Mădălina CIOTLĂUȘ

STABILITATEA CĂII FERATE SUDATE Elemente de calcul

UTPRESS Cluj-Napoca,2023 ISBN 978-606-737-667-8

Mădălina CIOTLĂUȘ

STABILITATEA CĂII FERATE SUDATE

Elemente de calcul

UTPRESS Cluj-Napoca, 2023 ISBN 978-606-737-667-8

Editura UTPRESS Str. Observatorului nr. 34 400775 Cluj-Napoca Tel.: 0264-401.999 e-mail: utpress@biblio.utcluj.ro www.utcluj.ro/editura

Director:

Dan COLȚEA

Recenzia:

Prof.dr.ing. George Stoicescu Prof.dr.ing. Ludovic Kopenetz

Pregătire format electronic on-line: Gabriela Groza

Copyright © 2023 Editura UTPRESS

Reproducerea integrală sau parțială a textului sau ilustrațiilor din această carte este posibilă numai cu acordul prealabil scris al editurii UTPRESS.

ISBN 978-606-737-667-8

CUPRINS

1.	CAPITOLUL 1 GENERALITĂȚI 1	
	1.1. Rețeaua de cale ferată - dezvoltare	1
	1.2. Căile ferate în România	
	1.3. Calea fără joante în România	4
	1.4. Cartea Albă a Transporturilor - referiri la dezvoltarea rețelei CF de mare viteză	5
	1.5. Dezvoltarea rețelei liniilor de mare viteză în Europa	7
	1.6. Avantajele rețelei liniilor de mare viteză	10
2. ST	CAPITOLUL 2. TIPURI DE TRAVERSE CARE ASIGURĂ REZISTENȚĂ MARE LA FABILITATE 12	
	2.1. Generalități	12
	2.2. Tipuri de traverse	12
	2.2.1 Traverse clasice	12
	2.2.2 Traverse neconvenționale	15
	2.2.2.1 Traversa lată cu prindere K	15
	2.2.2.2 Traversa metalică	16
	2.2.2.3. Traversa metalică de tip Y	17
	2.2.2.4. Traversa tip bibloc – sistemul Rheda	22
	2.2.2.5. Suprastructuri pe dale	
	2.2.2.6. Traversa cadru din beton precomprimat	
3.	CAPITOLUL 3. PARAMETRII DE CALCUL PENTRU CALEA FĂRĂ JOANTE 32	
	3.1. Tipul şinei	32
	3.2. Temperatura în șină	33
	3.3. Elemente de rezemare	
	3.4. Rigiditatea cadrului șine - traverse	
	3.5. Prisma de piatră spartă	40
	3.5.1. Rezistența prismei la deplasarea transversală	40
	3.5.2. Rezistența prismei la deplasarea longitudinală	41
	3.5.3. Influența traverselor asupra rezistenței prismei	42
	3.5.4. Compactarea pietrei sparte dintre traverse și la capetele traverselor	44
	3.5.5. Natura și granulozitatea pietrei sparte	44
	3.5.6. Influența colmatării prismei de piatră spartă	45
	3.5.7. Influența lucrărilor de întreținere asupra rezistenței q	45
	3.6. Forța de compresiune în șină	
	3.7. Imperfecțiunile geometrice (defectele de așezare) ale liniei în plan orizontal	
4.	CAPITOLUL 4. METODE GENERALE DE CALCUL LA STABILITATE 49	
	4.1. Generalități	49
	4.2. Metode generale de calcul la stabilitate dezvoltate în străinătate	52
	4.2.1 Modele dezvoltate în Statele Unite ale Americii	53
	4.2.2 Modele dezvoltate în Olanda	58

4.2.3 Modele dezvoltate în Coreea de Sud	62
4.3. Metode de calcul dezvoltate în România	67
4.4. Metode de determinare a forței critice de pierdere a stabilității	84
4.4.1. Metoda energetică	84
4.4.2. Metoda echilibrului static	92
4.4.3. Metoda aproximativă	95
4.4.3.1. Stabilitatea în aliniament	96
4.4.3.2 Stabilitatea în curbă	101
4.4.4. Metoda numerică	106
4.4.5. Comportarea precritică, critică și postcritică a căii	108
4.4.6. Detenta de efort în urma pierderii stabilității căii	110
4.5. Analiza forței critice	112
4.5.1. Componentele forței critice	112
4.5.2. Lungimea critică și săgeata critică	113
4.5.3 Reprezentarea P _{cr} sub formă de suprafață curbă - metoda energetică	120
4.5.4 Reprezentarea P _{cr} sub formă de curbe plane - metoda aproximativă	132
4.5.5 Studiu comparativ între metoda energetică și metoda aproximativă	135
4.5.6 Determinarea coeficientului de siguranță în cazul căii fără joante	136
4.5.7 Exemplificare pe săgeți măsurate în cale	141
4.6. Integrarea problemelor de stabilitate în teoria catastrofelor	146
4.6.1. Teoria catastrofelor	146
4.6.2. Reprezentarea forței critice ca o suprafață curbă - aproximarea cu un tip de catastrofă elementară	152
5. CAPITOLUL 5. ÎNCERCĂRI EXPERIMENTALE ȘI SIMULĂRI 153	
5.1. Încercări asupra traversei din beton tip cadru	153
5.1.1. Descrierea și execuția traversei tip cadru	153
5.1.2. Descrierea încercărilor efectuate pe traversa tip cadru	157
5.1.3. Rezultatele obținute	159
5.1.4. Prelucrarea datelor - studiu comparativ	166
5.4. Simulări efectuate pe traverse	188
5.4.1 Simulări efectuate pe traversa monobloc T17	188
5.4.2 Simulări efectuate pe traversa cadru din beton	190
5.4.4 Rezultate obținute în urma simulărilor	191
5.4.5 Fișa simulării - traversă cadru, prism complet	192
5.6 Simulări efectuate pe linii cu săgeți inițiale	199
Bibliografie	

Prezenta lucrare propune o analiză a stabilității căii fără joante atât în aliniament cât și în curbă. Analiza este îndreptată spre studiul realizării unei suprastructuri sudate cu o stabilitate sporită față de suprastructura clasică alcătuită din cadrul șine - traverse, înglobat în prisma de piatră spartă.

În cadrul părții experimentale a fost elaborat un studiu comparativ între o suprastructură de tip nou formată din traverse din beton tip cadru, realizate pentru stabilitate sporită și sistemul clasic utilizat în România.

În cadrul studiilor teoretice au fost analizate diferite elemente de calcul (săgeata critică, lungimea critică, forța critică de pierdere a stabilității etc.), determinante pentru stabilitatea căii sudate.

Studiul și comportarea acestor noi tipuri de rezemări ale șinei este impotantă întrucât acest gen de suprastructuri asigură o stabilitate mult sporită căii fără joante la temperaturi ridicate, asigurând o poziție proiectată în spațiu a căii pe o perioadă mult mai mare fără intervenții legate de mentenanță.

Lucrarea propune o analiză detaliată a elementelor de calcul privind stabilitatea căii fără joante, a interdependenței acestora, prezentând tabele și diagrame utile pentru cei care lucrează în acest domeniu atât în proiectare, cercetare sau în întreținerea liniilor.

Datorită faptului că suprastructurile din România în proporție de 100 % sunt realizate în variantă clasică (șine - traverse monobloc - prismă de piatră spartă), putem considera necesară prezentarea unui calcul folosind metoda energetică unde forța critică apare ca o funcție depinzând de două variabile (o suprafață curbă) și unde s-a ținut seama de o comportare a prismei din piatră spartă cât mai aproape de realitate iar pentru viitor, prezentând cele două variante de rezemări neconvenționale, acestă lucrare poate să fie un imbold pentru cei care lucrează în domeniul feroviar pentru a adopta și alte soluții poate mult mai viabile față de cele alcătuite în sistemul clasic.

1. CAPITOLUL 1 GENERALITĂŢI

1.1. Rețeaua de cale ferată - dezvoltare

Transporturile sunt legate de dezvoltarea economiei unei țări, fiind indispensabile în desfășurarea activităților industriei și agriculturii, a circulației oamenilor și a bunurilor materiale, facilitând conexiunile între anumite regiuni pentru a asigura distribuția materiilor prime, a mărfurilor sau a altor produse între orașe, țări sau chiar continente. Dezvoltarea economiei pe plan mondial a fost susținută și de sistemele de transport, care pe lângă transportul propriu zis, au realizat legături între comunitățile izolate, au fost integrate în sisteme globale informatice, fiind răspunzătoare și de creșterea nivelului de civilizație a zonelor pe care le acoperă [1].

O premieră mondială demnă de menționat este conceperea și punerea în exploatare a sistemului șine-traverse împreună cu schimbătoare cu ac și inimă, ce aparține românului Ion Pop și care a fost folosită pentru prima dată pe liniile ce transportau minereuri la Brad, Trasilvania. Acest sistem a fost rapid preluat și utilizat în Austria, Anglia și în restul zonelor cu minereuri din Europa.

Ca și evoluție a sistemului de transport feroviar, câteva puncte importante în timp care trebuiesc menționate sunt: în 1764 se folosesc șinele din fontă în Altai, în 1767 Reynold utilizează șine din oțel pentru minele de cărbuni din Anglia, în 1811 ing. Backinshop brevetează sistemul cu cremalieră.

Prima cale ferată cu tracțiune cu cai a fost realizată în Marea Britanie, între Cardiff și Methyr în anul 1795, fiind utilizată atât pentru transportul pasagerilor, cât și al mărfurilor. Prima linie destinată exclusiv transportului public în Europa se inaugurează în 1827 în Austria, de la Budweis la Kerschmaum.

Tracțiunea realizată cu ajutorul locomotivelor cu aburi a pornit de la George Stephenson care a inventat prima locomotivă de acest tip și a testat-o în Anglia, în 1825 la Newcastle. În 1830 a fost inaugurată linia de cale ferată Liverpool -Manchester având primul tren de pasageri cu o capacitate de 130 de călători, tractat cu o locomotivă cu aburi, parcurgând distanța de 60 km în 90 minute cu o viteză de 35 km/h.

Locomotivele construite în Anglia de Stephenson în perioada 1833-1833, tip Planet - Patentee au fost foarte repede asimilate de toate rețelele de căi ferate, câteva mari construcții feroviare din Europa fiind:

- Bruxelles - Mechelen și Nurberg - Furth în 1835

- Paris - Saint Germain și St. Petersburg - Tarskoe Selo în 1837

- Paris - Orleans în 1843

În următorii ani se dezvoltă și alte rețele de cale ferată în lume, printre care se numără: America de Nord, Asia, America Latină, Africa, Australia. Sfârșitul secolului al XIX lea a adus extinderea căilor ferate din centrul și estul continentului european precum și în alte zone: China, S și SV Asiei, Turcia, America Latină, Iran, Africa, lungimea traseelor de cale ferată ajungând de la 8.640 km la începutul secolului XIX, la 793.000 km în 1900.

Această dezvoltare a rețelei de cale ferată a impus și modernizarea locomotivelor existente: în timp ce în anul 1840 viteza unei locomotive cu aburi ajungea la 80,2 km/h (modelul Firefly), în 1848 modelul Great Western atinge 108 km/h iar în 1848 locomotiva model The Governer 134 km/h. Modernizarea a inclus și partea de semnalizare, elementele de funcționare, sistemele de frânare și partea asigurării siguranței circulației.

Primele mari companii din domeniul feroviar au luat naștere după 1900, astfel în Franța apar 6 companii feroviare, 7 în SUA etc. În timp, statul a intervenit pentru a unifica și a aduce sistemul feroviar la un nivel care să poată satisface nevoile socio-economice, prin două modalități: naționalizare sau înființarea unei companii unice pe plan național cu unic acționar statul. Cu excepția SUA, toate statele au adoptat acest sistem de unificare, rezultând o organizație cu administrare, tarife, reglementări și tehnologii unice. Astfel, au fost realizate rute principale în zonele dezvoltate, care puteau suporta trafic crescut, iar traseele izolate au fost unite într-un singur sistem, asigurând conexiuni la nivel național.

Pentru a fi eficient, sistemul de căi ferate trebuia folosit și în afara granițelor unei țări, ceea ce a presupus un singur tip de ecartament și unificarea caracteristicilor tehnice ale mijloacelor de transport: astfel a luat ființă Uniunea Internațională a Căilor Ferate.

În majoritatea țărilor, în secolul XX, transportul pe calea ferată a rămas principalul mijloc de transport, dacă luăm în considerare criteriul tonajului remorcabil.

Rețeaua de cale ferată din Europa a suferit mari distrugeri în urma primului război mondial (1913-1918), care au fost remediate până în anul 1923.

Primele organizații iau naștere în 1921: "Uniunea Internațională a Vagoanelor" în Italia și 1922 în Franța "Uniunea internațională a căilor ferate" (UIC).

Perioada interbelică este caracterizată de dezvoltarea rețelei de cale ferată, accentul punându-se pe construcții de linii noi: calea ferată transiraniană (în 1939, de la Bandar-e-Torchmah - Garmshar - Teheran - Ahvaz - Khormashahr, între Marea Caspică și Golful Persic), linia ferată de la Istambul la Bagdad (în 1940), în 1942, legatura feroviară între Europa și Egipt (tronsonul Tripoli - Beirut - Haifa), în 1936 linia ferată Hanoi-Saigon (acum denumită Ho Chi Minh), rețele de căi ferate în Indochina, Thailanda și Malaysia.

Între anii 1925 și 1927, în Austria, Franța și Italia începe să fir înlocuită tracțiunea cu aburi, liniile încep să fie electrificate iar în Germania este inaugurată prima locomotivă diesel cu viteza maximă atinsă de 160 km/h, viteza maximă la care a ajuns vreodată o locomotivă diesel fiind 257 km/h.

Ca și excepție, în Anglia, locomotivele cu abur se dezvoltă, cea mai mare viteză fiind atinsă în 1935, de 202 km/h.

Cel de-al doilea război mondial provoacă din nou distrugeri masive căilor ferate europene, asiatice și celor din nordul Africii, cele aparținând Germaniei, Japoniei și părții europene a URSS-ului, fiind distruse în totalitate. Refacerea liniilor începe în 1950, ca proiect esențial în dezvoltarea economiilor statelor afectate de război.

După 1960 transporturile feroviare trec prin două etape importante: tracțiunea diesel și electrică și utilizarea satelițiilor și calculatoarelor. Începând cu anii 50, se trece la folosirea șinelor de tip greu (45 și 60), a traverselor din beton în locul celor din lemn, la utilizarea prinderilor flexibile și la introducerea șinei sudate (fără joante), elemente care duc la creșterea vitezelor de circulație și a tonajului remorcabil. Viteza trenurilor de marfă ajunge până la 120 km/h cu posibilitatea transportării a 2000 tone/garnitură. Introducerea sistemelor automate, a echipamentelor electronice și a sistemelor de comunicație prin radio a început în 1970, s-a continuat apoi cu sistemele de comunicație și localizare prin sateliți a trenurilor aflate în mers.

Ca și extindere a rețelei căilor ferate electrificate, cea mai mare pondere o au următoarele state: Elveția, Austria, Franța, R.F.Germania, Olanda, Italia, Suedia, Japonia, Coreea de sud, URSS, România, Polonia etc. Cele mai puternice locomotive diesel electrice au puteri cuprinse între 2000 - 8000 CP și se fabrică în SUA, URSS, Canada, China și Australia.

La fel ca și locomotivele, și vagoanele de marfă au suferit modernizări, pe piața transporturilor au apărut vagoane speciale, destinate diferitelor mărfuri, s-a generalizat utilizarea boghiilor iar diferențele de ecartament între diferite zone au fost compensate prin osiile cu ecartament variabil. Apar transcontainerele, utilajele destinate transbordării acestora, fapt care duce la scurtarea timpilor de manipulare și la creșterea eficienței transporturilor.

Vagoanele de călători se modernizează atât din punct de vedere al siguranței cât și al confortului pasagerilor, trenul Mistral care circula pe ruta Paris - Marsilia, a reuși performanța de a menține un pahar plin cu apă fără a-l vărsa, pe tot parcursul traseului.

Trasee noi de cale ferată au fost realizate în principal în URSS (între 1973-1985 cea de-a doua linie transiberiană, între Taiset-Komsomolsk-pe-Amur), în China (în 1955 linia ferată transmongolă, între Ulan Ude-Ulan Bator-Beijing, care leagă China, prin transiberian, cu Europa; în 1962 se ajunge în deșertul Taklamakan, până la Urumqi; în 1990 linia se extinde până la granița URSS, obținându-se încă o legătură între China și Asia centrală; în 1984 linia până la Golmund), Vietnam, Iran (în 1957 linia Teheran-Mashad; și până la Tabriz, facând legătura cu Turcia și URSS), Australia (unde s-a trecut la ecartamentul normal; în 1980 se finalizează linia Tarcoola-Allice Springs, în 1982 Adelaide, și în 1995 Melbourne erau conectate la rețea prin căi ferate cu ecartament normal, în 2004 se inaugurează linia Allice Springs-Darwin), Iugoslavia (în 1976 linia Belgrad-Bar), Albania (în 1986 linia Podgorita, apoi linia Schoder-Durres, Albania fiind ultima țară racordată la rețeaua feroviară europeană), și în alte țări.

Transporturile de marfă au fost evaluate după tonajul remorcabil, astfel, la începutul anilor 80, acestea au avut valori cuprinse între 3.440 miliarde tone/km în URSS și 0,66 miliarde tone/km în Luxemburg. Ca și pondere, față de alte tipuri de transport, cel feroviar a scăzut, chiar dacă în multe state, el a rămas constant ca volum, o parte din transportul de mărfuri fiind preluat de cel auto. Creșterea volumului de transport pe calea ferată s-a datorat utilizării noilor tehnologii de paletizare și

transcontainerelor, precum și creșterea prețului petrolului (s-au înregistrat două șocuri petroliere în 1973 și 1979), fapt care a dus la scumpirea transportului auto. Transportului feroviar devine astfel mai ieftin, mai eficient, fiind în același timp mai puțin poluant, iar pentru călători mai puțin aglomerat, sigur și confortabil.

În perioada 1950-1960, odată cu dezvoltarea transporturilor aeriene și auto, traficul de călători pe calea ferată scade simțitor, ajungându-se la închideri de linii. Apar în schimb, liniile de cale ferată turistice care ajung celebre în lume: "Festiniog railway" din marea Britanie este dată în exploatare în 1836 ca prima cale ferată îngustă din lume, traversând un peisaj superb. Acest tip de transport se extinde și în alte țări cu potențial turistic ca Austria, Elveția, SUA etc.

Dezvoltarea rețelei de cale ferată a fost inegală pe zone geografice, reflectând nivelul de dezvoltare economică a regiunilor acoperite. Dacă în 1900 existau 793.000 km de cale ferată, în 1981 erau dați în folosință 1.550.000 km, ajungând în prezent la peste 1.600.000 km.

Pe plan mondial, cele mai lungi rețele de cale ferată date în exploatare sunt:

- S.U.A. cu 187.690 km;

- Rusia cu 87.125 km;

- Germania cu 48.833 km;

- Canada cu 59.240 km;

- Franța cu 32.731 km;

Densitatea reprezintă lungimea liniilor de cale ferată raportată la mia de kilometri pătrați. Câteva exemple:

- Cehia - 119,7 km;

- Germania - 114,4 km;

- Belgia - 112,4 km;

- Luxemburg - 106,3 km;

În alte regiuni, acest coeficient este mult redus datorită suprafețelor mari geografice: S.U.A.: 20, Japonia: 10,6.

În funcție de ecartament, căile ferate se pot împărți astfel:

a) căi ferate normale, cu un ecartament de 1.435 mm (majoritatea țărilor europene, Asia, Africa)

b) căi ferate cu ecartament de 1.524 mm (Rusia, țările sovietice, Mongolia, China)

c) căi ferate cu un ecartament de 1.676 mm (Spania, Chile, India)

d) căi ferate cu un ecartament de 700 ÷ 1.200 mm (zone montane, forestiere, cariere, șantiere). [1]

1.2. Căile ferate în România

Căile ferate române au o istorie de peste 150 ani. Începutul construcției căilor ferate în România a fost înregistrat la începutul secolului XIX, momentan existând 11.300 km de linii cu o densitate de 48,1 km⁻¹, 33 % din întreaga rețea fiind electrificată. Prima linie de cale ferată este finalizată în 1854 având traseul între Baziaș și Oravița cu lungimea de 52km, apoi în 1860 se inaugurează ruta Cernavodă - Constanța 63 km și în 1869 București - Giurgiu - 65km. Prima linie internațională este dată în folosință în mai 1878: București - Viena. Conexiunea liniilor din Muntenia și Transilvania a fost realizată în 1965 prin Predeal, finalizând conexiunea la rețeaua europeană. Prima linie cu ecartament normal, electrificată leagă Brașovul de Câmipna în 1965. Cele mai multe linii au fost date în exploatare între anii 1870- 1913. Au fost construite de asemenea linii de legătură între regiuni izolate: Făurei - Tecuci; Piatra Neamț -Bicaz; București - Roșiorii de Vede - Caracal; Rovinari -Tg.Jiu; Salva - Vișeul de Jos, ultima legând Maramureșul de restul rețelei iar Bumbești - Livezeni va lega zona bazinului Petroșani cu sudul țării.

Din punct de vedere al reliefului, munții Carpați au reprezentat zone dificil de străbătut, totuși, ei sunt traversați de 10 linii feroviare, din capitală pornesc 8 linii magistrale care se conectează la linii internaționale:

- 1. București Craiova Dr.T. Severin Timșoara Jimbolia 572 km;
- 2. București Brasov Făgăraș Sibiu Deva Arad Curtici 616 km;
- 3. București Brasov Sighișoara Teius Cluj Napoca Oradea Ep. Bihor 656 km;
- 3. București Brasov Ciceu- Deda Jibou Baia Mare Satu Mare 683 km;
- 5. București Ploiesti Mărășești Bacău Suceava Vicșani 488 km;
- 6. București Ploiesti Mărășești Tecuci Iași Ungheni 422 km;
- 7. București Urziceni Făurei Brăila Galați 230 km;

8. București - Cernavodă - Consțanta - Mangalia 285 km.

Nodurile de cale ferată din România din care pornesc mai mult de 5 linii sunt: București, Ploiești, Timișoara, Arad, Oradea, Făurei, Roșiori de Vede, transportul de mărfuri fiind alcătuit în majoritate de produse de balastieră / carieră, căbuni, produse metalurgice și petroliere, produse din lemn. [2]

1.3. Calea fără joante în România

Sistemul clasic de alcătuire a căii ferate este compus din traverse și șine legate între ele prin eclise și buloane la capete pentru a permite dilatarea și contracția la variații de temperatură. Aceste legături sunt numite joante. Calea cu joante prezintă dezavantaje în explatare, joanta putând fi considerată un punct sensibil în alcătuirea căii, fiind constant supusă acțiunilor mecanice date de vehicule, lucrând sub vibrații și șocuri produse de materialul rulant. Ca și costuri de întreținere, joantele amplasate pe panouri de $10 \div 15$ m lungime constituie $45 \div 50$ % din totalul cheltuielilor necesare întreținerii căii.

Posibilitatea realizării unei căi continue, fără joante, a fost studiată încă de la începutul secolului nostru, evoluția sistemelor de prindere și a tehnologiilor de execuție permițând treptat posibilitatea utilizării șinelor sudate, de lungimi considerabile.

Avantajele căii fără joante sunt de ordin economic prin mărirea duratei de viață a căii (șine, traverse, elemente mărunte, prism), reducerea cheltuielilor de întreținere a căii și a materialului rulant, economii ale combustibilului, dar și sporirea vitezelor și confortul călătorilor. În prezent, o cale ferată pentru viteze mari este concepută doar în varianta fără joante.

Primele sudări de șine au fost realizate în București și Timișoara (1920), utilizându-se o substanță folosită și în prezent: termitul. La CFR, primele linii sudate au fost executate în 1933 în tunelul Timiș, pe o lungime de 975 m, prin metoda aluminotermică, apoi între 1935 - 1936 între București Filaret–Jilava prin metoda oxiacetilenică. Aceste lucări nu au avut rezultatele scontate.

În 1957 se execută un tronson experimental împreună cu Căile Ferate din Cehoslovacia, între stațiile Moldoveni–Armășești (pe linia București - Urzceni), sudura fiind executată cu arc electric și electrozi.

O linie continuă trebuia să îndeplinească condiții care se refereau la calitate: șina se verifica cu deflectoscopul, prinderile trebuiau să fie complete, restul elementelor: traversa și prisma de piatră spartă - conform standardelor, iar geometria căii fără imperfecțiuni. După darea în exploatare, liniile se urmăreau și se întrețineau periodic pentru a nu apărea ruperi de șină iarna sau șerpuiri pe timpul verii. Din aceste considerente, temperatura la care era executată sudura era extrem de importantă.

În țara noastră, temperatura în șină se consideră că variază între -30 și + 60 °C. Pentru ca eforturile de compresiune respectiv întindere să fie echilibrate, s-a stabilit un interval al temperaturilor în care șina poate fi sudată, acest interval reprezentând temperatura neutră: inițial $[+12 \div 22]$ °C, iar apoi modificat la $[+17 \div 27]$ °C.

În urma acestor prevederi, numărul ruperilor de șină a scăzut la 0,12 ruperi la 1.000 de suduri/an. [3]

Rețeaua căii ferate din România are următoarele caracteristici: - lungimea totală a liniilor: 19.626 km din care:

- 13.442 km linii curente și directe

- 6.187 km linii în statii.

- lungimea desfășurată a liniilor:

- 17.429 km aparțin infrastructurii feroviare publice

- 2.400 km aparțin infrastructurii private.

Ecartamentul: 1435 mm (134 km cu ecartament larg de 1520 mm)

Întreaga suprastructură a căii ferate române este realizată în sistemul clasic cu prism de piatră spartă, cu excepția căii pe poduri. Sistemul cu traverse înglobate în prisma de piatră spartă presupune întrețineri periodice legate de compactare, curățare, înlocuire sau suplimentare a pietrei sparte. În secțiune transversală, elementele căii sunt prezentate în figura 1.1:

Figura 1.1 Secțiune transversală cale [5]

Pe lângă construcția căii folosind piatră spartă, pe plan mondial au început să se dezvolte diferite sisteme de infrastructuri rigide care presupun lucrări de întreținere mai reduse, stabilitate sporită și o mai mare rezistență în plan orizontal. Un astfel de exemplu este calea înglobată în beton, prezentată în figura 1.2:

Figura 1.2 Calea înglobată în beton [6]

1.4. Cartea Albă a Transporturilor - referiri la dezvoltarea rețelei CF de mare viteză

Cartea Albă a Transporturilor - *"Foaie de parcurs pentru un spațiu european unic al transporturilor – Către un sistem de transport competitiv și eficient din punct de vedere al resurselor",* publicată de Comisia Europeană în martie 2011, menționează că deși transporturile sunt motorul de dezvoltare a unei societăți, există blocaje considerabile ale pieței interne de transport care trebuie rezolvate. Comisia care a realizat aceasta Carte Albă identifică soluții și strategii care se întind pe termen lung, pornind din 2020 paână în 2050. Unele din soluții se referă la transportul intermodal, la mărirea volumului de transport pentru mărfuri pe rute medii și lungi pe calea ferată, desemnarea unor coridoare exclusiv pentru transportul de marfă, implementarea unei rețele TEN-T (Rețeaua trans-Europeană de transport) multimodale și funcțională în întreaga Uniune Europeană până în 2030 și triplarea liniilor de mare viteză.

Linii de mare viteză în 2020
Linii suplimentare de 250-350 km/h, primă prioritate
Linii suplimentare de 250-350 km/h, dezvoltare ulterioară
Alte linii, 200 km/h

Figura 1.3 Propunerea rețelei feroviare pentru 2030 [7]

Rețeaua trans-Europeană de transport (TEN-T) include toate nodurile de transport din UE și este capabilă să suporte jumătate din traficul de pasageri și marfă. Pentru crearea unei rețele intermodale funcționale este necesar a se stabili modul de transport pentru fiecare etapă a călătoriei. Construcția unei astfel de rețele are ca rol principal stimularea competitivității economice și dezvoltarea UE, creșterea coeziunii socio-economice, contribuind la implementarea și dezvoltarea unei Piețe Interne. TEN-T presupune dezvoltarea unor rețele naționale prin interconectare și interoperabilitate, în 2020 această rețea va include 89.500 km de drumuri și 93.000 km de cale ferată, cu aproximativ 20.000 km de linii de mare viteză pe care circulația să se desfășoare cu minim 200 km/h. Lungimea căilor navigabile interioare va cuprinde 11.250 km incluzând 210 porturi fluviale, 294 maritime iar pe segmentul transportului aerian 366 aeroporturi.

Finalizare rețelei TEN-T va avea ca rezultat reducerea timpilor călătoriilor atât pentru pasageri cât și pentru mărfuri, aducând beneficii semnificative mediului înconjurător prin scăderea emisiilor poluante. [7]

Obiectivul principal în constituirea noului buget european în cadrul strategiei Uniunii Europene îl reprezintă reducerea dependenței de petrol, obiectiv care poate fi atins prin 3 aspecte: crearea unui sistem de transport competitiv, cu resurse suficiente și un echilibru între rețeaua periferică și rețeaua centrală, scăderea emisiilor de dioxid de carbon și realizarea unei rețel de transport eficiente. În scopul reducerii numărului de legături lipsă, legăturile multimodale trebuiesc optimizate.

"Accentul cade pe reducerea diferențelor între rețeaua centrală și cea periferică și trebuie identificate soluții ca această rețea să trasforme transportul feroviar în cel mai atractiv mod de transport în special în noile state membre UE, deoarece s-a dovedit că în statele vechi membre UE este atractiv mai ales pe distanțele medii și lungi", a fost declarația Jean-Marie Seyler, director al DG REGIO la Sofia.

Dezvoltarea rețelelor trebuie privită atât pe direcția est - vest cât și pe nord - sud, ambele fiind la fel de importante pentru alocarea bugetului 2013-2020. În ceea ce privește alocarea bugetului UE, acesta este împărțit 50 % pentru transportul feroviar și 50 % pentru celelalte tipuri de transport, un plan ambițios din acest punct de vedere. Cu toate acestea, realitatea din stalele membre indica alocarea în proporție de 80 % a fondurilor transportului rutier, 18 % feroviar și 2 % naval. Bugetul UE pe perioada 2007-2014 arată o diferență majoră în alocarea fondurilor: 40,3 mld euro pentru sectorul rutier și 28,7 mld euro pentru cel feroviar. [8]

Creșterea prețurilor la carburanți a îndreptat atenția către trenurile electrice, transporturile rutiere și aeriene devenind costisitoare. Se estimează că în 2012 industria mondială de transporturi feroviare va depăși suma de 2.300 mld euro, cu 30 % în creștere față de 2007. O călătorie cu trenul a devenit nu doar mai ieftină, ci și mai rapidă. În Marea Britanie, în primele luni ale anului 2011, transportul de călători a crescut cu 5 % față de același interval din anul precedent. China și Rusia investesc masiv în rute de mare viteză, capabile să acopere distanțe mari, la prețuri acceptabile pentru călători. Uniunea Europeană va investi masiv în linii de mare viteză atât pe partea de îmbunătățire cât și de extindere.

1.5. Dezvoltarea rețelei liniilor de mare viteză în Europa

Față de transportul feroviar clasic, trenurile de mare viteză aduc avantaje considerabile din punct de vedere al vitezei, timpului călătoriei, siguranței, confortului și a serviciilor excepționale puse la dispoziția călătorilor.

Figura 1.4 Rețeaua de linii de mare viteză din Europa [9]

Tara	Lungime (Km)	
China	40.474	
Spain	3.661	
Japan	3.081	
France	2.735	
Germany	1.571	
Finlanda	1.120	

Tabel 1.1 Rețeaua de linii de mare viteză în exploatare, 2021 [10]

Turcia	1052
Italia	921
Coreea de Sud	873
Suedia	860
USA	735
Arabia Saudită	449
Austria	254
Polonia	224
Belgia	209
Maroc	186
Elveția	176
Marea Britanie	113
Norvegia	90
Danemarca	56

Actualizată în martie 2012, [10]

Construcția primei linii de cale ferată pentru viteze mari a început în 1958, în Japonia, fiind finalizată în 1964, între Tokio și Osaka (sub numele de "Tokaido"), cu lungimea de 515 km și viteza maximă 240 km/h, dată în exploatare în anul 1964. În timp, vitezele maxime au crescut prin dezvoltarea tehnologiilor, recordul mondial fiind atins de TGV-ul francez în 2007: 570,4 km/h. În SUA o locomotivă cu reactoare, în cadrul unui proiect experimental, a atins în 1974, 400 km/h.

Cele mai rapide trenuri de pasageri din lume în funcție de vitezele maxime atinse, în ordine descrescătoare: [11]

Spania

Tren: AVE Class 103 Viteza maximă atinsă: 404 km/h Capacitate: 404 pasageri

Figura 1.5 Tren AVE, Spania [11]

Cea mai lungă rețea de linii pentru viteze mari din Europa aparține Spaniei: 5.524 km, cu 6 linii de mare viteză și altele în construcție, dorindu-se limitarea locuitorilor țării la o distanță de maxim 50 km de aceste artere până în anul 2020. Trenurile rapide din Spania sunt fabricate de Siemens, Alstom și Bombardier. Acest tren a atins viteza maximă între Madrid și Zaragoza în timpul unui test, însă legal, viteza maximă admisă cu pasageri la bord este de 300 km/h.

Germania Tren: Transrapid TR-07 Viteza maximă: 435 km/h Capacitate: este în faza de teste

Figura 1.6 Tren Transrapid, Germania [11]

Germania, țara mamă a Siemens, este primul și cel mai mare producător de asemenea vehicule din lume. Transrapidul TR-07 folosește tehnologia Maglev, dezvoltată de Siemens în colaborare cu ThyssenKrupp, vehiculul aflându-se în teste. Trenurile din sistemul ICE pot atinge viteza maximă legală de 320 km/h. În 1998, un tren ICE a suferit cel mai grav accident feroviar înregistrat, soldat cu moartea a 101 persoane.

China

Tren: CRH380AL Viteza maximă: 486 km/h Capacitate: 600 pasageri

Figura 1.7 Tren CRH380AL, China [11]

China deține cea mai lungă rețea de căi ferate din lume pentru linii demare viteză: 9.656 km, estimată ca până în anul 2015 să se atingă 45.000 km. Tot China deține cea mai lungă cale ferată din lume: Beijing - Shanghai cu lungimea de 1.318 km, parcursă de trenul CRH380AL, numărul de pasageri estimat fiind de 80 de milioane anual. Viteza legală cu pasageri la bord este 380 km/h.

China a început dezvoltarea liniilor de mare viteză în anul 1997, pe prima linie fiind transportați 40,6 milioane de pasageri în primul an.

Franța

Tren: TGV V150 Viteza maximă: 574 km/h Capacitate: Experimental

Figura 1.8 Tren TGV V150, Franța [11]

Franța deține recordul mondial la viteză, fiind unul dintre liderii industriei mondiale pentru trenurile de mare viteză, primul TGV fiind dat în folosință în 1981. De atunci, rețeaua s-a extins considerabil, acoperind 150 de destinații din Franța și din țările învecinate. Primul vehicul TGV, construit de Alstom, a fost inaugurat în 1981. În prezent, rețeaua s-a extins considerabil, acoperind peste 150 de destinații din Franța și țările învecinate. Viteza maximă legală pentru TGV-uri este de 320 km/h, cea admisă fiind de 320 km/h.

Japonia

Tren: JR-Maglev MLX01 Viteza maximă: 580 km/h Capacitate: Experimental

Figura 1.9 Tren JR-Maglev MLX01, Japonia [11]

Japonia este lider pe piața mondială pentru trenurile de mare viteză, primul tronson fiind dat în folosință în 1964, cu viteze de 209 km/h. În primii 3 ani, primul vehicul de acest fel a transportat 100 de milioane de pasageri. Pe sistemul Maglev, primele trenuri au fost construite în Japonia în 1970, în prezent lucrându-se la dezvoltarea liniilor cu sustentație electromagnetică, preconizate a fi finalizate în 2027, trasee care vor lega orașele Tokyo, Nagoya și Osaka. [12], [13]

1.6. Avantajele rețelei liniilor de mare viteză

Avantajele de care beneficiază societatea în urma sistemelor de transport, sunt enorme, acestea oferind mobilitate și acces - elemente esențiale pentru dezvoltarea unei societăți moderne și pentru dezvoltarea economiei. Impactul pe care îl are sistemul de transport în general nu este întotdeauna benefic: emisiile de dioxid de carbon, aglomerațiile, accidentele, gradul de utilizare al terenului, poluarea solului și altele.

Comparativ cu alte sisteme de transport (rutier, feroviar clasic, naval, aerian), sistemul căilor ferate de mare viteză beneficiază de avantaje substanțiale legate de dezvoltarea economică, socială, reducerea emisiilor poluante comparativ cu alte mijloace de transport, împreună cu siguranță și confort.

Față de emisiile automobilelor, trenurile de mare viteză sunt de 14 ori mai puțin poluante și de 15 ori mai puțin față de transportul aerian. Din acest motiv, în intervalul 2030-2050, conform Cărții

Albe a Transporturilor din 2011, sistemele de cale ferată pentru viteze mari au fost triplate în intervalul 2030-2050, pentru a asigura majoritatea transporturilor pe rute medii și lungi.

Avantajul principal este capacitatea ridicată de utilizare, respectiv factorul de încărcare - responsabil de consumul de combustibil pe pasager. În al doilea rând, creșterea vitezelor admise pe porțiunile în pantă duce la frânări mai ușoare, implicit la păstrarea energiei kinetice utilizată la menținerea vitezei pe tronsoanele în rampă. Al treilea avantaj este distanța dintre două stații - aceasta putând fi mai scurtă și mai directă față de transportul convențional, reducând consumul de combustibil sau al energiei consumate / călător / km. Un alt factor important este timpul redus în care călătoriile pe distanțe mari pot fi parcurse, viteza minimă pe rutele de mare viteză fiind 220 km/h.

	Avion	Autoturism	Tren de mare viteză
Caracteristici și componente (per pasager)			
Durată călătorie (ore : minute)	2:30	4:14	3:37
Costuri (euro)	91,0	113,0	109,0
Consum energie (converit în litru petrol)	32,8	38,6	11,1
Dioxd de carbon (kg)	77,1	86,0	19,2
Toxicitate umană (g)	2,1	21,2	1,0
Dioxid de sulf (g)	43,4	3,2	19,5
Oxizi de nitrogen (g)	268,3	223,0	17,2
Hidrocarbonați non metan (g)	20,8	18,3	1,1

Tabel nr. 1.2 Comparație între diferite mijloace de transport, ruta Frankfurt - Hamburg [14]

Poluarea sonoră: față de traficul rutier care afectează 90 milioane oameni pe timpul zilei și 50 milioane pe timpul nopții, transporturile feroviare de mare viteză afectează 12 milioane / 8 milioane de persoane pe timpul zilei / nopții în întreaga Europă.

Sistemul de transport pe liniile de mare viteză este considerat cel mai sigur transport la ora actuală, odată cu creșterea vitezelor și a dezvoltării rețelelor de mare viteză, numărul accidentelor nefiind în creștere.

2. CAPITOLUL 2. TIPURI DE TRAVERSE CARE ASIGURĂ REZISTENȚĂ MARE LA STABILITATE

2.1. Generalități

Construcția, întreținerea și exploatarea căii ferate este un domeniu de cercetare în cadrul transporturilor moderne, scopul cercetărilor fiind obținerea vitezelor mari, rezistența suprastructurii la încărcări cât mai mari, împreună cu costuri competitive, toate cumulate într-un transport ecologic.

Ca și parte componentă a suprastructurii căii, traversa ocupă un rol determinant în menținerea stabilității și geometriei căii. În România sunt utilizate în prezent traverse din lemn, metal și beton.

Suprastructurile care au șina fixată pe traverse înglobate în piatra spartă pot fi clasificate după felul traverselor în:

- traverse din lemn
- traverse monobloc din beton armat precomprimat
- traverse bibloc din beton
- traverse metalice
- traverse neconvenționale

Traversele neconvenționale utilizate în prezent în diferite țări:

- traversa lată
- traversa tip bibloc sistemul Rheda
- traversa metalică de tip Y
- traversa cadru din beton precomprimat
- suprastructuri pe dale [15]

2.2. Tipuri de traverse

Modernizarea și creșterea puterii de tracțiune a materialului rulant, petrecute de-a lungul ultimilor ani, au impus găsirea unor soluții de adaptare a suprastructurii căii ferate la noile solicitări.

Calea ferată este împărțită, în mod convențional, în infrastructură - formată din terasamente, poduri, podețe, tuneluri, ziduri de sprijin etc., și suprastructură - șine, material mărunt de cale, traverse, dispozitive contra deplasării căii, și prisma din piatră spartă. Cercetările realizate de specialiștii Autorității Feroviare Române (AFER), în colaborare cu cei din CFR SA, s-au îndreptat spre proiectarea, experimentarea și executarea unor tipuri noi de traverse - din beton precomprimat -, care să corespundă condițiilor impuse de sporirea sarcinilor pe osie, să permită circulația trenurilor cu viteze mari și lucrări de întreținere minime. Ca parte componentă a suprastructurii căii ferate, traversa ocupă un rol determinant în menținerea stabilității și a geometriei căii. [16]

2.2.1 Traverse clasice

În România sunt utilizate, în prezent, traverse din lemn, din metal și din beton, tipurile utilizate pe liniile cu ecartament normal (1.435 mm):

- traverse din beton precomprimat pentru sistemele de prinderi elastice PANDROL FASTCLIP și VOSSLOH W14 - pentru șine de tip UIC60 și R65;

- T13, T18A, T29 și T31 pentru șină de tip S49 și 54E;
- T17, T26, T30 și T32 pentru șină de tip UIC60 și R65.

Figura 2.1 Traversa tip T17 [22]

Figura 2.2 Traversa tip T16 [22]

Figura 2.3 Traversa tip T13 [22]

Pe liniile cu trafic scăzut și cu viteze de circulație reduse pe care circulă material rulant cu acces pe infrastructura publică, se pot folosi și traverse: Ts I - pentru șina tip 40 și Ts 13 și T I - pentru șina tip S49 și 54E.

Pe liniile încălecate (având ecartamentul de 1.435 mm și de 1520 mm) se utilizează: T19 și T20 - pentru șina S49 și 54E și T 21 - pentru șina tip UIC60 și R65.

Tipurile de traverse care se folosesc pe liniile de cale ferată cu trafic scăzut și cu viteze de circulație reduse pe care circulă material rulant cu acces pe infrastructura publică cu ecartament larg (1.520 mm) sunt: T22 și T24 - pentru șina tip S49 și T23 - pentru șina tip UIC60 și R65.

Pentru schimbătoarele simple se utilizează traversele tip ST1 ÷ ST29, iar la podurile cu cuvă de balast de tip P1 și P2, pe linii situate în curbe cu contrașină: Tc 18A - pentru șina tip S49, Tc 26 - pentru șina tip UIC60 și R65, Tc 31 - pentru șina tip S49 și Tc 32 - pentru șina tip R65. Traversele din beton precomprimat sunt mai rigide dar mai sensibile la șocuri decât cele din lemn; prin urmare, prinderile trebuie să fie elastice pentru a înlătura, în cât mai mare măsură, acest inconvenient. Principiul prinderilor elastice este menținerea în prindere a tensiunilor permanente, prin care șina este presată pe traversă și în situația existenței deplasărilor orizontale sau verticale. Tendința generală actuală este aceea de a înlocui prinderile rigide cu prinderi elastice. Pe parcusul Coridorului IV paneuropean, pe teritoriul României, porțiune care se află în stadiul de reabilitare, sunt utilizate traversele monobloc din beton precomprimat unde sunt utilizate prinderi tip PANDROL FASTCLIP și VOSSLOH W14, special proiectate pentru viteze de circulație de 200 km/h și încărcări de 25 t pe osie.

În general, pentru traversele utilizate în aliniament și curbe cu raze mai mari de 350 m se cunosc modul de funcționare și comportarea sistemelor de prinderi elastice, însă pentru calea în curbe cu raze mici sunt necesare modificări ale traverselor și ale elementelor prinderilor, dar și monitorizarea acestora sub trafic.

Pe restul rețelei feroviare românești se folosesc tipuri de traverse din beton precomprimat clasice (de regulă, cu prindere rigidă), care s-au dovedit funcționale în timp, însă pentru a permite echiparea lor cu sisteme de prindere elastică este necesar să se aducă adaptări acestora. Acest fapt ridică probleme atât proiectantului, cât și producătorului de traverse.

Pentru reducerea cheltuielilor legate de întreținerea și repararea căii, datorită calităților prinderilor elastice, CFR SA a început, împreună cu AFER, un program de studii pentru găsirea unor soluții de traverse adaptate la prinderile elastice, fiind identificate posibilități de modificare a traverselor existente, dar și pentru realizarea unor noi tipuri de traverse din beton precomprimat. [16]

Traverse din beton precomprimat utilizate în curbe, adaptate la sisteme de prinderi elastice:

Traversa T 18A pentru sistemul de prindere elastică VOSSLOH W14

- utilizată în alcătuirea suprastructurii căii cu ecartament normal (1.435 mm) șină tip 49, în curbe cu raze între 350 și 1.000 m;

- viteza maximă de circulație - în funcție de raza curbei, conform Instrucției 313.

Caracteristicile tehnice ale traversei:

- clasa de rezistență a betonului - C40/50;

- armătură - tip LBP 3 ø 3 mm (greutatea = 4,9 kg) și OL 00 ø 2,5 mm (greutatea = 0,46 kg);

- forța de pretensionare - 360 kN;

Traversa T26 pentru sistemul de prindere elastică VOSSLOH W14

- pentru suprastructura căii cu ecartament normal cu șina tip UIC60 sau R65, în curbe cu raze între 401 și 1.000 m;

- viteza maximă de circulație - în funcție de raza curbei, conform Instrucției 313.

Caracteristicile tehnice ale traversei:

- clasa de rezistență a betonului - C40/50;

- armătură - tip LBP 3 ø 3 mm (greutatea = 4,9 kg) și OL 00 ø 2,5 mm (greutatea = 0,46 kg);

- forța de pretensionare - 360 kN;

Traversa T26 pentru sistemul de prindere elastică PANDROL FASTCLIP

- folosită la suprastructura căii cu ecartament normal cu șină tip UIC60 sau R65, în curbe cu raze între 401 și 1.000 m;

- viteza maximă de circulație - în funcție de raza curbei, conform Instrucției 313.

Caracteristicile tehnice ale traversei:

- clasa de rezistență a betonului - C40/50;

- armătură - tip LBP 3 ø 3 mm (greutatea = 5,1 kg) și OL 00 ø 2,5 mm (greutatea = 0,46 kg);

- forța de pretensionare - 360 kN;

Traversa T27 pentru prindere K

- pentru suprastructura căii cu ecartament normal cu șina tip UIC60 sau R65, în curbe cu raze egale sau mai mici de 350 m;

- viteza maximă de circulație - în funcție de raza curbei, conform Instrucției 313.

Caracteristicile tehnice ale traversei:

- clasa de rezistență a betonului - C45/55;

- armătura - preîntinsă, cu 12 corzi SBPI ø 3 mm, împletită în trei (greutatea = 5,1 kg) și freta de la

capetele traversei din OL 00 ø 3 mm (greutatea = 0,33 kg);

- forța de pretensionare - 360 kN;

- dibluri - B5 din polietilenă de înaltă rezistență;

Traversa T27 pentru sistemul de prindere elastică PANDROL FASTCLIP

- poate fi folosită la suprastructura căii cu ecartament normal (1.435 mm) cu șina tip UIC60 sau R65, în curbe cu raze egale sau mai mici de 350 m.

Caracteristicile tehnice ale traversei:

- clasa de rezistență a betonului - C45/55;

- armatura - preîntinsă, cu 12 corzi SBPI \emptyset 3 mm, împletită în trei (greutatea = 5,1 kg) și freta de la capetele traversei din OL 00 \emptyset 3 mm (greutatea = 0,33 kg);

- forța de pretensionare - 360 kN;

Traversa T27 pentru sistemul de prindere elastică VOSSLOH W14

- poate fi folosită la suprastructura căii cu ecartament normal cu șină tip UIC60 sau R65, în curbe cu raze egale sau mai mici de 350 m.

Caracteristicile tehnice ale traversei:

- clasa de rezistență a betonului - C45/55;

- armatură - preîntinsă, cu 12 corzi SBPI \emptyset 3 mm, împletită în trei (greutatea = 5,1 kg) și freta de la capetele traversei din OL 00 \emptyset 3 mm (greutatea = 0,33 kg);

- forța de pretensionare - 360 kN.

Traverse din beton precomprimat pentru schimbătoare de cale, cu prindere rigidă sau elastică Acest tip de traverse se utilizează pentru suprastructurii cu aparatele de cale: S60 - 300 1:9 Af, S49 - 190 1:9 Af, S49 - 125 1:6,6, S49 - 70 1:5 Ac, pentru viteze maxime pe linie directă de 200 km/h.

Traverse din beton precomprimat pentru poduri cu cuvă din balast, cu sistem de prindere elastică PANDROL FASTCLIP sau VOSSLOH W14

Liniile existente pe podurile cu cuvă de balast, sunt executate cu suprastructuri având traverse din beton precomprimat cu sistem de prindere elastică, fapt ce presupune reconsiderarea alcătuirii contrașinei astfel încât să permită fixarea acestui tip de traverse.

2.2.2 Traverse neconvenționale

2.2.2.1 Traversa lată cu prindere K

Traversa lată cu prindere K a fost inițial proiectată în 1975 la ICPTT (Institutului de Cercetări și Proiectări Tehnologice în Transporturi București) fiind utilizată în tuneluri. În timp, utilizarea acestui tip de traversă s-a extins, fiind pusă în operă și în linie curentă, în zonele cu terasamente având capacitate portantă redusă, sau pe liniile pe care se transportă materiale pulverulente, unde există posibilitatea colmatării prismei căii.

Dimensiunile geometrice: lungime = 2,5 m, lățime = 0,54 m, înălțime în axul șinei = 19,5 cm, înălțime în mijlocul traversei = 13,5 cm și înălțimea traversei la capete = 12,5 cm.

Acest tip de traversă prezintă următoarele avantaje:

- suprafață mai mare de rezemare (presiunile transmise prismei ajung la 2,82 kg/cm²), crește capacitatea portantă a căii și stabilitatea acesteia în plan orizontal prin mărirea suprafeței frontale și a frecărilor pe talpă;

- elimină posibilitatea colmatării prismei căii (așezare joantivă a traverselor și protejarea spațiului dintre ele), iar prin evacuarea apelor pluviale spre exteriorul platformei căii realizându-se reducea costurilor de întreținere, compensând costul inițial de achiziție, mai mare față de traversele clasice monobloc.

Traversa lată poate fi adaptată și la sistemul de prindere elastică PANDROL FASTCLIP și la cel VOSSLOH W13. [16]

2.2.2.2 Traversa metalică

Traversele metalice au avantajul unei greutăți reduse și al unui montaj rapid.

Figura 2.4 Traversa metalică [16]

Traversele metalice au capetele teșite pentru a spori rezistența laterală. Acest tip de traversă este răspândit în Marea Britanie unde sunt considerate o variantă fiabilă pentru instalare pe calea cu prismă din piatră spartă. Momentan se află în exploatare traverse metalice montate acum 50 de ani, reabilitate în unele cazuri, comportarea lor fiind bună.

2.2.2.3. Traversa metalică de tip Y

Traversa metalică în forma Y a fost inventată și proiectată de către inginerii germani. În plan, traversa are o lungime de 2,3 m, iar lățimea dintre axele profilelor metalice principale este de 600 mim, distanța dintre axul profilului principal și cel secundar fiind de 176 mm.

Figura 2.5 Traversa metalică Y [16]

Celor două ramuri principale ale traversei li se mai adaugă două elemente secundare care au lungimea egală cu 800 de mm, acestea aflându-se practic în zona blochetului, având rolul de a repartiza uniform sarcinile provenite din încărcările vehiculelor de cale ferată și transmise căii, de a mări rigiditatea cadrului șină-traversă, precum și de a reduce presiunile la nivelul prismei de piatră spartă. În plan, o ramură a unei traverse este prevăzută cu două curburi de sens contrar, fiecare având o rază de 1232 mm.

Traversa de tip Y este proiectată pentru a se putea utiliza la orice tip de șină. Șinele sunt fixate de traversa de metal cu ajutorul unor plăcuțe metalice cu o lățime de 404 mm (plăcuțe suport). Traversele metalice, în ciuda faptului că au o lungime mai scurtă decât cele obișnuite din beton sau lemn, permit un ecartament normal de 1435 mm, măsurat între fețele interioare ale șinelor. [16]

Figura 2.6 Traversa metalică în Y - dimensiuni [16]

În secțiune transversală, traversa are forma unui profil I, simetrică pe ambele direcții, cu următoarele dimensiuni:

- lățimea tălpii: 140 mm;
- înălțimea profilului: 95 mm;
- grosimea inimii: 6 mm;
- grosimea tălpii: 7,5 mm.

Tălpile, precum și îmbinarea dintre inimă și talpă sunt racordate, traversa fiind practic un profil laminat.

Figura 2.7 Secțiune transversală a traversei tip Y [16], [17]

Caracteristici:

- aria secțiunii = 26,40 cm²
- greutatea / m liniar = 20,80 kg/m
- Iy = 432,00 cm 4
- Wy = 91,00 cm 3
- Iz = 276,00 cm 4
- Wz = 39,50 cm 3

În secțiune longitudinală, capetele traverselor se teșesc, tăindu-se înclinat la 36° față de orizontală. Această teșire se execută la ambele ramuri: principale și secundare. Traversa este prevăzută la partea inferioară a profilului (talpa care se așează pe prisma de piatră spartă) cu două plăcuțe metalice, cu rolul de a mări aderența dintre cadrul șină - traversă și prismă, plăcuțele fiind alcătuite din profile laminate de tip L, latura profilului care se va suda de traversă este de 100 mm, iar cea care se va introduce în prism de 50 mm.

Ramurile traversei sunt prinse cu ajutorul plăcuțelor de fixare în prisma de piatră spartă. La fiecare capăt sunt necesare două plăcuțe, fiind necesare pentru o singură traversă un total de șase plăcuțe.

Figura 2.8 Poziționarea plăcuțelor de fixare [17]

Avantajele traversei Y față de cea din beton

Lungimile traverselor din beton sunt de 2,6 m, traversele metalice Y având o lungime mai redusă, de 2,3m.

Distanța dintre axele traverselor din beton este în medie 600 mm, pentru traversele din metal aceasta poate crește până la 1245 mm, ceea ce reduce atât numărul de traverse cât și manopera necesară montajului și întreținerii căii.

Umărul prismei de piatră spartă, în aliniament și palier, pentru o traversă din beton este de 50 cm, înălțimea minimă a prismei de piatră spartă sub șină fiind de 30 cm, în cazul traversei din metal tip Y, înălțimea prismei este aceeași, însă umărul necesar este doar 30 de cm, ceea ce reduce cu 40 % umărul prismei, rezultând un volum mai mic de piatră spartă.

Pentru o traversă monobloc din beton, cu un umăr de 50 cm și o înălțime a prismei de 30 cm pe o lungime de 1 m este necesar un volum de piatră spartă de aproximativ 1,215 m³, pentru o traversă metalică tip Y este nevoie de doar 0,915 m³.

Datorită dimensiunilor reduse a prismei de piatră spartă la bază pentru traversele tip Y, de numai 3,5 m, față de 4,5 m necesari în cazul traverselor din beton, spațiul ocupat de calea ferată se reduce cu 1 m, astfel, în situațiile în care se impun exproprieri, fiind mai avantajos, realizarea căii din acest punct de vedere fiind mai economică.

Figura 2.9 Diferențe între distanțele între axe pentru traversele Y și cele din beton [17]

În zonele cu schimbători de cale, nu este necesară introducerea elementelor de dimensiuni diferite, traversa Y putându-se poziționa relativ ușor în comparație cu celelalte tipuri de traverse.

Figura 2.10 Poziționarea traversei la schimbători de cale [17]

Datorită formei pe care o are traversa metalică tip Y, aceasta poate fi utilizată pentru diferite ecartamente pe același cadru șină traversă.

Figura 2.11 Utilizarea traverselor pentru ecartamente diferite [17]

Prinderea șinei de traversă este o prindere de tip elastic:

Figura 2.12 Elementele prinderii șinelor Y [17]

Figura 2.13 Tronson experimental cu traverse metalice tip Y, Ungaria

Traversa metalică tip Y are o rezistență mai mare la delpasarea laterală decăt o traversă din beton. Un cadru format din șine și traverse metalice în formă de Y este de aproximativ 5 ori mai rigid decât un cadru format din șine și traverse din beton, rezultatul fiind un cadru mai rigid în special la stabilitate decât unul clasic compus din traversele monobloc din beton.

2.2.2.4. Traversa tip bibloc – sistemul Rheda

Figura 2.14 a, b Sisteme tip Rheda [18]

Figura 2.15 Sistemul Rheda în secțiune transversală [16]

Configurația structurii

Sistemul Rheda, continuu dezvoltat și îmbunătățit, distribuie în mod uniform fisurile dezvoltate din contracțiile termice și din contractare ale betonului, limitându-le totodată la valori sub 0,5 mm. Calea nebalastată cu suport din beton continuu previne formarea necontrolată a fisurilor. Pe parcursul punerii în operă, sunt lăsate în structură rosturi laterale false pentru controlul, prevenirea și stoparea fisurilor.

Sistemul bibloc este format din 2 traverse din beton care conlucrează cu ajutorul conectorilor din oțel. Avantajele sunt: creșterea rezistenței laterale și greutatea redusă față de cele monobloc, conectorii metalici previn torsiunea în zonele centrale, rezultând un element flexibil. Zona centrală se betonează. Acest sistem este utilizat în Franța pe liniile TGV dar și pentru calea fără prismă din piatră spartă. [19]

Avantajele acestui tip de suprastructură sunt:

- raportul cost – performanțe este optim

- precizia parametrilor geometriei căii prin folosirea de traverse cu dimensiuni exacte

- adaptabilitate mare pentru toate tipurile de infrastructuri și modele existente, prin aplicarea turnării la fața locului a betonului în fâșia centrală

- rezistență și performanță crescute datorită tehnologiilor folosite și a stratului suport, pentru o diversitate de condiții meteo și standarde ale betoanelor

- flexibilitatea, performanța ridicată a tehnologiilor de execuție, simplitatea operațiunilor de punere în operă atât manual cât și automatizat

Sistemul Rheda 2000 bibloc are în componență prinderi elastice, cu plăcuțe de transfer a forțelor verticale și orizontale spre traversă. [16]

Figura 2.16 Consolidarea cu grinzi cu zăbrele [19]

Figura 2.17 Prinderi pentru sistemul tip Rheda [19]

Grinzile cu zăbrele din partea centrală sunt parțial încastrate în blocheții din beton. Acest fapt asigură conlucrarea între traversă și placa din beton. Elementele prinderii șinei sunt ancorate în ambii blocheți. Prinderea elementelor din beton cu ajutorul elementelor metalice asigură gabaritul dorit, execuția fiind foarte precisă.

Pentru dezvoltarea unei suprastructuri de cale ferată care să permită circulația trenurilor de mare viteză de pasageri (viteze mai mari de 175 km/h) și a trenurilor de marfă de mare tonaj în condiții optime, cu cheltuieli de întreținere minime, au fost efectuate teste atât în Europa cât și în Asia. Tradiționala suprastructură formată din traverse din lemn și prismă de piatră spartă, precum și sistemul cu traverse din beton monobloc, încep să fie înlocuite de inovativul sistem format din dale de beton așezate pe terasamentul căii ferate. Acest sistem este inspirat din sistemul cu dale din beton instalat în tuneluri și pe structuri unde s-a dorit o întreținere minimă. Suprastructurile fără prism de balast tind să fie viitorul în domeniul căilor ferate.

Bullet Train din Japonia a demonstrat că suprastructurile tradiționale au nevoie de întreținere zilnică și inspecții pentru a oferi condiții optime de siguranță. Institutul Tehnic de Cercetare din Japonia (RTRI) a experimentat în ultimii 30 de ani diferite configurații a suprastructurilor pe dale, montând sectoare experimentale și monitorizând comportarea acestora pentru a înțelege distribuția forțelor către terasamentul căii ferate precum și impactul efectelor zgomotului, costurile construcției și întreținerii acestui tip de suprastructuri, dar și tehnologiilor de execuție. În mod curent în Japonia se execută un număr considerabil de proiecte de cale ferată fără prism de balast, aplicabile diferitelor condiții de teren. Proiectele includ injectarea cu mortar de ciment a liniilor existente, așezarea de dale prefabricate cu o acuratețe foarte ridicată. Scopul montării și experimentelor acestui tip de suprastructuri a fost acela de a reduce costurile de întreținere, care în Japonia constituie o treime din bugetul operativ al liniei, toate suprastructurile noi de mare viteză din această țară fiind construite în sistem dale de beton.

Figura 2.18 Suprastructură Rheda Japonia, măsurători ale ecartamentului [16]

În Europa se încearcă intergarea acestui tip de suprastructură în rețelele de căi ferate, proiectele realizate recent incluzând noua generație de trenuri europene de mare viteză în Franța și Germania. Datorită faptului că 80-90 % din întreținerea suprastructurilor este destinată suprastructurilor convenționale pe prismă de piatră spartă, se folosesc modele de simulare care includ previziuni pentru un întreg ciclu de viață cu scopul de a prezice și compara comportamentul fiecărui sistem. Sistemele de prindere pot fi schimbate pentru a putea fi adaptate noilor suprastructuri pe dale. Pentru a simula elasticitatea patului de balast se folosesc reazeme elastice și plăcuțe de distribuție a încărcărilor. În unele cazuri, metodele tradiționale de prindere sunt abandonate în favoarea utilizării unui sistem de șină încastrată continuu într-un canal turnat în placa de beton de la bază. Niciuna din componentele sistemului de prindere tradițional nu sunt necesare, șina fiind prinsă cu ajutorul unui elastomer rezistent în timp. În toate aceste condiții, scopul principal este de a reduce costurile de întreținere ale patului căii ferate.

În Statele Unite, pentru trenurile de mare viteză sunt utilizate suprastructurile pe dale, fiind cunoscut că o investiție de 30 % produce o amortizare în 5-12 ani în funcție de trafic și tonajele transportate. Cel mai important aspect este faptul că costul inițial va scădea pe măsură ce industria construcțiilor se va adapta la inovațiile tehnice din domeniul proiectării și al construcției de echipamente. Căile ferate pentru transporturile de mărfuri devin din ce în ce mai greu de întreținut datorită folosirii unor mașini mai grele și a timpilor de livrare, care se traduce prin viteze curente mai mari și costuri mai mari. În raportul Senatului Statelor Unite se precizează că un buget anual de aproape 8 miliarde de dolari este necesar pentru întreținerea a 268.800 de km de cale ferată de clasa I, excluzând măsurile de dezvoltare a capacităților de transport. În Statele Unite există foarte puține tronsoane de cale ferată pe dale. Adevăratul beneficiu al suprastructurilor pe dale o reprezintă faptul că sunt capabile să suporte încărcările mari pe osii ale trenurilor de marfă și de a oferi în același timp o călătorie confortabilă călătorilor trenurilor de mare viteză. O construcție deosebită pe dale a fost executată în nordul Americii și include tronsonul Canadian Pacific la Rodgers Pass și un tronson de linie de 2 km pentru navetiști și marfă în Long Island, New York.

Diferitele tipuri de suprastructuri pe dale sunt date în exploatare în Japonia, Europa și America de Nord. În Japonia, unde aceste suprastructuri au fost folosite de 30 de ani, costurile de construcție sunt cu $30 \% \div 50 \%$ mai mari decât pentru suprastructurile pe prism de balast. Încărcările pe osie a trenurilor de mărfuri a crescut de la 13,5 tone în 1880 la 22,5 tone în 1906 și la 36 tone momentan.

Datorită creșterii costurilor de întreținere a liniilor de mărfuri, a creșterii încărcărilor pe osie și nevoia de a avea în viitor aliniamente destinate trenurilor de mare viteză, industria căilor ferate caută alternative viabile la suprastructurile tradiționale pe prismă de piatră spartă. [20]

2.2.2.5. Suprastructuri pe dale

Căile Ferate Canadiene

Utilizând sistemul englezesc PACT-TRACK, în 1984 a fost construit în Canada un tronson experimental lângă Rogers Pass, British Columbia, având 280 m lungime. Scopul acestei construcții a fost pentru a investiga și simula utilizarea sistemului PACT-TRACK în tunelul McDonald. Testul a avut rezultate bune, iar acest tip de suprastructură a fost folosită în tunel, atat sectorul experimental cât și tronsonul din tunel, comportându-se bine în exploatare. Sistemul PACT-TRACK pentru Căile Ferate Canadiene este compus dintr-o dală cu o grosime de 22,9 cm și lată de 2,43 m. Betonul a fost turnat cu un utilaj tip repartizator modificat, care se deplasează pe 2 șine tip 136RE, utilizate ulterior pentru cale. Betonul se introduce prin fața utilajului printr-un sistem cu benă,după întărirea acestuia, șina sudată este așezată pe un suport din cauciuc și prinsă cu bucșe încastrate în dală. Detaliile acestui sistem sunt prezentate în figura 2.19. [20]

Figura 2.19 Sistemul PACT TRACK [20]

Căile ferate japoneze

Suprastructurile de cale ferată pe dale sunt folosite în principal pentru trenurile de mare viteză, având nevoie de un aliniament perfect pentru a menține confortul pasagerilor și siguranța călătoriilor. Căile Ferate Japoneze au început să utilizeze suprastructurile pe dale acum 30 de ani pe liniile Shinkansen, acestea și-au menținut geometria liniei și au avut costurilor de întreținere reduse.

Caracteristicile acestui sistem:

- costul de construcție este cu 30 % mai mare decât în cazul sistemelor cu prism de piatră spartă

- nivelul zgomotului și elasticitatea căii este comparabilă cu cele pentru sisteme cu prismă de piatră spartă

- viteză de construcție rezonabilă

- suprastructura suportă deplasări laterale și verticale datorită deformațiilor terasamentelor.

Cu toate că majoritatea suprastructurilor pe dale au fost utilizate la început pentru tuneluri și poduri, ele au fost încercate de asemenea direct pe sol la mijlocul anilor 1970. O versiune care se folosește în mod curent este RCRS (reinforced concrete roadbed system), prezentată în figura 2.20.

Figura 2.20 Sistemul RCRS din Japonia [20]

Din 1990, sistemul RCRS a intrat în testare experimentală și a fost folosit pe linia Hokuriku Shinkansen de la Takasaki la Nagano, inaugurată în octombrie 1997. Suprastructura este alcătuită din plăci din beton prefabricate cu lungime de 5m și un strat din beton, suporți scurți din beton (400 mm diametru și 200 mm înălțime) din 5 în 5 metri. Dala are dimensiunile 4.930 x 2.340 x $160 \div 200$ mm și o greutate de 5 tone. Modificările recente ale dalei includ utilizarea unei dale suport striată sub dala din beton pentru reducerea vibrațiilor. Costul construirii suprastructurilor tip RCRS este mai mare comparativ cu cele pe pat de balast cu 18 % în săpături și cu 24 % în umpluturi. Se estimează că datorită cheltuielilor de întreținere reduse, investiția să se recupereze în 12 ani de exploatare iar forța de muncă necesară pentru întreținerea liniilor va fi mai mică cu 30 %. Standardele japoneze pentru acest tip de suprastructură admit tasări maxime de 30 mm. Liniile Shinkansen transportă $10\div15$ milioane de tone pe an începând cu anul 1990. Starea generală a liniilor este bună cu excepția unor mici fisuri și o ușoară încovoiere a dalei în tuneluri. Timpul de construcție pentru suprastructurile pe dale este 1,3 din timpul de construcție pentru suprastructurile de construcție se estimează a fi recuperată în $8 \div 12$ ani.

Căile ferate americane

Suprastructurile tip LIRR (Long Island Rail Road) au fost construite în estul Stației Massapequa și constă în 2 linii paralele de 2 km cu dale continue din beton armat în secțiune de rambleu cu șină fără joante și sistem de prindere direct. Tronsonul a fost dat în folosință în anul 1980.

Figura 2.21 Sistemul Long Island [20]

Dala din beton are 3,50 m lățime și 30 cm înălțime cu un procent de armare de 0,9 %, fiind așezată pe un strat din beton asfaltic de 15 cm. Tronsonul are un trafic de 12 miloane de tone / an conținând atât trenuri de persoane cât și de mărfuri. Comportarea în exploatare este foarte bună, exceptând unele buloane rupte.

Eurotunelul

Suprastructura pe dale utilizată în cazul Eurotunelului poartă numele LVT (low vibration track), încărcarea pe osie fiind de 25 tone iar tonajul anual este prevăzut la 264 miloane de tone, la o viteză maximă de 200 km/h. Structura a fost dezvoltată de Sonnevile International Corporation. Sistemul LVT

este compus din 2 traverse-bloc independente, căptușite cu cauciuc și apoi încastrate parțial în placa din beton armat. Fiecare traversă are 20 cm înălțime sub suportul șinei și 67,5 cm lungime, sprijinind pe un suport microcelular pentru a asigura elasticitatea și amortizarea vibrațiilor. Metoda de construcție constă în suspendarea temporară a șinei preasamblate cu 2 blocuri traverse deasupra dalei din beton. Partea inferioară a blocurilor este îmbrăcată cu cauciuc pentru a izola blocurile de dală și a permite deplasarea lor fără a uza prin frecare dala din beton. După poziționarea șinelor și blocurilor traversă, se toarnă beton sub și în jurul blocurilor traversă, realizându-se o încastrare parțială a acestora în dală. Sistemul permite scoaterea și înlocuirea blocurilor cu ușurință în cazul în care este necesar. Sistemul LVT a fost folosit și la liniile de tranzit în Marta, Bart, Tri-Met, MAT (Los Angels), Metrolink (St. Louis) și Dart (Dallas) din SUA și în numeroase alte țări.

Figura 2.22 Sistemul LVT folosit la Eurotunel [20]

Căile Ferate Olandeze

În Olanda, începând cu anul 1970, se folosesc suprastructurile de tip ERS (embedded rail system). Acest sistem, prezentat în figura 2.23 folosește un material compozit numit Corkelast format din mixtură poliuretanică, cu scopul de a obține o rezemare continuă pentru șinele instalate în canale în dala de beton. Sistemul ERS este folosit cu precădere la liniile cu trafic ușor în Europa, pe poduri și la trecerile la nivel cu cale ferată. Montarea se face prin suspendarea temporară a șinelor într-un canal, materialul elastic fiind turnat în jurul șinei și lăsat să se întărească. Recent, un tronson de 3 km de suprastructură pe dale tip ERS a fost dat în exploatare în sudul Olandei. Structura este compusă dintr-o dală de beton armat continuă pe un strat de fundație stabilizat cu ciment și un substrat de fundație de nisip.

Figura 2.23 Sistemul ERS [20]

În Olanda este utilizat și Sistemul Edilon, fiind folosit în principal la tuneluri și poduri dar și la calea ferată cu trafic ușor.

Calea ferată tip tablier casetat este o inovație dezvoltată pentru șina încastrată. O imagine a acestui sistem este prezentată în figura 2.24. Un sector experimental de 200 m a fost construit în anul 1999 lângă Rotterdam, linia fiind folosită zilnic în special de trenurile de marfă.

Figura 2.24 Sistemul tip tablier casetat [20]

Căile Ferate Germane

Suprastructurile de căi ferate pe dale au cunoscut o dezvoltare considerabilă în ultimii ani în Germania, în prezent fiind executați peste 340 km de cale ferată pe acest tip de suprastructură. În 1996, Compania Căilor Ferate Germane a dat în exploatare un sector experimental în Karlsruhe alcătuit din 7 tipuri de suprastructuri fără prism de balast.

Sistemul Rheda - cel mai utilizat, este compus din traverse de lungime întreagă care sunt fixate într-o dală de beton armat continuă concepută cu opritori la margini. Suprastructura este construită pe o fundație a cărei capacitate portantă nu este afectată de ciclurile de îngheț-dezgheț și unde nivelul apei subterane este la cel puțin 1,5 m sub dală.

În cadrul celor 219 km ai magistralei de mare viteză Cologne-Rhine, aproximativ 147 km de cale ferată vor fi construiți pe sistemul tip dală. Factorul de cost pentru suprastructurile pe dale în Germania este considerat 1,4 față de suprastructurile clasice realizate pe prism de balast. Se preconizează recupererarea diferenței de preț prin economiile de la viitoarele operații de întreținere și prin durata de viață mai mare precum și prin întreruperile mai puține necesare întreținerii liniilor.

2.2.2.6. Traversa cadru din beton precomprimat

Traversa în formă de cadru din beton precomprimat permite adaptarea căii cu prismă din piatră spartă la necesitățile actuale de exploatare, asigurând un suport cu o rigiditate egală în orice punct și cu o stabilitate mult sporită; putînd fi adaptată atât la sistemul de prindere elastică PANDROL FASTCLIP, cât și la cel VOSSLOH W13.

Caracteristici tehnice:

- formă: dublu H;

- dimensiuni: lungime 2,6 m, lățime 0,95 m, înălțime în axul șinei 26,5 cm pentru prindere VOSSLOH W14 și 25,3 cm pentru prindere PANDROL FASTCLIP, înălțime in mijlocul componentei longitudinale de 18 cm;

- clasa de rezistență a betonului: C45/55;

- armatură preîntinsă, pe două direcții, longitudinal: 12 corzi SPBI ø 3 mm, împletite în trei, și transversal: opt corzi SPBI ø 3 mm, împletite în trei;

- forța de pretensionare: 360 kN.

Figura 2.25 Traversa tip cadru [21]

Figura 2.26 Așezarea traverselor cadru [21]

Traversa tip cadru este compusă din elemente longitudinale și transversale căii, având avantajul de a fi poziționate mai uniform în prismul de balast față de traversele monobloc, cadrul fiind supus unor forțe de compresiune mai mici, prezentând o rezistență mult mai mare la deplasare transversală.

Figura 2.27 Dimensiunile traversei tip cadru [21]

Avantajele traversei cadru:

- geometria căii este adaptabilă fiecărui caz
- ușor de reparat și întreținut
- producția la scară industrială asigurarea calității necesare
- metode moderne de poziționare și întreținere
- cel mai scăzut nivel sonor

Dezavantajele traversei cadru:

- presiuni locale ridicate
- vibrații datorită spațierii între elementele transversale
- lucrări de întreținere relativ mari cu oprirea traficului

În urma testelor, avantajele acestui tip de traverse sunt:

- reducerea presiunii asupra balastului cu 50 %
- rezistență laterală crescută
- rigiditatea cadrului sporită
- recomandat pentru orice rază și supraînălțare
- toate metodele de punere în operă și întreținere existente pe piață pot fi folosite și pentru acest sistem: burare, stabilizare mecanică și curățarea balastului
- mediu elastic la baza cadrului

Figura 2.28 a și b Traversa cadru [21]

Traversele cadru fac parte dintr-un sistem inovativ, proiectate pentru a atinge durabilitate crescută față de sistemele existente. Sunt într-un proces continuu de optimizare, raportul cost/beneficii fiind rezonabil.

Concluzii

Suprastructura căii ferate este solicitată în condiții deosebit de complexe, însă cu toate progresele realizate în metodele de calcul și în cercetările experimentale, nu s-a obținut încă un procedeu de calcul care să cuprindă în totalitate condițiile de solicitare. Tipurile noi de traverse și de suprastructuri contribuie la sporirea vitezelor de circulație, mărind totodată capacitatea portantă a căii ferate și sporindu-i stabilitatea.

Multitudinea tipurilor de traverse enumerate mai sus arată ca ele pot fi adaptate relativ ușor și cu diverse avantaje, în funcție de zonele de cale în care sunt asamblate, precum și față de celelalte elemente componente ale suprastructurii și ale infrastructurii, calea ferată fiind un sistem unitar, ale cărui elemente trebuind să lucreze solidar, modificarea numai a unei singure componente putând produce dezechilibre în funcționarea căii în ansamblul ei.

3. CAPITOLUL 3. PARAMETRII DE CALCUL PENTRU CALEA FĂRĂ **JOANTE**

3.1. Tipul şinei

Șina de cale ferată reprezintă elementul suprastructurii căii ferate care asigură ghidarea, tractiunea si sustentatia materialului rulant, prin intermediul căreia fiind transmise sarcinile dinamice provenite de la vehicule către traverse, prin intermediul plăcilor suport.

De-a lungul anilor, au fost utilizate diverse tipuri de sine, fapt care a îngreunat lucrările de întreținere și de construcție a liniilor. Dacă după primul război mondial se utilizau pe reteaua CFR peste 70 de tipuri de sine, în prezent, sinele de tip greu utilizate au profil tip Vignole și sunt: tip 40, 45, 49, 54E, 60 si 65. Tipul sinei reprezintă masa pe metru liniar, măsurată în kg. Suprastructura recomandată pentru calea fără joante este alcătuită din sine de tip 49 sau mai mare. [22]

Secțiunea perpendiculară pe axul șinei definește profilul șinei, alcătuit din trei părți: ciuperca, inima și talpa:

Figura 3.1 Sectiune transversală prin șină [22]

În proiectarea profilului șinei de cale ferată se are în vedere sarcina pe osie, viteza de circulație, intensitatea traficului si durata de utilizare. Pentru a corespunde scopului în care a fost proiectată, sina de cale ferată trebuie să îndeplinească următoarele cerințe:

- suprafata de rulare să fie suficient de lată si să asigure contactul dintre roată si sină în conditii optime, presiunile locale pe suprafața de contact să rezulte cât mai mici

- ciuperca sinei să fie suficient de înaltă încât să poată asigura o rezervă suficient de mare de rigiditate în cazul uzurilor verticale

- inima trebuie să asigure capacitatea portantă și rigiditatea necesară sinei, plus o rezervă considerând uzura acesteia prin ruginire, în timp

- talpa sinei va fi suficient de lată încât să poată asigura o stabilitate cât mai mare la răsturnare iar presiunile pe plăcile suport și traverse să se afle în limitele admise

- grosimea tălpii va fi aleasă încât să asigure rigiditatea necesară precum si slăbirea datorată ruginirii

- modulul de rezistență față de axa x-x să fie cât mai mare (înalțimea și secțiunile transversale ale ciupercii și tălpii să fie cât mai mari în comparatie cu sectiunea inimii)

- șina trebuie să fie stabilă la răsturnare: înălțimea nu trebuie să fie mai mare comparativ cu cu lățimea tălpii

- centrul de greutate a suprafeței secțiunii transversale trebuie să se afle la aproximativ jumătate din înăltimea sinei din motive statice

- toate racordările conturului să fie realizate cu raze cât mai mari [22]

		Tabel 3.1 Momentul de ine	rție al șinei, după cele două	1 ax
Nr. crt	Şină tip	I_{x-x} [cm ⁴]	I_{y-y} [cm ⁴]	
1	40	1.144,4	184,0	
2	45	1.582,9	259,1	
3	49	1.819,0	320,0	
4	54E	2.308,0	341,29	
5	60	3.055,0	512,9	
6	65	3.548,0	559,0	

T 1 1 2 1 M ce: Zona de pe bandajul roții pe care se realizează contactul cu șina este prelucrată sub formă tronconică, cu înclinarea de 1:20 (în majoritatea țărilor) sau 1:40 (Germania, SUA). Bandajele conice ale roților au efect stabilizator în circulația materialului rulant în aliniament, asigurând revenirea în permanență a vehiculelor în axul căii, rezultatul fiind o mișcare de șerpuire, favorabilă atât din punct de vedere al confortului cât și pentru solicitările căii și ale materialului rulant. O astfel de înclinație realizează o solicitare centrică a șinei.

Figura 3.2 Conicitatea bandajului roții [23]

Figura 3.3 Mișcarea sinusoidă a vehiculului [23]

3.2. Temperatura în șină

Temperatura în șine este influențată de caracteristicile materialului (calitatea oțelului din șină) și de elementele geometrice caracteristice, respectiv factorii de mediu care depind de poziția geografică, starea vremii etc.

Relația dintre temperatura din aer și temperatura din șină este prezentată în figura 3.4:

Figura 3.4 Relația dintre temperatura din aer și temperatura din șină [24]

Se poate observa că până la temperatura de $+20^{\circ}$ C, temperatura în șină este egală cu temperatura din aer, după depășirea acestei valori, temperatura în șină crește după o curbă față de temperatura din aer, în șină atingându-se valori considerate de până la $+60^{\circ}$ C.

Este important să se cunoască temperatura în șină la momentul sudării căii fără joante pentru a preveni variații ale eforturilor de compresiune respectiv întindere în afara limitelor admise și a evita astfel apaiția fenomenului de șerpuire respectiv rupere a șinei. Fiecare administrație de cale ferată îsi stabilește, în funcție de zona geografică în care se află, intervalul de temperatură în care poate fi realizată fixarea șinelor căii fără joante, interval denumit temperatură neutră. În România, acest interval este considerat între 17 și 27 °C, conform Instrucției pentru alcătuirea, întreținerea și supravegherea căii fără joante nr. 330/1980. Se remarcă faptul că acest ecart de temperatură este peste media temperaturilor care sunt considerate că se ating în șină ($t_{med} = 15^{\circ}$ C), alegerea în acest mod a intervalului temperaturilor de fixare fiind stabilită în urma testelor și experimentelor efectuate, având avantajul că forța maximă de compresiune este micșorată, respeciv pericolul de șerpuire redus.

Considerând intervalul temperaturilor de fixare $(17^{\circ}\div 27^{\circ}C - \hat{n} \text{ România})$ și temperatură maximă care poate să existe în șină (60°C), în zona centrală a căii fără joante pot să apară eforturi considerabile:

$$P_{\max t} = \alpha \cdot E \cdot A(60^{\circ} - 17^{\circ}) = 1038.45 \cdot A$$
(3-1)

$$A=2A_s$$
 $P_{max}=2076.90A_s$ (3-2)

Cu cât șina este mai grea, cu atât eforturile de compresiune sunt mai mari. La eforturi mari, în anumite condiții, instabilitatea șinei se manifestă prin șerpuire în planul cu cea mai mică rezistență (în cazul suprastructurilor moderne) – planul orizontal.

Forța orizontal – longitudinală se modifică în următoarele situații:

- în zona aparatelor de cale sudate înglobate în calea fără joante
- pe podurile metalice nebalastate
- în zona trecerilor de nivel
- în cazul accelerării sau frânării materialului rulant

- în cazul lucrărilor de întreținere a caii fără joante

În șinele căii fără joante pe poduri metalice fără cuvă de balast iau naștere forțe orizontallongitudinale datorate mișcării de dilatație și contracție a podului metalic. În zona aparatului de cale mobil aceste forțe orizontale pot ajunge la valori de $2 \div 3$ ori mai mari față de cele corespunzătoare aceleiași linii pe terasament.

În cazul lucrărilor de întreținere temperatura de fixare se poate modifica în următoarele situații: - compactarea necorespunzătoare a prismei de piatră spartă

- compactarea neuniformă a prismei de piatră spartă în lungul căii

- riparea liniei

- nerespectarea tehnologiei de refacere a continuității căii în cazul ruperilor de șine. [25], [26], [27]

3.3. Elemente de rezemare

Suprastructura căii ferate este compusă din prismul de piatră spartă, traverse, șine. Calea este supusă unei varietăți de eforturi, complexitatea elementelor care compun cadrul șină-traversă, imperfecțiunile și neomogenitatea patului de piatră spartă fac dificilă determinarea atât pe cale experimentală cât și pe cale statistică a parametrilor necesari diferitelor metode de calcul.

Traversele au rolul de a prelua sarcinile de la șine și de a le transmite către patul căii prin intermediul prismei de piatră spartă, de a asigura menținerea în exploatare a distanței dintre cele două fire ale șinei precum și de a asigura o poziție stabilă a căii de rulare.

Rezistența căii la deplasarea transversală este dată de reacțiunea prismului de piatră spartă. În cazul unei căi bine întreținute, reacțiunea este suficient de mare ca să preia, fără deplasări, eforturile transversale la care este supusă în mod normal șina.

În stabilirea unor metode de calcul pentru determinarea solicitării în elementele suprastructurii, acestea nu trebuie considerate izolate, ci în contextul solicitării globale a căii formată din șine, traverse, prism, strat de repartiție și terasament.

Calea și materialul rulant în mișcare constituie un sistem mecanic bazat pe interdependență și reciprocitate. Forțele rezultate din acțiunea materialului rulant care solicită linia sunt numeroase, acționând în planuri și direcții diferite.

Acțiunile date de materialul rulant și acțiunile climatice sunt simultane. Acțiunile produse de materialul rulant sunt acțiuni dinamice, caracterul dinamic fiind determinat atât de materialul rulant cât și de starea căii.

Eforturile din șine și traverse depind de caracteristicile elastice ale patului căii (prismului) în care sunt înglobate traversele. Constanta elastică a patului variază în timp și depinde și de condițiile climatice.

Din cele arătate mai sus, se ajunge ușor la concluzia că suprastructura este solicitată în condiții deosebit de complexe, însă cu toate progresele realizate în metodele de calcul și în cercetările experimentale, nu s-a obținut încă un procedeu de calcul care să cuprindă în totalitate condițiile de solicitare.

Varietatea eforturilor la care este supusă calea în general și cea fără joante în special, complexitatea elementelor care alcătuiesc cadrul căii, fac ca și pentru cele mai corespunzătoare metode de calcul, care reușesc să cuprindă cât mai complet efectele solicitărilor, determinarea corectă, pe cale experimentală sau statistică a parametrilor folosiți în calcule să prezinte o deosebită importanță.

Dacă ne referim la stabilitatea căii, se cunoaște că rezistența ei la deplasare laterală provine din reacțiunea pe care o opune balastul la mișcările traverselor.

În situația unei linii bine întreținute, reacțiunea patului de balast este suficient de mare pentru a prelua, fără deplasări sensibile, eforturile transversale la care este supusă linia în mod normal. Rigiditatea căii în acest caz are o importanță mai mică. Însă, în cazul în care patul de balast este mai slab, iar solicitările transversale mai puternice, trebuie să intervină mai eficient cadrul căii prin rigiditatea lui. Slăbirea patului căii poate fi provocată de condițiile meteorologice nefavorabile sau de lucrările de întreținere. [24]

Prinderea șinei pe traversă se realizează printr-un ansamblu constructiv format din materialul mărunt de cale, putându-se clasifica după următoarele criterii:

- tip: prindere directă, semidirectă sau indirectă

- calități elastice: rigidă, elestică

- felul traversei: pe traverse din lemn, din beton sau metal

Figura 3.5 Exemplu prindere indirectă [24]

Calitatea întreținerii prinderilor este esențială în exploatare pentru a asigura siguranța circulației, confortul călătorilor și o uzură cât mai redusă a șinelor, implicit, rezultatul fiind creșterea duratei de viață a șinei.

3.4. Rigiditatea cadrului șine - traverse

Rigiditatea cadrului șine-traverse este determinată de:

- rigiditatea celor două fire de şină în planul orizontal;momentul rezistent la rotirea şinelor în prinderi;
- distanța dintre traverse.

albunga anni e traverse.

Factorii care influențează rigiditatea cadrului sunt:

- momentul de inerție I_y al șinei;
- tipul traversei;
- tipul și calitatea prinderii.

Momentul rezistent în prinderi se determină cu relația:

 $M_o = r \cdot \epsilon$

unde:

- r este o constantă experimentală care se determină conform figurii 3.6:

Figura 3.6 Momentul rezistent în prinderi M_o [24]

Figura 3.7 Momentul rezistent în prinderi M_o [24]

Valorile momentului rezistent în prinderi:

- prinderi la moment prescris: 2.106 daNm
- prinderi slăbite: $0,3 \cdot 10^6$ daNm.

Diagramele experimentale pentru traversele din lemn și traversele din beton sunt prezentate în figurile 3.8 și 3.9.

Figura 3.8 Diagramă expeimentală pentru traverse din lemn [24]

Figura 3.9 Diagramă experimentală pentru traverse din beton [24]

În tabelul nr. 3.2 sunt prezentate valorile M_o pentru diferite tipuri de prinderi bine strânse, bine întreținute:

Tabel 3.2 Valori M₀[24]

Nr. crt	Tipul prinderii	M ₀ [daNm]
1	Prindere indirectă K	18300
2	Prindere elastică SKL-1	13600
3	Prindere elastică SKL-3	5000
4	Prindere elastică PANDROL	22400
5	Prindere elastică HAMBO	10400

Momentul de inerție echivalent al cadrului șine-traverse Ie poate fi determinat experimental:

Figura 3.10 Schematizarea încercărilor experimentale [24]

$$I_e = \frac{Fl^3}{48Ef} \tag{3-3}$$

unde:

F – forța orizontal transversală [daN];

l – distanța între reazeme [cm];

E – modulul de elasticitate al oțelului [daN/cm²];

f - săgeata maximă la l/2 [cm].

În cadrul administrației germane a căilor ferate DB au fost efectuate încercări experimentale pe un tronson cu distanța între reazeme de l=6,3 m iar la MAV s-au efectuat încercări pe o linie cu distanța l=13,8 m.

În funcție de calitatea prinderii șinelor de traverse momentul de inerție echivalent al cadrului șinetraverse este de 1÷4 ori mai mare decât momentul de inerție al celor două șine: $I_e=2I_v\div 8I_v$

Observație: alegând valori diferite pentru l, se vor obține rezultate diferite.

În tabelul 3.3 sunt prezentate valori ale momentului I_e determinate experimental pentru diferite tipuri de suprastructuri.

		Şină tip	49) Şină tip 54			Şină tip 60		
Tipul prinderii	Iy [cm ⁴]	Ie [cm ⁴]	I_{e}/I_{y}	Iy [cm ⁴]	Ie [cm ⁴]	I_e/I_y	Iy [cm ⁴]	Ie [cm ⁴]	I_{e}/I_{y}
Prindere indirectă, bine strânsă, traverse din beton	320	1362	4,26	341,3	2150	6,23	512,9	2200	4,29
Prindere indirectă, slabă, traverse din beton	320	635	1,98	341,3	1002	2,94	512,9	1026	2,00
Prindere indirectă, bine strânsă, traverse din lemn	320	1340	4,19	341,3	2116	6,20	512,9	2164	4,22
Prindere indirectă, slabă, traverse din lemn	320	638	1,99	341,3	1007	2,95	512,9	1030	2,01

Tabel 3.3 Valori I.

3.5. Prisma de piatră spartă

Prisma de piatră spartă este componenta suprastructurii căii ferate care înglobează traversele, având scopul de a:

- primi și transmite presiunile de la talpa traversei la patul căii

- repartiza presiunile pe o suprafață cât mai mare, pentru a reduce presiunea unitară pe suprafața platformei căii

- asigura un strat elestic sub traverse pentru a amortiza șocurile și vibrațiile provenite de la trecerea materialului rulant

- asigura stabilitatea liniei în plan orizontal și vertical

- permite evacuarea apelor din ploi
- permite executarea cât mai facilă a lucrărilor de întreținere

Prisma este alcătuită din piatră spartă, cu granule de formă poliedrică și colțuroasă, de granulozitate cuprinsă între $20 \div 60$ mm, roca din care provine trebuie să aibă o rezistență la compresiune mai mare decât 1500 daN/cm².

Dimensiunile prismei de piatră spartă pentru calea fără joante:

- grosimea prismei este de 30 cm sub talpa traversei din beton (cu 5 cm mai mult decât în cazul traverselor din lemn datorită solicitărilor mai mari și a rigidității căii)

- lățimea normală a umărului este de 35 cm pentru calea cu joante, în cazul căii fără joante umărul va avea valoarea 45 cm și 55 cm în curbă pentru firul exterior. [22], [24]

3.5.1. Rezistența prismei la deplasarea transversală

Rezistența [q] opusă de prisma de piatră spartă la deformarea căii fără joante în sens transversal este compusă din următoarele elemente:

- frecarea dintre talpa traversei și piatra spartă qt=q1

- frecarea dintre fețele laterale ale traversei și piatra spartă $q_1=q_2$

- rezistența opusă de piatra spartă de la capătul traversei q_c=q₃

Rezistența opusă de piatra spartă la deplasarea cadrului șină-traversă este reprezentată în figura 3.11:

Figura 3.11 Rezistența opusă de piatra spartă la deplasarea cadrului șină-traversă [22]

Ponderea componentelor:

 $\begin{array}{l} q_t \approx 0{,}5q \\ q_l \approx (0{,}3\div 0{,}45)q \\ q_c \approx (0{,}05\div 0{,}2)q \end{array}$

Factorii care influențează valoarea rezistenței q:

- distanța dintre traverse
- lățimea și forma umărului prismei de piatră spartă
- compactarea pietrei sparte dintre traverse și la capetele traverselor
- calitatea, forma și dimensiunile prismei de piatră spartă
- lucrările de întreținere
- dispozitivele pentru sporirea rezistenței q
- lăsăturile oarbe
- solicitările transmise de materialul rulant

Figura 3.12 Rezistența laterală în funcție de deplasarea laterală [24]

În deplasarea traverselor, prisma de piatră spartă se comportă la început ca și un material elastic, apoi deformarea intră în zona plastică. Din acest motiv, rezistența laterală începe să crească proporțional cu deplasarea transversală a traverselor, pentru ca la un anumit moment să tindă asimptotic către o anumită valoare constantă (figura 3.12)

Pentru calculele practice se admite că rezistența q este liniară până la o deplasare laterală a traverselor de 10 mm când se atinge valoarea maximă.

3.5.2. Rezistența prismei la deplasarea longitudinală

Figura 3.13 Rezistența prismei la deplasarea în lung [24]

Rezistența totală $P=P_t+P_l+P_c$

 $\begin{array}{l} Ponderea \ componentelor: \\ P_t: 15 \div 25 \ \% \\ P_1: 67,9 \div 81,2 \ \% \\ P_c: 3,8 \div 6,4 \ \% \end{array}$

În calcule se lucrează cu o rezistență uniform repartizată $p = \frac{P}{a} [\text{daN/cm}] / \text{cale}, p = \frac{P}{2a} [\text{daN/cm}] / \text{fir}$

a - distanța dintre axele traverselor P = 700 daN (taverse din lemn) P = 840 d N (taverse din lemn)

P = 840 daN (taverse din beton)

3.5.3. Influența traverselor asupra rezistenței prismei

Influența traverselor asupra rezistenței q este determinată de următorii parametri:

- materialul din care a fost realizată traversa

- forma traversei
- dimensiunile traversei.
- greutatea traversei
- distanța dintre traverse

În tabelul 3.4 sunt prezentate valorile rezistenței q pentru traverse din beton și traverse din lemn pentru diferite distanțe dintre traverse:

				Т	abel 3.4	Valori	ale rezistenței c
Traversa a, q	Trave	erse din	beton	Trave	erse din	lemn	
Distanța dintre traverse a [cm]	60	65	77	60	65	77	
Rezistența q [daN/cm]	6,64	5,64	4,39	4,59	4,29	3,82	

Componenta rezistenței q cu pondere maximă este dată de frecarea dintre talpa traversei și piatra spartă $[q_t]$. Valoarea acestei componente variază în limite largi în funcție de influența solicitărilor date de materialul rulant, de deformațiile liniei etc. În cazul lăsăturilor oarbe (figura 3.14), sau pe porțiuni de linii ridicate din cauza solicitărilor verticale date de materialul rulant în mișcare, rezistența q_t poate să se anuleze. La fel se poate întâmpla la ridicarea cadrului șină-traversă de pe prism datorită acțiunii vehiculelor (figura 3.15).

Figura 3.14 Lăsături oarbe [24]

Figura 3.15 Deformarea longitudinală a căii sub osii [24]

Pe porțiunile unde există lăsături oarbe nu se poate conta pe frecarea dintre talpa traversei și prismă. Pe aceste porțiuni se reduce rezistența laterală a prismei.

Lungimea echivalentă:

$$L = \sqrt[4]{\frac{4EI}{Cb_0}} = \sqrt[4]{\frac{4(aE_sI_s + \alpha l_tE_tI_t)}{\alpha l_tCb}}$$
(3-4)

relația este valabilă în cazul în care se ia în calcul rigiditatea traversei.

unde:

b – lățimea traversei [cm];

$$l = \frac{L_{travers\check{a}}}{2} \quad [cm];$$

E_s, E_t - modulul de elasticitate al șinei, respectiv al traversei [daN/m²];

 I_s ,- momentul de inerție al șinei [cm⁴];

 $\alpha = 0,82 \div 0,86;$

a - distanța dintre axele traverselor;

C - coeficient de proporționalitate al balastului [daN/cm²].

În tabelul 3.5 este prezentată influența distanței dintre traverse (a) asupra rezistenței q:

Tabel 3.5 Rezis	tența q în funcție de distanța	dintre axele traverselor
Distanța dintre traverse	Variația rezistenței	
a [cm]	q [%]	
75	90	
70	94	
65	99	
63	100	
60	103	
55	107	
50	111]

Figura 3.16 Variația rezistenței q în funcție de câteva tipuri de traverse [24]

q = 6,0 daN/cm; $C = 3 \text{ daN/cm}^2$; qo = 3,0 daN/cm; q = 7,5 daN/cm; $C = 3 \text{ daN/cm}^2$; qo = 3,46 daN/cm; q = 9,5 daN/cm; $C = 4 \text{ daN/cm}^2$; qo = 4,23 daN/cm; q = 15 daN/cm; $C = 4,5 \text{ daN/cm}^2$; qo = 8,21 daN/cm;

Figura 3.17 Influența lățimii umărului prismei de piatră spartă asupra rezistenței q [24]

3.5.4. Compactarea pietrei sparte dintre traverse și la capetele traverselor

Prin utilizarea mașinilor de vibrat piatra spartă dintre traverse și de la capetele traverselor se poate obține sporirea rezistenței q cu $25 \div 30$ % (tabelul 3.6): [24]

	Tabel 3.6 Sporirea rezistenței	q
1	•	

Matada da commantana	Sporul de rezistență		
Metoda de compactare	Traverse din beton	Traverse din lemn	
Manual, într-un singur strat	8	12	
Manual, în 2 straturi	16	22	
Cu utilaje grele de vibrat	24	30	

Prin compactarea pietrei sparte dintre traverse și la capetele traverselor cresc în mod deosebit componentele q_1 și q_c (tabelul 3.7):

	Ponderea rezistențelor q _t , q _t , q _c față de q[%]; q=100 %						
Matada da compactara	Traverse din beton			Tra	verse din le	emn	
Metoda de compactare	qt	qı	qc	qt	qı	qc	
Fără compactare	58	37	5	43	49	8	
Manual, într-un singur strat	55	38	7	39	51	10	
Manual, în 2 straturi	51	41	8	35	53	12	
Cu utilaje grele de vibrat	47	43	10	31	55	14	

Tabel 3.7 Ponderea rezistențelor q_t, q_l, q_c

3.5.5. Natura și granulozitatea pietrei sparte

La calea fără joante se recomandă utilizarea pietrei sparte dublu concasate provenită din roci dure. Dimensiunile pietrei sparte și granulozitatea pot spori rezistența q cu până la 30 % (tabel 3.8): [24] Tabel 3.8 Sporirea rezistenței q

	Rezistența q [%]				
Dimensiunile pietrei sparte [mm]	Traverse din beton	Traverse din lemn			
40÷45	100	100			
25÷65 și 25÷40 în amestec 1:1	120	120			
40÷65 și 25÷40 în amestec 1:1	116	116			
25÷65	114	113			
25÷40	90	88			

3.5.6. Influența colmatării prismei de piatră spartă

Colmatarea prismei de piatră spartă duce la diminuarea rezistenței q. În cazul prismei de piatră spartă cu umiditate mare rezistența q se poate diminua, în funcție de gradul de colmatare, cu $40 \div 50$ % (tabelul 3.9): [24]

		Tabel 3.9 I	Diminuarea rezistenței q		
		Colmatare)		
	0	25	40		
Calitatea prinderii șinei de traverse	Umiditatea prismei				
	usc	ată f	oarte umedă		
	Rezistența q[%]		%]		
Prinderi foarte strânse [24 daNm]	100	71	62		
Prinderi foarte bine strânse [24 daNm] dar		68	56		
sub fiecare a 3-a traversă – lăsătură oarbă	100	08	50		

3.5.7. Influența lucrărilor de întreținere asupra rezistenței q

Lucrările de întreținere care antrenează prisma de piatră spartă: riparea liniei, ciuruirea prismei de piatră spartă, înlocuirea traverselor etc. duc la diminuarea rezistenței q cu $30 \div 50$ %. În timpul burajului traverselor rezistența q se poate diminua cu $50 \div 70$ %. Pentru ca rezistența q, diminuată prin lucrări de întreținere, să revină la valoarea inițială este necesar derularea unui trafic de minim 2,5 ÷ 5 milioane tone brute. (Figura 3.18, 3.19) [24]

Figura 3.18 Rezistența q, diminuată prin lucrări de întreținere [24]

Figura 3.19 Rezistența q, diminuată prin lucrări de întreținere [24]

3.6. Forța de compresiune în șină

Ținând seama de intervalul temperaturilor de fixare definitive [17, 27] °C în România, în calea fără joante pot apărea eforturi considerabile având în vedere temperaturile maxime admise în șine de +60°C. Astfel, în timpul verii, se pune problema stabilității respectiv instabilității șinei, efortul maxim din temperatura fiind determinat cu relația: [24]

$$P_{max,t} = \alpha \cdot E \cdot A \cdot \Delta t \tag{3-5}$$

unde:

 α - coeficient de dilatare termică a oțelului din șină

E - modulul de elasticitate al oțelului din șină

 Δt - diferența dintre temperatura maximă și temperatura de montaj în șină

S-a determinat în funcție de tipul șinei, valoarea forței de compresiune în cale P $_{max t}$:

Efortul maxim din temperatură	Tabel 3.10 P _{max t} H		
	P max t cale [daN]	A [cm ²]	Tip şină
	105828,4	50,955	40
	130782,4	62,97	49
	142371,5	68,55	54
	157532,9	75,85	60
	171551,9	82,6	65

3.7. Imperfectiunile geometrice (defectele de așezare) ale liniei în plan orizontal

O linie în exploatare nu este niciodată perfectă. Vom găsi întotdeauna mici excentricități, mici defecte de așezare a liniei, defecte agravate în timp de acțiunea materialului rulant în mișcare.

Efectuarea calculelor de stabilitate impun diagnosticarea căii, identificarea defectelor de așezare în plan orizontal, stabilirea configurației geometrice și determinarea parametrilor variabili ale acestora. Aceste defecte de așezare a liniei sunt clasificate în literatura de specialitate în funcție de geometria lor și în funcție de frecvența apariției lor în linie.

Acțiunile dinamice date de materialul rulant cât și variațiile de temperatură în șină duce la deformarea liniei de cale ferată în plan orizontal.

În baza observațiilor practice, imperfecțiunile geometrice sunt clasificate după forma lor în 5 grupe notate cu A; B; C; D; E. Acestea sunt prezentate pe larg în continuare împreună cu funcțiile care le descriu.

IMPERFECȚIUNE TIP A

Figura 3.20 Imperfecțiune de tip A

$$y = f\left(1 - 3\frac{x^2}{a^2} + 3\frac{x^4}{a^4} - \frac{x^6}{a^6}\right)$$
(3-6)

IMPERFECȚIUNE TIP B

Figura 3.21 Imperfecțiune de tip B

$$y_{AB,CD} = f\left(1 - 3\frac{x^2}{b^2} + 3\frac{x^4}{b^4} - \frac{x^6}{b^6}\right)$$
(3-7)
$$y_{BC} = f\left(1 - 3\frac{x^2}{b^2} - 8\frac{x^3}{b^3} + 15\frac{x^4}{b^4} - 6\frac{x^5}{b^5}\right)$$

IMPERFECȚIUNE TIP C

Figura 3.22 Imperfecțiune de tip C

$$y_{BD,CD} = f\left(1 - 3\frac{x^2}{b^2} - 8\frac{x^3}{b^3} + 15\frac{x^4}{b^4} - 6\frac{x^5}{b^5}\right)$$
(3-8)
$$y_{AC} = f\left(1 - 6, 6\frac{x^2}{c^2} + 8, 4\frac{x^3}{c^3} - 3\frac{x^4}{c^4}\right)$$

IMPERFECȚIUNE TIP D

Figura 3.23 Imperfecțiune de tip D

$$y_{BA,EF} = 0.2f \left(1 - 6.6 \frac{x^2}{c^2} + 8.4 \frac{x^3}{c^3} - 3 \frac{x^4}{c^4} \right)$$

$$y_{CB,DE} = f \left(1 - 6.6 \frac{x^2}{d^2} + 8.4 \frac{x^3}{d^3} - 3 \frac{x^4}{d^4} \right)$$

$$y_{CD} = f \left(1 - 6.6 \frac{x^2}{d^2} + 6.4 \frac{x^3}{d^3} - 3 \frac{x^4}{d^4} \right)$$
(3-9)

IMPERFECȚIUNE TIP E

Figura 3.24 Imperfecțiune de tip E

$$y = -\frac{4f}{l^2}x^2 + \frac{4f}{l}x$$
$$y_{AB} = f\sin\left(\frac{\pi x}{l}\right)$$
(3-10)

4. CAPITOLUL 4. METODE GENERALE DE CALCUL LA STABILITATE

4.1. Generalități

Studiul stabilității căii fără joante a început cu modele dezvoltate în anii 1930, modele care s-au dezvoltat pe parcurs, luând în considerare unul sau mai mulți parametri care caracterizează stabilitatea liniilor cu cale fără joante. Aceste modele pun problema prognozării, ținerii sub control și evitării situațiilor care pun în pericol stabilitatea, care pot duce la ruperi de șine sau alte fenomene de pierdere a stabilității căii fără joante. Pentru a putea lua în calcul modificările care apar în diagramele de eforturi axiale din șine, pe toată durata de exploatare a șinei, inclusiv pe perioada lucrărilor de reparație, este necesar să se cunoască natura, caracterul și mărimea acestora.

Cei mai importanți parametri care intervin în calculul stabilității căii fără joante sunt:

- rigiditatea cadrului șină traversă în plan vertical și orizontal

- rezistența longitudinală a căii
- rezistența laterală a căii
- rezistența la rotire a șinei în prindere
- solicitările dinamice longitudinale, verticale și laterale transmise de materialul rulant
- solicitările datorate variațiilor de temperatură
- caracteristicile geometrice ale vehiculelor
- geometria căii și defectele de direcție și de nivel ale căii

După European Research Institute, fenomenul de pierdere a stabilității cadrului șine traverse este caracterizat prin curbele caracteristice de răspuns aferente [28]:

- se consideră zonă centrală a unei porțiuni suficient de lungi de linie cu cale fără joante situată în aliniament și care prezintă un defect inițial de direcție caracterizat prin săgeata f_0 și lungimea $2L_0$ - creșterea temperaturii conduce la amplificarea săgeții f

- din încărcările in situu s-a constatat că pentru o creștere critică a temperaturii măsurată în raport cu temperatura neutră, notată cu T_{bmax} și care corespunde palierului BC din figura 4.4, calea poate în anumite condiții să prezinte o pierdere de stabilitate bruscă și să ajungă într-o nouă poziție cu o deplasare laterală importantă C căreia îi corespunde lungimea 2L (figura 4.1), creșterea în continuare a temperaturii în șine sporind progresiv mărimea săgeții în zona deformată.

Figura 4.1 Sporirea progresivă a săgeții în zona deformată [29]

Reprezentarea grafică a relației dintre creșterea de temperatură și săgeata maximă (figura 4.2) poartă denumirea de curbă de răspuns la șerpuire și indică faptul că pentru valori reduse ale deplasării laterale y_0+y_B și ale lungimii zonei de deformații laterale $2L_0$ înaintea pierderii stabilității, se ajunge la o amplitudine considerabilă a deplasării laterale y_0+y_C și o lungime de undă mare $2L_0$ pentru care deplasarea y_B este denumită deplasare de echilibru înainte de pierderea stabilității, iar y_C deplasare în situații de echilibru după pierderea stabilității, în punctul B calea fiind instabilă, în punctul C atingând o configurație de echilibru stabil.

Figura 4.2 Curba de răspuns la șerpuire [30]

Figura 4.3 reprezintă configurații posibile ale cadrului șine traverse care trece din poziția de echilibru instabil în echilibru stabil după producerea șerpuirii:

0 Deplasare laterală

b) Räspuns progresiv

Figura 4.4 a și b Curbe de răspuns la șerpuire [30]

Configurațiile de echilibru corespunzătoare punctelor de pe curba BS (figura 4.4) sunt configurații de echilibru instabil, în timp ce configurațiile ce corespund punctelor din lungul curbei SC (figura 4.4 a) sunt configurații de echilibru stabil. Deplasarea laterală corespunde variației de temperatură.

Temperatura corespunzătoare punctului de minim S este numită variație de temperatură critică inferioară de pierdere a stabilității ΔT_{min} fiind cea mai redusă creștere de temperatură la care se poate produce șerpuirea cadrului șine traverse. De la situația de echilibru stabil corespunzătoare punctului A se poate ajunge în situația de echilibru instabil corespunzătoare punctului S prin introducerea energiei din exterior. Temperatura corespunzătoare punctului de maxim B – de echilibru instabil este numită variație de temperatură critică superioară de pierdere a stabilității ΔT_{max} , șerpuirea cadrului șine traverse producându-se brusc, fără a fi necesar aport de energie din exterior. De la situația de echilibru stabil aferentă oricărui punct situat între A și B, se poate ajunge la echilibru instabil prin introducerea de energie din exterior. Şerpuirea se mai poate produce progresiv (figura 4.4 b), în cazul în care din combinarea unei neregularități inițiale importante și o rezistență laterală scăzută, cadrul șine traverse se deplasează lateral la creșterea temperaturii, în acest tip de pierdere a stabilității cele două temperaturi critice se suprapun.

Efortul axial din șină se reduce în zona șerpuirii în raport cu valoarea lui de dinaintea pierderii stabilității, ca urmare a deplasării laterale importante care contribuie la modificarea lungimii șinei, șina eliberându-se de o parte din efortul axial de compresiune și manifestându-se deplasări longitudinale pe zonele adiacente zonei cu deplasări laterale.

În funcție de starea prismei căii și de geometria căii (curbă sau aliniament), se obțin curbe caracteristice diferite pentru deplasările laterale în funcție de variația la temperatură (figura 4.5), curbe ce pot fi utilizate în combinație cu criterii de siguranță, la stabilirea limitelor de siguranță de șerpuire ale liniei cu cale fără joante.

Figura 4.5 a și b Deplasarea laterală în funcție de temperatură: a - pentru prismă de bună calitate, b - pentru prismă de calitate proastă sau linie în curbă cu rază mică [31]

Modelele de pierdere a stabilității pot fi clasificate astfel:

- din punct de vedere a prezenței sau absenței vehiculelor:

- teoriile statice: au în vedere doar efectul variației temperaturii

- teoriile statice: au în vedere atât variația temperaturii cât și prezența vehiculelor

Din punct de vedere al geometriei modelului:

- modele bidimensionale 2D
- modele tridimensionale 3D

Din punct de vedere al modului cum este modelat cadrul șine traverse:

- modele care consideră cadrul șine traverse ca fiind o grindă pe reazeme elastice cu comportament liniar sau neliniar, grinda putând fi rezemată continuu sau discret

- modele ce consideră cadrul șine traverse ca fiind un cadru plan (bidimensional)

- modele ce consideră cadrul șine traverse ca un cadru spațial (tridimensional)

Din punct de vedere al modului de folosire a curbelor de răspuns la șerpuire:

- modele ce folosesc doar variația de temperatură critică superioară de pierdere a stabilității

- modele ce folosesc doar variația de temperatură critică inferioară de pierdere a stabilității

- modele ce folosesc atât variația de temperatură critică superioară de pierdere a stabilității cât și variația de temperatură critică inferioară de pierdere a stabilității

Din punct de vedere al calculului de stabilitate, bazate pe următoarele metode:

- metoda energetică
- principiul lucrului mecanic virtual
- metoda elementelor finite
- metoda diferențelor finite
- metoda elementelor discrete
- combinații ale modelelor mai sus menționate

Din punct de vedere al modului cum sunt considerați parametri ce caracterizează fenomenul de pierdere a stabilității [29]:

- modele deterministe

- modele probabiliste (stohastice)

Din punct de vedere al geometriei în plan a liniei cu cale fără joante:

- modele pentru linie situată în aliniament
- modele pentru linie situată în curbă

- modele generale, pentru linie situată în aliniament și în curbă

Parametrii principali ce caracterizează pierderea stabilității cadrului șine traverse sunt transpuși în aceste modele în diverse moduri:

- rezistențele laterală și longitudinală au o variație în funcție de deplasări, putând fi constantă (corespunzătoare unui model perfect plastic), liniară (corespunzătoare unui model perfect elastic), bi liniară (corespunzătoare unui model perfect elasto plastic), tri liniară (corespunzătoare unui model perfect), tri elasto plastic cu atenuare, având o valoare de vârf și o valoare limită (reziduală), exponențială sau o

- rigiditatea căii este o constantă sau are variație în funcție de deplasări, putând fi liniară, exponențială sau oarecare;

- rezistența la rotire a șinei în prindere are o variație în funcție de unghiul de rotire a șinei în prindere, putând fi liniară, exponențială sau oarecare;

- valorile rezistențelor laterală, longitudinală și la rotirea șinei în prindere pot fi diferite pentru linia încărcată de convoi față de cele pentru linia neîncărcată.

În anii 1930 [32] a început dezvoltarea primelor modele analitice privind calculul temperaturii din șine la care calea își poate pierde stabilitatea. Pe parcursul dezvoltării cercetărilor experimentale referitoare la stabilitatea căii fără joante, s-au putut realiza modele care se apropiau din ce în ce mai mult de fenomenele reale care apar în cazul pierderii stabilității căii. Din cauza numărului mare de parametri care intervin în calculul stabilității căii și a complexității rezolvării pe cale matematică a ecuațiilor diferențiale ce caracterizează fenomenul, până în anii 80 s-au folosit modele simplificate – din punct de vedere al numărului și legilor parametrilor caracteristici, sau din punct de vedere al modului de modelare al structurii.

Cei mai mulți cercetători au echivalat cadrul șine traverse cu o grindă rezemată continuu sau discret pe o fundație elastică, iar parametrii de bază au luat în considerare caracteristicile fizico mecanice ale șinelor și traverselor (aria secțiunii transversale, momente principale de inerție, modulul lui Young, coeficientul lui Poisson, coeficientul de dilatare termică liniară), geometria căii (aliniament sau curbă, linie cu sau fără defecte de direcție sau nivel), variația temperaturii, rezistența laterală, rezistența la rotire a șinei în prindere sau rigiditatea cadrului șine traverse. Majoritatea acestor modele consideră ca încărcări doar variațiile de temperatură dar nu și solicitările verticale, longitudinale și laterale generate de convoi [32]. Anii 80 aduc cu ei în paralel cu dezvoltările tehnologiei de calcul și a metodei elementului finit, depășirea în mare măsură a problemelor numerice aferente analizei șerpuirii căii. În plus, în această perioadă s-au demarat de către administrațiile de cale ferată programe de cercetare experimentală a șerpuirii căii și a parametrilor ce intervin în acest fenomen, dezvoltându-se noi modele capabile să reflecte mai fidel fenomenul real. [29]

4.2. Metode generale de calcul la stabilitate dezvoltate în străinătate

4.2.1 Modele dezvoltate în Statele Unite ale Americii

Cele mai importante modele dezvoltate în SUA, printre multitudinea modelelor existente, sunt: modelul ILLIBUCKLE

modelul CWR-BUCKLE (Kish-Samavedam)

Modelul ILLIBUCKLE

În [32] se face o scurtă prezentare a literaturii de specialitate referitoare la analizele teoretice și experimentale privind stabilitatea CFJ, cu concluzia: modelele existente până în acel moment nu oferă o înțelegere completă asupra comportamentului CFJ, aceasta datorându-se în special faptului că aceste modele acordă o foarte mică importanță structurii spațiale reale, precum și faptului că următoarele caracteristici nu sunt suficient de bine modelate:

- rezistențele în direcție longitudinală, laterală și verticală
- rezistență care se opune rotirii șinei în prinderi
- forțele de interacțiune dintre vehicul și cale
- geometria căii, inclusiv imperfecțiunile geometrice inițiale
- amplasamentul liniei (pe terasament, pod, aparate de cale etc.)
- rigiditatea cadrului șine traverse și modificarea acesteia pe parcursul exploatării
- variația temperaturii de fixare
- distribuția temperaturii de fixare între firele de șină și în lungul șinelor
- condițiile de margine etc.

Acest model este unul tridimensional și a fost dezvoltat la Universitatea Illinois, modelul fiind dezvoltat cu ajutorul programului de calcul pentru elemente finite ABAQUS.

Aceeași lucrare [32] prezintă principiile de analiză a stabilității structurilor utilizând programul ABAQUS, modul de alegere al elementelor finite, un studiu al convergenței, un model de analiză a stabilității cadrului și mai multe analize parametrice. De asemenea, au mai fost realizate și o serie de analize cu ajutorul programului FORTRAN pentru o interfață care să îmbunătățească modalitatea de introducere a datelor inițiale. Modelul dezvoltat, denumit ILLIBUCKLE, este un model determinist.

Acest model tridimensional poate fi utilizat atât pentru calea în aliniament, cât și pentru calea în curbă.

Calea ferată în alcătuirea clasică, cu joante, are din start un punct nevralgic: suprafața de rulare se deteriorează în zona joantelor, majoritatea defectelor căii apărând în aceste zone sensibile. Utilizarea căii fără joante reduce costurile de întreținere și crește durata de exploatare a componentelor căii semnificativ. Eforturile datorate temperaturile extreme pot însă să producă șerpuirea CFJ la temperaturi ridicate și ruperi de șine pe timpul iernii, la temperaturi scăzute. În anul 1995 Asociația Căilor Ferate Americane (Association of American Railroads) a estimat costurile deraierilor provocate de pierderea stabilității CFJ la aproximativ 25 milioane dolari anual.

Această cercetare se concentrează pe dezvoltarea unui model tridimensional a CFJ, model utilizat pentru analiza stabilității și a deplasării laterale în cazul căii aflate în aliniament sau curbă supusă încărcărilor din variațiile de temperatură și/sau încărcărilor mecanice, utilizând metoda elementului finit. Lungimea maximă a CFJ în cazul acestei modelări este de 5000 sau 6000 m, depinzând de de capacitatea calculatorului pe care se lucrează.

Pentru validarea modelului au fost aplicate date și rezultate din teste pe CFJ reală, existente deja. Modelul a evidențiat faptul că pierderea stabilității CFJ prin șerpuire este o problemă tridimensională, iar modelele bidimensionale luate în considerare până atunci, rezultate în urma măsurătorilor pe teren și experimentale au fost considerate că au supraestimat comportarea CFJ și stabilitatea sa. Temperaturile la care CFJ își pierde stabilitatea și care au fost măsurate atât în laborator cât și pe teren, au bază reală doar în cazul în care corespund unor condiții de capăt specifice CFJ, chiar dacă calea are câteva sute de metri în lungime. Influența numeroșilor parametri care influențează calea pot fi investigați cu ajutorul modelului ILLIBUCKLE, incluzând lungimea căii, imperfecțiunile geometrice, diferențele de temperatură între 2 cupoane de șină, rezistența balastului laterală, longitudinală și verticală, prinderile, rezistența joantelor, reducerea rezistenței balastului în cazul câtorva prinderi datorită burajului sau ridicării pe verticală a șinei sub încărcări date de vehicule, lipsa unor elemente de prindere la joante în cazul uneia sau/și două cupoane de șină.

Metode inovative de calcul pentru creșterea stabilității căii înglobată în prism sunt recomandate în urma rezultatelor teoretice ale acestei metode.

Analiza stabilității este dezvoltată pe șine aflate la temperaturi extreme și supuse la încărcări mecanice, utilizând curbe de deplasare laterală din temperatură. În cazul căii aflate în aliniament, sensibilitatea este dată nu doar de rezistența laterală a prismului de balast dar și de imperfecțiunile geometrice ale căii precum și de rezistența în prinderi și încărcări laterale din vehicule. Nu doar valorile extreme obținute dar și curba inițială și rezistența limită a prismului la deplasare laterală sunt importante pentru evaluarea stabilității. Făcând referire la rotirile din prinderi, stabilitatea căii nu este semnificativ afectată de neliniaritate, însă este afectată de panta inițială. Sunt studiate prin acest model efectele combinării încărcărilor de tip termic și mecanic în cazul unei linii aflate în aliniament. Reducerea rezistenței prismului de balast datorită ridicării pe verticală a unei porțiuni din șină sub încărcări date de vehicule precum și magnitudinea acestor încărcări scad în mod semnificativ stabilitatea căii fără joante. O încărcare laterală dată de un vehicul de 1400 kg poate produce șerpuirea în cazul scăderii temperaturii în șină de până la 65°C în condiții nefavorabile.

Pentru studiu au fost alese elemente de tip grindă care să modeleze șinele respectiv traversele. Pentru șină s-a optat pentru un element de grindă spațială cu pereți subțiri și secțiune deschisă, de o lungime egală cu distanța dintre axele traverselor. Șina reală a fost echivalată cu o secțiune I (de aceeași arie a secțiunii transversale și aceleași momente principale de inerție ca și șina reală).

Traversa a fost modelată prin 5 elemente de tip grindă cu secțiune dreptunghiulară (figura 4.6) care este poziționată perpendicular pe axa căii, având dilatarea termică a materialului traversei ignorată (din cauza lungimii sale reduse). Conlucrarea dintre prisma căii și traversă este luată în considerare prin introducerea resoartelor indicate în figura 4.6, caracterizate prin rigiditățile K_1 , K_2 , K_3 .

Prinderea șinei de traversă este modelată printr-un element tip bară (figura 4.7) având Nod 1 de legătură cu șina și Nod 2 de legătură cu traversa. La unul dintre noduri rigiditățile aferente sunt K_{f1} , K_{f2} , K_{f3} pentru deplasări relative (dintre șine și traverse) și K_{f4} , K_{f5} , K_{f6} pentru rotiri relative (dintre șină și

traversă).

Figura 4.7 Elementele necesare modelării prinderii șinei pe traversă [32]

Toate elementele de tip resort de conlucrare dintre traversă și prism au caracteristici neliniare.

Joantele sau alte condiții de margine ale cadrului șine traverse sunt modelate prin elemente de tip resort cu rigiditate K, prin care sunt caracterizate legăturile elastice ale extremităților cadrului șine traverse analizat.

Pentru analiza pierderii stabilității cu modelul ILLIBUCKLE se apelează la două procedee ale ABAQUS: procedeul BUCKLE, care permite obținerea valorii proprii pentru încărcarea de pierdere a stabilității unei structuri rigide sau procedeul STATIC, RIKS, utilizat la realizarea analizei încărcare –

deplasare neliniară pentru structuri la care încărcarea are o variație continuă și amplitudinea încărcării este considerată a fi parte a soluției pierderii stabilității sau ruperi ce au loc în timpul procesului de analiză.

Figura 4.8 Curbele caracteristice pentru rezistențele conlucrării între traversă și prismă [32]

Figura 4.9 Elemente ale modelului [32]

În procedeul BUCKLE se pornește de la faptul că structurile rigide răspund cu o deformație foarte mică înainte de pierderea stabilității și într-un context de element finit, problema pierderii stabilității clasice putând fi rezolvată în modul următor: se consideră structura având o matrice a rigidității elastice K_{fl}^{NM}, un model de încărcare definit prin vectorul Q^M și un efort inițial și matricea de încărcare K_{fl}^{NM}, iar multiplicatorii încărcării (valorile proprii) I_i și formele modurilor de pierdere a stabilității (vectorii proprii) F_i^M satisfac relația:

$$\left[K_b^{NM} + I_i K_Q^{NM}\right] F_i^M = 0 \tag{4-1}$$

Încărcările critice de pierdere a stabilității sunt obținute prin $I_i Q^M$. Este importantă cea mai mică valoare proprie I_i (i=1) și forma ei asociată. Pentru structuri având multe moduri de pierdere a stabilității asociate cu valori proprii situate la intervale apropiate, se poate realiza o pre-încărcare P^M la o valoare dată a încărcării mai mică decât încărcarea de pierdere a stabilității anticipată. Extragerea valorii proprii poate fi echivalată cu o încărcare de perturbație Q^M . următoarea ecuație arată modul în care ABAQUS rezolvă această problemă:

$$\left[K_{b}^{NM} + K_{P}^{NM} + I_{i}K_{Q}^{NM}\right]F_{i}^{M} = 0$$
(4-2)

Dacă $P_M = mQ^M$, unde m este o mărime scalară constantă, atunci $K_P^{NM} = mK_Q^{NM}$ și încărcările de pierdere a stabilității sunt obținute prin relația:

$$(m+1)Q_M = P^M + I_i Q_M \tag{4-3}$$

Din această cauză, în procedeul BUCKLE, dacă temperatura neutră este T_s, temperatura de preîncălzire a șinei este T_{pre} și temperatura de încălzire continuă după T_{pre} este T_{con}, atunci creșterea de temperatură de șerpuire a șinei peste cea neutră, ΔT_i , este dată de următoarea ecuație pentru o valoare proprie I_i:

$$\Delta T_i = (T_{pre} - T_s) + I_i T_{com}$$
(4-4)

unde i este numărul modului de șerpuire a căii.

În procedeul STATIC, RIKS celelalte efecte neliniare importante, cum ar fi lipsa de rigiditate sau contactul materialelor, pot fi, de asemenea, incluse în analiză. Principiul acestei metode este să utilizeze mărimea încărcării ca și o necunoscută suplimentară și astfel să controleze incrementele adoptate în lungul curbei de răspuns încărcare-deplasare. Metoda furnizează soluții indiferent dacă răspunsul este stabil sau instabil. Factorul de proporționalitate a încărcării, m, este dat prin ABAQUS la fiecare increment în timpul unui pas RIKS. Mărimea încărcării curente este definită ca:

$$P_{total} = P_0 + m \left(P_{ref} - P_0 \right) \tag{4-5}$$

unde P_{total} este mărimea încărcării curente, P_0 este mărimea componentei încărcării la începutul pasului și P_{ref} este mărimea componentei așa cum se definește în datele de intrare pentru pas.

Curba caracteristică de răspuns încărcare – deplasare pentru acest tip de structură este prezentată în figura de mai jos (figura 4.10). Încărcarea sau temperatura de șerpuire pot fi estimate din curbă în punctul unde are loc o schimbare bruscă a funcției de deplasare. Valoarea încărcării sau temperaturii de șerpuire obținută prin acest procedeu ar trebui să fie aceeași ca și aceea obținută prin procedeul BUCKLE, cu toleranța acceptată pentru rigiditatea liniară a structurilor.

Figura 4.10 Curba caracteristică de răspuns încărcare - deplasare [244]

Modelul ILLIBUCKLE este un model perfecționat de analiză statică și cvasi statică a pierderii stabilității cadrului șine traverse, singurele dezavantaje fiind faptul că nu consideră efectul încărcărilor verticale asupra rezistenței la rotirea șinei în prinderi, consideră calea fără joante pe zona centrală sau dacă o consideră pe zona de respirație determină efortul axial critic, respectiv variația de temperatură de pierdere a stabilității cadrului, numai pentru creșteri continue ale temperaturii, nu pentru cicluri complete de variație ale acesteia care să poată surprinde și vârfurile de eforturi axiale ce apar pe zonele de respirație, acest neajuns putând conduce la valori supraestimate ale efortului axial de pierdere a stabilității, precum și faptul că nu consideră parametri ce intervin în fenomenul de șerpuire ca parametri stohastici. Chiar și cu aceste dezavantaje, acest model este cel mai performant dintre modelele de analiză a pierderii stabilității cadrului șine traverse ce au fost găsite în literatura de specialitate.

Modelul CWR-BUCKLE [28], [33]

Modelul CWR-BUCKLE a fost dezvoltat de către Kish și Samavedam pentru Administrația Feroviară a Statelor Unite ale Americii. Modelul se bazează pe o rezolvare a ecuațiilor diferențiale ce caracterizează stabilitatea CFJ prin utilizarea seriilor trigonometrice și a dezvoltărilor în serie Fourier. În acest model pot fi considerate atât situațiile de pierdere a stabilității cadrului șine traverse pentru linia neîncărcată cu convoi, cât și pentru cazul liniei încărcate cu convoi.

Cadrul șine traverse este redus la o grindă, efectele de cadru fiind considerate în calcul prin utilizarea unor momente de inerție echivalente și a unor rigidități echivalente ale resorturilor ce modelează rezistența longitudinală, laterală și la rotirea în prinderi. [34]

Pentru cadrul șine traverse rigiditatea torsională a prinderii S_f și momentul de inerție al traversei I_{ys} pot fi combinate într-un moment de inerție înlocuitor I_{ys}^* :

$$I_{ys}^{*} = \frac{1}{\frac{1}{I_{ys}} + \frac{6E_{s}}{S_{f}h}}$$
(4-6)

relație în care:

E_s – modulul lui Young al materialului din care este confecționată traversa

h – distanța dintre traverse

Similar, rigiditatea la încovoiere a traversei $E_s I_s$ și rigiditatea torsională aferentă prinderilor S_f pot fi unite printr-o rigiditate torsională înlocuitoare:

$$\mathbf{S}_{f}^{*} = \frac{1}{\frac{1}{S_{f}} + \frac{h}{6E_{s}I_{s}}}$$
(4-7)

Unde S_f^* reprezintă rigiditatea torsională substituită a unei prinderi. Rigiditatea longitudinală K_f a prinderii poate fi încorporată într-o rigiditate a resortului de torsiune înlocuitor:

$$S_{f}^{**} = \frac{1}{\frac{1}{S_{f}} + \frac{h}{6E I} + \frac{4}{K_{f}h^{2}}}$$
(4-8)

Modelul obținut este asemănător modelului CWERRI-LONGSTAB, acesta din urmă având implementat și un criteriu de cedare a materialului din prisma căii ce ține seama de influența reciprocă a forțelor de legătură dintre traverse și prisma căii.

Rezultatul analizei cu modelul CWR BUCKLE este prezentat în figura 4.11, determinându-se curba de răspuns la șerpuire.

Figura 4.11 Rezultate ale modelului CWR-BUCKLE [28], [33]

Un model determinist, având implementat criterii de siguranță și împreună cu un modul software numit CWR INDY și două module pentru o interfață grafică prietenoasă cu utilizatorul și calcule probabilistice numite CWR RISK, formează pachetul de analiza CWR SEIF permițând analiza probabilității de pierdere a stabilității CFJ care are parametrii geometrici și de stare cunoscuți, la o creștere de temperatură cunoscută [35].

4.2.2 Modele dezvoltate în Olanda

Din multitudinea modelelor dezvoltate în Olanda, sunt analizate doar 3 modele – unul analitic și două bazate pe metoda elementelor finite:

- modelul Bijl [36], [37], [38], [39]

```
- modelul Hengstum Esveld [40], [41], [42], [43]
```

- modelul CWERRI LONGSTAB [44], [34], [42], [43]

Modelul Bijl

Modelul studiază pierderea stabilității cadrului șine traverse atât în ipoteza șerpuirii în plan vertical cât și în plan orizontal, considerând șina ca o grindă având legături elastice verticale și legături elasto plastice laterale.

Teoria acestui model are următoarele ipoteze:

- efortul axial de compresiune, aria secțiunii transversale și momentele de inerție ale șinelor sunt constante se consideră numai încărcările din variații de temperatură

- reacțiunile verticale sunt proporționale cu deplasările verticale

- reacțiunile laterale sunt proporționale cu deplasările laterale până la o anumită valoare, după care se mențin constante indiferent de valoarea deplasării laterale

- rezistențele longitudinală și la rotirea șinei în prinderi sunt neglijate.

În aceste ipoteze se stabilesc ecuațiile diferențiale ale deformatei cadrului șine traverse.

Pentru situațiile de pierdere a stabilității cadrului șine traverse în plan vertical (cale fără defect de direcție, cale cu sau fără defecte de nivel, cu sau fără probabilitatea de a se ridica), se determină efortul axial critic de pierdere a stabilității prin metoda energetică. În situația cu defecte de nivel, acestea sunt considerate periodice, de formă sinusoidă sau cosinusoidă, ca și în figura 4.12.

Figura 4.12 Deformarea laterală a căii [37], [39]

Efortul axial critic de pierdere a stabilității căii în plan vertical, pentru un defect de nivel având ecuația:

$$z = \frac{1}{2} z_1 \left(1 + \cos \frac{2\pi x}{L} \right) \tag{4-9}$$

corespunde relației:

$$P = \frac{4\pi^2 E I_v}{L^2} + \frac{L^2 q_v}{2\pi^2 z_1 \left(1 + 2\frac{q_v}{k_v z_1}\right)}$$
(4-10)

În care:

x - coordonata în sens longitudinal căii

z – coordonata în sens vertical căii

EIv - rigiditatea la încovoiere în plan vertical a șinei

L – lungimea semiundei defectului de nivel

q_v – greutatea proprie a cadrului șine traverse

 z_1 – amplitudinea defectului de nivel

 k_v – modulul de elasticitate al fundației de sub talpa șinei.

Pentru situația pierderii stabilității în plan lateral, (cale fără defecte de nivel, cale cu sau fără defecte de direcție, în aliniament sau curbă) se determină efortul axial critic de pierdere a stabilității prin metoda energetică. În situația cu defecte de direcție acestea sunt considerate periodice, de formă cosinusoidală.

În urma reprezentării grafice ale rezultatelor, se ajunge la observația că ipoteza rezistenței laterale biliniare aproximează destul de bine realitatea, punând în evidență zonele de echilibru stabil, respectiv zonele de echilibru instabil ale curbei efort axial – deformație laterală, reprezentate în figura 4.13. [37], [39]

Acest model are dezavantajele modelelor care nu țin seama de efectul convoiului asupra parametrilor ce intervin în pierderea stabilității cadrului șine traverse, a celor care echivalează cadrul printr-o grindă precum și dezavantajele modelelor care nu țin cont de rezistențele longitudinal și la rotirea șinei în prindere. De asemenea, modelul nu reflectă realitatea atunci când consideră defectele de nivel sau de direcție ca fiind periodice, această ipoteză nefiind confirmată de măsurătorile in situu ale geometriei liniei.

Modelul are avantajul că dă o explicație destul de apropiată de realitate asupra zonelor de echilibru stabil și a celor de echilibru instabil evidențiate prin curba efort axial – deplasare laterală și oferă o valoare a efortului axial critic de pierdere a stabilității căii apropiată de valorile experimentale.

Modelul Hengstum Esveld [40], [41], [42], [43]

Modelul este dezvoltat considerând cadrul șine traverse ca o grindă pe mediu elastic cu rigiditate la încovoiere constantă EI. Fiecare prindere opune rezistență la rotirea șinei, rezistențele prismei căii fiind modelate prin resorturi în direcție laterală și longitudinală. Figura 4.14 arată modelul: unul plan, deplasările fiind permise doar în plan orizontal. Toate cele 3 tipuri de resorturi (figura 4.15) au caracteristici biliniare, cu o primă zonă în care rezistența crește proporțional cu deplasarea (respectiv cu rotirea) și o a doua zonă în care rezistența este constantă. Lungimea elementului finit tip grindă este constantă, fiind egală cu distanța între axele traverselor.

Ecuațiile de echilibru pot fi scrise sub forma matriceală:

$$[S] \cdot [\Delta V] = [\Delta F] \tag{4-11}$$

unde:

[S] - matricea rigidității tangente [N/mm]
 [ΔV] - vectorul incrementului deplasării [mm]
 [ΔF] - vectorul incrementului încărcării (solicitării) [N]

Figura 4.13 Deplasările laterale în funcție de efortul axial din temperatură [37], [39]

Figura 4.14 Elementul din grindă utilizat în metoda elementului finit [40] [41]

Figura 4.15 Resoartele ce permit modelarea [40], [41]

Matricea rigidității elementului încovoiat [S₁] corelează deplasarea [V^e] și forțele [F^e] aferente elementului de grindă. Vectorul deplasare [V^e] conține trei grade de libertate **u**, **v** și ϕ pe nod, câmpul deplasării **u** a elementului de legătură având o variație liniară. Funcțiile de formă ale elementului încovoiat sunt polinoame de gradul trei în x prezentate în figura 4.16.

Matricea [S₂] include neliniaritatea geometrică a elementului și are la bază teoria de ordinul doi pentru deformații mici și deplasări mari și conține factori care depind de forța axială. Deformația ε este asociată cu deplasările u și v prin următoarea expresie:

$$\varepsilon = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial v}{\partial x} \right)^2$$
(4-12)

Matricea rigidității elementului resort [Sv] include rigiditatea prismei căii și prinderilor și are în vedere faptul că resoartele biliniare de la noduri contribuie la rigiditatea totală a structurii, fără să aducă, însă, grade de libertate suplimentare în sistem. Ea are o exprimare liniară pentru stadiul elastic al resortului elastic, iar după ce s-a atins faza plastică, devine constrâns, contribuția resortului la rigiditatea prismei căii și prinderilor fiind egalată cu zero pentru următorul increment de încărcare.

Figura 4.16 Funcții de formă ale elementului încovoiat în modelul Hengstum-Esveld [43] [43]

Condițiile de rezemare sunt luate în considerare când se simplifică matricea [S]. Algoritmul de calcul presupune parcurgerea următorilor pași:

- calculul vectorului deplasării $[\Delta V]$ pe baza încărcării din temperatură ce a fost aplicată structurii și rezolvarea ecuațiilor de echilibru static;

- asamblarea noii matrice a rigidității (rotită) [S] pentru noua deplasare totală [$V^{\circ}+\Delta V$] și eforturile interne corespunzătoare acestei deplasări;

- determinarea noului vector al încărcării [ΔF^*] pe baza noului vector al deplasării [ΔV];

- diferența dintre vectorul inițial al încărcării [ΔF] și vectorul încărcării [ΔF^*] servește drept un nou vector al încărcării în situația noii deplasări totale [$V^{\circ}+\Delta V$] până când acuratețea dorită va fi obținută.

Acest procedeu este cunoscut ca procedeul iterativ Newton-Raphson.

Modelul poate fi încărcat cu eforturi din variația temperaturii care se aplică pe întreaga sa lungime sau poate fi încărcat în direcțiile longitudinală și laterală la noduri. Aceste tipuri de încărcări pot fi aplicate individual sau în combinații. Prin geometria modelului se pot introduce defectele de direcție, care se consideră ca au o formă sinusoidală. Modelul permite analiza parametrică a stabilității cadrului șinetraverse.

4.2.3 Modele dezvoltate în Coreea de Sud

În anul 2001, în Coreea de Sud, a fost dezvoltat un model tridimensional de CFJ, model numit KUCWR (Korea University Continuous Welded Rail). Modelul de analiză a fost codat într-un program special creat utilizând metoda elementelor finite.

Modelul conține:

- un element de grindă cu secțiune deschisă, grindă cu pereți subțiri monosimetrică, cu 7 grade de libertate pe nod, pentru reprezentarea șinei, incluzând gradul de libertate torsiune împiedicată;

- un element de grindă solidă pe fundație elastică, având 6 grade de libertate pe nod, pentru simularea traversei incluzând rezistența verticală și/sau longitudinală a prismei căii;

- un element elastic de tip resort cu două noduri și lungime zero, pentru modelarea prinderii;

elemente resort pentru a modela rezistențele laterală sau longitudinală ale prismei căii.

De asemenea, două tipuri de neliniarități au fost incluse în modelul căii: neliniaritate geometrică a elementului șină și neliniaritatea materialului din prisma căii.

Modelul a fost verificat printr-o serie de analize comparative ale rezultatelor obținute cu acest model cu cele ale altor modele. Rezultatele analizei neliniare au arătat că șerpuirea cadrului șine-traverse este o problemă tridimensională. În plus, o serie de studii parametrice extinse ce au fost realizate au reușit să evidențieze efectul diverșilor parametri ai căii cum ar fi efectul defectele de nivel și de direcție (caracterizate prin amplitudine și lungime), efectul reducerii rezistenței laterale (caracterizată prin valoarea de vârf și deplasarea corespunzătoare acestei valori) și efectul lipsei prinderii.

O secțiune transversală a modelului este prezentată în figura 4.17, iar în figura 4.15 este prezentată o vedere laterală.

Așa cum se prezintă în figura 4.18, i se pot aplica modelului condiții de rezemare (la capete) variate inclusiv încastrări elastice.

Prinderea este modelată printr-un element elastic de tip resort, cu 6 grade de libertate pe nod. Acest element elastic de tip resort are două noduri dar lungimea elementului este zero. Fiecare element ce modelează prinderea constă din șase resoarte, trei pentru caracteristica forță-deplasare și trei pentru caracteristica moment-rotire. [45]

Figura 4.17 Secțiune transversală prin modelul KUCWR [45]

Nodurile șinei și traversei nu coincid. În model fiecare nod este considerat în centrul de greutate al elementului, așa cum se prezintă în figura 4.19. Pentru modelarea prinderii se utilizează un punct nodal concentrat, compus din două noduri distincte (sistem de nod dublu), care să simuleze rigiditățile la deplasările și rotirile relative dintre elementul șină și elementul traversă (figura 4.19).

Formularea elementelor finite este prezentată în cele ce urmează, bazându-se pe o abordare lagrangeană. Sunt considerate trei configurații de echilibru ale corpului într-un sistem de coordonate carteziene global: o configurație inițială nedeformată (C_0), ultima configurație deformată cunoscută (C_1) și configurația deformată curentă necunoscută (C_2). Utilizând formularea lagrangeană actualizată și principiul lucrului mecanic virtual, ecuația echilibrului incremental la finalul configurației deformate necunoscute (C_2) poate fi obținută prin intermediul relației:

$$\int_{1V^{1}} S_{ij} \cdot \delta({}_{1}\varepsilon_{ij}) d^{1}V + \int_{1V^{1}} \tau_{ij} \cdot \delta({}_{1}\eta_{ij}) d^{1}V = \int_{1S^{1}}^{2} t_{i} \cdot \delta(U_{i}) d^{1}S + \int_{1V^{1}}^{2} f_{i} \cdot \delta(U_{i}) d^{1}V - \int_{1V^{1}}^{1} \tau_{ij} \cdot \delta({}_{1}e_{ij}) d^{1}V$$
(4-13)

în care:

- 1Sij este tensorul incrementului efortului unitar Kirchhoff actualizat;

 $_{1}\epsilon_{ij}$ este tensorul deformațiilor specifice Green-Cauchy;

- ${}^{1}_{1}\tau_{ij}$ este tensorul eforturilor unitare Cauchy;

- 1eij și 1nii au semnificația de componentă liniară, respectiv neliniară, a lui 1eij;

- t_i și f_i semnifică vectorii eforturilor axiale datorate temperaturii, respectiv reacțiunilor.

Figura 4.18 Secțiune longitudinală prin modelul KUCWR [45]

Indicii utilizați în notații au următoarele semnificații: indicele din stânga sus semnifică configurația la care cantitatea respectivă se manifestă, absența indicelui de sus semnifică faptul că acea cantitate este un increment între C, și C_2 , iar un indice în stânga jos semnifică configurația la care cantitatea este măsurată.

Şina este modelată în următoarele ipoteze:

- grinda cu pereți subțiri monosimetrică cu secțiune deschisă;
- lungimea șinei este mult mai mare decât oricare din dimensiunile secțiunii transversale;

- secțiunea transversală își păstrează forma sa inițială;

- materialul din care este alcătuită șina este liniar elastic;

- deformațiile specifice axiale datorate variației temperaturii sunt considerate liniare, iar deformațiile specifice transversale sunt interpolate prin funcții de formă cubică de tip L'Hermite;

- variația temperaturii în secțiunea transversală a șinei este ca în figura 4.19;

- șina cu imperfecțiuni geometrice inițiale este liberă de eforturi unitare.

Datorită faptului că în fiecare nod există 7 grade de libertate (3 grade de libertate de tip translate, 3 grade de libertate de tip rotire și gradul de libertate torsiune împiedicată), rezultantele eforturilor din șină sunt ca în figura 4.21.

Figura 4.19 Modelarea prinderii [45], [46]

Figura 4.20 Variația temperaturii în secțiunea transversală a șinei în modelul KUCWR [45]

Traversa este modelată în următoarele ipoteze:

- grinda pe fundație elastică;
- secțiunea transversală își păstrează forma sa inițială;
- materialul din care este alcătuită traversa este liniar elastic;
- fundația este mediu elastic Winkler.

Figura 4.21 Rezultantele eforturilor din șină în modelul KUCWR [99]

Fiecare nod al traversei are 6 grade de libertate (3 grade de libertate de tip translate și 3 grade de libertate de tip rotire), iar eforturile și deplasările nodale ale elementului de traversă sunt prezentate în figura 4.22.

Figura 4.22 Eforturile și deplasările nodale ale elementului de traversă în modelul KUCWR [45]

Modelarea prinderii (figura 4.23) implică utilizarea unui element cu două noduri și cu lungime zero (sistem de nod dublu) cu 6 grade de libertate la fiecare din cele două noduri (3 grade de libertate de tip translate și 3 grade de libertate de tip rotire). Așa cum se observă și din figura 4.23, sistemul de axe al prinderii coincide cu sistemul local de axe al șinei, care, la fel ca și sistemul de local axe al traversei, trece prin centrul de greutate. Un capăt al elementului ce modelează prinderea este legat de elementul de șina, iar celălalt capăt este legat de elementul de traversă.

Figura 4.23 Modelarea prinderii și gradele de libertate corespunzătoare elementului ce modelează prinderea în modelul KUCWR [45]

Rezistențele laterală și longitudinală sunt modelate prin elemente resort cu comportament elastoplastic perfect, ca în figura 4.23. Se consideră că rezistențele laterală și longitudinală sunt liniar-elastice până când rezistența laterală va ajunge la valoarea sa de vârf, după care prisma căii "intra în curgere" și se manifestă numai deformații plastice. La descărcare, comportamentul este liniar-elastic, așa cum se prezintă în figura 4.23.

Figura 4.24 Curba caracteristică a rezistențelor laterală și longitudinală în modelul KUCWR [45], [47]

Tehnica rezolvării numerice a relației de echilibru anterior prezentată este realizată cu ajutorul metodei de control a deplasării propusă de Yang și Shieh, care are la bază formularea matriceală a relației și adoptarea unui algoritm de rezolvare iterativ, criteriul de oprire a iterațiilor fiind dat de relația:

$$\left|d\right| = \frac{\sqrt{\left\{\Delta D^{T}\right\}_{j}^{i} \cdot \left\{\Delta D\right\}_{j}^{i}}}{\sqrt{\left\{D^{T}\right\}_{j}^{i} \cdot \left\{D\right\}_{j}^{i}}} \le \delta_{d}$$

$$(4-14)$$

în care AD este vectorul incrementului deplasării datorate variației de temperatură T, iar δ_d este toleranța specificată de către utilizator, de ordinul 10⁻³.

Cu acest model au fost realizate mai multe analize, unele pentru a evidenția influența parametrilor ce intervin în pierderea stabilității, iar alții pentru comparația cu alte modele. Concluziile comparațiilor sunt următoarele:

Şerpuirea cadrului şine-traverse este o problema tridimensională, - modelele bidimensionale de tip cadru şine-traverse, precum şi modelele tip grindă în mediu elastic supraestimează stabilitatea cadrului şine-traverse şi nu sunt cea mai adecvată reprezentare a comportamentului şi condițiilor reale ale căii, aşa cum se poate observa foarte bine şi în rezultatele prezentate in figura 4.25 a şi b şi figura 4.26.

Figura 4.25 Forma unei zone centrale a CFJ șerpuită în modelul KUCWR [45], [46] a. vedere în plan, b. vedere laterală [24]

Figura 4.26 Zone șerpuite [48]

Trebuie remarcat că modelul permite analize numai pentru linia neîncărcată de convoi și considerând parametri implicați în fenomenul de șerpuire determinist, nu probabilist.

Figura 4.27 Deformata unei traverse din cuprinsul CFJ șerpuită în modelul KUCWR [45]

4.3. Metode de calcul dezvoltate în România

La fel ca și modelele dezvoltate în alte țări, și cele din România se bazează pe metode energetice, metoda ecuațiilor diferențiale de echilibru sau pe metoda elementelor finite. Cele mai multe modele sunt dezvoltări sau simplificări ale modelului Nemesdy [49], [50], [51], dar există și metode ce pleacă de la modelul Proud'Homme [52] sau de la alte modele [53], [22]. Sunt de remarcat și câteva modele originale dezvoltate cu elemente finite [54], [55] sau analitic [52], [22].

Majoritatea modelelor dezvoltate în România se bazaează pe aceleași ipoteze ca și modelele dezvoltate în lume, echivalând cadrul șine-traverse cu o grindă rezemată continuu sau discret pe o fundație elastică, cu parametrii de bază: caracteristicile fizico-mecanice ale șinelor și traverselor, geometria căii, variația temperaturii, rezistența laterală, rezistența longitudinală, rezistența la rotire a șinei în prindere sau rigiditatea cadrului șine-traverse. Cu o singură excepție (modelul Rusiu, care ia în considerare și influența solicitărilor verticale și laterale generate de convoi), toate modelele consideră încărcări variabile din temperatură, câteva consideră și influența solicitărilor laterale generate de convoi, dar nici unul dintre modele nu ia în calcul solicitările longitudinale generate de convoi și nici influența acestora asupra rezistențelor longitudinală, laterală și la rotirea șinei în prinderi.

Modelele Herman [49], [50], [56]

În lucrările [49], [50], [56] sunt prezentate două modele ale pierderii stabilității cadrului șinetraverse, unul fiind o simplificare a modelului Nemesdy, iar celălalt fiind un model de simulare bazat pe metoda elementelor finite. Ambele modele au o serie de avantaje și lasă posibilitatea continuării cercetărilor.

Modelul analitic Herman [49], [50], [51]

În [49], [50], [51] se prezintă o metodă de calcul a forței critice de pierdere a stabilității cadrului șine-traverse generată de creșterea temperaturii, considerând ca parametri ce guvernează fenomenul doar rigiditatea la încovoiere a cadrului șine-traverse și rezistența laterală. Se consideră cadrul șine-traverse ca fiind o grindă ce are un momentul de inerție echivalent I₀, ambele capete libere (neîncastrate) și asupra căreia acționează forța de compresiune F_c pe direcția axei grinzii nedeformate (figura 4.28), iar rezistența laterală a prismei căii se consideră că este mobilizată la valoarea ei maximă q, însă doar pe porțiunea centrală unde deplasarea laterală depășește $2 \div 3 \text{ mm}$ (figura 4.28). Modelul este dezvoltat atât pentru porțiunile de cale situate în aliniament cât și pentru CFJ situată în curbă. Modelul este, deci, o simplificare a modelului Nemesdy.

Figura 4.28 Schema de încărcare a grinzii ce modelează cadrul șine-traverse [49], [50], [51]

Forța critică de pierdere a stabilității cadrului șine-traverse este dată de expresia:

$$F_{cr} = \frac{\pi^2 E I_0}{l^2} + \frac{q l^2}{16f}$$
(4-15)

Avantajul metodei constă în faptul că aplicarea ei este foarte simplă și rezultatele sunt apropiate de cele ale altor metode mult mai complicate (de exemplu metoda Bromberg), dezavantajele fiind cele ale tuturor metodelor care nu iau în calcul rezistența longitudinală și a celor bidimensionale care echivalează cadrul șine-traverse cu o grindă rezemată pe mediu elastic.

Modelul MEF Herman [50], [56]

În [50], [56] se prezintă un model bidimensional, de tip cadru, ce simulează pierderea stabilității CFJ, model bazat pe o abordare originală, cu elemente finite. Au fost considerați ca parametri caracteristicile geometrice ale liniei, caracteristicile fizico-mecanice ale elementelor căii (șine, traverse, prinderi, materialul din prisma căii), rezistențele longitudinală și laterală.

În model, calea poate fi considerată cu sau fără defecte de direcție, în aliniament sau în curbă, dar cu o lungime ce corespunde unui număr de maxim 50 de traverse. Modelul a fost dezvoltat pentru a considera 3 tipuri de șine: 49, 60 și 65, iar secțiunea transversală reală a șinei a fost echivalată cu o secțiune de tipul celei din figura 3.29. În model, traversele sunt legate elastic de șine prin elemente de tip resort cu rigidități ce pot avea valori de la zero (corespunzând legături de tip articulație) până la infinit (corespunzând legături de tip încastrare), caracterizate printr-un factor de fixare care poate fi diferit la cele două capete ale unei aceleiași traverse (figura 4.29). De asemenea, caracteristicile legăturilor dintre șine și traverse se repartizează aleatoriu la traversele tronsonului analizat, având valori între anumite limite impuse, dar diferite de la o șină la cealaltă în dreptul aceleași traverse. Rezistențele longitudinală și laterală sunt modelate prin penduli amplasați pe fiecare capăt de traversă pe direcția căii și normal pe aceasta direcție (figura 4.30).

Figura 4.29 Secțiune transversală prin profilul real de șină (a) și secțiunea echivalentă a șinei (b) în Modelul MEF Herman [50], [56]

Comportamentul pendulilor este considerat neliniar.

Figura 4.30 Schema statică a modelului cadrului șină-traversă [50]

Valorile rezistențelor laterală și longitudinală sunt considerate diferite de la o traversă la alta, dar există și posibilitatea de a considera valori constante ale acestora pe tronsoane predefinite, limitate însă la un număr de maxim 4 tronsoane pentru lungimea de cale analizată. Șinele și traversele sunt modelate prin elemente de tip bară cu rigiditate axială și la încovoiere. Traversele pot fi din lemn sau din beton armat precomprimat cu modulele de elasticitate corespunzătoare. Oțelul din care este făcută șina este considerat cu un comportament ideal elasto-plastic în curba de interacțiune dintre efectul efortului axial și momentului încovoietor fiind definit un domeniu de comportare elastică, respectiv elasto-plastică prin considerarea stărilor limită ale capacității portante.

Figura 4.31 Modelarea cadrului șină-traversă și modelarea rezistenței laterale q [50], [56]

Figura 4.32 Comportamentul neliniar al rezistenței laterale q [50], [56]

Se consideră că tronsonul de cale are șinele cu capetele blocate (încastrate). Stabilirea creșterii de temperatură care generează pierderea stabilității se realizează iterativ, la fiecare treaptă de încărcare făcându-se reechilibrarea structurii prin redistribuirea forțelor nodale reziduale pentru restabilirea echilibrului structural, aplicând corecții deplasărilor nodale, respectiv eforturilor, și recalculându-se modulii de elasticitate ai pendulilor corespunzător deplasărilor. La fiecare treaptă de încărcare se verifică dacă eforturile axiale și momentele încovoietoare în șină sunt în zona elastică sau în zona elasto-plastică, în această din urmă situație procedându-se la înlocuirea modulului de elasticitate al oțelului șinei cu un modul de elasticitate redus.

Reducerea modulului de elasticitate va conduce la creșteri mai mari ale deplasărilor laterale la variații de temperatură. De aceea este necesar să se realizeze o alegere convenabilă a treptei de încărcare. Procesul iterativ se încheie atunci când înclinarea tangentei la curba de răspuns (suma variațiilor de temperatură aplicate în funcție de deplasarea laterală obținută este sub o anumită valoare). În [50] se precizează că rezultatele sunt puțin sensibile la îndepărtarea pendulilor orizontal-longitudinali; din acest motiv acești penduli au fost eliminați din modelul final.

Tot în [50] se precizează că oprirea iterațiilor se face în următoarele situații:

- la 8 penduli laterali succesivi se depășește valoarea lui σ_{lim} , aceasta indicând faptul ca s-a produs o deplasare laterală pronunțată a căii;

- când este depășită capacitatea portantă a șinei;

- când, la stabilirea noii trepte de încărcare pe baza extrapolării a patru trepte de încărcare anterioare utilizând formula lui Lagrange, rezultă o valoare negativă pentru variația de temperatură, considerânduse că aceasta semnifică faptul că s-a ajuns la un punct de maxim al curbei de răspuns.

Figura 4.33 Curba de interacțiune dintre efort axial și momentul încovoietor ce caracterizează comportarea elastoplastică a oțelului din șină [59], [101]

Figura 4.34 Diagrama deplasării transversale în funcție de creșterea temperaturii în șină [50], [56]

Modelul MEF Herman reprezintă un pas important în simularea pierderii stabilității cadrului șinetraverse (permițând analize ale situațiilor caracterizate prin lipsa unor prinderi, **prin** lipsa traverselor sau prin existența altor neregularități), acest model poate fi îmbunătățit, astfel încât să se obțină un model apropiat de cele dezvoltate pe plan internațional. Se pot remarca următoarele îmbunătățiri:

- eliminarea limitării referitoare la lungimea maximă de cca. 30 m a cadrului șine - traverse, mai ales dacă se corelează lungimea cadrului șine - traverse care se analizează cu condițiile de margine avute în vedere în model (această lungime mică a cadrului șine-traverse modelat conduce la o sensibilitate redusă a rezultatelor la eliminarea pendulilor ce modelează rezistența longitudinală [50], [56];

- eliminarea blocării capetelor șinelor cadrului șine-traverse;

- considerarea unei rezistențe laterale cu valoare de vârf și valoare limită (reziduală);

- modificarea modului de echivalare a secțiunii transversale a șinei (în legătură cu intrarea oțelului din secțiunea șinei în domeniul elasto-plastic);

- introducerea în model a posibilității de a lua în considerare: secțiuni diferite pentru cele două șine, temperaturi de fixare diferite pentru cele două șine și prezența convoiului. [29]

Modelul Talhouni [57]

În lucrarea [57] este dezvoltat un model de simulare a pierderii stabilității cadrului șine-traverse cu ecartament îngust (1000 mm), pornind de la modelul Nemesdy, considerând 5 forme posibile ale defectelor de direcție în aliniament și 2 forme posibile ale defectelor de direcție în curbe (figura 4.36).

Figura 4.35 Schema de discretizare a cadrului șine-traverse în modelul MEF Herman [50]

Se consideră că rezistența laterală are o caracteristică bi-liniară cu o valoare inițială q_0 și este proporțională cu deplasarea laterală, rezistența longitudinală are o caracteristica tri-liniară cu o valoare de vârf și o valoare limită (reziduală), iar rezistența la rotire a șinei în prindere are o caracteristică tri-liniară cu o primă ramură cu variație liniară în funcție de rotirea șinei în prindere până la valori ale rotirilor ce conduc la mobilizarea în întregime a frecării la rotirea șinei în prindere, o zonă de palier (pe care momentul rezistent are valoare constantă) ce corespunde mobilizării complete a frecării și ține până la valoarea unghiului de rotire pentru care șina atinge rebordurile plăcii suport și o ultimă zonă cu variație liniară ce corespunde situației de după atingerea rebordurilor plăcii suport de către șină (figura 4.37).

Metoda permite determinarea efortului axial minim de compresiune pentru care se produce pierderea stabilității pentru fiecare din formele defectelor de direcție inițiale ale căii în aliniament și în curbă, pentru diverse tipuri de șine, valori ale razelor curbelor, distanțelor între axele traverselor, momentului rezistent la rotirea șinei în prindere, lungimilor și săgeților căii deformate și săgeților defectelor de direcție.

Avantajul modelului este că permite realizarea unei analize parametrice a stabilității cadrului șinetraverse, cu implicații directe în elaborarea modalităților de exploatare a căii în condițiile de siguranță dorite.

Dezavantajele modelului sunt aceleași ca ale tuturor modelelor bi-dimensionale ce nu iau în considerare influența convoiului asupra stabilității căii.

Figura 4.36 Formele imperfecțiunilor geometrice pentru calea în aliniament și în curbă în modelul Talhouni [57]

Figura 4.37 Modelul fizic pentru analiza stabilității căii (Modelul Talhouni) [57]

Modelul Rusiu [52]

În [52], se prezintă un model de studiu al deplasării laterale maxime a cadrului șine-traverse încărcat cu o forță concentrată verticală, o forță laterală concentrată și în prezența unui efort axial (datorat variației de temperatură), considerând cadrul șine-traverse ca o grindă continuă pe mediu deformabil;

rezistența laterală este considerată proporțională cu deplasarea până la o anumită valoare a acesteia, după depășirea căreia rezistența laterală rămâne constantă (figura 4.38).

Modelul este dezvoltat și pentru varianta în care calea este considerată ca grindă pe reazeme elastice discrete, precum și pentru varianta în care reazemele au o caracteristică oarecare, adică reacțiunile sunt funcții oarecare de deplasare laterală și de reacțiunile verticale produse de încărcarea verticală a șinei (figura 4.39).

Figura 4.38 Modelarea cadrului șină-traversă și a rezistențelor ce intervin la pierderea stabilității [52]

Figura 4.39 Modelul discret al căii (Modelul Rusiu) [52]

Modelul consideră comportări bi-liniare pentru rezistența laterală, rezistența longitudinală și pentru rezistența la rotirea șinei în prindere, dar cu valori ce depind de încărcarea din convoi ce revine fiecărei traverse (figura 4.40). Rezistențele ce se opun pierderii stabilității cadrului șine-traverse se

consideră că depind atât de deplasările și rotirile șinelor cât și de încărcările ce revin traverselor. Calculul este unul analitic, fiind determinate ecuația diferențială a axei deformate a șinei, pentru rezemare discretă sau continuă a căii pe mediu elastic, precum și pe mediu elasto-plastic.

Avantajele acestui model sunt posibilitatea considerării forțelor laterale și verticale generate de convoi în studiul parametrilor ce caracterizează pierderea stabilității cadrului șine-traverse.

Figura 4.40 Modelul care presupune rezemarea continuă a cadrului șine-traverse (Modelul Rusiu) [52]

Dezavantajele modelului sunt cele ale modelelor bi-dimensionale și, în plus, cele datorate neconsiderării rezistenței longitudinale. Chiar și cu aceste dezavantaje, modelul poate fi considerat ca unul din cele mai performante pentru timpul la care a fost realizat.

Modelele Radu [58], [59], [60]

În lucrările [58], [59], [60] sunt prezentate două modele ale pierderii stabilității căii, unul fiind bazat pe metoda energetică, iar celălalt fiind un model cu elemente finite. Ambele modele se referă la calea fără convoi.

Modelul Radu bazat pe metoda energetică [58], [60]

În [60] se face o analiză a metodelor de calcul la șerpuire existente și a modelelor de schematizare a parametrilor ce caracterizează pierderea stabilității căii și sunt prezentate două modalități de aplicare a metodei energetice. Ambele au caracteristic faptul că se adoptă forma deformatei inițiale și forma deformatei la un moment dat, ambele având aceeași lungime, pentru determinarea celorlalte mărimi ce corespund situațiilor de echilibru aplicîndu-se principiul lucrului mecanic virtual. De asemenea, se adoptă curbele ce definesc rezistențele longitudinală $p = f_1(z)$, laterală $q = f_2(y)$ și la rotirea șinei în prindere M_r $= f_3(\beta)$, mărimea defectului de direcție inițial f_0 și starea de eforturi axiale pentru situația corespunzătoare deformatei la un moment dat N_{d1} , unde z este deplasarea longitudinală, y este deplasarea laterală iar β este unghiul de rotire a șinei în prindere. Cu aceste date inițiale rezultă relația de continuitate a deplasărilor, relație ce face legătura între efortul axial și amplitudinea maximă a deformatei (figura 4.41):

$$\Delta l = \frac{(N - N_{d1}) \cdot l}{EA} + \frac{(N - N_{d1})^2}{pEA}$$
(4-16)

unde:

N este efortul axial datorat variației temperaturii, determinat cu relația cunoscută

$$N = aEA\Delta t$$

(4-17)

N_{d1} este efortul axial, considerat constant, de pe zona cu deplasări laterale; l este lungimea defectului de direcție inițial; p este rezistența longitudinală.

Se consideră că deformata are forma unei singure unde (figura 4.41).

În prima modalitate de aplicare a metodei energetice se va construi curba $N_{d1} = f_4(f)$ prin aplicarea principiului lucrului mecanic virtual:

$$N_{d1} \cdot \delta(\Delta l) - \delta L_q - \delta L_{Mr} - \delta L_i = 0 \tag{4-18}$$

unde:

f este săgeata maximă cauzată de variația de temperatură;

Δl este diferența dintre lungimea măsurată a căii deformate corespunzătoare săgeții

(f + fo) și lungimea inițială a căii (cu săgeata f_0);

 $\delta(\Delta l)$ este variația diferenței de lungime Δl , la creșterea săgeții cu cantitatea δf ;

 δL_q , δL_M , δL_i sunt lucrurile mecanice elementare pentru creșterea săgeții maxime cu 8f, corespunzătoare rezistențelor laterale q, momentelor rezistente la rotirea șinei în prindere, M_r și momentelor încovoietoare M.

Valoarea maximă a efortului axial N_{d1} din aceasta curbă corespunde situației de echilibru limită, creșterea temperaturii peste temperatura aferentă acestei valori maxime conducând la fenomene de pierdere a stabilității cadrului șine-traverse. Toate punctele de pe curba $N_{d1} = f_4$ (f) situate la stânga punctului de maxim al curbei corespund unor situații de echilibru stabil, celelalte caracterizând situații de echilibru instabil (figura 4.42).

Figura 4.41 Schema de calcul a pierderii stabilității cadrului șine-traverse cu defect de direcție inițial (a) și diagrama variației efortului axial de compresiune (b) în modelul Radu bazat pe metoda energetică [58], [60]

Figura 4.42 Reprezentarea curbei $N_{dl} = f_4(f)$ [58], [60]

Pentru determinarea efortului axial în șină N datorat variației temperaturii se va construi curba $N = f_5$ (f) folosind ecuația de continuitate pentru diferite lungimi f ale deformatei și pentru o pantă maximă admisă a neregularității sau pentru o valoare maximă admisă a săgeții inițiale f_0 . Cea mai mică valoare a efortului axial corespunzător situației de echilibru instabil corespunde unei săgeți f care adăugată la valoarea inițială a săgeții f_0 reprezintă valoarea maximă admisă a săgeții totale ca urmare a efectului creșterii temperaturii peste temperatura de fixare. Această metodă se poate aplica practic împărțind

valoarea efortului de compresiune din șină N la coeficientul de siguranța η pentru a obține efortul axial admisibil N_a.

Cea de-a doua modalitate de aplicare a metodei energetice are la bază un algoritm conform căruia pe o cale reală, cu neregularități, în urma creșterii temperaturii, nu este permisă amplificarea deformației transversale inițiale datorită faptului că asupra căii se acționează cu o forță transversală P_v care împiedică amplificarea acestei deformații inițiale, forța transversală P_v scade lent până la valoarea zero, permițând amplificarea deformației inițiale simultan cu scăderea efortului axial N_{d2} pe zona cu deplasări transversale. Aplicând principiul deplasărilor virtuale se determină pozițiile de echilibru corespunzătoare fenomenului prezentat:

$$P_{v} \cdot \delta_{f} - \delta \left[\int_{N_{2}}^{N_{d2}} N_{d2} \cdot \delta(\Delta l) - \delta L_{q} - \delta L_{Mr} - \delta L_{i} \right] = 0$$
(4-19)

unde energia totală:

$$\int_{N_2}^{N_{d2}} N_{d2} \cdot \delta(\Delta l) - \delta L_q - \delta L_{Mr} - \delta L_i = E_T$$
(4-20)

în care:

$$\int_{N_2}^{N_{d2}} N_{d2} \cdot \delta(\Delta l) \tag{4-21}$$

este lucrul mecanic corespunzător eforturilor axiale la trecerea de la situația inițială (caracterizată prin efortul axial constant N₂ si săgeata f₀) la situația corespunzătoare echilibrului (caracterizată prin efortul axial N_{d2} și săgeata (f + f₀)) și din lucrurile mecanice corespunzătoare rezistențelor laterale q, momentelor rezistente M_r și momentelor încovoietoare M aferente trecerii cadrului șine-traverse de la situația inițială la situația de echilibru. Pentru determinarea efortului axial N_{d2}, ce corespunde unei situații de echilibru stabil apropiată de cea corespunzătoare săgeții inițiale f₀, se consideră situația în care $P_{\nu} = 0$, rezultând:

$$N_{d2} \cdot \delta(\Delta l) - \delta L_q - \delta L_{Mr} - \delta L_i = 0 \tag{4-22}$$

Prin această modalitate de aplicare a metodei energetice, alegând diferite valori pentru efortul axial N_2 , se poate obține curba $N_{d2}(l)$. Practic, aplicarea acestei modalități pentru determinarea efortului axial admisibil N_a presupune parcurgerea următoarelor etape:

a. se consideră o săgeată inițială f₀ și o valoare maximă admisibilă pentru săgeata (f + f₀) existentă în cale ce corespunde unei situații posibile de echilibru stabil ca urmare a circulației vehiculelor;
b. pentru diferite lungimi ale neregularității inițiale se determină eforturile axiale N_{d2} aplicând relația corespunzătoare lui P_v = 0, iar eforturile axiale N₂ rezultă aplicând relația de continuitate;
c. din graficul N_{d2}(l) stabilit pentru valori ale lui f și f₀ date, rezultă valoarea minimă pentru N_{d2}, împărțită cu coeficientul de siguranță η, obținându-se efortul axial admisibil N_a.

Utilizarea curbelor ce definesc rezistențele longitudinală $p = f_1(z)$ (figura 4.43), laterală $q = f_2(y)$ (figura 4.44) și la rotire a șinei în prindere $M_r = f_3(\beta)$ (figura 4.45), se realizează prin împărțirea zonei analizate din punct de vederea al stabilității în subzone care țin seama de legile de variație ale rezistențelor la determinarea lucrurilor mecanice ce intervin în ecuațiile de echilibru (figura 4.45 și 4.46).

Avantajul celor două modalități de aplicare a metodei energetice este că permite trasarea curbei efort axial din variație de temperatură N - deplasare laterală y, care pune în evidență valorile creșterii de temperatură superioară T_{max} și inferioară T_{min} cu ajutorul cărora pot fi implementate criterii de siguranță împotriva pierderii stabilității căii.

Figura 4.43 Modalități de idealizare a rezistenței longitudinale $p = f_x(z)$: a) constantă; b) liniară; c) biliniară; d) exponențială [58], [60]

Figura 4.44 Modalități de idealizare a rezistenței laterale $q = f_2(y)$ a) biliniară; b) exponențiale [58], [60]

Figura 4.45 a) Variația unghiurilor de rotire a căii deformate în lungul ei; b) Delimitarea subzonelor căii deformate în funcție de legile de variație ale momentului rezistent la rotirea șine în prindere M_r;

c) Idealizarea variației momentului rezistent la rotirea șinei în prindere $M_r = f_3 (\beta)$ [58], [60]

Un alt avantaj îl constituie faptul că acest model permite analiza parametrică a pierderii stabilității cadrului șine - traverse, permițând evidențierea influenței rezistențelor longitudinală, laterală și la rotirea

șinei în prindere, dar și influența amplitudinii și lungimii defectelor de direcție. În plus, prin diminuarea ariei și a momentelor de inerție a șinelor poate fi pusă în evidență influența uzurilor șinelor asupra stabilității căii, pentru ambele șine nu și pentru situația, unor uzuri diferite ale celor două fire de șină. Modelul permite și evidențierea geometriei căii după producerea șerpuirii, însă nu consideră influența vehiculului în fenomenul de pierdere a stabilității cadrului șine-traverse.

Calea se echivalează cu o grindă în mediu elastic. Modelul este dezvoltat pentru o singură formă a defectului de direcție și a formei deformatei, respectiv pentru o singură buclă, și consideră lungimea defectului de direcție egală cu lungimea deformatei la un moment dat, lăsând posibilitatea ca în baza unor cercetări viitoare modelul să fie îmbunătățit.

Figura 4.46 a) Împărțirea în subzone a unei jumătăți de cale deformată, legea de variație a rezistenței laterale q fiind diferită pe cele două subzone; b) Variația rezistenței laterale q în funcție de deplasarea laterală y; c) Variația rezistenței laterale q în lungul căii deformate [58], [60]

Figura 4.47 Curba efort axial din variație de temperatură N - deplasare laterală y [60]

Modelul Köllő

Acest model este prezentat în [22], [54], [55] și are la baza modelul Nemesdy. Singurele diferențe față de modelul Nemesdy sunt date de ecuațiile ce caracterizează formele defectelor de direcție (exprimate ca funcții de puteri) și de modul de caracterizare al rezistenței laterale (biliniară, cu sau fără o valoare inițială). În plus, modelul poate considera lungimile și săgețile defectelor de direcție ca variabile aleatoare (figura 4.48) cu o distribuție normală (gaussiană), permițând astfel să poată fi determinată valoarea cea mai probabilă a efortului axial critic minim de pierdere a stabilității cadrului șine-traverse.

În [55] este prezentată aplicarea acestui model de pierdere a stabilității căii fără joante pentru un sistem de cale cu traverse Y.

Față de modelul Nemesdy, acest model are avantajul că poate considera o distribuție normală gaussiană a lungimilor și săgeților defectelor de direcție, care, deși nu reflectă foarte fidel distribuția reală a caracteristicilor geometrice ale defectelor de direcție reprezintă, totuși, un pas important spre o abordare mai realistă, de tip probabilist, a fenomenului pierderii stabilității cadrului șine-traverse. O îmbunătățire a modelului poate fi realizată prin considerarea distribuțiilor reale ale lungimilor și săgeților defectelor de direcție, includerea în model a distribuțiilor și pentru momentele rezistente precum și includerea în model a influențelor încărcărilor generate de convoi asupra rezistențelor caii.

Figura 4.48 Distribuțiile lungimilor și săgeților defectelor de direcție [24]

unde:

$$p(f) = \frac{l}{\sqrt{2\pi}d_f} e^{\frac{f - m_f}{2d_f^2}}$$
(4-23)

$$p(l) = \frac{l}{\sqrt{2\pi}d_l} e^{-\frac{1}{2d_f^2}}$$
(4-24)

 m_1 , m_2 - media d_f , d_l - abaterea medie pătratică f, *l* - variabile aleatoare

Modelul Nicolae [53]

Modelul este prezentat în [53] și este un model simplificat, care pune, însă în evidență comportamentul real al cadrului șine-traverse. Modelul presupune acceptarea următoarelor ipoteze simplificatoare:

- forma pe care o ia calea după deformație este o sinusoidă atenuată (figura 4.49) cu o forma teoretică de sinusoidă simplă (figura 4.50);

- forma teoretică se simplifică apoi la un triunghi cu articulații elastice la vârfuri (figura 4.51);

- rezistența la deplasarea longitudinală a căii este constantă;

- rezistența la deplasarea laterală este biliniară;

- rezistența la rotirea șinei în prindere se neglijează;

- se consideră că lungimea defectului de direcție se menține la valoarea inițială 2λ , iar amplitudinea inițială a defectului de direcție este h_0 .

Figura 4.49 Forma post-critică a cadrului șine-traverse în modelul Nicolae [53]

Figura 4.50 Forma teoretică a deformatei în modelul Nicolae [53]

Modelul redă variația raportului dintre efortul axial datorat variației de temperatură P_t și efortul axial de pierdere a stabilității căii P_{cr0} și raportul dintre deformația laterală a căii h și amplitudinea inițială a defectului de direcție h_0 (figura 4.51 și figura 4.52).

Figura 4.51 Forma teoretică simplificată a deformatei în modelul Nicolae [53]

Acest model reflectă relativ fidel fenomenul pierderii stabilității cadrului șine-traverse, având capacitatea de a pune în evidență faptul că în variația efortului axial critic de pierdere a stabilității în funcție de variația deplasărilor există două puncte critice de pierdere a stabilității ce corespund unei valori de maxim și unei valori de minim a efortului axial de pierdere a stabilității, definind două domenii extreme ce corespund unor situații de echilibru stabil și un domeniu central ce corespunde unor poziții de echilibru instabil.

Trecerea de la o poziție de echilibru stabil la o nouă poziție de echilibru stabil, căreia îi corespunde însă o valoare mai mare a deplasării laterale, se poate face numai pentru valori mai mici decât valoarea efortului maxim critic de pierdere a stabilității și mai mari decât valoarea efortului minim critic de pierdere a stabilității, numai sub acțiunea unei perturbații exterioare suficient de mari pentru a deplasa lateral calea de la deplasarea corespunzătoare echilibrului stabil până la deplasarea corespunzătoare echilibrului instabil. De la această poziție de echilibru instabil cadrul șine-traverse trece brusc (pe porțiunile situate în aliniament), în mod automat, în noua poziție de echilibru stabil căreia îi corespunde o valoare mare a deplasării laterale (figura 4.53).

Figura 4.52 Schema de calcul a pierderii stabilității cadrului șine-traverse cu defect de direcție inițial în modelul Nicolae [53]

Figura 4.53 Variația efortului axial critic de pierdere a stabilității în funcție de variația deplasărilor laterale în modelul Nicolae [53]

Modelul SCFJ

Acest model este un model 3-D simplificat, asemănător modelelor CWR-BUCKLE și CWERRI-LONGSTAB, cuprinzând îmbunătățiri ce permit o analiză mai realistă a pierderii stabilității căii fără joante oferind posibilitatea stabilirii vitezei maxime admisibile pe o cale fără joante cu o anumită geometrie, alcătuire și stare pentru o probabilitate dorită de pierdere a stabilității cadrului șine-traverse.

Figura 4.54 Variația rezistenței la rotirea șinei în prindere în funcție de încărcarea verticală [29] [61]

Principalele îmbunătățiri pe care le aduce acest model:

- parametri cheie ai pierderii stabilității cadrului șine-traverse (rezistența laterală, rezistența longitudinală, rezistența la rotirea șinei în prindere, variația de temperatură și defectele de direcție) pot fi introduși prin curbele frecvențelor lor, modelând astfel de o manieră realistă fenomenul pierderii stabilității cadrului șine-traverse;

- rezistența la rotirea șinei în prindere este definită ținând cont și de influența încărcării verticale generate de convoi.

4.4. Metode de determinare a forței critice de pierdere a stabilității

4.4.1. Metoda energetică

Calea, alcătuită din șine și traverse, se consideră într-un mediu elastic, luându-se în vedere rezistențele laterale ale mediului în funcție de deplasările produse, de asemenea momentul rezistent din prinderi (rigiditatea cadrului șine – traverse) și rigiditatea la incovoiere laterală a celor două fire de șină.

Metoda energetică ia în considerare faptul că dacă un sistem elastic se deformează, înainte de a intra intr-o poziție de echilibru, energia lui totală, care este egală cu suma lucrului mecanic interior și exterior, variază. [24]

Notând cu π energia potențială totală:

$$\pi = L_s + L_q + L_r - L_p \tag{4-25}$$

$$\pi = \varphi \ (l, f) \tag{4-26}$$

Energia potențială depinde de două variabile:

l – lungimea imperfecțiunii;

f – săgeata maximă a imperfecțiunii.

Pierderea stabilității va avea loc când energia potențială are valoare maximă :

$$d\pi = 0 \Longrightarrow d\pi = \frac{\delta\pi}{\delta f} df + \frac{\delta\pi}{\delta l} dl = 0$$
(4-27)

$$\Rightarrow \frac{\delta \pi}{\delta f} = 0 \quad si \quad \frac{\delta \pi}{\delta l} = 0 \tag{127}$$

(4-28)

1. Lucrul mecanic al efortului din temperatură :

$$L_p = P \cdot \varDelta l = P(S - l) \tag{4-29}$$

unde:

S- lungimea imperfecțiunii *l* – lungimea corzii.

$$\Delta l = S - 1 = \int_0^l \sqrt{1 + y^{\prime 2}} \, dx - 1 = \int_0^l \left(1 + \frac{1}{2} \cdot y^{\prime 2} \right) \, dx - 1 \tag{4-30}$$

$$l = \frac{1}{2} \int_0^l y'^2 dx = c_1 \cdot \frac{f^2}{l}$$
(4-31)

În curba circulară:

$$l = \Delta l' - \Delta l_R \tag{4-32}$$

$$\Delta l' = S_d - d \tag{4-33}$$

 $\Delta l_R = S_R - d \tag{4-35}$

Figura 4.55 Deformata liniei în curbă [24]

$$\Delta l = \frac{1}{2} \cdot \int_0^l y'^2 dx - \frac{1}{2} \cdot \int_0^l y_R'^2 dx = c_1 \frac{f^2}{l} + c_2 \frac{f \cdot l}{R}$$
(4-34)

$$L_p = P \cdot c_1 \frac{f^2}{l} + P \cdot c_2 \frac{f \cdot l}{R}$$
(4-35)

2. Lucrul mecanic din încovoierea șinelor:

Condiția de stare critică a barei drepte comprimate centric reiese din relația energiei potențiale totale a sistemului respectiv a creșterii energiei când acesta trece dintr-o stare deformată după pierderea stabilității. Egalitatea dintre lucrul mecanic al forțelor exterioare L_s și energia potențială de deformație π poate fi exprimată: [62]

$$\delta \pi = \delta L_s \tag{4-36}$$

În cazul barei drepte:

$$\delta\pi = \frac{1}{2} \int_0^l \frac{M^2}{EI} dx \tag{4-37}$$

Știind că

$$M = -EI\frac{d^2y}{dx^2} \tag{4-38}$$

Rezultă:

$$\delta\pi = \frac{1}{2} \int_0^l EI\left(\frac{d^2y}{dx^2}\right)^2 dx = \frac{1}{2} EI \int_0^l (y'')^2 dx \tag{4-39}$$

Lucrul mecanic al forțelor exterioare:

$$\delta L_s = P \cdot u \tag{4-40}$$

u - deplasarea capătului barei în urma încovoierii (figura 4.86)

$$L_s = c_3 E I \frac{f^2}{l^3}$$
(4-41)

3. Lucrul mecanic al rezistențelor laterale

Rezistența laterală a prismei de piatră spartă q conform capitolului 3.5:

$$q = q_o + Cy$$

$$L_q = \int_0^l q_0 \cdot y \cdot dx + \frac{1}{2} \cdot \int_0^l C \cdot y \cdot y dx = q_0 \int_0^l y dx + \frac{C}{2} \int_0^l y^2 dx$$
(4-42)

$$L_q = c_4 \cdot q_0 \cdot f \cdot l + c_5 \cdot C \cdot f^2 \cdot l \tag{4-43}$$

4. Lucrul mecanic al momentelor rezistente din prinderi (M_r):

Momentul rezistent în prinderi este luat în considerare în calcule în două cazuri: a. Se consideră momentul rezistent în prinderi constant :

$$m = \frac{2 \cdot M_r}{a} \tag{4-44}$$

$$L_r = c_6 \cdot m \cdot f \tag{4-45}$$

Mr - momentul rezistent în prinderi

b. În cazul când momentul rezistent în prinderi este proporțional cu rotirea prinderilor ($\varepsilon = y'$),

$$M_{r} = r \cdot \varepsilon = r \cdot y' \Longrightarrow m = \frac{2M_{r}}{a} = \frac{2r}{a}y'$$
(4-46)

Figura 4.56 Momentul rezistent în prinderi [24]

Momentele rezistente sunt proporționale în fiecare prindere cu rotirea care se realizează în prinderea respectivă.

$$M_r = r \cdot \varepsilon = r \cdot y' \tag{4-47}$$

$$L_{r, \text{var}iabil} = \frac{2 \cdot r}{a} \cdot \frac{1}{2} \cdot \int_0^l {y'}^2 dx \tag{4-48}$$

$$L_{r,\text{var}\,iabil} = c_1 \cdot \frac{f^2}{l} \cdot \frac{2 \cdot r}{a}$$
(4-49)

Efectuând calculele, în acest caz rezultă Lr:

$$L_r = c_1 \cdot \frac{f^2}{l} \cdot \frac{2 \cdot r}{a} + c_6 \cdot m \cdot f$$
(4-50)

unde:

 $c_1 \div c_6$ – constante ce depind de tipurile imperfecțiunilor geometrice (Tabel 4.1)

C-coeficient de proporționalitate al balastului la deplasare laterală ;

- E modulul de elasticitate al oțelului din șine ;
- α coeficientul de dilatație termică liniară a oțelului ;
- A aria secțiunii transversale a celor 2 fire de șină;
- q rezistența prismului la deplasarea căii în sens transversal;
- m momentul repartizat (4-48)
- a distanța dintre axele traverselor ;

r- coeficient ce caracterizează prinderea șinei pe traversă (prindere cu buloane strânse la moment prescris, prinderi slăbite), depinde de tipul prinderii și de gradul de strângere al buloanelor

Mr - momentul rezistent în prinderi

Energia potențială de deformație:

$$\pi = L_s + L_q + L_r - L_p \tag{4-51}$$

$$\pi = \varphi(l, f) \tag{4-52}$$

a. momentul rezistent în prinderi considerat constant

Figura 4.57 Moment Mr constant [24]

$$\pi = c_{3} EI \frac{f^{2}}{l^{3}} + c_{4} q_{0} fl + c_{5} Cf^{2}l + c_{6} mf - \left(c_{1} \frac{f^{2}}{l}P + c_{2} \frac{fl}{R}P\right)$$
(4-53)

$$\frac{\delta\pi}{\delta f} = 0 \Longrightarrow 2c_3 EI \frac{f}{l^3} + c_4 q_0 l + 2c_5 Cfl + c_6 m - 2c_1 \frac{f}{l} P - c_2 l \frac{P}{R} = 0$$

$$(4-54)$$

b. momentul rezistent în prinderi considerat variabil

Figura 4.58 Moment Mr variabil [24]

$$m(x) = \frac{2M_{ri}}{a} \tag{4-55}$$

$$\pi = c_3 E I \frac{f^2}{l^3} + c_4 q_0 f l + c_5 C f^2 l + c_6 \frac{f^2}{l} \frac{2r}{a} - \left(c_1 \frac{f^2}{l} P + c_2 \frac{f l}{R} P\right)$$
(4-56)

$$\frac{\delta\pi}{\delta f} = 0 \Longrightarrow 2c_3 EI \frac{f}{l^3} + c_4 q_0 l + 2c_5 Cf l + 2c_1 \frac{f}{l} \frac{2r}{a} - 2c_1 \frac{f}{l} P - c_2 l \frac{P}{R} = 0$$
(4-57)

Valorile minime pentru cele două cazuri:

a. momentul rezistent în prinderi considerat constant

din
$$\frac{df}{dl} = 0$$
 se obține l_{cr} , $f_{cr} = f(l_{cr})$:

$$f = \frac{c_4 (q_0 - \frac{c_2 P}{c_4 R}) l^4}{2c_1 \left(P - \frac{2r}{a}\right) l^2 - 2c_3 E l - 2c_5 C l^4}$$
(4-58)

$$l_{cr} = \sqrt{\frac{2c_3}{c_1}} \sqrt{\frac{EI}{P - \frac{2r}{a}}}$$
(4-59)

f_{cr} devine:

$$f_{cr} = \frac{2c_3c_4}{c_1^2} \frac{EI}{\left(P - \frac{2r}{a}\right)^2 - \frac{4c_3c_5}{c_1^2}CEI} \left(q_0 - \frac{c_2}{c_4}\right) \frac{P}{R}$$
(4-60)

 $\dim \frac{d\pi}{df} = 0 \text{ se obține } P_{cr}:$

$$P_{cr} = \sqrt{\frac{2c_3c_4}{c_1^2}} \sqrt{\frac{EI}{f}} q_0 + \frac{2c_5}{c_4} CEI + \frac{c_2^2c_3}{2c_1^2c_4} \left(\frac{EI}{fR}\right)^2 - \frac{c_2}{c_4} \frac{EI}{fR} \frac{2r}{a} - \frac{c_2c_3}{c_1^2} \frac{EI}{fR} + \frac{2r}{a}$$
(4-61)

$$P_{cr} = \sqrt{\frac{2c_2c_4}{c_1^2}} \sqrt{\frac{EI}{f}} q_0 + \frac{2c_5}{c_4} CEI + \frac{2r}{a}$$
(4-62)

$$P_{cr} = \frac{\frac{c_3}{c_1}\frac{EI}{l^2} + \frac{c_4}{2c_1}q_0\frac{l^2}{f} + \frac{c_5}{c_1}Cl^2 + \frac{c_4}{2c_1}m\frac{l}{f}}{1 + \frac{c_2}{2c_1}\frac{l^2}{fR}}$$
(4-63)

 $c_{1+}c_6$ – constante care depind de tipul imperfecțiunilor geometrice (tabel 4.1)

Tip imperfecțiune Constante	А	В	С	D	Е
c ₁	2.660	11.790	7.810	21.597	2.467
c_2	0.457	0.000	0.104	0.000	0.000
c ₃	117.03	1112.40	1603.17	6146.00	23.352
c_4	0.457	0.523	0.247	0.321	0.637
c ₅	0.170	0.201	0.152	0.170	0.250
C ₆	2.000	3.000	2.800	3.800	2.000

Tabel 4.1 $c_{1+}c_6$ – constante specifice fiecărui tip de imperfecțiune

Notând cu K_1 ÷ K_5 constantele de mai sus, rezultă relația următoare pentru P_{cr} :

$$P_{cr} = \frac{K_1 \frac{EI}{l^2} + K_2 q_0 \frac{l^2}{f} + K_3 C l^2 + K_4 m \frac{l}{f}}{l + K_5 \frac{l^2}{fR}}$$
(4-64)

Tabel 4.2 K_1 + K_5 - constante specifice fiecărui tip de imperfecțiune

Tip imperfecțiune Constante	А	В	С	D	E
K1	43.10	93.50	205.80	283.00	9.867
K_2	0.087	0.0222	0.0158	0.00744	0.129
K ₃	0.064	0.0171	0.0195	0.00787	0.616
K4	0.752	0.340	0.358	0.222	0.811
K_5	0.086	0.00	0.00668	0.00	0.00

Din relația $\frac{d\pi}{df} = 0$ se poate exprima și valoarea f :

$$f = \frac{c_4 \cdot \left(q_0 - \frac{c_2}{c_4} \cdot \frac{P}{R}\right) \cdot l^4 + c_6 \cdot m \cdot l^3}{2 \cdot c_2 \cdot P \cdot l^2 - 2 \cdot c_3 \cdot EI - 2 \cdot c_5 \cdot C \cdot l^4}$$
(4.65)

lungimea critică se obține:

$$\frac{df}{dl} = 0 \quad \Rightarrow \quad l_{cr}, P \tag{4-66}$$

b. momentul rezistent în prinderi considerat variabil

$$\frac{d\pi}{df} = 0 \quad \Rightarrow P_{cr} \qquad \frac{df}{dl} = 0 \quad \Rightarrow l_{cr} \qquad f_{cr} = f(l_{cr}) \tag{4-69}$$

$$f = \frac{c_4 \left(q_0 - \frac{c_2}{c_4} \cdot \frac{P}{R} \right) \cdot l^4 + c_6 \cdot \frac{2r}{a} l^3}{2c_1 \left(P - \frac{2r}{a} \right) \cdot l^2 - 2c_3 \cdot EI - 2c_5 \cdot C \cdot l^4}$$
(4-67)

$$\frac{df}{dl} = 0 \quad \Rightarrow \quad l_{cr} = \sqrt{\frac{2c_3}{c_1}} \cdot \sqrt{\frac{EI}{P - \frac{2r}{a}}} \tag{4-68}$$

 $l_{cr}\,$ se înlocuiește în relația (4-70) $\Rightarrow\,f_{cr}$

$$f_{cr} = \frac{2c_3c_4}{c_1^2} \cdot \frac{EI}{\left(P - \frac{2r}{a}\right)^2 - \frac{2c_3c_5}{c_1^2}CEI} \cdot \left(q_0 - \frac{c_2}{c_4} \cdot \frac{P}{R}\right)$$
(4-69)

Forța critică se obține din relația:

$$\frac{d\pi}{df} = 0 \rightarrow P_{cr}$$

$$P_{cr} = \sqrt{\frac{2c_3c_4}{c_1^2}} \cdot \sqrt{\frac{EI}{f}q_0 + \frac{2c_5}{c_4}CEI + \frac{c_2^2c_3}{2c_1^2c_4}\left(\frac{EI}{fR}\right)^2 - \frac{c_2}{c_4}\frac{EI}{fR}\frac{2r}{a}} - \frac{c_2c_3}{c_1^2}\frac{EI}{fR} + \frac{2r}{a}}{c_4^2}$$
(4-70)

.

 $c \hat{a} n d \ R = \infty$

$$P_{cr} = \sqrt{\frac{2c_3c_4}{c_1^2}} \cdot \sqrt{\frac{EI}{f}q_0 + \frac{2c_5}{c_4}CEI + \frac{2r}{a}}$$
(4-71)

Dacă se neglijează efectul prinderilor m=0; Mr=0; C=0; rezultă următoarele relații:

$$l_{cr} = a_1 \sqrt{\frac{EI}{P}} \tag{4-72}$$

$$f_{cr} = a_2 \frac{EI}{P^2} \left(q - a_4 \frac{P}{R} \right)$$
(4-73)

$$P_{cr} = a_5 \sqrt{\frac{EI}{f}q} + a_7 \left(\frac{EI}{fR}\right)^2 - a_8 \frac{EI}{fR}$$
(4-74)

$$R_{min_{cr}} = \frac{a_4 P}{q - a_9 \frac{P^2}{EI} f}$$
(4-75)

$$q_{min_{cr}} = a_9 \frac{P^2}{EI} f + a_4 \frac{P}{R}$$
(4-76)

Tabel 4.3 $a_1 \div a_{11}$ – constante specifice fiecărui tip de imperfecțiune

Tip imperfecțiune Constante	А	В	С	D	Ε
a_1	9.4	13.7	20.3	23.8	3.43
a_2	15.1	8.4	13.0	8.5	5.1
a ₃	11.3	6.4	16.0	8.9	3.0
a4	± 1.00	0.00	± 0.42	0.0	0.0
a ₅	3.90	2.90	3.60	2.9	2.26
a_6	0.75	0.77	1.23	1.06	0.78
a7	3.00	0.00	0.600	0.0	0.00
a_8	± 7.56	0.00	±2.74	0.0	0.00
a 9	0.066	0.119	0.077	0.118	0.196
a ₁₀	3.354	2.534	3.999	2.993	2.00
a ₁₁	5.122	8.625	10.136	13.789	3.142

(Semnul + înseamnă că în curbă deplasarea se produce către exterior, - către interior).

Dacă se consideră o prismă de piatră spartă perfect elastică: $q_0=0$; q=Cy, atunci pentru forța critică și lungimea critică se vor obține:

$$P_{cr} = a_{10}\sqrt{CEI} + \frac{2r}{a} \tag{4-77}$$

$$l_{cr} = a_{II} \sqrt[4]{\frac{EI}{C}} \tag{4-78}$$

Pentru exemplificare, se vor determina constantele c_i respectiv K_i pentru imperfecțiunea de tip E, pentru celelalte tipuri de imperfecțiuni, aceste constante se determină similar.

$$K_1 = \frac{c_3}{c_1} \quad K_2 = \frac{c_4}{2 \cdot c_1} \quad K_3 = \frac{c_5}{c_1} \quad K_4 = \frac{c_6}{2 \cdot c_1} \quad K_5 = \frac{c_2}{2 \cdot c_1} : [63]$$
(4-79)

Ecuația pentru imperfecțiunea tip E, considerând funcția trigonometrică:

$$y_{AB} = f \cdot \sin\left(\pi \cdot \frac{x}{l}\right) \tag{4-80}$$

$$\frac{dy}{dx} = f \frac{\pi}{l} \cos \frac{\pi x}{l} \tag{4-81}$$

$$\frac{d^2 y}{dx^2} = -f \frac{\pi^2}{l^2} \sin \frac{\pi x}{l}$$
(4-82)

$$\int_{0}^{l} \left(\frac{d^{2}y}{dx^{2}}\right)^{2} dx = \int_{0}^{l} f^{2} \frac{\pi^{4}}{l^{4}} \sin^{2} \frac{\pi x}{l} dx = f^{2} \frac{\pi^{4}}{l^{4}} \frac{l}{2}$$
(4-83)

$$\int_{0}^{l} \left(\frac{dy}{dx}\right)^{2} dx = \int_{0}^{l} f^{2} \frac{\pi^{2}}{l^{2}} \cos^{2} \frac{\pi x}{l} dx = f^{2} \frac{\pi^{2}}{l^{2}} \frac{l}{2}$$
(4-84)

Cu relațiile de mai sus se pot determina coeficienții c_i

$$c_1 = \frac{l}{2f^2} \int_0^l y^{\prime 2} \, dx \tag{4-85}$$

$$c_1 = \frac{l}{2f^2} \int_0^l \left(f \frac{\pi}{l} \cos \frac{\pi x}{l} \right)^2 = \frac{l}{2f^2} \left(\frac{x}{2} + \frac{1}{2} \frac{l}{2\pi x} \int_0^l \cos \frac{2\pi x}{l} \right) = \frac{l}{2f^2} \left(\frac{l}{2} + \frac{1}{2} \frac{l}{2\pi x} \sin 2\pi |_0^1 \right) = \frac{\pi^2}{4} \quad (4-86)$$

$$c_1 = 2,467$$
 (4-87)

$$c_2 = -\frac{R}{2fl} \int_0^l y_R'^2 \, dx \tag{4-88}$$

$$c_{2} = \frac{R}{2fl} \int_{0}^{l} \left(\left(\frac{\left(\frac{l}{2}\right)^{2} - x^{2}}{2R} \right)^{2} \right) dx$$
 (4-89)

$$c_2 = 0$$
 (4-90)

$$c_3 = \frac{l^3}{2f^2} \left(\int_0^l Y''^2 \, dx - \int_0^l y_R''^2 \, dx \right) \tag{4-91}$$

$$c_{3} = \frac{l^{3}}{2f^{2}} \left(\int_{0}^{l} \left(\frac{\left(\frac{l}{2}\right)^{2} - x^{2}}{2R} + f \sin \frac{\pi x}{l} \right)^{\prime \prime 2} dx - \int_{0}^{l} \left(\frac{\left(\frac{l}{2}\right)^{2} - x^{2}}{2R} \right)^{\prime \prime 2} dx \right) = 24,352$$
(4-92)

$$c_4 = \frac{2}{fl} \int_0^l y \, dx \tag{4-93}$$

$$c_4 = \frac{2}{fl} f \int_0^l \sin\frac{\pi x}{l} = \frac{2}{\pi} \frac{fl}{fl} = \frac{2}{\pi} = 0,6366$$
(4-94)

$$c_5 = \frac{1}{2f^2 l} \int_0^l y^2 \, dx \tag{4-95}$$

$$c_5 = \frac{1}{2f^2l} f^2 \frac{l}{2} = \frac{1}{4} = 0.25 \tag{4-96}$$

$$c_6 = \frac{1}{f} \sum_0^l y = 2,00 \tag{4-97}$$

unde:

$$y_R = \frac{\left(\frac{l}{2}\right)^2 - x^2}{2R}$$
(4-98)

$$Y = y_R \pm y \tag{4-99}$$

4.4.2. Metoda echilibrului static

a. Stabilitatea în plan vertical

Metoda ecuațiilor diferențiale ale echilibrului este utilizată pentru determinarea condițiilor de stabilitate a căii fără joante și se bazează pe determinarea greutății cadrului șine traverse și a rezistenței la smulgere din prismă, deformarea căii fiind posibilă doar în plan orizontal, pentru o anumită valoare a efortului axial de compresiune.

Se consideră o grindă de lungime finită l, așezată pe un plan rigid care îi permite deformarea în plan vertical.

Valoarea momentului încovoietor în grindă se poate determina cu relația: [64]

$$M_x = N \cdot y - \frac{1}{2}g \cdot x(l-x) \tag{4-100}$$

unde:

N - forța de compresiune datorată temperaturii

g - greutatea pe unitate de lungime a grinzii (a cadrului șine-traverse), inclusiv rezistența șa smulgere a căii din prismă

x și y - coordonatele secțiunii grinzii

Figura 4.59 Grinda *l* deformată în plan vertical datorită efortului axial N [64]

$$\frac{d^2y}{dx^2} = -\frac{M_x}{E \cdot I} \tag{4-101}$$

cu notația:

$$\frac{N}{E \cdot I} = \beta^2 \tag{4-102}$$

se poate scrie ecuația diferențială a grinzii încovoiate:

$$\frac{d^2y}{dx^2} + \beta^2 \cdot y = \frac{g \cdot x(l-x)}{2 \cdot E \cdot I}$$
(4-103)

Integrala generală a acestei ecuații este de forma:

$$y = C_1 \cdot \sin\beta \cdot x + C_2 \cdot \cos\beta \cdot x + \frac{g \cdot x}{2N}(l - x) + \frac{E \cdot I \cdot g}{N^2}$$
(4-104)

Pentru a determina constantele C_1 și C_2 , se impun condițiile:

$$x = 0, y = 0, x = \frac{l}{2}, \frac{dy}{dx} = 0,$$

$$c_1 = -\frac{E \cdot l \cdot g}{N^2} t g \frac{\beta \cdot l}{2}$$
(4-105)

rezultă:

$$c_2 = -\frac{E \cdot I \cdot g}{N^2} \tag{4-106}$$

Astfel, relația 4-88 se transformă în:

$$y = -\frac{E \cdot I \cdot g}{N^2} \left(tg \frac{\beta \cdot l}{2} sin\beta \cdot x + cos\beta \cdot x - 1 \right) + \frac{g \cdot x}{2N} (l - x)$$
(4-107)

Cu notația: f - săgeata la mijlocul grinzii înlocuind, se obține:

$$f = \frac{g \cdot l^2}{8N} - \frac{E \cdot l \cdot g}{N^2} \cdot \left(\frac{1}{\cos\frac{\beta \cdot l}{2}} - 1\right)$$
(4-108)

și

$$g = \frac{f \cdot N}{\frac{l^2}{8} - \frac{E \cdot I}{N} \cdot \left(\frac{1}{\cos \frac{\beta \cdot l}{2}} - 1\right)}$$
(4-109)

valoarea lui g este zero pentru: $\frac{\beta \cdot l}{2} = \frac{\pi}{2}$

prin urmare, condiția de echilibru devine:

$$N_{min} = N_f = \beta^2 \cdot E \cdot I = \frac{\pi^2 \cdot E \cdot I}{l^2} = 9,87 \frac{E \cdot I}{l^2}$$
(4-110)

Relația 4-94 reprezintă valoarea forței critice de flambaj a lui Euler, pentru o bară solicitată la compresiune axială.

În cazul în care se impune valoarea maximă pentru N, se obține lungimea limită a barei:

$$l_f = \pi \sqrt{\frac{EI}{N_f}} \tag{4-111}$$

Rezultate apropiate se obțin folosind lucrul mecanic al forțelor care solicită bara: dacă se consideră că bara părăsește poziția de echilibru și că în afară de forțele N_f care o comprimă axial, se mai ia în considerare și forța distribuită q, se poate stabili ecuația axei deformate (bara este considerată o grindă simplu rezemată la capete). Momentul încovoietor fără influența forței axiale:

Figura 4.60 Solicitarea și poziția grinzii deformate [64]

y - săgeata grinzii în secțiunea x

Ecuația diferențială a grinzii medii deformate:

$$\frac{d^2x}{dx^2} = -\frac{q \cdot x \cdot (l-x)}{2 \cdot E \cdot I} \tag{4-113}$$

Integrând succesiv, rezultă:

$$\frac{dy}{dx} - tg\theta_0 = -\frac{q \cdot x^2}{2 \cdot E \cdot I} \cdot \left(\frac{l}{2} - \frac{x}{3}\right)$$
(4-114)

$$y - y_0 - x \cdot tg\theta_0 = -\frac{q \cdot x^2}{24 \cdot E \cdot l} \cdot (2 \cdot l - x)$$
 (4-115)

 θ_0 - unghiul format de tangenta pe reazem la curba axei deformate, cu direcția axei nedeformate y₀ - deplasarea reazemului după deformarea barei $y_0 = 0$ datorită faptului că reazemul nu se deplasează perpendicular pe direcția de acționare a forței N_f

Pentru a determina unghiul θ_0 , folosind simetria, se poate scrie: pentru

$$x = \frac{l}{2}, tg\theta = 0 \tag{4-116}$$

ceea ce înseamnă

$$tg\theta_0 = \frac{q \cdot l^3}{24 \cdot E \cdot I} \tag{4-117}$$

ecuația axei deformate:

$$y = \frac{q \cdot x}{24 \cdot E \cdot l} \left(l^3 - 2 \cdot l \cdot x^2 + x^3 \right)$$
(4-118)

Presupunând că datorită forței Nf care comprimă bara, capetele acesteia se deplasează, ele se vor apropia cu distanța:

Figura 4.61 Deplasarea capetelor grinzii sub acțiunea N_f[64]

Notând:

L_i - lucrul mecanic interior

Le - lucrul mecanic exterior

Echilibrul barei se poate scrie:

 $L_i = L_e$

$$L_{i} = \frac{1}{2} \cdot E \cdot I \cdot \int_{0}^{l} \left(\frac{d^{2}y}{dx^{2}}\right)^{2} \cdot dx = \frac{q^{2} \cdot l^{5}}{240 \cdot E \cdot I}$$
(4-119)

$$L_e = N_f \cdot u = \frac{1}{2} \cdot N_f \cdot \int_0^l \left(\frac{dy}{dx}\right)^2 \cdot dx = \frac{17 \cdot q^2 \cdot l^7 \cdot N_f}{0.7 \cdot (240 \cdot E \cdot l)^2}$$
(4-120)

rezultă:

$$N_f = \frac{0.7 \cdot 240 \cdot E \cdot I}{17 \cdot l^2} = 9,88 \cdot \frac{E \cdot I}{l^2}$$
(4-121)

Comparând relația de mai sus cu cea obținută anterior, rezultă o diferență de aproximativ 0,1 %, cele două relații fiind aproximativ egale.

Deficiența calculului diferențial cu aplicație în cazul căii fără joante constă în:

- neluarea în considerare a scăderii efortului de compresiune prin deformare în zona deformată a barei

- se omite faptul că porțiunile rectilinii ale barei din vecinătatea zonei deformate, se deplasează

- lungimea barei este considerată egală cu lungimea undei

Lipsurile acestei metode de calcul au fost înlocuite cu alte formule de calcul mai mult sau mai puțin empirice, o rezolvare mai completă a problemei stabilității căii fără joante putând fi dată de metoda energetică de calcul.

Comparând greutățile a 3 tipuri de traverse: monobloc T17, metalică Y și cadru,

Tabel 4.4 Greutăți traverse

Tip traversă	Monobloc T17	Metalică Y	Cadru
Greutatea kg	262	143	900
%	100	55	345

Aceste tipuri de traverse asigură stabilitatea în plan vertical, fiind considerate suprastructuri de tip greu, pierderea stabilității căii fiind posibilă doar în plan orizontal.

b. Stabilitatea în plan orizontal [63]

$$M_m = \int_0^x m dx = \frac{2r}{a} \int_0^x y' dx = \frac{2r}{a} y$$
(4.122)

$$m = \frac{2M_S}{a} = \frac{2r}{a}y' \tag{4.123}$$

$$M_{x} = Py - M_{A} - \left(\frac{qh}{2} - \frac{M_{A}}{h}\right)x + \frac{q}{2}x^{2} - \frac{2r}{a}y$$
(4-124)

4.4.3. Metoda aproximativă

Dintre metodele elaborate cu scopul de a stabili relații care să aprecieze gradul de siguranță a stabilității CFJ, precum și determinarea corectă a temperaturii de fixare, se va prezenta metoda prof. dr. ing. Nemesdy Ervin. Această metodă este aproximativă și acoperitoare, dar încercările experimentale, efectuate și la noi în țară, au scos în evidență că rezultatele pe care le furnizează se apropie foarte mult de realitate.

Determinarea relațiilor de calcul prin această metodă se împarte în 3 etape, punându-se în evidență treptat, factorii principali care influențează în mod hotărâtor stabilitatea în plan orizontal.

Figura 4.62 Schema de calcul [24]

Ipoteze simplificatoare :

- imperfecțiunea geometrică se aproximează cu arce de parabolă de gradul II;

- rezistența la deplasarea laterală a căii se consideră constantă (q) și uniform repartizată pe lungimea imperfecțiunii geometrice, unde deplasările laterale sunt suficient de mari (figura 5.25).

- momentul rezistent în prinderi se consideră proporțional cu rotirea, unghiul de rotire al șinei în raport cu traversa (ε) este egal cu unghiul dintre tangenta la șina deformată (M = r ε = ry').

Forța critică de pierdere a stabilității are deci trei componente de bază :

$$P_{cr} = P_s + P_C + P_q \tag{4-125}$$

4.4.3.1. Stabilitatea în aliniament

Oricâtă atenție se va acorda în execuție și în timpul exploatării, o linie nu va putea fi pozată și menținută niciodată perfect dreaptă. Întotdeauna vor exista excentricități și mici defecte față de ax. Cele mai frecvente sunt defectele de tipul A, B, E. Cel mai periculos pentru stabilitatea căii este defectul de tip E. Defectul de tip A apare în special în curbe. Asigurarea stabilității căii este condiționată în principal de următorii trei parametri:

- rigiditatea proprie a șinelor față de axa verticală (2EI);

- rigiditatea cadrului șine- traverse, datorită rezistențelor ce se opun rotirilor șinei în prinderi (M= $r \Delta \phi$); - rezistența la deplasarea laterală a căii (q).

Forța critică de pierdere a stabilității (P_{cr}) va fi echilibrată la limită de forțele de rezistență determinate de rigiditatea proprie a șinelor (P_s), rigiditatea cadrului (P_c) și reacțiunea prismei de piatră spartă (P_q):

a. Considerarea rigidității celor două fire a căii

Se consideră șinele libere (fără a fi fixate pe traverse) iar legăturile de la capetele defectului de așezare conform figurii 4.63:

Figura 4.63 Sistemele de bază admise în calculul flambajului căii pentru tipurile de defecte de așezare E, A și B. [24]

Figura 4.64 Bara dreaptă supusă la compresiune centrică [62]

u - deplasarea capătului B al barei în urma încovoierii (figura 4.64)

Ținând seama de micile deplasări:

$$du = dx(1 - \cos\varphi) = 2\sin^2\frac{\varphi}{2}dx \cong 2\left(\frac{\varphi}{2}\right)^2 dx \cong \frac{1}{2}\left(\frac{dy}{dx}\right)^2 dx$$
(4-126)

$$u = \frac{1}{2} \int_0^l \left(\frac{dy}{dx}\right)^2 dx \tag{4-127}$$

$$\delta U_e = \frac{1}{2} P \int_0^l \left(\frac{dy}{dx}\right)^2 dx \tag{4-128}$$

Relația 4-128 devine:

$$\frac{P}{2} = \int_0^l \left(\frac{dy}{dx}\right)^2 dx = \frac{1}{2} \int_0^l EI\left(\frac{d^2y}{dx^2}\right)^2 dx$$
(4-129)

Forța critică:

$$P_{cr} = \frac{\int_{0}^{l} EI\left(\frac{d^{2}y}{dx^{2}}\right)^{2} dx}{\int_{0}^{l} \left(\frac{dy}{dx}\right)^{2} dx}$$
(4-130)

În cazul în care curba după care bara se deformează este reprezentată sub forma y(x), pentru bara articulată la ambele capete, deformata exactă va avea forma:

$$y = f \sin \frac{\pi x}{l} \tag{4-131}$$

pentru a ajunge la expresia forței critice, avem nevoie de:

$$\frac{dy}{dx} = f \frac{\pi}{l} \cos \frac{\pi x}{l} \tag{4-132}$$

$$\frac{d^2 y}{dx^2} = -f \frac{\pi^2}{l^2} \sin \frac{\pi x}{l}$$
(4-133)

$$\int_{0}^{l} \left(\frac{d^{2}y}{dx^{2}}\right)^{2} dx = \int_{0}^{l} f^{2} \frac{\pi^{4}}{l^{4}} \sin^{2} \frac{\pi x}{l} dx = f^{2} \frac{\pi^{4}}{l^{4}} \frac{l}{2}$$
(4-134)

$$\int_{0}^{l} \left(\frac{dy}{dx}\right)^{2} dx = \int_{0}^{l} f^{2} \frac{\pi^{2}}{l^{2}} \cos^{2} \frac{\pi x}{l} dx = f^{2} \frac{\pi^{2}}{l^{2}} \frac{l}{2}$$
(4-135)

P_{cr} devine:

- pentru defectul A:

$$P_{cr} = \frac{f^2 \frac{\pi^4 l}{l^4 2}}{f^2 \frac{\pi^2 l}{l^2 2}} = \frac{\pi^2 EI}{l^2}$$
(4-136)

relație care corespunde cu sarcina critică a lui Euler.

În conformitate cu teoria lui Euler privind flambajul ''ideal'':

$$P_{cr} = \frac{\pi^2 EI}{(l_f)^2}$$
(4-137)

Notând I=2I_y și luând din figura 4.85 lungimile de flambaj, rezultă:

- pentru defectul E: $P_s = \frac{\pi^2 EI}{l^2} \cong 10 \frac{EI}{l^2}$ (4-138)

$$P_s = \frac{\pi^2 EI}{(0.5l)^2} \cong 40 \frac{EI}{l^2}$$
(4-139)

- pentru defectul B:
$$P_s = \frac{\pi^2 EI}{(0.35l)^2} \cong 80 \frac{EI}{l^2}$$
 (4-140)

b. Considerarea rigidității șinelor și a cadrului:

Presupunem că pe lungimea defectului de așezare cadrul șine-traverse este liber de orice legătură sau rezistență cu excepția prinderilor care sunt strănse reglementar. Solicitat la compresiune cadrul se va deforma, deformare care va avea drept efect rotitea șinelor în prinderi și ca atare apariția în fiecare prindere a unui moment rezistent M=r $\Delta \phi$. Momentul rezistent (M) este proporțional cu rotirea, iar unghiul de rotire al șinei în raport cu traversa ($\Delta \phi$) este egal cu unghiul dintre tangenta la șina deformată în dreptul prinderii Si poziția acesteia înainte de deformare.

$$M = r \cdot \Delta \varphi = r \cdot y' \tag{4-141}$$

Introducerea într-o relație de calcul a efectelor rezistente cauzate de rotirea în prinderi necesită înlocuire momentelor concentrate din dreptul fiecărei traverse cu momente repartizate care au același efect. În cazul defectului de așezare E momentul repartizat se determină astfel:

$$m = \frac{2M}{a} \tag{4-142}$$

unde M este momentul rezistent pe unul din capetele traversei.

$$m = \frac{2r}{a}y' \tag{4-143}$$

Într-o secțiune oarecare momentul la care este solicitat cadrul în planul orizontal va fi:

$$M = Py - \int_{0}^{m} m dx = Py - \frac{2r}{a} \int_{0}^{x} y' dx$$
(4-144)

sau

$$M = \left(P - \frac{2r}{a}\right)y \tag{4-145}$$

Ecuația diferențială a deformatei cadrului rezultă:

$$y'' = -\frac{M}{EI} = -\frac{1}{EI} \left(P - \frac{2r}{a} \right) y \tag{4-146}$$

Prin integrare se obține:

$$P_{cr} = \frac{\pi^2 EI}{l^2} + \frac{2r}{a}$$
(4-147)

Se observă că primul termen reprezintă valoarea critică a solicitării aferentă rigidității proprii a șinelor. Al doilea termen exprimă valoric participarea rigidității ca factor stabilizator.

Efectul stabilității cadrului depinde doar de caracteristica de rigiditate a acestuia și de distanța dintre traverse. La toate tipurile de defecte de așezare vom avea:

$$P_c = \frac{2r}{a} \tag{4-148}$$

c. Considerarea reacțiunii prismului de piatră spartă la deplasarea laterală a caii

Pe lângă rigiditatea proprie a celor două șine și rigiditatea cadrului, se introduce în calcul și reacțiunea prismului de piatră spartă la deplasarea laterală a căii. Această reacțiune este cel mai important factor stabilizator al liniei. Forța critică totală de pierdere a stabilității căii va fi:

$$P_{cr} = \gamma \frac{EI}{l^2} + \frac{2r}{a} + P_q \tag{4-149}$$

unde

$$\gamma = \left(\frac{\pi l}{l_f}\right)^2 \tag{4-150}$$

l- lungimea imperfecțiunii geometrice

l_f - lungimea de flambaj (figura 4.63).

Pentru determinarea lui P_q se admit următoarele ipoteze simplificatoare:

- undele defectelor de așezare se consideră arce de parabolă;

- reacțiunile transversale ale prismei de piatră spartă se consideră că acționează doar pe acea porțiune a undei defectului a carei deplasare mobilizează valoarea maximă a lui q;

- acțiunea cadrului șine-traverse asupra prismului de piatră spartă se materializează prin două forțe (P_q) , fiecare dintre ele acționând după direcția tangentei la unda deformatei în punctul unde înclinarea acesteia are valoarea maximă.

Figura 4.65 Ipotezele pentru diferite defecte de așezare [24]

În figura 4.65 sunt ilustrate ipotezele pentru defectele de tip E, A și B. La limita pierderii stabilității se poate scrie:

$$R=Q$$
 (4-151)

dar:

$$R = 2P_q \sin\alpha \approx 2P_q t g \alpha \tag{4-152}$$

sau:

$$P_q = \frac{Q}{2tg\alpha} \tag{4-153}$$

Prin înlocuirea vlorilor pentru Q se obține efortul de compresiune critic la care calea își pierde stabilitatea:

$$P_{cr} = \alpha \cdot \frac{E \cdot I}{l^2} + 2 \cdot \frac{r}{a} + \beta \cdot q \cdot \frac{l^2}{f}$$
(4-154)

 α , β - coeficienți care depind de tipul imperfecțiunii geometrice. Analizând figura 4.65, punctul minim (l_{cr}) rezultă:

$$\frac{dP_{cr}}{dl} = \frac{d\theta(l)}{dl} = 0 \quad \to \ l_{cr} \tag{4-155}$$

$$l_{cr} = \sqrt[4]{\frac{\alpha}{\beta}} \cdot \sqrt[4]{\frac{EI \cdot f}{q}} = \gamma \cdot \sqrt[4]{\frac{EI \cdot f}{q}}$$
(4-156)

$$f_i < f_k \implies l_{cr(i)} < l_{cr(k)} \qquad \gamma = \sqrt[4]{\frac{\alpha}{\beta}}$$

$$(4-157)$$

Valoarea minimă a funcției $P_{cr,min}=P_{cr}(l_{cr})$:

$$P_{cr,\min} = k_s \frac{1}{\gamma^2 \sqrt[4]{\frac{EI^2 f^2}{q^2}}} + k_c + k_q \frac{\gamma^2 \sqrt[4]{\frac{EI^2 f^2}{q^2}}}{f}$$
(4-158)

DI² c²

Efectuând calculele :

$$P_{cr,\min} = \left(\frac{\alpha}{\gamma^2} + \beta\gamma^2\right) \cdot \sqrt{\frac{EI}{f}q} + \frac{2r}{a} = \delta\sqrt{\frac{EI}{f}q} + \frac{2r}{a}$$
(4-159)

$$\delta = \frac{\alpha}{\gamma^2} + \beta \gamma^2 \quad ; \quad \delta = 2\sqrt{\alpha\beta} \quad ; \quad P_{cr,\min} = \delta \sqrt{\frac{EI}{f}q} + \frac{2r}{a} \tag{4-160}$$

Coeficienții γ și δ depind de tipul imperfecțiunii geometrice (tabel 4.5).

T 1 1 4 5 C C '	0		1	· · · ·
Label 4 5 Coeffcien	t11 0 K	nentrii trei	finiiri de	imnerfectiuni.
	μι ω, p,	, pendu del	upun uc	impericeuum.

Imperfecțiune Coeficient	σ	β	γ	δ
E	10	1/8	2,99	2,24
А	40	1/10	4,77	4,00
В	80	1/39	7,47	2,87

4.4.3.2 Stabilitatea în curbă

Deformata liniei după pierderea stabilității în curbă ia forma unei deripări spre exteriorul acesteia și este cauzată de regulă de un defect de așezare de tip A.

Figura 4.66 Deformata liniei [24]

Forța critică de pierdere a stabilității se va calcula cu relația:

$$P_{cr,R} = \frac{\alpha \frac{EI}{l^2} + \frac{2r}{a} + \beta \frac{ql^2}{f}}{1 + \beta \frac{l^2}{fR}}$$
(4-161)

Spre deosebire de relația lui P_{cr} pentru defectul A în aliniament, în această ultimă relație în loc de q se introduce q_r denumită **rezistență transversală redusă**. Această substituire se explică astfel: se admite o linie în curbă de rază R (neglijându-se existența curbelor de racordare) nedeformată (figura 4.66).

Pentru echilibrarea forțelor de compresiune P ce se dezvoltă în șine, datorită creșterii temperaturii, se mobilizează o parte din rezistența transversală ce se opune deplasării căii, notată cu q' și care se determină astfel:

$$Q = 2P\sin\frac{\varphi}{2} \tag{4-162}$$

$$Q = q'l = q'R\phi \tag{4-163}$$

$$2P\sin\frac{\varphi}{2} = q'R\alpha \tag{4-164}$$

de unde:

$$q' = \frac{2P\sin\frac{\varphi}{2}}{R\varphi} \tag{4-165}$$

Astfel, partea din rezistența transversală opusă de piatra spartă dedicată asigurării stabilității este $q_r = q-q'$. Din relația (4-169) se observă că cu cât raza curbei este mai mică, participarea pietrei sparte la echilibrul static al liniei este mai mare iar pericolul de pierdere a stabilității crește. Aceasta explică de ce în curbe sub anumite valori ale razelor, șinele nu se sudează.

Figura 4.67 Schema de calcul pentru determinarea rezistenței q' [22]

$$Q = q \cdot l$$
 $Q = q \cdot R \cdot \varphi$ $N = 2\sin\frac{\varphi}{2}P$ (4-166)

Din egalitatea $Q = N \Rightarrow$

$$q' = 2 \cdot \frac{\sin\left(\frac{\varphi}{2}\right)}{\varphi} \cdot \frac{P}{R} \qquad \qquad q' \cong \frac{P}{R} \qquad (4-167)$$

$$\Rightarrow P_{cr} = \alpha \cdot \frac{E \cdot I}{l^2} + 2 \cdot \frac{r}{a} + \beta \cdot \frac{l^2}{f} \cdot (q - q')$$
(4-168)

În curbă rezistența laterală a prismei se calculează cu valoarea redusă qr, deoarece o parte a rezistenței laterale se consumă la păstrarea echilibrului static.

În curbe, cea mai frecventă imperfecțiune este cea de tip A - în curbe cu raze mici și de tip C în curbe cu raze mari. Este posibilă și imperfecțiunea de tip E în curbe cu raze foarte mari. În aliniament sunt posibile toate cele trei tipuri amintite mai sus. Relația generală este:

$$P_{crR} = \frac{\alpha \cdot \frac{E \cdot I}{l^2} + 2 \cdot \frac{r}{a} + \beta \cdot q \cdot \frac{l^2}{f}}{1 + \beta \frac{l^2}{fR}}$$
(4-169)

Pentru aliniament, $R \rightarrow \infty$, relația P_{cr} devine:

$$P_{cr} = \alpha \cdot \frac{E \cdot I}{l^2} + 2 \cdot \frac{r}{a} + \beta \cdot q \cdot \frac{l^2}{f}$$
(4-170)

 $P_{cr} = f(l,f) - este funcție de două variabile: l și f;$

r – coeficient care caracterizează prinderea șinei pe traversă (prindere cu buloane strânse la moment prescris, respectiv prinderi slabite)

a – distanța dintre axele traverselor;

 α,β – coeficienți care depind de tipul imperfecțiunii geometrice;

q – rezistența opusă de prisma de piatră spartă la deplasarea laterală a căii;

EI – rigiditatea celor două fire de șină în planul vertical

 $EI = E \cdot 2I_v$

Constantele care intră în relația lui Pcr:

 $\begin{array}{l} a = 55...70 \text{ cm}; \\ q = 5...7 \text{ daN/cm} \\ q = q_t + q_l + q_c = (0, 5...0, 6)q + (0, 3...0, 4)q + (0, 05...0, 10)q \ ; \\ q = 5...7 \text{ daN/cm} \end{array}$

În urma diagnosticării tehnice a căii se stabilesc tronsoanele omogene (tronsoane unde constantele α , β , a, r, q, EI nu își schimbă valoarea).

S-a văzut că aceste constante pot avea diferite valori în funcție de suprastructura căii (șine, traverse, prisme, prinderi).

$$P_{cr} = \Phi(l,f)$$

Dacă pentru o anumită valoare:

$$f = f_i \Longrightarrow P_{cr} = \Phi(l)$$

otine:
$$f = f_i$$

Reprezentând grafic funcția $\Phi(1)$, se obține:

Figura 4.68 Variația forței critice de pierdere a stabilității pentru diferite săgeți [24]

$$f_i < f_k \Longrightarrow \begin{cases} P_{cr,\min(i)} > P_{cr,\min(k)} \\ l_{cr(i)} < l_{cr(k)} \end{cases} \end{cases}$$

Ținând seama de efortul axial de compresiune din temperatură :

$$P_{\max,t} = \alpha E A \Delta t_{\max} \qquad \Delta t_{\max} = t_{\max} - t_n$$

Coeficient de siguranță : $c = \frac{P_{cr,\min}^{(f_{\max,prob})}}{P_{\max,t}} > 1,3 \div 1,5$

 $P_{cr,min}^{(f_{max,prob})}$ = efortul critic minim pentru săgeata maximă probabilă pentru tipul de imperfecțiune considerat.

Figura 4.69 Forța critică de pierdere a stabilității P_{cr} (l,f)

Figura 4.70 Forța critică minimă comparativ cu efortul maxim din temperatură [24]

Dacă pentru o imperfecțiune geometrică se înregistrează f = $f_{max,prob}$ linia este stabilă dacă $l > l_{cr}$ și $c \cdot P_{max,t} \le P_{cr,min}$

$$\begin{cases} l > l_{cr} \\ c \cdot P_{max,t} \le P_{cr,min} \end{cases} \text{ pentru } f = f_{max,prob} \Longrightarrow \text{ tronson CFJ stabil.}$$

săgeata critică calculată pentru $l=l_{cr}$:

$$\Rightarrow f_{cr} = \frac{\delta^2(EI) \cdot q}{\left(P_{cr,\min} - \frac{2r}{a}\right)^2}$$
(4-171)

Figura 4.71 Aproximarea imperfecțiunilor [24]

$$P_{cr,R} = \frac{\frac{4\pi^{2} EI}{l^{2}} + \frac{2r}{a} + \frac{3ql^{2}}{32f}}{1 + \Psi(\alpha) \cdot \frac{3l^{2}}{32 \cdot f \cdot R}}$$
(4-172)
$$\Psi(\varphi) = \frac{2\sin\frac{\varphi}{2}}{\varphi}$$
(4-173)

 $\varphi \iff \Psi(\varphi) \approx 1$

Pentru f = f_i (constant) :
$$\frac{dP_{cr,R}(l)}{dl} = 0 \implies l_{cr}$$
$$P_{cr,R,\min} = P_{cr,R}(l_{cr})$$

4.4.4. Metoda numerică

Modelarea matematică a cadrului format din șine și traverse, înglobat în prisma de piatră spartă, după modelul chinezesc [65] este prezentată pe elemente în cele ce urmează.

Figura 4.72 include rezemarea grinzii (șinei) (caracterizată de modulul de elasticitate și momentul de inerție), pe traverse, prinderile fiind luate în considerare cu ajutorul resoartelor. Înglobarea traverselor în piatra spartă este modelată tot sub forma unor resoarte cu coeficienți de elasticitate specifici.

Figura 4.72 Șina așezată pe traverse, înglobate într-un pat elastic de coeficient [5]

Figura 4.73 Reprezentarea elementelor componente ale modelării [5]

Figura 4.74 Distribuția presiunilor sub talpa traversei [65]

Figura 4.75 Distribuția presiuniilor sub talpa traversei, longitudinal căii [65]

Rigiditatea pietrei sparte poate fi calculată cu relația [65]:

$$K_b = \frac{2(l_e - l_b)tg\alpha}{ln\left[\left(\frac{a}{l_b}\right) \cdot (l_b + 2h_b tg\alpha)/(a + 2h_b tg\alpha)\right]} E_b$$
(4-174)

unde

 E_b - modulul de elasticitate al pietrei sparte Înălțimea zonelor de suprapunere a presiunilor rezultate pentru fiecare traversă:

$$h_0 = h_b - \frac{a - l_b}{2tg\alpha} \tag{4-175}$$

a - distanța dintre traverse

Pentru modelarea patului elastic reprezentat de piatra spartă se introduc două constante: K_b - rigiditatea la forfecare

 $C_{\rm w}$ - amortizarea forfecării

Figura 4.76 Modelarea întregului sistem șine - traverse [65]

Rigiditatea portantă a pietrei sparte este alcătuită din două elemente:

$$K_b = \frac{K_{b1}K_{b2}}{K_{b1}+K_{b2}} \tag{4-176}$$

unde:

$$K_{b1} = \frac{2(a-l_b)tga}{\ln\left[\left(\frac{a}{l_b}\right)/(l_b(a+l_s-l_b))\right]} E_b$$
(4-177)

$$K_{b2} = \frac{l_s(l_s - l_b + 2a + 2h_b tg\alpha)tg\alpha}{l_b - l_s + 2h_b tg\alpha} E_b$$

$$(4-178)$$

		10001 1.0 V	dioffie funce in euleur [05]
Parametru	Notație	Valoare	Unitate măsură
Е	Modul de elasticitate al șinei	$2,059 \cdot 10^{11}$	N/m ²
Ι	Moment de inerție șină	3,217.10-5	m ⁴
E _b	Modul deformație balast	$1,1.10^{8}$	Ра
C _b	Amortizare balast	5,88·10 ⁴	Ns/m
K _w	Rigiditate la forfecare balast	7,84.107	N/m
C_w	Amortizare forfecare balast	8,0·10 ⁴	Ns/m
α	Unghi distribuție presiune balast	35	0
h _b	Înălțimea prismei sub traversă	0,45	m
a	Distanța între axele traversei	0,55	m
l _b	Lățimea traversei	0,273	m
le	Lungime jumătate traversă	0,95	m

Tabel 4.6 Valorile luate în calcul [65]

Pentru a lua în calcul rezistența balastului la deplasare transversală, elementele patului elastic vor fi adăugate și la capetele și lateralele traversei.

Considerând densitatea prismei de 1800 kg/m³, modulul de elasticitate al prismei 110 MPa și modulul substratului de fundație 90MPa/m, conform normelor chinezești, s-a obținut rigiditatea balastului 137,75 MN/m, iar a substratului 77,5 MN/m.

4.4.5. Comportarea precritică, critică și postcritică a căii

Tendința de reducere a greutăților elementelor construcțiilor precum și reducerea consumului de material impun calculele la stabilitate ca și criteriu principal în proiectare.

Cercetătorul olandez Koiter a dezvoltat în lucrarea sa de doctorat teoria stabilității structurilor continue. Acesta ia în considerare o neliniaritate de gradul doi a deformațiilor, rezultând energia potențială de grad patru. Koiter a studiat influența fiecărui termen a potențialului: $\pi = \pi_1 + \pi_2 + \pi_3 + \pi_4$: potențialul π_1 este zero pentru cazul în care structura este în echilibru, din potențialul π_2 se determină încărcarea critică de bifurcare; π_3 și π_4 vor fi utilizate pentru determinarea tipului de instabilitate al punctului critic și a comportării postcritice inițiale. Astfel, nu toate structurile se comportă în punctul critic după conceptul eulerian, ci, în raport cu π_3 și π_4 pot prezenta stări postcritice stabile sau instabile. Studiind tipurile de instabilitate care pot sa se producă, Koiter a găsit că punctele critice pot fi nesimetrice când sunt instabile, simetrice stabile sau simetrice instabile. Comportarea postcritică a structurii este definită de tipul de punct critic iar influența imperfecțiunilor geometrice depinde de asemenea de tipul de instabilitate al punctului critic. [66], [67]

Figura 4.77 Tipuri de instabilitate [66]

Teoria eleborată de Koiter a stat la baza definirii conceptului comportării postcritice, care susține că pe lângă determinarea încărcării critice șă fie definit și tipul de instabilitate pentru a avea o privire completă asupra gradului de sensibilitate la imperfecțiunile geometrice ale structurii.

În ceea ce privește structura formată de șine și traverse, înglobată în prisma de piatră spartă, aceasta poate lucra în trei stări diferite de echilibru: precritic, critic și postcritic.

Starea de echilibru precritic este definită de intervalul de timp scurs între faza în care încărcările exterioare încep să se menifeste asupra structurii și momentul în care se atinge valoarea critică - valoare la care structura este capabilă să iasă din starea de echilibru, datorită fenomenelor de instabilitate. [68] În acest stadiu deplasările sunt mici, iar comportarea precritică se consideră liniară.

Starea de echilibru critic necesită determinarea stadiilor limită deci a punctelor critice de pierdere a stabilității. În cazul căii fără joante este vorba de forța critică minimă caracetrizată de lungimea critică, respectiv săgeata critica pentru imperfecțiunea geometrică considerată.

Se consideră poziția deformată Δ și o poziție deformată auxiliară Δ ', foarte apropiată de Δ ; după cum $\pi(\Delta')$ este mai mare, mai mică sau egală cu $\pi(\Delta)$, echilibrul în poziția Δ va fi stabil, instabil sau critic.

 $\pi(\Delta)$ - energia potențială în poziția Δ ; $\pi(\Delta')$ - energia potențială în poziția Δ' .

Figura 4.78 Poziția deformată [68]

Pentru ca poziția Δ să corespundă stării de echilibru critic este necesar ca poziția Δ ' să reprezinte o poziție de echilibru, deci deformata auxiliară f să satisfaca ecuațiile de echilibru:

$$\frac{\delta\Pi}{\delta\alpha_1} = 0; \, \frac{\delta\Pi}{\delta\alpha_2} = 0; \, \dots \tag{4-179}$$

$$d_{11}\alpha_1 + d_{12}\alpha_2 + \dots + d_{1n}\alpha_n = 0$$

$$d_{21}\alpha_1 + d_{22}\alpha_2 + \dots + d_{2n}\alpha_n = 0$$
(4-180)

$$d_{n1}\alpha_1 + d_{n2}\alpha_2 + \dots + d_{nn}\alpha_n = 0$$

$$d_{ij} = \int Elf_i''(x) \cdot f_j''(x)dx - \int Nf_i'(x) \cdot f_j'(x)dx$$
(4-181)

 α_1, α_2 - parametri nedeterminați

Condiția de existență a unor soluții nebanale $f \neq 0$ reprezintă ecuația de echilibru critic:

D = 0 (D este determinantul coeficienților necunoscutelor).

Starea de echilibru postcritic - în practică multe structuri își pierd stabilitatea la valori ale încărcărilor mult sub cele critice determinate în timp ce altele au capabilitatea de a suporta încărcări mai mari decât cele critice.

După pierderea stabilității, în zona imperfecțiunilor geometrice apare șerpuirea căii, linia se alungește pe această porțiune și se produce o diminuare a efortului de compresiune cu o anumită cantitate P, luând naștere o nouă poziție de echilibru care este improprie circulației (săgeți de până la 50 cm pe lungimi de 3÷6 m). [68]

După pierderea stabilității, pe locul imperfecțiunilor geometrice apare linia șerpuită, deci linia se alungește și se produce o scădere a efortului de compresiune cu o anumită cantitate ΔP , apărând o nouă poziție de echilibru care este însă improprie pentru circulație (f = 50 cm, l = 4-6 m).

Figura 4.79 Pierderea stabilității căii în plan orizontal [24]

Intervalul de temperatură necesar pierderii stabilității se poate determina cu relațiile de mai jos:

$$\Delta t_{\rm cr} = \sqrt{\frac{8,7 \cdot I \cdot q}{\alpha^2 \cdot A^2 \cdot E \cdot f}} \quad \left[{}^{\circ} C\right] \qquad \text{aliniament} \tag{4-182}$$

$$\Delta t_{\rm cr} = \frac{8 \cdot I}{\alpha A R f} + \sqrt{\left(\frac{8 \cdot I}{\alpha A R f}\right)^2 + \frac{16 \cdot I \cdot q}{\alpha^2 \cdot A^2 \cdot E \cdot f}} \quad \left[{}^{\circ} C\right] \qquad \text{curb}\check{a} \qquad (4-183)$$

unde $I = 2I_y$.

4.4.6. Detenta de efort în urma pierderii stabilității căii

Detenta de efort în urma pierderii stabilității căii fără joante se determină cu relația: [63]

$$\Delta P = \sqrt{\left(\frac{pl}{2}\right)^2 + EAp\Delta l} - \frac{pl}{2}$$
(4-184)

$$\Delta P = x_0 \cdot p; \ x_0 = \frac{\Delta P}{p} \tag{4-185}$$

- ΔP - detenta de efort

- p rezistența longitudinală a căii (kg/cm)
- P₀ efortul axial înainte de detentă
- *l* lungimea imperfecțiunii
- dl alungirea produsa după șerpuire

$$P = P_0 - \Delta P \tag{4-186}$$

Figura 4.80 Detenta de efort în urma pierderii stabilității căii fără joante [24]

Deplasarea longitudinală:

$$d\Delta z = \frac{\Delta P}{EA} dz \tag{4-187}$$

Deplasarea totală:

$$\Delta z = \frac{\Delta P^2}{2EAp} \tag{4-188}$$

Detenta de efort:

$$\Delta P = \frac{\Delta l}{l_a} EA \tag{4-189}$$

$$\Delta P^2 + \Delta P \cdot pl - \Delta l \cdot EA = 0 \tag{4-190}$$

Din această ecuație rezultă:

$$\Delta P = \sqrt{\left(\frac{pl}{2}\right)^2 + \Delta l \cdot EAp} - \left(\frac{pl}{2}\right) \tag{4-191}$$

Lungimea pe care se produce șerpuirea:

$$\Delta l = c_1 \cdot \frac{f^2}{l} + c_2 \frac{fl}{R} \tag{4-192}$$

 $c_1 \div c_2$ - constante caracteristice tipului de imperfecțiune geometrică (tabel 4.1) Detenta de temperatură (diferența dintre temperatura de montaj și temperatura la care s-a produs detenta):

$$\Delta t = -\frac{8I}{\alpha A R f} + \sqrt{\left(\frac{8I}{\alpha A R f}\right)^2 + \frac{16Iq}{\alpha^2 A^2 E f}} \quad (^{\circ}\text{C})$$
(4-193)

Exemplu de calcul:

S-a determinat lungimea pe care se produce șerpuirea, detenta de temperatură și detenta de efort, considerând următorii parametri:

Imperfecțiune de tip A

- șina tip 65
- raza curbei: R=500 m
- săgeata imperfecțiunii f=3 cm și lungimea l=1000 cm
- rezistența prismei la deplasare transversală: q=6daN/cm
- rezistența prismei la deplasare longitudinală: p=13 daN/cm

Folosind relațiile de mai sus, valorile rezultate sunt: $\Delta P = 5,238 \cdot 10^4 daN$ $\Delta z = 0,045 cm$ $\Delta t = 5,56^{\circ}C$

4.5. Analiza forței critice

4.5.1. Componentele forței critice

Forța critică de pierdere a stabilității în cazul căii fără joante se determină cu ajutorul uneia dintre metodele: energetică, a echilibrului static, aproximativă sau numerică.

Forța critică de pierdere a stabilității se poate determina pentru o anumită valoare a săgeții și lungimii imperfecțiunii. [24], [69]

Factorii principali care influențează stabilitatea căii fără joante sunt reprezentați schematic în figura 4.81:

Figura 4.81 Factorii care influențează stabilitatea căii fără joante [24]

4.5.2. Lungimea critică și săgeata critică

Dacă se determină forța critică de pierdere a stabilității în funcție de cele două variabile l și f, valorile rezultate pot fi reprezentate sub forma unei suprafețe curbe ca și în figura 4.83, cu corespondență în elementele matricei forței critice de pierdere a stabilității din figura 4.84.

Forța critică determinată cu relația (4-103) este o funcție depinzând de două variabile: l și f.

$$P_{cr} = \frac{K_1 \frac{EI}{l^2} + K_2 q_0 \frac{l^2}{f} + K_3 C l^2 + \frac{2r}{a}}{1 + K_5 \frac{l^2}{fR}}$$
(4-194)

Dacă $R \rightarrow \infty$ atunci se obține forța critică pentru imperfecțiunea respectivă în aliniament. Într-o linie corespunzător întreținută săgețile imperfecțiunilor nu pot fi mari. Se poate alege o mulțime finită de săgeți : $f=\{f_1; f_2; ..., f_m\}$ unde $f_1 < f_2 < ... < f_m$. f_m este cea mai mare săgeată, considerată cu o anumită probabilitate acceptată. Se va impune $f=f_i=$ constant. În acest caz, $P=\phi(1) -$ forța critică va fi în funcție de l. Determinarea punctului minim și valoarii minime a funcției ϕ :

$$\frac{dP_{cr}}{dl} = \frac{d\varphi(l)}{dl} = 0 \Longrightarrow l = l_{cr}$$
(4-195)

$$P_{cr_{\min}} = P_{cr}(l_{cr}) = \varphi(l_{cr}) = P_{cr\min}$$
(4-196)

Exemplificand grafic:

Figura 4.82 Variația Pcr în funcție de l și f

Figura 4.83 Reprezentarea Pcr în funcție de săgeata și lungimea imperfecțiunii [69]

Matricea forței critice: (considerând P_{cr} pentru o coloană cu f constant, respectiv considerând P_{cr} pentru o linie cu l constant) [69]:

	f1	f2		fi	fj	fm	
	Pcr11	Pcr21	•	Pcri1	Pcrj1	Pcrm1	11
	Pcr12	Pcr22	•	Pcri2	Pcrj2	Pcrm2	12
	Pcr13	Pcr23	•	Pcri3	Pcrj3	Pcrm3	13
	Pcr14	Pcr24	•	Pcri4	Pcrj4	Pcrm4	14
Pcr	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
	Pcr1k	Pcr2k	•	Pcrik	Pcrjk	Pcrmk	lk
	•	•	•	•	•	•	•
	•	•	•	•	•	•	•
	Pcr1n	Pcr2n	•	Pcrin	Pcrjn	Pcrmn	ln

Figura 4.84 Matricea forței critice de pierdere a stabilității

Schema logică pentru determinarea elementelor de calcul necesare studiului stabilității căii fără joante este reprezentată în figura 4.85. În această schemă logică s-au considerat constantele q, r, R ce pot avea valori diferite pentru un anumit sector de linie unde se dezvoltă studiul stabilității căii.

Notațiile utilizate:

$$4\pi^{2}EI = RS; \frac{2r}{a} = RC; \frac{2q}{32} = RP; l = LA$$
$$P_{cr,R} = PLCR; l_{cr} = LAC; P_{cr,R,\min} = PCM; f = F$$

Figura 4.85 Elementele de calcul pentru studiul stabilității căii fără joante

Pentru a stabili o relație de interdependență între lungimea imperfecțiunii geometrice (*l*) și săgeata (f) cunoscând temperatura neutră (t_n) și tipul imperfecțiunii geometrice respectiv tipul suprastructurii (tip șină (EI), distanța dintre axele traverselor (a), rezistența laterală a prismei (q)), se vor urma pașii: Pentru o imperfecțiune geometrică se cunoaște α_i și β_i deci forța critică, utilizând metoda aproximativă de calcul.

Studiul se va efectua pentru imperfecțiunile de tip E; A; B.

Forța de compresiune maximă care poate să apară în linie va fi determinată de temperatura neutră t_n și de limita maximă a ecartului de temperatură t_{max}^+ :

$$P_{\max} = \alpha EA(t_{\max}^{+} - t_{n})$$
(4-197)

Se poate scrie relația:

$$\alpha \mathbf{E} \mathbf{A} \left(\mathbf{t}_{\max}^{+} - \mathbf{t}_{n} \right) \leq \alpha_{i} \frac{\mathbf{E} \mathbf{I}}{\mathbf{l}^{2}} + \frac{2\mathbf{r}}{\mathbf{a}} + \beta_{i} \frac{\mathbf{q} \mathbf{l}^{2}}{\mathbf{f}}$$
(4-198)

$$\alpha EA\left(t_{\max}^{+}-t_{n}\right)-\alpha_{i}\frac{EI}{l^{2}}-\frac{2r}{a}\leq\beta_{i}\frac{ql^{2}}{f}$$
(4-199)

$$f \leq \frac{\beta_i q l^4}{\alpha E A \left(t_{max}^+ - t_n \right) l^2 - \frac{2r}{a} l^2 - \alpha_i E I}$$
(4-200)

la limită:
$$f(l) = \frac{\beta_i q l^4}{\alpha E A (t_{max}^+ - t_n) l^2 - \frac{2r}{a} l^2 - \alpha_i E I}$$
 (4-201)

Se calculează punctul minim și valoarea minimă a funcției

$$f(l) = \frac{\beta_i q l^4}{P_{\max} l^2 - \frac{2r}{a} l^2 - \alpha_i EI} = \frac{\beta_i q l^4}{\left(P_{\max} - \frac{2r}{a}\right) l^2 - \alpha_i EI}$$
(4-202)

$$\frac{df}{dl} = 0 \implies l_{min} \tag{4-203}$$

$$\frac{df}{dl} = \frac{\beta_{i}q \cdot 4l^{3} \left(P_{\max} - \frac{2r}{a}l^{2} - \alpha_{i}EI\right) - \beta_{i}ql^{4} \left(2l - \frac{2r}{a}2l\right)}{\left[\left(P_{\max} - \frac{2r}{a}\right)l^{2} - \alpha_{i}EI\right]^{2}} = \frac{4\beta_{i}q \left(P_{\max} - \frac{2r}{a}\right)l^{5} - 4\alpha_{i}\beta_{i}qEI \cdot l^{3} - 2\beta_{i}q \left(P_{\max} - \frac{2r}{a}\right)l^{5}}{\left[\left(P_{\max} - \frac{2r}{a}\right)l^{2} - \alpha_{i}EI\right]^{2}} = \frac{2\beta_{i}q \left(P_{\max} - \frac{2r}{a}\right)l^{5} - 4\alpha_{i}\beta_{i}qEI \cdot l^{3}}{\left[\left(P_{\max} - \frac{2r}{a}\right)l^{2} - \alpha_{i}EI\right]^{2}} = \frac{2\beta_{i}q \left(P_{\max} - \frac{2r}{a}\right)l^{3} - 2\alpha_{i}EI}{\left[\left(P_{\max} - \frac{2r}{a}\right)l^{2} - \alpha_{i}EI\right]^{2}}$$

$$(4-204)$$

$$\left(P_{\max} - \frac{2r}{a}\right)l^2 - 2\alpha_i EI = 0$$
(4-205)

$$l_{\min} = \sqrt{2\alpha_i} \cdot \sqrt{\frac{EI}{P_{\max} - \frac{2r}{a}}}$$
(4-206)

117

$$f_{\min_{cr}} = f(l_{\min}) = \frac{\beta_{i}q(\sqrt{2\alpha_{i}})^{4} \left(\sqrt{\frac{EI}{P_{\max}} - \frac{2r}{a}}\right)^{4}}{\left(P_{\max} - \frac{2r}{a}\right)\left(\sqrt{2\alpha_{i}}\right)^{2} \left(\sqrt{\frac{EI}{P_{\max}} - \frac{2r}{a}}\right)^{2} - \alpha_{i}EI} = \frac{\beta_{i}q(2\alpha_{i})^{2} \left(\frac{EI}{P_{\max} - \frac{2r}{a}}\right)^{2}}{\left(P_{\max} - \frac{2r}{a}\right)^{2}} = \frac{4\alpha_{i}\beta_{i}q\left(\frac{EI}{P_{\max} - \frac{2r}{a}}\right)^{2}}{\alpha_{i}EI} = \frac{4\alpha_{i}\beta_{i}q\left(\frac{EI}{P_{\max} - \frac{2r}{a}}\right)^{2}}{\alpha_{i}EI} = \frac{4\alpha_{i}\beta_{i}q\left(\frac{EI}{P_{\max} - \frac{2r}{a}}\right)^{2}}{\alpha_{i}EI} = \frac{4\alpha_{i}\beta_{i}q\left(\frac{EI}{P_{\max} - \frac{2r}{a}}\right)^{2}}{\beta_{\min_{cr}} = 4\alpha_{i}\beta_{i}\frac{qEI}{\left(P_{m} - \frac{2r}{a}\right)^{2}}}$$
(4-207)

Utilizând metoda energetică, se poate determina forța critică minimă, lungimea critică și energia potențială pentru un caz concret cu următoarele caracteristici:

- tip imperfecțiune: A;
- raza curbei: R = 500m;

- q = 6 daN/cm;

Relațiile de calcul:

$$Pc(f) \coloneqq c6 \cdot \sqrt{EI \cdot \frac{q}{f} + c10 \cdot \left(\frac{EI}{f \cdot R}\right)^2} - c11 \cdot \frac{EI}{f \cdot R}$$

$$EI = \left(\sum_{r=1}^{n} \frac{P_r(f)}{r} \right)$$
(4-209)

$$\operatorname{fcr}(f) \coloneqq c5 \cdot \frac{\operatorname{EI}}{\operatorname{Pc}(f)^2} \cdot \left(q - c9 \cdot \frac{\operatorname{Pc}(f)}{R}\right)$$
(4-210)

$$lcr(f) \coloneqq c4 \cdot \sqrt{\frac{EI}{Pc(f)}}$$
(4-211)

$$dl(f) \coloneqq \frac{c1 \cdot fcr(f)^2}{lcr(f)} + c1r \cdot fcr(f) \cdot \frac{lcr(f)}{R}$$
(4-212)

$$\operatorname{Pocr}(f) \coloneqq \operatorname{Pc}(f) + \sqrt{\left(p \cdot \frac{\operatorname{lcr}(f)}{2}\right)^2 + \operatorname{dl}(f) \cdot \operatorname{E} \cdot \operatorname{A} \cdot p} - p \cdot \frac{\operatorname{lcr}(f)}{2}$$
(4-213)

$$\operatorname{tominc}(f) \coloneqq 60 - \frac{\operatorname{Pocr}(f) - \operatorname{Pb}}{a \cdot E \cdot A}$$
(4-214)

$$pi(f) \coloneqq c2 \cdot EI \cdot \frac{fcr(f)^2}{lcr(f)^3} + c3 \cdot q \cdot fcr(f) \cdot lcr(f) - Pocr(f) \cdot c1 \cdot \frac{fcr(f)^2}{lcr(f)} - Pocr(f) \cdot c1r \cdot fcr(f) \cdot \frac{lcr(f)}{R}$$
(4-215)

 $f := 0.1, 0.5.. 15_{cm}$

Pc(f) =	lcr(f) =	Pocr(f) =	fcr(f) =	tominc(f) =
2.875·10 ⁵	741.338	2.878·10 ⁵	0.103	24.448
2.528·10 ⁵	790.508	2.543·10 ⁵	0.501	33.576
2.299·10 ⁵	829.033	2.326·10 ⁵	0.901	39.509
2.13·10 ⁵	861.182	2.17·10 ⁵	1.301	43.779
1.999·10 ⁵	889.047	2.05·10 ⁵	1.701	47.043
1.892·10 ⁵	913.8	1.955·10 ⁵	2.101	49.641
1.803·10 ⁵	936.173	1.877·10 ⁵	2.501	51.765
1.726·10 ⁵	956.653	1.812·10 ⁵	2.901	53.54
1.66·10 ⁵	975.588	1.757·10 ⁵	3.301	55.045
1.602·10 ⁵	993.232	1.71·10 ⁵	3.701	56.337
1.549·10 ⁵	1.01·10 ³	1.668·10 ⁵	4.101	57.458
1.503·10 ⁵	1.025·10 ³	1.633·10 ⁵	4.501	58.439
1.46·10 ⁵	1.04·10 ³	1.601·10 ⁵	4.901	59.301
1.422·10 ⁵	1.054·10 ³	1.573·10 ⁵	5.301	60.065
1.386·10 ⁵	1.068·10 ³	1.548·10 ⁵	5.701	60.743
1.353·10 ⁵	1.08·10 ³	1.526·10 ⁵	6.101	61.348

Cu ajutorul formulelor de mai sus s-au reprezentat forța critică, lungimea critică și energia potențială de deformație în funcție de săgeata f: figura 4.86.

Figura 4.86 Reprezentarea Pcr, lcr și a energiei potențiale

Curba energiei potențiale prezintă la început o înalțare până la un punct maxim unde $d\pi = 0$. Porțiunea dintre origine și punctul de maxim reprezintă sectorul stabil.

4.5.3 Reprezentarea Pcr sub formă de suprafață curbă - metoda energetică

Determinarea forței critice de pierdere a stabilității pentru următoarele valori ale săgeților: $f_i = 0,25; 0,50; 0,75; 1,00; 1,25; 1,50; 1,75; 2,00; 2,50; 3,00; 3,50; 4,00$ cm

și lungimilor: $l_i = 100; 200; 300; ... 2200 \text{ cm}$

Metoda de calcul utilizată: metoda energetică.

$$P_{cr} = \frac{K_1 \frac{EI}{l^2} + K_2 q_0 \frac{l^2}{f} + K_3 C l^2 + \frac{2r}{a}}{1 + K_5 \frac{l^2}{fR}}$$
(4-216)

Rezultatele au fost reprezentate sub forma unor suprafețe curbe.

A fost considerată o suprastructură formată din traverse monobloc T17, șină tip 60, rezistența prismei la deplasarea trassversală q = 6 daN/cm, coeficientul de pat C = $3 daN/cm^2$, r = 300000 daNcm, distanța între axele traverselor a = 65 cm.

Suprafața care reprezintă variația lui P_{cr} în funcție de l și f poate fi intersectată de planuri $f = f_i$ și $l = l_k$ obținând curbele plane $P_{cr}(l)$, respectiv $P_{cr}(f)$.

	Pcr (daN)											
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100	7804427	8143133	8225648	8324121	8361318	8386306	8404250	8417759	8436748	8449456	8458558	8465397
200	1618415	1836060	1896415	1972865	2003089	2023832	2038949	2050456	2066816	2077887	2085878	2091917
300	627340,9	742266,3	779184,2	829757,8	851045,9	866112,7	877337,9	886024,5	898591,2	907244,2	913565,5	918385,6
400	360301,4	411859,1	430721,7	458729,7	471348,8	480602,7	487679,3	493266	501524,7	507336,3	511648,2	514974,5
500	272719,3	290373,6	297538	308984,6	314488,7	318673,4	321962,5	324615,5	328632,1	331528,6	333716,2	335426,7
600	241248,7	242032,8	242377,2	242963	243261,5	243496,3	243685,9	243842,1	244084,5	244263,8	244401,9	244511,4
700	229772,4	222647	219322,6	213371	210183,3	207597,4	205457,6	203657,6	200797,7	198627,2	196923,6	195550,9
800	226015,9	215527,9	210405,8	200844,6	195505,2	191055,7	187290,8	184063,7	178819,6	174740,9	171478	168808,3
900	225364,1	213779,4	207919,5	196605,2	190063,7	184484,6	179670,1	175473,1	168510,3	162969	158454,2	154704,8
1000	225954,2	214377,9	208360,2	196418,5	189312,8	183131,5	177705,1	172903,3	164786,8	158189,1	152720,5	148113,9
1100	226998,7	215946	210075,4	198162,7	190903,2	184480,8	178758,6	173628,1	164809,3	157501,6	151347,2	146093,2
1200	228157,9	217843,7	212270,2	200751,7	193591,6	187165,8	181366,9	176107,5	166931,4	159194,7	152583,4	146868,5
1300	229287	219774,7	214562,5	203626,3	196714,2	190435	184705,5	179456,6	170177,5	162231,4	155350,3	149333,5
1400	230328,8	221606,9	216773	206502	199918,8	193875,8	188309,1	183164,5	173963,1	165973,5	158971	152783,3
1500	231265,8	223287,9	218824,5	209239,8	203023,3	197265,7	191918	186937,9	177938,6	170027,1	163017,4	156763,5
1600	232098	224803,9	220690,7	211778,7	205939,8	200490,2	195392,1	190612,7	181897,3	174150,3	167218,8	160980,4
1700	232833,2	226159,1	222370,4	214098,7	208632,2	203496	198661,1	194101,8	185720,7	178197,1	171405,8	165244,9
1800	233481,4	227365,5	223874	216201,2	211092,4	206264,5	201695	197363,7	189344,6	182082,5	175475	169437,4
1900	234053,1	228438,1	225217	218098,2	213327,6	208796,4	204487,1	200383,8	192738,7	185760,6	179366	173484,5
2000	234558,2	229392	226415,9	219806,4	215352	211102,3	207043,6	203163,4	195893	189210,1	183046,3	177343,3
2100	235005,5	230241,5	227487,2	221343,8	217183	213197,9	209377,7	205712,4	198810	192425,2	186501,8	180991,7
2200	235402,7	230999,5	228445,7	222728,2	218838,9	215100,9	211505,7	208045,2	201499,2	195409,5	189730,1	184420,8
lcr(cm)	887,126	911,913	925,412	953,865	972,123	989,022	1004,79	1019,58	1046,79	1071,43	1094,01	1114,91
Pcrmin(daN)	225354	213765	207841	196169	189213	183115	177702	172847	164451	157396	151343	146064

Tabel 4.8 Forța critică P_{cr}: imperfecțiune geometrică "A", curbă, șină tip 60, r=300000 daNcm, q=6.0daN/cm, C=3daN/cm², qo=3.0daN/cm, a=65cm, R=400m

4.87 P_{cr} în funcție de f_i și $l_{i,}$ imperfecțiune tip A

Figura 4.88 Pcr în funcție de f și l, imperfecțiune tip A

	Pcr (daN)											
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100	20369409	20368077	20367633	20367411	20367278	20367189	20367125	20367078	20367011	20366967	20366967	20366911
200	5111189	5105861	5104085	5103197	5102664	5102309	5102055	5101865	5101599	5101421	5101421	5101199
300	2299713	2287725	2283729	2281731	2280532	2279733	2279162	2278734	2278134	2277735	2277735	2277235
400	1332375	1311063	1303959	1300407	1298276	1296855	1295840	1295079	1294014	1293303	1293303	1292415
500	902936	869636	858536	852986	849656	847436	845850	844661	842996	841886	841886	840498
600	689075	641123	625139	617147	612352	609155	606872	605159	602761	601163	601163	599165
700	580353	515085	493329	482451	475924	471573	468465	466134	462870	460695	460695	457975
800	530637	445389	416973	402765	394240	388557	384497	381453	377191	374349	374349	370797
900	517889	409997	374033	356051	345262	338069	332931	329078	323683	320087	320087	315591
1000	530501	397301	352901	330701	317381	308501	302158	297401	290741	286301	286301	280751
1100	561887	400715	346991	320129	304012	293267	285593	279836	271778	266405	266405	259690
1200	608087	416279	352343	320375	301194	288407	279273	272423	262832	256439	256439	248447
1300	666599	441491	366455	328937	306427	291419	280700	272660	261405	253901	253901	244522
1400	735785	474713	387689	344177	318070	300665	288233	278909	265855	257153	257153	246275
1500	814531	514831	414931	364981	335011	315031	300760	290056	275071	265081	265081	252594
1600	902062	561070	447406	390574	356475	333742	317505	305326	288277	276910	276910	262702
1700	997823	612875	484559	420401	381906	356243	337912	324164	304917	292085	292085	276046
1800	1101409	669841	525985	454057	410900	382129	361578	346165	324587	310201	310201	292219
1900	1212518	731666	571382	491240	443155	411098	388201	371027	346985	330956	330956	310921
2000	1330923	798123	620523	531723	478443	442923	417552	398523	371883	354123	354123	331923
2100	1456449	869037	673233	575331	516590	477429	449457	428478	399107	379527	379527	355051
2200	1588959	944271	729375	621927	557458	514479	483779	460755	428520	407031	407031	380169
lcr(cm)	891,112	1020,8	1093,54	1141,74	1176,49	1202,88	1223,69	1240,54	1266,24	1284,95	1299,197	1310,42
Pcrmin(daN)	518396	397238	347337	319391	301343	288664	279243	271956	261400	254111	248767,9	244681

Tabel 4.9 Forța critică P_{cr}: imperfecțiune geometrică "B", aliniament, șină tip 60, r=300000 daNcm, q=6.0daN/cm, C=3daN/cm², qo=3.0daN/cm, a=65cm

 $4.89 \ P_{cr} \ \text{in funcție de } f_i \ \text{și} \ l_{i,} \ \text{imperfectiune tip } B$

Figura 4.90 P_{cr} în funcție de f și l, imperfecțiune tip B

	Pcr (daN)											
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100	44176522	44259571	44287325	44301215	44309553	44315113	44319086	44322066	44326239	44329021	44331009	44332499
200	10937071	11015545	11041968	11055229	11063203	11068525	11072330	11075185	11079185	11081854	11083761	11085191
300	4796396	4867607	4891882	4904122	4911500	4916433	4919963	4922614	4926332	4928813	4930588	4931920
400	2663675	2725434	2746842	2757707	2764278	2768681	2771837	2774210	2777540	2779766	2781359	2782555
500	1693323	1744048	1761999	1771184	1776763	1780512	1783204	1785231	1788081	1789988	1791354	1792380
600	1182421	1221184	1235237	1242497	1246930	1249919	1252070	1253693	1255978	1257509	1258608	1259434
700	889453	915962	925835	930993	934161	936306	937853	939023	940673	941782	942578	943177
800	712999	727531	733105	736052	737876	739115	740012	740692	741653	742300	742765	743116
900	604196	607504	608813	609514	609951	610250	610466	610631	610865	611022	611136	611221
1000	537022	530216	527435	525923	524973	524321	523845	523483	522969	522620	522368	522178
1100	496523	480957	474384	470757	468459	466871	465709	464822	463557	462697	462076	461605
1200	473590	450759	440792	435206	431634	429152	427327	425930	423930	422567	421579	420830
1300	462421	433869	420983	413645	408907	405595	403150	401270	398570	396724	395382	394363
1400	459192	426442	411167	402327	396562	392506	389496	387175	383828	381532	379858	378584
1500	461321	425820	408719	398657	392029	387335	383835	381125	377203	374500	372526	371019
1600	467026	430112	411761	400784	393480	388270	384366	381332	376922	373871	371635	369926
1700	475069	437947	418920	407349	399571	393982	389773	386489	381695	378364	375916	374040
1800	484577	448310	429164	417330	409290	403473	399068	395617	390558	387027	384423	382424
1900	494936	460443	441707	429940	421862	415974	411491	407965	402771	399131	396437	394363
2000	505713	473772	455943	444566	436675	430881	426446	422942	417758	414107	411396	409304
2100	516604	487863	471396	460724	453245	447713	443455	440077	435055	431502	428854	426806
2200	527399	502385	487691	478023	471179	466079	462132	458987	454289	450948	448451	446513
lcr(cm)	891,1117	1020,803	1093,54	1141,743	1176,486	1202,881	1223,686	1240,54	1266,238	1284,947	1299,197	1310,424
Pcrmin(daN)	518396,1	397237,7	347337,4	319391,1	301342,8	288663,7	279243	271955,8	261400,3	254110,6	248767,9	244681,3

Tabel 4.10 Forța critică P_{cr}: imperfecțiune geometrică "C", curbă, șină tip 60, r=300000 daNcm, q=6.0daN/cm, C=3daN/cm², qo=3.0daN/cm, a=65cm, R=700 m

Figura 4.91 P_{cr} în funcție de f_i și l_i , imperfecțiune tip C

Figura 4.92 P_{cr} în funcție de f și l, imperfecțiune tip C

	Pcr (daN)											
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100	61189667	61189146	61188972	61188886	61188834	61188799	61188774	61188755	61188729	61188712	61188700	61188690
200	15310805	15308722	15308028	15307680	15307472	15307333	15307234	15307160	15307055	15306986	15306936	15306899
300	6822382	6817695	6816133	6815352	6814883	6814570	6814347	6814180	6813945	6813789	6813678	6813594
400	3860486	3852153	3849375	3847987	3847153	3846598	3846201	3845903	3845487	3845209	3845011	3844862
500	2499482	2486462	2482122	2479952	2478650	2477782	2477162	2476697	2476046	2475612	2475302	2475069
600	1770707	1751958	1745709	1742584	1740709	1739459	1738566	1737897	1736959	1736334	1735888	1735553
700	1342257	1316738	1308231	1303978	1301426	1299725	1298510	1297598	1296322	1295472	1294864	1294408
800	1075491	1042159	1031049	1025494	1022161	1019939	1018351	1017161	1015494	1014383	1013590	1012995
900	904176	861991	847929	840898	836680	833868	831859	830352	828243	826837	825832	825079
1000	793428	741348	723988	715308	710100	706628	704148	702288	699684	697948	696708	695778
1100	723456	660439	639434	628931	622629	618428	615427	613177	610026	607925	606425	605300
1200	682353	607358	582360	569861	562361	557361	553790	551112	547362	544862	543077	541737
1300	662608	574593	545254	530585	521784	515916	511725	508581	504181	501247	499151	497579
1400	659291	557214	523188	506175	495968	489163	484302	480656	475552	472150	469719	467897
1500	669059	551879	512819	493289	481571	473759	468179	463994	458135	454229	451439	449346
1600	689580	556255	511813	489593	476260	467372	461023	456261	449595	445151	441977	439596
1700	719187	568676	518505	493420	478369	468335	461168	455792	448267	443250	439666	436978
1800	756662	587923	531677	503554	486680	475430	467395	461369	452932	447307	443290	440276
1900	801101	613092	550423	519088	500287	487753	478800	472086	462685	456418	451942	448584
2000	851818	643498	574058	539338	518506	504618	494698	487258	476842	469898	464938	461218
2100	908286	678613	602056	563777	540810	525498	514561	506359	494875	487219	481751	477650
2200	970097	718030	634008	591997	566790	549985	537982	528980	516377	507974	501973	497471
lcr(cm)	1467,722	1664,375	1769,826	1837,446	1884,965	1920,345	1947,778	1969,701	2002,595	2026,132	2043,823	2057,613
Pcrmin(daN)	575663,4	449718,4	398791	370646,1	352653,9	340115,9	330861,1	323741,4	313494	306466,2	301342,8	297440,5

Tabel 4.11 Forța critică P_{cr}: imperfecțiune geometrică "D", aliniament, șină tip 60, r=300000 daNcm, q=6.0daN/cm, C=3daN/cm², qo=3.0daN/cm, a=65cm

Figura 4.93 P_{cr} în funcție de f_i și l_i , imperfecțiune tip D

Figura 4.94 P_{cr} în funcție de f și l, imperfecțiune tip D

	Pcr (daN)											
lcm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00		
50	8637450,769	8630325,769	8628867,436	8628138,269	8627701	8627409	8627201	8627045	8626826	8626680		
100	2209410,769	2180910,769	2175077,436	2172160,769	2170411	2169244	2168411	2167786	2166911	2166327		
200	731775,7692	617775,7692	594442,4359	582775,7692	575775,8	571109,1	567775,8	565275,8	561775,8	559442,4		
250	641399,5692	463274,5692	426816,2359	408587,0692	397649,6	390357,9	385149,6	381243,3	375774,6	372128,7		
300	662584,1026	406084,1026	353584,1026	327334,1026	311584,1	301084,1	293584,1	287959,1	280084,1	274834,1		
350	748582,1978	399457,1978	327998,8645	292269,6978	270832,2	256540,5	246332,2	238675,9	227957,2	220811,4		
400	879867,0192	423867,0192	330533,6859	283867,0192	255867	237200,4	223867	213867	199867	190533,7		
450	1047110,028	469985,0285	351860,0285	292797,5285	257360	233735	216860	204203,8	186485	174672,5		
500	1245397,969	532897,9692	387064,6359	314147,9692	270398	241231,3	220398	204773	182898	168314,6		
550	1471943,331	609818,3312	433359,9979	345130,8312	292193,3	256901,7	231693,3	212787,1	186318,3	168672,5		
600	1725069,103	699069,1026	489069,1026	384069,1026	321069,1	279069,1	249069,1	226569,1	195069,1	174069,1		
650	2003717,278	799592,2781	553133,9448	429904,7781	355967,3	306675,6	271467,3	245061	208092,3	183446,4		
700	2307193,626	910693,6264	624860,293	481943,6264	396193,6	339027	298193,6	267568,6	224693,6	196110,3		
750	2635027,303	1031902,303	703777,3026	539714,8026	441277,3	375652,3	328777,3	293621,1	244402,3	211589,8		
800	2986889,832	1162889,832	789556,4984	602889,8317	490889,8	416223,2	362889,8	322889,8	266889,8	229556,5		
850	3362546,409	1303421,409	881963,076	671233,9094	544796,4	460504,7	400296,4	355140,2	291921,4	249775,6		
900	3761825,584	1453325,584	980825,584	744575,584	602825,6	508325,6	440825,6	390200,6	319325,6	272075,6		
950	4184599,8	1612474,8	1086016,466	822787,2997	664849,8	559558,1	484349,8	427943,5	348974,8	296329		
1000	4630772,569	1780772,569	1197439,236	905772,5692	730772,6	614105,9	530772,6	468272,6	380772,6	322439,2		
1050	5100269,817	1958144,817	1315019,817	993457,3168	800519,8	671894,8	580019,8	511113,6	414644,8	350332,3		
1100	5593033,91	2144533,91	1438700,576	1085783,91	874033,9	732867,2	632033,9	556408,9	450533,9	379950,6		
1150	6109019,465	2339894,465	1568436,132	1182706,965	951269,5	796977,8	686769,5	604113,2	488394,5	411248,6		
1200	6648190,353	2544190,353	1704190,353	1284190,353	1032190	864190,4	744190,4	654190,4	528190,4	444190,4		

Tabel 4.12 Forța critică P_{cr}: imperfecțiune geometrică "E", aliniament, șină tip 60, r=300000 daNcm, q=6.0daN/cm, C=3daN/cm², qo=3.0daN/cm, a=65cm

Figura 4.95 P_{cr} în funcție de f_i și l_i , imperfecțiune tip E

Figura 4.96 P_{cr} în funcție de f și l imperfecțiune tip E

Influența factorilor de care depinde forța critică de pierdere a stabilității este prezentată în tabelul 4.10:

TIP IMPERFECȚIUNE	UNE CUR		A CURBĂ		B ALINIAMENT		C CURBĂ		D ALINIAMENT	
Prinderi	slăbite	strânse	slăbite	strânse	slăbite	strânse	slăbite	strânse		
Şină (%)	16.60	15.49	61.29	53.36	80.40	73.66	65.95	63.07		
Prismă (%)	82.50	76.38	36.45	32.32	18.24	16.94	33.24	31.79		
Prinderi (%)	1.31	8.13	2.25	13.31	1.35	8.39	0.806	5.14		

Tabel 4.13 Influența factorilor de care depinde forța critică de pierdere a stabilității

Prinderi slăbite: r = 300.000 daNcm; Prinderi strânse: r = 2.000.000 daNcm.

4.5.4 Reprezentarea Pcr sub formă de curbe plane - metoda aproximativă

Utilizând Schema logică și notațiile din capitolul 4.3.1, s-a efectuat calculul lungimii critice și a forței critice minime.

Notațiile utilizate:

$$4\pi^{2}EI = RS ; \frac{2r}{a} = RC ; \frac{2q}{32} = RP ; l = LA$$

$$P_{cr,R} = PLCR ; l_{cr} = LAC ; P_{cr,R,\min} = PCM ; f = F$$

Cu aceste notații, utilizând metoda aproximativă de calcul, pe un sector în curbă, rezultă :

$$LAC = \sqrt{\frac{3\left(RS + \sqrt{9(RS)^{2} + 32^{2} \cdot R^{2} \cdot F(RS)(RP) - 96 \cdot R \cdot F(RS)(RC)\right)}{32 \cdot R \cdot (RP) - 3(RC)}}$$
(4-217)
$$PCM = \frac{\left[\frac{(RS)}{(LAC)^{2}} + RC + \frac{(RP)(LAC)^{2}}{F}\right]}{\left[1 + \frac{3(LAC)^{2}}{32 \cdot F \cdot R}\right]}$$
(4-218)

Astfel, lungimea critică minimă și forța critică minimă devin:

$$l_{cr} = \sqrt{\frac{3(4\pi^2 EI + \sqrt{9(4\pi^2 EI)^2 + 32^2 R^2 f 4\pi^2 EI\frac{2q}{32} - 96Rf 4\pi^2 EI\frac{2r}{a}}{32R\frac{2q}{32} - 3\frac{2r}{a}}}$$
(4-219)

$$P_{cr\,min} = \frac{\frac{4\pi^2 EI}{l_{cr}^2} + \frac{2r}{a} + \frac{\frac{2q}{32}l_{cr}^2}{f}}{1 + \frac{3l_{cr}^2}{32fR}} \tag{4-220}$$

Calculele au fost conduse după următoarele valori: Curbă cu R = 500 m; șină tip 65, a = 65 cm

q = 7 (daN/cm)											
f (cm)	1	2	3	4	5						
lcr (m)	16,8	18,25	19,4	20,35	21,18						
Pcrmin (daN)	211200	198400	189400	182500	177000						
q = 6 (daN/cm)											
f (cm)	1	3	4	5							
lcr (m)	18,33	19,76	20,9	21,86	22,7						
Pcrmin (daN)	184800	175400	168600	163300	158900						
	q	= 5 (daN/daN/dan)	cm)								
f (cm)	1	2	3	4	5						
lcr (m)	18,33	19,76	20,9	21,86	22,7						
Pcrmin (daN)	184800	175400	168600	163300	158900						

Tabel 4.14 Variația lungimii critice în funcție de săgeți, r = $2 \cdot 10^6$ daN·cm

Figura 4.97 Variația lcr (f) și Pcr (f) pentru r = $2 \cdot 10^6$ daN·cm

q = 7 (daN/cm)						
f (cm)	1	2	3	4	5	
ler (m)	16,34	17,81	18,95	19,90	20,72	
Pcrmin (daN)	208500	194300	184500	177100	171100	
q = 6 (daN/cm)						
f (cm)	1	2	3	4	5	
lcr (m)	17,71	19,14	20,29	21,25	22,08	
Pcrmin (daN)	182400	171700	164100	158200	153400	
q = 5 (daN/cm)						
f (cm)	1	2	3	4	5	
lcr (m)	17,71	19,14	20,29	21,25	22,08	
Pcrmin (daN)	182400	171700	164100	158200	153400	

Tabel 4.15 V	'ariația l	ungimii	critice în	funcție de	e săgeți, r =	$1,6.10^{6}$	daN∙cm
	,	0		,	<i>U</i> , <i>i</i>		

Figura 4.98 Variația lcr (f) și Pcr (f) pentru $r = 2 \cdot 10^6 \text{ daN} \cdot \text{cm}$

	ijia lungiin		i iuneție u	e sageçi, i	1,210 0
q = 7 (daN/cm)					
f (cm)	1	2	3	4	5
lcr (m)	15,93	17,40	18,54	19,49	20,30
Pcrmin (daN)	205600	190100	179500	171500	165000
q = 6 (daN/cm)					
f (cm)	1	2	3	4	5
lcr (m)	17,15	18,60	19,75	20,70	21,53
Pcrmin (daN)	179800	167900	159500	153000	147800
q = 5 (daN/cm)					
f (cm)	1	2	3	4	5
lcr (m)	17,15	18,60	19,75	20,70	21,53
Pcrmin (daN)	179800	167900	159500	153000	147800

Tabel 4.16 Variația lungimii critice în funcție de săgeți, $r = 1,2.10^{6}$ daN·cm

Figura 4.99 Variația lcr (f) și Pcr (f) pentru $r = 2 \cdot 10^6 \text{ daN} \cdot \text{cm}$

 $P_{max,t} = 11,5 \cdot 10^{-6} \cdot 2,1 \cdot 10^{6} \cdot 2 \cdot 75,85 \cdot (60 - 17) P_{max,t} = \alpha \cdot EA \cdot \Delta t_{max}$

 $P_{\max,t}$ =157532,86 daN; Coeficientul de siguranță : $c = \frac{P_{cr,R,\min}}{P_{\max,t}} = \frac{170683}{157532,86} = 1,083$ c = 1,083 < 1,3 Din acest motiv normele nu permit realizarea căii fără joante în curbe cu raze mai mici de 350 m. Pentru realizarea căii fără joante și în curbe cu raze mici, este necesară mărirea rezistenței prismei de piatră spartă concomitent cu o întreținere corespunzătoare, diminuând săgețile f.

4.5.5 Studiu comparativ între metoda energetică și metoda aproximativă

Studiu comparativ al forței critice minime $P_{cr min}$ utilizând metoda energetică și metoda aproximativă a fost condus după următorii parametrii de calcul:

- imperfecțiune tip B și imperfecțiune tip E

- săgețile considerate: f = 1,0; 2,0; 3,0 cm
- C = 3 daN/cm^2
- a = 65 cm
- șină tip 65
- r = 300.000 daNcm
- -q = 6 daN/cm
- $q_0 = 3 \text{ daN/cm}$

Graficele rezultate sunt prezentate pentru fiecare imperfecțiune în parte: figura 4.100 pentru imperfecțiunea tip B și figura 4.101 pentru imperfecșiunea tip E.

Figura 4.100 Comparație între metoda energetică și aproximativă de calcul. Imperfecțiune de tip B

Figura 4.101 Comparație între metoda energetică și aproximativă de calcul. Imperfecțiune de tip B

Rezultatele celor metode sunt asemătoare în proporție de $85 \div 99$ %. Acest lucru arată că metoda aproximativă este acoperitoare și poate fi utilizată pentru calculul forței critice de pierdere a stabilității cu aproximativ aceleași rezultate ca și ale metodei energetice.

4.5.6 Determinarea coeficientului de siguranță în cazul căii fără joante

Calculele de stabilitate, ținând seama de parametri variabili 'l' și 'f' pot lua valori în limite largi, ceea ce duce la un volum mare de calcule. Utilizând un calcul automatizat, cazurile de stabilitate sau instabilitate ale căii sunt mult mai ușor evidențiate.

Valoarea maximă a forței de compresiune așa cum s-a arătat mai sus este:

$$P_{maxt} = \alpha EA(t_{sin\breve{a}} - 17^{\circ}C) \tag{4-221}$$

Cercetările au stabilit că între șină și aerul înconjurător există o diferență de temperatură care variază în limite largi, existând însă un model matematic pentru creșterea de temperatură, astfel:

pentru
$$t_a = (-20^\circ, +20^\circ)$$
 $t_s = t_a$
 $t_a = (+20^\circ, +50^\circ)$ $t_s = \frac{1}{20}t_a^2 + t_a +20$ - (variatie parabolica) (4-222)

Condiția necesară pentru menținerea stabilității liniei la temperaturi ridicate este:

$$P_{\max t} \le P_{cr\,min} \tag{4-223}$$

unde c - coeficient de siguranță, $c = (1.3 \div 1.5)$

c•

Pentru determinarea coeficientului de siguranță c s-a utilizat programul Lab View.

LabVIEW – Laboratory Virtual Instrumentation Engineering Workbench, a fost creat în 1986 în laboratoarele University of Texas la Austin, S.U.A, fiind dezvoltat astăzi de către National Instruments Corp. LabVIEW este o platformă de instrumentație virtuală foarte complexă, disponibilă pentru majoritatea sistemelor de operare, implementarea aplicațiilor realizându-se pe cale grafică. LabVIEW prezintă o serie de facilități care îl impun în fața altor produse similare, bazate pe programare grafică:

- integrare superioară a funcțiior I/O în domeniul culegerii de date
- compilare cod, ceea ce duce la viteze de execuție similare cu aplicațiile dezvolatate în C, spre deosebire de alte aplicații cu implementare grafică, care sunt interpretate
- aplicații de timp real Embedded LabVIEW/PharLap
- management superior al memoriei
- editor grafic încorporat, etc.

Aplicațiile de instrumentație virtuală, VI, sunt compuse din trei module distincte:

- panoul frontal
- diagrama bloc
- icon-ul sau conectorul

Panoul frontal reprezintă de fapt interfața operator, cunoscută în literatura de specialitate ca GUI (Graphical User Interface). Prin intermediul obiectelor conținute de interfață, se poate controla funcționalitatea aplicației, mai precis a valorilor de intrare și vizualizarea datelor procesate în interiorul diagramei. Datorită similitudinilor pe care panoul frontal le are cu instrumentul real, intrările sunt numite *controlere* iar ieșirile *indicatoare*. Pot fi utilizate un mare număr de astfel de controlere sau indicatoare, din cele furnizate de bibliotecile existente ale pachetului sau cele create de utilizatori înșiși, cum ar fi butoane, potențiometre, indicatoare, display-uri.

Fiecare panou frontal este însoțit de o *diagramă*, care reprezintă programul de instrument virtual. Diagrama este realizată folosind limbajul grafic G. Componentele diagramei reprezintă nodurile de program, cum ar fi buclele de tip FOR sau WHILE din limbajele tradiționale, sau funcțiile aritmetice. Componentele sunt conectate împreună pentru a defini fluxul de date în interiorul diagramei. Se poate accentua ideea de instrument virtual prin faptul că simbolurile reprezintă seturi de circuite integrate virtuale cu funcții și terminale bine definite. Cablarea se face de asemenea virtual.

Figura 4.102 Programarea grafică în Lab View pentru determinarea coeficientului de siguranță c [69]

Programul calculează acest coeficient de stabilitate odată cu creșterea temperaturii. Creșterea temperaturii șinei variază în funcție de creșterea temperaturii mediului exterior. Programul dă posibilitatea utilizatorului de a seta pasul cu care crește temperatura, calculul lui *c* fiind afișat odată cu această creștere. Se afișează de asemenea cazul în care ne aflăm: stabilitate sau instabilitate. Datele de pornire cerute sunt caracteristicile suprastructurii.

Din calculele efectuate s-a ajuns la următoarea concluzie: odată cu creșterea tipului șinei(aria secțiunii transversale) coeficientul de siguranță scade ceea ce înseamnă că la șină de tip greu forța critică de pierdere a stabilității nu crește atât ca să compenseze creșterea efortului de compresiune din temperatură.

 $\begin{array}{l} Pmax \ t_{60} < Pmaxt_{65} \\ Pcrmin_{60} > Pcrmin_{65} \end{array}$

Exemplu:

Pentru imperfecțiunea de tip B:

- șină tip 60: Pcrmin = 319391 daN Pmaxt = 157532.9 daN c = 1.31 şină tip 65
 Pcr min = 333030daN
 Pmaxt = 171552 daN
 c = 1.26

Considerând C=0, se obține pentru forța critică P_{cr} o relație aproximativă:

$$P_{cr} = \frac{K_1 \frac{EI}{l^2} + K_2 q \frac{l^2}{f} + \frac{2r}{a}}{1 + K_5 \frac{l^2}{fR}} \qquad \text{în curbă} \qquad (4-224)$$

$$P_{cr} = K_1 \frac{EI}{l^2} + K_2 q \frac{l^2}{f} + \frac{2r}{a} \qquad \text{în aliniament} \qquad (4-225)$$

unde $K_1 \div K_5$ – constante caracteristice diferitelor tipuri de imperfecțiuni, tabel 4.2. Reprezentând grafic $P_{cr}(l)$ pentru f=f_i=constant, se obține o curbă ca în figura 4.104:

Figura 4.104 Variația P_{cr} în funcție de lungime pentru o săgeată oarecare [69]

În figura 4.104 curba a fost reprezentată pentru f= $f_{max, prob.}$

Conditia de stabilitate: $P_{crmin} > c \cdot P_{maxt}$

Rezultă lungimea critică și forța critică minimă :

$$l_{cr} = \sqrt{\frac{EI}{P - \frac{2r}{a}}} \tag{4-226}$$

$$P_{cr} = a_5 \sqrt{\frac{EI}{f}} q_0 + a_0 CEI + a_7 \left(\frac{EI}{fR}\right)^2 - a_4 \frac{EI}{fR} \frac{2r}{fR} - a_8 \frac{EI}{fR} + \frac{2r}{a}$$
(4-227)

4.5.7 Exemplificare pe săgeți măsurate în cale

Pierderea stabilității căii se manifestă în planul având rezistența minimă, în cazul suprastructurilor de tip greu, este vorba de planul orizontal. Fenomenul este cunoscut sub denumirea de șerpuire: figurile 4.105, 4.106, 4-107.

Figura 4.105 Linia după pierderea stabilității căii

Figura 4.106 Linie experimentală, pierderea stabilității căii în plan orizontal [22]

Figura 4.107 Cazuri de pierdere a stabilității prin șerpuirea căii în plan orizontal [70]

În acest studiu se prezintă măsurătorile efectuate pe raza Regionalei Timișoara privind defectele de așezare a căii fără joante pe tronsonul Timișoara – Arad și Timișoara – Lugoș. Au fost măsurate săgețile atât în aliniament cât și în curbe cu ajutorul dispozitivului de măsurat săgeți tip ROBELL având coarda de 20 m. Săgețile au fost măsurate din 2m în 2m , cu echidistanța de 10m , suprapunându-se câte 5 săgeți pentru a spori precizia măsurătorilor. [51] Pentru datele obținute s-a calculat Pcr și coeficientul de siguranță c.

Fiecare undă de deformație este caracterizată prin săgeata maximă fi și lungimea undei li. Se calculează raportul:

 $i = f_i/l_i \pmod{m}$ sau ‰)

Din măsurarea efectivă rezultă că aliniamentele cele mai frecvente sunt caracterizate prin raportul i = 1:2 (‰) iar în curbe 1:1 (‰).

Ordonatele diagramelor (p) prezintă în % ponderea deformațiilor caracterizate prin raportul i = f_i/l_i .

Figura 4.109 Măsurarea săgeților

Reprezentarea săgețior reale

Reprezentarea s-a făcut la scări diferite: scara lungimilor:1:1000; scara săgeților: 1:1.

A. ALINIAMENT

Figura 4.110 Săgeți reale măsurate în cale, în aliniament

B. CURBĂ

Figura 4.111 Săgeți reale măsurate în cale, în curbă

S-a calculat forța critică minimă după aproximarea unor porțiuni din reprezentările de mai sus cu imperfecțiunile geometrice frecvente:

În aliniament:

- tip imperfecțiune: B;

- $f_1 = 7cm$
- $P_{crmin} = 229600 daN$
- c = 1.457

- tip imperfectiune: B; - $f_2 = 8 \text{ cm}$; - $P_{\text{crmin}} = 220600 \text{ daN}$; - c = 1,4.- $f_3 = 4 \text{ cm}$; - $P_{\text{crmin}} = 235500 \text{ daN}$; - c = 1,495.

Figura 4.112 Imperfectiune tip B, aliniament

În curbă:

4.6.1. Teoria catastrofelor

În urma studiilor sistemelor evolutive în diverse domenii: științe tehnice, biologie, sociologie, economie etc, a luat naștere o teorie matematică cunoscută sub denumirea de Teoria catastrofelor, primul care a contribuit la dezvoltarea sa fiind considerat René Thom prin "Stabilité structurelle et morphogenèse", 1972, lucrarea fiind urmată de cele alor Zeeman, Poston și alții.

 \rightarrow

Această ramură a matematicii se ocupă cu sisteme discrete evolutive, derivate dintr-un potential a cărui extreme trebuie stabilite pentru a rezulta ecuația de stare. Catastrofa este catalogată ca fiind starea critică în care poate ajunge un sistem evolutiv, în situația în care comportarea acestuia se schimbă brusc și urmează o altă lege decât cea inițială. Sunt recunoscute 11 tipuri de catastrofe elementare, în funcție de tipul de potențial al sistemului, denumirea lor fiind: fold, cusp, coadă de rândunică, ombilic hiperbolic,

ombilic eliptic, fluture, ombilic parabolic 1, ombilic parabolic 2 cu +, ombilic parabolic 2 cu -, ombilic simbolic cu +, ombilic simbolic cu -. Dintre aceste tipuri de catastrofe, cele mai des întâlnite și cu aplicații în teoria structurilor sunt primele șapte.

Limitarea numărului tipurilor de catastrofe influențează într-un mod important studiul comportării sistemelor evolutive. Teoria catastrofelor permite identificarea acelor parametri care produc efectul de catastrofă, din cauza faptului că numărul parametrilor spațiului de comportare nu intervine în stabilirea numărului de comportări posibile. Parametri de comportare sunt numiți parametri activi, iar ceilalți care nu influențează decisiv catastrofa poartă denumirea de parametri pasivi, putând fi eliminați din studiul sistemului evolutiv.

Examinând esența teoriei catastrofelor, se ajunge la teoria instabilității structurilor, ambele teorii având aceleași probleme de rezolvat. Teoria catastrofelor are însă un grad de generalitate mai mare, fiind atât o metodă cât și un limbaj de rezolvare pentru toate științele naturii. Cele două teorii: a instabilității structurilor și a catastrofelor s-au dezvoltat simultan, fără a fi stabilite puncte comune între ele până când, aproape simultan, două publicații au apărut: René Thom cu "Stabilité structurelle et morphogenèse" în 1972 și Thompson și Hunt: "A General Theory of Elastic Stability" în 1973. Autorii, care până atunci au urmat drumuri separate, au realizat punctele comune ale studiilor lor urmând o întrepătrundere ale celor două ramuri. Prima catre definea obiectul teoriei catastrofelor, cea de-a doua prezenta pentru prima dată o teorie completă a instabilității structurilor. Matematicienii Zeeman și Chillingworth au publicat lucrări esențiale în domeniul flambajului barelor, ca aplicații ale teoriei catastrofelor.

Esența celor două teorii pornește de la faptul că schimbări mici continue ale variabilelor, întrun proces evolutiv, produce schimbări continue, mici. Acest tip de sisteme având comportare continuă, se numesc sisteme hamiltoniene și pot fi rezolvate cu ecuațiile lui Lagrange sau ecuațiile canonice ale lui Hamilton.

În natură se întâlnesc și sisteme care la mici variații pot declanșa efecte discontinue, cu schimbări bruște se stare, cazuri care nu pot fi abordate cu ajutorul analizei matematice sau cu ecuațiile Lagrange sau Hamilton. Acestea se numesc sisteme nehamiltoniene: comportarea lor fiind descrisă de două curbe având o intersecție într-un singur punct - punct de bifurcare. După prima curbă, comportarea sistemului odată ce a trecut de punctul de bifurcație, și influențat de cea mai mică perturbație, va trece pe ce-a de-a doua curbă, printr-un salt reprezentând o discontinuități în comportare au loc în cazul sistemelor evolutive cu comportări care urmează legi matematice la care situația de stare rezultă dintr-n extrem al funcției. Aceste sisteme se numesc gradientale sau conservative. [71]

Tipuri de catastrofe elementare:

Studiul catastrofelor elementare condus pe principiul instabilității structurilor, indica următoarele tipuri de catastrofe:

Catastrofa Fold

Catastrofele de tip Fold sunt specifice sistemelor cu comportare asimetrică față de originea axelor, având un singur parametru al spațiului cauză. În cazul problemelor de instabilitate, aceste catastrofe au doi parametri cauză, având o formă mai complexă:

$$v = q_1^3 - \lambda_2 q_1^2 + \lambda_1 q_1 \tag{4-228}$$

Dacă
$$D_1 = v_{,11} = 6q_1 - 2\lambda_2$$
, valorile critice se vor obține din următoarea condiție:
 $D_1 = 6q_1 - 2\lambda_2 = 0$ (4-229)

Pentru unfoldingul de bifurcare:

 $\lambda_2 \neq 0, \lambda_1 = 0$, potențialul va avea forma: $v = q_1^3 - \lambda_2 q_1^2$ condițiile de valori staționare:

$$q_1(3q_1 - 2\lambda_2) = 0; \quad 6q_1 - 2\lambda_2 = 0 \tag{4-230}$$

Figura 4.115 Catastrofa Fold [72]

Figura 4.116 Catastrofa Fold [72]

Catastrofa Cusp

Catastrofele Cusp sunt caracteristice sistemelor cu comportare simetrică, în cazul problemelor de instabilitate se întâlnesc două forme: cusp stabil (+) și cusp instabil (-):

$$v = \pm q_1^4 - \lambda_2 q_1^2 + \lambda_1 q_1 \tag{4-231}$$

Pentru valori staționare condiția este:

$$v_{,1} = \pm 4q_1^3 - 2\lambda_2 q_1 + \lambda_1 = 0 \tag{4-232}$$

(4-233)

Pentru unfoldingul de bifurcare $\lambda_2 \neq 0, \lambda_1 = 0$, potențialul devine: $v = \pm q_1^4 - \lambda_2 q_1^2$

Figura 4.117 Catastrofa Cusp [72]

Figura 4.118 Catastrofa Cusp [72]

Catastrofa Coadă de rândunică

Acest tip de catastrofe sunt mai rar întâlnite în cazul instabilității structurilor. Potențialul depinde de 3 parametri:

$$\nu = q_1^5 + \lambda_3 q_1^3 + \lambda_2 q_1^2 + \lambda_1 q_1 \tag{4-234}$$

Valorile staționare reies din condiția:

$$v_{,1} = 5q_1^4 + 3\lambda_3 q_1^2 + 2\lambda_2 q_1 + \lambda_1 = 0$$
(4-235)

În funcție de rădăcinile ecuației pot reieși două sau patru valori extreme, punctele critice obținându-se din:

$$D_1 = v_{,11} = 20q_1^3 + 6\lambda_3 q_1 + 2\lambda_2 = 0 \tag{4-236}$$

Reprezentarea acestui tip de catastrofă este dificilă datorită celor 4 parametri: trei de cauză și unul de comportare.

Figura 4.119 Catastrofa Coadă de rândunică [72]

Figura 4.120 Catastrofa Coadă de rândunică [72]

Catastrofa Fluture

Catastrofa Fluture este la fel ca și catastrofa Coadă de rândunică, mai rar întâlnită în cazul problemelor de stabilitate a structurilor.

Potențialul depinde de patru parametri ale spațiului cauză și are forma:

$$v = q_1^6 + \lambda_4 q_1^4 + \lambda_3 q_1^3 + \lambda_2 q_1^2 + \lambda_1 q_1$$
(4-237)

Reprezentarea grafică este relativ dificilă datorită numărului mare de parametri.

Figura 4.121 Catastrofa Fluture [72]

Figura 4.122 Catastrofa Fluture [72]

Catastrofe Ombilicale

Catastrofele ombilicale sunt catastrofe cu doi parametri pentru spațiul cauză. Față de ecuațiile descrise de Thom, aceste catastrofe pot fi adaptate problemelor de instabilitate a structurilor. Potențialul are forma:

$$v = \alpha q_2^3 - 3q_2 q_1^2 - \lambda_3 (q_1^2 + q_2^2) - \lambda_2 q_2 - \lambda_1 q_1$$
(4-238)

pentru valori diferite ale lui α se obțin cele mai importante forme de catastrofe ombilicale. Pentru a obține valori staționare, se impune:

$$v_{,1} = -6q_2q_1 - 2\lambda_3 q_1 - \lambda_1 = 0 \tag{4-239}$$

$$v_{,2} = 3\alpha q_2^2 - 3q_1^2 - 2\lambda_3 q_2 - \lambda_2 = 0 \tag{4-240}$$

Valorile staționare se obțin prin:

$$D = -4(3\alpha q_2 - \lambda_3)(3q_2 + \lambda_3) - 36q_1^2$$
(4-241)

$$D_1 = 6(\alpha - 1)q_2 - 4\lambda_3$$
 (4-242)

Ombilic eliptic

Forma acestei catastrofe se obține din condiția $\alpha = 1$ $v = q_2^3 - 3q_2q_1^2 - \lambda_3(q_1^2 + q_2^2) - \lambda_2q_2 - \lambda_1q_1$ (4-243)

Dreptele unifoldingului de bifurcație sunt:

 $q_1 = 0$, $q_2 = 0$; cu valori minime pentru $\lambda_3 < 0$ și maxime pentru $\lambda_3 > 0$

$$q_{1} = 0, \quad 3q_{2} - 2\lambda_{3} = 0;$$

$$q_{1} - \sqrt{3}q_{2} = 0, \quad 3q_{2} + \lambda_{3} = 0;$$

$$q_{1} + \sqrt{3}q_{2} = 0, \quad 3q_{2} + \lambda_{3} = 0;$$

(4-244)

Ultimele trei drepte au D < 0 și puncte staționare de tip șa.

Figura 4.123 Catastrofa Ombilic [72]

Ombilic parabolic Acest tip de catastrofă ombilic se obține dacă $\alpha = 0$ Ecuația devine:

$$v = -3q_2q_1^2 - \lambda_3(q_1^2 + q_2^2) - \lambda_2q_2 - \lambda_1q_1$$
(4-245)

Această formă diferă de cea precizată de Thom, prin lipsa termenului q_2^4 , fiind numit din această cauza *ombilic parabolic incomplet*.

Dreptele pentru unfoldingul de bifurcare sunt:

Figura 4.124 Catastrofa Ombilic parabolic [72]

Ombilic hiperbolic

Acest tip de catastrofă are o singură axă de simetrie, pentru $q_1 = q_2$. Cea mai întâlnită geometrie pentru ombilicul hiperbolic este cea cu simetria germenului <u>în</u> raport cu axa Oq₁.

Figura 4.125 Catastrofa Ombilic hiperbolic [72]

Cazurile întâlnite:

pentru $\alpha > -2$, acest tip de catastrofă devine *ombilic hiperbolic homeoclinal* cu potențialul:

$$\nu = -\frac{1}{2}q_2^3 - 3q_1q_1^2 - \lambda_3(q_2^2 + q_1^3) - \lambda_2q_2 - \lambda_1q_1$$
(4-247)

cu dreptele:

$$q_{1} = 0, \quad q_{2} = 0;$$

$$q_{1} = 0, \quad \frac{3}{2} q_{2} \dots 2\lambda_{3} = 0;$$

$$q_{1} - \frac{q_{2}}{\sqrt{2}} = 0, \quad 3q_{2} + \lambda_{3} = 0;$$

$$q_{1} + \frac{q_{2}}{\sqrt{2}} = 0, \quad 3q_{2} + \lambda_{3} = 0;$$

$$(4-248)$$

Un alt caz semnificativ este $\alpha = -2$, devenind *ombilic hiperbolic rădăcină triplă*:

$$\lambda_{3} = \pm (6\lambda_{2})^{1/2} \\ \lambda_{2} = 0; \ \lambda_{1} = 0$$
(4-249)

În cazul $\alpha < -2$, denumirea este *ombilic hiperbolic monoclinal*. Dreptele semnificative: $q_1 = 0$, $q_2 = 0$;

$$q_1 = 0, \quad 9q_2 + \lambda_3 = 0; \tag{4-250}$$

Catastrofa Dublu Cusp

Unfoldingul universal conține mai mult decât cinci parametri ai spațiului cauzelor. Cel mai des întâlnită în teoria instabilității structurilor este forma cu trei parametri:

$$v = q_2^4 + q_1^4 - 6q_2^2 q_1^2 - \lambda_3 (q_2^2 + q_1^3) - \lambda_2 q_2 - \lambda_1 q_1$$
(4-251)

relația reprezentând alăturarea a două catasrofe cusp stabil, după direcția coordonatelor q1 și q2.

4.6.2. Reprezentarea forței critice ca o suprafață curbă - aproximarea cu un tip de catastrofă elementară

Exemplificând, pentru imperfecțiunea geometrică tip E, Forța critică poate fi reprezentată ca o suprafață curbă:

Reprezentarea a fost efectuată pentru cazul în aliniament, șină tip 60, r=300000 daNcm, q=6.0daN/cm, C=3daN/cm², qo=3.0daN/cm, a=65cm

Figura 4 .126 Reprezentare înfășurătoare Pcr

Imperfecțiunea de tip E poate fi aproximată cu catastrofa tip Ombilic hiperbolic. Parametri identificați: $\lambda_1 = P_{cr}$; $\lambda_2 = l_i$; $\lambda_1 = f_{i.}$

5. CAPITOLUL 5. ÎNCERCĂRI EXPERIMENTALE ȘI SIMULĂRI

5.1. Încercări asupra traversei din beton tip cadru

În cazul în care suprastructura căii este alcătuită din șine, traverse speciale și prismă, pentru asigurarea stabilității căii, traversele speciale înglobate în prismă și prisma propriu zisă au o importanță deosebită. Orice suprastructură trebuie să mențină cât mai mult pozițiile proiectate ale șinelor. La suprastructurile sudate, șinele sunt încărcate cu eforturi importante de compresiune sau întindere în funcție de temperatură, din acest motiv problema stabilității căii este de o importanță deosebită pentru siguranța circulației.

Dacă analizăm structura forței critice de pierdere a stabilității căii, observăm că componenta care depinde de prismă are o valoare de aproximativ 70-80 % din totalul forței critice.

Experimentele derulate pe parcursul studiului doctoral conțin testări pe două tipuri de traverse: traversa specială tip cadru din beton armat și traversa metalică tip Y la care s-a efectuat verificarea experimentală a rezistenței laterale dată de prisma de piatră spartă.

Cu aceste traverse se poate realiza o cale mult mai stabilă comparativ cu traversa din beton precomprimat tip monobloc utilizată în prezent la majoritatea liniilor de cale ferată.

5.1.1. Descrierea și execuția traversei tip cadru

Traversa cadru prezentată în lucrare este rezultatul cercetărilor conduse de profesorul Peter Veit de la Institute of Railway Engineering of Graz, Austria. Designul acestei structuri are scopul de a atinge durabilitate sporită, integrare ușoară în structurile existente precum și un raport costuri - avantaje optim. Avantajele traversei cadru sunt: reducerea presiunii prismei de piatră spartă cu 50 %, rezistență laterală crescută, rigiditate mare, utilizabilă în cazul tuturor tipurilor de curbe cu orice raze și supraînălțări, elasticitatea cadrului la bază, aplicabilitatea tuturor metodelor mecanizate existente pentru așezare, compactare și întreținere.

Rezultatele prezentate au fost conduse pe o traversă cadru scara 1:1, realizată în hala de încercări a Facultății de Construcții din Cluj Napoca. Dimensiunile și geometria elementului testat sunt prezentate în cele ce urmează.

Figura 5.1 Dimensiuni ale traversei tip cadru (Riessberger, 2004) [21]

Caracteristicile geometrice: [73]

- L = 2.50 m
- l = 1.15 m
- -G = 900 kg
- $-e = 1437 \text{ mm} \pm 1$
- beton C50/60
- forță forfecare 4x320 kN
- armare: 16 x 9.4 Φ
- încărcare pe osie 250 kN
- viteză 250 km/h
- sistem prindere șină: Vossloh W14

Figura 5.2 Reprezentare 3D a traversei cadru în Solid Works

Figura 5.3 Traversa cadru tip RS 115 (SSL Linz) [73]

Fazele construcției și testării:

Betonul folosit a fost C50/60, cu ciment de rezistență 42,5:

Figura 5.4 Ciment utilizat

Betonul proaspăt turnat în cofraj:

Figura 5.5 Betonul proaspăt turnat

Figura 5.6 Traversa după decofrare laterală

Figura 5.7 Cariera de la Iara

Figura 5.8 Așezarea traversei cadru pe patul de piatră spartă

Figura 5.9 Traversa cadru așezată pe prisma de piatră spartă

Figura 5.10 Compactarea manuală a prismului

Mulțumiri echipei de la Divizia de Întreținere linii Cluj Napoca pentru compactarea manuală a pietrei sparte de sub traversa cadru.

Figura 5.11 Traversa cadru înglobată în piatra spartă

5.1.2. Descrierea încercărilor efectuate pe traversa tip cadru

Pentru testarea traversei la deplasare transversală s-a utilizat o presă hidraulică de 20 tone conectată la un compresor de aer. Forța a fost măsurată cu ajutorul unui traductor forță intercalat între traversă și pistonul presei, iar deplasarea cu ajutorul unui senzor de deplasare, ambele conectate la un sistem de achiziție date care prin intermediul unui soft specific (HBM) înregistrează în timp cei doi parametri: forța și deplasarea, transmițând rezultatele către un calculator conectat la sistemul de achiziție date Spider. [74] (figura 5-12)

Scopul a fost determinarea rezistenței laterale a prismului de piatră spartă, cu cele 3 componente ale sale:

- a. traversa înglobată complet, pe toate laturile în prismă
- b. traversa înglobată parțial, în zona umărului
- c. traversa nu este înglobată în prismă, este prezentă doar frecarea pe talpă

Calculator preluare date

Traversa din beton tip cadru

Senzor deplasare

Figura 5.12 Elementele necesare testării: presa și senzorii

5.1.3. Rezultatele obținute

Testele au fost conduse pentru trei dimensiuni ale prismei de piatră spartă: 35, 50 și 60 cm, pentru fiecare caz în parte s-a măsurat deplasarea traversei în plan orizontal, transversal căii, urmărind determinarea ponderii componentelor prismei: talpă, lateral, capăt.

Variația dimensiunii umărului se datorează curbelor, unde forțele care se dezvoltă pe aceste porțiuni impun sporirea umărului prismei de piatră spartă, calea fiind mult mai sensibilă în curbe. Având o stabilitate sporită, traversa tip cadru este recomandată în special în curbele cu raze mici.

În cele ce urmează, se vor prezenta rezultatele experimentale pentru variațiile umărului prismei și componentele rezistenței laterale a prismei (talpă, capăt, laterale):

a. Umărul prismei de piatră spartă: 35 cm:

Traversa complet înglobată în prisma de piatră spartă:

Figura 5.13 Variația forței în timp

Figura 5.14 Grafic Deplasare - Forță - Timp

Figura 5.15 Diagrama încărcare - deplasare pentru umărul prismei de 35 cm, traversă înglobată complet în prismă

Figura 5.16 Diagrama încărcare - deplasare pentru umărul prismei de 35 cm, componenta prismei la capăt

b. Umărul prismei de piatră spartă: 50 cm:

Traversa complet înglobată în prisma de piatră spartă:

Figura 5.17 Diagrama încărcare - deplasare pentru umărul prismei de 50 cm, traversă înglobată complet în prismă

Figura 5.18 Diagrama încărcare - deplasare pentru umărul prismei de 50 cm, componenta prismei la capăt

Umărul prismei de piatră spartă: 60 cm: Traversa complet înglobată în prisma de piatră spartă:

Figura 5.21 Diagrama încărcare - deplasare pentru umărul prismei de 60 cm, traversă înglobată complet în prismă

Figura 5.22 Diagrama încărcare - deplasare pentru umărul prismei de 60 cm, componenta prismei la capăt

Figura 5.23 Diagrama încărcare - deplasare componenta prismei pe talpă, fără balast în interior

Deplasare (cm)

Figura 5.24 Diagrama încărcare - deplasare componenta prismei pe talpă

5.1.4. Prelucrarea datelor - studiu comparativ

Calea fără joante este considerată un cadru orizontal, așezat pe prisma de piatră spartă, fără a fi fixată, având o geometrie specială (aliniamente și curbe spațiale).

Este necesar să se determine elementele de calcul a căii fără joante pentru a preveni instabilitatea și a menține siguranța circulației.

Fenomenul de șerpuire poate fi prevenit atât de rigiditatea șinei cât și a cadrului șine traverse și a rezistenței prismului de piatră spartă la deplasarea longitudinală și transversală a căii.

Influența prismei de piatră spartă a fost determinată cu relația:

 $q = q_0 + C \cdot y \tag{5.1}$

 $\begin{array}{ll} \text{dacă } y < y_{\text{o},} \ q_{y} = q_{0} + Cy & (\text{variație liniară}) & (5.2) \\ \text{dacă } y \ge y_{\text{o},} \ q_{y} = q & (\text{rezistența laterală este constantă}) & (5.3) \end{array}$

Figura 5.25 Rezistența laterală în funcție de deplasarea laterală [24]

S-a studiat forța critică minimă de pierdere a stabilității pentru 2 tipuri de traverse: Traversa clasică T17 și traversa cadru prezentată în lucrare, folosind metoda aproximativă de calcul, pentru imperfecțiunea de tip E: unde: 1 - lungimea imperfecțiunii geometrice considerată l = 1200 cm f - săgeata imperfecțiunii geometrice considerată f = 1,5 cm r = 300.000 daNcm

 $C = 3 \text{ daN/cm}^2$ a = 65 cm

Rezultatele obținute utilizând metoda aproximativă de calcul sunt prezentate în tabelul 5.1:

	Tabel 5.1 Forța critică Pcr, rezultatele obținute p				
	Traversa T17	Traversa tip cadru			
D. nontru uměr 25 am [da]	697.500	1.226.000			
P _{cr} pentru umar 33 cm [dalN]	(q=5,6 [daN/cm])	(q=10 [daN/cm])			
D nontru uměr 50 am [da]		1.586.000			
F _{cr} pentitu uniai 50 cm [dan]	-	(q=13 [daN/cm])			
\mathbf{D} ym $\check{\mathbf{a}}$ (d. \mathbf{M})		1.706.000			
P _{cr} umar 60 cm [dalN]	-	(q=14 [daN/cm])			

Rezultatele obținute utilizând diagramele obținute experimental sunt prezentate în tabelul 5.2:

Taber 5.2 Toria entrea T _{cr} , rezultate objinute forosind rezultatere experimenteror										
	Traversa T17	Traversa tip cadru								
	Umăr prismă 35 cm	Umăr prismă 35 cm	Umăr prismă 50 cm	Umăr prismă 60 cm						
qo [daN/cm]	3,00	1,80	1,80	2,00						
q [daN/cm]	5,60	10,00	13,50	14,00						
$C [daN/cm^2]$	2,60	5,54	16,23	18,46						

Tabel 5.2 Forta critică P_{ar} rezultate obtinute folosind rezultatele experimentelor

Rezultatele obținute folosind metoda energetică de calcul:

Tabel 5.3 Forta	critică P _{cr} .	rezultate obtiut	e prin	metoda	energetică
1 40 01 0 10 1 01 04		102000000000000000000000000000000000000	• • • • • •		

	Traversa T17	Traversa tip cadru q constant
P _{cr} umăr 35 cm [daN]	775.000	1.054.000
P _{cr} umăr 50 cm [daN]	-	2.609.0
P _{cr} umăr 60 cm [daN]	-	2.958.000

Concluzie:

Utilizând traversa tip cadru prezentată în lucrare, se poate constata că rezistenta la deplasare laterală este cu 57 % mai mare decât în cazul traversei din beton precomprimat T17 dacă considerăm în calcule că această rezistență este constantă și același umăr al prismei de piatră spartă. În cazul în care folosim diagrame reale de calcul pentru componentele care opun rezistență la deplasare, forța critică obținută este mai mare cu 73 % decât în cazul traversei T17 utilizată în mod curent și același umăr al prismei de piatră spartă.

Anexe

Traversă monobloc T17: Imperfectiune tin B

Imperfecțiune tip B - C = 2,6 daN/cm²; $q_0 = 3$ daN/cm

												<u>, </u>
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	22163832	22162500	22162056	22161834	22161701	22161612	22161549	22161501	22161435	22161390	22161359	22161335
200,00	5559538	5554210	5552434	5551546	5551014	5550658	5550405	5550214	5549948	5549770	5549644	5549548
300,00	2498485	2486497	2482501	2480503	2479304	2478505	2477934	2477506	2476907	2476507	2476222	2476008
400,00	1443437	1422125	1415021	1411469	1409337	1407917	1406902	1406141	1405075	1404365	1403857	1403477
500,00	973005	939705	928605	923055	919725	917505	915920	914730	913065	911955	911163	910568
600,00	736460	688508	672524	664532	659736	656540	654256	652544	650146	648548	647406	646550
700,00	613623	548355	526599	515721	509195	504843	501735	499404	496141	493965	492411	491246
800,00	554298	469050	440634	426426	417901	412218	408159	405114	400852	398010	395981	394458
900,00	534503	426611	390647	372665	361875	354683	349545	345692	340297	336701	334132	332205
1000,00	541606	408406	364006	341806	328486	319606	313263	308506	301846	297406	294234	291856
1100,00	568442	407270	353546	326684	310566	299822	292147	286391	278332	272960	269122	266244
1200,00	610699	418891	354955	322987	303806	291019	281885	275035	265445	259051	254484	251059
1300,00	665658	440550	365514	327996	305485	290478	279759	271719	260464	252960	247600	243581
1400,00	731534	470462	383438	339926	313819	296414	283982	274658	261605	252902	246686	242024
1500,00	807117	507417	407517	357567	327597	307617	293345	282642	267657	257667	250531	245179
1600,00	891562	550570	436906	380074	345974	323242	307004	294826	277776	266410	258291	252202
1700,00	984265	599317	471001	406843	368348	342685	324354	310606	291359	278527	269362	262487
1800,00	1084786	653218	509362	437434	394277	365506	344955	329542	307964	293578	283303	275596
1900,00	1192797	711945	551661	471519	423434	391377	368479	351306	327263	311235	299786	291199
2000,00	1308050	775250	597650	508850	455570	420050	394678	375650	349010	331250	318564	309050
2100,00	1430354	842942	647138	549236	490494	451334	423362	402383	373012	353432	339446	328956
2200,00	1559561	914873	699977	592529	528060	485081	454381	431357	399122	377633	362283	350771
Pcrmin (daN)	534503	407270	353546	322987	303806	290478	279759	271719	260464	252902	246686	242024
Pmaxt (daN)	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552
C	3.12	2.37	2.06	1.88	1.77	1.69	1.63	1.58	1.52	1.47	1.44	1.41

Tabel 5.12 P_{cr} Forta critică Imperfectiune tip B

Figura 5.46 Variația P_{cr} în funcție de f și l Imperfecțiune tip B

Traversă monobloc T17: Imperfectiune țin C

Imperfecțiune tip C - C = 2,6 daN/cm²; $q_0 = 3$ daN/cm

												1
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	47916090	48074176	48127104	48153612	48169532	48180150	48187738	48193430	48201402	48206717	48210515	48213364
200,00	11761414	11912272	11963443	11989198	12004706	12015067	12022479	12028044	12035844	12041050	12044771	12047564
300,00	5084283	5223936	5272310	5296855	5311698	5321642	5328769	5334128	5341649	5346676	5350272	5352973
400,00	2766822	2892372	2937093	2960033	2973989	2983374	2990118	2995198	3002342	3007126	3010553	3013129
500,00	1713033	1822791	1863224	1884249	1897134	1905841	1912117	1916857	1923539	1928024	1931243	1933665
600,00	1157715	1251151	1286906	1305795	1317473	1325409	1331152	1335502	1341652	1345792	1348769	1351013
700,00	837749	915308	946234	962863	973248	980350	985513	989436	995003	998763	1001473	1003520
800,00	642617	705467	731629	745970	755025	761262	765820	769295	774246	777604	780030	781866
900,00	519169	568942	590591	602701	610439	615811	619758	622780	627104	630049	632183	633801
1000,00	439245	477811	495338	505352	511831	516366	519718	522296	526003	528539	530383	531785
1100,00	386827	416111	430006	438119	443437	447192	449985	452143	455262	457407	458972	460165
1200,00	352301	374157	384973	391426	395713	398769	401056	402833	405414	407198	408505	409504
1300,00	329663	345795	354107	359175	362588	365044	366895	368340	370452	371919	372999	373827
1400,00	315044	326962	333344	337320	340034	342006	343503	344678	346404	347612	348504	349190
1500,00	305891	314897	319899	323082	325285	326900	328136	329111	330552	331567	332319	332900
1600,00	300490	307680	311814	314499	316383	317777	318852	319705	320973	321872	322542	323060
1700,00	297670	303950	307679	310150	311907	313221	314240	315054	316272	317140	317790	318295
1800,00	296625	302728	306464	308987	310805	312177	313250	314111	315409	316340	317041	317587
1900,00	296791	303302	307403	310223	312282	313851	315086	316083	317596	318689	319515	320162
2000,00	297777	305152	309923	313262	315729	317627	319132	320355	322222	323579	324611	325421
2100,00	299303	307893	313589	317642	320675	323028	324908	326444	328804	330532	331852	332893
2200,00	301175	311241	318071	323011	326749	329676	332031	333966	336959	339165	340859	342200
Pcrmin (daN)	296625	302728	306464	308987	310805	312177	313250	314111	315409	316340	317041	317587
Pmaxt (daN)	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552
c	1.73	1.76	1.79	1.80	1.81	1.82	1.83	1.83	1.84	1.84	1.85	1.85

Tabel 5.13 P_{cr} Forta critică Imperfectiune tip C

Figura 5.47 Variația P_{cr} în funcție de f și l Imperfecțiune tip C

Traversă monobloc T17: Imperfecțiune tip E - C = 2,6 daN/cm²; $q_0 = 3$ daN/cm

												, ,
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	2344850	2337110	2334530	2333240	2332466	2331950	2331582	2331305	2330918	2330660	2330476	2330338
200,00	661033	630073	619753	614593	611497	609433	607959	606853	605305	604273	603536	602983
300,00	429686	360026	336806	325196	318230	313586	310269	307781	304298	301976	300318	299074
400,00	443771	319931	278651	258011	245627	237371	231474	227051	220859	216731	213783	211571
500,00	554581	361081	296581	264331	244981	232081	222867	215956	206281	199831	195224	191769
600,00	725422	446782	353902	307462	279598	261022	247754	237802	223870	214582	207948	202972
700,00	943721	564461	438041	374831	336905	311621	293561	280016	261053	248411	239381	232608
800,00	1204226	708866	543746	461186	411650	378626	355037	337346	312578	296066	284272	275426
900,00	1504428	877488	668508	564018	501324	459528	429674	407283	375936	355038	340111	328916
1000,00	1843006	1069006	811006	682006	604606	553006	516149	488506	449806	424006	405577	391756
1100,00	2219210	1282670	970490	814400	720746	658310	613713	580265	533438	502220	479921	463197
1200,00	2632589	1518029	1146509	960749	849293	774989	721914	682109	626381	589229	562691	542789
1300,00	3082858	1774798	1338778	1120768	989962	902758	840469	793753	728350	684748	653604	630245
1400,00	3569831	2052791	1547111	1294271	1142567	1041431	969191	915011	839159	788591	752471	725381
1500,00	4093381	2351881	1771381	1481131	1306981	1190881	1107952	1045756	958681	900631	859167	828068
1600,00	4653420	2671980	2011500	1681260	1483116	1351020	1256665	1185900	1086828	1020780	973602	938220
1700,00	5249884	3013024	2267404	1894594	1670908	1521784	1415267	1335379	1223536	1148974	1095715	1055771
1800,00	5882728	3374968	2539048	2121088	1870312	1703128	1583710	1494148	1368760	1285168	1225459	1180678
1900,00	6551916	3757776	2826396	2360706	2081292	1895016	1761962	1662171	1522464	1429326	1362799	1312904
2000,00	7257425	4161425	3129425	2613425	2303825	2097425	1949996	1839425	1684625	1581425	1507710	1452425
2100,00	7999232	4585892	3448112	2879222	2537888	2310332	2147792	2025887	1855220	1741442	1660172	1599219
2200,00	8777323	5031163	3782443	3158083	2783467	2533723	2355334	2221543	2034235	1909363	1820169	1753273
Pcrmin (daN)	429686	319931	278651	258011	244981	232081	222867	215956	206281	199831	195224	191769
Pmaxt (daN)	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552
c	2.50	1.86	1.62	1.50	1.43	1.35	1.30	1.26	1.20	1.16	1.14	1.12

Tabel 5.14 P_{cr} Forta critică Imperfectiune tip E

Figura 5.48 Variația P_{cr} în funcție de f și l Imperfecțiune tip E

Traversă metalică Y:

Imperfectiune tip B - C = 31,66 daN/cm²; $q_0 = 2,5$ daN/cm [75]

Tał	bel	5.1	5 P _{cr}	Forța	critică	Imper	fecțiune	e tip B	;
-----	-----	-----	-------------------	-------	---------	-------	----------	---------	---

l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	22168358	22167248	22166878	22166693	22166582	22166508	22166455	22166415	22166360	22166323	22166296	22166276
200,00	5577639	5573199	5571719	5570979	5570535	5570239	5570028	5569869	5569647	5569499	5569394	5569314
300,00	2539213	2529223	2525893	2524228	2523229	2522563	2522087	2521730	2521231	2520898	2520660	2520481
400,00	1515841	1498081	1492161	1489201	1487425	1486241	1485395	1484761	1483873	1483281	1482858	1482541
500,00	1086137	1058387	1049137	1044512	1041737	1039887	1038566	1037574	1036187	1035262	1034601	1034106
600,00	899369	859409	846089	839429	835433	832769	830866	829439	827441	826109	825158	824444
700,00	835361	780971	762841	753776	748337	744711	742121	740179	737459	735646	734351	733380
800,00	843915	772875	749195	737355	730251	725515	722132	719595	716043	713675	711983	710715
900,00	901049	811139	781169	766184	757193	751199	746917	743706	739211	736214	734073	732467
1000,00	994132	883132	846132	827632	816532	809132	803846	799882	794332	790632	787989	786007
1100,00	1115998	981688	936918	914533	901102	892148	885752	880956	874240	869763	866565	864167
1200,00	1262336	1102496	1049216	1022576	1006592	995936	988325	982616	974624	969296	965491	962636
1300,00	1430427	1242837	1180307	1149042	1130283	1117777	1108844	1102145	1092765	1086512	1082046	1078696
1400,00	1618485	1400925	1328405	1292145	1270389	1255885	1245525	1237755	1226877	1219625	1214445	1210560
1500,00	1825300	1575550	1492300	1450675	1425700	1409050	1397157	1388238	1375750	1367425	1361479	1357019
1600,00	2050028	1765868	1671148	1623788	1595372	1576428	1562897	1552748	1538540	1529068	1522302	1517228
1700,00	2292065	1971275	1864345	1810880	1778801	1757415	1742139	1730683	1714643	1703950	1696312	1690584
1800,00	2550970	2191330	2071450	2011510	1975546	1951570	1934445	1921600	1903618	1891630	1883067	1876645
1900,00	2826416	2425706	2292136	2225351	2185280	2158566	2139484	2125173	2105138	2091781	2082240	2075084
2000,00	3118154	2674154	2526154	2452154	2407754	2378154	2357011	2341154	2318954	2304154	2293582	2285654
2100,00	3425993	2936483	2773313	2691728	2642777	2610143	2586833	2569351	2544875	2528558	2516903	2508162
2200,00	3749787	3212547	3033467	2943927	2890203	2854387	2828804	2809617	2782755	2764847	2752055	2742462
Pcrmin (daN)	835361	772875	749195	737355	730251	725515	722132	719595	716043	713675	711983	710715
Pmaxt (daN)	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552
с	4,87	4,51	4,37	4,30	4,26	4,23	4,21	4,19	4,17	4,16	4,15	4,14

Figura 5.49 Variația P_{cr} în funcție de f și l Imperfecțiune tip B

Traversă metalică Y:

Imperfectiune tip C - C = 31,66 daN/cm²; $q_0 = 2,5$ daN/cm [75]

Tabel	15	16	Per	Forta	critică	Impert	fectiur	ne tin	(
1 aoo		10	1 01	1 01 ;u	erneu	mpen	co çi ai	ie up	~

l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	47921394	48079654	48132642	48159179	48175116	48185746	48193342	48199041	48207021	48212343	48216145	48218997
200,00	11782215	11933971	11985446	12011355	12026954	12037377	12044833	12050432	12058278	12063515	12067259	12070068
300,00	5129615	5271969	5321279	5346298	5361428	5371565	5378830	5384292	5391959	5397083	5400749	5403502
400,00	2844018	2975874	3022842	3046935	3061591	3071448	3078531	3083866	3091369	3096393	3099992	3102698
500,00	1827454	1949654	1994671	2018078	2032425	2042118	2049107	2054384	2061823	2066816	2070400	2073097
600,00	1312744	1427858	1471909	1495180	1509568	1519345	1526421	1531779	1539356	1544457	1548125	1550889
700,00	1034987	1146875	1191489	1215479	1230460	1240706	1248154	1253814	1261844	1267269	1271178	1274130
800,00	882190	995468	1042623	1068470	1084791	1096032	1104246	1110510	1119434	1125485	1129859	1133167
900,00	800078	919611	971601	1000685	1019269	1032169	1041647	1048905	1059289	1066361	1071487	1075374
1000,00	759706	890188	949485	983365	1005286	1020630	1031971	1040695	1053235	1061814	1068054	1072796
1100,00	744553	890214	959330	999682	1026134	1044813	1058706	1069443	1084956	1095623	1103409	1109341
1200,00	744737	909172	990539	1039090	1071346	1094332	1111542	1124910	1144327	1157750	1167585	1175099
1300,00	754153	940245	1036123	1094589	1133966	1162290	1183643	1200316	1224670	1241602	1254057	1263602
1400,00	768951	978877	1091285	1161317	1209136	1243864	1270228	1290927	1321338	1342607	1358317	1370396
1500,00	786678	1021954	1152628	1235771	1293326	1335530	1367802	1393278	1430937	1457437	1477098	1492264
1600,00	805766	1067325	1217699	1315356	1383883	1434623	1473705	1504733	1550884	1583564	1607922	1626776
1700,00	825216	1113495	1284699	1398111	1478767	1539068	1585855	1623214	1679135	1718992	1748837	1772023
1800,00	844403	1159432	1352306	1482536	1576379	1647214	1702580	1747045	1814030	1862091	1898253	1926449
1900,00	862945	1204433	1419544	1567477	1675452	1757731	1822512	1874840	1954185	2011496	2054833	2088751
2000,00	880623	1248029	1485701	1652043	1774977	1869532	1944519	2005442	2098424	2166043	2217430	2257805
2100,00	897324	1289921	1550265	1735550	1874146	1981727	2067655	2137869	2245735	2324714	2385042	2432626
2200,00	913003	1329932	1612874	1817477	1972318	2093584	2191127	2271288	2395238	2486619	2556778	2612338
Pcrmin (daN)	744553	890188	949485	983365	1005286	1020630	1031971	1040695	1053235	1061814	1068054	1072796
Pmaxt (daN)	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94
с	4,34	5,19	5,53	5,73	5,86	5,95	6,02	6,07	6,14	6,19	6,23	6,25

Figura 5.50 Variația P_{cr} în funcție de f și l Imperfecțiune tip C

Traversă metalică Y:

Imperfecțiune tip E - C = 31,66 daN/cm²; q₀ = 2,5 daN/cm [75]

Tabel 5.17 P _{cr} Forta critica Imperted	tiune	tip	E
---	-------	-----	---

l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	2371621	2365171	2363021	2361946	2361301	2360871	2360564	2360333	2360011	2359796	2359642	2359527
200,00	768116	742316	733716	729416	726836	725116	723887	722966	721676	720816	720201	719741
300,00	670622	612572	593222	583547	577742	573872	571107	569034	566132	564197	562815	561778
400,00	872101	768901	734501	717301	706981	700101	695187	691501	686341	682901	680444	678601
500,00	1223846	1062596	1008846	981971	965846	955096	947418	941659	933596	928221	924382	921503
600,00	1689164	1456964	1379564	1340864	1317644	1302164	1291107	1282814	1271204	1263464	1257935	1253789
700,00	2255480	1939430	1834080	1781405	1749800	1728730	1713680	1702393	1686590	1676055	1668530	1662887
800,00	2917544	2504744	2367144	2298344	2257064	2229544	2209887	2195144	2174504	2160744	2150916	2143544
900,00	3672847	3150397	2976247	2889172	2836927	2802097	2777218	2758559	2732437	2715022	2702582	2693253
1000,00	4520066	3875066	3660066	3552566	3488066	3445066	3414352	3391316	3359066	3337566	3322209	3310691
1100,00	5458452	4678002	4417852	4287777	4209732	4157702	4120538	4092665	4053642	4027627	4009045	3995109
1200,00	6487555	5558755	5249155	5094355	5001475	4939555	4895326	4862155	4815715	4784755	4762641	4746055
1300,00	7607089	6517039	6153689	5972014	5863009	5790339	5738432	5699502	5644999	5608664	5582711	5563246
1400,00	8816868	7552668	7131268	6920568	6794148	6709868	6649668	6604518	6541308	6499168	6469068	6446493
1500,00	10116766	8665516	8181766	7939891	7794766	7698016	7628909	7577078	7504516	7456141	7421587	7395672
1600,00	11506693	9855493	9305093	9029893	8864773	8754693	8676065	8617093	8534533	8479493	8440179	8410693
1700,00	12986587	11122537	10501187	10190512	10004107	9879837	9791073	9724500	9631297	9569162	9524780	9491493
1800,00	14556402	12466602	11770002	11421702	11212722	11073402	10973888	10899252	10794762	10725102	10675345	10638027
1900,00	16216103	13887653	13111503	12723428	12490583	12335353	12224475	12141316	12024893	11947278	11891839	11850259
2000,00	17965665	15385665	14525665	14095665	13837665	13665665	13542807	13450665	13321665	13235665	13174236	13128165
2100,00	19805067	16960617	16012467	15538392	15253947	15064317	14928867	14827279	14685057	14590242	14522517	14471723
2200,00	21734293	18612493	17571893	17051593	16739413	16531293	16382636	16271143	16115053	16010993	15936665	15880918
Pcrmin (daN)	670622	612572	593222	583547	577742	573872	571107	569034	566132	564197	562815	561778
Pmaxt (daN)	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94	171551,94
с	3,91	3,57	3,46	3,40	3,37	3,35	3,33	3,32	3,30	3,29	3,28	3,27

Figura 5.51 Variația P_{cr} în funcție de f și l Imperfecțiune tip E

Traversă cadru beton:

Imperfecțiune tip B - C = 25,4 daN/cm²; $q_0 = 2,3$ daN/cm

										,		, ,
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	22167110	22166088	22165748	22165578	22165476	22165408	22165359	22165322	22165271	22165237	22165213	22165195
200,00	5572647	5568562	5567201	5566520	5566112	5565839	5565645	5565499	5565295	5565158	5565061	5564988
300,00	2527980	2518789	2515726	2514194	2513275	2512662	2512224	2511896	2511437	2511130	2510911	2510747
400,00	1495872	1479533	1474086	1471363	1469729	1468640	1467862	1467278	1466461	1465917	1465528	1465236
500,00	1054935	1029405	1020895	1016640	1014087	1012385	1011170	1010258	1008981	1008130	1007523	1007067
600,00	854439	817676	805421	799294	795618	793167	791416	790103	788265	787040	786164	785508
700,00	774206	724167	707488	699148	694144	690808	688425	686638	684136	682468	681277	680384
800,00	764039	698682	676897	666004	659468	655111	651999	649665	646397	644218	642662	641495
900,00	799956	717239	689666	675880	667608	662094	658155	655201	651065	648308	646338	644861
1000,00	869326	767206	733166	716146	705934	699126	694263	690616	685510	682106	679674	677851
1100,00	964983	841418	800229	779635	767278	759041	753157	748744	742565	738447	735505	733298
1200,00	1082616	935563	886545	862037	847331	837528	830525	825273	817921	813019	809518	806892
1300,00	1219505	1046922	989394	960631	943372	931867	923649	917485	908856	903103	898994	895912
1400,00	1373865	1173710	1106992	1073633	1053617	1040273	1030742	1023594	1013586	1006914	1002149	998574
1500,00	1544487	1314717	1238127	1199832	1176855	1161537	1150595	1142389	1130901	1123242	1117771	1113668
1600,00	1730525	1469098	1381955	1338384	1312241	1294813	1282364	1273027	1259956	1251242	1245017	1240349
1700,00	1931376	1636249	1537873	1488686	1459173	1439498	1425444	1414904	1400147	1390310	1383283	1378013
1800,00	2146599	1815730	1705440	1650296	1617209	1595151	1579395	1567578	1551035	1540006	1532128	1526220
1900,00	2375866	2007213	1884328	1822886	1786021	1761444	1743889	1730723	1712290	1700002	1691224	1684641
2000.00	2618930	2210450	2074290	2006210	1965362	1938130	1918678	1904090	1883666	1870050	1860324	1853030
2100,00	2875599	2425250	2275133	2200075	2155040	2125017	2103572	2087488	2064970	2049959	2039236	2031194
2200,00	3145726	2651465	2486711	2404334	2354908	2321958	2298421	2280769	2256056	2239581	2227813	2218987
Pcrmin (daN)	764039	698682	676897	666004	659468	655111	651999	649665	646397	644218	642662	641495
Pmaxt (daN)	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552
C C	4.45	4.07	3.95	3.88	3.84	3.82	3 80	3.79	3.77	3.76	3.75	3.74

Tabel 5.18 P_{cr} Forta critică Imperfectiune tip B

Figura 5.52 Variația P_{cr} în funcție de f și l Imperfecțiune tip B

Traversă cadru beton:

Imperfecțiune tip C - C = 25,4 daN/cm²; $q_0 = 2,3$ daN/cm

l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	47920058	48078377	48131384	48157932	48173874	48184508	48192107	48197808	48205791	48211115	48214918	48217771
200,00	11776976	11928912	11980449	12006388	12022007	12032442	12039907	12045512	12053368	12058611	12062359	12065172
300,00	5118197	5260772	5310158	5335216	5350369	5360522	5367798	5373269	5380947	5386079	5389751	5392508
400,00	2824575	2956409	3003368	3027456	3042111	3051966	3059047	3064381	3071883	3076906	3080505	3083210
500,00	1798635	1920080	1964818	1988082	2002340	2011973	2018918	2024162	2031556	2036518	2040080	2042760
600,00	1273698	1386665	1429894	1452731	1466851	1476445	1483389	1488647	1496083	1501089	1504688	1507401
700,00	985310	1092893	1135790	1158857	1173262	1183114	1190276	1195717	1203439	1208654	1212414	1215252
800,00	821850	927864	971995	996185	1011459	1021979	1029667	1035529	1043880	1049544	1053636	1056733
900,00	729327	837864	885072	911481	928355	940068	948674	955265	964694	971115	975770	979299
1000,00	678993	794056	846346	876222	895553	909084	919085	926778	937836	945402	950904	955086
1100,00	654455	779693	839118	873813	896556	912616	924561	933793	947131	956302	962996	968097
1200,00	645896	784451	853012	893922	921101	940470	954971	966235	982596	993907	1002193	1008525
1300,00	647238	801669	881234	929752	962430	985935	1003655	1017491	1037701	1051753	1062088	1070010
1400,00	654627	826905	919153	976626	1015868	1044368	1066004	1082990	1107948	1125402	1138295	1148207
1500,00	665585	857127	963512	1031200	1078057	1112416	1138689	1159430	1190089	1211663	1227669	1240016
1600,00	678505	890239	1011968	1091023	1146496	1187571	1219208	1244325	1281685	1308140	1327858	1343121
1700,00	692346	924776	1062814	1154254	1219285	1267904	1305627	1335749	1380836	1412971	1437035	1455729
1800,00	706437	959720	1114791	1219496	1294945	1351897	1396411	1432161	1486017	1524657	1553732	1576402
1900,00	720351	994365	1166972	1285675	1372315	1438337	1490318	1532307	1595974	1641961	1676735	1703951
2000,00	733825	1028229	1218677	1351967	1450474	1526242	1586329	1635148	1709655	1763838	1805015	1837367
2100,00	746704	1060994	1269410	1417739	1528691	1614814	1683603	1739812	1826163	1889390	1937684	1975778
2200,00	758905	1092458	1318819	1482506	1606383	1703398	1781435	1845566	1944728	2017835	2073964	2118414
Pcrmin (daN)	645896	779693	839118	873813	895553	909084	919085	926778	937836	945402	950904	955086
Pmaxt (daN)	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552
c	3.77	4.54	4.89	5.09	5.22	5.30	5.36	5.40	5.47	5.51	5.54	5.57

Tabel 5.19 P_{cr} Forta critică Imperfectiune tip C

Figura 5.53 Variația P_{cr} în funcție de f și l Imperfecțiune tip C

Traversă cadru beton:

Imperfecțiune tip E - C = 25,4 daN/cm²; $q_0 = 2,3$ daN/cm

									140010.20	, i ci i ei șa ei	inten imp en	reeși ane np 1
l(cm)/f(cm)	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,50	3,00	3,50	4,00
100,00	2364266	2358332	2356354	2355365	2354772	2354376	2354094	2353882	2353585	2353387	2353246	2353140
200,00	738697	714961	707049	703093	700720	699137	698007	697159	695972	695181	694616	694192
300,00	604430	551024	533222	524321	518981	515420	512877	510970	508299	506519	505248	504294
400,00	754427	659483	627835	612011	602517	596187	591666	588275	583528	580363	578103	576407
500,00	1039981	891631	842181	817456	802621	792731	785667	780369	772951	768006	764474	761825
600,00	1424398	1210774	1139566	1103962	1082600	1068358	1058186	1050556	1039875	1032754	1027668	1023853
700,00	1895105	1604339	1507417	1458956	1429879	1410495	1396649	1386264	1371726	1362034	1355111	1349919
800,00	2446850	2067074	1940482	1877186	1839208	1813890	1795805	1782242	1763253	1750594	1741552	1734770
900,00	3077124	2596470	2436252	2356143	2308078	2276034	2253146	2235980	2211947	2195925	2184481	2175898
1000,00	3784606	3191206	2993406	2894506	2835166	2795606	2767349	2746156	2716486	2696706	2682577	2671981
1100,00	4568546	3850532	3611194	3491525	3419723	3371856	3337665	3312021	3276121	3252187	3235091	3222270
1200,00	5428493	4573997	4289165	4146749	4061299	4004333	3963642	3933125	3890400	3861917	3841571	3826313
1300,00	6364162	5361316	5027034	4859893	4759608	4692752	4644997	4609181	4559039	4525611	4501734	4483826
1400,00	7375367	6212303	5824615	5630771	5514464	5436927	5381543	5340005	5281852	5243083	5215391	5194622
1500,00	8461981	7126831	6681781	6459256	6325741	6236731	6173152	6125468	6058711	6014206	5982417	5958575
1600,00	9623916	8104812	7598444	7345260	7193349	7092076	7019737	6965484	6889528	6838892	6802722	6775596
1700,00	10861108	9146182	8574540	8288719	8117226	8002898	7921235	7859987	7774241	7717077	7676245	7645622
1800,00	12173512	10250896	9610024	9289588	9097326	8969152	8877598	8808934	8712803	8648716	8602939	8568607
1900,00	13561092	11418918	10704860	10347831	10133614	9990802	9888794	9812288	9705179	9633773	9582769	9544516
2000,00	15023825	12650225	11859025	11463425	11226065	11067825	10954796	10870025	10751345	10672225	10615710	10573325
2100,00	16561688	13944794	13072496	12636347	12374658	12200198	12075584	11982123	11851279	11764049	11701742	11655012
2200,00	18174667	15302611	14345259	13866583	13579377	13387907	13251142	13148569	13004966	12909231	12840849	12789562
Pcrmin (daN)	604430	551024	533222	524321	518981	515420	512877	510970	508299	506519	505248	504294
Pmaxt (daN)	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552	171552
c	3.52	3.21	3.11	3.06	3.03	3.00	2,99	2,98	2,96	2,95	2,95	2.94

Tabel 5.20 P_{cr} Forta critică Imperfectiune tip E

Figura 5.54 Variația P_{cr} în funcție de f și l Imperfecțiune tip E

Comparație între cele trei tipuri de traverse studiate

Forța critică minimă s-a determinat pentru următoarele cazuri: traversa monobloc T17, traversa metalică Y și traversă tip cadru, imperfecțiune tip "E", șină tip 65, r = 300000 daNcm, , a = 60 cm. Efortul maxim de temperatură este P_{maxt} = 171551,9 daN.

-	,	1	, I		
f(cm)	0,25	0,50	0,75	1,00	1,25
Pcrmin(daN)	666.067,49	473.909,77	388.780,74	338.033,74	303.402,3
с	3,88	2,76	2,27	1,97	1,77
f(cm)	1,50	1,75	2,00	2,50	3,00
Pcrmin(daN)	277.838,4	257.970,2	241.954,9	217.466,8	199.390,4
с	1,62	1,50	1,41	1,27	1,16

Tabel 5.21 Forța critică minimă de pierdere a stabilității pentru traversa monobloc, q = 10 daN/cm

Tabel 5.22 Forța critică minimă de pierdere a stabilității pentru traversa Y, q = 22,7 daN/cm

f(cm)	0,25	0,50	0,75	1,00	1,25
Pcrmin(daN)	998.465,34	708.950,54	580.690,73	504.232,67	452.055,1
с	5,82	4,13	3,38	2,94	2,64
f(cm)	1,50	1,75	2,00	2,50	3,00
Pcrmin(daN)	413.539,3	383.604,8	359.475,3	322.580,2	295.345,4
с	2,41	2,24	2,10	1,88	1,72

Tabel 5.23 Forța critică minimă de pierdere a stabilității pentru traversa cadru, q = 60 daN/cm

f(cm)	0,25	0,50	0,75	1,00	1,25
Pcrmin(daN)	1.617.030,58	1.146.342,22	937.819,54	813.515,29	728.685,9
с	9,43	6,68	5,47	4,74	4,25
f(cm)	1,50	1,75	2,00	2,50	3,00
Pcrmin(daN)	666.067,5	617.400,5	578.171,1	518.187,7	473.909,8
с	3,88	3,60	3,37	3,02	2,76

Figura 5.55 Forța critică minimă de pierdere a stabilității pentru cele 3 tipuri de traverse studiate

5.2. Simulări efectuate pe traverse

Simulările au fost efectuate în programul de proiectare și simulare Solid Works Simulation Professional 2012. Piatra spartă a fost modelată sub forma unui pat elastic, luându-se în considerare și coeficientul de frecare între talpa traversei și piatră. Forța a fost aplicată ca și în cazul experimentelor reale, valoarea ei fiind 12 KN.

	···· ·····;· ··· ······ ····· ···· ···	Tabel 5.24	Valorile luate în calcul [65]
Parametru	Notație	Valoare	Unitate măsură
E _b	Modul deformație balast	$1,1.10^{8}$	Pa
K_{w}	Rigiditate la forfecare balast	$7,84 \cdot 10^{7}$	N/m
C_{w}	Amortizare forfecare balast	$8,0.10^{4}$	Ns/m
f	Coeficient frecare piatră spartă- traversă	0,65	

Parametrii luați în calcul sunt prezentați în tabelul 5.24.

Rezistența la deplasare transversală **q** a fost simulată cu ajutorul reazemelor elastice, considerându-se o variație neliniară cum este schematizat în figura 5.25, alegând diferite % pentru rezistența pe talpă, laterală și capăt ($q = q_t+q_l+q_c = (0,5...0,6)q+(0,3...0,4)q+(0,05...0,10)q$). Schematizarea a fost adoptată după modelul dezvoltat în China, prezentat în cadrul metodei numerice [65].

Pentru fiecare tip de traversă au fost efectuate următoarele simulări:

- traversa înglobată complet în prisma de piatră spartă

- traversa cu piatră spartă la capăt

Se vor prezenta cele trei tipuri de traverse cu modelarea corespunzătoare:

5.2.1 Simulări efectuate pe traversa monobloc T17

Figura 5.56 Traversa monobloc T17, dimensionare în Solid Works

Proprietățile elementului rezultate din Solid Works:

Mass properties of Assem4Ansamblu traversa T17 (Assembly Configuration - Default) Output coordinate System: -- default --Mass = 248576.08 grams Volume = 248576.08 cubic centimeters Surface area = 50595.06 square centimeters Center of mass: (centimeters)

- X = 71.11Y = -0.15
- Z = 1.19

Principal axes of inertia and principal moments of inertia: (grams / square centimeters) Taken at the center of mass.

Ix = (1.00, 0.00, 0.00)	Px = 18262753.13
Iy = (0.00, 0.00, -1.00)	Py = 2157046143.02
Iz = (0.00, 1.00, 0.00)	Pz = 2160176729.67

Moments of inertia: (grams / square centimeters)

Taken at the center of mass and aligned with the output coordinate system.

Moments of inertia: (grams / square centimeters)

Taken at the output coordinate system.

Figura 5.57 Modelarea în scopul simulărilor în Solid Works Professional 2012 a traversei monobloc T17

5.2.2. Simulări efectuate pe traversa cadru din beton

Figura 5.60 Traversa cadru din beton, dimensionare în Solid Works

Proprietățile elementului rezultate din Solid Works:

Mass properties of Traversa Probe simulare (Part Configuration - Default) Output coordinate System: -- default --Density = 2200.00 kilograms per cubic meter Mass = 808.27 kilograms Volume = 0.37 cubic meters Surface area = 5.85 square meters Center of mass: (meters) X = 1.25 Y = 0.11Z = -0.56

Figura 5.61 Modelarea în scopul simulărilor în Solid Works Professional 2012 a traversei cadru

5.2.3. Rezultate obținute în urma simulărilor

Centralizarea rezultatelor este prezentată în tabelul 5.25 unde se precizează valorile deplasărilor maxime pentru forța constantă de 12 KN.

Tabelui	5.25 Cellulalizatea lezulta	actor simulation in Sond	works. Deprasari maxime
Tip traversă	Monobloc T17	Metalică Y	Beton cadru
Prismă completă	43,2 cm	19,3 cm	20,4 cm
Prismă la capete	41,0 cm	17,8 cm	19,7 cm

Tabelul 5.25 Centralizarea rezultatelor simulărilor în Solid Works. Deplasări maxime

Figura 5.62 Centralizarea rezultatelor simulărilor

Rezultatele simulărilor indică traversa metalică Y ca fiind suprastructura având deplasarea transversală cea mai redusă comparativ cu celelalte două tipuri de traverse studiate: traversa monobloc T17 și traversa tip cadru din beton.

5.2.4. Fișa simulării - traversă cadru, prism complet

Fișa rezultată în urma derulării analizei în programul de simulări Solid Works Professional 2012 este prezentată pentru un singur caz: traversa din beton tip cadru, în cazul prismei complete.

Simulation of Traversa cadru

Date: 9 iulie 2012 Designer: Solidworks Study name: Study 1 Analysis type: Static

Assumptions

Model Information

Model name: Traversa Cadru Current Configuration: Defau	llt		Plane2
Solid Bodies			
Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
Boss-Extrude2 Solid Body		Mass:808.374 kg Volume:0.367443 m^3 Density:2200 kg/m^3 Weight:7922.06 N	D:\SCOALA\doctorat \modelare\solid works\Traversa Probe simulare.SLDPRT Jul 09 12:51:46 2012
Study Properties			
Study name		Study 1	
Analysis type		Static	

Study name	Study 1
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from SolidWorks Flow Simulation	Off
Solver type	FFEPlus
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off

Incompatible bonding options	Automatic
Large displacement	On
Compute free body forces	On
Friction	On
Use Adaptive Method:	Off
Result folder	SolidWorks document (D:\SCOALA\doctorat\modelare\solid works)

Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

Material Properties

Model Reference	Properties		Components
	Name: Model type:	Beton Mada Linear Elast Isotropic	SolidBody c1(Boss- Extrude2)(Trave
	Default failure criterion: Tensile strength: Compressive strength: Elastic modulus:	Unknown 3e+007 N/m^2 0 N/m^2 2e+009 N/m^2	rsa Probe simulare)
	Poisson's ratio: Mass density:	0.394 2200 kg/m^3	
	Shear modulus:	3.189e+008 N/m^2	
Curve Data:N/A			

Loads and Fixtures

Load name	Load Image	Load Details	
Force-1		Entities: Type: Value:	1 face(s) Apply normal force 12000 N

Connector Definitions

Connector name	Connector Details		Connector Image
Elastic Support-1	Entities: Type: Normal stiffness value: Shear stiffness value: Units:	1 face(s) Elastic Support 22000 3.136e+007 N/m	Elastic Support-1
Elastic Support-2	Entities: Type: Normal stiffness value: Shear stiffness value: Units:	16 face(s) Elastic Support 11000 1.568e+007 N/m	Elastic Support-2

Mesh Information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points	4 Points
Element Size	136.092 mm
Tolerance	6.80458 mm
Mesh Quality	High

Mesh Information - Details

Total Nodes	3971	
Total Elements	2140	
Maximum Aspect Ratio	16.598	
% of elements with Aspect Ratio < 3	83.6	
% of elements with Aspect Ratio > 10	1.36	
% of distorted elements(Jacobian)	0	
Time to complete mesh(hh;mm;ss):	00:00:02	
Computer name:	MADALINA	

Sensor Details

Sensor name	Location	Sensor Details	
Mass1	Second Seco	Sensor DetailsValue : 808273.901 gEntities :Result :StressComponent :VON: von Mises StressCriterion :Model MaxStep Criterion : Across all StepsStep No.:1Alert Value: NA	
Displacement1		Value : 30.7919 mm Entities : Result :Displacement Component :URES: Resultar Displacement Criterion :Model Max Step Criterion : Across all Steps Step No.:1 Alert Value: NA	
Displacement2		Value : 30.508 mm Entities : Result :Displacement Component :UX: X Displacement Criterion :Model Max Step Criterion : Across all Steps Step No.:1 Alert Value: is greater than 0.2 mm	

Resultant Forces

Reaction Forces						
Selection set	Units	Sum X	Sum Y	Sum Z	Resultant	
Entire Model	Ν	-11720.3	-3.836	-0.0502562	11720.3	
Reaction Moments						
Selection set	Units	Sum X	Sum Y	Sum Z	Resultant	
Entire Model	N-m	0	0	0	0	

Study Results

Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	19.6057 mm	20.3919 mm
-	-	Node: 96	Node: 51
Model name: Traversa Probe simulare Study name: Study 1 Piot type: Static displacement Displacemen Deformation scale: 1	n1		URES (mm) 3.079e+001 3.069e+001 3.059e+001 3.059e+001
			. 3.040e+001 . 3.030e+001 . 3.020e+001
			. 3.010e+001
			. 3.000e+001
			_ 2.980e+001
			. 2.970e+001
			2.961e+001
Traversa Probe simula	are-Study 3-Displacement-Displacement1		

5.3. Simulări efectuate pe linii cu săgeți inițiale

Pentru fiecare tip de imperfecțiune s-a efectuat o simulare, considerând o săgeată inițială f, mărind forța de compresiune, după pierderea stabilității se ajunge la o săgeată f'. S-au calculat caracteristicile geometrice ale fiecărei imperfecțiuni înainte și după producerea șerpuirii. Ecuațiile parametrice de calcul pentru fiecare tip de imperfecțiune sunt prezentate în capitolul 3.

IMPERFECȚIUNE TIP A

Pentru o săgeată de f=5 cm și o lungime l=800 cm: - a = 400 cm;

După pierderea stabilității pentru o săgeată de f'=20 cm: dl=1,51 cm; a' = 401,5128 cm; dP=16.339,16 daN.

x (m)	y (m)	y 1 (m)	x ₁ (m)
400	0	0	401.5128
400	0	8.51E-06	400
350	0.064373	0.276942	350
300	0.418701	1.723863	300
250	1.13142	3.591456	250
200	2.109375	8.50112	200
150	3.173351	12.74033	150
100	3.119873	16.50429	100
50	3.769268	19.08391	50
0	5	20	0
50	3.769268	19.08391	50
100	3.119873	16.50429	100
150	3.173351	12.74033	150
200	2.109375	8.50112	200
250	1.13142	3.591456	250
300	0.418701	1.723863	300
350	0.064373	0.276942	350
400	0	8.51E-06	400
400	0	0	401.5128

Tabel 5.26 Rezultate imperfecțiune tip A

Figura 5.63 Imperfecțiune tip A după pierderea stabilității

IMPERFECȚIUNE TIP B

Pentru o săgeată de f=5 cm și o lungime l=1200 cm: - b = 400 cm;

După pierderea stabilității pentru o săgeată de f^{*}=50 cm: dl=23,56 cm; b^{*} = 423,56 cm; dP=74.578,79 daN

x (m)	y (m)	y ₁ (m)	$x_1(m)$
400	0	0	423.5625
400	0	0.070927	400
350	0.064373	1.644565	350
300	0.418701	6.276387	300
250	1.13142	13.93926	250
200	2.109375	23.55373	200
150	3.173351	33.51627	150
100	3.119873	42.1315	100
50	3.769268	47.94831	50
0	5	50	0
0	5	50	0
50	3.704895	47.40372	50
100	3.701172	38.54242	100
150	2.041931	23.6703	150
200	0	12.67768	180
200	0	-9.9E-05	212.2815
200	0	-12.6777	180
150	-2.04193	-30.2385	130
100	-3.70117	-42.8723	80
50	-3.7049	-49.1281	30
0	-5	-49.7127	-20
0	-5	-50	0
50	-3.76927	-47.9483	50
100	-3.11987	-42.1315	100
150	-3.17335	-33.5163	150
200	-2.10938	-23.5537	200
250	-1.13142	-13.9393	250
300	-0.4187	-6.27639	300
350	-0.06437	-1.64456	350
400	0	-0.07093	400
	0	0	424

Tabel 5.27 Rezultate imperfectiune tip B

Figura 5.64 Imperfecțiune tip B după pierderea stabilității

IMPERFECȚIUNE TIP C

Pentru o săgeată de f=5 cm și o lungime l=1200 cm: - c = 300 cm;

După pierderea stabilității pentru o săgeată de f'=50 cm: dl=31,20 cm; c' = 321,20 cm; dP=84.767,22 daN.

x (m)	y (m)	y ₁ (m)	x ₁ (m)
300	0	0	307.8009
300	0	-0.00125	300
250	-0.02853	-0.39411	250
200	-0.17147	-1.92898	200
150	-0.42188	-3.43342	150
100	-0.70233	-7.15595	100
50	-0.91896	-9.22908	50
0	-1	-10	0
0	-1	-10	-307.801
-300	-1	-9.97786	-300
-250	-0.84491	-7.93665	-250
-200	-0.18519	-0.84435	-200
-150	1.0625	11.77727	-150
-100	2.703704	27.89976	-100
-50	3.266204	42.98796	-50
0	5	50	0
-50	3.266204	42.98796	-50
-100	2.703704	27.89976	-100
-150	1.0625	11.77727	-150
-200	-0.18519	-0.84435	-200
-250	-0.84491	-7.93	-250
-300	-1	-9.97	-300
-300	-1	-10	-307.801
0	-1	-10	0
-50	-0.91896	-9.22	-50
-100	-0.70233	-7.155	-100
-150	-0.42188	-3.43342	-150
-200	-0.17147	-1.92898	-200
-250	-0.02853	-0.39411	-250
-300	0	-0.00125	-300
-300	0	0	-307.801

Tabel 5.28 Rezultate imperfectiune tip C

Figura 5.65 Imperfecțiune tip C după pierderea stabilității

IMPERFECȚIUNE TIP D

Pentru o săgeată de f=5 cm și o lungime l=1000 cm: - d = 200 cm; După pierderea stabilității pentru o săgeată f'=50 cm: dl= 54 cm; d' = 254 cm; dP=114.249,4 daN.

x (m)	y (m)	x ₁ (m)	y ₁ (m)
200	0	254	20
200	0	200	8.600037
150	-0.08374	150	0.462521
100	-0.42188	100	-5.34999
50	-0.82397	50	-8.8375
0	-1	0	-10
200	-1	254	-10
200	-1	200	-7.22086
150	-0.58984	150	3.16937
100	1.0625	100	20.87611
50	3.535156	50	40.19099
0	5	0	50
0	5	0	50
50	3.384766	50	39.44592
100	6.59E-16	100	15.34125
150	-3.38477	150	-13.1165
200	-5	200	-37.8792
200	-5	254	-50
0	-5	0	-50
50	-3.53516	50	-40.191
100	-1.0625	100	-20.8761
150	0.589844	150	-3.16937
200	1	200	7.22086
200	1	254	10
0	1	0	10
50	0.823975	50	8.837498
100	0.421875	100	5.349991
150	0.08374	150	-0.46252
200	0	200	-8.60004
200	0	254	-20

Figura 5.66 Imperfecțiune tip D după pierderea stabilității

Tabel 5.29 Rezultate imperfecțiune tip D

Bibliografie

- 1. http://www.scrigroup.com.
- 2. http://www.forumtrenuri.com.
- 3. http://www.forum.ro-trans.net.
- 4. http://www.catalog.club-feroviar.ro.

5. **Dahlberg T.** *. Railway track dynamics - a survey.* Linkoping : Solid Mechanics/IKP, Linkoping University, 2003.

6. http://www.instat.gr.

7. http://www.mt.ro/programe_mt/program_ten-t/program_ten-t.html.

8. http://www.railwayinsider.eu.

9. http://www.en.wikipedia.org.

10. http://www.statista.com

11. http://www.planetarticle.blogspot.ro.

12. http://www.manager.ro/articole/analize/top-5:-tarile-cu-cele-mai-rapide-trenuri-de-mare-viteza-10875.html.

13. http://www.publicserviceeurope.com. [Interactiv]

14. IFEU. IFEU. 2008.

15. **Ciotlăuș M., Kollo G., Herman A.** *Influența traverselor asupra stabilității căii fără joante.* 1. 2011. Vol. 1.

16. **Ciotlăuș M.** . Suprastructuri cu rezistență mare la stabilitate, Referat nr. 2 in cadrul studiului doctoral. 2010.

17. **Kazinczy L., Liegner N.** *Az y-aljakkal épített hézagnélküli és az li-jelű betonaljakkal létesített rövidsínes, hevederes illesztésű, zúzottkőágyazatú vágányok összehasonlító üzemi vizsgálatáról.* Budapest : Universitatea Tehnică, 2004.

18. http://www.railway-technology.com/contractors/engineering/pfleiderer2/pfleiderer21.html.

19. http://www.answers.com/topic/railroad-tie.

20. Bilow D. N., Randich G. M. Slab track for the next 100 years. Skokie, IL : Portland Cement Association.

21. Riessberger K. . Field experience with frame tie constructions. Graz : Technical University, 2004.

22. **Nechita M., Kollo G.** *Căi ferate.* Cluj Napoca : Atelierul de multiplicare al Institutului Politehnic Cluj Napoca, 1982.

23. **Freystein H., Berlin A.** *Oberbau I und II - Vorlesungsinhalt*. Berlin : TU Berlin – Institut für Bauingenieurwesen.

24. Kollo G. . Suprastructura căii ferate. Cluj Napoca : Tipografia Incitato, 1999.

25. *Instrucția Nr. 341/1980 pentru alcătuirea, întreținerea și supravegherea căii fără joante,.* s.l. : Societatea Națională a Căilor Ferate Române, Direcția Generală de Infrastructură, 1980.

26. *Instrucția Nr. 341 pentru alcătuirea, întreținerea și supravegherea căii fără joante.* s.l. : Ministerul transporturilor și telecomunicațiilor, Departamentul căilor ferate, DLI, 1980.

27. *Instrucția Nr. 341 de norme și toleranțe pentru construcția și întreținerea căii - linii cu ecartament normal,*. s.l. : Ministerul transporturilor și telecomunicațiilor, Departamentul căilor ferate, DLI, INCERTRANS - Centrul de informare documentară pentru transport, 1989.

28. ERRI D202-RP3 Improved knowledge of forces in CWR track (including switches) - Theory of CWR track stability. Utrecht : European Rail Research Institute, 1995.

29. **Ungureanu V. V. .** *Modele de pierdere a stabilității căii fără joante.* Brașov : Universitatea Transilvania, 2006.

30. —. *Modele de pierdere a stabilității căii fără joante, Referat 3, Pregatire doctorat.* Brașov : Universitatea Transilvania, 2006.

31. Esveld C. . Improved Knowledge of CWR Track. Delft : Esveld Consulting Services.

32. **Bao Y. L.** Three-dimensional stability/lateral shift analysis of continuous welded rail (CWR) track and innovative methods to enhance CWR track performance. s.l. : University of Illinois at Urbana-Chamaign, 1998.

33. ERRI DT 365. CWR-BUCKLE Version 2.00. Program and user's guide. Utrecht : s.n., 1997.

34. Van M. A. . *Stability of continuous welded rail track.* s.l. : Delft University Press, 1997. ISBN> 90-407-1485-1.

35. Kish A., Samavedam G. . Risk Analysis Based CWR Track Buckling Safety Evaluations. 1999.

36. Bijl F. DT4 - Buckling of track in horizontal plane upon elastic ballast. 1957.

37. —. *DT5 - The horizontal buckling og long welded tracks.* 1958.

38. —. *DT6- Determination of the buckling force of long welded rails (NS-63 type) in crushed stone ballast.* 1958.

39. —. Buckling force in gapless track calculated in a non linear manner. 1964.

40. Hengstum L. V. . A finite element analysis of track stability. 4. 1987.

41. Esveld C., Hengstum L. V. Track stability in Tight Curves. 1989.

42. Esveld C. . Modern Railway track. Germany : MRT Productions, 1989. ISBN 90-800324-1-7.

43. —. *Modern Railway Track, Second Edition*. s.l. : MRT Productions, 2001. ISBN 90-800324-3-3.

44. ERRI D202/RP4 Stability of continuous welded rail track. Utrecht : s.n., 1999.

45. Lim N. H., Park N. H., Kang Y. J. . *Stability of continous welded rail track.* s.l. : Computers & Structures, 2003. Vol. 81.

46. Lim N. H., Sung I. H. Thermal Buckling Behavior of Continuous Welded Rail Track. Uiwang, Korea : Hanseo University.

47. Lim N. H., Han S. Y., Han T. H., Kang Y. J. Parametric Study on Stability of Continuous Welded Rail Track -Ballast Resistance and Track Irregularity. s.l. : Steel Structures, 2008.

48. **Bertrand J.** *Track Buckle Mitigation Strategies. Reducing the Risk, By Understanding the Problem.* Calgary : U of C Grad Conference, 2006.

49. **Herman A., Herman C. .** *Calculul forței critice de pierdere a stabilității căii fără joante la temperaturi ridicate în șine.* **1**. 2003.

50. **Herman A.** *Contribuții la calculul căii fără joante, Teză de doctorat.* Timișoara : Universitatea Politehnica Timișoara, 1998.

51. —. *Calea fără joante - teorie și aplicații*. Timișoara : Ed. Mirton, 2000.

52. **Rusiu G. .** *Contribuții la studiul șinei fără joante supuse la variații de temperatură, Teză de doctorat.* București : Institutul Politehnic București, 1971.

53. **Aurel N., Aurel M.** *Considerațiuni asupra deformației căii fără joante.* s.l. : Buletin informativ în sprijinul lucrărilor de la construcția, repararea și întreținerea liniilor, 1989. Nr. 1, vol. 7.

54. Kollo G., Nechita M., Nedevschi M., Tomescu A. . *Utilizarea calculatorului electronic în urmărirea stabilității căii fără joante.* București : Revista Transporturilor și Telecomunicațiilor, 1989.

55. **Kollo G., Ciotlăuș M.** *Considerații privind calea fără joante, Concepte moderne privind realizarea liniilor de cale ferată: Al III lea Simpozion Național e Căi Ferate.* București : Ed. Media Dan Advertising, 2007.

56. **Cuteanu E. R., Herman A.** . *Modelarea pierderii stabilității căii fără joante supuse la variații de temperatură.* Timișoara : Zilele Academice Timișene, 1997. Vol. 3.

57. **Talhouni A.** *Cercetări privind stabilitatea căii sudate în Iordania, Teză de doctorat.* Iași : Universitatea Tehnică Gh. Asachi Iași, 1994.

58. **Radu C., Poștoacă S., Sianu C.** Unele aspecte privind stabilitatea căii fără joante, Consfătuirea pe țară a lucrătorilor de drumuri, poduri și căi ferate. Tușnad : s.n., 1982.

59. **Radu C., Ciobanu C.** *Comportarea căii fără joante la temperaturi ridicate.* București : Concepte moderne la realizarea liniilor de cale ferată, Al III lea Simpozion Național de Căi Ferate, 2004.

60. **Voinea P. M.** *. Stabilitatea căii fără joante în plan orizontal, Lucrare de disertație.* București : Universitatea Tehnică de Construicții, 1989.

61. **Doșa A., Ungureanu V.V. .** *Studiu parametric al efectului rezistenței la rotire a șinei în prinderi asupra stbilității căii fără joante.* Timișoara : Zilele Academice Timișene, 2007.

62. Ille V. . Rezistența materialelor. Cluj Napoca : Institutul Politehnic, 1977.

63. Vásárhelyi B. . Hézagnélküli vasúti pályák, Műszaki könyvkiadó, 1960,. Budapest : s.n., 1960.

64. **Rădulescu M.** *Calea fără joante- Stabilitatea și calculul eforturilor.* București : Ed. Transporturilor și telecomunicațiilor, 1963.

65. **Zhai W. M., Wang K. Y., Lin J. H.** *Modelling and experiment of railway ballast vibrations.* Chengdu, China : Jurnal of Sound and Vibration, 2003. 270 (2004) 673-683.

66. Scarlat A. . Stabilitatea struicturilor, Probleme speciale. București : Ed. Tehnică, 1969.

67. Bezuhov N. I. . Teoria elasticității și plasticității. București : Editura Tehnica, 1957.

68. **Răcănel I. R.** *Stabilitatea podurilor metalice cu imperfecțiuni de execuție.* București : Ed. Conspress, 2007. ISBN 978-973-100-006-2.

69. **Munteanu M.** . *Studiul stabilității căii fără joante, Lucrare de licență*. Cluj Napoca : Universitatea Tehnică, 2004.

70. **Kish A., Samavedam G.** *Risk Analysis Based CWR Track Buckling Safety Evaluations.* Delft : Proceedings of the International Conference on Innovations in the Design & Assessment of Railway Track, 1999.

71. Stewart I., Poston T. . Teoria catastrofelor și aplicațiile ei. București : Ed. Tehnică, 1985.

72. http://www.en.wikipedia.org/wiki/Catastrophe_theory.

73. SSL. www.ssl-linz.at/sleeper/rs115.pdf.

74. http://www.hbm.com/en/menu/products/measurement-electronics-software/specialized-data-acquisition-systems/spider8/.

75. **Czyczuła W., Bogacz R.** *. Mechanics of track structure with Y-shaped steel sleepers in sharp curves.* Kraków, Poland : Applied Mechanics and Materials, 2008.

76. Stability of continuous welded rail track. N. H. Lim, N. H. Park, Y. J. Kang.

77. **A. Kish, G. Samavedam, D. Wormley.** *Recent Investigations on Track Lateral Shift Limits for High Speed Rail Applications.* s.l. : World Congress on Railway Research, 1997.

78. **U.S. Department Of Transportation.** *The Influence of Track Maintenance on the Lateral.* s.l. : Federal Railroad Administration, 2003.

79. *Oberbau Y - St 98 Y mit S 15. Railway Track Material - St 98 Y with S 15.* s.l. : ThyssenKrupp GfT Gleistechnik, 2006.

80. **Nagy J.** *A hezagnelkuli felepitmeny hofeszultseg okozta jelensegeivel osszefuggo visgalatok.* 1960-74.

81. **Ciotlăuș M., Kollo G., Herman A.** *Ballast bed lateral resistance for a frame sleeper.* Cluj Napoca : EMT, 2012.

82. Eisenmann J. Beanspruchung der Schiene als Trager. s.l. : ETR, 1969.

83. **Meier H., Eisenmann J., Koroneos E.** *Beanspruchung der Strasse unter Verkehrslast Kirschbaum Verlag.* Bonn-Bad Godesberg : s.n., 1968.

84. Van M. A. Buckling Analysis of Continuous Welded Rail Track. Delft, Nederlands : Heron, 1996.

85. Hila V., Radu C., Ungureanu C., Stoicescu G. . *Căi ferate I, II.* București : Institutul de Construcții, 1975.

86. Eisenmann J. . Eisenbahnoberbau fur hohe Geschwindigkeiten. 1972.

87. Kish A., Sussmann T., Trosino M. . *Effects of Maintenance Operations on Track Buckling Potential.* Cambridge : s.n.

88. Janin G. Der Oberbau von Hochgeschwindigkeitstrecken. 1974.

89. Schneider E. . Das Verhalten des Eisenbahnoberbaus bei dynamischer Erregung. 1974.

90. Kish A., Sussmann T., Trosino M. *Effects of Maintenance Operations on Track Buckling Potential.* s.l. : Proceedings of International Heavy Haul Association, 2003.

91. Meier H. . Ein vereifachtes Verfahren zur theoretischen Untersuchung der Gleisverwerfung. 1973.

92. **Woschitz H.** . *Entwicklung eines Rail-Strain-Pads unter Verwendung*. München : Ingenieurvermessung, 2010.

93. Vinot N. Etat actuel de la politique des Rails a la SNCF. 1975.

94. **Eisenmann J.** . *Forschungsarbeit auf dem Gebiet des Eisenbahn - und Strassenbahnbaues*. Berlin : Wilhelm Ernst und Sohn, 1974.

95. Kish A., Samavedam G., Wormley D. Fundamentals of Track Lateral Shift for High-Speed Rail Applications. Paris : ERRI Interactive Conference on "Cost Effectiveness and Safety Aspects of Railway Track", 1998.

96. Klugar K. Gleisverwerfungversuche der OBB mit neuen Schellenformen. 1975.

97. **Ciotlăuș M., Kollo G., Herman A.** Încercări asupra traversei tip cadru pentru determinarea rezistenței transversale a prismului de balast. București : Clubul Feroviar Român, 2012.

98. Prud Homme A. . Les nouvelles traverses en beton de la SNCF. 1976.

99. Bednarek W. A. Local Unevenness of Lengthwise Profile Influence on Stability Conditions of Continuous Welded Rail Track. Poznan, Poland : Foundations of Civil and Environmental Engineering, 2007.
100. Caracostea A. D. . Manual pentru calculul construcțiilor. București : Ed. Tehnică, 1977. Vol I.

101. **Kish A.** . *New Track Shift Limits for High-Speed Rail.* s.l. : Schienen der Welt – Rail International, 2001.

102. Kish A., Samavedam G., Wormley D. . *New Track Shift Safety Limits for High-Speed Rail Applications*. Cologne, Germany : Proceedings of World Congress on Railway Research, 2001.

103. Schram G. . Oberbautechnik, Oberbauwirtschaft. Darmstadt : s.n., 1960.

104. Samavedam G., Kish A., Purple A., Schoengart J. . *Parametric Analysis and Safety Concepts of CWR Track Buckling.* s.l. : DOT/FRA/ORD, 1993.

105. **Gikas V.** *. Railway Geodesy: The Benefit of Using a Multi-discipline Approach for the Assessment of Track Alignments During Construction.* Cairo : FIG Working Week, 2005.

106. **Dahlberg T.** *Railway Track Stiffness Variations - Consequences and Countermeasures.* Linkoping, Sweden : International Journal of Civil Engineering, 2010.

107. Kish A., Clark D., Thompson W. . *Recent Investigations on The Lateral Stability of Wood and Concrete Tie Tracks.* s.l. : AREA Bulletin, 1995.

108. **Kish A.** *. Recent Results In Track Buckling Research.* s.l. : Conference of the Roadmasters and Maintenance of Way Association of America, 1987.

109. **Sluz A., Clark D.** *. Remote Monitoring of Longitudinal Rail Forces on Heavily Used Revenue Service Track.* s.l. : Presented to Annual TRB Conference, 2001.

110. Ille V., Bia C. Rezistența materialelor. Cluj Napoca : Institutul Politehnic, 1980.

111. **Bia C., Ille V., Soare M. V.** *Rezistența materialelor și teoria elasticității.* București : Ed. Didactică și pedagogică, 1983.

112. Kish A., Samavedam G. . Risk Analysis Based CWR. Cambridge : USDOT/Volpe Center.

113. **Cucu H. L., Popa A. G.** *Sinteze teoretice și aplicații de rezistența materialelor.* Cluj Napoca : Ed. Mediamira, 2006. ISBN 973-713-097-9.

114. **Janin A.** *Stabilite de la voie vis a vis des efforts transversaux excerces par les vehicules.* s.l. : RGCF, 1969.

115. **Prud Homme A., Janin G. .** *Stabilite de la voie vis-a-vis des efforts transversaux exerces par les vehicules.* 1969.

116. Heyder F., Asbeck W. Zahigkeit von Schienenwerkstoffen. 1977.

117. Ruoppola N. . Viergleisig zwischen Rom und Florenz. 1975.

118. **Roman B., Czesław B.** Vibration of the Train/Track System with Two Types of Sleepers. Warsaw, Poland : Institute of Fundamental Technological Research.

119. Schramm G. . Verlangern von Ubergangsbogen mit kleinsten Seitenverschiebung. 1977.

120. Nemesdy E. . Vasuti felepitmeny. Budapest : Tankonyvkiado, 1966.

121. Vasarhelyi B. . Vasuti felepitmeny. Budapest : s.n., 1953.

122. Nagy J. . Vasbetonaljas vaganyokkal vegzett agyazatellenallasi vizsgalatok. 1966.

123. **Eisenmann J., Schneider E.** *. Untersuchung verschiedener Planumschutzschichten fur den Schotteroberbau.* Munchen : s.n., 1974.

124. **Samavedam G., Blader F., Thomson D. .** *Track Lateral Shift: Fundamentals and State Of-The-Review.* s.l. : DOT/FRA/ORD, 2003.

125. Kish A., Samavedam G. . Theory and Application of "CWR-SAFE. s.l. : Draft Report, 2002.

126. Liegner N. . Theoretical and operational assessment of ballasted railway tracks constructed with *Y* sheped steel sleepers. Budapest : Thesis of PhD.

127. Kish A., Samavedam G., Jeong D. *The Neutral Temperature Variation of Continuous Welded Rails.* s.l. : AREA Bulletin, 1887.

128. Lichtberger B. . The lateral resistance of the track. s.l. : Plaser & Theuer, 2007.

129. Samavedam G., Sluz A., Kish A. *The Effect of Realignment on Track Lateral Stability.* s.l. : AREMA Technical Conference, 1999.

130. Timoshenko S. P. . Teoria stabilității elastice. București : Ed. Tehnică, 1967.

131. Kollo G., Nechita M. . Suprastructuri pentru viteze mari, Geometria curbelor. Cluj Napoca : Ed. UTCN, 1992.

132. **Schramm G.** . *Suprastructura căii (Traducere din limba germană)*. București : Ministerul Căilor Ferate, 1967.

133. Eisenmann J., Leykauf G. . Storungen der Gleislage beim Ubergang zu Kunstbauwerken. 1977.

134. **Gheorghiu A.** *. Statica, Stabilitatea și Dinamica construcțiilor.* București : Ed. Didactică și Pedagogică, 1974.

135. Van M. A. Stability of Continuous Welded Rail Track. s.l. : Delft University Press, 1997. ISBN: 90-407-1485-1.

136. z. http://www.answers.com/topic/railroad-tie

137. **Z.** http://www.catalog.club-feroviar.ro.

138. —. http://www.en.wikipedia.org.

139. —. http://www.en.wikipedia.org/wiki/Catastrophe_theory.

140. —. http://www.forum.ro-trans.net.

141. —. http://www.forumtrenuri.com. 142. —.

http://www.hbm.com/en/menu/products/measurement-electronics-software/specialized-data-acquisition-systems/spider8/.

143. —. http://www.manager.ro/articole/analize/top-5:-tarile-cu-cele-mai-rapide-trenuri-de-mare-viteza-10875.html.

144. —. http://www.mt.ro/programe_mt/program_ten-t/program_ten-t.html.

- 145. —. http://www.planetarticle.blogspot.ro.
- 146. —. http://www.publicserviceeurope.com.
- 147. —. http://www.railwayinsider.eu.

148. —. http://www.scrigroup.com. 149. —. http://www.uic.org.

150. **Kollo G., Munteanu M.** *Design programme for the stability of the jointless railway trtack.* Iasi : International Conference Constructions 2003, 2003.