2tqÝÑi � pt3 � tqÝÑj , t P R, at t0 � 1.

Solution :

We can apply the formula for the equation of the osculating circle which is

px� hq2 � py � kq2 � r2,

where:

r � 1

|K| �
px12p1q � y12p1qq 3

2

|y2p1qx1p1q � x2p1qy1p1q|
h � xp1q � y1p1q x12p1q � y12p1q

y2p1qx1p1q � x2p1qy1p1q
k � yp1q � x1p1q x12p1q � y12p1q

y2p1qx1p1q � x2p1qy1p1q
We calculate the derivatives of x and y at 1.$'&'%xptq � t2 � 2t

yptq � t3 � t

ùñ

$'&'%xp1q � �1

yp1q � 2

.

$'&'%x1ptq � 2t� 2

y1ptq � 3t2 � 1

ùñ

$'&'%x1p1q � 0

y1p1q � 4

.

$'&'%x2ptq � 2

y1ptq � 6t

ùñ

$'&'%x2p1q � 2

y2p1q � 6

.

r � p02 � 42q 3
2

|6 � 0� 2 � 4| � 8.

h � �1� 4
02 � 42

6 � 0� 2 � 4 � �1� 8 � 7.

k � 2� 0 � 02 � 42

6 � 0� 2 � 4 � 2.

The equation of the osculating circle is px� 7q2 � py � 2q2 � 64.
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Remark. We can apply also the fact that the osculating circle and the curve at

the given point have at least a second order contact.

Let us denote the function

F pxptq, yptqq � pxptq � hq2 � pyptq � kq2 � r2,

where xptq � t2 � 2t and yptq � t3 � t.

The osculating circle and the curve at the given point have at least a second

order contact if and only if

$'''''&'''''%
F pxp1q, yp1qq � 0

F 1pxp1q, yp1qq � 0

F 2pxp1q, yp1qq � 0

.

F pxptq, yptqq � pt2 � 2t� hq2 � pt3 � t� kq2 � r2.

F 1pxptq, yptqq � 2pt2 � 2t� hqp2t� 2q � 2pt3 � t� kqp3t2 � 1q.
F 2pxptq, yptqq � 2p2t�2qp2t�2q�2pt2�2t�hq2�2p3t2�1qp3t2�1q�2pt3�t�kq6t.$'''''&'''''%
F pxp1q, yp1qq � 0

F 1pxp1q, yp1qq � 0

F 2pxp1q, yp1qq � 0

ðñ

$'''''&'''''%
p1� 2� hq2 � p1� 1� kq2 � r2 � 0

2p1� 2� hqp2� 2q � 2p2� kq4 � 0

2 � 0 � 0� 4p�1� hq � 2 � 42 � 12p2� kq � 0

ðñ

$'''''&'''''%
p�1� hq2 � p2� kq2 � r2 � 0

8p2� kq � 0

4p�1� hq � 32� 12p2� kq � 0

ðñ

$'''''&'''''%
r � 8

h � 7

k � 2

.

We obtain the same equation of the osculating circle i.e. px�7q2�py�2q2 � 64.

8.7 Problems

Problem 8.8. Write the equation of the tangent and the normal line to the curve

pΓq : x2 � xy3 � y2 � 2x� 4y � 4 � 0 at its intersection with Oy axis.
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Problem 8.9. Write the tangent line and the normal line to the curve

pΓq : y � x ln |x| � 1

at x � 1.

Problem 8.10. Write the equation of the tangent and the normal line to the curve

pΓq : y � sinx� x cos y � π

2
� 0 at its intersection with Ox axis.

Problem 8.11. Write the tangent line to the curve

pΓq :

$'&'%x � t2 � t� 2

y � t3 � 3t2 � 4

, t P R

which is parallel to the line d : 3x� y � 3 � 0.

Problem 8.12. Write the tangent line and the normal line to the curve

pΓq :

$'&'%x � 2t3 � t2 � t

y � t2 � t� 1

, t P R

which passes through Ap1, 0q.

Problem 8.13. Determine the curvature of the curve at the given point for:

a) pΓ1q :

$'&'%x � sin t

y � t cos t

, at Apt � πq.

b) pΓ2q : y � x3 � x2 � 2x� 2, at x � 0.

c) pΓ3q : x
2

4
� y2 � 1 � 0, at Ap0, 1q.

Problem 8.14. Determine the length of the curve pΓq :

$'&'%x � 8t3

y � 3p2t2 � t4q
, t P R

on the interval r0,?2s.
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Problem 8.15. Determine the element of arc of the curve

pΓq :

$'&'%x � lnpt�?
1� t2q

y � ?
1� t2

between the points corresponding to t1 � 0 and t2 � 1.

Problem 8.16. Determine the osculating circle of the curve pΓq : x
2

4
� y2

9
� 1 at

Bp0, 3q.

Problem 8.17. Determine the osculating circle of the curve

pΓq :

$'&'%x � sin t

y � cosp2tq
, t P r0, 2πs,

at Apt � π

6
q.

Problem 8.18. Determine the osculating circle of the curve

pΓq :

$'&'%x � a cos3 t

y � a sin3 t

at the point Apt � π

4
q.

Problem 8.19. Determine the osculating circle of the ellipse$'&'%x � a cos t

y � b sin t

, t P r0, 2πs.

Problem 8.20. Determine the order of contact for the curves at Op0, 0q if:

a) pΓ1q : y � ex and pΓ2q : y � 1� x� x2

2
.

b) pΓ1q : y � x3 and pΓ2q : y � x sin2 x.

c) pΓ1q : y � x4 and pΓ2q : y � x2 sin2 x.



9
Space curves

9.1 Analytic representation of space curves

In R3 a single equation in x, y, z represents a surface. Two equations are needed to

specify a curve.

A space curve can be represented by:

� the intersection of two surfaces which are the implicit equations of the curve

pΓq :

$'&'%F px, y, zq � 0

Gpx, y, zq � 0

.

� the parametric equations of the curve are pΓq :

$'''''&'''''%
x � xptq

y � yptq

z � zptq

, t P I � R.

� the vector equation of the curve is

pΓq : ÝÑr � ÝÑr ptq � xptqÝÑi � yptqÝÑj � zptqÝÑk , t P I � R.
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If the curve pΓq is represented by the implicit equations, the pointM0px0, y0, z0q P
pΓq is called a regular point if the rank of the matrix�� F 1

xpx0, y0, z0q F 1
ypx0, y0, z0q F 1

zpx0, y0, z0q
G1

xpx0, y0, z0q G1
ypx0, y0, z0q G1

zpx0, y0, z0q

�
is 2.

If the curve is represented by the parametric equations or by the vector equation,

then the functions x, y, z are differentiable on I. The point M0pxpt0q, ypt0q, zpt0qq P
pΓq is called singular if x1pt0q � y1pt0q � z1pt0q � 0. The point M0 is regular if

x1pt0q, y1pt0q and z1pt0q do not vanish simultaneously. If x1ptq, y1ptq and z1ptq never
vanish simultaneously on I then the curve is a regular curve.

Definition 9.1. The derivative of a vector valued function ÝÑr ptq at t0 is

ÝÑr pt0q � lim
hÑ0

ÝÑr pt0 � hq � ÝÑr pt0q
h

.

Theorem 9.2. A vector function ÝÑr 1ptq � xptqÝÑi � yptqÝÑj � zptqÝÑk is differentiable

at t0 iff each of its component functions are differentiable at t0 and

ÝÑr 1pt0q � x1pt0qÝÑi � y1pt0qÝÑj � z1pt0qÝÑk .

Examples of space curves

1. The circular helix sometimes also called a coil, is a curve for which the

tangent makes a constant angle with a fixed line. The shortest path between

two points on a cylinder (one not directly above the other) is a fractional turn

of a helix, as can be seen by cutting the cylinder along one of its sides, flattening

it out, and noting that a straight line connecting the points becomes helical

upon re-wrapping. It is for this reason that squirrels chasing one another up

and around tree trunks follow helical paths.
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The circular helix has the parametric equations pΓq :

$'''''&'''''%
x � r cos t

y � r sin t

z � ct

.

Figure 9.1: The circular helix

2. The conical helix (or conical spiral) is a space curve on a right circular cone,

whose floor plan is a plane spiral.

Figure 9.2: The conic helix
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The conical helix has the parametric equations: pΓq :

$'''''&'''''%
x � at cos t

y � at sin t

z � bt

.

Figure 9.3: The conic helix

3. The Viviani’s curve is the intersection of a sphere with a cylinder that is

tangent to the sphere and passes through two poles (a diameter) of the sphere.

The equations of the curve are pΓq :

$'&'%x2 � y2 � z2 � r2

x2 � y2 � rx

.
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Figure 9.4: The Viviani’s curve

4. The curve at the intersection of the cylinder x2 � y2 � 9 and the parabolic

hyperboloid 9z � x2 � y2. The curve it’s also called the ’Pringle’ curve.

Figure 9.5: The ’Pringle’ curve

5. The toroidal spiral - it is a space curve that lies on a torus.
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Figure 9.6: A spiral on a torus

The parametric equations are pΓq :

$'''''&'''''%
xptq � pa� sin btq cos t

yptq � pa� sin btq sin t

zptq � cos bt

.

Figure 9.7: The toroidal spiral
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9.2 The length of a space curve

Let pΓq be a regular curve pΓq :

$'''''&'''''%
x � xptq

y � yptq

z � zptq

, t P I � R, and Apxpaq, ypaq, zpaqq

and Bpxpbq, ypbq, zpbqq P pΓq.
The length of the arc

"

AB is

Lp
"

ABq �
» b

a

a
x12ptq � y12ptq � z12ptq dt.

The length of the arc of the curve from initial point A to a variable point

Mpxptq, yptq, zptqq is

s � sptq � Lp
"

AMq �
» t

a

a
x12pτq � y12pτq � z12pτq dτ.

The element of arc is ds � s1ptq dt

ds �
a
x12ptq � y12ptq � z12ptq dt.

Remark 9.3. The arc length ”s” of a regular curve can always be chosen as param-

eter since x12� y12� z12 � 0. When s is chose as parameter then, the tangent vector

is a unit vector, namely

s1ptq � ds

dt
�
a
x12ptq � y12ptq � z12ptq � }ÝÑr 1ptq} � 1.

9.3 The tangent line and the normal plane

Let pΓq : ÝÑr � ÝÑr ptq � xptqÝÑi � yptqÝÑj � zptqÝÑk , t P ra, bs, be a regular curve and M0

and M two neighbouring points on the curve.
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We consider the unit vector

lim
tÑt0

ÝÑr ptq � ÝÑr pt0q
}ÝÑr ptq � ÝÑr pt0q} �

ÝÑr 1pt0q
}ÝÑr 1pt0q} .

This is called the unit tangent vector to pΓq at M0 and is denoted by ÝÑτ .

ÝÑτ �
ÝÑr 1pt0q
}ÝÑr 1pt0q} .

Figure 9.8: The unit tangent vector and the tangent line to a space curve

Definition 9.4. The line passing through the point M0pxpt0q, ypt0q, zpt0qq and having

as director vector ÝÑτ is called the tangent line,

tg :
x� xpt0q
x1pt0q � y � ypt0q

y1pt0q � z � zpt0q
z1pt0q .

The plane passing through M0pxpt0q, ypt0q, zpt0qq perpendicular to the tangent line

is called the normal plane,

pPNq : x1pt0qpx� xpt0qq � y1pt0qpy � ypt0qq � z1pt0qpz � zpt0qq � 0.
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Figure 9.9: The tangent line and the normal plane at a point on a space curve

If the curve pΓq is given as the intersection of two curves pΓq :

$'&'%F px, y, zq � 0

Gpx, y, zq � 0

,

then the tangent line of pΓq at M0px0, y0, z0q is

tg :
x� x0

DpF,Gq
Dpy,zq

���
M0

� y � y0
DpF,Gq
Dpz,xq

���
M0

� z � z0
DpF,Gq
Dpx,yq

���
M0

,

where DpF,Gq
Dpy,zq

���
M0

�
������ F

1
ypx0, y0, z0q F 1

zpx0, y0, z0q
G1

ypx0, y0, z0q G1
zpx0, y0, z0q

������ ,
DpF,Gq
Dpz,xq

���
M0

�
������ F

1
zpx0, y0, z0q F 1

xpx0, y0, z0q
G1

zpx0, y0, z0q G1
xpx0, y0, z0q

������ ,
DpF,Gq
Dpx,yq

���
M0

�
������ F

1
xpx0, y0, z0q F 1

ypx0, y0, z0q
G1

xpx0, y0, z0q G1
ypx0, y0, z0q

������.
The equation of the normal plane can be put in the form:

pPNq :

���������
x� x0 y � y0 z � z0

F 1
xpx0, y0, z0q F 1

ypx0, y0, z0q F 1
zpx0, y0, z0q

G1
xpx0, y0, z0q G1

ypx0, y0, z0q G1
zpx0, y0, z0q

��������� � 0.
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9.4 The moving trihedron. TNB (Frenet-Serret)

Frame

TNB Frames describe the motion of a particle traveling along a curve or how a

particle on a space curve is heading, turning and twisting.

Figure 9.10: The moving trihedron

Let pΓq : ÝÑr � ÝÑr ptq � xptqÝÑi � yptqÝÑj � zptqÝÑk , t P I � R be a regular curve

of second order in space, that means that exists ÝÑr 1pt0q and ÝÑr 2pt0q for all t0 P I.

Moreover, let us suppose that the vectors ÝÑr 1pt0q and ÝÑr 2pt0q are not parallel, so

ÝÑr 1pt0q � ÝÑr 2pt0q � 0.

At every pointM0px0, y0, z0q P pΓq, pΓq : ÝÑr � ÝÑr ptq � xptqÝÑi �yptqÝÑj �zptqÝÑk , t P
I � R, the TNB frame gives us the unit vectors:

� the tangent unit vector, ÝÑτ (the direction in which the curve is going);

� the normal unit vector, ÝÑn (how the curve is turning);

� the binormal unit vecotr,
ÝÑ
b (how the curve is twisting).
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The unit vectors pÝÑτ ,ÝÑn ,
ÝÑ
b q are mutually orthogonal like pÝÑi ,ÝÑj ,ÝÑk q and they

can be calculated by the following formulas.

♦ ÝÑτ �
ÝÑr 1ptq
}ÝÑr 1ptq}

♦ ÝÑn �
ÝÑτ 1ptq
}ÝÑτ 1ptq} �

ÝÑ
b �ÝÑτ

♦
ÝÑ
b � ÝÑτ �ÝÑn �

ÝÑr 1ptq � ÝÑr 2ptq
}ÝÑr 1ptq � ÝÑr 2ptq}

Figure 9.11: The moving trihedron

The faces of the Frenet-Serret Frame are:

� the osculating plane - the plane spanned by ÝÑτ and ÝÑn (has as its normal
ÝÑ
b ). The osculating plane can be defined in the following way. Let pΓq be

a space curve and A and B be two neighboring points on pΓq. The limiting

position of the plane that contains the tangent line at A and passes through

the point B as B ÝÑ A is defined as the osculating plane at A.
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Figure 9.12: Osculating plane at a point of a space curve

� the normal plane - the plane spanned by ÝÑn and
ÝÑ
b (has as its normal the

vector ÝÑτ );

� the rectifying plane - the plane spanned by ÝÑτ and
ÝÑ
b (has as its normal the

vector ÝÑn ).

Figure 9.13: TNB frame
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The equation of the osculating plane can be put in the following form:

pPOq :

∣∣∣∣∣∣∣∣∣
x� xpt0q y � ypt0q z � zpt0q
x1pt0q y1pt0q z1pt0q
x2pt0q y2pt0q z2pt0q

∣∣∣∣∣∣∣∣∣ � 0.

If we denote A �
∣∣∣∣∣∣y

1pt0q z1pt0q
y2pt0q z2pt0q

∣∣∣∣∣∣, B �
∣∣∣∣∣∣z

1pt0q x1pt0q
z2pt0q x2pt0q

∣∣∣∣∣∣, C �
∣∣∣∣∣∣x

1pt0q y1pt0q
x2pt0q y2pt0q

∣∣∣∣∣∣, we
can write:

� the equation of the binormal line:

M0B :
x� x0

A
� y � y0

B
� z � z0

C
.

� the equation of the rectifying plane:

pPRq :

∣∣∣∣∣∣∣∣∣
x� xpt0q y � ypt0q z � zpt0q
x1pt0q y1pt0q z1pt0q
A B C

∣∣∣∣∣∣∣∣∣ � 0.

� the equation of the normal line:

M0N :
x� xpt0q∣∣∣∣∣∣y
1pt0q z1pt0q
B C

∣∣∣∣∣∣
� y � ypt0q∣∣∣∣∣∣z

1pt0q x1pt0q
C A

∣∣∣∣∣∣
� z � zpt0q∣∣∣∣∣∣x

1pt0q y1pt0q
A B

∣∣∣∣∣∣
.

9.5 The curvature and the torsion

The curvature of a space curve shows how points ”curve” in the osculating plane.

Definition 9.5. For ÝÑτ , the unit tangent vector to a regular curve, the curvature

is defined as

K � }d
ÝÑτ
ds

}.
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dÝÑτ
ds

is the derivative of the tangent unit vector with respect to the arc length

s. The parametrization is quite difficult to compute, so if we want to write an

expression of the curvature with respect to a parameter ”t” we can write:

}d
ÝÑτ
ds

} � }d
ÝÑτ
dt

� dt
ds
} � }

d
ÝÑτ
dt
ds
dt

} � }ÝÑτ 1ptq}
}ÝÑr 1ptq} .

The analytical expression of the curvature of the curve pΓq atMpxptq, yptq, zptqq P
pΓq is

K � }ÝÑr 1ptq � ÝÑr 2ptq}
}ÝÑr 1ptq}3 .

The radius curvature of pΓq at M is R � 1

K
.

The next graph represents the curvature of a curve. The sharper the turn in the

curve, the greater the curvature, and the smaller the radius of the inscribed circle.

Figure 9.14: Representation of curvature and the radius curvature for a curve

The torsion of a curve at a point is telling us how the curve is twisting, actually

how the osculating plane twists.

Definition 9.6. The torsion is defined as

T � �d
ÝÑ
b

ds
� ÝÑn .
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The analytical expression of the torsion of the curve pΓq at Mpxptq, yptq, zptqq P
pΓq is

T � pÝÑr 1ptq,ÝÑr 2ptq,ÝÑr 3ptqq
}ÝÑr 1ptq � ÝÑr 2ptq}2 .

Remark 9.7. A space curve lies in a plane if and only if the torsion is null. That

means that the curve lies in the osculating plane.

Figure 9.15: A space curve in a plane

9.6 The Frenet formulas

The unit vectors ÝÑτ , ÝÑn ,
ÝÑ
b defined previously can be express in the following equa-

tions called the Frenet formulas:$'''''''&'''''''%

dÝÑτ
ds

� K � ÝÑn
dÝÑn
ds

� �K � ÝÑτ � T � ÝÑb
d
ÝÑ
b

ds
� �T � ÝÑn
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where K is the curvature and T is the torsion.

The Frenet-Serret formulas are also known as Frenet-Serret theorem, and can be

stated more concisely using matrix notation:�����
ÝÑτ 1

ÝÑn 1

ÝÑ
b
1

�����
�����

0 K 0

�K 0 T

0 �T 0

���� �
�����

ÝÑτ
ÝÑn
ÝÑ
b

����.

9.7 Solved Problems

Problem 9.1. Find a vector function for the curve of intersection of x2 � y2 � 9

and y � z � 2.

Solution : The first surface is a cylinder having the xy-trace a circle and the

second one is a plane.

The parametrization of the circle is

$'&'%xptq � 3 cos t

yptq � 3 sin t

, t P r0, 2πs. From the
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equation of the plane we can calculate z � 2�y � 2�3 cos t. So, the parametrization

of the curve at the intersection of the two surfaces is

pΓq :

$'''''&'''''%
xptq � 3 cos t

yptq � 3 sin t

zptq � 2� 3 sin t

, t P r0, 2πs.

Problem 9.2. For the points Ap2, 2,�3q and Bp�2, 5,�1q give the parametric

equations for the line segment connecting A and B.

Solution : We can write the equation of the line AB passing through A and

having as its director vector the vector
ÝÝÑ
AB.

AB :
x� 2

�4 � y � 2

3
� z � 3

2
. So, the parametric equations of the line are

AB :

$'''''&'''''%
x � �4t� 2

y � 3t� 2

z � 2t� 3

, t P R.

For the line segment rABs we will choose t in the interval r0, 1s (it’s obviously

that if we plug in t � 0 we obtain the coordinates of A and for t � 1 we obtain the

coordinates of B). So, the parametric equations of the line segment rABs are

rABs :

$'''''&'''''%
x � �4t� 2

y � 3t� 2

z � 2t� 3

, t P r0, 1s.

Problem 9.3. Let pΓq : ÝÑr ptq � pcos t, sin t, tq be a helix. Determine the distance

from the point Apt � 0q to B
�
t � π

2

	
on the helix.

Solution :
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The derivatives of the components of the curve are:

$'''''&'''''%
x1ptq � � sin t

y1ptq � cos t

z1ptq � 1

.

ds �
?
sin2 t� cos2 t� 1 dt � ?

2 dt.

For t � 0 we obtain Ap1, 0, 0q and for t � π

2
we have B

�
0, 1,

π

2

	
.

LpΓq �
»
Γ

ds �
» π

2

0

ds �
» π

2

0

?
2 dt �

?
2t
���π2
0
�
?
2π

2
.

Problem 9.4. Prove that the curve

pΓq :

$'''''&'''''%
x � 2t2 � 3t� 1

y � t� 2

z � t2 � 3t

, t P R

is a plane curve. Write the equation of this plane.

Solution :

A space curve lies in a plane if the torsion is 0. We can write the vector expression

of the curve pΓq, ÝÑr ptq, and then we will compute the derivatives of ÝÑr ptq.
ÝÑr ptq � p2t2 � 3t� 1qÝÑi � pt� 2qÝÑj � pt2 � 3tqÝÑk .

ÝÑr 1ptq � p4t� 3qÝÑi �ÝÑ
j � p2t� 3qÝÑk .

ÝÑr 2ptq � 4
ÝÑ
i � 2

ÝÑ
k .

ÝÑr 3ptq � ÝÑ
0 .

T � pÝÑr 1ptq,ÝÑr 2ptq,ÝÑr 3ptqq
}ÝÑr 1ptq � ÝÑr 2ptq}2 �

∣∣∣∣∣∣∣∣∣
4t� 3 1 2t� 3

4 0 2

0 0 0

∣∣∣∣∣∣∣∣∣
}ÝÑr 1ptq � ÝÑr 2ptq}2 � 0, so the curve lies in the

osculating plane.
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pPOq :

∣∣∣∣∣∣∣∣∣
x� x0 y � y0 z � z0

4t� 3 1 2t� 3

4 0 2

∣∣∣∣∣∣∣∣∣ � 0. If we choose t � 0 we have M0p1, 2, 0q P pΓq

and

pPOq :

∣∣∣∣∣∣∣∣∣
x� 1 y � 2 z

�3 1 3

4 0 2

∣∣∣∣∣∣∣∣∣ � 0ðñ

pPOq : x� 9y � 2z � 19 � 0.

Problem 9.5. Suppose

pΓq :

$'&'%xy � 1

2y2 � z � 1 � 0

is a space curve. Determine the points on pΓq such that the binormal lines are

perpendicular to the line

d :

$'&'%x� y � 0

�4x� z � 6 � 0

.

Write the equations of the binormal and the equation of the osculating plane at each

point previously determined.

Solution :

A parametrization of the curve pΓq can be

pΓq :

$'''''&'''''%
x � 1

t

y � t

z � 2t2 � 1

, t P R�.

The vector expression of pΓq is:
ÝÑr ptq � 1

t

ÝÑ
i � t

ÝÑ
j � p2t2 � 1qÝÑk .
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ÝÑr 1ptq � � 1

t2
ÝÑ
i �ÝÑ

j � 4t
ÝÑ
k .

ÝÑr 2ptq � 2

t3
ÝÑ
i � 4

ÝÑ
k .

The binormal line has as director vector

ÝÑvb � ÝÑr 1 �ÝÑr 2 �

∣∣∣∣∣∣∣∣∣∣

ÝÑ
i

ÝÑ
j

ÝÑ
k

� 1

t2
1 4t

2

t3
0 4

∣∣∣∣∣∣∣∣∣∣
� 4

ÝÑ
i � 12

t2
ÝÑ
j � 2

t3
ÝÑ
k .

The binormal line is perpendicular to the line d if ÝÑvb K ÝÑvd ðñ ÝÑvb � ÝÑvd � 0.

ÝÑvd �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

1 1 0

�4 0 �1

∣∣∣∣∣∣∣∣∣ � �ÝÑi �ÝÑ
j � 4

ÝÑ
k .

ÝÑvb � ÝÑvd � 0ðñ �4� 12

t2
� 8

t3
� 0ðñ t3 � 3t� 2 � 0.

The last equation has the solutions t1,2 � 1 and t3 � �2.
So, we have two points for which the binormal is perpendicular to the given line.

� For t � 1 we obtain the point M1 � p1, 1, 1q and ÝÑvb � p4, 12,�2q. So, the

equation of the binormal is

b :
x� 1

4
� y � 1

12
� z � 1

�2 .

The osculating plane has as its normal vector ÝÑvb � p4, 12,�2q, so the equation

of the osculating plane is

pPOq : 4px� 1q � 12py � 1q � 2pz � 1q � 0ðñ

pPOq : 2x� 6y � z � 7 � 0.

� For t � �2 we obtain the point M2

�
�1

2
,�2, 7



and ÝÑvb �

�
4, 3,

1

4



. So, the

equation of the binormal is

b :
x� 1

2

4
� y � 2

3
� z � 7

1
4

.
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The osculating plane has as its normal vector ÝÑvb � p4, 3, 1
4
q, so the equation

of the osculating plane is

pPOq : 4
�
x� 1

2



� 3py � 2q � 1

4
pz � 7q � 0

pPOq : 16x� 12y � z � 25 � 0.

Problem 9.6. Let pΓq : ÝÑr � t
ÝÑ
i � p1� t2qÝÑj � 2

3
t3
ÝÑ
k be a space curve.

a) Determine the unit vectors of the Frenet frame at t � 1.

b) Write the equation of the normal at an arbitrary point of the curve.

c) Determine the curvature and the torsion of the curve at t � 1.

Solution :

a) ÝÑτ �
ÝÑr 1

}ÝÑr 1}
ÝÑ
b �

ÝÑr 1 �ÝÑr 2

}ÝÑr 1 �ÝÑr 2}
ÝÑn � ÝÑ

b �ÝÑτ

The derivatives of ÝÑr are:

ÝÑr 1ptq � ÝÑ
i � 2t

ÝÑ
j � 2t2

ÝÑ
k

ÝÑr 2ptq � �2ÝÑj � 4t
ÝÑ
k .

At t � 1 we obtain

ÝÑr 1p1q � ÝÑ
i � 2

ÝÑ
j � 2

ÝÑ
k

ÝÑr 2p1q � �2ÝÑj � 4
ÝÑ
k .

ÝÑτ �
ÝÑr 1p1q
}ÝÑr 1p1q} �

ÝÑ
i � 2

ÝÑ
j � 2

ÝÑ
k?

1� 4� 4
� 1

3
pÝÑi � 2

ÝÑ
j � 2

ÝÑ
k q



9.7 Solved Problems 253

ÝÑr 1 �ÝÑr 2 �

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

1 �2 2

0 �2 4

∣∣∣∣∣∣∣∣∣ � �4ÝÑi � 4
ÝÑ
j � 2

ÝÑ
k .

ÝÑ
b � �4

ÝÑ
i � 4

ÝÑ
j � 2

ÝÑ
k?

16� 16� 4
� �1

3
p2ÝÑi � 2

ÝÑ
j �ÝÑ

k q.

ÝÑn � ÝÑ
b �ÝÑτ � �1

9

∣∣∣∣∣∣∣∣∣
ÝÑ
i

ÝÑ
j

ÝÑ
k

2 2 1

1 �2 2

∣∣∣∣∣∣∣∣∣ � �1

9
p6ÝÑi � 3

ÝÑ
j � 6

ÝÑ
k q � 1

3
p2ÝÑi �ÝÑj � 2

ÝÑ
k q.

b) The corresponding point on the curve pΓq at t � 1 is A

�
1, 0,

2

3



, therefore

the normal line has the equations

n :
x� 1

�2
3

� y
1
3

� z � 2
3

2
3

ðñ n :
x� 1

�2 � y � z � 2
3

2
.

The rectifying plane has as its normal the direction of ÝÑn , so the equation of

the rectifying plane is:

pPRq : �2

3
px� 1q � 1

3
y � 2

3
pz � 2

3
q � 0ðñ

pPRq : �6x� 3y � 6z � 2 � 0.

c) The curvature at t � 1 is K � }ÝÑr 1 �ÝÑr 2}
}ÝÑr 1}3

����
t�1

� 6

33
� 2

9
.

The torsion at t � 1 is T � pÝÑr 1,ÝÑr 2,ÝÑr 3q
}ÝÑr 1 �ÝÑr 2}2

����
t�1

.

ÝÑr 3ptq � 4
ÝÑ
k ùñ ÝÑr 3p1q � 4

ÝÑ
k .

pÝÑr 1,ÝÑr 2,ÝÑr 3q|t�1 �

∣∣∣∣∣∣∣∣∣
1 �2 2

0 �2 4

0 0 4

∣∣∣∣∣∣∣∣∣ � �8 ùñ T � �8
62

� �2

9
.
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9.8 Problems

Problem 9.7. Write the equation of the normal plane and the equation of the

tangent of pΓq at the given point:

a) pΓq : ÝÑr � 2t
ÝÑ
i � 2

t

ÝÑ
j � t2

ÝÑ
k , t � 2;

b) pΓq :

$'''''&'''''%
x � 3t

y � 2t3

z � �t2
, M0p6, 16,�4q.

Problem 9.8. Determine the length of the arc curve pΓq:

a) pΓq :

$'''''&'''''%
x � at

y � ?
3abt2

z � 2bt3,

, 0 ¤ t ¤ 1;

b) pΓq : ÝÑr � a cos t
ÝÑ
i � a sin t

ÝÑ
j � bt

ÝÑ
k , 0 ¤ t ¤ 2.

Problem 9.9. Determine the equation of the tangent line at Apm,m, 2m2q and the

equation of the normal plane at an arbitrary point of pΓq :

$'&'%z � x2 � y2

x � y

.

Problem 9.10. Write the equation of the osculating plane of the space curve

pΓq :

$'&'%y2 � x

x2 � z

at Mp1, 1, 1q.

Problem 9.11. Let pΓq : ÝÑr � t
ÝÑ
i � p1� t2qÝÑj � 2

3
t3
ÝÑ
k be a space curve.
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a) Determine the unit vectors of the Frenet frame at t � 1.

b) Write the equation of the normal at an arbitrary point of the curve.

c) Determine the curvature and the torsion of the curve at t � 1.

Problem 9.12. Determine the curvature and the torsion of the curve

pΓq :

$'''''&'''''%
x � cos t

y � sin t

z � cos 2t,

at M
�
t � π

2

	
.

Problem 9.13. Let pΓq : ÝÑr � t
ÝÑ
i � 1

2
t2
ÝÑ
j � 1

6
t3
ÝÑ
k be a space curve.

a) Determine the element of arc.

b) Determine the unit vectors of the tangent, normal and binormal at t � 1.

c) Write the equations of the rectifying plane and osculating plane at t � 1.

d) Determine the curvature and the torsion of pΓq at t � 1.

Problem 9.14. Determine the points of the curve

pΓq : ÝÑr � p2t� 1qÝÑi � t3
ÝÑ
j � p1� t2qÝÑk

such that the osculating plane of the curve at these points is perpendicular to the

plane pP q : 7x� 12y � 5z � 4 � 0.

Problem 9.15. For each of the following curves determine the unit vectors of the

moving trihedron, the curvature, the torsion, the equations of the osculating plane,

the normal plane, the equations of the normal line and the tangent line at the given

point:
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a) pΓ1q : ÝÑr � p3t2 � 2qÝÑi � t3
ÝÑ
j � p1� tqÝÑk , Mpt � 2q.

b) pΓ2q :

$'''''&'''''%
x � t3 � 2t2

y � 3t� 2

z � t2 � 5

, Mp�1, 5,�4q.

c) pΓ3q : ÝÑr � 4 cos t
ÝÑ
i � 2 sin t

ÝÑ
j � 2t

ÝÑ
k , M

�
t � π

3

	
.

Problem 9.16. Determine the length of the arc curve pΓq:

a) pΓq :

$'''''&'''''%
x � et cos t

y � et sin t

z � et,

, t P r0, π
2
s;

b) pΓq :

$''&''%
y � x2

2

z � x3

6
,

, t P r0, 6s.

Problem 9.17. Determine the points of the curve

pΓq :

$'&'%xz � 1

y � ln z

such that the principal normal of the curve at these points is parallel to the plane

pP q : 5x� 2y � 5z � 1.

Problem 9.18. Determine the curvature and the torsion of the curve

pΓq :

$'''''&'''''%
x � 2t

y � ln t

z � t2,

, t ¡ 0

at t � 1.



10
Surfaces

10.1 Analytic representation of surfaces

In R3 a single equation in x, y, z represents a surface.

A surface can be represented by:

� The implicit equation of the surface

pSq : F px, y, zq � 0.

� The explicit equation of the surface

pSq : z � zpx, yq.

� The parametric equations of the surface

pSq :

$'''''&'''''%
x � xpu, vq

y � ypu, vq

z � zpu, vq

, pu, vq P D � R2.
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� The vector equation of the surface

pSq : ÝÑr � ÝÑr pu, vq � xpu, vqÝÑi � ypu, vqÝÑj � zpu, vqÝÑk , pu, vq P D � R2

If the surface pSq is represented by the parametric equations then the point

M0pu0, v0q P pSq is called an ordinary point if the rank of the matrix�� x1u y1u z1u

x1v y1v z1v

�������
pu0,v0q

is 2 or, equivalently, ÝÑr 1
upu0, v0q and ÝÑr 1

vpu0, v0q are linearly independent.

If all the points of the surface pSq are ordinary points, then the surface is called

a regular surface.

10.2 Curves on a surface

Let pSq : ÝÑr � ÝÑr pu, vq, pu, vq P R2 be a surface.

If u, v : I Ñ R are single valued functions u � uptq, v � vptq, then ÝÑr �
ÝÑr puptq, vptqq is a curve lying on the surface pSq.

Examples of curves on a surface

1. The circular helix lies on the cylinder pSq :

$'''''&'''''%
x � r cos v

y � r sin v

z � u

, r the radius

been a positive real constant.

Let us make

$'&'%v � t

u � ct

, c a constant.
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The circular helix has the parametric equations pΓq :

$'''''&'''''%
x � r cos t

y � r sin t

z � ct

.

Figure 10.1: The circular helix

2. When consider u � u0 and v � v0, one obtain two curves on the surface, and

pu0, v0q are called the curvilinear coordinates of the point M0.

Let pSq : x2�y2�z2 � r2 be a sphere and M0px0, y0, z0q P pSq. The parametric

equations of the sphere are:

pSq :

$'''''&'''''%
x � ρ sinφ cos θ

y � ρ sinφ sin θ

z � ρ cosφ

, θ P r0, 2πs, φ P r0, πs.

If we consider φ � constant, the curves on the sphere, in geographic terms,

are the parallels, while if we consider θ � constant, the curves represent the

meridians.
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Figure 10.2: Meridians and parallels on a sphere

10.3 The tangent plane and the normal line to a

surface

Let pSq : ÝÑr � ÝÑr pu, vq � xpu, vqÝÑi � ypu, vqÝÑj � zpu, vqÝÑk , pu, vq P D � R2 be a

regular surface.

The plane passing through Mpu0, v0q P pSq and having as parallel directions

ÝÑr 1
upu0, v0q and ÝÑr 1

vpu0, v0q is called the tangent plane to the surface S at M0.

The equation of the tangent plane is:

pPtgq :

���������
x� xpu0, v0q y � ypu0, v0q z � zpu0, v0q
x1upu0, v0q y1upu0, v0q z1upu0, v0q
x1vpu0, v0q y1vpu0, v0q z1vpu0, v0q

��������� � 0.

Let us denote A �
∣∣∣∣∣∣y
1
u z1u

y1v z1v

∣∣∣∣∣∣, B �
∣∣∣∣∣∣z
1
u x1u

z1v x1v

∣∣∣∣∣∣, C �
∣∣∣∣∣∣x

1
u y1u

x1v y1v

∣∣∣∣∣∣, evaluated at pu0, v0q.

The normal to the surface pSq at M0 is the line passing through M0 perpendic-
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ular to the tangent plane. Its equation is:

n :
x� x0

A
� y � y0

B
� z � z0

C
,

where x0 � xpu0, v0q, y0 � ypu0, v0q, z0 � zpu0, v0q.

Remark 10.1. If the surface is given by the implicit equation pSq : F px, y, zq � 0

then the tangent plane is:

pPtgq : F 1
xpx0, y0, z0qpx� x0q � F 1

ypx0, y0, z0qpy � y0q � F 1
zpx0, y0, z0qpz � z0q � 0.

The equation of the normal line is:

n :
x� x0

F 1
xpx0, y0, z0q �

y � y0
F 1
ypx0, y0, z0q �

z � z0
F 1
zpx0, y0, z0q

Figure 10.3: Tangent plane and normal line to a surface



10.4 The first fundamental quadratic form 262

10.4 The first fundamental quadratic form

Length of curves on a surface

Let pSq : ÝÑr � ÝÑr pu, vq � xpu, vqÝÑi � ypu, vqÝÑj � zpu, vqÝÑk , pu, vq P D � R2 be a

regular surface and pΓq : ÝÑr � ÝÑr puptq, vptqq a regular curve on the surface pSq.
We can define the length of an arc of this curve as:

sptq �
» t2

t1

b
ÝÑr 12pτq dτ.

ÝÑr 1ptq � ÝÑr 1
u � u1ptq � ÝÑr 1

v � v1ptq.
Using Gauss’s notations:

E � ÝÑr 12
u � x12u � y12u � z12u

F � ÝÑr 1
u
ÝÑr 1

v � x1ux
1
v � y1uy

1
v � z1uz

1
v

G � ÝÑr 12
v � x12v � y12v � z12v

we obtain

ds �
?
Eu12 � 2Fu1v1 �Gv12dt

Definition 10.2. The quadratic form

Edu2 � 2Fdudv �Gdv2

is called the first fundamental quadratic form of the surface.

The length of the arc M1M2 of the curve pΓq corresponding to the values t1 and

t2 of the parameter t is:

lp
"

M1M2q �
» t2

t1

?
Eu12 � 2Fu1v1 �Gv12dt.

Remark 10.3. If the surface is given in the explicit form pSq : z � zpx, yq, and
p � z1x and q � z1y, the the first fundamental quadratic form of the surface is

ds2 � p1� p2qdx2 � 2pqdxdy � p1� q2qdy2.
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Angle measurement on Surfaces

Let pSq : ÝÑr � ÝÑr pu, vq � xpu, vqÝÑi � ypu, vqÝÑj � zpu, vqÝÑk , pu, vq P D � R2 a regular

surface and

pΓ1q : ÝÑr1 � ÝÑr1puptq, vptqq
pΓ2q : ÝÑr2 � ÝÑr2puptq, vptqq

two regular curves on the surface pSq, and ÝÑτ1 , ÝÑτ2 the tangent unit vectors of pΓ1q
and pΓ2q respectively, at their common point M0.

Let dÝÑr , du and dv the differential along pΓ1q and δÝÑr , δu and δv the differential

along pΓ2q.

Definition 10.4. The angle between the tangent vectors ÝÑτ1 and ÝÑτ2 at the point

M0 P pSq is called the angle of the curves pΓ1q and pΓ2q.

cos θ � cos?ppΓ1q, pΓ2qq � Eduδu� F pduδv � δudvq �Gdvδv?
Edu2 � 2Fdudv �Gdv2

?
Eδu2 � 2Fδuδv �Gδv2

.

Two curves are orthogonal if

Eduδu� F pduδv � δudvq �Gdvδv � 0.

Area of a surface

Let pSq : ÝÑr � ÝÑr pu, vq � xpu, vqÝÑi � ypu, vqÝÑj � zpu, vqÝÑk , pu, vq P D � R2 a regular

surface.

The element of area of the surface pSq is

dσ �
?
EG� F 2dudv.
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The area of the surface is» »
D

dσ �
» »

D

?
EG� F 2dudv,

where D is the domain in which u and v vary.

Remark 10.5. � If the surface is given in the explicit form pSq : z � zpx, yq,
and p � z1x and q � z1y, the element of the area is

dσ �
a
1� p2 � q2dxdy.

� If the surface is given in the implicit form pSq : F px, y, zq � 0, the element of

the area is

dσ � 1

|F 1
z|
b
F 12
x � F 12

y � F 12
z dxdy.

10.5 Solved Problems

Problem 10.1. Let the surface pSq :

$'''''&'''''%
x � u� v

y � u� v

z � uv

, pu, vq P R2.

a) Determine the coordinates of the points Apu � 2, v � 1q, Bpu � 1, v � 2q.

b) Check if Mp4, 2, 3q and Np1, 4,�2q are on the surface pSq.

c) Determine the cartesian equation of the surface.

Solution :

a) For u � 2 and v � 1 we obtain x � 3, y � 1, z � 2 ùñ Ap3, 1, 2q.

For u � 1 and v � 2 we obtain x � 3, y � �1, z � 2 ùñ Bp3,�1, 2q.
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b) M P pSq ðñ the system

$'''''&'''''%
u� v � 4

u� v � 2

u � v � 3.

is consistent. Adding the first two

equation we obtain 2u � 6 ùñ u � 3. We can determine v � 1 and we verify

in the third equation if u � v � 3ðñ 3 � 1 � 3 which is correct, so M P pSq.

N P pSq ðñ the system

$'''''&'''''%
u� v � 1

u� v � 4

u � v � �2.

is consistent. Adding the first two

equation we obtain 2u � 5 ùñ u � 5

2
. We can easily determine v � �3

2
. Let’s

verify the third equation u � v � 5

2
�
�
�3

2



� �15

4
� �2, so N R pSq.

c) In order to obtain the explicit or the implicit equation of the surface we need

to eliminate u and v form the parametric equations of the surface.

By adding and then subtracting the first two equations we obtain x� y � 2u

and x � y � 2v. Replacing u � x� y

2
and v � x� y

2
in the third equation

we obtain z � px� yqpx� yq
4

ðñ 4z � x2 � y2 which is the equation of a

parabolic hyperboloid. The explicit equation of the surface is

pSq : zpx, yq � 1

4
px2 � y2q.

Problem 10.2. Let pSq :

$'''''&'''''%
x � uev

y � ue�v

z � 4uv

, pu, vq P R2 be a surface.

a) Determine the equation of the tangent plane of pSq at the point Mpu � 2, v �
0q.
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b) Write the equation of the normal line at the point M .

c) Determine the unit vector of the normal line.

Solution :

a) The coordinates of the point M are x � 2, y � 2, x � 0, Mp2, 2, 0q. We

calculate the partial derivatives of the functions:$'''''&'''''%
x1upu, vq � ev

y1upu, vq � e�v

z1upu, vq � 4v

ùñ

$'''''&'''''%
x1up2, 0q � 1

y1up2, 0q � 1

z1up2, 0q � 0

.

$'''''&'''''%
x1vpu, vq � uev

y1vpu, vq � �ue�v

z1vpu, vq � 4u

ùñ

$'''''&'''''%
x1vp2, 0q � 2

y1vp2, 0q � �2

z1vp2, 0q � 8

.

The equation of the tangent plane is

pPtgq :

���������
x� 2 y � 2 z

1 1 0

2 �2 8

��������� � 0ðñ

pPtgq : 2x� 2y � z � 0.

b) The normal line is perpendicular to the tangent plane, so the direction of the

normal line is ÝÑv � ÝÑn Ptg � 2
ÝÑ
i � 2

ÝÑ
j �ÝÑ

k .

The equation of the normal line is:

n :
x� 2

2
� y � 2

�2 � z

�1.

c) The unit vector of the normal line isÝÑn � 2
ÝÑ
i � 2

ÝÑ
j �ÝÑ

k

}2ÝÑi � 2
ÝÑ
j �ÝÑ

k } �
1

3
p2ÝÑi �2ÝÑj �ÝÑk q.



10.5 Solved Problems 267

Problem 10.3. Write the equation of the tangent plane at Mpx0, y0, z0q to the

surface pSq : z � e
y
x .

Solution :

The equation of the surface is given in the explicit form.

p � z1xpx, yq � � y

x2
e

y
x .

q � z1ypx, yq �
1

x
e

y
x .

The equation of the tangent plane is:

pPtgq : z � z0 � �y0
x2
0

e
y0
x0 px� x0q � 1

x0

e
y0
x0 py � y0q.

Multiplying by x2
0 the equation and knowing that z0 � e

y0
x0 we obtain:

pPtgq : x2
0pz � z0q � �y0z0px� x0q � x0z0py � y0q.

Problem 10.4. Determine the length of the arc of the curve u � 0 on the surface

pSq : ÝÑr pu, vq � pu2�vqÝÑi �pu�v2qÝÑj �pu�vqÝÑk between the pointsM1pu � 0, v � 0q
and M2pu � 0, v � 1q.

Solution :

We calculate the partial derivatives of the functions x � xpu, vq � u2 � v,

y � ypu, vq � u� v2 and z � zpu, vq � u� v.$'''''&'''''%
x1upu, vq � 2u

y1upu, vq � 1

z1upu, vq � 1

;

$'''''&'''''%
x1vpu, vq � 1

y1vpu, vq � 2v

z1vpu, vq � 1

.

E � 4u2 � 1� 1 � 4u2 � 2;

F � 2u� 2v � 1;

G � 1� 4v2 � 1 � 4v2 � 2.

ds2 � 2p2u2 � 1qdu2 � 2p2pu� vq � 1qdudv � 2p2v2 � 1qdv2.
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Since u � 0 ùñ du � 0 ùñ ds2 � 2p2v2 � 1qdv2.

lpM1M2q � I �
» 1

0

?
4v2 � 2dv � 2

» 1

0

c
v2 � 1

2
dv � 2

» 1

0

v1
c
v2 � 1

2
dv

� 2v

c
v2 � 1

2

�����
1

0

� 2

» 1

0

v2 � 1
2
� 1

2b
v2 � 1

2

dv

� 2

c
3

2
� 2I �

» 1

0

1b
v2 � 1

2

dv

�
?
6� 2I � ln

�
v �

c
v2 � 1

2

������
1

0

ùñ

3I �
?
6� ln

�
1�
c

3

2

�
� ln

c
1

2
ùñ

lpM1M2q � I �
?
6

3
� 1

3
ln
�?

2�
?
3
	
.

Problem 10.5. Determine the angle between the curves v � 6u and v � �6u which

lie on the cylinder pSq : x2 � y2 � 9.

Solution :

The parametrisation of the cylinder is pSq :

$'''''&'''''%
x � 3 cos v

y � 3 sin v

z � u

, v P r0, 2πs, u P R.

The partial derivatives of x, y, z are

$'''''&'''''%
x1upu, vq � 0

y1upu, vq � 0

z1upu, vq � 1

;

$'''''&'''''%
x1vpu, vq � �3 sin v

y1vpu, vq � 3 cos v

z1vpu, vq � 0

.

E � 1; F � 0; G � 9 sin2 v � 9 cos2 v � 9.

The first quadratic form is:

ds2 � Edu2 � 2Fdudv �Gdv2 � du2 � 9dv2.
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The intersection point of the curves is

$'&'%v � 6u

v � �6u
ðñ u � v � 0 ùñ

Mp3, 0, 0q.
For pΓ1q : v � 6u ùñ dv � 6du.

For pΓ2q : v � �6u ùñ δv � �6δu.

cos?ppΓ1q, pΓ2qq � Eduδu� F pduδv � δudvq �Gdvδv?
Edu2 � 2Fdudv �Gdv2

?
Eδu2 � 2Fδuδv �Gδv2

� 1duδu� 0� 9 � 6 � p�6qduδu?
du2 � 9 � 36du2 � ?δu2 � 9 � 36δu2

� �323duδu

325duδu
� �323

325
ùñ

?ppΓ1q, pΓ2qq � π � arccos
323

325
.

Problem 10.6. Prove that the curves pΓ1q : u�ev � 0 and pΓ2q : u2�u�1�e�v � 0

which lie on the surface pSq :

$'''''&'''''%
x � u cos v

y � u sin v

z � u� v

, are orthogonal.

Solution :

The partial derivatives of x, y, z are

$'''''&'''''%
x1upu, vq � cos v

y1upu, vq � sin v

z1upu, vq � 1

;

$'''''&'''''%
x1vpu, vq � �u sin v

y1vpu, vq � u cos v

z1vpu, vq � 1.

E � cos2 v � sin2 v � 1 � 2.

F � �u cos v sin v � u sin v cos v � 1 � 1.

G � u2 sin2 v � u2 cos2 v � 1 � u2 � 1.

The first quadratic form is:
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ds2 � Edu2 � 2Fdudv �Gdv2 � 2du2 � 2dudv � pu2 � 1qdv2.
For pΓ1q : u � ev ùñ du � evdv.

For pΓ2q : u2 � u� 1 � e�v ùñ p2u� 1qδu � �e�vδv ùñ δu � � 1

evp2ev � 1qδv,
G � u2 � 1 � e�v � u � e�v � ev.

The curves are orthogonal if

Eduδu� F pduδv � δudvq �Gdvδv � 0ðñ
2evdv

�
� 1

evp2ev � 1qδv


� evdvδv � 1

evp2ev � 1qδvdv � pe�v � evqdvδv � 0ðñ

dvδv

�
� 2

2ev � 1
� ev � 1

evp2ev � 1q � e�v � ev


� 0ðñ

�2ev
evp2ev � 1q �

1

evp2ev � 1q �
2ev � 1

evp2ev � 1q � 0ðñ
�2ev � 1� 2ev � 1

evp2ev � 1q � 0 which is true, so the curves are orthogonal.

Problem 10.7. Let pSq :

$'''''&'''''%
x � u2 � v2

y � u2 � v2

z � uv

be a surface.

a) Write the first fundamental quadratic form of pSq.

b) Determine the element of arc for the curve pΓq : v � 2u which lies on the

surface.

c) Determine the length of the arc M1M2 on the curve pΓq where M1pu � 1q,
M2pu � 2q.

d) Determine the element of area for the surface pSq.

Solution :
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a) The partial derivatives of x, y, z are:

$'''''&'''''%
x1upu, vq � 2u

y1upu, vq � 2u

z1upu, vq � v

;

$'''''&'''''%
x1vpu, vq � 2v

y1vpu, vq � �2v

z1vpu, vq � u

.

E � 4u2 � 4u2 � v2 � 8u2 � v2;

F � 4uv � 4uv � uv � uv;

G � 4v2 � 4v2 � u2 � 8v2 � u2.

The first quadratic form is:

ds2 � Edu2 � 2Fdudv �Gdv2 � p8u2 � v2qdu2 � 2uvdudv � p8v2 � u2qdv2.

b) pΓq : v � 2u ùñ dv � 2du.

ds2 � p8u2� 4u2qdu2� 2u2udu2du�p8 � 4u2�u2q4du2 ùñ ds2 � 152u2du ùñ
ds � ?

152udu.

c) lpM1M2q �
» 2

1

ds �
» 2

1

?
152u du �

?
38u2

���2
1
�
?
38p4� 1q � 3

?
38.

d) The element of the area is

dσ �
?
EG� F 2dudv �

a
p8u2 � v2qp8v2 � u2q � u2v2dudv

� 2
?
2
?
u4 � 8u2v2 � v4dudv.

10.6 Problems

Problem 10.8. Let pSq : z � x2 � y2 � 2y � 4x� 5 be a surface. Determine:

a) The tangent plane and the normal line to the surface at Mp1,�2,�6q.

b) The first fundamental form of the surface pSq.
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c) The element of area of the surface pSq.

Problem 10.9. Determine the length of the arc of the curve v � ln pu�?
u2 � 9q

on the surface pSq : ÝÑr pu, vq � u cos v
ÝÑ
i � u sin v

ÝÑ
j � 3v

ÝÑ
k between the points

M1pu � 1, v � 2q and M2pu � 2, v � 3q.

Problem 10.10. Determine the element of area of the surface

pSq : ÝÑr pu, vq � u
ÝÑ
i � v

ÝÑ
j � uv

ÝÑ
k .

Problem 10.11. Determine the area of the sphere.

Problem 10.12. Write the cartesian form of the surface

pSq : ÝÑr pu, vq � u3ÝÑi � uv
ÝÑ
j � p3u� v2qÝÑk .

Determine the first fundamental form of the surface. Write the equations of the

tangent plane and normal line of the surface pSq at Mp1, 0, 3q.

Problem 10.13. Let pSq : ÝÑr pu, vq � pu�vqÝÑi �pu�vqÝÑj � u2 � v2

2

ÝÑ
k be a surface.

Determine the first fundamental form of the surface. Write the integral which gives

the length of the curve pΓq : v � 1 on the surface from u � 1 and u � 2.

Problem 10.14. Let pSq : ÝÑr pu, vq � p2 � u2q cos vÝÑi � p2 � u2q sin vÝÑj � u
ÝÑ
k be

a surface. Determine the first fundamental form of the surface. Write the integral

which gives the length of the curve pΓq : v � 0 on the surface from u � �1 to

u � 2. Calculate the cosine of the angle between the curves pΓ1q :

$'&'%u � 0

v � t

and

pΓ2q :

$'&'%u � 2t

v � t� π

on the surface pSq at the point Mpu � 0, v � πq.
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Problem 10.15. Compute the first fundamental form of the following surfaces:

a) elliptic paraboloid pSq : ÝÑr pu, vq � au cos v
ÝÑ
i � bu sin v

ÝÑ
j � u2ÝÑk .

b) hyperbolic paraboloid pSq : ÝÑr pu, vq � au cosh v
ÝÑ
i � bu sinh v

ÝÑ
j � u2ÝÑk .
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