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Preface

This book is addressed to engineering students studying Linear Algebra, Analytic
and Differential Geometry in the first year of college.

The book is structured in several chapters, each of them starting with a brief
presentation of theoretical notions: definitions, properties, theorems, etc., without
pretending to have gone into detail in their presentation or to be rigorously proved,
many of the theorems being given only as a statement. After the theoretical part
follows a section in which problems solved in detail are presented and then a series
of problems proposed to be solved.

The purpose of the book is for the readers to be able to go through the mathe-
matical concepts presented as comfortably as possible, often perceived as difficult,
both through their succinct presentation and their highlighting through illustrative
figures and through the examples and solved problems, and then to have acquired
the skills and the working techniques for solving other exercises and problems, but
also for their application in engineering-specific study subjects.

Last but not least, the author gratefully acknowledge the support of Prof. Daniela
Inoan and Prof. Adela Capata who have carefully read the manuscript suggesting

valuable improvements.



1

Matrices. Determinants. Systems of linear

equations

1.1 Determinants

For every square matrix A = [a;;];,_1; € M,(R) one can assign a scalar denoted

j:17n

det(A) called the determinant of A. In extended form we write

aix Q2 -+ Aip

ag1 Qg2 -+ QA2
det(A) =

Ap1 Ap2 - Ann

Definition 1.1. Let A € M,,(R). The determinant of A is the scalar defined by

the equation

det(A) = Z sgn (O’) A1o(1) " A25(2) * - - - * Qno(n)-

oSy

Let A € M,(R) and let k£ be an integer, 1 < k < n. Consider the rows iy ...

and the columns j; ... j; of A. By deleting the other rows and columns we obtain a
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submatrix of A of order k, whose determinant is called a minor of A and is denoted

by M7'7% By deleting the rows 4 ... and the columns 7, ...j, of A we obtain

1.0 "

the complementary minor of M/'"7% denoted by CM/'~7*.

110k 110k

A method of calculating determinants is called row expansion and column ex-

pansion and it is derived from Laplace Theorem.

Theorem 1.2. Let A e M,(R). Then
(i) det(A) = X, ai(—1)T*CMF, - expansion by row i;
(ii) det(A) =>,_, akj(—l)k“C’Mg, - expansion by column j.

Definition 1.3. A square matriz A € M,,(R) is called singular if its determinant

is 0, det(A) = 0. If det(A) # 0 the matriz A is called nonsingular.

Properties of the determinant.
Let A, B € M, (R) and let a € R. Then:
(1) det(AT) = det(A).

(2) A permutation of the rows, (respectively columns) of A multiplies the deter-

minant by the sign of the permutation.
(3) A determinant with two equal rows (or two equal columns) is zero.

(4) The determinant of A is not changed if a multiple of one row (or column) is

added to another row (or column).

(5) det(A™1) = m.

(6) det(AB) = det(A) det(B).
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(7) det(ad) = a” det(A).

(8) If A is a triangular matrix, i.e. @;; = 0 whenever ¢ > j (a;; = 0 whenever

i < j), then its determinant equals the product of the diagonal entries, that is

n

det(A) = a1 -Aa22 ... " App = Hi:l Q.

1.2 Rank of a matrix

Rank. Elementary transformations.
A natural number r is called the rank of the matrix A € M,, ,(R) if

1. There exists a square submatrix M € M,(R) of A which is nonsingular (that
is det(M) # 0).

2. If p > r, for every submatrix N € M,(R) of A one has det(/N) = 0.

We denote rank (A) = 7.

Definition 1.4. The following operations are called elementary row transformations

on the matriz A € M,, ,(R):
1. Interchanging of any two rows.
2. Multiplication of a row by any non-zero number.

3. The addition of one row to another row.

Similarly one can define the elementary column transformations.

We use elementary transformation in order to compute the rank.

Namely, given a matrix A € M,, ,,(R) we transform it by an appropriate succes-
sion of elementary transformations into a matrix B called the echelon form of the

initial matrix, such that:



1.3 Systems of linear equations 9

e the diagonal entries of B are either 0 or 1, all the 1’s preceding all the 0’s on

the diagonal.
e all the other entries of B are 0.

Since the rank is invariant under elementary transformations, we have rank (A) =
rank (B), but it is clear that the rank of B is equal to the number of 1’s on the

diagonal.

Matrix Invertion
For a square matrix A € M, (R), the matrix B € M,,(R) that satisfies
AB =1, and BA =1,

(if it exists) is called the inverse of A and is denoted by B = A~!. Not all square
matrices admit an inverse (are invertible). An invertible square matrix is called

nonsingular and a square matrix with no inverse is called singular matrix.

Theorem 1.5. If a square matriz is reduced to the identity matriz by a sequence
of elementary row operations, the same sequence of elementary row transformations

performed on the identity matrix produces the inverse of the given matriz.

1.3 Systems of linear equations

Recall that a system of m linear equations in n unknowns can be written as

a1171 + a19T2 + - A1, Ty = by

211 + A22%2 + -+ - A2p Ty = Do
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Here z1,x5,...,x, are the unknowns, aii,as,...,an, are the coefficients of the
system, and by, b, ..., b, are the constant terms.
A systems of linear equations may be written as Ar = b, with A = (a;;),_1;; €
j:]-vn

Mn(R), x € M, 1 (R) and b e M,, ;(R).
The matrix A is called the coefficient matriz, while the matrix [A[b] € M, +1(R),
[Alb];; = o
biifj=n+1
is called the augmented matriz of the system.
We say that xi, xs, ..., 7, is a solution of a linear system if =y, xo, ..., x, satisfy
each equation of the system. A linear system is consistent if it has a solution,
and inconsistent otherwise. According to the Rouché-Capelli theorem, a system

of linear equations is:

e inconsistent if rank(A) > rank(A), which means that the system has no

solution.

e consistent if rank(A) = rank(A), which means that the system must have

at least one solution.

— The solution is unique if and only if rank A = n, where n is the number

of variable.

— The system has infinitely many solutions if rank A < n. In this case

the general solution has k free parameters where k = n — rank A.

In row reduction, the linear system is represented as an augmented matrix [A|b].
This matrix is then modified using elementary row operations until it reaches reduced

row echelon form. Because these operations are reversible, the augmented matrix
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produced always represents a linear system that is equivalent to the original. In this
way one can easily read the solutions.

A homogeneous system is equivalent to a matrix equation of the form
Az =0,

where O € M,, ; is the matrix having all the entries zeros. Obviously a homogeneous
system is consistent, having the trivial solution z; = 2o =--- =z, = 0.

It can be easily realized that a homogeneous linear system has a non-trivial
solution if and only if the number of leading coefficients in echelon form is less than

the number of unknowns, in other words, the coefficient matrix is singular.

1.4 Solved Problems

1 2 -1 3
2 -1 3 1
Problem 1.1. Compute the following determinant D =
-1 4 -1 0
0o 2 1 1

Solution: We will apply the expansion by a row/column. In order to do that,
is more efficient to use properties of determinants to obtain on a row or column as
many of zero’s we can. So, we choose a;; as leading coefficient and we transform

the elements of the first column in 0.

1 2 -1 3 1 2 -1 3
P I R N B e I R A
1 4 -1 0 0 6 -2 3
0 2 1 1 02 1 1
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-5 5 =5 -1 1 -1 0 1 0
1 (=) 6 —2 3 |=5|6 —2 3 |5y 9 1=

2 1 1 2 1 1 3 1 2
=5-1-(=1)2 = —5(8—-3)=-25

3 2
—-2—q -1 1
Problem 1.2. Solve the equation 5 S 4 = (.
5 1 2—a

Solution: Of course, we can apply triangle or Sarrus rule, but, is much easier
if we apply properties of determinants so that we have the decomposition of the

determinant into factors.

—2—a -1 1 —2—a —1 0
5 —l-a 4 |=0Z&L] 5 1_4 3-q|=0e=
5 1 2—a 5 1 3—a
—2—a -1 0 —2—a -1 0
(3—a) 5 —1—-a 1 :0—(}22:+£%3(3_a) 5 1—q 1|=0<=
5} 1 1 0 24+a 0
(3— )2 + a)(~1)*? _25_“ (1) 0= (B-a)2+a)(-2-a)=0—
a€{-2,3}.

Problem 1.3. Compute the rank of the following matrices using Gauss-Jordan

elimination method.

2 0 2 0 2 2 1 3 -1

01 010 3 -1 2 0
A= B =

21 0 21 1 3 4 -2

01 010 4 -3 1 1
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Solution: We will apply row transformation so that the last matrix fulfill the

two conditions:
C.1 The elements below the diagonal are all zero.

C.2 All non-zero elements on the diagonal are in front of the zeroes.

[ 2020 2 (10 1 0 1 |
001010 |-merdr |01 0 1 0 | myrny morns
210 2 1 - 01 -2 2 -1 -
01010 01 0 1 0
(10 1 0 1 ]

01 0 1 0

00 —2 1 -1

00 0 0 0

The rank of A is rank (A) = 3 (we count the non-zero rows in the last form, after
we check the conditions C.1 and C.2).

For the matrix B we will apply the same procedure.

The conditions C.1 and C.2 are fulfilled so, rank (B) = 2.

Problem 1.4. Find the inverses of the matrix A by using the Gauss-Jordan elimi-

2 1 3 —1 1 3 4 -2
3 =12 0 | Rror | 3 =1 2 0 | 3Ri+R~2R +Rs~4R1+Rs
1 3 4 2| |21 3 4 -
4 -3 1 1 4 -3 1 1
(1 3 4 2] [ 1 3 4 2]
0 =10 =10 6 | -imem, sme2m | 0 =10 —10 6
0 -5 -5 3 - 0 0 0 0
0 —15 —15 9 0 0 0 0
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1 -1 0

0o -1 3
nation method, A =

-1 1 0

2 -1 -1

Solution: We will apply row transformation to the matrix A and to I, so that

the matrix A is transformed into identity matrix I,. The matrix in which I, changes

after the same succession of row transformations will be the inverse of A, i.e. A1

1 -1 0 2 |10
0 -1 3 —1 | 01
11 0 -1 ] 00
2 1 -1 1 |00
(1 1 0 2 | 1 0
0 -1 3 -1 | 0 1
00 0 1 | 1 0
0 1 —1 =3 | =2 0
(1 10 2 | 1 00
0 -1 3 1] 0 10
00 0 1 101
0 0 2 4| -2 10
(1 -1 0 2 10
0 1 =3 1 | 0 -1
00 1 -2 | -1 1
00 0 1 | 1 0

0

o =R O O O = O

0

= o O

| = [a) ] ]

R1+R3,—2R1+R4

Ro+Ry

$R4,R3R4,—Ro

o O

S =

2R4+R3,—R4+R2,—2R4+Ry
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1 -1 0 0] -1 0 =20

001 =30 | -1 =1 =1 0 |spyn

00 1 0| 1 L 2 1|

00 0 1 1 0 1 0

(1 100 10 20| (1000 1%33_

001 00 | 2 35 5 3 |&yr 0100|2353

00 10| 1 L2 L 0010|1121

0 0 01 1 0 1 0 00011010
_1%3%_
2 25 3

We obtain in the left hand side the identity matrix I, so A~! = 2 2
L3 2,
1010

Problem 1.5. Solve the following systems of linear equations by using Gauss-Jordan

eliminatign method.
T1+ 229 + 43 =4

(Sl) 4 51’1 + X9 + 21‘3 = -7

3ZL‘1—$2+£L‘3=—6

Y

r—y+z+2=1
—2r+2y—32+3t =2
(S2) <
rT—y+224+5t=—-1

—r+y—3z+2t=4

N

ZE1—2I2+3$3+4JI4=0
—T1 +x2 — 23 — 224 =0
Tog— 213 — 224 =0

I1—3$2+5JI3+65L’4=0

\

Solution:
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(S1): We write the system (.S;) using the matrix form and we will transform it

using elementary row transformation so we can read easier the rank of the system

matrix and the rank of the augmented matrix.

1 2 4 4 1 2 4 4
—5R1+R2,—3R1+R3 —%Rz
5 1 2 -7 = 0 -9 -—18 =27 =~
3 -1 1 —6 0 -7 —11 —18
1 2 4 4 1 2 4 4
7TRa+Rs —1Rs,—2R3+Ry,—4R3+R,
0 1 2 3 =~ 01 2 3 ~
0 -7 —11 —18 00 3 3
1 20 0 1 00 -2
—2R2+Rq
010 = 010 1
0 01 1 0 01 1
rank (A) = rank (A) = 3, we have 3 unknowns, so the system have a unique
solution and we can read it from the last form, which is x; = =2, 2, = 1, 23 = 1.
1 -1 1 2 1
(S5): -2 2 =33 2 2R+ Ra,— Ry +Rs R+ Ra
1 -1 2 5 —1
-1 1 -3 2 4
1 -1 1 2 1
0 0 —-17 4 Ra+13,—2Ra+ 1y
0o 0 1 3 —2
0 0 -2 4 )
1 -1 1 2 1 1 -1 1 2 1
o 0 -1 7 4 Rs+Ry 0O 0 -1 7 4
0 0 0 10 2 0 0 0 10 2
0 0 0 -10 -3 0 0 0 O -1
We can observe that rank (A) = 3, rank (A) = 4, so the system is inconsistent.
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Remark: if we rewrite the system from the last matrix form, we will get

-

r—y+z+2t=1

—3z+Tt=4
10t =2
0=-1

(S2) <

\

and is obviously that the last equation is false, so it doesn’t exists z, vy, z,t € R such
that the equations of (Sy) are fulfilled.

(S3): This system is an homogenous one, so it will have at least the trivial
solution xy = x9 = 3 = x4 = 0. We verify the rank of this matrix to determine if

the system has another Solution§.

1 -2 3 4 |0
-1 1 -1 =2 0 | Ri+Re,—Ri+Ry
0 1 -2 -2 |0 -
1 -3 5 6 |0

(1 2 3 4 | o] (1 234 | 0]
0 -1 2 2 | 0| mempmen, |0 -1 22 |0
01 -2 -2 | 0 N 00 00 | 0
0 -1 2 2 | o 00 00 | 0

rank (A) = rank (4) = 2, but we have 4 unknowns. So, 2 of them will become

free variables, for example x3 = «, x4 =  (the rank is 2 because the minor formed
1 -2

from the coefficients of x; and x5 and the first two equations is not zero, =
0 -1

—1 # 0, so, x; and x9 remain unknowns).

We rewrite the system from the last matrix form and we will get:
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r1 — 2wy = =30 — 4p3
gy = —2a—28

(Ss)

We can calculate 1 = o and xy = 2o + 25. So, the general solution of the

system (S53) is S3 = {(«, 2a + 26, o, B)|av, B € R}.

1.5 Problems

Problem 1.6. Compute the following determinants.

4 —=x -5 2 l1—=z —1 -1

D, = 5 —7—x 3 , Dy = -3 —4-x -3 |,
6 -9 4 —x 4 7 6—2x

1 1 0 1 1 -1 0 2

1 0 0 -1 0o -1 3 -1
D3 - ) D4 =

1 -1 0 -1 -1 1 0 -1

0O 0 -1 1 2 -1 -1 1

Problem 1.7. Compute the rank of the following matrices by using the Gauss-

Jordan elimination method.

- 1 -1 2 3
2 -3 0 4
2 1 4 -1
A=|1 -1 5 2 |,B= ;
0 -1 8 5
5 —7 5 10
- 2 -2 4 6

0 0 1 5 -8 =5 —12
0 -1 3 =7 8 9 13

I
—_
w N} o [\ —
|
—
—_
I
|
—_
[\)
—_
—_
w
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Problem 1.8. Solve the following systems of linear equations by using Gauss-Jordan

eliminatign method.

r+2y+42—-3t=0
r+y—z2—t=0
3x 4+ 5y +62—4t=0
(S1) 4 ; (S2)y —x—y+224t=0 ;
3r+8y+24z—-19t =0
r+y+z—t=0
dor +5y — 22+ 3t =0
( (
T1+ X9+ a3 — 224 —3x5 =0 r+2y—32=0
—x1+3x9 — 13— 224 — 25 =0 r—y+22—1t=0
(S3) ;o (S4) 4
—xr1+T9—23+ 25 =0 —2r—y+z+t=0
T1+To—x4— x5 =10 k—x—8y+132—2t=0

Problem 1.9. Find the inverses of the following matrices by using the Gauss-Jordan

elimination method.

- 1 1 0 1
2 2 3 1 2 3
1 0 0 -1
A= 1 -1 0|,B=|012],C= ;
1 -1 0 -1
-1 2 1 2 21
- 0 0 -1 1
1 -1 0 2
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Vector spaces

2.1 Definitions and Properties

Definition 2.1. A vector space V over a field F (or F vector space) is a set V
with an addition + (internal composition law) such that (V,+) is an abelian group
and a scalar multiplication - : FxV — V, (a,v) = a-v = av, satisfying the following

properties:

(1) av+w) = av+aw, Va e F,Yo,we V
(2) (a+ B)v = av + Bv,Ya, B F,Yve V
(3) a(Bv) = (aB)v

(1) 1-v=0vYveV

The elements of V' are called vectors.

The elements of I are called scalars.

The scalar multiplication depends upon F.

e [f F =R we have the vector space over R or the real vector space.
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e If F = C we have the vector space over C or the complex vector space.

In what follows we will consider F = R, so we will deal with the real vector space.
Remark. From the definition of a vector space V over R the following rules for

calculus are easily deduced:
o -0y =0y
o Op-v =0y
o a-v=0y=a=0g or v=_0y.

Definition 2.2. Let V' be a vector space over R. A subset U < V is called subspace

of V over R if it is stable with respect to the composition laws, that is,
1. v+uelU,VvuelU
2. avelU,VaeRvelU

and the induced operations verify the properties from the definition of a vector space

over R.

Propozition 2.3. Let V' be a R vector space and U < V' a nonempty subset. U 1is

a vector subspace of V over R iff the following conditions are met:
e v—uelUVvuelU
e avelUVae R, YveU

Propozition 2.4. Let V' be a R vector space and U < V' a nonempty subset. U 1is

a vector subspace of V' over R iff

av+ puelU, Va,B€R, Yu,veU.
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Remark 2.5. Og is a scalar, so Yu € U we have that Og - u = Oy € U. Therefore

each vector subspace of V' has at least one element, namely Oy .

Propozition 2.6. Let V be a vector space and U, W < V' two vector subspaces. The
sets

UnW={vlvelU andve W }

and

U+W ={u+wluelUweW}

are subspaces of V.
e The subspace U n W is called the intersection vector subspace.
e The subspace U + W is called the sum vector subspace.

Definition 2.7. Let V' be a vector space and Uy, Uy < 'V subspaces. The sum Uy+ U,
is called direct sum and is denoted by Uy D Us, if every u € Uy + Us can be written

uniquely as u = uy + ug where uy € Uy, ug € Us.

Propozition 2.8. Let V' be a vector space and U, W < V' be subspaces. The sum
U+ W is a direct sum iff U n W = {0y }.

Definition 2.9. The sum ajvy + asvs ... a,v, 1S called a linear combination of

v1,...,0, €V, V is R vector space with scalars aq, ..., a, in R.

Definition 2.10. A nonempty set L = {vy,...,v,} <V is called a linearly inde-

pendent set of vectors if
avy + ..o, =0y = a; =0

foralli=1,n, o; € R.
A nonempty set of vectors which is not linearly independent is called linearly

dependent.
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Definition 2.11. Let V' be an R wvector space. A nonempty set S < V is called
system of generators for V if for every v € V there exists a finite subset

{v1,...,v,} <€V and the scalars oy, ..., a, € R such that v = ayvy + -+ + @ Vp.

Propozition 2.12. Let V be a vector space over R and U < V nonempty, U =

{v1,v9,...v,}. The set

<U>={Zozivi: aieRandvieU,Vizl,_n,neN}

i=1

s a vector subspace over R of V.

The set (U) is the subspace generated by U and is also denoted by
(U) = spanf{vy, v, ... vy} = {101 + agve + -+ + auunlag € R, @ = 1,n}.

Definition 2.13. A subset B < V is called basis of V if it is both a system of
generators and linearly independent. In this case every vector v e V' can be uniquely

written as a linear combination of vectors from B.

Some important theorems regarding the notion of basis are enumerated in the
sequel.
If V is a finitely generated R vector space and S a finite system of generators of

V' then:
e Every vector space V # 0 has a basis.
e From every finite system of generators S, S # {0} one can extract a basis.
e Every linearly independent set L < S can be completed to a basis of V.

e Every basis of V' is finite and has the same number of elements.
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Definition 2.14. Let V # {0} be an R wvector space finitely generated. The number
of elements in a basis of V' is called the dimension of V, is denoted by dimgV,

and it does not depend on the choice of the basis.

For V.={0} , dimgV = 0.
Corolary 2.15. Let V' be a vector space over R of finite dimension, dimgrV = n.

1. Any linearly independent system of n wvectors is a basis. Any system of m

vectors, m > n is linearly dependent.

2. Any system of generators of V' which consists of n vectors is a basis. Any

system of m vectors, m < n is not a system of generators.

Remark 2.16. The dimension of a finite dimensional vector space is equal to any

of the following:
e The number of the vectors in a basis.
e The minimal number of vectors in a system of generators.
e The maximal number of vectors in a linearly independent system.

Theorem 2.17. If U and W are two subspaces of a finite dimensional vector space
V', then
dim(U + W) = dimU + dimW — dim (U n W) .

Remark 2.18. For V. = R" the vector space over R, a vector x € R" has the form

€

T
x = ? , or & = (T1,%9,...,2,). We will use both of the notations in what

T

follows, as is convenient.
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The internal operation + is defined by

1+
T + Yo
Tty = )
| Tn T Yn |
%
Y2
where y =
The scalar multiplication (the external operation) is defined by
T T
) QAT
ar = o = ,a € R.
Tn axy,

The dimension of R™ is dimR"™ = n, and the canonical basis of R™ is

c B . B . B T
1 0 0
0 1 0

B.=<e = , €2 = 7oy En = 0
0 0 1

B _ B _ B 4

e; 18 such that has a 1 on the i ’th position and 0 in the rest.
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2.2 Local computations

Let R™ be the R vector space, with the basis B = {ey,...,e,}. Any vector v € R"

can be uniquely represented as

n
v=2aiei=a161+---+anen.

i=1
The scalars aq,...,a, are called the coordinates of the vector v in the basis B.
If we have another basis B" = {e},...,e,}, the coordinates of the same vector in

the new basis change.

We have
vzalel—i—---—i—anenzblell—i—---—i—bne,n.
ai
az | . . . .
v = is the representation of the vector v in the basis B and
Qn,
b
b2 . . . . ’
v = is the representation of the vector v in the new basis B'.
bn
If we consider the representation of the vectors e),..., e, with respect to the

basis B, we have:

€, = anne + -+ apen

€, = Gapiey+ -+ aupey

Let A = [aij]

7

J

7 be the matrix formed by the coefficients in the above equations.
1n
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The columns of this matrix are given by the coordinates of the vectors of the
new basis B with respect to the old basis B.
The matrix A’ - i.e. the transpose of the matrix A - is called the transition

matrix from B to B’ and is denoted by P55,

Remarks
e The transition matrix from a new basis B, = {v1,vs,...,v,} to the canonical
basis B, = {e1, e, ...,¢e,} is the matrix having as columns the components of
the vectors vy, v, ..., v,.

e If we consider the change of the basis from B’ to B with the matrix PPB and
the change of the basis from B" to B with the matrix PBI’B”, the change of
the basis from B” to B is:

/

, ’ ron
PB,B _ PB,B 'PB ,B )

e If B" = B one has

/

PB,B’PB’,B ], e (PB,,B)—I _ pB.B

e The relation between the representation of the same vector in two bases, B
and B’ is:

7
VB = PB’B - Upr.

2.3 Solved Problems

Problem 2.1. Determine which of the following sets are vector subspaces of R3

over R:
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o S3={(w1,22,23) € R3|$1_J54 — ac23—3 _ x35+1};

o Sy ={(21,22,73) € R3|f—12 =2 = By

s 85 = {(xh'rzvm?)) € R3||ZE2| = I +ZC3}’
* 5= {(I1,$2,$3) € R3|CL’1 — 39 + ng — 0}

Solution: Using the Remark 2.5 we can easily observe that (0,0,0) is not an
element for Sy and Ss, so these two sets are not vector subspaces of R? over R.

It can be proven that only the sets having the conditions given as an homogeneous
system of linear equations are vector subspaces of R™. So, the sets S5 and Sg are
not vector subspaces of R3. In what follows we prove that S5 and Sy are not vector
subspaces of R3.

Because in the definition 2.2 it is use V, we can prove that S; and Sg are not
vector subspaces of R? by just choosing some examples that doesn’t satisfy at least
one of the conditions in the definition.

For S5 let’s choose u = (1,4,3) € S5 and v = (1, —4, 3) € S5, but we can see that
u+v=1(20,6)¢Ss5 (because |0 # 2 +6).

For Sg we can choose u = (1,1,1) € Sy and v = (1,1,—1) € S, but it is clear
that u + v = (2,2,0) ¢ Sg (because 2 —3 -2+ 2-0% # 0).

Let’s prove now that S; and Sy are vector subspaces of R? over R.

S1: We will use the Proposition 2.4. So, let x = (21, 22, 23) and y = (y1,¥2,Y3) €
S1, so we have x1 — bxy + 4x3 = 0 and y; — dys + 4y3 = 0. That means that

a(xy — brgy + 4ws) = 0 and B(y; — Sys + 4y3) =0 for all o, f € R

a(xy — bry + 4dws) + f(yr — bys + 4y3) =0 for all o, f € R
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542

ary — Saxy + daxs + By — HPys +40ys =0 for all a, f e R «—=
axy + By — Slaxy + Py2) + 4(axs + Bys) =0 for all o, f € R <

ax + By = (axy + Py1, axe + Byq, axs + Pyz) € S, so Sy is a vector subspace
of R3 over R.

We will rewrite the condition in the definition of Sy, i.e. 5 = 2 = 2
31‘1 + 2.’132 =0
equivalently
5%2 — 3%3 =0
31’1 + 25(]2 =0
Let z = (x1,29,23) and y = (y1,¥2,y3) € Sy, SO we have
5ZU2 — 31’3 =0
3y1+2y220 3x1+2x2+3y1+2y2=0
and — —
5y2—3y3=0 5x2—3m3+5y2—3y320

3(x1+y1) +2(xa +y2) =0
= x+y=(r1+y, T2+ Y2, T3+ Yy3) €Sy

5(xg +y2) —3(x3+y3) =0

Let © = (21,29, 23) and a € R.

311+ 215 =0 a3z + 225) =0 3oz, + 2awe = 0
= — —

519 — 3x3 =0 a(bry — 3w3) =0 Saxy — 3axs = 0
ax = (axy, ary, axs) € Sy.
We just proved both x + y € S, and az € Sy, so Sy is a vector subspace of R?

over R.

Problem 2.2. Prove that 8 = < v; = 1 , Vg = 2 yu3 = | —1 is
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a basis for R®. Determine the coordinates of the vector v = 4 in the basis 8.
-9
Solution: B is a basis for R? if the cardinal of B is 3, which is obvious, and
if the vectors vy, vy, v3 are linearly independent.
vy, Ug, v3 are linearly independent if av; 4+ bvg 4+ cv3 = Ops <= a =b=c = 0.

avy + bvg + cvz = Ops <

—3a —5b c

[ 2a 4+ 3b+c 0
a+2b—c =0 | <=
—3a—5b+c 0

2a+3b+c=0
a+2b—c=0
—3a—5b+c=0
The vectors are linearly independent if @ = b = ¢ = 0 is the unique solution of
this system of linear equations. So, we will compute the rank of the system matrix.

In this case is faster if we just determine the determinant of the matrix, since is

obviously that the rank is at least 2.
2 3 1 3 5 0

D = 1 9 1 R2+R3£R2+R1

-3 -5 1 -2 -3 0
—-9+10=1#0.
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The rank = 3 equals the number of the unknowns and we have that the system
has a unique solution ¢ = b = ¢ = 0 and we can conclude that the vectors are

linearly independent therefore they form a basis in R3.

4
The vector v = 4 is given in the canonical basis of R?, i.e.
-9
1 0 0
Be=<ei=|[0[,e2a=]1 [|,e3=1] 0
0 0 1
a1
The coordinates of v with respect to the basis 8 are vy = Qs such that
a3
UV = 01U1 + Uy + (r3vs.
[ 4 | 2 3 1
4 = 1 + o 2 +taz| —1 | =
-9 -3 -5 1
[ 4 20 3an Qs
4 = o + 209 + | —a3 | =
-9 —301 —bBay Q3
| 4 | | 201 4+ 3ag + as
4 = a1 + 209 — a3 A
-9 —3a; — Do + a3

2a1+3a2+a3=4
a1+ 200 — a3 =4

—3041 — 5052 + a3 = -9
We can solve it using Gauss-Jordan elimination method.
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2 3 1 4
Rieo R
1 2 -1 o~
-3 -5 1 -9
1 2 -1 4
0 -1 3 B RQ;RB
0O 1 =2 3

a1+ 209 — g3 = 4
—ap + 3oz = —4

063:—1

We calculate a; = 1,0 = 1,3 =

—1,s0 vy =

-1 4
1 R272R1,{_,3R1+R3
1 -9
4
—4 —
-1
1
1
-1

Problem 2.3. Find the dimension and a basis for the subspace U < R*

- — —

U =span< u; = Uy =

—1

\ L .

2 0
1 1
, Uy = e
1 2
0 -3 )

Solution: By definition of U, the vectors form a system of generators of U. We

need to determine if they are linearly independent or, if not, the maximum number

of linearly independent vectors from this set. We compute a linear combination of

U1, Ug, U3, Uy to determine this.

auy + bug + cuz + duy = Ops <=

1 1 2
0 1 1
a +0 +c +d
0 1 1
—1 1 0

w N o= O
o o o o
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[ a | _b_ _20
0 b c
+ +
0 b c
—a b 0
[ a+b+2c | _O
b+c+d 0
b+ c+2d - 0
—a+b+3d 0

0 | _0_
d 0
—

2d 0

3d_ | 0

( a+b+2c=0
b+c+d=0
b+c+2d=0
—a+b+3d=0

of this system of linear equations.

matrix.
1 1

0 1
0 1
-1 1
_1 1 2
011
000

0 00

e}

1
1
0

;] W \} — (a]

Ri+R4

L _ | _ \
The vectors are linearly independent if a = b = ¢ = d = 0 is the unique solution

So, we will compute the rank of the system

1120
0111
0112
02 2 3

—Ro+R3,2Ro— R4

o o o =

o O =

S OO =N

R3+ R4

We can observe that rank = 3. That means that we have more than one solution

(rank (A) = 3 < the number of the unknowns = 4), so the vectors are not linearly

independent. Because the rank is 3, that means that there are 3 linearly independent

vectors from the list.

We will choose 3 of the vectors such that the rank of the

matrix formed by their components is 3. For instance, we can choose uq, us, uy4.

By = {u,us,uy} and dim (U) = 3.

Problem 2.4. Find a basis in the real space of solutions of the following systems



2.3 Solved Problems 34

of linear equations:

-

r+y—z+t=0

r—y+22—1=0

2r+y—2—-1t=0
kx—i—2y—32=0

-

r—y+z—t=0

(S2) Sz+y+2—2t=0

r—3y+z=0.
\

Solution: We will apply Gauss-Jordan elimination method for finding the

general solution of the system (S))

1 1 -1 1 |0
(5, 1 -1 2 -1 0 Ra—Fa 2Ry R, Ra— Ry
2 1 -1 -1 |0
1 2 -3 0 |0
(101 -1 1 | o]
0 -2 3 =2 0 Ro+2R3 Ro+2Rq
01 -1 3 | o -
0 1 -2 -1 |0
(101 -1 1 | o] (11 -1 1 | o]
0 -2 3 =2 | 0 |myn |0 -2 3 =2 |0
00 1 4 |0 00 1 4 |0
0 0 —1 —4 | 0 00 0 0 |o0

The rank(A) = rank (A) = 3 and we have 4 unknowns, so we have 1 free variable,

t=q.
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The system is equivalent to
(

T+YyY—z2=—«

\ —2y + 32 =2«

z = —4a.

We can calculate —2y = —32+2a = 12a+2a =y = —Ta,and v = —y+z—a =

Ta — 4o — a = 2.
The general solution is

([ 7] 3

2a
—Ta
—4o

Si

Il
A\

|aeR

«

So, a basis for 57 is Bg, = <

\ L _
Now we determine the general solution for the second system.

1 -1 1 —1
(S2): 1 1 1 =2
1 =31 0

1 =11 -1 | 0|

0 -20 1 | O
0 0 0 0 | O

0
0
0

( B ] 3 (I 1)
2 2
-7 —7
{a | « € R } = span < >
—4 —4
1 1
\ | A J \ L d J
2
-7
> and the dimension is dim (S;) = 1.
—4
1
1 -1 1 -1 0
Rl_RQ’iRl_RB 0 -2 0 1 RQ;RB
0 2 0 -1 0

The rank(A) = 2 and we have 4 unknowns, so we have 2 free variables, z = o and

y = (. The system is equivalent to

—a+ 305.

z—t=—-a+p
, therefore z = —a+ [+t =

t =23
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The general solution is
s L

A (I ]
a a
Sy = 1 0 |0475€R}:<
—a + 30 —«
o | ) o]
1 0
0 1
=1« + 0 | o, € R » = span <
—1 3
0 2
B B - T ] B 1)
1 0
0
A basis for (Ss) is Bs, = < ,
—1 3
0 2
\ L _ | a4 J

Y

> and the dimension is dim (S3) = 2.

Problem 2.5. Determine a basis and the dimension for each of the vector subspaces

U+Vand UV, if

V=A{(z,y,2,t) eR* |2 -2y — 2+t =0}

and

. o o _
1 0
2 1

U =span< u; = Uy = ,Ug =

1 1
1 0

\ | _ L _ |

Solution:

U+V={u+vlueU andveV}.
If we U and a basis of U is By = {uy,..
ie{l,... .k}

, Uy =

S, ug} then u = aqug + ... apug, o; € R,
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If ve V and a basis of V is By = {vy,...,v} then v = Siv; + ... By, Bi € R,
iefl,...1}.

Hence,

U+V ={u+vlueU andveV}

= {a1u1+ ...ozkuk+51v1 +...ﬁﬂ]1|0&z‘€R,i 217_]{, ﬁj ER,j = 1,[}
= span{uy, ..., Ug, V1, ..., U}
In what follows we will determine a basis in each of the subspaces U and V.

The dimension of the vector subspace U equals the rank of the matrix having as

columns the vectors uy, us, us, uy:

10 2 3 1 0 2 3
2 1 1 4 2R1—R2,R1—R3,R1—Ra4 0 -1 3 2 Ra—R3
11 1 3 0 -1 10
1 0 -2 -1 0 0 4 4
1 0 2 3 1 0 2 3
0O 0 2 2 0O 0 2 2
0 0 4 4 0 0 00
The rank of the matrix is 3, so dim U = 3. A basis for U is
( B ] B ] B R
1 0 2
2 1 1
By =< u = , Ug = , U3 = ;.
1 1 1
1 0 —2
\ L . | _ L _

For the vector subspace V we will write the general solution of the equation
x—2y—z+t=0. The rank is obviously 1, we have 4 unknowns, therefore the
general solution has 3 free unknowns, y = «, 2z = 8 and t = v and we calculate

x = 2a + 3 — 7. The general solution of the equation is
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200+ 3 — 7y
!
V=3 |a,B,7eR
g
. L ry _
i . L _ .
2a p —
«Q 0 0
={ + + |, B,7eR
B 0
u 0 | | 0 | 7] )
ST T _ -
2 1 -1
1 0 0
={Of ’I‘B +’Y |O{,ﬁ,’7€R>
0 1 0
0 0 1
\ | _ | _ | _ J
2 1 -1
1 0 0
V =span<{ v, = , Uy = , U3 = >
0 1 0
\ 0 0 1 )

A basis for V' is By = {vy, v9, v3}.

U+V = Spa’n{u17u27 us, U17/027,U3}‘

The dimension of U + V equals the rank of the matrix: )
10 2 21 —1 1 0 221 -1
21 1 10 0 2R1—Rp,Ry—Rs,R1—Ra 0 -1 3 3 2 =2 Ry Rj
11 1 01 0 0 -1 120 -1
10 -200 1 0 0 4 2 1 =2
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1
0
0

0

=~ NN W N

2
3
1

2

=N NN =

2R3—R4

1
0
0
0

2
3
2
0

3
1
0

N N =

3

The rank is 4, hence dim (U+V) = 4. A basis for U+V is By, y = {u1, ug, us, va}.

The dimension of the subspace S "'V is

dmUnV =dimU +dimV —dim(U +V) =3+3—4 =2.

If ve UnV then v can be uniquely written as a linear combination of vectors

from both By and By. Therefor, for v € U "V = v = aju; + agus + azuz =

Brv1 + Bovg + B3vs, which leads us to the system:
(

1

0
0
0

0
—1

0

0

S N W N

o1 — 2a3 = B3

Oé1+0(2+a3=52

w N

0

20424-()42-1-0[3:61

N N =

3

ar +2a3 = 26, + B2 — B3

— = N e

0
1
1
0

[ =

(see the rank of U + V).

0

The rank of the matrix is 4, and because the system has 6 unknowns, two of

them will be free unknowns, 5; = a and f3 = b.

The system is equivalent to:

-

20(3—252:(1,—b

(0= 15

a1+ 2a3 — Ps=2a—b

—g + 3a3 — 285 = 3a — 2b
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Because we only need one of the writings v = aju; + asus + agus or v =

[B1v1 + Bavg + B3vs is easy to choose the second one where 1 = a, 5 = 0 and 83 = b,

SO L N _ o -
2 -1 2 -1
1 0 1 0
v =avy + 0vy +bvs = a +b = v € span 4 , >
0 0 0 0
0 1 0 1
| _ | _ \ L _ | A J
T 7] B T Y
2 —1
1 0
Therefore, a basis for U n'V is By.v = < , >
0 0
0 1
| _ | A J
1 1 0
Problem 2.6. Provethat B=<v; =] 1 |, o= 1 |[,v3=1] 1 is a basis
1 2 2
for R3. Determine the transition matrix from the canonical basis to B. Determine
6
the coordinates of the vector v = | 3 | given in the canonical basis in the new
8
basis B.

Solution: The rank of the matrix having the coordinates of vy, v9, v3 as columns

is 3 since the determinant

110 110
D=|11 1|41 01]=-1=20.
12 2 10 2

Hence, the vectors are linearly independent therefore they form a basis in R3.
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6
The vector v = | 3 | is given in the canonical basis of R3,
8
1 0 0
e=<e1=]101|,ea=1]11],e3=1]0
0 0 1
a
The coordinates of v with respect to the basis B are vg = b such that
c
v = avy + buy + cus.
6 1 1 0
3 |=al 1 |+b| 1 |+c| 1| =
8 1 2 2
6=a+b
3=a+b+c

8=a+2b+2c
We can solve it using Gauss-Jordan elimination method, or, we can use the

1 10
transition matrix from the new basis B to the canonical basis, P2 = | 1 1 1
1 2 2
to determine the coordinates of v with respect to the new basis B.
As a matrix multiplication, the previous system can be written as
6 110 a
31=1111 b | = v, = PP vp = vp = (P>P)~! - v, where

8 1 2 2 c
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110
PeB =11 11
1 2 2

We need to compute the inverse of the matrix P? which is the matrix P?* i.e.

the transition matrix from the canonical basis e to the new basis B.

1 10 1 00 1 1 0 1 0 0
R1—R2,R1—R3 Ro<>R3
1 11 010 >~ 0 0 -1 1 -1 0 ~
1 2 2 0 0 1 0 -1 -2 1 0 -1
1 1 0 1 0 0
2R3—R>
0 —1 -2 1 0 - >~
0 0 -1 1 -1 0
1 1 0 1 0 0 1 00 0 2 -1
—R2+R1,—R3
01 0 1 -2 1 o~ 010 1 -2 1
0 0 -1 1 -1 0 0 01 -1 1 0
0 2 -1
So, PPe=1 1 —2 1
-1 1 0

We can now determine the coordinates of v in the new basis B:

0o 2 -1 6 -2
UB = 1 =2 1 3| = 8
-1 1 0 8 -3

Remark. Using the transition matriz we can now have the coordinates of any

vector v from R? in the new basis B by just multiplying by v the matriz PP¢.

1 1 1
Problem 2.7. In the space R3 we consider the basis B = o1, 11,11

0 0 1
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1 3 -2
and B’ = 1 d 2 1,1 0 . Determine the transition matrix from B
-1 -3 3
—1
to B’. Determine the coordinates of the vector v = | —4 | in the basis B’. Which
4

are the coordinates of the vector v in the basis B?

Solution: We can write the transition matrix from both B and B’ to the

canonical basis, i.e.

111 1 3 -2
peB—tfo 11|, PP=11 2 0
001 -1 -3 3

We know that PZ'B = pB'.B". pB".B and we use as B” the canonical basis e.
Therefore, PB'B = pB'e. peB = (pe5)~1. peB,

We calculate the inverse of the matrix P75’
1 3 =2 1 00

1 2 0 010
-1 -3 3 0 01

R1—R3,R1+R3

1 3 -2 1 0 0
2R3+ R2,2R3+R1

01 -2 1 -1 0 >~

0 0 1 1 0 1

1 3 0 3 0 2 1 00 -6 3 -4

—3R2+Ry

010 3 —1 2 ~ 010 3 -1 2
0 01 1 0 1 0 01 1 0 1

So, the transition matrix from B to B’ is
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-6 3 —4 111 -6 -3 -7
pEB — pBle.peB -1 3 _1 2 01 1]|=|3 2 4
1 0 1 0 01 1 1 2
We can now determine the coordinates of v in the basis_B':
-6 3 -4 —1 —22
vp =P8 v.=| 3 -1 2 —4 =1 9
10 1 4 3
We can determine the coordinates of v with respect to B using vg = PP* - v,
1 -1 0
or vg = PPP .yp. Is easier to compute PP = (PP = | o 1 -1 |,so
0 0 1
1 -1 0 —1 3
vp=110 1 -1 —4 | =1 -8
0 0 1 4 4

2.4 Problems

Problem 2.8. Prove that (V,®) is a vector space over (R, +,:), where V' = R%,
the internal composition law (internal operation) is x @y = x - y, and the scalar

multiplication (external operation) is a * x = 2% a € R, z € V.

Problem 2.9. Determine which of the following sets are vector subspaces of R3

over R:
o Ay = {(z1,79,23) € R3|2y + 19 + 13 = 0};
o Ay = {(x1,79,73) € R3|wy + 19 + 13 = 1};
o Az = {(x1, 79, 73) € R3|2y + 209 — 33 = 0};

o Au={(ormaa) RIES = 24 = 22y,
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o A5 = {(z1,19,23) € ]R3|9”—31 =2 =34

o Ag = {(z1, 12, 23) € R3||21| = 79 — 73};

o A; = {(x1,79,73) € R3|2? — 1y + 13 = 0};

o Ag = {(wy, 19, 23) € R3|2? — 29 + w3 = 0; 2% + 215 + 423 = 0};

o Ay = {(z1,32,23) € R3|ZE% — Ty + T3 = 2;$% + 229 + 4z = —1}.

Problem 2.10. Determine if the following sets are linearly independent sets of

vectors:

a) 51:{1)1:1+X,U2:2+X,U3:2—3X}, SlcR[X],

1 3 1 2 1 —1 1 1
b) 52_ v = , V2 = , U3 = , Vg = y
01 0 0 2 0 01
SQCMQ(R)7
( [ 3\
—1 —1 2
c) Sg=qv = 2 , Vg = 2 , V3 = | —4 s S5 < R?;
1 —-11 10
\ |
B ] B ] B ] B T )
1 1 3 1
1 0 1 0
d) Sy=<{v = , Vg = , Vg = Vg = >, Sy < R
0 1 2 0
1 2 4 2
\ | _ | _ | _ | A J

Problem 2.11. Consider V' a vector space over R, and vy, vy,v3 € V are linearly
independent vectors. Prove that the vectors w; = vy — vy —v3, Wy = —v1 — 209 + 303

and w3y = —v; + v9 — v3 are linearly independent.
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1 0 1
2 1 1
Problem 2.12. Prove that the vectors v; = , Uy = , U3 =
—2 1 0
1 -5 2
-2
1 : : : L
and vy = are linearly dependent. Write the vector v, as a linear combination
0
-3

of the vectors vy, v9, v3.

Problem 2.13. Find the coordinates of the vector v in the basis B (prove that B

is a basis of R3, respectively R?) if:

B ] B ] B ] B A
2 1 0 1
a)v=1| 0 |andB=<1|11,[1].]0]¢;
—1 0 2 3
| _ \. L _ | _ | J
—2 1 1 —2
b) v = 3 and B=4q| 0|, 3],] 0 ;
-3 4 0 1
B B A
0 2 3 1
c)v=|1 | and B = L1 2 | -1 ¢
3 2 1 0
| | J
1 1 1 1 0
—1 2 1 0 2
d) v= and B = < , , , >
3 1 0 1 —1
—4 0 1 —2 1
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1 0 1 1 0
3 —2 1 2 1
e) v= and B = < , , , >
2 -3 -1 0 2
2 -1 1 1 1

Problem 2.14. Find the dimension and a basis for the subspaces generated by the

following sets of vectors:

1 1 3 1
1 1 -5 =7
a) Uy = < , , , >, Uy < RY
0 0 6 4
2 3 3 -1
(T 7 B ] B ] B 71 )
0 1 2 —1
1 2 6 1
b) U = , , , \ U, < RY,
—1 2 —2 2
1 -3 1 0
| _ | _ | _ | d J
(T N B ] B ] B ] B 1)
2 3 4 1 0
0 1 1 1 1
C) U3:< ) ) ) ) >7[]3CI&4;
-1 0 0 1 1
—1 1 0 2 3
\ L | | _ | _ | _ | d J
(T N B ] B ] B ] B T
0 -1 0 —1 —1
1 1 2 1 —1
) Us=< 11|, =1, o .| 5 |.| -1]¢} UscR5
2 0 1 6 1
0 -1 —1 2 0
\ L _ | _ | _ | _ | A J
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2 -3
1 1
6) Us = < , s
1 2
0 2
1 1 1
f) U6 = 9 1 ’ 1 ) 1
\ 1 0 3
—1 —2
g) U7 = 9 1 y 2 )
2 4
1 —4
h) U8 - 9 Y
2 5

—1 1
3
) >7 U5 - R47
-1 2
—1
_ | A J
) U6 - Rga
0
0 ) U7 - R37
0
10
5 Ug c ]Rz.
3

Problem 2.15. Find a basis in the real space of solutions of the following systems:

.
r+2y+z+—-t=0
(S1) 4
kx+y+z=0.

r

r+y—z—2t=0
(S2) Sz —y+2t=0
y+—z+t=0.

\

-

rT—y+z—t=0
204+ 3y+32—t=0

3r+2y+42—-2t=0

k35—1—4y—i—2z=0.
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-

r—y—z+t=0
(S1) Sz+y—22+t=0
r—>by—z+t=0.
\

-

r+y—t=0
(S5) Sa+2-2t=0

y—z+1t=0.

\

-

T—y+2:—4t=0

—r+2y+z2=0
(S6)

r+t=0

y—2z=0.

Problem 2.16. Find the dimension and a basis of the union (sum) S + V and

intersection S NV of the linear subspaces S and V if:

r

1 1 0
a) S=spans | 0 |,| 0 |,] 0 ;
1 -1 1
\
.
2 1 1
V = span < 1 , 2 ) 1 ;
-1 -2 -1
\
1 1 1 1 1
b) S = span L. 2 |.] 2 , V= span 01],| -1 ;
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([ ] [ ] [ 7 B T
c) S = span < : , 7 9
1 —2 —1 -1
k_ - - - o - — -
( T T 1 T T
0 2 2
1 2 1
V = span < 7 : .
1 0 ~1
1 -1 0
k_ - _ - — -
([ 1T 1T T
1 1 1
2 1 1
d) S = span < ’ : g
0 —1 1
1 0 1
h - b 4 L 1
V= {($7y72,t) €R4|:1:+y+22—t:0},

e) S={(z,y,2) R} —x+y+2z=0}

f) S ={(z,y,2) e R¥|z — 2y + 5z = 0},

V:{($’yaz)€R3|—3x+y—|—z:0};

g) S={(x,y,2,t) eRYz—y+2z—t =0;x+2y— 2+t = 0;2+ 5y —42+3t = 0},

r — —
0 1 1
1 -3 )
V = span < 7 : .
3 6 3
- L - - - L i
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(I ] B ] B N [ 1)
1 1 2 0
1 -1 1 1
h) S = span < : : ; g
1 0 1 0
k_—l_ _—2_ _1_ __4_J
. _
3 —1 -5
1 0 —1
V = span < , ) >
2 0 -2
—4 -2 0
\ L . | _ | _

Problem 2.17. Prove that each of the two sets of vectors is a basis in R? and

find the relationship between the coordinates of one and the same vector in the two

1 2 3
bases: B=<a1=| 1 |,ao=| 3 |.,a3=1| 1
2 3 7
and \
3 5 1
B'=<qbi=14 [bo=|1]bs=| =6 |/
1 2 1

J

Problem 2.18. Prove that each of the two sets of vectors is a basis in the space
of polynomials of degree < 3 with real coefficients and find the transition matrix

between the two bases:
B = {61 = ].,62 = X7€3 = X2,€4 = XB}

and

B ={f=14+X,eb=1-X%¢e,=X*+ X,¢, = X° - X?}.

Problem 2.19. In the space R? we consider the bases
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0 0 1
B = Ol,| 11,1
1 1 1
2 4 2
B=<l0o]|,| 1 |,|5
3 -1 3
Determine the transition matrix from B to B’. Determine the coordinates of the
4
vector v = | —4 | in the basis B’. Which are the coordinates of the vector v in
-1

the basis B?

Problem 2.20. Prove that each of the two sets of vectors is a basis in the space

Ry[X] and find the transition matrix between the two bases if
B={X’X+X%1+X+X?%

and

B'={2+3X* 4+ X — X% 2+5X +3X?}.

Determine the transition matrix from B to B’. Find the coordinates of the polyno-

mial 4 —4X — X? in both of the basis B and B'.
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Inner product spaces

3.1 Definitions and Properties

Definition 3.1. An inner product on a vector space V over the field F is a

function (bilinear form) (-, : V x V — R with the properties:
1. {v,v) =0 and {v,vy = 0 iff v = 0. - positivity and definiteness
2. {u+v,w)y = {u,wy+{v,w)y, for allu,v,w e V. - additivity in the first slot

3. {av,w) = alv,w) for all « € F and v,w € V. - homogeneity in the first

slot
4. {v,wy ={w,v) for all v,w € V. - conjugate symmetry.

An inner product space is a pair (V,{-,-)), where V is vector space and {-,-) is

an inner product on V.

Properties. From the definition one can easily deduce the following properties

of an inner product:
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1. {(v,0) ={0,v) =0,
2. {u,v +wy = {u, vy + {u, w),
3. {u,av)y = alu,v),

for all u,v,w eV and a € R.

The most important example of an inner product space is R”.

(%] w1
(%) Wo

Definition 3.2. Let v = . and w = . € R"*. The the Euclidean
vn w’l’b

inner product of v and w is defined by
(v, w) = viwy + -+ - + VW

When R” is referred to as an inner product space, one should assume that the

inner product is the Euclidean one, unless explicitly stated otherwise.

Norm and distances
Definition 3.3. Let V' be a vector space over R. A function
|-V —-R
is called @ norm on 'V if:
L o2 0,veV, o =0« v =0y
2. |av| =la| - |jv|, VaeR, YveV

3. u+v| <l + v, Vu,veV.
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A normed space is a pair (V.| -|), where V' is a vector space and | -| is a norm
onV.
L1
i) .
Example 3.4. Let x = ' e R™. On the real linear space R™ one can define a
Tn,

norm in several ways.

1. The Euclidian norm

Izl = /a2 + 23+ + a2 = Ko, 2).

2. The p—norm, for anype R, p>1

B =

|z]p = (al” + lzaf” + - -+ faa]") 7.

3. The maximum norm

|| maz = max{la:], [za], ..., ]}

Definition 3.5. Let X be a nonempty set. A function d : X x X — R satisfying

the following properties:
e d(x,y) =2 0,Vr,ye X and d(z,y) =0z =y
e d(x,y) =d(y,x), Vo,ye X
e d(x,y) <d(z,z)+d(z,y), Vr,y,z€ X

18 called a metric or distance on X.

A set X with a metric defined on it is called a metric space.
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T Y1
T2 Y2

Example 3.6. Let x = . LY = _ e R™. On R"™ are can be defined the
Tn Yn

following distances:

1. The euclidian distance is defined as

do(2,y) = /(w1 = 91)? + (@2 — )2 + - + (20 — yn)? = |2 = yo.
2. The Minkowski distance or Manhattan distance is defined as
di(z,y) = |z1 —yi| + [22 — g2 + -+ + |20 — Yal.
3. The Chebyshev distance is defined as

naz (T,y) = max [z; —yi|.

Definition 3.7. Two vectors u,v € V' are said to be orthogonal and we denote

ulv if (u,v) = 0.

In a real inner product space we can define the angle of two vectors as

m = arccos M
ol - ]

We have

va©<v,w>=0®m=g.

Theorem 3.8. (Parallelogram law) Let V' be an inner product space and u,v €

V. Then

Ju+of* + u = o = 2(ul* + Jv]).
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Proof.

lu+v|]* = u +v,u+v) (3.1)
= (u,u + vy +{v,u+v)
= (u,uy + {u, vy +{v,uy + {v,v)

= [Jul* + <u, v) + (v, up + o]

lu — ] = ¢u — v,u — v (3.2)
= (uyu— ) — (v, u — v
= u, uy — <, v) = (v, up — (v, v))
= [ul® = Cu, v) — (v, uy + ol

By adding (3.1) and (3.2) we obtain |u + v|* + |u — v|* = 2(Ju]?* + ||v]?). O

Theorem 3.9. (Pythagorean Theorem) Let V' be an inner product space, and

u,v € V' orthogonal vectors. Then
Ju+v)* = [lul® + ol
Proof.

lu+v|* = (u+v,u+v)
= (u,u +v)y+ {v,u+v)
= (u,uy + (u, vy + {v,uy + (v, v)

= [l + <u, v) + (v, up + o] %

Since u | v then {(u,v) = 0 so, we have |u+ v|? = |u]? + |v]>. O
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3.2 Orthonormal Bases

Definition 3.10. Let (V,{:,-)) be an inner product space and let I be an arbitrary
index set. A family of vectors A = {e; € V'|i € I} is called an orthogonal family, if
leisejy = 0 for every i,j € I,1 # j. The family A is called orthonormal if it is

orthogonal and |le;| = 1 for every i€ I.

One of the reason that one studies orthonormal families is that in such special

bases the computations are much more simple.

Propozition 3.11. If{ey, es, ..., ey} is an orthonormal family of vectors in' V', then
lorer + ageg + -+ + amem|? = Jar]? + ag]® + - 4 oy |?

for all ay, ao, ..., a, € R.

Proof. From Pythagorean Theorem we have

lorer + ageg + -+ amem|? = Jarer|* + [ages|® + - - + [amen|?
= |ayPllex]? + ool ea]® + -+ - + [oun]

= | * + | + -+ a2

Corolary 3.12. Every orthonormal list of vectors is linearly independent.

Proof. Let {v1,v,...,v,} be an orthonormal family. Then, by definitions, v; L v;
for all i # j, 4,7 = 1,n, and |le;]| = 1,Vi = 1, n.

The vectors vy, vs, ..., v, are linearly independent if

ey +agey + - Fape, =0y = ap = =--=a, =0.
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e +ages + - - -+ ane,|* = |0y ]? = 0 <= |a1]? + |aa|> +- - + |am|* = 0. Since

la;]* = 0Vi = 1,n, we have that a; = as = -+ = a,, = 0 which implies that the

vectors vy, vg, ..., v, are linearly independent. ]

Theorem 3.13. (Gram-Schmidt) If {vi,ve, ..., v} is a linearly independent set
of vectors in V', then there exists an orthonormal set of vectors {ey,...,ex} in V,
such that

span{vy, v, ..., vk} = spanfeq, ez ..., ek}

ke{l,2,...,m}.

Proof. We will determine first an orthogonal set of vectors uy, us, ..., u.
Let u; = v1. We will determine u, as a linear combination of vy and wuy, us =
v9 + auy such that u; L us.

We have (uj,uzy = 0 < (vy + aquy,u;y = 0 <= (v, u1) + alug,uy = 0 =

_ _ {vaun)
a = {ur,ur)’
S0, Uy = Vg — %ul and we have that u; L us.

Next we will write uz as a linear combination of vs, u; and us such that uz L uy

and uz L ug, that is uz = v3 + ayu; + agus and (uz, uy) = 0, {ug, uzy = 0.

{ug, ur) = 0 <= (u3 + aruy + asug, ur) = 0
< (v3,u1) + ag{ug, ury + aug,u;y =0

> (u3,u1) + ay{ug,u;y =0

(us,w)
Cur,ur)’

— Q1 =
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{uz, ug) = 0 <= (U3 + a1u1 + g, us) = 0
> (U3, ug) + a1{uy, ug) + aslug, usy = 0

< (U3, ug) + aolug, usy =0

(s, up)

— = .
“ <'U/2, u2>

_ Swsauay o {vs,uzy
(urury b uguzy

So, u3z = vs Uo, and us L uy, ug L us.

By induction, we will have that

I ()RS5 S (L 10 S o vgsug—1)
Uk = Uk = Curuny ™ ™ Tug,ugy U2 Qur—1yup_1y k=1
Because the set {uy,us,...,u;} is orthogonal, then the set {e; = ”Z_iH,QQ =
2. ep = 2} is orthonormal. O
luz il

We can summarise the Gram-Schmidt process for the orthogonalization of the

vectors vy, Vs, . .., v, in the following:
® Uy = Vyp;

— oy _ Svzuny,
® Uz = V2 = 7y UL

— gy — Sv3u) o (g,
¢ U3 =103 {ut,ur) {uz,uz)y 2
<Un,u1> <'Un7u2> <'Un7un—1>
Y — w7/ — A2/ e — TR/ .
Un = Un = Giuny Y1 ™ Cugyugy U2 Cm—1 um_1y n—1

Corolary 3.14. Every finitely dimensional inner product space has an orhtonormal

basis.

Orthogonal complement

Let U < V be a subset of an inner product space V. The orthogonal complement of

U, denoted by U+ is the set of all vectors in V which are orthogonal to every vector
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in U i.e.:

Ut ={veViv,u) =0, Yue U}.
Theorem 3.15. If U is a subspace of V', then

V=U®U".

3.3 Solved Problems

Problem 3.1. Let R* be the inner product space with the canonical inner product.
Apply the Gram-Schmidt orthogonalization method to construct orthogonal basis

for the subspace

( [ n [ n B 1))
1 1 3
2 1 2
V = span < v; = , Vg = , U3 = -
2 -5 8
-1 3 -7
\ | _ | _ | A J

_ ! -
2
Uy = v =
2
—1
Vo, U
Uz = V2 — Euiulliul
| 1 | [ 1 | | 1 | [ 1 | [ 2 |
B R ST Es LTS 20 I N I R N
_5 1+4+4+1 | o _5 9 _3
3 -1 3 —1 2
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g = v — <v3,ul>u1 B <v3,uQ>u2
(uy, ur) (ug, ug)

3 1 2
_ 2 3+4+16+7 2 6+6—24—14 3
| 3 1+4+44+1 | o 4+94+9+4 | _3

-7 -1 2

3 1 2 2

2 2 3 -1

8 2 -3 —1

-7 -1 2 —2

We can easily verify that uy; L ug, u; L ug and uy L uz by computing (uy, us) = 0,
<U1, U3> =0 and <’LL2,U3> = 0.

So, an orthogonal basis for V' is
- 1al b oL v

T )

1 2 2
2 3 -1
BV = 9 ) ) C
2 -3 -1
-1 2 -2
\ L . L _ L |

Problem 3.2. Let S be the solutions of the system

-

r+y+z—t=0

(S):qz+2y+324+w=0

r—y—3z—3t—2w=0.
Find an orthonormal basis in S.

Solution: We will determine first a basis from the general solution of the

system (S).
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| 1 1 1 -1
1 2 3 0
1 -1 -3 -3

[ 1 1 1 -1
0 -1 -2 -1
0 2 4 2

[ 1 1 1 -1
0 -1 -2 -1
0O 0 0 O

0

o o o o o o o o

0

Ly—Lg,L1—Ls3

2L2+L3

rank (A) = 2 and there are 5 unknowns, so z = «a, t = § and w = v are free

r+y=—-a+p

variables. We can determine x and y solving the system

Hence, x = a+ 28 +vyand y = —2a —  — 7.

([ a+ 28+
—2a - —v
S = a
g
.l Y
(7]
-2
=<cal| 1 + 0
0
\ 0

+7

—_—

—y=2a+LF+7

|, B,veR

Y
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. _ _ _ _ _ _
1 2 1
—2 —1 —1
=span{ §; = 1 , So = 0 , S3 = 0 .
0 1 0
0 0 1
\ | . | _ | _

Bg = {s1, $2, 83} is a basis for S.
In order to obtain an orthogonal basis, we will apply Gram-Schmidt algorithm

for s1, 9, S3.

1
—1
Uy = 83 = 0
0
1
2 1 1
—1 —1 0
o <827u1> . 3 .
Uy = S2 <u1,u1>u1 = 0 3 0 = 0
1 0 1
0 1 1
uh = sy — <S3,U1>u1 _ <S3,U2>u2
’ (ur, ur) (ug, ug)
1 1 1 —1
-2 -1 0 -1
3 1
= 1 3 0 3 0 = 1
0 0 1 -3
0 1 -1 —2
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Now we can choose usz = 3ufy = 3

We can easily verify that u; L us, w1 L us and uy L ug by computing (ug,ugy =0,
{ug,ugy = 0 and (ug,uzy = 0.

For an orthonormal basis we divide each of uq, us, uz by its norm, i.e.

1
1 e
-1 —1
V3
- w1 —
M=qi=wu| 0= 0 |
0 0
1
1
I e
0 0
— w2 _ 1 —
el v U el I £
1
I e
1
___1 4 L vl
1
-1 G
3
-3 3%
— w3 _ _1_ — 3
Bl Tas | 3 | T o
-1 1
2v6
1
| 2 ] | V6
Therefore, an orthonormal basis for S is B,, = {ny, ns, ns}.

Problem 3.3. Let S = {(z,y,2,t) € R*2z — y — 2 + 3t = 0} be a vector subspace

of R*. Determine bases in S and in the orthogonal complement S*.
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Solution: The general solution of the equation 2z —y — 2 + 3t = 0 can be

written if one choose x = «, z = § and t = v and we calculate y = 2a — [ + 3.

(I ] A
«Q
200 — B+ 3y
S =1 |, B,7eR S
G
\ L fY _ J
U _ - T
1 0 0
2 —1 3
=<« +5 +’7 |a75776R>
0 1 0
0 0 1
\ L _ L _ L _
( [ n [ n B 1)
1 0 0
2 —1 3
=span< $; = , So = , S3 = ’
0 1 0
0 0 1
\ L . L . L a4 J

In order to obtain an orthogonal basis, we will apply Gram-Schmidt algorithm on

$1, S and ss.

0

—1
U1y = S92 =

1

0
Uy = 5] — <817u1>

u
<u17 U1> !
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1 0 1
2 -2 —1 1
u2 - —_— —_— =
0 2 1 1
0 0 0
ug _ _ <S3au1>u1 . <S3au2>u2
(uy, u) (ug, ug)
0 0 1 -1
13 -3 -1 311 | 3
0 2 1 311 1
1 0 0 1
-2
1
Now we can choose uz = 2uj =
1
2

We can easily verify that u; L u;, up L ug and us L ug by computing {(uy,usy = 0,
(ug,uzy = 0 and (ug,uzy = 0.

For an orthonormal basis we divide each of wuy, us, ug by its norm, i.e.

0 0
1
ny = - =L — -1 - V2
i T X 2|
V2
0 0
— — e 1__ -
1 7
| &
— w2 _ 1 — 3
(e el I el
V3
0 0




3.3 Solved Problems 68

2
—2 V4T

1 _1

N — U8 — 1 — V10
Pl T V0| N
410

2

2 v

Therefore, an orthonormal basis for S is B, = {ny,ny, ns}.

We have that dim S = 3 so, dim S+ =4 —3 = 1.

St ={veR"Wv,s)=0,Yse S}
= {ve R*(v,51) = 0,{v, s5) = 0, (v, s3) = 0}

={v = (v1,29,23,24) € R4|x1 + 229 =0, —x9 + 23 = 0, 3x2 + x4 = 0}.

The matrix system has the rank 3, so one of the unknowns become free variable,

Ty = @, and we can determine z; = —2q, r3 = o and 14 = —3a.
—2a -2
N a 1
S+ =4 |« € R » = span < >
! 1
—3a -3
-2
: 1 .
An orthogonal basis for Bs = { s4 = >, an orthonormal basis is
1
-3
_ . -,
—2 —VE
1 L
— — 52— L = V15
Bgi = {n4}, where ny = ol = 7 X = N
V15
3
B B R
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Problem 3.4. Verify that the vectors v; =

and complete them to form orthogonal basis of RY,

—1

, V2 =

= O N

are orthogonal

Solution: Because (v,v9)=1-1+0-24+2-0+ (—1)-1 =0 we can conclude

that v, and vy are orthogonal.

Because dim R* = 4 we will choose another two vectors v and v, such that each

of vz and vy is orthogonal on both v; and v,.

Let v =

vl

v L vy

t

X

Yy

z

—

o

e R* such that

{v,v1) =0

(v,v9) =0

_a_g_

«

+

L
=
m
7

r+2z—1t=0

r+2y+t=0
The general solution of the system if we denote y = o and z = (3 is

la,BeR

g
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-1 -1
1 0
= span 4 u; = , Ug = ;.
0 1
-1 1

Because (uy,usy = 0 = uy L uy, and we can choose vz = u; and vy = us.
We can conclude that {vy, ve, v3,v4} is an orthogonal basis of R%.

Remark. If {uq, us) # 0 then we need to apply Gram Schmitd orthogonalization

method to obtain two orthogonal vectors.

3.4 Problems

Problem 3.5. Let S be the solutions of the system. Find an orthonormal basis in
S if:
.
r+y+z—t=0
a) (S):qz+2y+32=0
r—y—3z—3t=0;
\

-

r+y+t=0
b) (S):{2e+y+2=0

r—y+2z—3t=0;
\

-

r+y—z+t=0

) (S):{e—y—z42=0

r+3y—2=0.
\
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Problem 3.6. Let S be the set of solutions of the following systems. Find bases in

S and in the orthogonal complement of S, S+, if:

-

r+y+22=0
a) (S): 920 +3y+2=0
x+ 2y —z=0;
\

-

20 —y—2+4+1t=0

kx+y+3z—t=0;

-

r+y—z+t=0

¢) (S):{z+y+32—t=0

r+y—>52+3t=0.
\

Problem 3.7. Verify that the following sets of vectors are orthogonal and complete

them to form orthogonal basis of R*:

—2 1 1
1 -2 1
a) v = , Uy = and v = :
3 1 0
1 1 1
1 2
1 -3
b) v = and vy = ;
-1 1
—2 -1
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1 1
-1 -2
c) vy = and vy = ;
1 3
2 -3
—1 —1
0 1
d) v = and vy =
-2 1
1 1

Problem 3.8. Let R* be the inner product space with the canonical inner product.
Apply the Gram-Schmidt orthogonalizations to construct orthogonal bases for the

subspaces spanned by the following lists of vectors:

1 1 3
2 1 2
a) : : :
—2 5 —8
-1 3 —7
-1 ~5 -3
1 8 9
b) : : 7
~1 —2 3
—2 -3 8
1 1 1 1
-1 2 ~1 -11
C) Y Y ) Y
1 1 1 0
0 1 1 1
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1 1 -5
~1 —2 2
d) Y )
1 —2 —2
~1 —3 -5

Problem 3.9. Let S be the set of solutions of the system

-

r+2y—z—1t=0
Yr+y—2z+2w=0

r—y+2z—t+w=0.

Find an orthonormal basis in S*.

Problem 3.10. Let U = {(x,y, 2,t) € R*|z —y — 32 + 2t = 0} be a vector subspace

of R*. Find an orthonormal basis for S and for S* .



Vectors

4.1 Space and Plane Coordinates

Coordinates in R?

In R? we consider the Cartesian orthogonal coordinate system xOy. The cartesian
coordinates or rectangular coordinates of the point M € R? is the ordered pair

(%0, y0). The polar coordinates of M are (r,0) where:
e 1 is the length of the line segment [OM], r = 0;

e 0 is the angle between the positive direction of Ox and OM, 6 € |0, 27].

The angle is measured in radians in the counterclockwise direction from the

Oz axis to OM.

r and 6 can be converted to the Cartesian coordinates x and y by using the

trigonometric functions sine and cosine:

x =rcosb,

y =rsind.
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M (x,¥0) y

Yo

r rsin@
Xo rcos @

rsinf

rcosB M(xl]'y())

X0 X

Figure 4.1: The relationship between polar and Cartesian coordinates

Viceversa:
r=+/2%+ y?,

tané’zg, x # 0.
x

Ifx=0andy>0then9=g.
Ifszandy<Othen9=3§.

Remark 4.1. When we include negative values, the Ox and Oy azes divide the
space up into 4 pieces Quadrants I, I[1, 111 and IV , numbered in a counter-clockwise

direction.

e In Quadrant I both x and y are positive.
e In Quadrant I x is negative y is positive.
e In Quadrant I x and y are negative.

e In Quadrant IV x s positive and y is negative.
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I Y |
(—, +) (+! +)
(=) (+,-)

1l IV

The trigonometric functions can be reduced to the first quadrant using the fol-

lowing relations:

o [fhe (g,w) = 0 = m—x, where x € (O,g) = <

-

\

sin(m — ) = sin(x)

cos(m — x) = — cos(x)
tan(m — z) = — tan(z).
sin(m + x) = —sin(x)

3m
o [fOe (w, 7) — 0 = n+x, wherex € (0, —) = { cos(m + x) = — cos(x)

tan(m + z) = tan(x).

.
sin(2m — x) = —sin(x)

3m
o [fOe (7727T) = 0 = 27—z, wherex € <0, —) = A cos(27r — x) = cos(gj)

tan(2m — x) = — tan(z).

\
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T sin
I T |
2
| — )sine
‘ ]
|
T ™\ 0,2m _
cos 8 -
coS
1l 3r \Y
2

Space Coordinates

In R? we consider the Cartesian orthogonal coordinate system Oxyz. The cartesian
coordinates of the point M € R? is the ordered triple of real numbers (g, %o, 20)
and we denote this by M (xg, yo, 20)-

The cylindrical coordinates of M are (r,6, z) where:

e 1 is the length of the line segment [OM'], where M’ is the projection on xOy
of M, r > 0.

e 0 is the angle between the positive direction of Ox and OM’, § € [0, 27].

We denote the cylindrical coordinates by M(r, 6, z).
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Zg

» M(r, 9! ZO)

Xo

‘M,
Figure 4.2: The cylindrical coordinates

The relationship between the Cartesian (x,y, z) and cylindrical (r,0, z) coordi-

nate§are: .
x =rcosf r = 22+ 1?2
{y=rsind ; <tan9=y,m#0
x
z=2z z =2z
\ \ T
If:c=0andy>0then9=§.
3
Ifszandy<Othen9=7.

The spherical coordinates to locate the point M is space are (p, , ) where :

e p is the length of the line segment [OM], p = 0 distance;

e ¢ is the angle between the positive direction of Oz and OM, ¢ € [0,7];

elevation;
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e 0 is the angle between the positive direction of Oz and OM’, where M’ is the
projection on xQOy plane of the point M, 0 € [0, 27|, azimuth.

We denote the spherical coordinates M (p, ¢, 0).

Zo

M(p, 0, @)

Xp v

M!

Figure 4.3: The spherical coordinates

The relationship between the Cartesian (z,y,z) and spherical (p,p,#) coordi-

na,te:; are: i
x = psinypcosf r = psinp
Ay =psinpsinf ; Yz = pcosp
Z = pcosy 0=20
\ \
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4.2 Vectors in space

A vector in space T € R? is determined by its:

e length, | 7| or || (magnitude, absolute value) which is a nonnegative num-

ber;

e direction - a straight line which represents all the straight lines parallel to

the given one;
e sense in which the given straight line is directed.

The vectors are added by either the triangle law or the parallelogram law.

- - b a E
b a+b b “t
F; ) d
Figure 4.4: The parallelogram law Figure 4.5: The triangle rule

The set of all vectors in space is denoted by V3.

In talking about vectors, numbers are often called scalars.

Consider now the axes Ox, Oy, Oz, mutually perpendicular, forming a right-
handed rectangular Cartesian co-ordinate frame. Let 7, 7, % be the unit vectors
for this system. In vector spaces notations, 7= (1,0,0), 7 = (0,1,0) and ¥ =
(0,0,1) and they represent the canonical basis of R3.

Every vector ¥ can be written, uniquely, in the form
v = a?—i—b?—i—c? = (a,b,c),

where a, b, ¢ are scalars (the components of 7).



4.2 Vectors in space 81

Any ordered pair of points A(xa,ya,za), B(xp,ys,z4) of the space define one

and only one vector

—_— —

AB = (zp—24)7T +(yp—ya)J + (25— 24) k.
Let the point M (27, yar, 2a) € R3. Then the vector
OM =27 +ymj +2uk
is called the position vector of the point M.
For v7 = al_f + 617 + 01? and 73 = ag_f + 1)27 + 62? we have:
o |[T7| = 4/a} +b? + ¢} - magnitude, length, absolute value;
e U7 + 15 = (a; + @2)7 + (b + b2)7 + (1 + 02)? - addition of two vectors;
o O] = aa17 + ozb17 + aclf, a € R - multiplication of a vector by a scalar;
a _ by ¢

e U | U3 & — = — = — < Ja € R* such that 77 = av3.
a9 b2 (&)

The set V3 is a vector space over the field of the real numbers, where the in-
ternal operation is the addition of the vectors, and the external operation is the

multiplication by scalars, both defined above.

Scalar product

One associates with any two vectors 77 and 75 a number called their scalar product

(inner product) and denoted by o7 - U3.
vl o3 = |[oi] - 03] - cosa,

where « € [0, 7] is the angle between vy and v3.

Properties. For all 77,75 € V3, @ € R we have:
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. V103 =035 -1 - comutativity;

2. 1 - (V3 +703) =01 - U3 + 07 - U3 - distributivity over the addition of the vectors;

By the definition of the scalar product we have:

o3
® COSN = -
[otl - 2]

e Uy LU =15 =0.

« TV = [T

o prm)@’ = |cosal - ||vs]|, where oo = % (77, U3).

The absolute value for cos is required when the angle between the vectors is

7r
grater than 5

v,
Figure 4.6: The projection when the Figure 4.7: The projection when the
angle a € (0, %) angle a € (§,7)

If v7 = a17 + b17 + 01? and vy = a27 + b27 + 02?, we have the following

formula for computing the scalar product of 77 and v3:

- —
V1 - V3 = a1Q9 + blbg + c1Co.
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Vector Product

The vector product of the vectors 77 and v5 is the vector 77 x s, characterized

by:
e the length |07 x U3| = |v7| - |U3] - sin
e the direction 77 x 73 is perpendicular to both 77 and v3;

e the sense such that the triad of vectors {v7, 73, U7 x U3} is oriented like the

triad {7,7,?}

v XV,

—

v, //
—
41

Figure 4.8: The vector product

Properties. For all 77, 75,73 € V3 and a € R we have:
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5. The magnitude of the vector product equals the numerical value of the area

of the parallelogram constructed on 77 and 73, AU{@ = |v1 x U3

By the definition of the vector product we have

7 T
7 S
¥ 7 o7

Ifo =a, i + 617 + 01? and T3 = ay i + 627 + 02?, we have the following

formula for computing the vector product of v and v
Ul) X UQ) = (b102 - Clbg)_i) + (Claz - a102)7 + (ale - azbl)?

or, using a symbolic determinant:

- > >
v J k
— —
U1 X U2 = |ay bl C1
az by

Triple scalar product
The triple scalar product of the vectors 77, U3 and 3 is defined by

(31,7,%) =7 - (7 x 7).

Properties. For all 77,05, 73 € V3 and a € R we have:
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3. (a1, v3,73) = a(v1, 3, 03).

Geometry applications.

1. The absolute value of the triple scalar product equals the numerical value of

the volume of the parallelepiped constructed on o7, U5, U3.

2. The volume of the tetrahedron constructed on the vectors o7, 75,73 equals

1
_|(Ul)aU2)>U3))|

6

3. (v1,v3,03) = 0 < 7,03, 03 are parallel to the same plane (the vectors are

coplanar).

For o7 = a; i + 617 + 01?, T = as i + 627 + 02? and U3 = a37 + b37 + 03?

the formula for computing the triple scalar product of 77, 75 and 3 is:

a by
U17U27U3) = |ag b2 Col -

as bg C3
Triple vector product

The triple vector product of the vectors v7, v3 and U3 is the vector 17 x (U3 x ©3).
It has no important geometrical meaning, but is expressed by the Gibbs formula
which is of use for applications:
B (T < ) = (BT - (- T =

v7-U3 V703

4.3 Solved problems

Problem 4.1. Consider the points A(2,0), B(=3,0), C(—1,1), D(0, —4), E(3, —3+/3)

in R%. Convert rectangular coordinates to polar coordinates.
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Solution:
r = /22 + 92 r=+22402
A2,0) =2 =2 y=0= — —
Y 0
tanf = = tanf = —
T 2
r=2
= the polar coordinates of A are (2,0).
0=0
r=4/(—3)2+ 02 r=3
B(-3,0) =2z =-3, y=0= 0 — —
tanf = —3 0=m

the polar coordinates of B are (3,7).

r=a4/(—1)2+ 12
C-1L,l)=—z=-1,y=1= —

tanf = L, 0e (z,ﬂ')
—1 2

r=42
3m

3
= the polar coordinates of C' are (\/5, —7T>
0 = m — arctan(1) = T

4

r=4/0%+ (—4)2
D0,-4) = 2=0, y=—4 = ar = the polar coordi-
=20
2

3
nates of D are (4, g)

r= \/(3)2 + (—3v3)?
E(3,-3V3) = 1z = -2,y = 2//3 = -33 3T
tanHZT, 0 e ( ,27?)

2
r==06

6 = 21 — arctan(v/3) = 21 — — = —

= the polar coordinates of F are (6, 57T).
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3 4
Problem 4.2. Let A < Z), B (5, g) e R? . Convert the polar coordinates of

the given points to cartesian coordinates.

Solution:
3
3T 3 x =rcost x = 3cos —
.A<3’Z):>T:379:Z:> = 3?? —
y =rsinf y=3sinz
()
T=2\ 7 32 3
2 — the cartesian coordinates of A are (—\—F \—f>
_gV2 2
=05
47 V3
Ax A T = 5Hcos — T=o\Ty
e B{(bh,—)|=r=50=— = 3 =
3 3 5 s 47 1
= 5sin — -
Y 3 T2
— the cartesian coordinates of B are (_%5’ —g)
2r Tw 3 . .
Problem 4.3. Let A [ 4, 37 € R°. Convert the spherical coordinates of A to

cylindrical and cartesian coordinates.

Solution:

~

x = psin  cos 6

2 Im 2m T
A<4——):>P 490_39:—:}<y=psincpsin9 Ead

374 4
Z = pcosy
( 27 T ( V3 \@
x—4smgcosz x=4-7 5
3 2
Ty = 4sm2—7Tsin7—7T —y=4- £ < i) = the cartesian coordi-
3 4 2 2
2
Z—4cos—7T s =4. (_1)
3 2

nates of A are (v/6, —6, —2).
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For the cylindrical coordinates we need to determine (r, 6, z). We know 0 = %

and z = —2. We calculate r = /22 +12 = /12 = 2¢/3 = the cylindrical
7
coordinates of A are (2\/§, Iﬂ, —2) :

Problem 4.4. Determine the cylindrical and spherical coordinates of A € R3

A(=+/2,4/2,2+/3), given in the cartesian coordinates.

Solution: )

r =2 p=1/(-VD? + (V) + (2/3)?
A(—ﬁ,ﬁ,Qﬁ):><y:ﬁ :><cosgp=%§,gpe(0,g>

z2=2v/3 tanQ=%,9€(Ew)

L L 2’
p=4 p=4
24/3 T
= < = — = < = - = — -
cos 1 p = arccos — 5 3
0 = m — arctan 1, Hzﬂ—arctanlzﬂ—ng,

the cartesian coordinates of A are <4, %, %)
For the cylindrical coordinates we need to determine (r,6, z). We know 6 = Zﬂ,
and z = 2v/3. We calculate r = 1/22 + 32 = v/4 = 2 = the cylindrical coordinates
3
of A are (2, IW,Q\/g) :

5%

Problem 4.5. Let M (5, 3 ,—3 ] € R? given in cylindrical coordinates. Determine

the cartesian and spherical coordinates of M.

Solution:

{ e 5 s 1

r=>95 I=5COS§ 3325-5
5T 5% 571 \/g
M5 = ~4)]=129p="2 =<y =5sins =<{y=5-[—-—"
( 3 ) 0 3 Y 5sm3 Y 5

z=—4 z=—4 z=—4

\
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5 5vV3
— the cartesian coordinates of M are (5, —\TF, —4).
5
For the spherical coordinates we need to determine (p, ¢, 6). We know 6 = or
—4 4 m
We calculate p = /22 + 92+ 22 =+/4land cosp = — = ———, 0 € <—,7T) —
= 7T — arccos ———.
i V29
5
The spherical coordinates of M are (\/ 41, ™ — arccos —— \/7 ;)

Problem 4.6. Decompose U = T+ 37 — 5k as alinear combination of the vectors

@=1 427, D=1 +4+2k, =274+ k.

Solution:

The decomposition is @ = a@ + 8b +17C <

T 437 -5k =a(T +2)+B8(7T +2K)+427T =T+ F) =
s
a+pB+2y=1
{20 —v=3
20+~ =-5
\
The system has the solution @ = 2, § = —3, v = 1 so, the decomposition is
T=2a-3b+7¢
Problem 4.7. Let @ = 27—37—1—?, b = 7 2K, =17 — 7—1—2 k. Calculate:
a) @+ 0.
b) €]
c) v
d) @ x .

e) The angle between @ and .
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a@.

—

on b, pry

h) The projection of @

Solution:

V6.

0-14+1-(=1)+(=2)-2=—5.

)
—— < 0=
V70

VA+9+1y/0+1+4

_b) p—
|17

@
Il

“(37)
ve(5:7)

(@, D)

5

7o

T — arccos

Kl

).

5}
= pe
Vo F

3
b

@ -
—

3

cos
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)
—@ =14 — = 5.
prb m

Problem 4.8. Consider the points A(—2,1,0), B(2,0,3), C(-2,0,4), D(—4,1,3).

Determine:
a) Area of the triangle AABC.
b) The distance between the point D and the line BC.
¢) x(AB,CD).
d) The volume of the tetrahedron ABCD.
e) The height of the tetrahedron ABC D having as basis the plane ABC'.

Solution:

a) Apapc = %@ x AC|.
AB =47 -7 +3%k;
AC = -7 +4F.

T Tk

AB x AC = 4 -1 3

0 —1 4

Arape = \/1—1-2564-1 = ’\/27

b) d(A, BC) = h, where h is the height on BC' of the triangle .
h-BC

Anrapc =

2
BC = —47 + k = |BC| = VIT.

. Anapc  |273
|BC| 17"
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AB-CD
c) cos {(E,CT))) -
|AB| - |CD)|
C'—D)=—27+7—?;
cos%:(EC'—D))—_—m__i<0:> e (Z,7) =
’ 266 /39 RS
= T — arccos ——.
7r e
4 -1 3
L\(AB, AC, AD)) - 1 5
d) VABCD=6|(A JAC, A )|:6| 0 —1 4 |:6|_10|:§'
-2 0 3
e)r\? :‘AAABC'h:)h:3VABCD:3'§: 10
ABOD = — o5 Aanc U

—

=\ —7+?and

Problem 4.9. Consider the vectors @ = i — A\ j + 3k,
W =37 + j — k. Determine \ € R such that the vectors @, ¥, @ are coplanar.

Solution:
1 =X 3
W, VU, W are coplanar <= (¥, 7, W) =0 | X -1 1 |=0
3 1 -1
= 9- )\ =0 \e{-3,3}.

Problem 4.10. Determine A € R such that the vectors @ = & + 2\ — (A — 1)?

and b = (3—A)7 + j +2F are perpendicular.

Solution:

LD =T b =0c=18-N)+22-1-(A—1)2=0<= A =5

Problem 4.11. Determine the angle between @ and @ if |7 | = 2, | 7| = 4 and
2w +7)L@Bw—-27).
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Solution: Let o = (W, 7).
QU+7T) L BT -27)<—= 2Qu+7)-B3U —27) =0
60 -« —47 -T+30 -0 —-27-T =0.
Applying the definition and the properties of the scalar product we have:
6llul® = 2] - | 7] - cosa = 2| V[* = 0 ==
6-4—2-4-cosa—2-16=0<«<=

24 —8cosa—32 =0« cosa=—1 < a=m.

Problem 4.12. Consider @ = 57 — 3¢ and b = J + 2, such that 17| =3,
I'7| = 2 and the angle between 7’ and G equals %.

a) Determine the length of the two diagonals of the parallelogram with the edges
@ and b.

b) Find the angle between the diagonals of the parallelogram with @ and b as
the edges.

c¢) Calculate the area of the parallelogram constructed on @ and .

Solution:

a) We know from the parallelogram and triangle rule that the two diagonals of
a parallelogram is the sum and the difference of the two vectors on which the

parallelogram is constructed.
Letdl—a—l—banddz @ -0
=57 =30 +T +2q =67 -7
~37 — (7 +29) = 47 - 57.

In what follows we will use the formula @ - @ = | 7’|* to determine the length

=

S
I

5

%l

of the diagonals.
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We evaluate:

|di)? = |67 - Z|* = (67 —7)- (67 —7)

— 367 P-67-T—-67-T+7 7
= 36|72 = 12| 7| - | 7] - cos(T, T) + | 7|
236'9—12-3-2-COS§+4
= 292

So, || = 2V/73.

|| = |47 — 57> = 4T —57) - 47 —57)
=16 - —-20p -7 —-200 - P +25¢-¢q

= 16| 7> — 40| 7| - | 7| - cos(P. T) + 25|
_ 16-9—40-3-2-cos%+25-4

=124
So, ||| = 2v/31.
. 7.7
b) Let x(di,dy) = p => cosp = ———5—.
||d1|| ) ||d2H

—

& dy = (67 —7) (47 —57)

— U T - 34| P - 171 - cos(F, 7) + 57N

224-9—34-3-2-%—1—20

=134

134 67
COS (p = ——=——————= = (p = arccos

24/73 - 24/31 247331
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| - [da] - sin x(dy, da)

c) A, —»

a,b 2
672 39v/3
Wedet .eS- _ 1_CS2 :\/1_—: .
ermine sin ¢ \/—O‘P 4-31-73  24/31-73
Then,
3943
A= 2@-2\/2971- 2L _ 39./3,

Problem 4.13. Prove that @ = 127 +3j —4k and b =37 +47 + 12% are

two of the edges of a cube. Determine @ such that @ is the third edge of this cube.

Solution:

@ and b are two of the edges of a cube iff:

L@ =]7]

—

2. @ L b

| @) = /122 + 32+ (—4)2 = 13, | 1| = v/3% + 42 + 122 = 13 so the first condi-
tion is fulfilled.
TL b e=7 b =0c12-3+3-4+(-4)-12=0<=36+12—48 =0
E) —_—>

which is true, so @ L b.

The third edge of the cube @ must fulfill

L el =[a]=]0b]=13,
212 N
2. — 7| @x0b
21D
T 7K
Txb =12 3 —4|=527 1567 +39k.
4

12
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Because | @ x b = A =13 and [@] = 13, then,

1 — — — — — —
T =+ (527 — 1567 +39K) = +(47 ~ 127 +3F).

4.4 Problems

Problem 4.14. Consider the points A(—3,0), B(0,—4), C(4,—4), D(-7,0), E(0,6)
F(v/3,-3) in R2. Convert rectangular coordinates to polar coordinates.

5 7
Problem 4.15. Let A <4, Zﬂ)’ B <2, g) and C' (9, g) points in R?. Convert

the polar coordinates of the given points to cartesian coordinates.

Problem 4.16. The point P is on a sphere of radius 4, O the centre of the sphere.
The angle between OP and Oz axis is 30°, the angle between OF’ (P = pr,o, P)

and Oz is 60°. Determine the cylindrical and cartesian coordinates of P.

T A o7 3T 27

Problem 4.17. ider the poi A( —,—),B 12,2 27 04,28 28
roblem 7. Consider the points 8, 53 ( 36 > ( 13 >
in R3. Convert the spherical coordinates of the given points to cylindrical and

cartesian coordinates.

Problem 4.18. Determine the cylindrical coordinates of A(2,2v/3,5), B(4, —4, 6),
C(—3,/3,—4), D(-3+/3,-9,0), E(0,0,4) given in the cartesian coordinates.

Problem 4.19. Convert the cartesian coordinates of A(2v/3,6,4), B(0, —6v/3,6)

and C(—16,0,0) to spherical coordinates.

4 )

s .
D (5, 3 2) in R3, given in cylindrical coordinates. Determine the cartesian and

3 7
Problem 4.20. Consider the points A (3, g, —3), B <5, Zﬂ" —6), C (4, n 2),

spherical coordinates of these points.

—

Problem 4.21. Decompose T = 27 —3J — 5k as a sum of the vectors ] =

37+?,v_2’=—7—?and53’=—7+3?
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Problem 4.22. Decompose U = 7—1—7—1—2? as a linear combination of the vectors
i

7227+7,?=—7+3?and_c’=— v

+]—?.

Problem 4.23. Let @ =27 + §, bV =-7+3%,7C = —T+7 —%. Prove that
a, Z), ¢ is a basis for V3. Determine the coordinates of d =27 + 7 + K using

the basis {@, b, 7}

Problem 4.24. Consider three points A(1,—1,2), B(2,1,0) and C(3,2,—6) in

space. Find:
a) the length of the vector AB.
b) the scalar product AB - BC
c) the area of AABC.

Problem 4.25. Consider the vectors @ =27 + 37 + 2?, T=—17 +47 + ?,
W=-27 + 2% . Calculate:

a) T + .

b) 27 — 3.

e) U X W.
f) the area of the parallelogram construct on the vectors @ and .

g) the hight of the parallelogram with the edges @ and ¥, considering @ as the

basis.
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h) the volume of the tetrahedron with the edges @, v and .

Problem 4.26. Consider the points A(0,1,—1), B(1,1,3), C(2,1,-2), D(3,—1,2).

Calculate:
a) The volume of the tetrahedron ABCD.

b) The distance between the point D and the plane ABC'
¢) ¥(AB,CD).

Problem 4.27. Determine A € R such that @ = 27 +3J + (2A — 3)k and
b= 243\ 7 + A7 — 2% are perpendicular.

Problem 4.28. Find the angle between the vectors @ and b if |@| = 4, H_b)|| =2
and (3@ +50) L (@ —20).

Problem 4.29. Prove that @ =614 +27 — 3K and b = —37 + 67 — 2% are

two of the edges of a cube. Determine @ such that @ is the third edge of this cube.

Problem 4.30. Consider the vectors @ = (2,3, 1), b = (1,1,-2), @ = (-2,1,2).
Calculate:

a) @- (b +7);

b) @ x (b +7);

)@ (b x7e

~—

I

d) @ x (b

X C).
Problem 4.31. Consider four points A, B, C, D in space. Prove that:

a) DA-BC +DB-CA+DC-AB = 0.
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b) If DA 1L BC and DB 1 CA then DC L AB.

Problem 4.32. Let G be the weight center of the triangle ABC'. Prove that:

a) AG+BG+CG=T10.

b) If M is an arbitrary point then 3MG = MA+ MB + MC.

Problem 4.33. Prove the Lagrange’s identity

@ x B2+ (@ 0)2 =772

N
for any vectors @ and b .

Problem 4.34. Determine the vector @ such that ||| = 3, @ is perpendicular on

the axis Oz and makes a 45° angle with the positive direction of Ox.

Problem 4.35. Find the angle between:
V3 1

a) the vector ¥ = — ¢ + 5‘7 and Oz axis.

b) AB and AC where A(3,1,-2), B(2,1,—1) and C(3,0,—1).

Problem 4.36. Let ¥ =37 — j + 2% and W = 7 - 2% . Determine the height

of the parallelogram with the edges ¥ and 7, considering ¥ as the basis.

Problem 4.37. Let @ =37 — j +2k, b = 7 —2k and @ = J +4Fk.
Determine the height of the parallelepiped with the edges @, _b), @, considering the
parallelogram with the edges @ and b as the basis.

—

Problem 4.38. If @ =37 —74—04?, b = 7 +2% and @ =37 — k, determine

a € R such that the vector @ x (E} x 7€) is parallel to the plane yOz.

Problem 4.39. f @ = i + j +2k, b =271 — j+ Ak and @ =1 —27 + k,
determine A € R such that the vector @ x (_b) x @) is parallel to the plane zOy.
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Problem 4.40. Consider the vectors @ = 7 — m7 + 3?, B =mi — 7 +% and

2 =37+ 7 — %. Determine m € R such that the vectors a, E), ¢ are coplanar.

For m = 1, calculate the volume of the parallelepiped with the edges @, _b), <.

Problem 4.41. Consider the triangle ABC, AA, 1 BC, Ay € BC, BB, 1. AC, B, €
AC, AA, n BBy = {H}. Prove that CH 1 AB.

Problem 4.42. Consider the vectors @ = 3@ + 20 and @ = 2@ — b such that

|| = 2, ||_b)|| — 3 and the angle between @ and b equals g
a) Determine the angle between ¥ and 0.
b) Find the projection of W on 7.
c¢) Calculate the area of the parallelogram with the edges @ and .

Problem 4.43. Consider @ = m + 2% and b = m — 37 such that |m| = 5,

3

|7|| = 3 and the angle between 7 and 7 equals 5

a) Determine the length of the two diagonals of the parallelogram with the edges

@ and b.

b) Find the angle between the diagonals of the parallelogram with @ and b as

the edges.
c¢) Calculate the area of the parallelogram with @ and D as the edges.

Problem 4.44. Prove the identity of Jacobi

Tx (b x)+Cx(@xb)+bx(Cxa@)=0,

N
for any vectors @, b, 7.



Straight lines and Planes in space

5.1 Planes in space

We can determine the equation of a plane in several situations.

Plane determined by a point and a normal vector

—

Let My(xo, Yo, 20) be a point in space and let W = ai + b7 +ck # 0 a vector.

—>

Let (P) be the plane passing through M, and is perpendicular to 7.

o/

Figure 5.1: Plane determined by a point and a normal vector
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The point M (x,y,z) will lie in the plane (P) if and only if the vector 7 is
perpendicular to MyM.

T L MoM < 7 - MoM = 0 <= a(z — o) + b(y — yo) + ¢(z — 2) = 0.

So, the equation of the plane passing through the point My (g, yo, 20) and having

as normal vector W =a i +bj + K # 0 is
(P) : a(z — xo) + by — o) + c(z — 29) = 0.

If we denote by d = —axy — byg — czp we obtain the general equation of a plane
in space

(P):ar+by+cz+d=0.

The vector

—>

npza_z')—l—b?—i—c?

is called normal to the plane and is a vector having the direction perpendicular to
the plane (P).
The point A(x4,ya,24) is on the plane (P) if axq + bya + cz4 +d = 0.

Remark 5.1. In particular, the equations of the planes xOy, xOz,yOz are:

e 20y :z=0;
e 20z :y=0;
o yOz:x = 0.

Plane determined by three non-collinear points

Let A(xa,ya,2a), B(zp,ys,28), C(xc,yc, zc) be three non-collinear points in space.
Let (P) be the plane determined by these three points. We also consider M (z,y, 2)
an arbitrary point of (P).
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]

P) B

Figure 5.2: Plane determined by three non-collinear points

Hence, the points A, B, C' and M are coplanar which implies that the triple scalar

product of the vectors M A, MB and MC is zero. Using the analytical expression

of the triple scalar product one has:

x Y z 1
TA—T Ya—Y 24— %

Ta—T Ya—9y z24—2 0
zp—v yp—y zp—z| =0
rp—x yYyp—y zg—=z 0
To—x Yo —Y z2c—*%
Te—T Yyo—y z2c—2 0
By adding the first row to the second, to the third and to the fourth, we will ob-

tain the equation of the plane determined by the non-collinear points A(z,ya, z4),

B(I’B,yByzB)y C(xCayCa ZC):

r y z 1

—_

A Ya za

—_

B YB ZB

—_

Tc Yo =c

Plane determined by a point and two non-collinear vectors

Let (P) be the plane that passes through the point My(zo, yo, z0) and is parallel to

two non-collinear vectors o, = a; i -+ b17 + 61? and T3 = ay i + b27 + 62?.
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¥

V2

]

b

Figure 5.3: Plane determined by the point and two non-collinear vectors

An arbitrary point M(z,y, 2) lies on the plane (P) if and only if the vectors

MyM, v7 and 3 are coplanar, that is (MM, v7,v3) = 0 which lead us to

r—T0 Y—Y <— %0
(P): aq by C1 =0.

a9 bg Co
5.2 Straight lines in space

Let d be the line passing through the point A(x,ya, z4) and is parallel to the vector
w# 0,05 =107 +mj +nk. Then a point M(z,y, z) is on the line d if the vector

MA is parallel to 7.

Figure 5.4: Line determined by a point and a director vector

So,Aed@HteRsuchthatmztv_d’(:)

=2 T +W—ya) ]+ (z—2a)k =t(lT +mj +nk)
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r

r=1It+xy
d:<y:mt+yA ,teR

z=nl+ 24

which are the parametric equations of the line d.

The vector 7y is also called the director vector of the line d while the compo-
nents of vy i.e. (I,m,n) are called the director ratios of this direction. Any other
numbers proportional to (I, m,n) are also direction ratios for the same direction.

When ¢ € R we have the line d, when ¢ € [a, b] then we will obtain a line segment
form the point where ¢ = a to the point where ¢t = b.

When we eliminate ¢ form the parametric equations, we obtain the cartesian
equations of the line d:

L—TA _ Y—Ya Z—ZA

d: = =

) m n

Remark 5.2. If one of the component of the director vector is zero, then, in the

cartesian equations of the line the corresponding numerator is also zero.

Example 5.3. The equations of the Ox axis are:

z Yy
Ox:— ===
170

or, equivalent
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Simalarly
.
z=0
r Yy z=0
Oy:6=I=— = Oy:qy=t ,teR < Oy:
z=0.
z=0.
\
.
x=0
x =0
O-:2-Y_2 Oz:{y=0 ,teR < Oz:
0o 0 1
y = 0.
z=1
\

Equations of the line joining two points

The line joining the points A(x4,ya,24) and B(zg,yp, 25) is d = AB.

AB
Figure 5.5: Line joining two points

If we write the equations of the line passing through A and having the director

vector AB = (x5 —24) 7 + (ys —ya)J + (25 — 24) & , we get

d- L—TA  Y—Ya  Z—24A
TB —TA YB — YA ZB — ZA
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Line determined by the intersection of two planes

The equations of the line d determined by the intersection of two planes (P;) and
(P,) are:
o +biy+ciz+d =0

s + boyy + coz +dy =0

Figure 5.6: Line determined by the intersection of two planes

The normal vectors to (P;) and (P,) are ny = a,i + b17 + 01? and ny =
as i + b27 + cz?, respectively. They are both perpendicular to d, so d is parallel
to W =Ny X .

- =
1 gk
Therefore, Uy = |a; by ¢ |-
a9 bg (6))
bl C1 c1 ap aq bl

The direction-ratios of vy are , ,
by co| |c2 a2| |az by
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5.3 Relative positions

Relative positions between two planes

Let (P)) : a1z + by +c1z+dy =0 and (P) : asx + bay + oz + dy = 0 be two planes
in space.

a1 by (&1 d; — s —

(P1)

(P2)

Figure 5.7: Two parallel planes

np, || (P2)
o (P)L(P)enpLlape<{
np, || (£1)
Ap,
fip,

v/ ]
(P1)

Figure 5.8: Two perpendicular planes
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« () =(Py) e @ _ b

C1 dy
a2 by (&) dy .

Relative positions between two straight lines

Let
r—I Yy—u Z— 21
dl' = =
L ma ny
and
Tr—2 — Z—Z
dy - 2 _Y—Y _ 2

ly me N2
be two lines in space.
The director vector of dy is vy, =13 © +my j +ny k and the point M;(x1,41,21) €
d; while the director vector of dy is vg, = l27 + m27 + TLZ? and the point

My (29, y2, 22) € da.

. L
e the lines are parallel, d; || do <= Vg, || Vg &= — = — = —.
la ms my

d, Va

dy

Figure 5.9: Two parallel lines

L my ni

ly ma T2
Lo —T1  Ya2—Y1 22— %

e the lines coincide, d; = dy <=

L my ni

e the lines are perpendicular, d; | dy < Uy 1 Uy, <= g, - Uq, = 0 <

2

lily + mimsg + nyingy = 0.
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Va,

Figure 5.10: Two perpendicular lines

e the lines are coplanar if the vectors vg;, Ug, and M;M, are parallel to the

same plane (are coplanar), which is equivalent to
T2 =21 Y2—Y1 22— 21
ll mq T = 0.

la mso no

Figure 5.11: Two coplanar lines

e Two lines that are not coplanar are skew lines. Skew lines are lines that do

not intersect and are not parallel. The lines d; and d, are skew if:
T2 — 21 Y2—Y1 22— 21
ll mq nq # 0.

ly mo no
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v,
d;
M

/a

Figure 5.12: Two skew lines

Relative positions between straight lines and planes

a:—lxo S At be a line in space and (P):ax +by +cz +d =0
m n

a plane in space.

We have:

Let d :

e d|| (P)<= 71y Lnp<=al+bm+cn=0.

Y

P)

Figure 5.13: A line parallel to a plane

e dn(P)={M} <<= 13 £ np<>al+bm+cn #0.
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.
vq L np
e dc (P) < A«

= <

al +bm+cn =20

kMo(xoyyo, 29) € d = My € (P)

axg + byg + czg + d = 0.

5.4 Angles and distances

Distances

e The distance from the point M (xg, yo, 29) to the plane (P) : ax+by+cz+d = 0

18

dist(M, d)

_axo + byo + czo + d|

Va2 + b2+ 2

A

i /

Figure 5.14: Distance from a point to a plane

e The distance between two parallel planes (P;) and (P) is the distance from

Mg(xg,yg, 22) S (PQ) to the plane (Pl)



5.4 Angles and distances

113

Mz(xz:}’z:zz)

(P2)

A4

Figure 5.15: Distance between two parallel planes

e The distance from the point A to the line d is

Ty x MoA
dist(A, d) = M7

v

where M, € d.

Figure 5.16: Distance from a point to a line

e The distance between two parallel lines d; and ds is
diSt(dl, dg) = diSt(Mg, dl),

where M € ds.
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My (x5, y2,22)
dy

Figure 5.17: Distance between two parallel lines

e The distance between the skew lines d; and d5 is

—
|(Da;, Vaz, My Mo)|

|74 > vas |

dist (d1 s dg) =

Y

where M1 € d1 and M2 € dQ.

j j
",T x rriz

d

Figure 5.18: Distance between skew lines

e If d || (P), the distance between the line d and the plane (P), is
dist(d, (P)) = dist(4, (P)),

where A € d.
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(P)

Figure 5.19: Distance between a line parallel to a plane

Angles

r— — z—z r—x — z—z
Let d; : L_Y7% _ ! and doy : 2 _ Y7 % _ 2 be two lines
ll mq 1 l2 mo no

in space and

(P1) : a1z + by + 1z +dy = 0 and (P) : agx + by + 9z + do = 0 two planes in

space.
e The angle between the planes (P;) and (F2)

*((P), (P2)) = x(np;, np,) = a, € [0, 3],
|CL16L2 + blbz + 6162|
\/a% + b2 + c%\/ag + b3 + c%'

Cos o =

Figure 5.20: The angle between two planes
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e The angle between the lines d; and ds is

{(dlde) = {(ma@) =P, pe [Oa %]
|lllg + mims +n1n2|
VB +mE 03B+ md+nd

cos p =

da

N
Va,
dy

Figure 5.21: The angle between two lines

e The angle between the line d; and the plane (P;) is
{(dl, (Pl)) = 90° — {(m,n—P;) = 9, 0e [0, g]

cos(¥(vg,,mp,)) = sin(90° — x(vg,, np,)) = sin b,

|lla1 + m1b1 + n161|

sin ¢/ = 2 2 2 2 2 2"
VB 4+ mi+ni/al + b+
N
dy
ﬁPl T_55"-1
90° — g,
]
Py 7

Figure 5.22: The angle between a plane and a line
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5.5 Solved Problems

Problem 5.1. Write the equation of the plane (P) if M;(1,—2,—1) and M(3,4,1)

are symmetrical about the plane (P).

Solution:

The information in our problem can be represented as the following figure shows.

If M; and M, are symmetrical about the plane (P) then MM, | (P) =
MM || i — g = 327 +6] +2F) =7 +37 + k.

We can also deduce that the middle of the line segment [M;M;] denoted by M
is on the plane (P). The coordinates of M are M(2,1,0).

We write the equation of the plane passing through M(2,1,0) and having as
normal vector Wp = i + 37 + ?, therefore the equation of the plane (P) is

(P):x—243y—1)+2=0

(P):z+4+3y+2z—5=0.

Problem 5.2. Determine the equation of the plane (P) which passes through
M(—4,—1,3) and is parallel to the plane (@) : x + 2y — 3z — 7 = 0.
Solution:

A sketch of the problem is represented below.
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@

(P) | (Q)=np | i = np =a(7 +27 —3F%). Fora =1, np = ng.

The equation of the plane passing through M(—4, —1,3) and having the normal
np is

(P):(z+4)+2y+1)—-3(:z2-3) =0

(P):x+2y—32+15=0.

Problem 5.3. Determine the equation of the plane (P) which passes through
M(2,1,0) and (P) is perpendicular on both (P) : x —y + 2 —7 = 0 and (P) :
20+ 2z—3=0.

Solution:

A sketch of the problem is represented below.

(9] M=
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e
—J

(P) L (P) = np, || (P) = i + k| (P),
(P) L (P) = 77, || (P) =27 + % || (P).
The equation of the plane passing through M (2,1,0) and having two vectors

parallel to the plane, np, and 7 p,, is

r—2 y—1 =z
(P):| 1 -1 1|=0=
2 0 1

(P):—x+y+22+1=0.

Problem 5.4. Determine the parametric equations of the line d which passes
through A(2,—3,1) and B(4,1,1).
Solution:
We substitute in the equations of the line joining two points the coordinates of

A and B, i.e.

d‘x—Z_ —
"4-2 1-(-3) 1-1

x=2t+2

(=3) z—-1 _

t<—

d:Jy=4t—-3 ,teR

z=1

Problem 5.5. Write the equations of the line d which passes through A(1,—2,5)
r—2 y+2 z+2
3. 4 =5

and is parallel to the line d; :
Solution:

A sketch of the problem is represented below.

d, Va

[ ]
A}
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ddi =1 || v = 15 || 37 +4] =5k — 15 =a(37 +47 —5k). For
a = 1 the director vector of d is 1y = 37 + 47 —5k.

The equations of the line passing through the point A(1,—2,5) and having as
director vector T3 =37 +4 7 — 5% are

r—1 y+2 z-95

d: )
3 4 -5

Problem 5.6. Write the equations of the line d which passes through A(6, —2, —3)
and is perpendicular on the plane (P):2x —y + 72 —9 = 0.
Solution:

A sketch of the problem is represented below.

dL(P)=w||np=1 |27 - +7k =1, =a(27 — j +7k). For
a = 1 the director vector of d is 7y = 27 — 7 +TE.

The equations of the line passing through the point A(6,—2, —3) and having as
director vector T3 =27 — j + Tk are

r—6 y+2 =z+3

d:— 1 7

Problem 5.7. Determine the parametric and cartesian equations of the line at the

intersection of the planes (P) :2x —3y+2z—1=0and (P2): —x +32+5=0.
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Solution:

20 =3y+z2z—1=0
(Pl)m(Pg):di

—24+324+5=0
T 7K

| am AR =2 -3 1|=-97-7j -3%.
-1 0 3

So, we can chose v =97 + 77 +3k.
The coordinates of a point A(x4,ya, z4) of the line d are a solution of the system

20 —-3y+2z—1=0
. Choosing z = 0 we obtain z = 5 and y = 3. So, a point
—x+32+5=0

from the line is A(5,3,0).
The cartesian equations of the line passing through the point A(5,3,0) and
having as director vector o] =974 + 7] + 3% are

r—5 y—3 =z
d: =— = _.
9 7 3

The parametric equations of the line d are:

-

r=9t+5

d:3y=7t+3 ,teER

z =3t
\
Problem 5.8. Determine the equations of the line d which lies in the plane

(
r=3+1

(P):xz—y+32—5=0,dis perpendicular to the line d; : { y = —¢+1 ,t€R,

z=25

\

and passes through M(1,—1,1).

Solution:
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A sketch of the problem is represented below.

d,
ﬁP ﬁdl
P)

The director vector of the line dy is o7 = & — J
dc(P)=7w lapg=—13 17 — 7 +3Fk.
dld=—7v Liog =1L 77— 7.

- — >
L v J k
Vd n

"l —wmmxug =1 —1 3|=37+37.

g L va;

1 -1 0

We can chose 7y = %(3_2) +37)=7+7
The cartesian equations of the line passing through the point M(1,—1,1) and

having as director vector vy = 7 + j are

r—1 y+1 =z-1 r—y—2=0

d:1 ] 5 = d:

z=1

Problem 5.9. Determine the equation of the plane (P) which passes through

—1
A(2,-1,3) and B(—1,1,1), and is parallel to the line d : — = y_ - _.,

2

w8

Solution:

A sketch of the problem is represented below.
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18

4

]
VA,

We present in what follows two methods of solving this problem.
The first method.

(P)||d=np Loy =—np L37 +27 + k.
ABe(P)=np LAB=np L 37 +27 —27.

T 7k
—np|wmxAB=|3 2 1|=-6i +3j +12Fk.
np L AB
3 2 -9

We can chose np = %(—67 +37 + 12?) = 27 + J +4F.

The equation of the plane passing through A(2,—1, 3) and having the normal 7p

(P):2z—-2)+(y+1)+4(2—3) =0 =

(P): —2x+y+42—T7=0.

The second method.

(P) |l d = (P) || 7 — (P) || 37 +27 + %.

A Be(P)= (P) | AB = (P)|| =37 +27 —27.

The equation of the plane passing through M (2, —1,3) and having two parallel

vectors to the plane, 7 and AB, is

r—2 y+1 z2—-3
(P):| 3 2 1 |[=0=
-3 2 -2
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(P):=6(x—2)+3@y+1)+12(2—3) =0 =
(P): 2z +y+42—T7=0.

Problem 5.10. Determine the angle between the lines d; : T =

5 ) 3 2 -1
T+ Y+
dd: = =2-5.
and da 5 — z—5
Solution:

Let x(dy, ds) = ¢ be the angle between the lines d; and ds.
e 7 - ?7

({(—> —>)) QT-h)'Udz 3'3+2'(—1)+1-(—1) 6

cos(X(vq,, v = — = -

N TN R e e e T IR BT
6

V154
Problem 5.11. Let (P) : 2 —3y+22—5=0and (Q) : ar —3y +22—5= 0 be

@ = arccos

two planes in space. Determine « € R such that (P) L (Q).

Solution:

(P) L(Q) <= np Lng<=np-ng =0.
np=1-37 +2k

n_ézoz_z)—37+2?
np-ng=0=a+9+4=0<=a=-13

r+2 y+3 z+1 r—2 y—3 z+1
= = and ds : = =
3 2 -2 a -1 3

be two lines. Determine a € R such that d; and dy are coplanar.

Problem 5.12. Let d; :

Solution:

d; and dy are coplanar <= g, , Ug), AB are coplanar < (v_’ch,v_’cb,z@)) =0,
where A € d; and B € d,.

e =37 +25 -2k,

@=a7—7+3?.



5.5 Solved Problems 125

A(—=2,-3,—1) € d; obtained for the ratios in the line equations equal to 0,
and B(2,3,—1) € dy obtained in the same way. The vector AB has the expresion
AB =47 +67.

We determine a € R such that (vg;, va;, EE)) =0.

3 2 =2

19
a —1 3 =0<=)—38—12a=0<:)a:—g,
4 6 0

-

r=2t—1

Problem 5.13. Let d : { y=2—¢ ,t € R be a line in space and (P) : (A —

z=t—2

\
1)x —y + 3z — 5 = 0 a plane in space. Determine A € R such that d || (P). For A
determined, find the distance between d and (P).

Solution:

d|(P)<=71vg Lnp<=7v;-np=0
w=27— 7 +k,

np=0\-1)7 -7 +3%
Ug-mp=0<=2A-1)+1+3=0< A= —1.

The equation of the plane (P) for A = —1is (P) : =2z —y + 32 — 5 = 0 and

7 +3%.
Since d || (P), dist(d, (P)) = dist(A, P), where A is a point belonging to d.

-
np=-21 —

We have the parametric equations of the line d, so choosing for example ¢t = 1,

we have A(1,1,—1).

. | =2-1-143-(=1)=5] 11
dist(A, (P)) = TIT1T0 VT

—
11

dist(d, (P)) = =
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Problem 5.14. Let

d‘x—ﬁ_y—l_z—i—Q
1 4 a-—1

be a line in space and

(P): 2z —3y+52+13=0

a plane in space. Determine «, € R such that d < (P).

N
7

We can use one of the two conditions :

vg Lnp
l.dc (P) = or
Aed= Ae(P)

2.dc(P)<= Aand Bed= A and Be (P).

Solution:

For this particular problem is easier to choose the first one.
=7 +47 +(a—1E,

np =27 —-37 +5k.

Vg lnpe=v; - np=0=2-12+5(c—1)=0= a =3.
A(B,1,-2)ed= Ae(P) <= 2-3-10+13=0= [ =0.

IQZ = y;l = g be a line in space and M(7,2, —3).
Determine the distance from the point M to the line d.

Problem 5.15. Let d :

Solution:

|U—d> X MM(]H

dist(M, d) = | = , where M, € d.
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=47 +37 +2k,
My e d, My(2,1,0) = MMy =—-54i — j +3k.

- -

v 7k

Tx MMy=|4 3 2|=117-227+11F =11(7 =27 + k).
5 -1 3
M
v .
/
/
M, Vg >

dist(M,d) = |

(7 -27 + &)  11v6
47 +37 +2%| V29

rT+2y—z+5=0
Problem 5.16. Consider d : a line in space and (P) :

20 —22+3=0
x4+ z —3 = 0 a plane in space. Determine the relative position of d and (P). If

d || (P) find the distance between them, else determine the intersection of d and

(P).

Solution:
- > =
2 +5=0 gk
T+ 2y—=z =
— w1 2 —1|=—47 —4%.
20 —2z2+3=0 9 0 -2

—

The normal to the plane (P) is the vector g = 7 + k.
It is obviously that v, || 7p since vy = —4np, so the line d is perpendicular to

the plane (P).
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<[
a
—_——
S
o

P

L M(xar, ynr, 2m) € d
Let {M} = d n (P). This implies that =

M(@ar,ya, 2u) € (P)

-

Ty + 2y — 2z +5=0

1220 — 22 +3=0

Ty +zy—3=0

\.
The solutions of the linear system are the coordinates of the point M, i.e.

3 _79
M3, —5 1)
r=t+1
r+3 y .
Problem 5.17. Let dy: {y=2t—2 ,t€Randdy: 5 =§=zbetwohnes
z=t—3
in space. )

a) Prove that the lines are skew lines.
b) Determine the distance between d; and ds.
¢) Determine the equations of the common perpendicular of d; and ds.

Solution:
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a)

d; and dy are skew line if the lines are not coplanar < (vg], vg,, M1 M3) # 0

where M, € d; and M, € d,.

o= +2] + k.

=27 +37 + k.

M;(1,—2,-3) € dy (we chose t = 0 in the parametric equations of d).

M5(—3,0,0) € dy (we determined x, y, 2 when each ratio in the cartesian equa-

tions of the line dy equals 0).

MM, =—47 +27 +3Fk.

1 21
(Vay, Vay, MiMs) = | 2 3 1| =3 # 0= d; and d, are skew lines.
-4 2 3

—
Vay» Uay, My Ms))|

747 x

diSt(dl,dg) = |(

rd
1

-  —

Uy X Ua, = =-T+7-F = o x93 = V3.

7 F
1 2 1
2 3 1
dist(dy,dy) = —= = /3.

3
V3

d 1l dy g L vg,

Let d be the common perpendicular. Hence, = -
d 1l d, U L vq,

W T x T ==+ 5 — k.
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U)dii
v

d = A1 Ay where {A1} =dndy and {As} = d n ds.

Since we have the parametric equations of d; the coordinates of the point A,

from dy are A;(t + 1,2t —2,t — 3).

The parametric equations of dy are dy : 4 y = 3m ,m € R, so, the point

2=m
\
Ay € dy has the coordinates As(2m — 3,3m, m).

AAy=0Cm—t—47T +Bm—2t+2)7 +(m—t+3)k.
2m—1—4 3m—2t+2 m—1+3

It’s obvious that 77 || Aj Ay < : : : —
2m —t —4 3m —2t+2
1 = 1 Sm — 3t = 2 m=7
- — — —
3m — 2t + 2 —t+3
mzAthe mztH Am+3t=5 t=11

1 —1
A;(12,20,8) and Ay(11,21,7).

The equations of the common perpendicular are:

— 12 —20 -8
d:AlAglx :y :Z .
—1 1 —1
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—1 —4
Problem 5.18. Let dlzx—Szy—2=zand dz:x 5

space. Prove that d; and dy are skew lines and determine the common perpendicular

= % = 2z be two lines in

of the two lines.
Solution:
Let A(1,2,0) € d; and B(4,0,0) € dy, so AB =37 —27.
di and dy are coplanar if v, U si AB are coplanar, but (vg,7z, AB) =
-5 1 1
—2 0 1| =-3#0, therefore d; and d, are skew lines.

3 =20
Let d be the common perpendicular of d; and ds.

Z d (P2)

Let (P;) and (P) be the planes determined by d; and d, ds and d respectively.
Therefore, d is at the intersection of (P;) and (Ps).
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r—1 y—2 =z
(P):| =5 1 1|=0=(P):—x+1ly—162—-21=0.

1 32
r—4 y z
(P):| =2 0 1|=0<= (P):-32+5y—6z+12=0.
1 32

The equations of d as intersection of (P;) and (P,) are

—x+ 11y —162—-21 =0
d: <
—3r+5y—6z+12=0

Solving the system we can write the parametric equations of the line d:
(

_t 53

I—§+7
d<y=t ,tER.

_ 2t 25

r=3 -

Problem 5.19. Determine the projection of M(1,—2,3) on the plane (P) : x —3y+
z—95=0.
Solution:

Let M’ be the projection of M on (P), M' = prp M.
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That implies that MM’ 1 (P) = MM’ | Wp = MM’ || T =37 + .
We determine the equations of the line passing through M, perpendicular to the

plane (P), which means that the line has the direction 7 - 37 + k.
- r—1 y+2 =z-3
1 =31
The point M’ is at the intersection of d and (P).

;
Ty =t+1
Mede M(t+1,-3t—2t+3) Yy = —3t — 2
= <
M’E(P) zr =1+ 3
kIM/—3yM/—i—ZM/—5=0

5 6 7 28
=+ 1-3(-3t—-2)+(t+3)-h=0e=t=—m=— M= —— =)
13 )+ (E+3) 11 (11’ 11’11)

Problem 5.20. Determine the symmetric of A(—2,1,5) with respect to the line

d.x+1_y—2_z+1
2 3 =927

Solution:

If A" is the symmetric of A with respect to d then AA" 1 d and M, the middle
point of the line segment [AA’], is in the line d.

A

d M

<L

\

Med<— M(2t—1,3t+2,—2t — 1) (from the parametric equations of the line d).
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AM =@+ 1)T +Bt+1)7 + (=2t —6) k.

AM L d e AM -7 =022t + 1)+ 3Bt +1) —2(-2t —6) = 0 => ¢ =
—1 = M(-3,-1,1) (M is the projection of A on d, M = pr,M).

Since M is the middle of the line segment [AA’] we have

(.17 _ TatTa (_3_ —2+4+xu
M= "9 T2

Loy = % —{_q_1 +2?JA’ — A/(—4,-3,-3).
. _ZAtza 1_5+ZA/

M 2 \ 2

3 y+1
)

Problem 5.21. Consider the line d : x; = z — 3 and the plane (P) :

r—3y+2+9=0.
a) Determine the angle between the line and the plane.

b) Determine the projection of the line d on the plane (P).

Solution:
a) The director vector of the line d is 7 = 27 — 27 + k.
The normal to the plane is g = 4 — 3] + I
We study the relative position of d and (P).

(1) The line is perpendicular to the plane, d 1 (P) < v || np.
2 =2

1
1 # ) # 77 S0 the line d is not perpendicular to the plane.

(2) The line is parallel to the plane, d || (P) < vq L np < v3-np = 0.

T =2-1+(=2)(=3)+1-1=9£0,s0d}f (P).

(3) We have the third situation when the angle between d and (P), o € (0, F).
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A
d
p Vg
900 — g
(o4
®

o = 90° — (T3, p)

cos(x(vq, np)) Vi 1 ) ;
/U ’n frd — — frd frd .
PP T mal el T 3vAT . VAL

cos(¥(0q,mp)) = sin(90° — x(vg,np)) = sina =

(b) The projection of a line d on a plane (P) is another line d; which lies on the
plane (P) such that the plane (@) determined by the lines d and d; is perpendicular
to (P).

(@)
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The equation of the plane determined by d and d;, denoted by (@), is a plane
passing through any point of d, for example A(3,—1,3) € d, and has two parallel

directions:

e the normal to the plane (P): (P) L (Q) = 7ip =

e the director vector of the line d: d = (Q) = U4 = 27—27—1—? | (Q).
r—3 y+1 2—-3
(Q):] 2 —2 1 |=0e=(Q):z—y—424+8=0.

r—3y+2+9=0

r—y—424+8=0
Solving the system we can write the parametric equations of the line

18, 15
x_52 12
dy <=t 4+ = ,teR.
B R L
z=1

We p}esent in what follows another method for solving this problem.

We know that the projections of all the points of d on (P) form the projection
of d on (P), which in our case form a line, d; = pr(p)d. We only need two points of
dy and we can write the equations of the line joining the two points.

Is obvious that the intersection of the plane and the line {M} = d n (P) belongs
to the line d;. )

xr=2t+3

The parametric equations of the line d are: { ¢y = —2t—1 ,t€R

z=t+3

\

— M(2t+3,—2t —1,t +3).
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&M A,
w -
d
.
Ty = 26+ 3
{M} = dn(P) < | — 2t+3-3(—2t—1)+t+3+9=0
ZM =t+3
k.I‘M—?)yM—|-21M—i-9ZO

—t=-2= M(-1,3,1) € d;.
For the second point we chose a point from the line d and then we will determine
then its projection on (P).
For ¢ = 0 in the parametric equations of d we obtain the point A(3,—1,3) € d.
Let’s find the coordinates of the projection of A on (P), A; = pr(p)A.
AA L (P)=AA] | p=17-37+k =

-

r=t+3

r—3 y+1 =z-3

| —3 = AA1:qy=-3t—1 ,teR

AAl .

z=1t+3

\
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-

Ty =1t4+3
Ya =—3t—1

(A1} = AA; n (P) = {7 =
Za, =1+ 3
\xAl—?)yAl—i—zAl—l—Q:O

18
t+3—3(—3t—1)+t+3+9=0:>t=——:>A1(

15 43 15
11 '

11711711
1 -3 -1

dleAlzf,)—i_l:% :1'25 —

ntl -3 -1
r+1 y—3 z-1

3 5 2
Remark: We can notice that the parametric equations of
(

dli

r=13p—1

di:qy=5p+3 ,p € R does not look like the ones obtained using the first

z=2p+1
\
method, i.e.
( 13 15
T =t — —
52 12
dy < = —t 4+ — ,tER.
Y=3"75
z=1

But z =t = 2p + 1, so we can express x and y using the parameter p in the

latter form, i.e.

13t — 15 13(2 1 15
_ _ B+l 15 .
541 5(2 21) p

+ D+
e - = 5 3.
2 5 T PF

We can observe that the parametric equations of a line are not unique.

xz

y:

5.6 Problems

Problem 5.22. Write the equation of the plane (P) such that:
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a) M(1,-2,—1) € (P) and Oz L (P).
b) M(0,1,-3) € (P), Oz || (P) and Ox || (P).
c) M(2,-2,1)e (P), (P) || (Q):2x —y +62—5=0.

Problem 5.23. Write the equation of the plane (P) if A(2,—2,3) and A’(4,2,—-1)

are symmetrical about the plane (P).

Problem 5.24. Write the equation of the plane which passes through the point
M (3,2, —1) and the axis Oy lies in (P).

Problem 5.25. Determine the equation of the plane (P) which contains the points
A(1,0,1) and B(2,—1,1) and is parallel to Ozx.

Problem 5.26. Write the equation of the plane which contains A(1,2,—1) and is
perpendicular to the line AB, B(2,3,5). Calculate the distance between the point
B and the plane (P).

Problem 5.27. Determine the equation of the plane (P) which passes through
the point A(1,0,1) and is perpendicular to the planes (P;) : 3z +y — 1 = 0 and
(P):z+y—2—1=0.

Problem 5.28. Determine the equation of the plane (P) which contains the points
A(=1,-2,0) and B(1,1,2) and is perpendicular to the plane (P) : x+2y+2z—4 = 0.

Problem 5.29. Calculate the distance between the point M(1,1,2) and the plane
(P):x+2y—32—4=0.

Problem 5.30. Calculate the angle between the planes (P) :z+ 3y +2z+4 =0
and (@) :3zx+2y—z+1=0.
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Problem 5.31. Write the equation of the plane which passes through the point
A(1,2,0) and is parallel to the plane (P): x — 2y + 3z — 5 = 0.

Problem 5.32. Write the equation of the plane which contains the points A(3,0, 2)
and B(1,—1,2) and is parallel to Ox.

Problem 5.33. Write the equation of the plane which contains the point A(1, —1,1)
and is perpendicular to the planes (P) : x—y+22z—3 =0and (P) : —x+2y—z = 0.
Find the angle formed by the planes (P;) and (P).

Problem 5.34. Write the equation of the plane which is perpendicular to the plane
(P1) :x + 2y + 2z —4 =0 and contains the points M;(—1,—2,0) and M(1,1,2).

r—3 y+1
-3

Problem 5.35. Consider the line d : = 2z + 2 in space.
(a) Write the direction vector of d.
(b) Write the parametric equations of d.

(¢) Verity if the points A(—1,3,—4) and B(—1,2,—3) are points of d.

Problem 5.36. Consider A(1,2,3), B(1,1,0) and C(—1,2,1) three points in space.

Write the canonical and the parametric equations of lines d; if:
(a) dy = AB.
(b) dq passes through C' and is parallel to the line d;.
(¢) d3 L dy, d3 L BC and passes through A.

r+2y—32+1=0
(d) d41
—r+y+22-5=0
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Problem 5.37. Write the equations of the line which passes through the point
M (2,-5,3) and:

a) is parallel to Oz;

-1 -2 3
b) isparalleltothelined:x4 _ Y 3 ZZ; :

c) is perpendicular to the plane (P) : 3z — 7Ty + z — 23 = 0.
Problem 5.38. Determine the equations of the line which is parallel to
x=3t—4
d:{y=5—1 ,teR

z=4

\

and passes through A(1,6,—3).
Problem 5.39. Write the equations of the line AB if A(—2,5,1) and B(-2,2,5).
Problem 5.40. Write the equations of the line which lies in the plane (P) : x +

r—1 y+2 z2-2
2 3 -1

y — 2z — 2 =0, is perpendicular to the line d; : and passes
through the point M(1,0,—1).

Problem 5.41. Consider the lines d; and dy such that d; || T = T+ 7 and
| T="17+Fk.

(a) Calculate m(c@)

(b) Write the equations of the line d3 perpendicular to d; and perpendicular to ds
and passes through M (3,2, 1).

Problem 5.42. Write the equations of the line which passes through A(2,1,1) and
is parallel to the line BC, B(5,2,—1), C(0,1,—2).
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Problem 5.43. Write the equations of the line which passes through A(—1,0,1)

2c —3y—z+4=0
and is parallel to the line d :
r—y+z2—-5=0

Problem 5.44. Write the equations of the line which passes through M (1,2, —2)

and is perpendicular to the plane (P):z—3y+ 2z —5=0.

Problem 5.45. Determine the line which lies in the plane * — 2y + 2 — 5 = 0,
(

r=4+1

contains A(1, —1,2) and is perpendicular to the lined: { y =54+¢ ,teR.

z=1t—-2

\
Problem 5.46. Write the equation of the plane (P) which contains the line

-

r=2-—3t

d<y:4—|—t ,teR

z=1—-2t
and passes through A(—1,0,—1).

Problem 5.47. Determine the symmetric point of M(—1,2,2) with respect to the
plane (P) :x —y+22+2=0.

Problem 5.48. Determine the equation of the plane (P) which contains M (1, —1, 2)

r+y—22=0
and is perpendicular to the line d :

r—2+3=0

Problem 5.49. Determine the equation of the plane (P) determined by the lines

r—y+2z—2=0 r+2y—22—-1=0
dy : and ds :

2r4+y—2—-1=0 r+y+2=0
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Problem 5.50. Find the projection of M(1,2, —3) on the plane (P) : x—3y+2z—2 =
0 and calculate the distance from M to (P).

-3 y+l1 z-1
2 -2

on the

Problem 5.51. Find the projection of the line d : z
plane (P):x —y—2z+1=0.

Problem 5.52. Find the equation of the plane (P) which contains the line

r—y+22—-6=0
20 +3y—2z+3=0
and is perpendicular to the plane (Q):z+y—2z+5=0.
Problem 5.53. Determine the symmetric point of A(2,4, —3) with respect to the
lined:x=2y=-z.
Problem 5.54. Find the distance between the point M (1,2, —3) and the line

r—1 y+3
2 -2

d:

z.

Problem 5.55. Determine the projection of M (2, —1,2) on the line
r=1t+2

d:{y=2t—1 ,teR

z=3t+1

Problem 5.56. Write the equation of the line which passes through M(2,3,1) and

: . r+1 Yy z—2
llel to the lined : —— = — = .
is parallel to the line 5 — 5

Problem 5.57. Write the equation of the plane which passes through the point
M(1,—1,1) and is perpendicular to the line

z—3

(a) d: 5

=y—2=—2—-12
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y—z+4=0
(b) d:

20 —y =10

Problem 5.58. Find the distance between two lines d; and dy and the equations

of the common perpendicular if it exists, for:

—9 2r+y =3
a) allzaj =y+1=zandds: :
3
z=0
r=2t—3
r—1 y+1 =z
b) d : ) :_—2:§andd2:<y:4_2t ;
z=3t—4
-2 —1 1 1 3
c) dlza: zy—zz—Sandd2:$+ _yt =Z+.
2 2 —4 2 —1

Problem 5.59. Consider the lines

r—1 y+1 z
dy : = = —
2 0 -3

and
r+2 y—1 z+1

3 A 1
Determine A € R such that the lines are coplanar and find the intersection point of

d1 and d2 .

dg:

Problem 5.60. Conisder the plane (P) : 2x — 3y + 5z + 13 = 0 and the line

-1 2
d: % = y4 _ZF T Determine « € R such that d < (P).
a_

Problem 5.61. Consider the plane (P) : 2z + 3y — 22 + 1 = 0 and the line d :
r—1 y+2 z+1
3 a+2 l-a

. Determine « € R such that d || (P).
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-1 —4
Problem 5.62. Let d; : x_5 =y—2=zanddy: z 5 = % = ; be two lines

in space. Prove that d; and dy are skew and then determine the equations of their

common perpendicular. Calculate the distance between d; and dy and the angle

between the two lines.

Problem 5.63. Determine the relative position of

and
r+1 y z-1

ds :
3 T4 3

and then compute the distance between them.

Problem 5.64. Let (P) : 2x + 2y — 3z — 1 = 0 be a plane in space and

r+1 y-3 z-1

d: =
2 2 1+«

be a line in space. Determine v € R such that:
(a) (P) | ;
(b) (P) L d.

Problem 5.65. Let A(2,4,1), B(3,7,5) and C(4,10,9) be three points in space.

Prove that the points are collinear.
Problem 5.66. Determine if the points are coplanar:
(a) A(-2,1,2), B(-3,5,7), C(—4,3,12) si D(1,1,1).

(b) A(2,—1,0), B(—1,—1,—5), C(2, -2, —3) si D(—4,2,—1).
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Problem 5.67. Determine the distance between M (3,1, —1) and the line

x—1 Y z+2

Problem 5.68. Compute the distance between M (—2,3,2) and the line

r—3 y+1 z-2
1 2 -1

d:

Problem 5.69. Compute the distance between the point M(1,1,2) and the plane
(P):x+2y—32—4=0.

-1
Problem 5.70. Determine the point M, M € d, d : g = yT = 2z + 1 such that
the distance between M and (Py) : 4dx+2y—2z+6 = 0 equals to the distance between

M and (P) : 2z —4y+2—5=0.

Problem 5.71. Determine the equations of the line d’ which is the symmetric of d

with respect to A if:

-

r=t+2

(a)d<y=2t—1 7t€,A(—1,—1,2)

z=3t+1

x—1 Y
= — = 15 A(3,-2,4).
3 _2 Z+ Y (7 7)

(b) d:

Problem 5.72. Determine the equations of the line d which is perpendicular to the

1 -2
a ;— = % _Z 5 Dasses through M(2,3,1) and the lines d and d; are

line d; :

coplanar.

Problem 5.73. Determine the equations of the planes (P;) and (P,) if both contain

| 2
x_+2 _ % — 242 (P) L (P) and A(2,—1,3) € (Py).

the line d :

Problem 5.74. Determine the relative position of the plane (P) and the line d and
then find the angle and the distance between the line and the plane if:
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(@) (P)ix—y+2+5=0; d:x+1= — —

-

r=2t—4
(b) (P):20—2y+32-4=0; d: {y=5t+4 ,teR

z2=2t+5

() (P)ix+dy—2-4=0; d: {y=t+4
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Conic sections, Cylinders and Quadric

Surfaces

6.1 Conic sections

A conic section is a curve obtained as the intersection of a plane with a cone. A
cone has two identically shaped parts called nappes. A right circular cone can be
generated by revolving a line passing through the origin around the y-axis. The
three types of conic section are the hyperbola, the parabola, the ellipse and the

circle which is a special case of the ellipse.
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parabo -
circle

em

nappes hyperbola

5

Figure 6.1: Conic sections

The general equation of a conic is

Az* + Bxy + Cy* + Br + Ex + F = 0.

Circle

Definition 6.1. The circle is the set of the points that are a fixed distance from a

center point.

The distance is called radius and is denoted by r.

The general equation of a circle is
(©): (@ —h)*+(y—k)* =72,

where M (h, k) is the center of the circle and r is the radius. The circle is denoted

by C((h,k),r).
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h

Figure 6.2: The circle

The parametric equations of the circle C((h, k), r) are:

x =h+1rcosb
(©): , 7=0, 0¢€0,2n].

y=~k+rsiné

The equation of the circle with the center at the origin is (C) : 2% + y* = r2.

The tangent line at a point to the circle C((h, k), ).

1. The tangent line at a point My(zo,y0) € (€) to the circle (@) is
tg: (x —h)(wo—h) + (y — k) (yo — k) = r%.

2. The tangent lines to the circle (€) having the slope m are

tg:y—k=m(x—h)Lrv1+m
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3. The tangent lines to the circle (€) from an exterior point My(xg, yo) is

tg:y—yo=m(z — x0),
where m € {my, ms}, m; and my are the solutions of the equation

Yo —k =m(xo—h) £rv1+m?

Ellipse

Definition 6.2. The ellipse is a closed curve, the locus of a point such that the
sum of the distance from that point to two other fized points Fy, Fy called foci of the

ellipse, is constant.

The general equation of an ellipse is:

(my: @M o bt

a? b2

The parametric equations of the ellipse (E) are:

x=h+acosf
(E): , a,b=0, 6¢€l0,2n].
y=k+bsind

If a > b, then:

e The major axis is the longest width across the ellipse is on Ox (the ellipse is

horizontally oriented), the length of the major axis is 2a.

e The minor axis is the shortest width across the ellipse is on Oy, the length of

the minor axis is 2b.

e The center is the intersection of the two axes M (h, k).
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e The foci Fy, F, are on the major axis Fy(h — ¢, k), Fo(h + ¢, k), where ¢ =

va?— b2
e The vertices are the end points of the major axis Vi(h — a, k), Va(h + a, k).

c

e The eccentricity is € = — < 1. The eccentricity of an ellipse refers to how
a

flat or round the shape of the ellipse is. The more flattened the ellipse is, the

greater the value of its eccentricity. The more circular, the smaller the value

or closer to zero is the eccentricity.

If a >0band h = k£ = 0 we have the ellipse horizontally oriented having the

center at the origin O(0,0):
Y
(E): =+ = =1.

a? b2

— — d i
I Minor axis

Major axis

Figure 6.3: The ellipse horizontally oriented

If b > a and h = k = 0 we have the ellipse vertically oriented having the center

at the origin 0(0,0).
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The major axis is on Oy, the length of the major axis is 20.

e The minor axis is on Oz, the length of the minor axis is 2a.

The foci Fy, Fy are on the major axis F(0, —c), F»(0, ¢), where ¢ = /b? — a?.

e The vertices are V4 (0, —b) and V5(0, b).

* Major axis

a
N
\X
\Sl

Minor axis

V1(0,—b)

Figure 6.4: The ellipse vertically oriented

The tangent line at a point to the ellipse (F).

1. The tangent line at a point My(z,yo) € (E) to the ellipse (£) : R
a
is
. TZo  YYo

tg a2 ? = 1.



6.1 Conic sections 154

2. The tangent lines to the ellipse (E) having the slope m are

y = mx + vVa*m? + b2

Hyperbola

Definition 6.3. The hyperbola is the set of all points such that the difference

between the distance to two focal points called foci Fy, Fs, is constant.

If we choose the foci on Ox axis, Fi(—c,0), Fy(c,0), the equation of the hyperbola
having O(0,0) as its center is:

Hyperbola

Conjugate axis

Transverse axis

e

/

Y
asymptotes

Figure 6.5: The hyperbola opens left and right

e The transverse axis is F1Fy = Ox.

e The conjugate axis is perpendicular on F)F, and passes through the center,

in this case is Oy axis.
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The rectangle having the edges 2a and 2b symmetric with respect to the hy-

perbola axes is called the fundamental rectangle of the hyperbola.

b
The asymptotes of the hyperbola y = +—x are the diagonals of the of the
a

fundamental rectangle.

The foci are Fi(—c,0), F»(c,0), where ¢ = v/a? + b2.

The vertices, Vi(—a,0) and V5(a, 0), are intercepts of the transversal axis with

the hyperbola.

c
The eccentricity is e = — > 1.

a
The parametric equations of the hyperbola (H) are:

r = tacosht
(H) ) tER7

y = bsinht

t —t t —t
e +e : e —e
where cosht = 5 sinh = 5

The tangent line at a point My(xo,y0) € (H) to the hyperbola (H) is

T2 _ Yo

If we choose the foci on Oy then
2 2
L -t o
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Hyperbola

Conjugate axis

Transverse axis

Figure 6.6: The hyperbola opens up and down

The transverse axis is on Oy.

The conjugate axis is on Ox.

The branches open up and down.

The foci are at F1(0,—c), F»(0, c), where ¢ = v/a? + b2.

The vertices are at V;(0, —b), V5(0,b).

a
The asymptotes are of equations y = —i-g:c.

The general equation of an hyperbola with the branches open left and right is:

(c—h? (y—h)?

a? b2

(H) : 1.

For this hyperbola we have:

e The center is at C'(h, k).
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The vertices are at V(h £ a, k).

The foci are at Fy o(h + ¢, k), where ¢ = v/a? + b2

b
The asymptotes are of equations y — k = £—(x — h).

[ ]
IS

The transverse axis is F} Fy, a parallel line to Ox passing through C'.

The conjugate axis is a parallel line passing through C' and perpendicular to

the transverse axis.

The general equation of an hyperbola with the branches open up and down is:

(y—k)? (z—h)?

2 72 = 1.

(H) :
For this hyperbola we have:
e The center is at C'(h, k).
e The vertices are at V(h, k £ a).
e The foci are at F} o(h, k £ ¢), where ¢ = v/a2 + b2.

(x — h).

e The asymptotes are of equations y — k = £

o e

e The transverse axis is F}F5, a parallel line to Oy.
e The conjugate axis is a parallel line passing through C" and perpendicular to
the transverse axis.
Rectangular hyperbola

A rectangular hyperbola is a hyperbola for which the asymptotes are perpendic-

ular, also called an equilateral hyperbola or right hyperbola.
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An equilateral hyperbola can be obtained when a = b, in this case the general

equation is 22 — % = a? or y? — 2% = a%.

If the asymptotes are Ox and Oy axis, then the equation of the rectangular

hyperbola is zy = ¢

Rectangular Hyperbola

Vi

. asymptotes

Figure 6.7: Rectangular hyperbola zy = ¢?

The rectangular hyperbola is the same shape as the standard hyperbola, but
rotated by 45°.

The asymptotes are Ox and Oy axes.

The vertices of the rectangular hyperbola are Vi(—c, —c), Va(c, ¢).

The eccentricity is € = v/2.

The parametric equations of the rectangular hyperbola are

8
|

Q

IS S

(H) : , teR*.

<
I
10
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Parabola

Definition 6.4. The parabola is the set of all points whose distance from a fized

point called the focus is equal the distance from a fized line called the directrix.

The point halfway between the focus and the directrix is called the vertex of the
parabola.
There are four types of parabolas on the coordinate planes. They can open down,

up, to the left and to the right.

1. (P):(z—h)>=4p(y — k).
The parabola opens up if p > 0 and opens down if p < 0.

directrix

directrix

Figure 6.8: The parabola opens up Figure 6.9: The parabola opens down

e The vertex is V(h, k).
e The directrix is y = k — p.

e The focal point is F'(h, k + p).
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x=2pt+h
e The parametric equations are: , teR.
y=pt2 +k
2. (P): (y—k)?=4p(xz — h).
The parabola opens right if p > 0 and opens left if p < 0.

directrix

directrix

Figure 6.10: The parabola opens right ~ Figure 6.11: The parabola opens left

The vertex is V(h, k).

The directrix is x = h — p.

The focal point is F'(h + p, k).

x=pt?+h
The parametric equations are , teR.

y=2pt+k



6.2 Cylinders 161

6.2 Cylinders

Definition 6.5. A cylinder is a surface that consists of all lines called rulings,

that are parallel to a given line and pass through a given plane curve.

Remark

e In R? space, the equation of the cylinder has only two different variables.
These equations give a trace of the curve on the coordinates plane denoted by

the given variables.
e The curve is directed along the axis of the missing variable.

e The curve does not change along the direction axis.
Example 6.6. Graph the surface of equation z = x> + 1.
o We don’t have y in the equation, so we will look at the trace on the xOz plane.

o In x0z plane z = > + 1 is a parabola opens up on Oz axis.

o We will obtain the full surface by assembling together the infinitely many

parabolas traced in each plane y = k.

Figure 6.12: Cylinder z = 22 + 1
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Example 6.7. Graph the surface of equation x* + y* = 4.

o We don’t have z in the equation, so we will look at the trace on the xOy plane.
e In x0y plane 2% + y? = 4 is a circle with the center at the origin and r = 2.

o We will obtain the full surface by assembling together the infinitely many circles

traced in each plane z = k.

Figure 6.13: Cylinder 2% + y? = 4

Example 6.8. Graph the surface of equation yz = 6.
e We don’t have x in the equation, so we will look at the trace on the yOz plane.
e In yOz plane yz = 6 s a rectangular hyperbola with the asymptotes Oy and
Oz.

o We will obtain the full surface by assembling together the infinitely many hy-

perbolas traced in each plane x = k.
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Figure 6.14: Cylinder yz = 6

6.3 Quadric Surfaces

A quadric surface is given by a degree two equation in the form
Ar? + By’ + C2*> + Doy + Exz 4+ Fyz + Ge + Hy + [z + J = 0.
We will look at six basic surfaces that each of the following equations forms:
A + By +C22+J =0

Ar* + By* + 12 =0

By rotating and translating these we can obtain more general surfaces. The terms
with zy, xz, zy are only when we dealing with a rotation of these quadric surfaces.

The six basic types of quadric surfaces are:
1. ellipsoid

2. hyperboloid of one sheet
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3. hyperboloid of two sheets
4. elliptic cone

5. elliptic paraboloid

6. hyperbolic paraboloid

The degree and sign of the degree two terms as well as which terms are present
help determine which of the six basic quadric surfaces is given.

To graph a quadric surface is it often helpful to graph the xy-trace, the zz-trace
and the yz-trace. These are the intersection of the surface with the three planes of
the coordinates system.

To determine the zy-trace we set z = 0.

To determine the xz-trace we set y = 0.

To determine the yz-trace we set x = 0.

A trace of a surface is the curve obtained by intersecting the surface with a plane

parallel to the coordinate plane, i.e. x = constant, y = constant, z = constant.

Ellipsoid

Characteristics:

e all three degree two terms are present;

e all three degree two terms are positive when equation equals 1;
e all three traces are ellipse;

e the intercepts are x = +a, y = +b, z = tc.
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Figure 6.15: Ellipsoid

The tangent plane at My(zo, o, 20) € (E) to the ellipsoid is:

TTo  YYo | Z%0
?+F+C_2_1:O'

Sphere

The sphere is a special case of an ellipsoid when a = b = c.

Definition 6.9. The sphere is the locus of the points in space that are a fized

distance called the radius, v, from a point called the center.

The equation of the sphere centered at My(xo, yo, 20) and having the radius r is:

(S): (z —x0)* + (y —yo)® + (2 — 20)* = r*.

Hyperboloid of one sheet

Characteristics:

e all three degree two terms are present;
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two degree two terms are positive and one is negative when equation equals 1;

e one trace is an ellipse;

two traces are hyperbolas;

the axis of the hyperboloid of one sheet is parallel to the negative variable, i.e.

is directed along the axis with ”-”.

Figure 6.16: Hyperboloid of one sheet

The tangent plane at My(zo, Yo, 20) € (H1S) to the hyperboloid of one sheet is:

@ T e e
Two sheets Hyperboloid
2 2 2
(H28): -2 Y 42—y

a? b2 2

Characteristics:

e all three degree two terms are present;
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e one degree two term is positive and two are negative when equation equals 1;

e one trace is an ellipse parallel to the Oy plane (to the plane determined by

the negative variables);
e two traces are hyperbolas;

e the axis of the hyperboloid of two sheets is parallel to the positive variable

axis.

e the intercepts are z = +c¢ (we set the negative variable 0).

Figure 6.17: Hyperboloid of two sheets

The tangent plane at My (o, yo, 20) € (H2S) to the hyperboloid of two sheets is:

TTo  YYo |, <20
e te =l
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Elliptical cone

1.2 y2 22
(EC)E_'_?_E:O

If (z,y, ) is a solution of the general equation of the elliptical cone we have that
(Ax, Ay, Az) is also a solution of the equation. That means that the surface is a
union of lines through the origin.

Characteristics:

all three degree two terms are present;

two degree two terms are positive and one is negative when equation equals 0;

e one trace is a point or an ellipse parallel to the xOy plane (to the plane

determined by the positive variables);

two traces are two lines or two hyperbolas;

the axis of the elliptical cone is parallel to the negative variable axis.

Figure 6.18: Elliptical cone
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Elliptic paraboloid

Characteristics:

e two degree two terms are present and are positive;

e one degree one term is present;

one trace is an ellipse;

two traces are parabolas;

the axis is parallel to degree one variable axis.

direction:

— if ¢ > 0 the elliptic paraboloid opens towards positive direction of degree

one variable axis.

— if ¢ > 0 the elliptic paraboloid opens towards negative direction of degree

one variable axis.

Figure 6.19: Elliptic paraboloid
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The tangent plane at My(zo, yo, 20) € (EP) to the elliptic paraboloid is:

LLo  YYo €
@ P Tt
Hyperbolic paraboloid
x2 y2

Characteristics:

two degree two terms are present, one positive and one negative;

e one degree one term is present;

one trace is a hyperbola;

e two traces are parabolas;

the axis is parallel to degree one variable axis.

Figure 6.20: Hyperbolic paraboloid
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The tangent plane at My(xo, Yo, 20) € (EP) to the hyperbolic paraboloid is:

Lo  YYo _ C
@ o gt

6.4 Solved problems

Problem 6.1. a) Put 22? — 8z + 2y* + 4y — 8 = 0 into a standard circle form.
b) Determine the radius and the center of the circle.
c) Write the parametric equations of this circle.
d) Draw the circle.

e) Find two points on the circle and plug them into the equation to make sure

your drawing is correct.

f) Write the tangent line to the circle at one of the point previously determined.
Solution:
a) We divide by 2 the equation and we get:
2 —dr+ P +2y—4=0<=
2?4 +4+9yP+2y+1-4-4-1=0=
(r =22+ (@y+1)?*=9

which is the standard circle form.

b) The circle (€) : (x — 2)? + (y + 1)*> = 9 has the radius 7 = 3 and the center at
A(2,-1).
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¢) The parametric equations of the circle are:
r =2+ 3cost
(€): , te|0,2n].
y=—1+3sint

d) The graph of the circle is:

Y 4

e) The points we chose are B(5, —1) and C(2,—4). B € (€)if (5—2)*+(—1+1)% =
9 which is true and C € (C) if (2 — 2)? + (—4 + 1)®> = 9 which is also true, so
the chosen points are on the circle.

e) The tangent line at B(5, —1) is
tg: (z—2)5-2)+w+1)(-1+1) =9
tg:x =5.

Problem 6.2. For the ellipse
(z+1)2?  (y—2?*_

E): =1
(E) 9 + 25

find the major axis and its length, the minor axis and its length, the center, the
vertices, the foci, write the parametric equations, find the intercepts of the ellipse

and then graph it.



6.4 Solved problems 173

Solution:
We notice that 25 > 9 so the major axis is along Oy, a = 5, b = 3. The length
of the major axis is 10, the minor axis is Oz with the length 6.
The center is at C'(—1,2).
The vertices are on a parallel line to Oy axis, z = —1, Vi(—1,7) and V5(—1, —3).
(From the center of the ellipse C'(—1,2) we go up and down a = 5 u.m.).

For the coordinates of the foci we need ¢ = va2 — b2 = /25 — 9 = 4. The foci
are also on the major axis, ¢ = 4 u.m. up and down from the center F(—1,2 £ 4),

Fl(—l, 6) and FQ(_17 —2)

The parametric equations of the ellipse are

r=—1+ 3cost
(E) : , t€]0,2n].

y =2+ 5sint

The intercepts of the ellipse are:
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1)? 4 21
O(E)mOx:yzo:%Jr%:l(:)(IJrl)?:g.%(:)
3val 3v/21
T = —1+— We have two intercepts on Ox axis A1< 1——5 O> and
4y (_1 " 3—’V,o).
5
1 —2)° 200
10 10
2+ i = we have two intercepts on Oy axis B (O 2—%) and

10v/2
BQ(O,2+%>.

Problem 6.3. For the hyperbola
(H):2* —4y* — 16 = 0

find the transverse and the conjugate axis, the center, the vertices, the foci, the
asymptotes, the eccentricity and then graph it. Write the parametric equations of
the hyperbola. Check if M (21/5, —1) is on the hyperbola and write the equation of
the tangent line at M.

Solution:

We notice that the equation is not in the standard form so we divide by 16, and

2 9
we get (H) : %—yzzl

The center is at O(0,0).
Because the x term is positive when the equation equals 1, the transverse axis is

Oz, a = 4 and the conjugate axis is Oy, b = 2.
The vertex are on the transverse axis V;(—4,0) and V5(4,0).

For the coordinates of the foci, we determine ¢ = va2 + b2 = /16 + 4 = 24/5.
The foci are Fy(—2+/5,0) and F;(2v/5,0).

The asymptotes are the lines d; :y = —x anddsy @ y = —%x, while the eccentricity

25 _ 5

1S € = 1 = 2
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The parametric equations of the hyperbola are

x = +4cosht
(E) : , teR.
y = 2sinht
24/5)? —1)2 20 1
M(2v/5,—1) € (H) if( \1?) By 4) = 1<=)E—1—1=0Whichistrueso,
the tangent line to the hyperbola at M is
2V —1-y
tg : — =1
7716 1 -

tg:Vor 4+ 2y —8 = 0.

Problem 6.4. Let (P) : y* = 3z be a parabola. Determine the vertex, the fo-
cal point, the directrix and then graph it. Write the parametric equations of the
parabola. Determine the equation of the tangent line at A(12, —6).
Solution:
The vertex of the parabola is at O(0, 0) and due to the fact that the second order

3 3
term is at y, p = 7 the focal point is on Ox axis at F (Z’ O>. The directrix is a

3
line parallel to Oy passing through x = —p so the directrix is x = ~7
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The parametric equations of the parabola are

t2
€r = —

(P) 3, teR
y=1t

A(12,—6) € (P) since (—6)? = 3 - 12. The tangent line to the parabola at A is

tg:y-(—6)=g(x+12)<:)

tg:x+4y+12=0.
Problem 6.5. Identify and then graph the conic having the equation:
a) (C1):32> +y+6x—2=0.
b) (Co) : 2% + 4y* + 10z — 16y + 25 = 0.
¢) (C3):a?+y*—10z + 2y +21 = 0.
d) (Cy) : 4y* — 2% — 40y — 122 + 60 = 0.

Solution:
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a) (C1): 322 +y+6r—2=0«<=

(C1): 322 +22+1)=—y+2+3 =

-5
(C): (z+1)*= _yT
which is the equation of a parabola along Oy axis, which opens down, having
1
the vertex at V(—1,5), and p = Iz The focal point is F' (—1, 5— 1—12)

When graphing the parabola, the number 4p which is called also latus rectum
is very helpful since the points at the ends of the line segment parallel to the
directrix having the length |4p| and having the middle point the focal point,
belong to the parabola. In our case the latus rectum is 1/3 so the points

A (—1 — %, 5— 1—12) and B (—1 + %, 5 — %) are on the parabola.

Yy
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b) (Cy): x? +4y? + 10z — 16y + 25 = 0 <=
(Co): 22+ 100+ 25+ 4(y* —4dy+4) — 16 = 0 =
(C): (x+5)?+4(y—2)2 =16

() s LIV oD

which is the equation of an ellipse centered at A(—5,2), the major axis on a

1

line parallel to Ox, a = 4 and b = 2.

c) (C3): 2?2 +9y*—10x +2y+ 21 = 0 =
(C3): 2?2 =100 +25+y? +2y +1+21 =251 =0 <
(C3): (x =52+ (y+1)*=5

which is the equation of a circle centered at A(5, —1) and having the radius

r=+/b.
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d) (Cy) : 4y? — 22 — 40y — 12z + 60 = 0 <>
(Cy) = 4(y* — 10y + 25) — (22 + 122 + 36) + 60 — 100 + 36 = 0 <=
(Cy): 4y —5)% — (z +6)? = 4 =
CARURL R S

which is the equation of the hyperbola having the transverse axis a line passing

1

through the center A(—6,5) and parallel to Oy. The vertex are V;(—6,4) and
Vo(—6,6). a = 1 and b = 2, so the fundamental rectangle has the length of
the edges 4 and 2 respectively and its diagonals are the asymptotes of the

‘J/
.

hyperbola.
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Problem 6.6. Write the equation of the circle such that:

a) AB is the diameter of the circle, A(—1,—2) and B(5, —4).

b) The center of the circle is at A(2,—3) and the line d : 22 + 5y — 1 = 0 is

tangent to the circle.
Solution:

a) The center of the circle is the middle of the line segment [AB]| which is

AB 62 4 22
M (2,—-3) and the radius is r = 5 = 0 2+ = /10.

The equation of the circle is:

(C): (z—2)*+ (y + 3)* = 10.

b) The radius is perpendicular to the tangent, therefore
|4 +5-(=3) -1 12
VA4 +25 V29

The equation of the circle is:

r = dist(A, d)

) _ 144

(C): (x—2)*+ (y+3) 59

Problem 6.7. Write the equation of the ellipse centered at O(0,0) such that:

w

a) The distance between the foci is 6 and the eccentricity is ¢ = .

b) The point M(—24/5,2) is on the ellipse, the major axis is on Ox and the length

of the minor axis is 6.

Solution:
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22 g
Ey:—+—==1
() 25+16
22 2
b)26=6:>b=3z(E):—+§=1.
a
20 4 20 5 9
M(—2\/5,2)€(E)(:)¥+§:1(:)¥:§:>a=36
The equation of the ellipse is:
22
E)y:—+==1
(B):56+7

Problem 6.8. Write the equation of the hyperbola centered at O(0,0) such that:

3
a) One vertex is at V;(0, —2) and the eccentricity is € = 7

9
b) The point M (5, —1) is on the hyperbola, the equations of the asymptotes

are y = igsc, and the transverse axis is on Oz.
Solution:

a) If the vertex is V4(0, —2) € Oy then the transverse axis is on Oy and a = 2.

The equation of the hyperbola is:

2 2
Y x
E)y:=———=1.

(B): T —=



6.4 Solved problems 182

2 2
b)y=i—x=>é=—=>a=3k:,b=2k=>
3 a 3
72 y?
H): o~ e
9 81 1 ) , ,
M(ﬁ’_l)e(H)(:)zl-Qk?_@:l:}k =2=q"=18, b*=8.
The equation of the hyperbola is:
2 2
Hy: =Y .
18 8

Problem 6.9. Write the equation of the parabola which is symmetrical about the
Oy axis, the vertex is at the origin and passes through A(9,6).
Solution:
The general equation of the parabola is (P) : 2% = 4py.
mameuuzﬁm:44y6:$p:%.

The equation of the parabola is:

27
(P):2* = <Y

Problem 6.10. Write the equation of tangent to the parabola y? = 2z perpendic-

ular to the lined:z —2y +4 = 0.

Solution:
tg Ld= mymy=-1=my, =7 = -2.
2
The tangent line at the point M (xg,yo) to the parabola is tg : yyo =  + g =
1 1
Mg = — = Yo = —=.
T 2

(‘r07y0)e (P):>y(2)=2x0:>x0: g

The equation of the tangent is
1

1
tg:y(—§)=x—|-§

tg:8r+4y+1=0.
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Problem 6.11. Determine the equations of the tangent planes to the sphere
(S): 2> +y*+2°—4r+2y—62+8=0

at the intersection points with the line

d:x—lzi:z—l'
1 -1 2

Solution:
We write the equation of the sphere in the standard form.
(S):2? —dox+4+y? +2y+1+22—62+9+8-4-1-9=0<=
(S): (z =2+ (y+1)*+(2—3)*=6.
The tangent plane to the sphere at M (zg, o, 20) € (5) is
(Pg) + (@ =2)(20 = 2) + (y + Do + 1) + (2 = 3)(20 — 3) = 6.

r=t+1

Let M = (S)nd, Med:{y=—t dteR = M(t+1,—t,2t+1).
z=2t+ 1.
\

Me(S)y=(t+1-22+(—t+1)*+(2t+1-3)>=06 <
62— 12t =0=t(t —2) =0=1, =0, ty = 2.

For ¢t = 0 we have M;(1,0,1) and the equation of the tangent plane at M; is
Py:(x—2)1-2)+(y+1D0O0+1)+(2—3)(1—-3)=6
Pg:—r+y—22+43=0.

For t = 2 we have M(3,—2,5) and the equation of the tangent plane at M, is
Py:(x—2)3-2)+(y+1)(—2+1)+(2—3)(b—-3)=6
Pg:ov—y+22-15=0.

Problem 6.12. Sketch the appropriate traces then sketch and identify each of the

following surfaces.
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a) (S1):92% — 4y* + 92% = 0;

b) (S2) : 922 + 4y* + 2* = 36;

c) (S3):4a? +4y? — 2% +4 = 0;

d) (Sy) 12® +4y* = 4

e) (S5):z=a%+4y* — 4

f) (Se) : 92% — 4y* + 92* = 36;

g) (S7):2®—y*+42—4=0.
Solution:

a) (S1): 922 — 4y* + 922 = 0. If we divide the equation by 36 we get
22 2
(S1) : 19 + 1= 0, which is an elliptical cone along Oy axis.
oy 2 2 3 :
xy trace: z=0:>z—520<:>9x = 4y @)y:iixwhlcharetwo

lines.

zz trace: y =0 =2 =2 =0= 0(0,0,0).

2

2
3
yztrace:x=0=>—%+zz20(:>922=4y2<:)y=i§zwhichare

two lines in yz plane.
2 2
y: oz
fr=2— "+ —=-1
! 9 "4
the transverse axis on Oy.
2 2
fy=43 = ” + ZZ = 1 <= 2% + 2® = 4 which is a circle with the radius

2 in the planes y = 3 and y = —3.

2 2

fz=4+2= 7 + Y — 1 which is a hyperbola having the transverse axis

9

22

2
— % —7 = 1 which is an hyperbola having

on Oy.
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The traces are represented in the next figures.

y

BT & % 5 2 4 | S T R T B 3 4 5 2 A I T T E T

Figure 6.21: zy trace Figure 6.22: yz trace

Figure 6.23: z = £2 trace Figure 6.24: y = +3 trace

The sketch of the elliptical cone is as the next figure shows.
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Figure 6.25: (S;) - elliptical cone

b) (S2) : 922 + 4y* + 22 = 36, so we divide by 36 the equation and we get

22 2

(S2) : 7t 5 + 36 1, which is an ellipsoid.
22

xy trace: z = 0 = T + 9" 1 an ellipse having the major axis on Oy.
2 22

xrz trace: y =0 = 7 + 36" 1 an ellipse having the major axis on Oz.
g 22

36

yz trace: x =0 = 5 + — =1 an ellipse having the major axis on Oz.
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The traces are represented in the next figures.

s
Y

N

s

8.

Figure 6.26: xy trace Figure 6.27: xz trace Figure 6.28: yz trace

The sketch of the ellipsoid is as the next figure shows.

Figure 6.29: (S) - ellipsoid
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c) (S3): 42% +4y? — 22 +4 = 0. If we divide by —4 the equation we get
2
(S3): —a* — 9% + zz = 1, which is a two sheets hyperboloid along Oz axis.

zy trace: 2 =0=—= —22 — 1> =11is &.
fz=22=2+1y’=0=12=y=0= 0(0,0).
If z =44 = 22 + y?> = 3 = a circle having the radius v/3.

If 2= 46 = 22 + y?> = 8 = a circle having the radius /8.
2
z
rz trace: y = 0 = —2% + il 1 an hyperbola having the transverse axis on

Oz, and the vertex V; 2(0,0, £2).
2
yz trace: © = 0 = —1° + ZZ = 1 an hyperbola having the transverse axis on

Oz, and the vertex V; 2(0,0, £2).

The traces are represented in the next figures.

Figure 6.30: 2z = +4 and Figure 6.31: xz trace Figure 6.32: yz trace

z = +6 traces
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The sketch of the two sheet hyperboloid is as the next figure shows.

Figure 6.33: (S3) - two sheet hyperboloid

d) (Sy) : 2% + 4y? = 4 is a cylinder along Oz axis. The trace in 2Oy plane is
2

x
T + y? = 1 an ellipse having the major axis on Oz. The trace is represented

in the next figures.

Y
) ) D J ’

Figure 6.34: zy trace
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The sketch of the cylinder is as the next figure shows.

Figure 6.35: (S4) - cylinder

e) (S5):2z=a?+4y*>—4 <= 2+4 = 2%+ 4y? is an elliptic paraboloid along Oz
axis.
22
zy trace: 2 =0 = 2’ + 4> —4 =0 = y +1? = 1 which is an ellipse with

the major axis on Ox.

Ifz=-d=2+4y*=0=12=y=0=V(0,0,—4) is the vertex of the
elliptical paraboloid.

fz<—-4d=2+42<0= .
If 2 > —4 = 22 + 4y? = 2 + 4 which is the equation of an ellipse.

1z trace: y = 0 = 2 + 4 = 2?2 a parabola along the positive direction of Oz

axis and the vertex at V' (0,0, —4).

yz trace: © = 0 = z + 4 = 4y? a parabola along the positive direction of Oz

axis and the vertex at V' (0,0, —4).
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The traces are represented in the next figures.

517

N

Figure 6.36: zy trace Figure 6.37: zz trace Figure 6.38: yz trace

The sketch of the elliptic paraboloid is as the next figure shows.

Figure 6.39: (S;) - elliptic paraboloid

) (Se) : 922 — 4y + 922 = 36. We divide by 36 and we get:

3’32 2

(56): __y_+z

2
1T ot T 1 which is the equation of a one sheet hyperboloid along
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2 2
xy trace: z = 0 = xz — % = 1 which is a hyperbola having the transverse
axis on Oz and the vertex at V; 2(+2,0,0).
2 22
xz trace: y =0 = 7T + il 1 a circle with the radius r = 2.
2 22

Ify=46—= 7T + 1 5 a circle with the radius r = 2v/5.

y? 2
yz trace: x = 0 = -y + i 1 which is a hyperbola having the transverse

axis on Oz and the vertex at W 2(0,0, £2).

The traces are represented in the next figures.

Figure 6.40: zy trace Figure 6.41: xz trace Figure 6.42: yz trace

The sketch of the one sheet hyperboloid is as the next figure shows.

Figure 6.43: (Sg) - one sheet hyperboloid
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g) (S7): 2> —y? + 42 —4 = 0. We divide the equation by 4 and we obtain:
2 2

(S7): z—1= yz — % which is the equation of a hyperbolic paraboloid.
2 2
xy trace: z = 0 = i 1 which is a hyperbola having the transverse

axis on Oz and the vertex at V; 5(£+2,0,0).

xz trace: y = 0 = 22 = 4z — 4 a parabola along the positive direction of Oz

and the vertex W (0,0, 1).

yz trace: x = 0 = y?> = —4z + 4 a parabola along the negative direction of

Oz axis and the vertex (0,0, 1).

The traces are represented in the next figures.

Figure 6.44: zy trace Figure 6.45: zz trace Figure 6.46: yz trace

The sketch of the hyperbolic paraboloid is as the next figure shows.

Figure 6.47: (S7) - hyperbolic paraboloid
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6.5 Problems

Problem 6.13. Write the equation of the circle such that :
a) The center is at the origin and the radius is 3.
b) A(2,—1) is the center and the radius is 4.
¢) The center is at B(2,5) and passes through C(—1,2).

d) The center is at D(1,—1) and the line d : 5z — 12y + 9 = 0 is tangent to the

circle.

Problem 6.14. Write the equation of the circle having the diameter AB, where
A(2,3), B(4,-1).

Problem 6.15. Determine the radius and the center of the circle
(C):a*+y*—4x+6y+5=0.
Write the equation of the tangent to the circle at A(1, —2).

Problem 6.16. Write the equation of the ellipse with the center at the origin such
that:

a) the length of the axes are 5 and 2 and is horizontally oriented;

b) the length of the major axis is 10, the focal distance is 2¢ = 8 and is horizontally

oriented;
c¢) the major axis is 24, the focal distance is 2¢ = 10 and is vertically oriented;

. 3 . ) i
d) 2c = 6, the eccentricity is € = v and is horizontally oriented;
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12
e) the length of the minor axis is 20, the eccentricity is € = - and is vertically

oriented.

Problem 6.17. Write the equation of the ellipse (£) with the center at the origin
if:

a) M(—2v/5,2) € (E), b= 3 and is horizontally oriented;
b) M(2,-2) € (£), a = 4 and is horizontally oriented;
c) the ellipse (F) passes through M, (4, —/3) and M(2v/2, 3);

d) M(v/15,—1) € (E), 2c = 8 and is horizontally oriented,;

2
e) M(2,—3) € (E), the eccentricity is e = 3 and is horizontally oriented.

Problem 6.18. Determine the major axis, the minor axis, the vertices, the foci,

the eccentricity for
2 2

xXr
a) (El):1—6+%—1=0;

b) (Ey) : 2® + 16y* — 16 = 0;
¢) (F3):x?+4y* —1=0;
then graph them.

Problem 6.19. Determine the relative position of the ellipse (E) : 222+5y*—88 = 0
and the lined : 3xv — by + 14 =0

2 2 2
Problem 6.20. Write the tangent lines to the ellipse (F) : f—o + % —1 = 0 parallel

to the line 3z + 2y + 7 = 0.

Problem 6.21. Write the equation of the tangent line at A(2,0) to the ellipse
2

x 2

Lo 1=0.

4 Y



6.5 Problems 196

Problem 6.22. Write the equation of the hyperbola with the center at the origin

and:
a) a =5, b =4 and the transverse axis is on Oxz;
b) ¢ =5, a =4 and the transverse axis is on Oy;

. 3 .

¢) ¢ =3, eccentricity is € = 5 and the transverse axis is on Ou;
. 5 .

d) a = 8 eccentricity is € = 1 and the transverse axis is on Oux;

4
e) the asymptotes are y = igx, ¢ = 13 and the transverse axis is on Ozx.

Problem 6.23. Write the equation of the hyperbola (H) having the center at the

origin and:
a) M(10,—+/5) € (H), a = v/20, and the transverse axis is on Oy;
b) the hyperbola passes through M; (5, 14—5) and My(—4+/2,5);
c) M(4, —%) € (H), ¢ =5 and the transverse axis is on Ox;

2
d) M(3,—1) € (H), the equations of the asymptotes are y = igx, and the

transverse axis is on Oz.

Problem 6.24. Determine the transverse axis, the conjugate axis, the vertices, the

foci, the eccentricity and the equations of the asymptotes for each of the hyperbolas
2
x

a) (Hy) : 9

b) (Hy):a2?—y*—1=0,
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then graph them.

Problem 6.25. Determine the relative position of the line d : © —y — 4 = 0 and

22 g
the hyperbola (H) : 53 1=0.

2
Problem 6.26. Write the equation of the tangent line of (H) : - y>’—1=0at

4
the point A(—6,2v/2).
Problem 6.27. Write the equation of the parabola such that

a) the parabola opens to the right, the vertex is the origin O(0,0) and the foci is
F(2,0);

b) the parabola opens to the left, the vertex is O(0,0) and the directrix is z = 5;

c¢) the parabola opens down, the vertex is A(2,—3) and the foci is F'(2, —6);

d) the parabola opens up, the foci is F'(—2,5) and the directrix is y = 1.
Problem 6.28. Determine the vertex, the foci, the directrix for the parabolas

a) (P1):(y+1)*=6(z—2),

b) () :a? =4y —2),

Q) (Py): a® = —y,

Q) (P (y— 2 = —Aa,

e) (Ps):y*—6y—8x+1=0,

) (Ps) : 2% + 8z + 4y + 20 = 0,

then graph each one of them.
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Problem 6.29. Determine the equation of the parabola if:
a) is symmetric about Ox, passes through A(9,6) and the vertex is at the origin;
b) is symmetric about Oy, passes through B(1,1) and the vertex is at the origin.
Problem 6.30. Determine the relative position of the line and the parabola if:
a) d:x—y+2=0, (P):y*=8x;
b) d:8x+3y—15=0, (P):2? = —3ux;
¢c) d:5x—y—15=0, (P):y? = —bx.

Problem 6.31. Determine the center and the radius of the circle at the intersection

of the sphere (9) : 2% +y? —4xr—2y—62+1 = 0 and the plane (P) : z+2y—2z—3 = 0.

—6
Problem 6.32. Determine the intersection of the lined : x —3 =y —1 = - 5
x? 22
with the hyperboloid T + 9% — 9 1=0.

Problem 6.33. Determine the center and the radius of the sphere
(S):a*+yP+ 22— +3y—42—-1=0.

Problem 6.34. Let (S) : 22 + y? + 2% = 1 be the sphere and M (1,0,0) be a point
that belongs to (S). Determine a point N € (P), (P) : z = 5 such that M N is
tangent to the sphere (S5).

2 2 2
Problem 6.35. Determine the intersection of the ellipsoid T + L + = 0

4 3 9
with the line x = y = 2. Write the equation of the tangent plane to the ellipsoid at

these points.

2,2 L2
Problem 6.36. Determine the intersection of the hyperboloid % + % — j_6 —-1=0

with the coordinates planes and identify the conics.
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Problem 6.37. Determine the equations of the tangent planes to the surface of

R
a) the elliptic paraboloid 5 + 3 =%

2

b) the hyperbolic paraboloid z* — yo_ 3z;

4
which are parallel to the plane (P): 2z —3y+2z—1=0.

Problem 6.38. Determine the equation of the sphere having the center at the point
C(3,—5,—2) and is tangent to the plane (P):2x —y — 3z + 11 = 0.

Problem 6.39. Sketch the appropriate traces then sketch and identify the surface
a) 22% +y? — 322 = 0;
b) 2?2 + y? + 422 + 4y = 0;
c) —x? +y? —22% = 1;
d) 22% +3y? — 2% = 1;
e) v+ 2y =1-—z;

f) 227 —y* + 322 = 1.
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(Generation of surfaces

7.1 Cylindrical surfaces

The surface formed by the motion of a line called the generator of the surface moving
parallel to itself and intersecting a given fixed curve called the directriz of the surface
is called cylindrical surface.

(P):ax+biy+cz+d =0
Let d be the generator line d : and the direc-

(Py) : agw + boy + coz +dy =0

F(x,y,z) =0
trix (') : ( )
G(z,y,z) = 0.
o . (P) =«
A straight line parallel to d is ¢ : , o, eR.
(Pz) =/

The line g intersects the directrix if ¢(«, 5) = 0.

The equation of the cylindrical surface is

(5) : o((£1), (P2)) = 0.
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7.2 Conical surfaces

A surface which is the union of all lines that pass through a fixed point called the
vertex or apexr and intersect a fixed curve called the directriz that does not contain
the apex, is a conical surface. Each of the lines is called a generator for the conical
surface.

Let V' be the vertex at the intersection of the planes

-

(P):az+biy+ciz+d; =0

Y (P) i asx + boy + coz +dy = 0

(Ps) : azz + byy + c3z +d3 = 0.
\

(P1) = of
(P2) = B(Ps)

The compatibility condition is ¢(a, §) = 0, so the equation of the conical surface

(5):90(@ @):

Py)
The generators are g :

18

(P2)" (Ps)
Remark 7.1. If the vertex is given by its coordinates V (xo, Yo, z0) and the directriz
, flz,y,2) =0 ,
is (T') : then, the equations of the generator are
9(z,y,2) =0
o s gl

The generator intersect the curve (T') if p(«, 8,7) = 0, hence the equation of the

surface is

(S):go('r_xmy_yO’Z_ZO) =0.
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7.3 Conoid

A conoid is a ruled surface, whose rulings fulfill the conditions:
e All rulings are parallel to a plane, called the directriz plane.
e All rulings intersect a fixed line, the axis.
e The rulings intersect a curve.

The conoid is a right conoid if its axis is perpendicular to its directrix plane.
Therefore all rulings are perpendicular to the axis.
Let (P) : ax + by + cz + d = 0, be the directrix plane and the axis

(P):a1z+biy+ciz+d; =0

(Py) : asx + boy + coz + do = 0.
The generators are of equations:

(P) =«
(Pl) = 5(P2)-

The compatibility condition is ¢(a, §) = 0, and the equation of the conoid surface

) ((0). () 0.

18

7.4 Surfaces of revolution

A surface of revolution is a surface created by rotating a curve called the gener-

atriz around an axis of rotation (azis of revolution).

e Sections of a surface of revolution perpendicular to this axis are circles, called

parallel circles or simply parallels.
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e Sections containing the axis are meridian sections, or simply meridians.

F(x,y,2) =0
Let (') : be the generatrix, and the axis of revolution the line

G(r,y,2) =0
d- =% _Y—Y _ =~ =0
] m n
A surface of revolution can also be generated by a circle € moving always perpen-

dicular to a fixed line d with its center on the fixed line and expanding or contracting
so as to continually pass through a curve (I') which always lies in a plane with the
straight line.
0 (z = w0)* + (y —y0)* + (2 — 20)* = &?
lx + my +nz = .
The circle € intersect the curve (T') if ¢(a?, 8) = 0.

The equation of the surface of revolution is

(S): o((x —20)* + (y —y0)* + (2 — 20)%, Iz + my +nz) = 0.

7.5 Solved problems

Problem 7.1. Determine the equation of the cylindrical surface having as genera-
tors lines parallel to the direction T = 57 + 37 + 2% and as directrix the curve
2 +y?—-2=0
z=0.
Solution:

Let us consider the line having as director vector 7':

20 — bz =\
d:

DN |

x
g 20—3z=p
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( ( >\
20 — 5z = A T=g
I
2 —3z=p y==
M)nd =< — 2 = \N+p*-8=0.
Pyt -2= z2=0
)\2 MQ
[ z2=0 kZJrZ_Q:O

The equation of the cylindrical surface is:

(22 —52)* + (2y — 32)> =8 = 0.

Figure 7.1: Cylindrical surface

Problem 7.2. Write the equation of the conical surface having the apex at (1,1,1)

Y+ 22-1=0
and its directrix the curve (T') :

r+y+z=0.

Solution:
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.
r=1
r—1=XAz-1)
The vertex is at V(1,1,1) =< y=1 <=g¢g
y—1=p(z—1)
z=1
\
.
% r=1+Az—-1)
r—1=Az-1)
y=1+p(z—1)
y—1=p(z—1)
gn () = 5 = Jr+y-2=(:z-1)\+p <=
Y +22—1=0
r+y=—=z
kx+y+z=0
¥ +22-1=0
\

-

r=14+XNz—-1)

<y=1+u(2—1)
(z—1DA+p+1)=-3

¥ +22—1=0

( 3
y=1+p(1
3

{y=1-=—""
: A+ p+1

P+ -1=0

3
1—py—
( MA+M+1

¥+

_A+u+1

r=14+Az—-1)

y=1+np(z-1)
3 —

P [ p———
A4 p+1

Y+ 22 —1=0
(1 g ®
A+ p+1
3
_A+u+1

—1)

<=1

P+ —-1=0
3
)?—1

- = 0.
A4 p+1

The last condition can be rewritten as:

<A+u+1—3u>2+(A+u+1—3)2_1(:)

A+ p+1

A+ p+1

A=2u+1+N+p-2> =N+p+1)? <=
N4 4p? — A\ — AN —10pu+4 =0 —
(A —2u)? — 4\ — 10 +4 = 0.
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)\_zv—l
We know that ; ~ % , therefore the equation of the conic surface is:
r—1 y—1 r—1 y—1
S) : -2 —4 —10 4=0
(%) <z—1 z—1 z—1 z—1+ -

(S):(x—2y+1)* =4z —1)(z—1) =10y — )(z — 1) +4(z = 1)* = 0

Figure 7.2: Conical surface

Problem 7.3. Write the equation of the surface generated by a line passing through
A(1,0,0) and the distance between the line and B(1,2,3) is 2.

Solution:

We have a conical surface having the vertex at A(1,0,0). If the distance is
constant, then the lines are tangent to a sphere centered at B and having the radius
2, the generators of the surface are the tangent lines to the sphere.

The equation of the sphere is (z — 1)* + (y — 2)> + (2 — 3)* = 4.

The point A(1,0,0) can be written as the intersection of the planes
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.
r=1
r—1= Mz
A:qy=0 =y
y = pz.
z=0
N {
z—1= Az
gn (D) =y =rpz —
(x—1)2+(y—22+(2-3)*=4

N2 4 (uz =224+ (2 =32 =d = 22O\ + p2 + 1) + 2(—4p—6) + 9 = 0.
g are tangent to the sphere if the equation has a unique solution which is equiv-
alent to A = 1642 + 48y + 36 — 36(\% + 2 + 1) = 0 = 9N\ + 5% — 121 = 0.
The equation of the surface is:
r—1\*  _y* .y
(S):9 +55 - 12= =0
z z z
(S): 9(x — 1)* + 5y* — 12yz = 0.

Figure 7.3: Conical surface
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Problem 7.4. Write the equation of the conoid generate by a line which is parallel

to the plane xQy, intersects the line d : and the hyperbola

y=20

2 22
9

r):4 4
y=2

=1

Solution: The equation of xOy plane is z = 0.

z2=A
The generators are of equations g :
y=p(z—2)
.
z=A (
Z:)\ 2
y = p(r—2) 2 (2+;%) A2
gn ) <= < » = Jr=2+-— = — -
r Z__l 7 4 9
1 9~ m2_z2_1
— \ 4 9
ky_

1
l=9(1+-)>=)=0.
I
The equation of the conoid is:
—2
(S):9<1+x — =9 =
Yy

(S): 9z +y—2)*—y*(z*+9)=0.

z =4/t
Problem 7.5. Determine the equation of the graph of (I') : revolved

y=20
about Oz axis and then about Oz axis.

Graph the equation of the surface of
revolution in each case.

Solution:

When we rotate the parabola about Oz axis the generator circle is

2+ 2+ 22 =a?

r=p
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)
24+ P+ 22 =a?
=0

(G) N () = < = 2+ 3=’
2=\
kyzo

The equation of the surface of revolution is
S):?+r=0+y* + =

(S) : y* + 2% = x which is an elliptic paraboloid.

Figure 7.4: Parabola rotated about Ox axis

When we rotate the parabola about Oz axis the generator circle is

332+y2+zz=oz2

z=p
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(G) N (1) == 4

= B*+ 32 = a2

The equation of the surface of revolution is

(9): 2+ 22 =22+’ + 2 =
(9) : 2t = 2% + ¢*

Figure 7.5: Parabola rotated about Oz axis

7.6 Problems

Problem 7.6. Determine the equation of the cylindric surface having as generator

r—Yy
the line d :

—3=0 zy =4

and as directrix the curve (T) :

y—2z+2=0 x=0

Problem 7.7. Determine the equation of the cylindrical surface having the gen-
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erators parallel to the direction T = 27 — 27 + % and the directrix the curve

2 +42—-4=0

y = 0.

r=y>+ 22
Problem 7.8. The curve (T') : is the directrix of the cylindical sur-
T =2z

face (S). Its generators are perpendicular to the plane of the curve (I'). Determine

the equation of the surface (5).

Problem 7.9. Determine the equation of the conical surface having the vertex at

22+’ —1=0
the origin 0(0,0,0) and the directrix (I') :

r+y+z2—1=0
Problem 7.10. Write the equation of the conical surface having the apex at (1,1,1)

4+ 22 -1=0
and its directrix the curve (') :

r+y+z=0

Problem 7.11. Determine the equation of the conoid generated by a line passing

=0
through the line d : , is parallel to Oy plane and intersect the hyperbola
y=10
2 2
T2 1-0
(m:q4 9
y =2

Problem 7.12. Determine the conoid generated by a line that mets the line d :

Pyt —16=0
r =y = z, the curve (I') : and is parallel to the plane (P) :
z=0

r+y+z—1=0.

Problem 7.13. Consider the space curves:
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2
y°—6z2=0
a) (I') : 3 ;
z=0
P +22=9
b) (I) : 4 ;
z=0

z=0
T2 1=0
16
d) (I)
z=0

Determine the equation of the graph of (I') revolved about Oz axis. Graph the

equation of the surface of revolution.



Plane curves

A plane curve is a curve that lies in a single plane.

8.1 Analytic representation of plane curves
A plane curve can be represented by:
e the explicit equation y = y(x), x € I < R.

e the implicit equation F'(zx,y)
e the parametric equations ,tel cR.

e the vector equation 7 = P (t) = z(t) 7 +y(t) 7, te I c R.

All the conic sections presented in the previous chapter are plane curves.

2
Example 8.1. The ellipse (E) : IZ +y% =1 is given in the implicit form.
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A

2
Figure 8.1: The ellipse (F) : :cz +yt =1

2
The explicit equations are y = £ /1 — %, xe[-2,2].

x = 2cost
The parametric equations are , te|0,2n].

Yy =sint

The vector equation is 7 = 7 (t) = 2cost i +sint j, t € [0,27].

Examples of plane curves

1. The astroid or hypocicloid is the locus described by a point on a circle of

a
radius 1 as it rolls inside of a fixed circle of radius a.

Figure 8.2: The astroid
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The implicit equation is T3 + y§ = as.

x = acos®t
The parametric equations of the astroid are , teR.
y =asin’t
2. The cycloid is the locus of a point on the rim of a circle of radius a rolling

along a straight line.

N N

Figure 8.3: The cycloid

x = a(t — sint)
The parametric equations of the cycloid are , teR.
y = a(l — cost)

3. The cardioid is the plane curve traced by a point on the perimeter of a circle

that is rolling around a fixed circle of the same radius.

Figure 8.4: The cardioid
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The implicit equation of the cardioid is (22 + y* — 2ax)? = 4a*(2* + y?).

x = 2a(1l — cost) cost
The parametric equations of the cardioid are , te

y = 2a(l — cost)sint
[0, 27].

8.2 The tangent to a plane curve

In what’s follow, differential calculus is involved, so we shall make some hypothesis

on the functions involved in their analytic representation regarding:
e continuity of the functions;
e cxistence of and continuity of partial derivatives of certain order;
e regularity conditions.

If the plane curve is in the implicit form, (I') : F(x,y) = 0, M(zo,y0) € (I') is
a regular point if Fj(vo,y0) # 0 or F(zo,5) # 0. Every other point is called
singular point.

x = x(t)
For the plane curve given in the parametric form, (I') : t € la,b] c

y=y(t)
R, x(t) and y(t) must have continuous derivatives on [a, b] and z"(t) + y"*(t) # 0.

Definition 8.2. The tangent line to a reqular curve (I') at a point My(xq,yo) € (T')
s defined as the limit of the secant M My when the point M approaches My on the
curve (T').

The line passing through My and s perpendicular to the tangent is called the

normal to the curve (T') at the point M.
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normal

tangent

Figure 8.5: Tangent and normal to a curve at M,

Remark 8.3. Is is well know from analytic geometry in R? that if two lines are
perpendicular then the product of their slopes is —1. So, if we have the equation of
the tangent line tg : y — yo = m(x — xo), is easy to write the equation of the normal

1
line asn :y—yo=——(x — x0).
m

In what follows we give the equations of the tangent line and the normal line
to a regular curve (I') at a point M if the curve is given in one of the following

analytical expression.
1. If the curve is given in the explicit form, (I') : y = f(z).

o tg:y—yo =1 (xo)(x — x0)

— (- )
e n:IY—Yyy=— rT—z
0 en 0
x = z(t)
2. If the curve is given in the parametric form (I') : el



8.3 The length of a plane curve 218

z — z(lo) _ Y- y(to)

® (g: 2/ (to) y'(to) or
o n:y—ylty) = —%(ﬁ — x(to))

where ty is such that x(ty) = x¢ and y(ty) = yo.

3. If the curve is given in the implicit form (T') : F(z,y) = 0.

%—f(xo, Yo)

o tg:y—yo=— (z — x0)
%—z(xovyo)
%_5(1’07%)
®* NIY—Y =35, 33—350)

5(1’0, Yo)

8.3 The length of a plane curve

r=x(t
Let (T') : ) ,t € I be a regular curve, and A(z(a),y(a)) and B(x(b),y(b))

y=y(t)
two points on the curve (T').

The length of the arc AB denoted by L(AAB) is

= J 22(t) + y2(t)dt = f I7(¢)| dt.

It is of interest to consider the length s(t) of the curve from a fixed point
A(z(a),y(a)) to a variable point M (x(t),y(t)).
Then

s = s(t) = L(AM) = f Va2 ([T) 1 g2 (r)dr

d
From the last equation we have that d_j = \/22(t) + y"?(t) and the element of

arc (linear element) is

ds = A/x"(t) + y"(t)dt.
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y(t+Al
( ) As

Al

y() —=a

x(t) x(t+ Al)

Figure 8.6: Element of arc

Remark 8.4. e [f the curve is in its explicit form (') : y = f(x), then the

element of arc is

ds = /14 y?(x)dx.

e Sometimes is useful to use s as a natural parameter so we will obtain the
natural parametrization of the curve 7 (s) = x(s) 7 +y(s) 7 , so the magnitude

of the tangent vector is a unit vector H?(S)H = 1.

b
The length of the curve (I') when ¢ € [a,b] is L(T") = f ds.

a

8.4 The curvature of a plane curve

The curvature, K, of the curve can be defined as the ratio of the rotation angle of

the tangent A« to the traversed arc length As = M M;.

Definition 8.5. The mean curvature of the arc M M is defined by:

_Aa

K, = —.
As
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The curvature K at a point is defined by

A«
K= Al}srilo As’

el

Figure 8.7: The curvature

1. The curvature of (I') : ,te R, at M(x(ty),y(to)) is
y=y(t)

Y (1) (to) — 2" (t0)y ()
(+2(t0) + 2(t0))’?

2. The curvature of (T') : F(z,y) = 0, at M(xq,yo) is

2 2
B, =2 FyF, + FPE,

Ty xy

K
(F2 + )

(3707y0)
3. The curvature of (I') : y = f(z) at M (o, f(xg)) is

yll(xo)
K = T

(1 + (o))
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Remark 8.6. From the definition it follows that the curvature at a point of a curve
characterises the speed of rotation of the tangent curve at this point (how quickly the

curve turns).

Definition 8.7. The inverse of the curvature K at a point of the curve is called the

1
radius curvature, R = —.
K]
Remark 8.8. e The radius curvature is the radius of the circular arc which best

approzimates the curve at the point.

e The osculating circle is the circle with the radius and the center located on
the inner normal line and it will most closely approximate the plane curve at

the given point.

Figure 8.8: The osculating circle

e The equation of the osculating circle is:

(x—h)*+ (y—k)> =r?,
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22(t) + ()
h=x(t) —y'(t
o=t =y
2(1) + /(1)
b= y(t) + 2/(t) -
< y( ) + z ( )y”(t Q:/(t) _ Q:”(t)y/(t)
1
Remark 8.9. 1. The curvature of a circle having the radius r is K = —.
r

2. The curvature of a straight line is 0.

8.5 The contact of plane curves

Let (T'1) : y = y1(x) and (T'y) : y = y2(z) be two plane curves.
They have common points (or they intersect) if the equation yi(x) = yo(z) has
solutions.

If 2y is a solution of the above equation, g is:
e Oth-order contact if the curves have a simple crossing (not tangent).
e lst-order contact if the two curves are tangent.

e 2nd-order contact if the curvatures of the curves are equal. Such curves are

said to be osculating.

Definition 8.10. The curves (I'1) : y = y1(x) and (T'z) : y = yo(z) have an k order
contact at M(xo,yo) if

y1(zo) = ya(wo),

’y'l(l’o) = yé(fﬂo),
Y1 (w0) = y5(20),

v (20) = P (x0),
g () # ) ().
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-

(a)

()

Figure 8.9: (a) Oth-order contact (b) 1th-order contact (c) 2th-order contact

Remark 8.11. The osculating circle of the curve (I') at My is the circle having
two-point contact with (I') at M.

8.6 Solved problems

Problem 8.1. Determine the element of arc, the arc length and the natural param-

x = a(t —sint)
eter of the cycloid (T') : , te[0,2n].

y = a(l — cost)

Solution:

' = a(l — cost)
The derivatives of the two components of the curve are:

Yy = asint
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ds = \/cﬂ(l —2cost + cos?t) + a?sin® tdt

= 1/a%(2 — 2cost)dt

t
= qp /4sin? —dt
V 2

t
= 2a|sin —|dt
alsin 2|
. . . . 9 9 . 9 1 —cos2t
We applied the trigonometric formulas sin” x +cos” z = 1 and sin“ ¢t = —
t t
Because t € [0, 277] = 5 € [0, 7] = sin§ >0 Vtel0,2n].
21 ¢ ¢ 2m
L) = f ds = J 2asin —dt = —4acos -| = 8a.
r 0 2 2,
The natural parameter is
! u t t
§ = f 2asin —du = —2acos - +2a=2a (1 —cos= ] .
0 2 2 2
t t
So, s = 2a (1—0085) :>COS§ = 1—% =t = 2 arccos (1—%).

The natural parametrization of the cycloid is

T =a (2 arccos (1 — %) — sin (2 arccos (1 — i)))
Yy=a (1 — COS (2 arccos (1 — %))) )

Problem 8.2. Write the equation of the tangent line and the equation of the normal
line to the curve (I') : 2® —2y? + 22 +y — 3 = 0 = 0 at its intersection with Oz axis.
Solution:
(T) " Ox = A(a,0) = a*+2a—3=0= 2 =1= A(1,0).
We have the imp,li(cit gorm for the equation of the curve, so, the slope of the
F(1,0

tangent is my, = —m, where F(z,y) = 2 — zy® + 2z +y — 3.

Fl(z,y) = 32> —y* + 2 = F/(1,0) = 5.
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Fi(z,y) = —2zy + 1= F,(1,0) = 1.
y'(1) = —% = —5 = ny,.
The equation of the tangent line at A is:
tg: (y—0) = =5z — 1)
tg:5r+y—5=0.

1

The slope of the normal is m,, = ——— = —. The equation of the normal line is:
Myg

1
n:(y—0)=g(x—1)<=)
n:—xr+5y+1=0.

Problem 8.3. Write the equation of the tangent line and the equation of the normal

r=t*+t—2
line to the curve (') : ,t € R at the point corresponding to
y=1t3+3t2 -4
t=—1.
Solution:

We have the parametric form of the equation of the curve, so, the slope of the
y'(=1)
2'(=1)°

The point corresponding to t = —1is A (z(—1),y(—1)) = A(-2,-2).

tangent is my, =

) =2t+1=2'(—-1) = —1.

y'(t) =3t + 6t = y/(—1) = 3.

The slope of the tangent is m;, = 3 while the slope of the normal is m,, = —%.
The equation of the tangent line at A is:

tg: (y—(=2)) =3z - (-2)) =

tg:3r—y+4=0.

The equation of the normal line is

nily—(-2) = —3( - (-2) =

n:x+3y+8=0.
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Problem 8.4. Write the equation of the tangent line to the curve

r=1>—1

(I') - ,teR
y=1t+1

parallel to the line d : 2z —y + 3 = 0.
Solution:
Let M(xo,yo) be the point on (I') such that at this point the tangent line is
parallel to d, M (3 — 1,t5 + 1).

/
t
The slope of the tangent line is my, = A 0),
' (to)
35 3
2(8) = 2, 4/ (£) = 362, 50 myy = 20 = .
2tp 2

4
tg||d<:)mtg=md:>§t0=2:>t0=§.

(YT (A%
3) "9 Y\3) T ar

The equation of the tangent line is:

t o1 2 ’ —
Y — — = T — =
99797 9

49
tg: 2x — — = 0.
g:-ax y+27

Problem 8.5. Determine the curvature and the radius of curvature for the curve
(T') at the given point.
xr = 2(t —sint)
1. (I'): at A(t = ).
y =2(1 — cost)
2. (T):y=2a"—42® — 2% at O(0,0).
Solution:
x'(t) =2 —2cost (m) =4

y'(t) = 2sint Yy (m)=0
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2"(t) = 2sint 2"(m) =0
y"(t) = 2cost Y (r) = —2
)~y 4 () -0 8 1
(' (m)? + ¢/ (7)%)2 42402 488
1
R= g =8

2. Since we have the curve in the explicit form, the formula of the curvature is
y"(0)

(1+y(0)%)?

y'(z) = 423 — 122% — 22 = ¢/(0) = 0.

y'(z) = 122 — 242 — 2 = ¢"(0) = —2.

1
The curvature is K = =D = —2 = the radius of curvature is R = 7

Problem 8.6. Determine the order of contact for the curves
(Ty) s p(x) =€ +2—1
and
1, 134 4
(Ty) @ yo(x) = 22 + S% 6% +x
at x = 0.

Solution:

We determine the derivatives of y; and ys at x = 0.

y1(0) =0 y2(0) =0
yi(x) =e"+1=y;(0) =2 yh(z) = 24a+322+42° = y5(0) = 2
yl(x) =e* = y1(0) =1 yh(z) =142+ 1222 = y5(0) =1
yi'(x) = e" =y (0) =1 Yy (z) = 1+ 24 — y'(0) = 1

(4) )

y (@) = e = yM(0) =1 s () = 24 — y$M(0) = 24
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y§")(0) =yl (O) Vn € {0,1,2,3} and y§4)(0) # y§4)(0), therefore, the order of
contact of (I'y) and (I'y) is 3.

Problem 8.7. Determine the equation of the osculating circle of the curve (I') :
T =2 =207 + (B +1)] ,teR, at to = 1.
Solution:

We can apply the formula for the equation of the osculating circle which is

where:
1 @)
K1 P - 20
B x +
h =) =y O G ey
(1) + (1)

k=y(1)+ x'(l)y”(l)x'(l —2"(1)y'(1)

We calculate the derivatives of x and y at 1.

x(t) =12 — 2t z(l) = -1
< —
ky(lt) =3+t y(1) =2
.
o' (t) =2t —2 (1) =0
< —
y'(t) =32+ 1
.
xl/(
< —
LY y'(t) = 6t
02+42 _q
T 6-0—2-4|
0% + 42
h=—-1-4—" = -14+8="T7.
6-(2)—22-4 +8=17
0% +4
k=240 —— =2
+ 6-0—2-4

The equation of the osculating circle is (z — 7)? + (y — 2)? = 64.
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Remark. We can apply also the fact that the osculating circle and the curve at
the given point have at least a second order contact.

Let us denote the function

F(a(t),y(t) = (x(t) — h)* + (y(t) — k)* — r?,

where z(t) = t? — 2t and y(t) = > + t.

The osculating circle and the curve at the given point have at least a second
4

F(a(1),y(1)) =0

order contact if and only if < F'(z(1),y(1)) =0

F'(x(1),y(1)) =0
F(z(t),y(t) = (* =2t —h)?> + (3 +t — k)? —r2.
F'(x(t),y(t)) = 2(t* — 2t — h)(2t — 2) + 2(t3 + t — k)(3t* + 1).

F”( t),y(t)) = (2t 2)(2t — 2)+2(t2 2t—h)2+2(3t* +1)(3t2+ 1)+ 2(t> +t — k)6t.
Fx(1),y(1)) = (I=2=hp2+1+1=k)?=r*=0

S F(x(1),y(1) =0 <= 32(1—-2-h)(2—-2)+2(2— k)4 =0 —

| F(a(1),y(1) =0 (2:0-044(-1—h) +2-42 + 122~ k) =0

r(—1—h)2+(2—zc)2—r2=o r=2%

18(2—k)=0 = 1h=T7

(41 —=h)+32+122 k) =0 k=2

We obtain the same equation of the osculating circle i.e. (x—7)%+ (y—2)? = 64.

8.7 Problems

Problem 8.8. Write the equation of the tangent and the normal line to the curve

() : 22 + 2y + y? + 20 — 4y — 4 = 0 at its intersection with Oy axis.



8.7 Problems 230

Problem 8.9. Write the tangent line and the normal line to the curve
[):y=alnlz|+1
at v = 1.

Problem 8.10. Write the equation of the tangent and the normal line to the curve

() :y +sinz + zcosy — g = 0 at its intersection with Ox axis.
Problem 8.11. Write the tangent line to the curve

=t +t—2
(I') : teR

y=1"+3t"—4
which is parallel to the line d : 3x —y + 3 = 0.

Problem 8.12. Write the tangent line and the normal line to the curve
r =20 +12+1¢

(I') : ,teR
y=t"+t—1

which passes through A(1,0).
Problem 8.13. Determine the curvature of the curve at the given point for:

T =sint

a) (T'y) : ,at A(t = ).
Yy =tcost

b) (Ty):y=a>—2®+2x—2 at z =0.

2

c) (Ts): %—l—gf—l =0, at A(0,1).

r =83
Problem 8.14. Determine the length of the curve (T') : ,teR

y = 3(2t* — t*)
on the interval [0, v/2].
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Problem 8.15. Determine the element of arc of the curve
z =In(t + 1+ ?)
y=+1+1t2

between the points corresponding to t; = 0 and t, = 1.
22 P
Problem 8.16. Determine the osculating circle of the curve (I') : 2 t9 = 1 at

B(0, 3).
Problem 8.17. Determine the osculating circle of the curve

x =sint
(I') : ,t e [0,2n],
y = cos(2t)

m
t At = =).
at At = %)

Problem 8.18. Determine the osculating circle of the curve

x = acos’t
(I) :

y = asin®t

at the point A(t = %)

Problem 8.19. Determine the osculating circle of the ellipse

T = acost
,t €1]0,27].

y = bsint

Problem 8.20. Determine the order of contact for the curves at 0(0,0) if:

2
a) (Fl):y=exand(f‘2):y=1+x+%.

b) (') :y =2 and (I'y) : y = zsin’z.

c) () :y=a*and (I'y) : y = 2%sin’ x.



Space curves

9.1 Analytic representation of space curves

In R? a single equation in x,y, z represents a surface. Two equations are needed to
specify a curve.

A space curve can be represented by:

e the intersection of two surfaces which are the implicit equations of the curve

F(x,y,2)=0
). (2,9, 2)
G(z,y,2) =0

e the parametric equations of the curve are (I') : { ¢ = y(t) telcR

e the vector equation of the curve is

— —

) : 7=t =zt)7 +ylt) ] +2)k, te  cR.
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If the curve (I') is represented by the implicit equations, the point My(xo, yo, 20) €

(T') is called a regular point if the rank of the matrix

F (o, Yo, 20) F;(xo,yo,zo) F(z0, Yo, 20)
G',.(%o, Yo, 20) G;(%’yo,zo) G (0, Yo, 20)
is 2.

If the curve is represented by the parametric equations or by the vector equation,
then the functions x,y, z are differentiable on I. The point My(x(to), y(to), 2(to)) €
(I') is called singular if 2'(¢y) = y/(to) = #'(to) = 0. The point M, is regular if
2'(ty), y'(to) and z'(ty) do not vanish simultaneously. If 2'(t), ¢/(t) and z'(t) never

vanish simultaneously on I then the curve is a regular curve.

Definition 9.1. The derivative of a vector valued function 7 (t) at tq is

T(tg+h)—T(t
P(ty) = tim 0= T

Theorem 9.2. A vector function 7'(t) = z(t) 7 +y(t) ] + z(t)? is differentiable

at ty iff each of its component functions are differentiable at tq and

T (to) = 2'(to) T + v/ (te) ] + 2 (to) k.

Examples of space curves

1. The circular helix sometimes also called a coil, is a curve for which the
tangent makes a constant angle with a fixed line. The shortest path between
two points on a cylinder (one not directly above the other) is a fractional turn
of a helix, as can be seen by cutting the cylinder along one of its sides, flattening
it out, and noting that a straight line connecting the points becomes helical
upon re-wrapping. It is for this reason that squirrels chasing one another up

and around tree trunks follow helical paths.
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T =rcost

The circular helix has the parametric equations (I') : < y = rsint

z=ct
a4y =19
@
=ty 02=0
b = Curve(3 cos(t).3 sin(t),0.5t,t,0,40)
O % =73 cos(t)
= y=3snt) p0=t=<40
z=05t

Figure 9.1: The circular helix

2. The conical helix (or conical spiral) is a space curve on a right circular cone,

whose floor plan is a plane spiral.

Figure 9.2: The conic helix
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xr = atcost

The conical helix has the parametric equations: (I') : { y = at¢sint

z =0t
\
2 oy P2

o Yiti =

= 0.25x + 0.25y% - 0.042* = 0

b = Curve(2t cos(t),2t sin(t),5t,t,—3,3)
@) x =2t cos(t)

= y=2tsint) p —3<t<3

z=5¢t

Figure 9.3: The conic helix

3. The Viviani’s curve is the intersection of a sphere with a cylinder that is
tangent to the sphere and passes through two poles (a diameter) of the sphere.

4+ y? + 22 =2
The equations of the curve are (I') :
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O ety +22=16

Q x4y

a= Curve(2 (14 cos(t)), 2 sin(t),4 sin(%),t, 0,4 7\')

[5) x =2 (1 + cos(t))

_ y=2sin(t) 0<t<1257

A
z=4 sln(a)

Figure 9.4: The Viviani’s curve

4. The curve at the intersection of the cylinder 22 + y* = 9 and the parabolic
hyperboloid 9z = 22 — 2. The curve it’s also called the 'Pringle’ curve.

@ fz=x/9-y/9
@ gx+y =9
a = Curve(3 cos(t),3 sin(t), cos(2 t),t,0,2 m)

[0) x =3 cos(t)
= y=3sin(t) p0<t<6.28

z=cos(2t)

Figure 9.5: The "Pringle’ curve

5. The toroidal spiral - it is a space curve that lies on a torus.
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Figure 9.6: A spiral on a torus

-

x(t) = (a +sinbt) cost

The parametric equations are (I") : < y(t) = (a + sin bt) sin ¢

z(t) = cos bt

\

1::(\/>W74)2+z2 =1

= (Ve 4y)-aP =1 ¢

o

a = Curve((4 +sin(20 t)) cos(t), (4 + sin(20 t)) sin(t), cos(20 t),t,0,2 7) 3
® X = (4+5sin(20 t)) cos(t)
= y=(4+sin(20t)) sin(t) »0<t<628
z = cos(20 t)

Figure 9.7: The toroidal spiral
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9.2 The length of a space curve

Let (I') be a regular curve (I') : ¢y =y(t) ,t€l <R, and A(z(a),y(a),z(a))

and B(z(b),y(b), z(b)) € (I').
The length of the arc AAB is

L(AB) = J V) + 5P () + 228 dt.

The length of the arc of the curve from initial point A to a variable point

M (x(t),y(t), 2(t)) is

s =s(t) = L(A?V[) = J V(1) + y2(1) + 22(7) dT.

The element of arc is ds = §'(t) dt

ds = A/2(t) + y2(t) + 22(t) dt.

Remark 9.3. The arc length ”s” of a reqular curve can always be chosen as param-
eter since 2’2 +y'? + 2" # 0. When s is chose as parameter then, the tangent vector

s a unit vector, namely

$(t) = = = 0+ 20+ 70 = [P0 = 1

9.3 The tangent line and the normal plane

Let (0): 7 = 7(t) =x(t)7 +y(t)7 + 2()k, t € [a,b], be a regular curve and M,

and M two neighbouring points on the curve.
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We consider the unit vector

po T =T () _ (k)
toto [T(t) — T (to)| |7 (to)|

This is called the unit tangent vector to (I') at M, and is denoted by 7.

S T
7’

'(to)]

Tangent line

GE ()

Figure 9.8: The unit tangent vector and the tangent line to a space curve

Definition 9.4. The line passing through the point My (z(to), y(to), 2(to)) and having

as director vector T is called the tangent line,

cr—a(to) _y—ylto) _ z—z(t)
' (to) Y (to) 2/ (to)

The plane passing through Mo(x(to), y(to), 2(to)) perpendicular to the tangent line

lg

1s called the normal plane,

(Py) ' (to)(z — 2(to)) + 3/ (to) (y — y(to)) + 2'(to) (2 — 2(t0)) = 0.
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Figure 9.9: The tangent line and the normal plane at a point on a space curve

F(r,y,2) =0
If the curve (T') is given as the intersection of two curves (I') :

G(v,y,2) =0
then the tangent line of (I') at My(xo, Yo, 20) is

ta T — Zo _ Y—1%Y _ zZ— 2
g: D(F,G) D(F,G) D(F,G) ‘ ’
D(y:2) | pg, D(z.2) |, D(z,y) |,/

where RURG) _ (9507 Yo, 20) I (20, Yo, 20)

D(y:2) | g, Vel (1.0’ Yo, ZO) GIZ (3:0’ Yo, ZO)
D(F,G) i Fz/ (an Yo, ZO) Fz/ (x07 Yo, ZO)

D(z,z) o )
M G’ (0, Y0, 20)  G%(T0, Yo, 20)
D(F,G) _ Fy (20, Y0, 20) Fgﬁ(l’o’ Yo, %0)

D(z,y) o

V1Mo G (20, Y0, 20) Gy (o, Yo, 20)

The equation of the normal plane can be put in the form:

T — Ty Y—Y 2= 20
(Pn) = | Fl(wo,y0,20) Fy(x0, 50, 20) Fi(xo,40,20) | =0
Glx(x()ay(hz()) G;J(lbay()azﬂ) G;('xO?yOaZO)
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9.4 The moving trihedron. TNB (Frenet-Serret)
Frame

TNB Frames describe the motion of a particle traveling along a curve or how a

particle on a space curve is heading, turning and twisting.

Figure 9.10: The moving trihedron

Let (T) : 7 = 7(t) = 2(1)7 +y(t) 7 + 2() %, t € I = R be a regular curve
of second order in space, that means that exists 7'(ty) and 7"(to) for all ¢y € I.
Moreover, let us suppose that the vectors 7'(ty) and 7" () are not parallel, so
T'(tg) x T"(to) # 0.
— — —
At every point My(zo, yo,20) € (D), (T) : 7 =T () =x(t) ¢ +y(t) j+2(t) k, t €

I € R, the TNB frame gives us the unit vectors:
e the tangent unit vector, 7 (the direction in which the curve is going);

e the normal unit vector, 7@ (how the curve is turning);

e the binormal unit vecotr, b (how the curve is twisting).
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The unit vectors (7,77, _b)) are mutually orthogonal like (7, 7, ?) and they

can be calculated by the following formulas.

0
* TS
— ?/(t) 2 =
_ ; _ b
YT T
N O R
M O FR (O]

Figure 9.11: The moving trihedron

The faces of the Frenet-Serret Frame are:

e the osculating plane - the plane spanned by 7 and 70 (has as its normal
_b)) The osculating plane can be defined in the following way. Let (I") be
a space curve and A and B be two neighboring points on (I'). The limiting
position of the plane that contains the tangent line at A and passes through

the point B as B — A is defined as the osculating plane at A.
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Figure 9.12: Osculating plane at a point of a space curve

e the normal plane - the plane spanned by 7 and s (has as its normal the
vector 7 );
e the rectifying plane - the plane spanned by 7 and s (has as its normal the

vector ).

o Normal plane Py
Rectifying plane Py

Mg

Osculating plane P,

Figure 9.13: TNB frame
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The equation of the osculating plane can be put in the following form:

r—x(ty) y—ylte) z—z(to)
(Po) : | a'(to) y'(to) Z(to) | =0
"(to)  Y'(to)  Z"(to)
If we denote A = , B = , C = , We
can write:
e the equation of the binormal line:
T—Tp Y—Y 22— %0

M()B . A = B = C

e the equation of the rectifying plane:

x—a(t) y—ylto) z—2z(t)
(Pr): | a'(ty)  o/(t)  2'(to) | =0
A B C

e the equation of the normal line:

MyN x — (to) _ y — y(to) _ z — z(to) '
Y'(to) 2'(to) Z(to) 2'(to) ' (to) ' (to)
B C C A A B

9.5 The curvature and the torsion

The curvature of a space curve shows how points ”curve” in the osculating plane.

Definition 9.5. For 7, the unit tangent vector to a reqular curve, the curvature
is defined as
d7
K=|—1].
15T
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d—)
27 is the derivative of the tangent unit vector with respect to the arc length
s

s. The parametrization is quite difficult to compute, so if we want to write an

expression of the curvature with respect to a parameter ”t” we can write:

K B YN B KO
ds dt ds ds |7 (¢)

The analytical expression of the curvature of the curve (I') at M (z(t), y(t), 2(t)) €
(T') is
[7(t) x 7" @)

K = —
|7 (0

1
The radius curvature of (I') at M is R = 173
The next graph represents the curvature of a curve. The sharper the turn in the

curve, the greater the curvature, and the smaller the radius of the inscribed circle.

Figure 9.14: Representation of curvature and the radius curvature for a curve

The torsion of a curve at a point is telling us how the curve is twisting, actually

how the osculating plane twists.

Definition 9.6. The torsion is defined as
v _,

T=_"".
ds "
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The analytical expression of the torsion of the curve (I') at M (z(t), y(t), z(t)) €
(T') is
('), 7"(@), 7"(t))

T —
[7() x 7)1

Remark 9.7. A space curve lies in a plane if and only if the torsion is null. That

means that the curve lies in the osculating plane.

Osculating plane

Figure 9.15: A space curve in a plane

9.6 The Frenet formulas

The unit vectors 7, 77, b defined previously can be express in the following equa-

tions called the Frenet formulas:

(dT
K.
ds "
dn —
YN kAT D
ds
ab
| ds
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where K is the curvature and 7' is the torsion.
The Frenet-Serret formulas are also known as Frenet-Serret theorem, and can be

stated more concisely using matrix notation:

7! 0 K 0 T
| = -K 0 T w
g 0 —T 0 Iy

9.7 Solved Problems

Problem 9.1. Find a vector function for the curve of intersection of 22 + y? = 9

and y + z = 2.

Solution: The first surface is a cylinder having the zy-trace a circle and the

second one is a plane.

f:x2+y2:9
o

=x+y +02=9

O grytz=2

a = Curve(3 cos(t),3 sin(t),2 — 3 sin(t),t,0,2 7)
@ x = 3 cos(t)
— y=3sin(t) 0<t<6.28
z=2-3sin(t)

x(t) = 3cost
The parametrization of the circle is ,t € [0,27]. From the

y(t) = 3sint
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equation of the plane we can calculate z = 2—y = 2—3 cost. So, the parametrization

of the curye at the intersection of the two surfaces is

x(t) = 3cost

(1) = { y(t) = 3sint ,t € [0,27].

z(t) =2 — 3sint
Problem 9.2. For the points A(2,2,—3) and B(—2,5,—1) give the parametric

equations for the line segment connecting A and B.

Solution: We can write the equation of the line AB passing through A and

having as its director vector the vector AB.
r—2 y—2 z+3

AB : 4 - 3 — 9 So, the parametric equations of the line are
r=—4t+2

AB:Qy=3t+2 , teR.
z2=2t—3

For the line segment [AB] we will choose ¢ in the interval [0, 1] (it’s obviously
that if we plug in t = 0 we obtain the coordinates of A and for ¢ = 1 we obtain the

coordinates of B). So, the parametric equations of the line segment [AB] are
(

r = —4t + 2
[AB):{y—3i12 . tefo]
z=2t—3

\

Problem 9.3. Let (T') : 7(t) = (cost,sint,t) be a helix. Determine the distance
from the point A(t = 0) to B (t = g) on the helix.

Solution:
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The derivatives of the components of the curve are: 4 ¢/ (t) = cost

ds = Vsin?t + cos?t + 1dt = /2 dt.
For t = 0 we obtain A(1,0,0) and for t = — we haveB(O,l,E).
st—f ds—f V2dt = \ft \gﬂ

Problem 9.4. Prove that the curve

-

m\:\[\jl N

r=2t2—-3t+1

2 =1t>4 3t

\

is a plane curve. Write the equation of this plane.

Solution:
A space curve lies in a plane if the torsion is 0. We can write the vector expression
of the curve (I"), 7(¢), and then we will compute the derivatives of 7 (t).

P)= (22 —3t+1)7 +(t+2)7 + (2 +30)F.

)= (4 —3)7 + J + (2t +3)Fk
Pt =47 +2F
) =10
4 -3 1 2t+3
4 0 2
T = (?I(t,)’?”(t)’,,?l ®)) = 0, " - " = 0, so the curve lies in the
[7(t) < 7" ()] [7'() < 7" ()]

osculating plane.
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r—=Xo Y—Y =~ %0
(Po) : |4t —3 1 2t + 3| = 0. If we choose t = 0 we have M(1,2,0) € (I")
4 0 2

and
r—1 y—2 =z

(Po):| =3 1 3=0<

4 0 2
(Po):x+9y—22—19 =0.

Problem 9.5. Suppose
zy =1

() :
2 —2z—1=0
is a space curve. Determine the points on (I') such that the binormal lines are

perpendicular to the line
r+y=0
—4dr —24+6=0

Write the equations of the binormal and the equation of the osculating plane at each

point previously determined.

Solution:

A parametrization of the curve (I') can be

1
T = —
t
M) :ty=t¢ , t e R*.
z =2t -1

The vector expression of (I') is:

1- —> e
T’(t):¥i +tj + (2 -1)k.
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1—,> — —
?’(t)z—t—Qz + j +4tk.

2 —
7't) = 5 1 +4k.
The binormal line has as director vector
- = -
7 ]k
1 o 12, 2.
m=T'x7'=|"g 1 4t=4z’+t—2'—t—3
2
e 0 4

The binormal line is perpendicular to the line d if 7, L v <= w3 - g = 0.
- = >

. J  k
W=1 1 0|=-17+] +4%.

-4 0 -1
N 12 8 3
vb-vdz()(:)—él—i—t—z—t—s:O(:)t —3t+2=0.
The last equation has the solutions ¢; 2 = 1 and 3 = —2.

So, we have two points for which the binormal is perpendicular to the given line.

e For t = 1 we obtain the point M; = (1,1,1) and v, = (4,12, —2). So, the

equation of the binormal is
b.x—l_y—l_z—l
o412 =2

The osculating plane has as its normal vector v = (4, 12, —2), so the equation

of the osculating plane is
(Po) :4(z—1)+12(y—1)—-2(2—1) =0 =

(Po):2zx+6y—2z—T7=0.

1 1
e For t = —2 we obtain the point My <—§, -2, 7> and v, = <4, 3, Z) So, the
equation of the binormal is
x + % L y+2  z—=7

b:
4 3

N
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1
The osculating plane has as its normal vector v, = (4, 3, Z)’ so the equation

of the osculating plane is

u%y4<x+%>+3@+2y+gz—m:

(Po) : 162 + 12y + z + 25 = 0.

—
]

Problem 9.6. Let (I): 7 =t 7 + (1—3)7 + §t3? be a space curve.
a) Determine the unit vectors of the Frenet frame at ¢ = 1.
b) Write the equation of the normal at an arbitrary point of the curve.
c¢) Determine the curvature and the torsion of the curve at ¢t = 1.

Solution:

The derivatives of 7 are:
T =7 —2F + 20k
T = =27 + 4tk

At t =1 we obtain

() =7 -27 +2F%

PI(1) =27 +4%.

1) T -2742k 11— -
7 = = = (7 -27 +2k
7' (D] Trara 3l 2 TER)
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F
Tk =1 —2 2|=-47-47 -2k
0 -2 4
47 +47 +2F 1 =
__ftxoi ¥ =——2i+25+ k).
/16 +16 +4 3
77k
- 1 —> —>
nw = bx?’z—g 2 2 1|=—=(67—-35 —6k) —2k).
1 -2 2

2
b) The corresponding point on the curve (I') at ¢t = 1 is A (1,0, 5), therefore

the normal line has the equations

r—1 y Z—% r—1 z—%
n:—5 =7=—5>>n: =y =
-3 3 3 —2 2

The rectifying plane has as its normal the direction of 77, so the equation of

the rectifying plane is:

2 1 2 2
Pp):—=(x—-1)+ = -(z—2)=0=
(Pr):—g(@—D+gy+3(z—3)

(Pr): —6x+3y+62+2=0.

The curvature at t = 1is K = M _
7P |, 3
. . 7 77"
The torsion at t =1is T = W t:1
P =4k = T"(1) =4k,
1 -2 2
(?l’?”7?m)|t:1 =0 =2 4| =-8=1T= g—2 - _

0 0 4

2

=5

2

9
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9.8 Problems

Problem 9.7. Write the equation of the normal plane and the equation of the
tangent of (I') at the given point:

2
a) (F):?=2t7+¥7+t2?,t:2;

z =3t

b) (F) “ 9 Yy = 2t3 ) M0(67 167 _4)

z = —{?
\

Problem 9.8. Determine the length of the arc curve (I'):

-

T = at
a) (0):q{y=+3abt2 ,0<t<1;
2 = 2083,

b) (T): 7 =acosti +asintj +otk,0<t<2.

Problem 9.9. Determine the equation of the tangent line at A(m,m, 2m?) and the

z =22+ y?
equation of the normal plane at an arbitrary point of (I') :
r=1Y

Problem 9.10. Write the equation of the osculating plane of the space curve

at M(1,1,1).

—
]

— 2 .
Problem 9.11. Let (I : 7 =ti + (1 —t*)j + §t3 k be a space curve.
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a) Determine the unit vectors of the Frenet frame at ¢ = 1.
b) Write the equation of the normal at an arbitrary point of the curve.

c¢) Determine the curvature and the torsion of the curve at ¢t = 1.

Problem 9.12. Determine the curvature and the torsion of the curve

.
T = cost
(1) 4y = sint
z = cos 2t,
\
7r
M (t=2).
* 2
— - 1 o> 13—
Problem 9.13. Let (I') : 7 =t i + §t J + Et k be a space curve.

a) Determine the element of arc.
b) Determine the unit vectors of the tangent, normal and binormal at ¢ = 1.
c) Write the equations of the rectifying plane and osculating plane at t = 1.
d) Determine the curvature and the torsion of (I') at ¢ = 1.
Problem 9.14. Determine the points of the curve
O):7=@-17+37 +1-F

such that the osculating plane of the curve at these points is perpendicular to the

plane (P) : 7Tx — 12y + 5z — 4 = 0.

Problem 9.15. For each of the following curves determine the unit vectors of the
moving trihedron, the curvature, the torsion, the equations of the osculating plane,
the normal plane, the equations of the normal line and the tangent line at the given

point:
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a) T1): 7 =0B2-27 +657 +(1-1)F, M(t=2).

x =t — 2t
b) To):3y=3t+2 , M(=1,5—4).
z2=1t>-5
L
c) (Fg)Z?=4C08t7+281nt7+2t?, M(tzg).

Problem 9.16. Determine the length of the arc curve (I'):

xr =elcost

z =€,
T Q:Q
V=3
by (0):4 2 teod]
z A
6

Problem 9.17. Determine the points of the curve

rz =1
() :
y=1Inz
such that the principal normal of the curve at these points is parallel to the plane

(P):5x+2y—5z=1.

Problem 9.18. Determine the curvature and the torsion of the curve

(F)<y=1nt 7t>0

at t = 1.
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Surfaces

10.1 Analytic representation of surfaces

In R? a single equation in x,y, z represents a surface.

A surface can be represented by:

e The implicit equation of the surface

(S): F(x,y,z) =0.

e The explicit equation of the surface
(5) 2 = z(z,y).

e The parametric equations of the surface

(S): <y =y(u,v) - (w,v)e DR
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e The vector equation of the surface

(S): 7 =7 (u,v) = 2(u,0) 7 +y(u,v) 7 + 2(u,0)k, (u,v) € D R?

If the surface (S) is represented by the parametric equations then the point

Mo (ug, vo) € (S) is called an ordinary point if the rank of the matrix

(uo,v0)
is 2 or, equivalently, 7/ (ug,vo) and 7 (ug, vo) are linearly independent.
If all the points of the surface (S) are ordinary points, then the surface is called

a regular surface.

10.2 Curves on a surface

Let (S): 7 = 7 (u,v), (u,v) € R? be a surface.
If u,v : I — R are single valued functions u = u(t), v = v(t), then 7 =

7 (u(t),v(t)) is a curve lying on the surface (.5).

Examples of curves on a surface

-

T =TCosv
1. The circular helix lies on the cylinder (S) : { y = rsinv , 7 the radius
z=u

\

been a positive real constant.

v=1
Let us make , ¢ a constant.

u=ct
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The circular helix has the parametric equations (I') : < y = rsint

z=ct
a4y =19
@
= @y 02 =0
b = Curve(3 cos(t).3 sin(t),0.5t,t,0,40)
O x =3 cos(t)
= y=3snt) p0=t=<40
z=051

Figure 10.1: The circular helix

2. When consider u = ug and v = v, one obtain two curves on the surface, and

(ug, vo) are called the curvilinear coordinates of the point M.

Let (S) : 22 +y2+2% = 72 be a sphere and My(xg, Yo, 20) € (S). The parametric

equations of the sphere are:
{

x = psin cos

(S) : 1 y = psinpsing O € [0, 27], ¢ € [0, 7].

Z = pcosp
\
If we consider ¢ = constant, the curves on the sphere, in geographic terms,

are the parallels, while if we consider # = constant, the curves represent the

meridians.
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Figure 10.2: Meridians and parallels on a sphere

10.3 The tangent plane and the normal line to a

surface

Let (S) : 7 = P(u,v) = 2(u,0) 7 + yu,v)] + 2(u,0) %, (u,v) € D < R? be a
regular surface.

The plane passing through M (ug,v9) € (S) and having as parallel directions
7 (ug, vo) and 7! (ug, vp) is called the tangent plane to the surface S at Mj.

The equation of the tangent plane is:

x —x(ug,vo) Yy —y(uo,vo) 2z — 2z(ug,vo)

(Pyg) : !, (ug, vo) v, (o, vo) 21, (uo, vo) = 0.
,(uo, vo) Yy, (10, o) 2, (o, vo)
! z/ Z, x/ :LJ !
Let us denote A — | 7% . B=|" "“l,Cc=|" Yu , evaluated at (ug, vp).
) I EAY N P

The normal to the surface (S) at M is the line passing through M, perpendic-
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ular to the tangent plane. Its equation is:

ST — o Y —Yo Z—=20

A B  C

where x5 = 2(uo, o), Yo = y(uo, Vo), 20 = 2z(uo, Vo).

Remark 10.1. If the surface is given by the implicit equation (S) : F(x,y, 2)

then the tangent plane is:

(Prg) : Fr (20,90, 20)(x — m0) + F, (20, Y0, 20) (Y — v0) + FL(20, Y0, 20) (2 — 20) = 0.

The equation of the normal line is:

T — Xo . Y—Yo . Z— 20

n:
Fl(r0,90,20)  F}(%0,%0,20)  FL(Zo, Yo, 20)

normal line

tangent plane

/

Figure 10.3: Tangent plane and normal line to a surface
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10.4 The first fundamental quadratic form

Length of curves on a surface

Let (S) : 7 = P(u,0) = 2(u,0) @ + y(u,v)j + z(u,v)?, (u,v) € D < R? be a

regular surface and (I') : 7 = 7 (u(t),v(t)) a regular curve on the surface (5).

We can define the length of an arc of this curve as:

s(t) = f () dr

) = T, () + T - ().

u v

Using Gauss’s notations:

_ =12 2 2 72
E=7 Ty T Y, T2,

v =

== o0 !
F=7,7,=x,2,+YY, + 2,2
2 R ) 2 2
G=7,=x+y’+ 2
we obtain

ds = VEu'? + 2Fu'v' + Gu'2dt
Definition 10.2. The quadratic form
Edu® 4+ 2Fdudv + Gdv®
s called the first fundamental quadratic form of the surface.

The length of the arc M; M, of the curve (T') corresponding to the values ¢; and

ty of the parameter t is:

— t2
(M, M,) = J VEU? + 2Fu + Go2dt.
t1

Remark 10.3. If the surface is given in the explicit form (S) : z = z(x,y), and

p =2, and q = z,, the the first fundamental quadratic form of the surface is

ds* = (1 4 p?)dz? + 2pgdrdy + (1 + ¢*)dy>.
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Angle measurement on Surfaces

Let (S): 7 = 7(u,v) = z(u,v) T +y(u,v) J + 2(u,0) &, (u,v) € D = R? a regular
surface and

(F1) = 71 = 7 (u(t), v(t))

(C2) : 73 = 73 (u(t), v(t))
two regular curves on the surface (S), and 77, 72 the tangent unit vectors of (T'y)
and (I'y) respectively, at their common point M.

Let d7, du and dv the differential along (I';) and 07, du and Jv the differential
along (I'y).

Definition 10.4. The angle between the tangent vectors T and T at the point

My € (S) is called the angle of the curves (I'1) and (I').

Eduéu + F(dudv + dudv) + Gdvdv

0 — cos % ((Ty). (Ty)) = .
cos = cos (1), (1)) = e e 7 Vs u? § 2F 00 T G50

Two curves are orthogonal if

Eduéu + F(dudv + dudv) + Gdvdv = 0.

Area of a surface

Let (8): 7 = P(u,v) = 2(u,v) 7 +y(u,v)j + 2(u, v)?, (u,v) € D = R? a regular
surface.

The element of area of the surface () is

do =vVEG — F2dudv.
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The area of the surface is
JJ do = JJ VEG — F?dudv,
D D
where D is the domain in which v and v vary.

Remark 10.5. e [f the surface is given in the explicit form (S) : z = z(z,y),

and p = z, and q = z,, the element of the area is
do = A/1+ p? + ¢>dzdy.

o [f the surface is given in the implicit form (S) : F(x,y,z) = 0, the element of

the area s

1
|7

do = o[ F2 + F2 + F2dudy,

10.5 Solved Problems

Problem 10.1. Let the surface (S): { y=u—v (u,v) € R®

a) Determine the coordinates of the points A(u = 2,v = 1), B(u = 1,v = 2).
b) Check if M(4,2,3) and N(1,4,—2) are on the surface (S).
c¢) Determine the cartesian equation of the surface.

Solution:

a) Foru=2andv=1weobtainz =3, y=1, z=2= A(3,1,2).

For u =1 and v =2 we obtain z = 3, y = —1, 2 =2 = B(3,-1,2).
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b)

-

u+v=4

M € (S) < the system < ¢ —¢y =2 is consistent. Adding the first two

u-v=3.

equation we obtain 2u = 6 = u = 3. We can determine v = 1 and we verify

in the third equation if u -v = 3 <= 3 -1 = 3 which is correct, so M € (5).
(

u+v=1

N € (S) < the system % u—1v =4 is consistent. Adding the first two

u-v = —2.
\

5 3
equation we obtain 2u = 5 = u = 7 We can easily determine v = —5 Let’s

) 3 15
verify the third equation u - v = 3 (—5) =7 # —2,80 N ¢ (95).

In order to obtain the explicit or the implicit equation of the surface we need

to eliminate u and v form the parametric equations of the surface.

By adding and then subtracting the first two equations we obtain x + y = 2u

x J—
and v = Y in the third equation

and z —y = 2v. Replacing u = rry

(z+y)(z—y)
4
parabolic hyperboloid. The explicit equation of the surface is

we obtain z = « 4z = 2* — y? which is the equation of a

() (r,y) = 30—,

Tr = ue

Problem 10.2. Let (S): {y =ue® ,(u,v) € R* be a surface.

a)

z = 4duv

\

Determine the equation of the tangent plane of (S) at the point M(u = 2,v =
0).
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b) Write the equation of the normal line at the point M.
c¢) Determine the unit vector of the normal line.

Solution:

a) The coordinates of the point M are x = 2, y = 2, x = 0, M(2,2,0). We
calculate the partial derivatives of the functions:

.
! (u,v) = e’ (:17;(2,0) =1

x! (u,v) = ue’ x!(2,0) =2

Yy (u,v) = —ue ™ =>4y (2,0)=-2

k,zz’)(u,v) = 4y k,21’1(2,0) =38
The equation of the tangent plane is
r—2 y—2 =z
(Pg):| 1 1 0|=0<
2 -2 8

(Py) : 20 —2y—2z=0.

b) The normal line is perpendicular to the tangent plane, so the direction of the

normal line is o = Wp, =27 =25 — k.

The equation of the normal line is:

r—2 y—2 =z

Nt =t =
— — -
29 =25 — k 1
¢) The unit vector of the normal line is 7@ = 21) 21) ?H = 5(27—27—?)
i =27 —
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Problem 10.3. Write the equation of the tangent plane at M (zg,yo, 20) to the

Yy

surface (S): z = e=.

Solution:

The equation of the surface is given in the explicit form.

/ Yy v
p=z(z,y) = Iﬁez.
_ _1s

q—Zy(iU,y) l’e

The equation of the tangent plane is:

vo 1 =
(Ppy) 12— 20 = —i—%ezg (x — o) + aj—oezg

Yo
Multiplying by zZ the equation and knowing that z; = e*0 we obtain:

(¥ — o)

(Ptg) : x%(z — 29) = —yo2o(® — x0) + To20(y — Yo)-

Problem 10.4. Determine the length of the arc of the curve © = 0 on the surface
(S): 7 (u,v) = (u2+v)7+(u+v2)7+(u+v)? between the points M;(u = 0,v = 0)
and My(u = 0,v = 1).

Solution:
We calculate the partial derivatives of the functions x = z(u,v) = u® + v,

y=1y(u,v) =u+v?and 2z = 2(u,v) = u + v.
( {

2!, (u,v) = 2u 2l (u,v) =1
(vulu,v) =1 5 yy(u,v) =2v
z(u,v) =1 Zi(u,v) =1

\

E=4u2+1+1=4u§+2;

F=2u+2v+1;

G=1+4"+1=4%+2.

ds?* = 2(2u* + 1)du® + 2(2(u + v) + 1)dudv + 2(20* + 1)dv?.
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Since u = 0 = du = 0 = ds* = 2(2v? + 1)dv?.

l(MlMQ) :[:J 4U2+2dU:2J \/@dUZQJV ,U/ ,U2+§d,u
0 0 0
1
1 T
:20\/;‘ _o| Y27,
2|, 0 \fv2 41

1

2
=\/6—21+1n<v+4/v2+%>

-

0
3 1
3] =vV6+1n (14—\/;) —ln\/g:>
6 1
Problem 10.5. Determine the angle between the curves v = 6u and v = —6u which
lie on the cylinder (S) : 22 +y? = 9.
Solution: )

x = 3cosv

The parametrisation of the cylinder is (S) : 4 y = 3sinv , v €[0,27],u e R.

z2=u
( . {
2 (u,v) =0 z! (u,v) = —3sinw
The partial derivatives of z,y, z are < y! (u,v) =0 s 4y (u,v) = 3cosv
2 (u,v) =1 2 (u,v) =0

E=1;F=0; G=09sin?v+9cos?v = 9.
The first quadratic form is:

ds? = Edu® + 2Fdudv + Gdv? = du® + 9dv?.
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The intersection point of the curves is = u=v =0=

M(3,0,0).
For (I'y) : v = 6u = dv = 6du.
For (I'y) : v = —6u = dv = —6Ju.

B Edudu + F(dudv + dudv) + Gdvdv
~ VEdu? + 2Fdudv + Gdv/Esu? + 2F6udv + Gov?
_ 1dubu+0+9-6-(—6)dudu
C Vdu? +9-36du? - /ou? + 9 - 366u?
323dudu 323

— = =
325dudu 325

cos ¥((I'1), (I'2))

323
x((Ty), (Iy)) = m — arccos 35"

Problem 10.6. Prove that the curves (I'y) : u—e” = 0 and (I'y) : v +u+1—e ¥ =0

T = UCOSV
which lie on the surface (S) : { y = ysinv , are orthogonal.
Z=U-+v
\
Solution: ) )
z! (u,v) = cosv z! (u,v) = —usinwv
The partial derivatives Of[L’, Y,z are < y;(uy ’U) = sinv ;3 y’i](u7 U) = U COSV
2 (u,v) =1 2 (u,v) = 1.
\
E =cos?v +sin®v+1=2.
F = —ucosvsinv +usinvcosv +1 = 1.

G =u?sin®v+ulcos?v+1=u+1.

The first quadratic form is:
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ds* = Edu? + 2Fdudv + Gdv? = 2du? + 2dudv + (u? + 1)dv?.

For (T'y) : u=¢€" = du = e"dv.
1

For () : w?+u+1=e"" = (2u+1)ou = —e7"0v = du = S ev(2ev + 1)

ov,
G=u+1l=eV—u=ec"—e¢’

The curves are orthogonal if

Edudu + F(dudv + dudv) + Gdvév = 0 <=

1 1
2¢v? _ v . —-v v _
e’dv ( o 1) (51}) + e’dvdv e+ 1) dvdv + (e e”Ydvov = 0 <

dvd 2 + €” ! +e " —e” 0=
vov | — = —————Fe =€) =
2ev + 1 e’(2e” + 1)
—2e" 1 N 2e’ +1
e’(2ev +1)  e'(2e? +1)  ev(2e? + 1)
—2e’ —1+2e" +1

e’(2ev + 1)

=0 <

= (0 which is true, so the curves are orthogonal.

)
T = u? + v?

Problem 10.7. Let (S): {y =u2—¢2 be a surface.

Z =Uuv
\

a) Write the first fundamental quadratic form of (.5).

b) Determine the element of arc for the curve (I') : v = 2u which lies on the

surface.

c¢) Determine the length of the arc M;M; on the curve (I') where M;(u = 1),

d) Determine the element of area for the surface ().

Solution:
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{ {
2! (u,v) = 2u z! (u,v) = 2v
a) The partial derivatives of z,y, z are: < Yyl (u,v) = 2u P9y (u,v) = —20
2l (u,v) = 20 (u,v) = u
\

E = 4u® + 4u® + v? = 8u? + v
F = 4uv — 4duv + uv = uwv;
G = 402 + 4? + u? = 8v? + u2.
The first quadratic form is:

ds* = Edu® + 2Fdudv + Gdv? = (8u® + v?)du? + 2uvdudv + (8v* + u?)dv?,

b) (') : v =2u = dv = 2du.

ds* = (8u® + 4u?)du® + 2u2udu2du + (8 - 4u? + u?)4ddu? = ds* = 152u*du =

ds = /152udu.
2 2 9
c) (M1 My) = J ds = J V152udu = \/%UQL = /38(4 — 1) = 3V/38.
1 1

d) The element of the area is

do = VEG — F2dudv = /(8u? + v2) (802 + u?) — u2v2dudv

= 2v/2Vut + 8u2v? + vidudw.

10.6 Problems

Problem 10.8. Let (5) : z = 2* — y* + 2y — 4a + 5 be a surface. Determine:
a) The tangent plane and the normal line to the surface at M (1, —2, —6).

b) The first fundamental form of the surface (5).



10.6 Problems 272

c¢) The element of area of the surface (5).

Problem 10.9. Determine the length of the arc of the curve v = In (u + vu? 4+ 9)
on the surface (S) @ 7(u,v) = ucosvi + usinvj + 3uk between the points

My(u=1,v=2) and My(u =2,v =3).
Problem 10.10. Determine the element of area of the surface
(S): P(u,v) =ud +vj +uvk.
Problem 10.11. Determine the area of the sphere.
Problem 10.12. Write the cartesian form of the surface
(S): P(u,v) = ® 7 +ww g + (3u+ UQ)?.

Determine the first fundamental form of the surface. Write the equations of the

tangent plane and normal line of the surface (S) at M(1,0,3).

u? + v? s
k be a surface.

Problem 10.13. Let (S) : 7(u,v) = (u—v)7 + (u+v)j +
Determine the first fundamental form of the surface. Write the integral which gives

the length of the curve (I') : v = 1 on the surface from v =1 and u = 2.

Problem 10.14. Let (S) : 7 (u,v) = (2 + u2)cosvi + (2 +u2)sinvj + uk be

a surface. Determine the first fundamental form of the surface. Write the integral

which gives the length of the curve (I') : v = 0 on the surface from v = —1 to
u=20
u = 2. Calculate the cosine of the angle between the curves (I'y) : and
v=t
u=2t
(y) : on the surface () at the point M(u = 0,v = 7)

v=t4+m
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Problem 10.15. Compute the first fundamental form of the following surfaces:

a) elliptic paraboloid () : 7 (u,v) = aucosv i + businvj + s

b) hyperbolic paraboloid () : 7 (u,v) = aucoshv i + businhvj + s
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