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An Invitation to Linear Algebra
and
Analytic Geometry
Second Edition

UTPRESS
Cluj- Napoca, 2024
ISBN 978-606-737-700-2



Dalia CÎMPEAN 
Daniela INOAN 

Ioan RAȘA 

An Invitation to Linear Algebra 
and Analytic Geometry 

Second Edition 

UTPRESS 
Cluj-Napoca, 2024 

ISBN 978-606-737-700-2 



 

  Editura UTPRESS 
  Str. Observatorului nr. 34 
  400775 Cluj-Napoca 
  Tel.: 0264-401.999 
  e-mail: utpress@biblio.utcluj.ro 
  www.utcluj.ro/editura 
 

 

   

   

  Recenzia:   Prof.dr. Dorian Popa 

     Prof.dr. Ioan Radu Peter 
      

  Pregătire format electronic on-line: Gabriela Groza 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Copyright © 2024 Editura UTPRESS 

Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este 
posibilă numai cu acordul prealabil scris al editurii UTPRESS. 

 

ISBN 978-606-737-700-2 

 



Contents

1 Determinants and matrices 5

1.1 Laplace's Theorem . . . . . . . . . . . . . . . . . . . . . 5

1.2 Vandermonde's determinant . . . . . . . . . . . . . . . . 6

1.3 Circulants . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Rank. Elementary transformations. . . . . . . . . . . . . 8

2 Vectors 17

2.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Scalar product and vector product . . . . . . . . . . . . . 18

2.3 Triple vector product . . . . . . . . . . . . . . . . . . . . 21

2.4 Triple scalar product . . . . . . . . . . . . . . . . . . . . 22

3 Lines and planes in space 27

3.1 Planes in space . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Straight lines in space . . . . . . . . . . . . . . . . . . . 30

3.3 Distance from a point to a line. Distance from a point to

a plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Linear spaces 45

4.1 The de�nition of a linear space . . . . . . . . . . . . . . 45

4.2 Linear subspaces . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Linear dependence, bases, dimension . . . . . . . . . . . 49

4.4 Coordinates. Change of bases . . . . . . . . . . . . . . . 50

1



2

5 Inner product spaces 63

5.1 Inner products . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Norm and distance . . . . . . . . . . . . . . . . . . . . . 65

5.3 Orthonormal bases . . . . . . . . . . . . . . . . . . . . . 67

5.4 Orthogonal complement . . . . . . . . . . . . . . . . . . 69

5.5 Linear manifolds . . . . . . . . . . . . . . . . . . . . . . 70

5.6 The Gram determinant. Distances. . . . . . . . . . . . . 72

6 Linear transformations 85

6.1 Linear transformations . . . . . . . . . . . . . . . . . . . 85

6.2 The matrix of a linear transformation . . . . . . . . . . . 88

6.3 Invariant subspaces. Eigenvalues and eigenvectors . . . . 91

6.4 The Cayley-Hamilton Theorem . . . . . . . . . . . . . . 94

6.5 The diagonal form . . . . . . . . . . . . . . . . . . . . . 95

6.6 Reduction to diagonal form . . . . . . . . . . . . . . . . 98

6.7 The Jordan canonical form . . . . . . . . . . . . . . . . . 101

6.8 Matrix functions . . . . . . . . . . . . . . . . . . . . . . 105

7 Quadratic forms 123

7.1 Conics and quadrics . . . . . . . . . . . . . . . . . . . 126

7.1.1 Second degree curves . . . . . . . . . . . . . . 126

7.1.2 Second degree surfaces . . . . . . . . . . . . . 127

Bibliography 148



PREFACE

The purpose of these lecture notes is to provide some important ideas

of Linear Algebra and Analytic Geometry and the ability to use the

speci�c language and the related techniques. The book is intended for

students who will apply these theories in engineering.

Traditional notation and terminology are preserved; rigor is used as an

aid rather than as an impediment to understanding. Some key theorems

are explained and used without proof.

Starting with an introductory chapter dedicated to determinants and

matrices, the lecture continues with two chapters related to geometry.

The forth chapter introduces Linear spaces and their applications and

is continued with the �fth chapter related to Inner product spaces and

Linear manifolds. The sixth chapter treats the wide subject of Linear

maps between vector spaces with applications to matrix functions. The

last chapter brie�y describe Conics and quadrics with their reduction

to canonical form and other applications. Each chapter is followed by

related exercises and their given solutions. The proposed exercises serve

to develop some mathematical skills and to strengthen understanding.

Few of them, if any, should present di�culties to a student who read the

corresponding parts of the theory. Of course, a mathematical text must

be read slowly and, if possible, with pencil in hand. The reader should

verify the calculations and supply the omitted steps.

As an invitation to Linear Algebra and Analytic Geometry, this book

has an introductory character. It is intended to open the way to advanced

books like some listed in the Bibliography.





CHAPTER 1

Determinants and matrices

1.1 Laplace's Theorem

We shall use the basic notions of linear algebra and the spe-

ci�c language of the literature ([1], [2], [7]). Let us consider a

determinant D of order n. Let k be an integer, 1 ≤ k ≤ n.

Consider the rows i1, . . . , ik and the columns j1, . . . , jk. By

deleting the other rows and columns we obtain a determinant

of order k, called a minor of D and denoted by M i1,...,ik
j1,...,jk

.

Now, let us delete the rows i1, . . . , ik and the columns j1, . . . , jk;

we obtain a determinant of order n−k. It is called the comple-

mentary minor of M i1,...,ik
j1,...,jk

and is denoted by M̃ i1,...,ik
j1,...,jk

. Finally,

let us denote Ai1,...,ik
j1,...,jk

= (−1)i1+···+ik+j1+···+jkM̃ i1,...,ik
j1,...,jk

.

Ai1,...,ik
j1,...,jk

is called the cofactor of M i1,...,ik
j1,...,jk

.
Using this notation we shall state (without proof) Laplace's

Theorem:

Theorem 1.1 D =
∑

M i1,...,ik
j1,...,jk

Ai1,...,ik
j1,...,jk

, where:

1) The indices i1, . . . , ik are �xed

5
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2) The indices j1, . . . , jk take on all the possible values, such that 1 ≤
j1 < j2 < · · · < jk ≤ n.

Remark 1.2 a) For k = 1, the above formula is the well-known ex-

pansion of a determinant using a �xed row.

b) In Theorem 1.1 we have used k �xed rows; a similar result obviously

holds by using k �xed columns.

Theorem 1.3 Let A =

 a11 . . . a1n

. . . . . . . . .

an1 . . . ann

 , B =

 b11 . . . b1n

. . . . . . . . .

bn1 . . . bnn

 where

aij and bij are real or complex numbers. Then det(A ·B) = detA ·detB.

1.2 Vandermonde's determinant

The following determinant of order n:

V (a1, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

a1 a2 . . . an

a21 a22 . . . a2n

. . . . . . . . . . . .

an−1
1 an−1

2 . . . an−1
n

∣∣∣∣∣∣∣∣∣∣∣∣
is called the Vandermonde's determinant of the (real or com-

plex) numbers a1, . . . , an.

By induction it can be proved that:

V (a1, . . . , an) =
∏

1≤i<j≤n

(aj − ai)
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1.3 Circulants

The following determinant is called a circulant:

C(a0, a1, . . . , an−1) =

∣∣∣∣∣∣∣∣∣∣
a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

. . . . . . . . . . . . . . .

a1 a2 a3 . . . a0

∣∣∣∣∣∣∣∣∣∣
Let ϵk = cos 2kπ

n + i sin 2kπ
n , k = 0, 1, . . . , n − 1. We have

ϵnk = 1, k = 0, 1, . . . , n− 1. Let us denote f(x) = a0 + a1x +
· · ·+ an−1x

n−1.

Theorem 1.4 C(a0, a1, . . . , an−1) = f(ϵ0)f(ϵ1) . . . f(ϵn−1).

Proof.

C(a0, a1, . . . , an−1) · V (ϵ0, ϵ1, . . . , ϵn−1) =

=

∣∣∣∣∣∣∣∣∣∣
f(ϵ0) f(ϵ1) . . . f(ϵn−1)

ϵ0f(ϵ0) ϵ1f(ϵ1) . . . ϵn−1f(ϵn−1)

. . . . . . . . . . . .

ϵn−1
0 f(ϵ0) ϵ

n−1
1 f(ϵ1) . . . ϵ

n−1
n−1f(ϵn−1)

∣∣∣∣∣∣∣∣∣∣
=

= f(ϵ0)f(ϵ1) . . . f(ϵn−1)V (ϵ0, ϵ1, . . . , ϵn−1).

Since ϵ0, ϵ1, . . . , ϵn−1 are pairwise distinct, we have V (ϵ0, ϵ1, . . . , ϵn−1) ̸=
0 and hence C(a0, a1, . . . , an−1) = f(ϵ0)f(ϵ1) . . . f(ϵn−1). □
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1.4 Rank. Elementary transformations.

Let K be the �eld of real numbers or the �eld of complex

numbers. By Mn,m(K) we shall denote the set of all matrices

with n rows, m columns and having entries from K. The

number r ∈ N is called the rank of the matrix A ∈ Mn,m(K)

if

1) There exists a square submatrix M of A, with r rows and

columns, such that detM ̸= 0.

2) If p > r, for every submatrix N of A having p rows and

columns we have detN = 0.

We shall denote the rank of A by rA. It can be proved that

if A ∈ Mn,m(K) and B ∈ Mm,p(K), then

rA + rB −m ≤ rAB ≤ min{rA, rB}. (1.1)

Theorem 1.5 Let A,B ∈ Mn,n(K), detA ̸= 0. Then rAB = rB.

Proof. Clearly rA = n. By using (1.1) with m = p = n we
obtain rB ≤ rAB ≤ rB. Hence rAB = rB. □

De�nition 1.6 The following operations are called elementary row trans-

formations on the matrix A:

1) The interchange of any two rows;

2) The multiplication of a row by any non-zero number;

3) The addition of one row to another.
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Similarly we can de�ne the elementary column transforma-

tions.

Consider an arbitrary determinant. If it is nonzero, it will

be nonzero after performing any elementary transformation; if

it is equal to zero, it will remain equal to zero.

We conclude that the rank of a matrix does not change if

we perform any elementary transformation on the matrix. So

we can use elementary transformations in order to compute

the rank of a matrix. Namely, given a matrix A ∈ Mn,m(K),

we transform it - by an appropriate succession of elementary

transformations - into a matrix B such that

(i) the diagonal entries of B are either 0 or 1, all the 1′s

preceding all the 0′s on the diagonal,

(ii) all the other entries of B are equal to 0.

Since the rank is invariant under elementary transformations,

we have rA = rB; but rB is obviously equal to the number

of 1′s on the diagonal. The following example illustrates this

method.

A =


−2 −1 0 −5 −1

1 2 6 −2 −1

3 1 −1 8 1

−1 0 2 −4 −1

−1 −2 −7 3 2

 ∼


1 −2 0 −5 −1

−2 1 6 −2 −1

−1 3 −1 8 1

0 −1 2 −4 −1

2 −1 −7 3 2

 ∼



10
1 0 0 0 0

−2 −3 6 −12 −3

−1 1 −1 3 0

0 −1 2 −4 −1

2 3 −7 13 4

 ∼


1 0 0 0 0

0 1 −2 4 1

0 1 −1 3 0

0 −1 2 −4 −1

0 3 −7 13 4

 ∼


1 0 0 0 0

0 1 −2 4 1

0 0 1 −1 −1

0 0 0 0 0

0 0 −1 1 1

 ∼


1 0 0 0 0

0 1 0 0 0

0 0 1 −1 −1

0 0 0 0 0

0 0 −1 1 1

 ∼


1 0 0 0 0

0 1 0 0 0

0 0 1 −1 −1

0 0 0 0 0

0 0 0 0 0

 ∼


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 It follows that rA = 3.

The following theorem o�ers a procedure to compute the

inverse of a matrix (if this inverse exists).

Theorem 1.7 If a square matrix is reduced to the identity matrix by a

sequence of elementary row operations, the same sequence of elementary

row transformations performed on the identity matrix produces the in-

verse of the given matrix.

Example 1.4.1 Find the inverse of the matrix A =

 1 1 1

6 7 6

−1 2 0

.

We write the given matrix and the identity:
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1 1 1 1 0 0

6 7 6 0 1 0

-1 2 0 0 0 1

Now we perform a succession of elementary row transformations in order

to transform A into the identity; the same transformations are performed

on the identity.

1 1 1 1 0 0

0 1 0 -6 1 0

0 3 1 1 0 1

1 1 1 1 0 0

0 1 0 -6 1 0

0 0 1 19 -3 1

1 0 0 -12 2 -1

0 1 0 -6 1 0

0 0 1 19 -3 1

It follows that A−1 =

−12 2 −1

−6 1 0

19 −3 1



Exercises

1.1 Evaluate the following nth order determinants by reduction to tri-

angular form:

a)

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 . . . n

−1 0 3 . . . n

−1 −2 0 . . . n

.. .. . . . .. ..

−1 −2 −3 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣
; b)

∣∣∣∣∣∣∣∣∣∣∣∣

a b b . . . b

b a b . . . b

b b a . . . b

.. .. . . . .. ..

b b b . . . a

∣∣∣∣∣∣∣∣∣∣∣∣
;
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c)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x y 0 . . . 0 0

0 x y . . . 0 0

0 0 x . . . 0 0

.. .. . . . .. ..

0 0 0 . . . x y

y 0 0 . . . 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
; d)

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 . . . n− 2 n− 1 n

2 3 4 . . . n− 1 n n

3 4 5 . . . n n n

.. .. .. . . . .. .. ..

n n n . . . n n n

∣∣∣∣∣∣∣∣∣∣∣∣
.

1.2 Calculate the determinant C(1, 2, . . . , n).

1.3 Calculate the determinant C(C0
n−1, C

1
n−1, . . . , C

n−1
n−1).

1.4 Calculate the nth order determinant C(a, b, b, . . . , b), with a, b ∈ R.

1.5 For a1, a2, . . . , an ∈ C, k = 1, . . . , n, calculate the determinant

Vk(a1, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

a1 a2 . . . an

· · · · · · · · · · · ·
ak−1
1 ak−1

2 . . . ak−1
n

ak+1
1 ak+1

2 . . . ak+1
n

... ... ... ...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

called the lacunary Vandermonde.

1.6 Prove the following identities without expanding the determinants:

a)

∣∣∣∣∣∣∣∣∣
0 a b c

a 0 c b

b c 0 a

c b a 0

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
0 1 1 1

1 0 c2 b2

1 c2 0 a2

1 b2 a2 0

∣∣∣∣∣∣∣∣∣; b)

∣∣∣∣∣∣∣
a b c

x y z

α β γ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a −b c

−x y −z

α −β γ

∣∣∣∣∣∣∣;

c)

∣∣∣∣∣∣∣
a b c

p q r

aα bβ cγ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1 1

bcp acq abr

α β γ

∣∣∣∣∣∣∣.
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1.7 Compute the determinants by using Laplace's Rule:

a)

∣∣∣∣∣∣∣∣∣
1 2 2 1

0 1 0 2

2 0 1 1

0 2 0 1

∣∣∣∣∣∣∣∣∣; b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 3 0 0 1 −1

9 4 0 0 3 7

4 5 1 −1 2 4

3 8 3 7 6 9

1 −1 0 0 0 0

3 7 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
; c)

∣∣∣∣∣∣∣∣∣∣∣∣

3 2 0 0 0

4 3 2 0 0

5 4 3 2 0

6 5 4 3 2

7 6 5 4 3

∣∣∣∣∣∣∣∣∣∣∣∣
.

1.8 Calculate the determinants:

a) D2n =

∣∣∣∣∣∣∣∣∣∣∣∣

a 0 . . . 0 b

0 a . . . b 0

.. .. . . . .. ..

0 b . . . a 0

b 0 . . . 0 a

∣∣∣∣∣∣∣∣∣∣∣∣
, of order 2n; b) En+2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 0 0 . . . 0 b

x1 u v . . . v y1

x2 v u . . . v y2

.. .. .. . . . .. ..

xn v v . . . u yn

b 0 0 . . . 0 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

of order n+ 2.

1.9 Find the inverse of the matrix of order n:

a) A =


1 1 ... 1 1

0 1 ... 1 1

.. .. ... .. ..

0 0 ... 1 1

0 0 ... 0 1

; b) B =


0 1 ... 1 1

1 0 ... 1 1

.. .. ... .. ..

1 1 ... 0 1

1 1 ... 1 0

;

c) B =



1 −5 0 ... 0 0 0

0 1 −5 ... 0 0 0

· · ·
0 0 0 ... 1 −5 0

0 0 0 ... 0 1 −5

0 0 0 ... 0 0 1


.

1.10 Find the inverse of the matrix A =

 2̂ 3̂ 1̂

0̂ 1̂ 4̂

5̂ 6̂ 2̂

 in Z7.
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Solutions

1.1 a) n!; b) b1(b2−a12)(b3−a23) · · · (bn−an−1,n); c) 1+2n;

d) (−1)n−1n.

1.2 C(1, 2, . . . , n) =
n∏

k=0

P (εk), where εnk = 1 and P (X) =

1+2X+3X2+· · ·+nXn−1. For εk ̸= 1, we get P (εk) =
n

εk − 1

and P (1) =
n(n+ 1)

2
. C(1, 2, ,̇n) =

nn(n+ 1)

2

n−1∏
k=1

1

εk − 1
.

The values εk, k = 1, . . . , n − 1 are the roots of the equation

zn−1+zn−2+ · · ·+z+1 = 0, so
∏n−1

k=1(z−εk) = zn−1+zn−2+

· · ·+ z + 1. Taking z = 1, we obtain
n−1∏
k=1

(εk − 1) = (−1)n−1n,

so C(1, 2, . . . , n) = (−1)n−1n
n−1(n+ 1)

2
.

1.3 P (X) = C0
n−1 +C1

n−1X +C2
n−1X

2 + · · ·+Cn−1
n−1X

n−1 =

(1 + X)n−1. The determinant has then the value
n−1∏
k=1

(1 +

εk)
n−1 = [(−1)n((−1)n − 1)]n+1.

1.4 P (X) = a+ bX+ bX2+ · · ·+Xn−1 = a+ b
Xn −X

X − 1
, for

X ̸= 1, and P (1) = a + b(n − 1). C(a, b, . . . , b) = [a + (n −
1)b](a− b)n−1. The same result can be obtained also directly,

using the properties of determinants.
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1.5 Consider another Vandermonde determinant:

V (a1, . . . , an, X) = V (a1, . . . , an)
∏n

k=1(X − ak) =

= V (a1, . . . , an)(X
n − S1X

n−1 + · · ·+ (−1)n−kSn−kX
k +

+ · · ·+ (−1)nSn),

where Sk are the Viéte sums corresponding to the polynomial

with the roots a1, . . . , an. On the other hand, expanding the

same determinant by the last column we get: V (a1, . . . , an, X) =

(−1)n+2V0(a1, . . . , an) + · · · + (−1)n+2+kXkVk(a1, . . . , an) +

· · ·+(−1)2n+2XnVn(a1, . . . , an). From the two expressions we

obtain Vk(a1, . . . , an) = V (a1, . . . , an)Sn−k.

1.6 a) Multiply the second column of the determinant in

the left-hand member of the identity by bc, the third column

by ac and the fourth by ab. b) Multiply the second column

and the second row by (−1). c) Multiply the second row of

the determinant by abc then divide the �rst column by a, the

second by b and the third by c.

1.7 a) 9; b) For example, we expand after the last two rows:

1000.

1.8 Using Laplace's formula with rows n and n+1 we get the

recurrence relationship D2n =
∣∣∣a b

b a

∣∣∣(−1)n+n+1+n+n+1D2n−2 =

(a2 − b2)D2n−2, and by induction D2n = (a2 − b2)n.
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1.9 a) Subtracting each row from the row above it, follows:

1 1 ... 1 1 1 0 0 ... 0 0

0 1 ... 1 1 0 1 0 ... 0 0

.. .. ... .. .. .. .. .. ... .. ..

0 0 ... 1 1 0 0 0 ... 1 0

0 0 ... 0 1 0 0 0 ... 0 1

1 0 ... 0 0 1 -1 0 ... 0 0

0 1 ... 0 0 0 1 -1 ... 0 0

.. .. ... .. .. .. .. .. ... .. ..

0 0 ... 1 0 0 0 0 ... 1 -1

0 0 ... 0 1 0 0 0 ... 0 1

b) We can apply the following succession of elementary trans-

formations: add all rows to the �rst one, multiply row one by
1

n− 1
, subtract row one from all he other rows, add again all

the rows to the �rst one and �nally multiply all the rows (ex-

cept the �rst) by −1. The inverse matrix is

B−1 =
1

n− 1


2− n 1 ... 1 1

1 2− n ... 1 1

... ... ... ... ...

1 1 ... 2− n 1

1 1 ... 1 2− n

.

1.10 A−1 =

 5̂ 0̂ 1̂

5̂ 5̂ 5̂

4̂ 6̂ 4̂

.



CHAPTER 2

Vectors

2.1 Vectors

A vector −→v in space is characterized by magnitude (denoted

by ||−→v ||), direction and sense. The vectors are added by either

the triangle law or the parallelogram law.

Vector addition obeys the following postulates:

1. −→u + (−→v +−→w ) = (−→u +−→v ) +−→w (associative law);

2. −→u +−→v = −→v +−→u (commutative law);

3. There is a unique vector called the null vector, denoted

by
−→
0 , such that

−→
0 +−→v = −→v for all −→v ;

4. For every vector −→v there is a unique vector called its

negative and denoted by −−→v , such that −→v +(−−→v ) =
−→
0 .

Thus, if we denote by V3 the set of all vectors in the space,

then (V3,+) is a commutative group. The following postulates

hold for the multiplication of vectors by numbers:

17
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5. 1−→a = −→a

6. s(t−→a ) = (st)−→a

7. (s+ t)−→a = s−→a + t−→a

8. s(−→a +
−→
b ) = s−→a + s

−→
b

for all −→a ,
−→
b ∈ V3 and all s, t ∈ R.

In talking about vectors, numbers are often called scalars.

The vector t−→v is called a scalar multiple of the vector −→v .
Consider now the axes Ox,Oy,Oz, mutually perpendicu-

lar, forming a right-handed rectangular Cartesian co-ordinate

frame. Let
−→
i ,

−→
j ,

−→
k be the unit vectors for this system. Ev-

ery vector −→v can be written, uniquely, in the form −→v =

a
−→
i +b

−→
j +c

−→
k , where a, b, c are scalars (called the components

of −→v ). Other important formulas are ||a−→v || = |a|||−→v || and
||−→u +−→v || ≤ ||−→u ||+ ||−→v || for all −→u ,−→v ∈ V3 and a ∈ R.

2.2 Scalar product and vector product

One associates with any two vectors −→a and
−→
b a number called

their scalar product (or inner product) and denoted by −→a ·
−→
b .

The de�nition reads:

−→a ·
−→
b = ||−→a ||||

−→
b || cos θ, θ = angle between−→a and

−→
b

−→a ·
−→
b = 0 if either −→a =

−→
0 or

−→
b =

−→
0 .

For all −→a ,
−→
b ,−→c ∈ V3 and s ∈ R we have

1) −→a
−→
b =

−→
b −→a
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2) −→a (
−→
b +−→c ) = −→a

−→
b +−→a −→c

3) (s−→a )
−→
b = s(−→a

−→
b )

4) −→a · −→a ≥ 0; −→a · −→a = 0 ⇐⇒ −→a =
−→
0 .

Let us note that −→a · −→a = ||−→a ||2 and cos θ =
−→a ·

−→
b

||−→a || · ||
−→
b ||

. In

particular, −→a ·
−→
b = 0 ⇐⇒ −→a ⊥

−→
b .

On the other hand,
−→
i ·−→i =

−→
j ·−→j =

−→
k ·

−→
k = 1,

−→
i ·−→j =

−→
j ·

−→
k =

−→
k · −→i = 0. Let −→a ,

−→
b ∈ V3,

−→a = a1
−→
i + a2

−→
j +

a3
−→
k ,

−→
b = b1

−→
i + b2

−→
j + b3

−→
k .

By using the properties of the scalar product, mentioned

above, we deduce −→a ·
−→
b = (a1

−→
i + a2

−→
j + a3

−→
k ) · (b1

−→
i +

b2
−→
j + b3

−→
k ) = a1b1

−→
i
−→
i + a2b1

−→
j
−→
i + a3b1

−→
k
−→
i + a1b2

−→
i
−→
j +

a2b2
−→
j
−→
j + a3b2

−→
k
−→
j + a1b3

−→
i
−→
k + a2b3

−→
j
−→
k + a3b3

−→
k
−→
k .

Thus we have the following important formula:

−→a ·
−→
b = a1b1 + a2b2 + a3b3.

Combining the previous results we can write:

||−→a || =
√

a21 + a22 + a23

cos θ =
a1b1 + a2b2 + a3b3√

a21 + a22 + a23
√

b21 + b22 + b23
−→a ⊥

−→
b ⇐⇒ a1b1 + a2b2 + a3b3 = 0.

The vector product of the vectors −→a and
−→
b is the vector,

denoted by −→a ×
−→
b , characterized by:

1) ||−→a ×
−→
b || = ||−→a ||||

−→
b || sin θ
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2) −→a ×
−→
b is perpendicular to both −→a and

−→
b

3) The triad of vectors {−→a ,
−→
b ,−→a ×

−→
b } is oriented like the

triad {−→i ,−→j ,
−→
k }.

For all −→a ,
−→
b ,−→c ∈ V3 and s ∈ R we have

I) −→a ×
−→
b = −

−→
b ×−→a

II) (s−→a )×
−→
b = −→a × (s

−→
b ) = s(−→a ×

−→
b )

III) −→a × (
−→
b +−→c ) = −→a ×

−→
b +−→a ×−→c

IV) −→a ×−→
0 =

−→
0 , −→a ×−→a =

−→
0

V) −→a ×
−→
b =

−→
0 ⇐⇒ −→a ||

−→
b

VI) ||−→a ×
−→
b || equals the numerical value of the area of the

parallelogram constructed on −→a and
−→
b .

It is easy to construct the following table:

× −→
i

−→
j

−→
k

−→
i
−→
0

−→
k −−→

j
−→
j −

−→
k

−→
0

−→
i

−→
k

−→
j −−→

i
−→
0

Let −→a = a1
−→
i + a2

−→
j + a3

−→
k ,

−→
b = b1

−→
i + b2

−→
j + b3

−→
k .

Then we can write:

−→a ×
−→
b = (a1

−→
i + a2

−→
j + a3

−→
k )× (b1

−→
i + b2

−→
j + b3

−→
k ) =

= a1b1
−→
i ×−→

i + a2b1
−→
j ×−→

i + a3b1
−→
k ×−→

i + a2b2
−→
j ×−→

j +

+a3b2
−→
k ×−→

j + a1b3
−→
i ×

−→
k + a2b3

−→
j ×

−→
k + a3b3

−→
k ×

−→
k =

= (a2b3 − a3b2)
−→
i + (a3b1 − a1b3)

−→
j + (a1b2 − a2b1)

−→
k .
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Finally we have

−→a ×
−→
b =

∣∣∣∣∣∣∣
−→
i
−→
j

−→
k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
This is a remarkable formula! Its simplicity enables us to com-

pute easily the vector product.

2.3 Triple vector product

The vector −→a × (
−→
b ×−→c ) is called the triple vector product of

the vectors−→a ,
−→
b ,−→c . It has no important geometrical meaning

but is expressed by a formula which is of use for applications.

To deduce this formula let us choose the Cartesian axes in such

a way that the x-axis is directed along the vector
−→
b and the

y-axis lies in the plane of vectors
−→
b and −→c . Clearly we have

−→
b = b1

−→
i , −→c = c1

−→
i + c2

−→
j , −→a = a1

−→
i + a2

−→
j + a3

−→
k .

−→a ×
−→
b =

∣∣∣∣∣∣∣
−→
i
−→
j

−→
k

b1 0 0

c1 c2 0

∣∣∣∣∣∣∣ = b1c2
−→
k

−→a × (
−→
b ×−→c ) =

∣∣∣∣∣∣∣
−→
i
−→
j

−→
k

a1 a2 a3

0 0 b1c2

∣∣∣∣∣∣∣ = a2b1c2
−→
i − a1b1c2

−→
j =

= (a1c1 + a2c2)b1
−→
i − a1b1(c1

−→
i + c2

−→
j ) =

= (−→a −→c )
−→
b − (−→a

−→
b )−→c (check up these formulas!).

Thus we have

−→a × (
−→
b ×−→c ) = (−→a −→c )

−→
b − (−→a

−→
b )−→c .
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This �nal formula no longer contains any components and

therefore does not depend on the particular choice of the axes.

2.4 Triple scalar product

The triple scalar product of the vectors −→a ,
−→
b ,−→c is denoted

by (−→a ,
−→
b ,−→c ) and is de�ned by (−→a ,

−→
b ,−→c ) = −→a (

−→
b ×−→c ).

Clearly we have

(−→a ,
−→
b ,−→c ) = (a1

−→
i + a2

−→
j + a3

−→
k ) ·

∣∣∣∣∣∣∣
−→
i
−→
j

−→
k

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ =
= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1).

Finally we have

(−→a ,
−→
b ,−→c ) =

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣
Taking into account this formula, it is easy to prove that

1) (−→a ,
−→
b ,−→c ) = (−→c ,−→a ,

−→
b ) = (

−→
b ,−→c ,−→a )

2) (−→a ,
−→
b ,−→c ) = −(−→a ,−→c ,

−→
b )

3) (s−→a ,
−→
b ,−→c ) = s(−→a ,

−→
b ,−→c )

4) (−→u +−→v ,
−→
b ,−→c ) = (−→u ,

−→
b ,−→c ) + (−→v ,

−→
b ,−→c )

We have also |(−→a ,
−→
b ,−→c )| = |(−→a (

−→
b × −→c )| = volume of the

parallelepiped constructed on −→a ,
−→
b ,−→c .

In particular

(−→a ,
−→
b ,−→c ) = 0 ⇐⇒ −→a ,

−→
b ,−→c are parallel to the same plane.
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Exercises

2.1 Consider a triangle ABC and the heights AA1 ⊥ BC, A1 ∈ (BC),

BB1 ⊥ AC, B1 ∈ (AC) with the intersection point H. Prove that

CH ⊥ AB.

2.2 Consider four points A, B, C and D in space.

a) Prove that
−−→
DA ·

−−→
BC +

−−→
DB ·

−→
CA+

−−→
DC ·

−→
AB = 0.

b) If DA ⊥ BC and DB ⊥ CA then DC ⊥ AB.

2.3 Let G be the weight center of the triangle ABC.

a) Prove that
−→
AG+

−−→
BG+

−→
CG = 0.

b) If M is an arbitrary point then 3
−−→
MG =

−−→
MA+

−−→
MB +

−−→
MC.

2.4 Let ABC andMNP be two triangles (in the same plane or di�erent

planes). Prove that, if
−−→
AM +

−−→
BN +

−→
CP = 0, then the weight centers of

the two triangles coincide.

2.5 If a⃗ = (3,−1, α), b⃗ = (0, 1,−2) and c⃗ = (1, 0,−1), determine α ∈ R
such that the vector a⃗× (⃗b× c⃗) is parallel to the plane y0z.

2.6 Find the angle between

a) the vector a⃗ =

√
3

2
i⃗+

1

2
k⃗ and the axis Ox

b) A⃗B and A⃗C where A(3, 1,−2), B(2, 1,−1) and C(3, 0,−1).

2.7 Let a⃗ = 3⃗i − j⃗ + 2k⃗ and b⃗ = j⃗ − 2k⃗. Determine the height of the

parallelogram with the edges a⃗ and b⃗, considering a⃗ as the basis.

2.8 Determine the vector w⃗ such that ∥w⃗∥=2, w⃗ is perpendicular on

the axis Oz and makes a 45◦ angle with the positive direction of Ox.

2.9 Let a⃗ = i⃗+ j⃗ + k⃗ and b⃗ = 2⃗i− j⃗, c⃗ = j⃗ + 3k⃗. Determine the height

of the parallelepiped with the edges a⃗, b⃗, c⃗ considering the parallelogram

with edges a⃗, b⃗ as basis.
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2.10 Prove the identity of Lagrange ∥a⃗× b⃗∥2 + (⃗a · b⃗)2 = ∥a⃗∥2∥⃗b∥2, for
any vectors a⃗, b⃗.

2.11 Prove that (⃗a × b⃗) · (c⃗ × d⃗) = (⃗a · c⃗)(⃗b · d⃗) − (⃗a · d⃗)(⃗b · c⃗), for any
vectors a⃗, b⃗, c⃗, d⃗.

2.12 Let a⃗, b⃗ and c⃗ be three non-coplanar vectors, making two by two,

angles of measures α, β, γ. Prove that, if

a⃗× (⃗a× b⃗) + b⃗× (⃗b× c⃗) + c⃗× (c⃗× a⃗) = 0

then cosα cos β cos γ = 1.

Solutions

2.1 Use, for instance the fact that
−−→
AH ·

−−→
BC = 0,

−−→
BH ·

−→
AC =

0,
−−→
AH =

−→
AC +

−−→
CH,

−−→
BH =

−−→
BC +

−−→
CH.

2.2 a) Using the triangle rule we get that
−−→
BC =

−−→
BD+

−−→
DC =

−−→
DC−

−−→
DB,

−→
CA =

−−→
DA−

−−→
DC,

−→
AB =

−−→
DB−

−−→
DA and the equality

follows. b) Follows directly from a).

2.3 a) Let A1 be the middle of (BC). Use the relations
−−→
BG =

−−→
BA1 +

−−→
A1G,

−→
CG =

−−→
CA1 +

−−→
A1G,

−→
AG = 2

−−→
GA1.

2.4
−−−→
G1G2 =

−−→
G1A+

−−→
AM+

−−−→
MG2,

−−−→
G1G2 =

−−→
G1B+

−−→
BN+

−−→
NG2,−−−→

G1G2 =
−−→
G1C +

−→
CP +

−−→
PG2. Add the three relations and use

the previous exercise.

2.5 b⃗ × c⃗ = −⃗i − 2⃗j − k⃗ = (−1,−2,−1), a⃗ × (⃗b × c⃗) =

(1 + 2α, 3− α,−7). If the vector is parallel to the plane y0z,

then it is perpendicular on the axis 0x, that is the dot product

is zero. This gives 1 + 2α = 0, so α = −1
2 .
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2.6 a) cosα =
a⃗ · j⃗
∥a⃗∥

=

√
3

2
, so α =

π

6
. b) A⃗B = −⃗i + k⃗,

A⃗C − j⃗ + k⃗, α =
π

3
.

2.7 The area of the parallelogram is ∥a⃗×b⃗∥ = 6⃗j+3k⃗ = 3
√
5.

On the other hand, area = h∥a⃗∥, so we get h = 3
√
5√
14
.

2.8 If w⃗ = a⃗i+ b⃗j + ck⃗, from w⃗ ⊥ k⃗, we get c = 0. We have

w⃗ · i⃗ = ∥w⃗∥ cosπ/4 =
√
2. On the other hand, w⃗ · i⃗ = a, so

a =
√
2. Finally, since ∥w⃗∥ =

√
a2 + b2 + c2 =

√
2, it follows

that b =
√
2 or b = −

√
2.

2.9 The volume of the parallelepiped is given by the mixed

product volume = |(⃗a, b⃗, c⃗)| = 7. The area of the basis is

area = ∥a⃗× b⃗∥ =
√
14. The height is h =

7√
14

.

2.10 Denoting by α the angle formed by the two vectors,

we have ∥a⃗ × b⃗∥ = ∥a⃗∥∥⃗b∥ sinα, a⃗ · b⃗ = ∥a⃗∥∥⃗b∥ cosα and the

identity follows immediately.

2.11 We use the properties of the triple product:

(⃗a× b⃗) · (c⃗× d⃗) = (⃗a× b⃗, c⃗, d⃗) = (d⃗, a⃗× b⃗, c⃗) = d⃗ · ((⃗a× b⃗)× c⃗) =

= −d⃗((c⃗ · b⃗)⃗a− (c⃗ · a⃗)⃗b) = d⃗ · (c⃗ · a⃗)⃗b− d⃗ · (c⃗ · b⃗)⃗a.

2.12 We get (⃗a · b⃗− c⃗ · c⃗)⃗a+(⃗b · c⃗− a⃗ · a⃗)⃗b+(c⃗ · a⃗− b⃗ · b⃗)c⃗ = 0.

Since the three vectors are non-coplanar, this means a⃗ ·⃗b = c⃗·c⃗,
b⃗ · c⃗ = a⃗ · a⃗, c⃗ · a⃗ = b⃗ · b⃗. It follows that ∥a⃗∥∥⃗b∥ cosα = ∥c⃗∥2,
∥⃗b∥∥c⃗∥ cos β = ∥a⃗∥2 and ∥c⃗∥∥a⃗∥ cos γ = ∥⃗b∥2. Multiplying the

last three relationships we get now the desired equality.





CHAPTER 3

Lines and planes in space

3.1 Planes in space

We shall use the language of the vectors to introduce the ba-

sic concepts of solid analytic geometry ([8], [10], [11]). We

assume that a �xed Cartesian coordinate system in space de-

�ned by the origin O and the triad {−→i ,−→j ,
−→
k } has been cho-

sen. Every point M has a position vector −→r ; the components

of −→r are the coordinates of M , that is, we have M(x, y, z) and
−→r = x

−→
i + y

−→
j + z

−→
k .

1) Plane determined by a point and a normal vector

Let M0(x0, y0, z0) be a point in space and let −→n = a
−→
i +b

−→
j +

c
−→
k , −→n ̸= 0. Let P be the plane that passes through M0 and

is perpendicular to −→n .

Let M(x, y, z) be an arbitrary point of P . Then −→r −−→r0 is

perpendicular to −→n , that is −→n (−→r −−→r0 ) = 0.

27
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Since −→r −−→r0 = (x−x0)
−→
i +(y−y0)

−→
j +(z−z0)

−→
k , we obtain

a(x− x0) + b(y − y0) + c(z − z0) = 0.

This is the equation of the plane P . If we denote d = −ax0 −
by0 − cz0, then it reads:

ax+ by + cz + d = 0.

This is the general form of the equation of a plane. The vector
−→n = a

−→
i + b

−→
j + c

−→
k is called normal to the plane.

In particular, the plane xOy passes through the origin and
−→
k is normal to it. Hence we can take x0 = y0 = z0, a = b =

0, c = 1.

Therefore the equation of the plane xOy is simply z = 0.

M
0

n

O

M

r r
0

r-r
0

2) Plane determined by three non-collinear points.

Let Mi(xi, yi, zi), i = 1, 2, 3 be three non-collinear points and

let P be the plane determined by them. Let M(x, y, z) be an

arbitrary point of P . Then M,M1,M2,M3 are coplanar and
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hence ∣∣∣∣∣∣∣∣∣∣
1 x y z

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

∣∣∣∣∣∣∣∣∣∣
= 0.

This is the equation of the plane P .

3) Plane determined by a point and two non-collinear

vectors.

Let P be the plane that passes through a given pointM0(x0, y0, z0)

and is parallel to two non-collinear given vectors −→vi = xi
−→
i +

yi
−→
j + zi

−→
k , i = 1, 2.

Let M(x, y, z) be an arbitrary point of P . Then the vectors
−→r −−→r0 ,−→v1 ,−→v2 are coplanar, that is (−→r −−→r0 ,−→v1 ,−→v2) = 0. Thus

the equation of the plane P can be written in the form:∣∣∣∣∣∣∣
x− x0 y − y0 z − z0

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣ = 0.

4) An important result is the following:

The equation of a plane passing through the line of intersection

of the planes

(1) a1x+ b1y + c1z + d1 = 0

(2) a2x+ b2y + c2z + d2 = 0

is of the form
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(3) a1x + b1y + c1z + d1 + λ(a2x + b2y + c2z + d2) =

0, λ ∈ R.

Indeed, (3) is the equation of a plane P . The coordinates of

any point of the line verify (1) and (2) - and hence also (3).

Thus the line is contained in the plane P .

3.2 Straight lines in space

Consider a direction in space, determined by the vector

−→v = l
−→
i +m

−→
j + n

−→
k ̸= −→

0 .

The numbers (l,m, n) are called the direction ratios of this

direction. Clearly any other numbers proportional to them are

also direction ratios for the same direction.

Now suppose that −→v is a unit vector, that is, ||−→v || = 1.

Then l2 + m2 + n2 = 1. On the other hand, l = −→v · −→i =

cosα, m = −→v · −→j = cos β, n = −→v ·
−→
k = cos γ where α, β, γ

are the angles between −→v and the axes. Hence the direction

ratios are now (cosα, cos β, cos γ). They are called direction-

cosines.

Since l2+m2+n2 = 1, we have cos2 α+cos2 β+cos2 γ = 1.

1) Line determined by a point and a vector.

Consider the line d determined by the point M0(x0, y0, z0) and

the vector −→v = l
−→
i +m

−→
j + n

−→
k ̸= −→

0 . Let M(x, y, z) be an

arbitrary point of d.
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The vectors −→r −−→r0 and −→v are collinear, hence −→r −−→r0 = t−→v ,
with t ∈ R. Thus we obtain the parametric equations of the

line d:

x = x0 + lt, y = y0 +mt, z = z0 + nt, t ∈ R.

By eliminating the parameter t between these equations, we

deduce the canonical equations of d:

x− x0
l

=
y − y0
m

=
z − z0
n

Since −→v ̸= −→
0 , at least one denominator is nonnull. If a de-

nominator equals 0, the corresponding numerator must also
equal 0.

Example 3.2.1 For the x-axis we can take M0 = 0 and −→v =
−→
i . Hence

x0 = y0 = z0 = 0, l = 1, m = n = 0.

The canonical equations are
x

1
=

y

0
=

z

0
. They are equivalent to

y = 0

z = 0
.

2) Equations of the line joining the pointsM0(x0, y0, z0)

and M1(x1, y1, z1)

Let −→r0 and −→r1 be the position vectors of these points. Then the

line is determined by the pointM0 and the vector
−→r1−−→r0 . Con-

sequently, we can take (x1−x0, y1− y0, z1− z0) as direction-

ratios.

The canonical equations of the line will be

x− x0
x1 − x0

=
y − y0
y1 − y0

=
z − z0
z1 − z0

.

3) Line determined by the intersection of two planes

Let d be the intersection of the planes P1 and P2. Then the
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equations of d area1x+ b1y + c1z + d1 = 0

a2x+ b2y + c2z + d2 = 0

The normal vectors to P1, respectively P2, are
−→n1 = a1

−→
i +

b1
−→
j + c1

−→
k and −→n2 = a2

−→
i + b2

−→
j + c2

−→
k .

P
2

P
1

d

n
2

n
1

They are both perpendicular to d, so d is parallel to −→n =
−→n1 × −→n2. This enables us to take as direction-ratios of d the

components of −→n , that is

( ∣∣∣∣∣ b1 c1b2 c2

∣∣∣∣∣ ,
∣∣∣∣∣ c1 a1c2 a2

∣∣∣∣∣ ,
∣∣∣∣∣a1 b1a2 b2

∣∣∣∣∣ ).
3.3 Distance from a point to a line. Distance

from a point to a plane

1) Consider a line d determined by a point M0 and a vector
−→v . The distance from the point A to the line d equals

the length of the height of the parallelogram M0ABC.
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dCM
0

A B

v

Hence dist(A, d) =
||−→v ×

−−→
M0A||

||−→v ||
2) Consider the plane P : ax + by + cz + d = 0 and the

point M0(x0, y0, z0). Let M1 be the projection of M0 on

the plane P .

The vector −→n = a
−→
i + b

−→
j + c

−→
k is normal to P .

n

M
0

M
1

Let (x1, y1, z1) be the coordinates of M1. Then ax1 +

by1 + cz1 + d = 0. We have also
−−−→
M1M0 = (x0 − x1)

−→
i +

(y0 − y1)
−→
j + (z0 − z1)

−→
k . Therefore

−→n ·
−−−→
M1M0 = a(x0 − x1) + b(y0 − y1) + c(z0 − z1) =

= ax0 + by0 + cz0 + d− (ax1 + by1 + cz1 + d) =

= ax0 + by0 + cz0 + d.

On the other hand,

|−→n ·
−−−→
M1M0| = ||−→n ||·||

−−−→
M1M0|| =

√
a2 + b2 + c2dist(M0, P ).



34

It follows that

dist(M0, P ) =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
.

Exercises

3.1 Write the equation of the plane (P ) such that:

a) M(−1, 2− 3) ∈ (P ) and 0z⊥(P )

b) M(−1, 2− 3) ∈ (P ) and 0z ∥ (P ), 0x ∥ (P ).

3.2 Write the equation of the plane (Q) knowing that it is symmetrical

to the plane (P ) : x−3y+2z−1 = 0 with respect to the pointM(0,−1, 1).

3.3 Write the equations of the straight line d that passes through the

point M(3,−1, 0) and is parallel to the line l :

{
x− 2y + 7 = 0

x+ y + z − 6 = 0
.

3.4 Let A(2, 2, 2), B(0, 1, 1), C(1, 1, 0) and D(1, 0, 1). Find the equa-

tions and the length of the height of the tetrahedron ABCD with the

basis BCD.

3.5 Let A(3,−1, 3), B(5, 1,−1), C(0, 4,−3). Find the parametric and

canonical equations of the lines D1 and D2 if:

a) D1 = AB and D2 = BC

b)D1 is parallel to AC and passes through B and D2 is perpendicular to

D1 and passes through C.

3.6 Considering A,B and C from the exercise 3.5, calculate the dis-

tances between these three points and �nd the angles formed by AB,

AC and BC.

3.7 Considering A and B from the exercise 3.5, �nd the equation of a

plane with respect to which A and B are symmetrical.
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3.8 Find the equation of a plane which passes through the point M and

is parallel to the plane (P ) if:

a)M(2,−1, 3) and (P ) : x− 3y + 5z + 2 = 0

b)M(0,−2, 4) and (P ) : 7x+ 4y − 3z − 1 = 0

c)M(1, 0,−1) and (P ) : 2y − 5x− 11z = 0.

3.9 Find the equation of a plane (P ) if:

a) M(2, 3,−5) ∈ (P ) and OM⊥(P );

b) A(2, 1,−6) and B(6,−1,−2) are symmetrical about the plane (P );

c) M1(3, 2, 1) ∈ (P ), M2(6, 6, 8) ∈ (P ) and (P ) cuts equal segments on

Ox and Oz.

3.10 Write the equations of three planes that contain M(3, 2,−1) and

each contains a di�erent coordinate axis.

3.11 Find the equation of a plane which passes through A and is per-

pendicular to the planes (P1) and (P2) if:

a)A(−1, 1, 0), (P1) : x− 2y + z − 5 = 0 and (P2) : y − 5z + 2 = 0

b)A(1, 0, 1), (P1) : 3x+ y − 1 = 0 and (P2) : x+ y − z − 1 = 0

3.12 Write the equations of three planes that contain A(2,−1,−1) and

B(3, 1, 2) and each, is parallel to a di�erent coordinate axis.

3.13 Find the equation of a plane which contains the point A and is

perpendicular to AB, if:

a) A(1, 2,−1), B(2, 3, 5)

b) A(1, 3, 2), B(−3,−1, 0)

c) A(2, 0, 1), B(1, 1,−1).

3.14 A plane cuts, on the coordinate axes, segments equal to 3, 10 and

5. Find the equation of the plane and the angles formed by the plane

and the axes.

3.15 Find the equation of a plane determined by the lines

D1:

{
x+ y − 3z = 0

2x+ 3y − z − 1 = 0
and D2:

{
x+ 5y + 4z − 3 = 0

x+ 2y + 2z − 1 = 0
.
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3.16 Write the equation of a plane which contains M(−1, 1, 1) and is

perpendicular to the line D, if:

a) D :
x− 2

3
=

y

2
=

z + 1

−1

b) D :
x

4
=

y − 2

−4
=

z − 3

5

c) D:

{
x+ y = 0

x+ y − 2z + 1 = 0
.

3.17 Let D1, D2 be two lines parallel to the vectors d1 = (−1, 0, 1) and

d2 = (1, 1, 0). Find:

a) the angle between D1 and D2

b) the parametric equations of the line D3 perpendicular to D1 and

D2, which passes through M(3, 2, 1).

3.18 Calculate the distance between the point A(3,−1, 1) and the line

D1 if:

a) D1:

{
2x− y + 2z − 3 = 0

x− y − 3z + 2 = 0

b)D1:
x− 1

4
=

y

−5
=

z + 2

3
.

3.19 Write the equation of a plane which passes through the point

M(1,−1, 1) and is perpendicular to the line D if:

a) D:
x− 3

2
=

y

3
=

z + 1

−1

b) D:

{
x− z + 3 = 0

2x− y = 0

3.20 A plane contains the point A(1, 0, 1) and the line D. Find the

equation of the plane if:

a) D:


x = 2− 3t

y = 4 + t

z = 1− 2t

b) D:
x

−2
=

y − 1

4
= z − 5

c) D:

{
x+ z + 1 = 0

x− 2y + z − 3 = 0
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3.21 We consider the planes P1, P2 and P3 such that A(−1,−2, 2) ∈ P1

and the vector normal to P1 is (1,−2, 2), the plane P2 is perpendicular

to the line D:
x

2
=

y + 7

−1
=

z − 1

−2
and contains the point B(1, 1, 1) and

P3: 2x+ 2y + z = 2.

1) Find the equations of P1 and P2.

2) Show that each of two planes are perpendicular.

3) Find the intersection of the planes.

4) Calculate the distance from A(2, 4, 7) to P1.

3.22 Find the equation of a plane which contains the symmetric points

of A(2, 3,−1), B(1, 2, 4) and C(0, 1,−1) with respect to the plane P :

x− y + 2z + 2 = 0.

3.23 Find the projection ofM(2, 1, 1), on the plane P : x+y+3z+5 = 0

and calculate the distance from M to P .

3.24 Find the equations of two planes P1 and P2 if both pass through

the line D:

{
2x+ y − 3z + 2 = 0

5x+ 5y − 4z + 3 = 0
, P1⊥P2 and P1 containsM(4,−3, 1).

3.25 Find the position of the line D relative to the plane P if:

a) D:


x = t

y = 1 + 2t

z = −6t

and P : 4x+ y + z = 4

b) D:


x = 13 + 8t

y = 1 + 2t

z = 2 + 3t

and P : x+ y + 2z = 2.

3.26 Find the distance between two lines D1 and D2 and the equation

of the common perpendicular if it exists, for:

a) D1:
x− 1

−5
= y − 2 = z D2:

{
x+ 2z = 4

y = 0

b) D1:
x

3
=

y − 1

2
= z − 5 and D2:


x = 1 + 3t

y = 2t

z = 1 + t
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c) D1:
x− 1

3
=

y + 2

2
= z − 4 and D2:


x = 1 + t

y = 2t− 2

z = 4 + 5t

.

Solutions

3.1 a) 0z has the direction vector k⃗ and is normal to the

requested plane (P). The equation is 0 · (x+1)+ 0 · (y− 2) +

1 · (z + 3) = 0, that is z + 3 = 0. b) The plane is determined

by a point and two vectors,

∣∣∣∣∣∣∣
x+ 1 y − 2 z + 3

0 0 1

1 0 0

∣∣∣∣∣∣∣ = 0, that is

y − 2 = 0. (In fact, the plane is perpendicular to 0y).

3.2 We choose three points that belong to the plane (P ), for

instance A(1, 0, 0), B(0, 1, 2) and C(−1, 0, 1). We determine

their symmetrical points A1, B1, C2 with respect to M , from

the fact that M is the middle of the segments [AA1], [BB1],

[CC1], getting A1(−1,−2, 2), B1(0,−3, 0), C1(1,−2, 1). The

plane (Q) is determined by these three points: x−3y+2z−9 =

0.

3.3 We �nd �rst the direction vector of of l, for instance

l⃗ = n⃗1 × n⃗2, where n⃗1 = (1,−2, 0) and n⃗2 = (1, 1, 1) are the

normals to the planes that determine l. So l⃗ = (−2,−1, 3)

and the equations of the line d are
x− 3

−2
=

y + 1

−1
=

z

3
or, in

another form, d :

{
x− 2y − 5 = 0

3y + z + 3 = 0
.
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3.4 The plane BCD has the equation x+ y + z − 2 = 0, so

the normal is n⃗ = (1, 1, 1). The equations of the height from

A are x = y and x = z and the intersection point between the

height and the plane BCD is H(
2

3
,
2

3
,
2

3
). The length of the

height is AH = 4
3

√
3.

3.5 a) D1 = AB = x−3
2 = y+1

2 = z−3
−4

b) D1 ∥ AC means the direction of D1 is D̄1 = ĀC =

(−3, 5,−6), then D1 :
x−5
−3 = y−1

5 = z+1
−6 .

Let CM⊥D1 and M(a, b, c) ∈ D1, then D2 = CM . We know

D2 is perpendicular to D1, so (−3, 5,−6) · (a, b−4, c+3) = 0.

Also M ∈ D1 ⇔ a−5
−3 = b−1

5 = c+1
−6 and after �nding a, b, and

c from this system, we obtain the line D2 = CM .

3.6 d(A,B) =
√

(5− 3)2 + (1 + 1)2 + (−1− 3)2 = 2
√
6,

etc.

Let α = ∢(AB,AC), then we have cosα = A⃗B·A⃗C

∥A⃗B∥·∥A⃗C∥ , if

A⃗B = (2, 2,−4) and A⃗C = (−3, 5,−6).

3.7 Consider M(x, y, z) ∈ P . Then ∥AM∥ = ∥MB∥, with
AM⊥P which implies P : x+ y − 2z − 2 = 0.

3.8 a) Let P1 be the plane parallel to P , then the vector

normal to P1 is the vector normal to P , n⃗ = (1,−3, 5). The

equation of the plane is P1: x− 2− 3(y + 1) + 5(z − 3) = 0.

3.9 c) ConsiderA(a, 0, 0) ∈ Ox andB(0, 0, a) ∈ Oz, ∥OA∥ =
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∥OB∥. We write the plane P in two ways:

(AM1M2) :

∣∣∣∣∣∣∣∣∣∣
x y z 1

a 0 0 1

3 2 1 1

6 6 8 1

∣∣∣∣∣∣∣∣∣∣
= 0, (BM1M2) :

∣∣∣∣∣∣∣∣∣∣
x y z 1

0 0 a 1

3 2 1 1

6 6 8 1

∣∣∣∣∣∣∣∣∣∣
= 0

and obtain P : 2x− 5y + 2z + 2 = 0

3.10 (MOx) :

∣∣∣∣∣∣∣
x y z

1 0 0

3 2 −1

∣∣∣∣∣∣∣ = 0 and obtain (MOx) : y + 2z =

0, etc.

3.11 a) The normals n⃗1 and n⃗2 of the planes P1 and P2 are

parallel to the plane P , so we get P :

∣∣∣∣∣∣∣
x+ 1 y − 1 z

1 −2 1

0 1 −5

∣∣∣∣∣∣∣ = 0,

9x+ 5y + z + 4 = 0.

3.12 P1 :

∣∣∣∣∣∣∣
x− 3 y − 1 z − 2

1 0 0

1 2 3

∣∣∣∣∣∣∣ = 0, etc.

3.13 a) The normal of the plane is the vector A⃗B = (1, 1, 6),

so the equation of the plane, which contains A, is x− 1 + y−
2 + 6(z + 1) = 0.

3.14 The equation of the plane is P : 10x+3y+6z−30 = 0.

Consider the normal to the plane n⃗, and for the coordinates

axes we have the unit vectors i⃗, j⃗, j⃗. By denoting α = ∢(⃗i, n⃗),
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we have sinα =
i⃗ · n⃗∥∥∥⃗i∥∥∥ · ∥n⃗∥ =

10√
145

, etc.

3.15 P : x+ 2y + 2z − 1 = 0

3.16 c) The direction of the line D is

d = (

∣∣∣∣∣1 0

1 −2

∣∣∣∣∣ ,
∣∣∣∣∣ 0 1

−2 1

∣∣∣∣∣ ,
∣∣∣∣∣1 1

1 1

∣∣∣∣∣) = (−2, 2, 0)

and this line is normal to the plane. The equation of the plane

is P : x− y + 2 = 0

3.17 a) α = 2π/3

b)

d̄1 × d̄2 =

∣∣∣∣∣∣∣
i j k

−1 0 1

1 1 0

∣∣∣∣∣∣∣ = −i+ j − k.

Then the equation of the line is D:


x = 3− t

y = 2 + t

z = 1− t

3.18 a) d⃗1 = (−5,−8, 1), so
∥∥∥d⃗1∥∥∥ = 3

√
10, then the distance

is calculated from d(A,D1) =
∥M⃗A×d⃗1∥
∥d⃗1∥ .

3.19 b) P : x+ 2y + z = 0

3.20 c) The pencil of planes which pass throughD is x−2y+

z−3+λ(x+ z+1) = 0 and we need the plane which contains

A, so, λ = 1/3 then the plane is P : 4x− 6y + 4z − 8 = 0.
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3.21 1) P1 : x− 2y + 2z − 7 = 0, P2 : 2x− y − 2z + 1 = 0.

2) We verify that the scalar product between the normals of

two planes is zero.

3) P1 ∩ P2 ∩ P3 = M(1,−1, 2).

4) d(A,P1) = 1/3.

3.22 ConsiderA
′
, B

′
, C

′
the symmetrical points ofA, B, and

C with respect to the plane P . We take C0 = CC
′ ∩ P , C0 ∈

P and obtain C0(1/6, 5/6,−2/3) after we solve the system

obtained from the equations of the line CC
′
: x

1 = y−1
−1 =

z+1
2 and the plane P . Then we �nd the coordinates of C

′
by

knowing ∥CC0∥ =
∥∥C0C

′∥∥. By using the same procedure we

�nd A
′
and B

′
.

3.23 ConsiderM
′ ∈ P the projection ofM on P ,MM

′
: x−

2 = y − 1 = z−1
3 , then M

′
(1, 0,−2) and d(M

′
, P ) = 11/

√
11.

3.24 The pencil of planes passing through D is

Pµ : 2x + y − 3z + 2 + µ(5x + 5y − 4z + 3) = 0. M ∈ P1

and P1 ⊂ Pµ =⇒ M ∈ Pµ which gives us µ = −1, so P1 :

3x+ 4y − z + 1 = 0.

Let P2 : ax+ by+ cz+d = 0, from P1 ⊥ P2 we have 3a+4b−
c = 0 and considering also P2 ⊂ Pµ we obtain the relations

a = 2+ 5µ, b = 1+ 5µ, c = −3− 4µ. Then, for µ = −1/3, we

obtain P2 : x− 2y − 5z + 3 = 0.

3.25 a) Consider the system


2x = y − 1

−6x = z

4x+ y + z = 4
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which have the determinant zero and the rank of the corre-

sponding matrix 2 and observe the system is inconsistent, so

D ∥ P . This could be, also, observed if we check that the

normal to the plane is perpendicular to the line D.

b) The system is consistent and determined and we obtain

t = −1, then we �nd x, y, z the coordinates of the point

M(x, y, z), where M = D ∩ P .

3.26 a) The direction of the common perpendicular of D1

and D2 is

d⃗ = (−5, 1, 1)×(2, 0,−1) =

∣∣∣∣∣∣∣
i j k

−5 1 1

2 0 −1

∣∣∣∣∣∣∣ = −i−3j−2k = (−1,−3,−2)

The equation of the plane which contains D1 and D is

P1 :

∣∣∣∣∣∣∣
x− 1 y − 2 z

−5 1 1

−1 −3 −2

∣∣∣∣∣∣∣ = 0 ⇔ x− 11y + 16z + 21 = 0.

Similarly, the equation of the plane which contains D2 and D

is P2 : −3x + 5y − 6z + 12 = 0. The common perpendicular

is D :

{
P1

P2

.
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D
1

D
2

D

P
1

P
2

D

M
2

M
1

The distance is d(D1, D2) = ∥M1M2∥, where {M1} = D1 ∩D

and {M2} = D2 ∩D.

b) D1 ∥ D2, let A1 ∈ D1 and A2 ∈ D2, then

d(D1, D2) = d(A1, D2) =

∥∥∥d⃗2 × ⃗A1A2

∥∥∥∥∥∥d⃗2∥∥∥ .

c) D1 ∩D2 = M(1,−2, 4), so the distance is zero.



CHAPTER 4

Linear spaces

4.1 The de�nition of a linear space

Let K be the �eld of real numbers or the �eld of complex
numbers.

De�nition 4.1 A set V is called a linear space (or a vector space) over

the �eld K if it satis�es the following conditions:

I) There exists an internal binary operation on V , called addition and

denoted by +, such that (V,+) is a commutative group.

II) There exists an external binary operation called scalar multiplica-

tion, in which each element k ∈ K can be combined with each

element v ∈ V to give an element kv ∈ V , and such that, for all

k, l ∈ K and x, y ∈ V ,

1) k(x+ y) = kx+ ky

2) (k + l)x = kx+ lx

3) (kl)x = k(lx)

4) 1x = x.

45
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We must be careful to distinguish between the two types of elements:

those belonging to V called vectors, and those belonging to K called

scalars.

Example 4.1.1 1) The set V3 of the vectors in space with the usual

de�nitions of addition and multiplication by a real number, forms

a linear space over the �eld R.

2) Let x = (x1, . . . , xn), y = (y1, . . . , yn) (xi, yi ∈ K) be two elements

of Kn (the set of n-tuples of elements of K). The addition x + y

and scalar multiplication λx (λ ∈ K) may be de�ned by

x+ y = (x1 + y1, . . . , xn + yn)

λx = (λx1, . . . , λxn)

With these operations it is easily veri�ed that Kn is a linear space

over the �eld K.

3) An obvious generalization of the previous example is the setMn,m(K)

with the usual de�nitions of addition of matrices and multiplication

of a matrix by an element of K.

4) Let S be any set and F = {f |f : S −→ K}.
With the usual de�nitions of addition of functions and multiplica-

tion of a function by a number, F is a linear space over K.

We see that the structure of linear space appears in various

and quite natural situations ([4],[5], [6], [7]).
The �rst theorem gives a number of elementary deductions

from the de�nition of a linear space. We must be careful to
distinguish between 0, the zero of K, and 0, the zero vector of
V .

Theorem 4.2 In any linear space V over K we have

(i) 0v = 0;
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(ii) k0 = 0;

(iii) (−1)v = −v,

for all v ∈ V and k ∈ K. (−v is the negative of v in the group (V,+)).

Proof.

(i) Since 0v = (0 + 0)v = 0v + 0v, we infer that 0v = 0.

(ii) k0 = k(0 + 0) = k0 + k0, hence k0 = 0.

(iii) v + (−1)v = 1v + (−1)v = [1 + (−1)]v = 0v = 0,

therefore (−1)v = −v. □

Theorem 4.3 (a) If k ∈ K, v ∈ V and kv = 0, then either k = 0 or

v = 0.

(b) If lv = kv and v ̸= 0, then l = k.

(c) If kv = kw and k ̸= 0, then v = w.

Proof.

(a) Suppose that k ̸= 0. Then there exists k−1 ∈ K. We

have k−1(kv) = k−1 · 0, hence (k−1k)v = 0. It follows that

1v = 0 and �nally v = 0, q.e.d.

(b) lv = kv implies (l−k)v = 0. Since v ̸= 0 we may apply

(a) and deduce l − k = 0, that is, l = k.

(c) is left to the reader. □

4.2 Linear subspaces

Let V be a linear space over K. A non-empty subset W of

V is called a linear subspace (or a vector subspace) of V if
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kx+ ly ∈ W for all k, l ∈ K and x, y ∈ W .

Let us remark that this condition is equivalent to the fol-

lowing two conditions:

(1) x+ y ∈ W for all x, y ∈ W

(2) kx ∈ W for all k ∈ K and x ∈ W .

Any linear subspace W contains the vector 0; indeed, for any
v ∈ W we have 0v ∈ W and hence 0 ∈ W .

Example 4.2.1 (1) {0} and V are linear subspaces of V . These two

subspaces are called improper subspaces of V ; all other subspaces

are proper subspaces.

(2) {a−→i | a ∈ R} and {a−→i + b
−→
j | a, b ∈ R} are linear subspaces of

V3.

(3) {(0, x2, . . . , xn) | x2, . . . , xn ∈ K} is a linear subspace of Kn.

Let S ⊂ V, S ̸= ∅. A vector v ∈ V of the form v = k1v1 + · · ·+ knvn,

where n ∈ N∗, ki ∈ K and vi ∈ S is called a linear combination of

elements of S. It is easy to verify that the set of all linear combinations

of elements of S is a linear subspace of V , called the subspace generated

by S.

Theorem 4.4 Let U and W be linear subspaces of the space V .

a) U ∩W is a linear subspace of V .

b) The set U +W = {u + w | u ∈ U,w ∈ W} is a linear subspace of

V , called the sum of U and W .

The (easy) proof is left to the reader.
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4.3 Linear dependence, bases, dimension

A subset X of a linear space V is called a linearly dependent

set if it contains a �nite subset {x1, . . . , xr}(r ≥ 1} for which

there exist scalars k1, . . . , kr ∈ K, not all zero, such that k1x1+

· · ·+ krxr = 0. Such a linear relation, where not all the ki are

zero, will be called non-trivial.

A subset of a linear space is linearly independent if it is not
linearly dependent. An alternative de�nition, equivalent to
this is:A set X is linearly independent if every linear relation
k1x1+ · · ·+krxr = 0 (ki ∈ K) between the vectors xi of X has
zero coe�cients. In other words, every linear relation between
the vectors of X is trivial.

Example 4.3.1 1) Every subset X ⊂ V which contains 0 is linearly

dependent.

2) If v ∈ V, v ̸= 0, then {v} is linearly independent.

3) Let V = {f | f : R → R}. Let fi ∈ V, fi(t) = ti, i = 0, 1, . . . , n.

Then {f0, f1, . . . , fn} is linearly independent.

4) −→u ,−→v ,−→w ∈ V3 are linearly dependent if and only if they are copla-

nar.

De�nition 4.5 Any linearly independent subset of a vector space V ,

which has the property that it generates V , is called a basis of V .

It can be shown that every vector space V ̸= {0} possesses a

basis. Also, if V has a �nite basis with r elements, then every

basis of V has r elements. We say that the dimension of V is

r and write dimV = r.
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If V has no �nite bases, it is called in�nite-dimensional.

In this case we can �nd arbitrarily large linearly independent

�nite subsets of V . On the other hand, we write dim{0} = 0.

Example 4.3.2 1) {−→i ,−→j ,
−→
k } is a basis of V3.

2) The vectors e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

form a basis ofKn, called the canonical basis ofKn. Thus, dimKn =

n.

3) Let Kn[X] be the linear space of all polynomials of degree ≤ n,

with coe�cients in K. A basis of this space is {1, X,X2, . . . , Xn}.

4) Let K[X] be the space of all polynomials with coe�cients in K.

A basis of it is {1, X,X2, . . . , Xn, . . . }. Hence K[X] is in�nite-

dimensional.

Let V be �nite-dimensional. It can be shown that if U and W are

linear subspaces of V , then

dim(U +W ) + dim(U ∩W ) = dimU + dimW.

Theorem 4.6 Let T = {v1, . . . , vm} ⊂ V be a linearly independent set

which is not a basis. Then there exists v ∈ V such that {v1, . . . , vm, v} is

linearly independent.

Theorem 4.7 a) Every linearly independent subset of Vn with n ele-

ments is a basis of Vn.

b) Every linearly independent subset of Vn is a part of a basis.

4.4 Coordinates. Change of bases

Let B = {b1, . . . , bn} be a basis of the n-dimensional linear
space Vn over K.
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Theorem 4.8 Each v ∈ Vn can be written uniquely in the form

v = x1b1 + · · ·+ xnbn

with x1, . . . , xn ∈ K. (The scalars x1, . . . , xn are called the coordinates

of the vector v relative to the basis B.)

Proof. Let v ∈ Vn. Since B generates Vn, there exist scalars

x1, . . . , xn such that v = x1b1 + . . . xnbn. We have to prove

that they are uniquely determined.

Suppose that x′1, . . . , x
′
n ∈ K and v = x′1b1 + · · · + x′nbn.

Then it follows (x1 − x′1)b1 + · · · + (xn − x′n)bn = 0. Since

b1, . . . , bn are linearly independent, it follows that x
′
1 = x, . . . , x′n =

xn and the theorem is proved. □

Consider now the above basisB and letB′ = {b′1, . . . , b′n} ⊂
Vn. Then we have b′j =

n∑
i=1

cijbi, j = 1, . . . , n, with cij ∈ K.

Theorem 4.9 B′ is a basis of Vn if and only if det(cij) ̸= 0.

Proof. Since B′ has n elements, the following two statements

are equivalent:

(1) B′ is a basis

(2) B′ is linearly independent

Clearly (2) is equivalent to

(3) k1b
′
1 + · · ·+ knb

′
n = 0 =⇒ k1 = · · · = kn = 0.

We have
n∑

j=1

kjb
′
j =

n∑
j=1

kj
n∑

i=1

cijbi =
n∑

j=1

n∑
i=1

cijkjbi =
n∑

i=1

n∑
j=1

cijkjbi =

n∑
i=1

( n∑
j=1

cijkj

)
bi.
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Thus the �rst equality in (3) is equivalent to
n∑

i=1

( n∑
j=1

cijkj

)
bi =

0, which is equivalent (due to the linear independence of

B) to
n∑

j=1

cijkj = 0, i = 1, . . . , n. Hence (3) is equivalent

to

(4) The linear homogeneous system
n∑

j=1

cijkj = 0, i = 1, . . . , n,

has only the trivial solution.Finally, (4) is equivalent to

(5) det(cij ̸= 0

We conclude that (1) and (5) are equivalent and the the-

orem is proved.

Let us remark that the columns of the matrix C = (cij), i, j =

1, . . . , n are formed with the coordinates of b′j relative to

the basis B. Suppose that C is nonsingular; this means

that B′ is also a basis of Vn. C is called the transition

matrix from B to B′.

Let x ∈ Vn. We have x =
n∑

i=1

xibi and x =
n∑

j=1

x′jb
′
j, with

xi, x
′
j ∈ K. Then x =

n∑
j=1

x′j
n∑

i=1

cijbi =
n∑

j=1

n∑
i=1

cijx
′
jbi =

n∑
i=1

(
n∑

j=1

cijx
′
j)bi.

Hence
n∑

i=1

xibi =
n∑

i=1

( n∑
j=1

cijx
′
j

)
bi. It follows that

(6) xi =
n∑

j=1

cijx
′
j, i = 1, . . . , n.

We have here the relationship between the coordinates of x rel-

ative to the basis B and the coordinates of the same x relative
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to the basis B′. Let us denote

X =

 x1
...

xn

 , X ′ =

 x′1
...

x′n


Then (6) is equivalent to X = CX ′. □

Finally, let us mention-without proof - the following impor-

tant result.

Let B = {b1, . . . , bn} be a basis of Vn and let v1, . . . , vp ∈ V .

Write vj =
n∑

i=1

aijbi, j = 1, . . . , p, with aij ∈ K. Consider the

matrix

A =

 a11 . . . a1p

. . .

an1 . . . anp


Theorem 4.10 The dimension of the linear subspace of Vn generated by

{v1, . . . , vp} equals rA.

Exercises

4.1 Let V = {x ∈ R | x > 0} be endowed with the internal operation

x⊕ y = xy. Prove that (V,⊕) is a linear space over R with the external

operation α ∗ x = xα, for each x ∈ V , α ∈ R.

4.2 Prove that all square matrices of order n with real elements, form

a vector space over the �eld of real numbers, if the operations involved

are addition of matrices and multiplication of a matrix by a scalar. Find

a basis and dimension of this space.
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4.3 Prove that all polynomials of degree ≤ n with real coe�cients form

a vector space if the operations involved are ordinary addition of poly-

nomials and multiplication of a polynomial by a scalar. Find a basis and

dimension of this space.

4.4 Determine which of the following sets are linear subspaces of the

corresponding linear spaces.

a) W1 = {(x1, . . . , xn) | x1 + · · ·+ xn = 0}, in Rn over R
b) W2 = {(x1, . . . , xn) | x1 + · · ·+ xn = 1}, in Rn over R
c) W3 = {(x1, . . . , xn) | xi ∈ Z, i = 1, . . . , n}, in Rn over R
d) W4 = {(x, y, z) | 2x− 3y + z = 0}, in R3 over R
e) W5 = {(x, y, z) | 2x− 3y + z + 6 = 0}, in R3 over R
f) W6 = {(x, y, z) | x

3
=

y

−2
=

z

8
}, in R3 over R

g) W7 = {(x, y, z) | x− 1

3
=

y

−2
=

z

8
}, in R3 over R

h) W8 = {f : I → R | f di�erentiable on I}, in C(I) over R, the space
of continuous functions on the interval I ∈ R
i) W9 = {P | P is a polynomial of odd degree}, in Rn[X] over R, the
space of polynomials of degree at most n with real coe�cients.

4.5 Prove that the following sets of vectors are subspaces in Rn over R
and �nd a basis and dimension of each:

a) All n-dimensional vectors with the �rst and last coordinates equal.

b) All n-dimensional vectors of the form (α, β, α, β, ...), where α and β

are any numbers.

4.6 Find out if the following matrices are linearly independent in the

space M2(R), for a ∈ R:(
1 0

−1 1

)
,

(
2 a

0 1

)
,

(
0 1

2 −1

)
.

4.7 Determine a basis in the linear subspace generated by the set of

functions {1, sin2 x, cos2 x, cos 2x}.
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4.8 Determine the dimension and a basis for the linear subspace V

generated:

a) in R4 by the vectors: v1 = (0, 2,−1, 3), v2 = (1, 1, 2,−1), v3 =

(2, 5,−2, 3) and v4 = (−1, 0, 2, 2),

b) in R4 by the vectors: v1 = (2, 1, 3, 0), v2 = (−3, 1, 1, 2), v3 =

(−1, 2, 4, 2) and v4 = (−1, 0, 2,−2),

c) in R3 by the vectors: v1 = (−1, 3, 2), v2 = (1, 4, 1), v3 = (0, 1, 2).

4.9 Find the dimensions and bases of the linear subspaces spanned (gen-

erated) by the following sets of vectors:

a) a1 = (1, 0, 0,−1), a2 = (1, 1, 1, 1), a3 = (2, 1, 1, 0), a4 = (1, 2, 3, 4) and

a5 = (0, 1, 2, 3).

b) a1 = (1, 1, 1, 1, 0), a2 = (1, 1,−1,−1,−1), a3 = (2, 2, 0, 0,−1), a4 =

(1, 1, 5, 5, 2) and a5 = (1,−1,−1, 0, 0)

4.10 Find the dimensions of the union and intersection of the linear

subspaces S1 = span{a1, a2, ..., ak} and S2 = span{b1, b2, ..., bm}, if:
a) a1 = (1, 2, 0, 1), a2 = (1, 1, 1, 0) and b1 = (1, 0, 1, 0), b2 = (1, 3, 0, 1)

b) a1 = (1, 1, 1, 1), a2 = (1,−1, 1,−1), a3 = (1, 3, 1, 3) and b1 = (1, 2, 0, 2),

b2 = (1, 2, 1, 2), b3 = (3, 1, 3, 1).

4.11 Find bases of the unions and intersections of the linear subspaces

S1 = span{a1, a2, ..., ak} and S2 = span{b1, b2, ..., bm}:
a) a1 = (1, 2, 1), a2 = (1, 1,−1), a3 = (1, 3, 3) and b1 = (2, 3,−1),

b2 = (1, 2, 2), b3 = (1, 1,−3).

b) a1 = (1, 2, 1,−2), a2 = (2, 3, 1, 0), a3 = (1, 2, 2,−3) and b1 = (1, 1, 1, 1),

b2 = (1, 0, 1,−1), b3 = (1, 3, 0,−4).

4.12 Consider in R3 the linear subspaces P and Q given by P : 5x −
2y + z = 0, Q : x+ y − 3z = 0. Determine bases in P , Q, P ∩Q and in

sp(P ∪Q).

4.13 Find the coordinates of the vector v = (−3, 1, 2) in the basis

B′ = {(1,−1, 0), (1, 0,−1), (0, 1, 1)}.
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4.14 Show that the vectors e1 = (1, 1, 1), e2 = (1, 1, 2), e3 = (1, 2, 3)

form a basis in R3 and �nd the coordinates of the vector a = (6, 2,−7)

in this basis.

4.15 Show that the vectors e1 = (1, 2,−1,−2), e2 = (2, 3, 0,−1), e3 =

(1, 2, 1, 4) and e4 = (1, 3,−1, 0) form a basis in R4 and �nd the coordi-

nates of the vector b = (7, 14,−1, 2) in this basis.

4.16 Prove that each of the two sets of vectors is a basis in R3 and �nd

the relationship between the coordinates of one and the same vector in

the two bases:

a1 = (1, 2, 1), a2 = (2, 3, 3), a3 = (3, 7, 1) and b1 = (3, 1, 4), b2 = (5, 2, 1),

b3 = (1, 1,−6).

4.17 Let P1 = (X−b)(X−c), P2 = (X−a)(X−c), P3 = (X−a)(X−b)

be polynomials from R2[X], a, b, c ∈ R.
a) Determine the condition under which P1, P2, P3 are linearly inde-

pendent.

b) Considering the condition of (a) satis�ed, write the polynomial

P = 1 +X +X2 as a linear combination of P1, P2 and P3.

4.18 In the space of polynomials of degree at most two over R, consider
the canonical basis B = {1, X,X2} and another basis B′ = {1, X −
a, (X − a)2}, where a ∈ R.

a) Determine the transition matrix from B to B′,

b) Determine the coordinates of the polynomial f = α + βX + γX2

in the new basis B′.

4.19 Find the coordinates of the polynomial f(x) = a0 + a1x+ a2x
2 +

. . .+ anx
n in the following bases:

a) 1, x, x2, . . . , xn.

b) 1, x− α, (x− α)2, . . . , (x− α)n.

4.20 Prove that each of the two sets of vectors is a basis in the space of

polynomials of degree ≤ 3 with real coe�cients and �nd the transition
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matrix between the two bases:

e1 = 1, e2 = x, e3 = x2 and e4 = x3 and e
′
1 = 1 − x, e

′
2 = 1 + x2,

e
′
3 = x2 − x and e

′
4 = x3 + x2

4.21 Find a basis in the real space of the solutions of the following

systems:

a)

{
x+ y − z + 2t = 0

x− 2y + t = 0
b)


x+ y − z + t = 0

x− y + 2z − t = 0

2x+ y − z − t = 0

c)


x+ 2y + 4z − 3t = 0

3x+ 5y + 6z − 4t = 0

3x+ 8y + 24z − 19t = 0

4x+ 5y − 2z + 3t = 0

d)


x− 2y + z − t = 0

2x− y + 3z − 3t = 0

x+ y + z + t = 0

2x− y + 2z = 0

4.22 In R3 consider the subspaces

D = {(x, y, z) | x
α

=
y

β
=

z

γ
, α, β, γ ∈ R∗}

and

P = {(x, y, z) | ax+ by + cz = 0, a, b, c ∈ R}.

Find the condition wherefore R3 = D ⊕ P .

Solutions

4.1 (V,⊕) is a commutative group. We check also the other

axioms, for x, y ∈ V and α, β ∈ R.

α ∗ (x⊕ y) = (xy)α = xαyα = (α ∗ x)⊕ (α ∗ y),

(α + β) ∗ x = xα+β = xαxβ = α ∗ x⊕ β ∗ x,

α ∗ (β ∗ x) = (β ∗ x)α = (xβ)α = xαβ = (αβ) ∗ x,

1 ∗ x = x1 = x.
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4.2 The basis is formed, for example, by the matrices Eij

(i, j = 1, 2, ..., n) whose elements in the ith row and the jth

column is equal to unity and all other elements are zero. The

dimension is n2.

4.3 The basis is formed, for example, by the polynomials

1, x, x2, ..., xn. The dimension is n+ 1.

4.4 a) Yes, b) No, c) No, d) Yes, e) No, f) Yes, g) No, h)

Yes, i) No.

4.5 a) The basis is formed, for example, by the vectors (1, 0, 0, ..., 0, 1),

(0, 1, 0, ..., 0, 0), (0, 0, 1, ..., 0, 0), ..., (0, 0, 0, ..., 1, 0) and the di-

mension is n− 1.

b) The basis is formed, for example, by the two vectors (1, 0, 1, 0, ...),

(0, 1, 0, 1, ...) and the dimension is 2.

4.6 Let α, β, γ ∈ R such that

α

(
1 0

−1 1

)
+ β

(
2 a

0 1

)
+ γ

(
0 1

2 −1

)
=

(
0 0

0 0

)

that is


α + 2β = 0

aβ + γ = 0

−α + 2γ = 0

α + β − γ = 0

. We can notice that if α, β, γ satisfy

the �rst and third equation they also satisfy the last one, so we

have the linear homogeneous system


α + 2β = 0

aβ + γ = 0

−α + 2γ = 0

. If the
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determinant of the system

∣∣∣∣∣∣∣
1 2 0

0 a 1

−1 0 2

∣∣∣∣∣∣∣ = 2a−2 is not zero, then

the only solution is the trivial one α = β = γ = 0. For a ̸= 1

the three matrices are linearly independent, and for a = 1 they

are linearly dependent, for instance B = 2A+ C.

4.7 Since sin2 x = 1
2 · 1 − 1

2 · cos 2x, cos2 x = 1
2 · 1 + 1

2 ·
cos 2x it means that only two of the elements can be linearly

independent. From α · 1 + β · cos 2x = 0 follows α = β = 0 so

a basis for the subspace is {1, cos 2x}.

4.8 a) The 4th order determinant having the four vectors as

columns has the value 0, so dim(V ) < 4. We can �nd 3rd order

minors that are di�erent from 0, so dim(V ) = 3. A basis can

be, for instance {v1, v2, v3}, or {v1, v2, v4}; b) The rank of the

matrix is 3, dim(V ) = 3, a basis is for instance {v2, v3, v4}; c)
dim(V ) = 3, so the subspace coincides with the whole space

R3.

4.9 a) The basis is formed, for example, by the vectors a1, a3

and a4, so the dimension is 3.

b) The basis is formed, for example, by the vectors a1, a2 and

a5 and the dimension is 3.

4.10 a) The dimensions of the union is 3 and of the inter-

section is 1. b) The dimensions of the union is 3 and of the

intersection is 2.

4.11 a) The basis of the union (sum) is formed, for example,
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by the vectors a1, a2 and b1 and the basis of the intersection

consist of the single vector x = 2a1 + a2 = b1 + b2 = (3, 5, 1).

b) The basis of the union (sum) is formed, for example, by

the vectors a1, a2, a3 and b2 and the basis of the intersection

consist of b1 = −2a1 + a2 + a3 and b3 = 5a1 − a2 − 2a3.

4.12 P = {(x, y, z) ∈ R3 | 5x−2y+z = 0} = {(x, y,−5x+

2y) | x, y ∈ R} = {x(1, 0,−5) + y(0, 1, 2) | x, y ∈ R}, so
{(1, 0,−5), (0, 1, 2)} is a basis for P . Similarly, Q = sp{(1,−1, 0), (0, 3, 1)}.

To �nd P ∩Q we solve the system

{
5x− 2y + z = 0

x+ y − 3z = 0
and get

z =
7

5
x, y =

16

5
x, so

P ∩Q = sp{(1, 7
5
,
16

5
)} = sp{(5, 7, 16)}.

sp(P ∪Q) = sp{(1, 0,−5), (0, 1, 2), (1,−1, 0), (0, 3, 1)} =

= sp{(1, 0,−5), (0, 1, 2), (1,−1, 0)} = R3.

4.13 The transition matrix from the canonical basis to the

basis B′ is

 1 1 0

−1 0 1

0 −1 1

. Denoting by a, b, c the coordinates

in the new basis we have

−3

1

2

 =

 1 1 0

−1 0 1

0 −1 1


a

b

c

 and

we get a = −1, b = −2, c = 0. Indeed, v = −(1,−1, 0) −
2(1, 0,−1).

4.14 (15,−5,−4).

4.15 (0, 2, 1, 2).
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4.16 We consider the same vector in the �rst basis (α1, α2, α3)

and in the second basis (β1, β2, β3). Then α1 = −27β1−71β2−
41β3, α2 = 9β1 + 20β2 + 9β3 and α3 = 4β1 + 12β2 + 8β3.

4.17 Let α, β, γ ∈ R such that αP1 + βP2 + γP3 = 0. This

means

α(X−b)(X−c)+β(X−a)(X−c)+γ(X−a)(X−b) = 0, ∀ x ∈ R.

Assigning to X the values a, b or c it follows that α(a− b)(a−
c) = 0, β(b− a)(b− c) = 0 and γ(c− a)(c− b) = 0. If a, b, c

are distinct two by two we get α = β = γ = 0, so P1, P2, P3

are linearly independent. If, for instance, a = b, for α = 1,

β = −1, γ = 0, we have P1 − P2 = 0, so they are not linearly

independent. The same for a = c or b = c. In conclusion the

condition of linear independence is (a−b)(a−c)(b−c) ̸= 0. b)

We must determine l,m, n such that 1+X+X2 = l(X−b)(X−
c)+m(X−a)(X− c)+n(X−a)(X− b). Assigning to X the

values a, b or c we get l =
1 + a+ a2

(a− b)(a− c)
, m =

1 + b+ b2

(b− a)(b− c)
,

n =
1 + c+ c2

(c− a)(c− b)
.

4.18 a) The transition matrix is C =

1 −a a2

0 1 −2a

0 0 1

, b)

f = α + βa + γa2 + (β + 2γa)(X − a) + γ(X − a)2 or f =

f(a) +
f ′(a)

1!
(X − a) +

f ′′(a)

2!
(X − a)2.

4.19 a) a0, a1, a2, . . . , an. b) f(α), f
′
(α), f

′′
(α)/2!, . . ., f (n)(α)/n!.
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4.20


1 1 0 0

−1 0 −1 0

0 1 1 1

0 0 0 1

.

4.21 a) (1, 0,−1,−1), (0, 1, 5, 2). b) (2,−7,−4, 1). c) (8,−6, 1, 0),

(−7, 5, 0, 1). d) (−10/3,−2/3, 3, 1).

4.22 αa+ βb+ γc ̸= 0.



CHAPTER 5

Inner product spaces

5.1 Inner products

De�nition 5.1 An inner product on a real or complex linear space V is

any scalar-valued function, de�ned on V 2 (the set of ordered pairs (x, y)

of elements of V ) and denoted by (x|y), which satis�es the following three
axioms: for all x, x1, x2, y ∈ V and k1, k2 ∈ K,

(1) (x|y) = (y|x)

(2) (k1x1 + k2x2|y) = k1(x1|y) + k2(x2|y)

(3) (x|x) ≥ 0, and (x|x) = 0 if and only if x = 0.

In (1) the bar denotes the complex conjugate, and so may be

omitted if the vector space is real. Because of (1), (x|x) is real
(even if V is a complex vector space) and so the inequality of

(3) is meaningful. Corresponding to (2) is the relation

(2') (x|k1y1 + k2y2) = k1(x|y1) + k2(x|y2),

which can be deduced, using (1), from (2) and is equivalent to
it. Both (2) and (2') extend, in an obvious manner, to the case

63
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where more than two terms occur in either the �rst or second
position in the inner product. We have also (x|0) = (0|y) = 0
for all x, y ∈ V .

Example 5.1.1 (1) For −→u ,−→v ∈ V3 de�ne (−→u |−→v ) = −→u · −→v . In this

way we have an inner product on V3.

(2) Let x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn. The formula

(x|y) = x1y1+ · · ·+xnyn de�nes an inner product on Rn, called the

canonical inner product on Rn.

(3) Let x = (x1, . . . , xn) ∈ Cn, y = (y1, . . . , yn) ∈ Cn.Then (x|y) =

x1y1 + · · ·+ xnyn de�nes the canonical inner product on Cn.

(4) Let C[a, b] = {f : [a, b] −→ R | fcontinuous on [a, b]}. For f, g ∈
C[a, b], de�ne

(f |g) =
∫ b

a

f(x)g(x)dx

Then we have an inner product on C[a, b].

An inner product space is any linear space on which an in-
ner product is de�ned. A �nite-dimensional real inner product
space is known as a Euclidean space; a �nite-dimensional com-
plex inner product space is known as a unitary space.

Theorem 5.2 (Schwarz' inequality). Let V be an inner product space

and u, v ∈ V . Then

|(u|v)|2 ≤ (u|u)(v|v).

Proof. If v = 0, the inequality reduces to 0 ≤ 0. So, let

v ̸= 0; then (v|v) > 0. We have

(i) (u− kv|u− kv) ≥ 0, ∀k ∈ K.

It follows immediately that

(ii) (u− kv|u)− k(u− kv|v) ≥ 0, ∀k ∈ K
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For k0 =
(u|v)
(v|v)

the second inner product equals zero and hence

(ii) implies

(u|u)− k0(v|u) ≥ 0, that is,

(u|u)− (u|v)
(v|v)

(v|u) ≥ 0.

Since (u|v)(v|u) = (u|v)(u|v) = |(u|v)|2 we deduce the desired
inequality |(u|v)|2 ≤ (u|u)(v|v). □

5.2 Norm and distance

De�nition 5.3 Let V be a linear space over K. A norm on V is any

real-valued function de�ned on V (its value at x being denoted by ||x||)
which satis�es the following axioms:

(1) ||x|| ≥ 0, and ||x|| = 0 if and only if x = 0

(2) ||kx|| = |k|||x||

(3) ||x1 + x2|| ≤ ||x1||+ ||x2|| for all x, x1, x2 ∈ V and all k ∈ K.

Any linear space on which a norm is de�ned is known as a

normed vector space.

Let V be a normed vector space. De�ne d : V × V → R,

d(x, y) = ||x− y|| ∀x, y ∈ V.

It is easy to verify that

(4) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

(5) d(x, y) = d(y, x)
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(6) d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ V .

Thus d is a metric on V , and V is a metric space. The

value d(x, y) is called the distance between x and y. We refer

to ||x|| as the length of the vector x, and call x a unit vector

if ||x|| = 1.
The following result is a very important one.

Theorem 5.4 Every inner product space is a normed space with norm

de�ned by

||x|| =
√

(x|x).

Proof. Since (x|x) ≥ 0 for all x ∈ V, ||x|| ≥ 0. Moreover,

||x|| = 0 ⇐⇒ (x|x) = 0 ⇐⇒ x = 0 and so axiom (1) from the

de�nition of a norm is satis�ed.

Now ||kx|| =
√
(kx|kx) =

√
kk(x|x) =

√
|k|2||x||2 =

|k|||x||, which proves (2).

Finally,

||x+ y||2 = (x+ y)|x+ y) = (x|x) + (x|y) + (y|x) + (y|y) =
= (x|x) + (x|y) + ((x|y) + (y|y) =
= ||x||2 + 2Re(x|y) + ||y||2

(where Re signi�es the real part)

≤ ||x||2 + 2|(x|y)|+ ||y||2 ≤
≤ ||x||2 + 2

√
(x|x)

√
(y|y) + ||y||2

by the Schwarz'inequality

= ||x||2 + 2||x||||y||+ ||y||2 = (||x||+ ||y||)2
This implies ||x+ y ≤ ||x||+ ||y|| and so axiom (3) is also sat-

is�ed. □
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5.3 Orthonormal bases

Let V be an inner product space. Two vectors x, y ∈ V are

orthogonal if (x|y) = 0; this de�nition extends the well-known

situation that has appeared in the study of V3.

A set of vectors {x1, . . . , xr} ⊂ V is called orthonormal if

(xi|xj) =

1 if i = j

0 otherwise.

Thus each xi is of unit length, and each pair of vectors is
orthogonal. Finding an orthonomal set in an inner product
space is analogous to choosing a set of mutually perpendicular
unit vectors in elementary vector analysis.

Theorem 5.5 An orthonormal set in an inner product space V is linearly

independent.

Proof. Suppose that {x1, . . . , xr} is the given orthonormal

set and

k1x1 + · · ·+ krxr = 0.

Then for each i, 0 = (0|xi) = (k1x1 + · · · + krxr|xi) =

k1(x1|xi)+· · ·+ki(xi|xi)+· · ·+kr(xr|xi) = ki since (xj|xi) = 0

unless j = i. Thus each coe�cient ki is zero, and so the vec-

tors are linearly independent. □

Let now Vn be an n-dimensional inner product space and

B ⊂ Vn an orthonormal set with n elements. As a consequence

of the above theorem we deduce that B is a basis of Vn, called

an orthonormal basis.
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Theorem 5.6 Let B = {b1, . . . , bn} be an orthonormal basis of Vn. The

coordinates of a vector v ∈ Vn relative to B are the numbers

(v|b1), . . . , (v|bn).

Proof. Let k1, . . . , kn ∈ K be the coordinates of v, that is

v =
n∑

i=1

kibi. Then (v|bj) = (
n∑

i=1

kibi|bj) =
n∑

i=1

ki(bi|bj) =

kj, j = 1, . . . , n. Thus the theorem is proved and we have a

very simple procedure for calculating the coordinates of any

vector relative to an orthonormal basis. □

Finally, let B = {v1, . . . , vn} be any basis of Vn. The fol-

lowing procedure enables us to construct an orthonormal basis

in V .

Let x1 =
v1

||v1||
. Then {x1} is an orthonormal set with

one element. Take x2 =
v2 − cx1

||v2 − cx1||
; note that v2 − cx1 =

v2 −
c

||v1||
v1 ̸= 0 for all c ∈ K.

Clearly ||x2|| = 1; we shall determine c ∈ K such that (x2|x1) =

0. In fact, we �nd immediately c =
(v2|x1)
(x1|x1)

. So {x1, x2} is an

orthonormal set and c = (v2|x1) (since (x1|x1) = 1).

Now take x3 =
v3 − c1x1 − c2x2

||v3 − c1x1 − c2x2||
. As above, we deduce

that the set {x1, x2, x3} is orthonormal if c1 = (v3|x1) and

c2 = (v3|x2).
Proceeding in this way, after n steps we arrive at an or-

thonormal set {x1, . . . , xn} with n elements, that is to say, an

orthonormal basis of Vn.
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The above procedure for constructing an orthonormal basis

of V from an arbitrary basis is known as the Gram-Schmidt

orthogonalisation process.

5.4 Orthogonal complement

De�nition 5.7 Let W be a linear subspace of the inner product space

V . The orthogonal complement of W is de�ned by

W⊥ = {v ∈ V | (v|w) = 0, ∀ w ∈ W}.

The following properties could be easily veri�ed:

a) W⊥ is a subspace of V ;

b) V ⊥ = {0} and {0}⊥ = V ;

c) U1 ⊆ U2 ⇒ U⊥
2 ⊆ U⊥

1 ;

d) U1 = (U⊥
1 )

⊥.

Theorem 5.8 If U is a subspace of V , then

V = U ⊕ U⊥

Proof. Suppose that U is a subspace of V . We will show

that

V = U + U⊥

Let {e1, . . . , em} be an orthonormal basis of U and v ∈ V .

We have

v = (v|e1)e1+ · · ·+(v|em)em+(v− (v|e1)e1−· · ·− (v|em)em)

Denote the �rst vector by u and the second by w. Clearly

u ∈ U . For each j ∈ {1, 2, . . . ,m} one has

(w|ej) = (v|ej)− (v, ej)

= 0
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Thus w is orthogonal to every vector in the basis of U , that

is w ∈ U⊥, consequently

V = U + U⊥.

We will show now that U ∩ U⊥ = {0}. Suppose that

v ∈ U ∩ U⊥. Then v is orthogonal to every vector in U ,

hence ⟨v, v⟩ = 0, that is v = 0. The relations V = U + U⊥

and U ∩ U⊥ = {0} imply the conclusion of the theorem. □

5.5 Linear manifolds

Let V be a vector space over the �eld F.

De�nition 5.9 A set L = v0 + VL = {v0 + v|v ∈ VL} , where v0 ∈ V is

a vector and VL ⊂ V is a subspace of V is called a linear manifold (or

linear variety). The subspace VL is called the director subspace of the

linear variety.

Remark 5.10 The following properties are easy to prove.

� A linear manifold is a translated subspace, that is L = f(VL) where

f : V → V , f(v) = v0 + v.

� if v0 ∈ VL then L = VL.

� v0 ∈ L because v0 = v0 + 0 ∈ v0 + VL.

� for v1, v2 ∈ L we have v1 − v2 ∈ VL.

� for every v1 ∈ L we have L = v1 + VL.

� L1 = L2, where L1 = v0 + VL1 and L2 = v′0 + VL2 i� VL1 = VL2 and

v0 − v′0 ∈ VL1 .
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De�nition 5.11 We would like to emphasize that:

a) The dimension of a linear manifold is the dimension of its director

subspace.

b) Two linear manifolds L1 and L2 are called orthogonal if VL1⊥VL2 .

c) Two linear manifolds L1 and L2 are called parallel if VL1 ⊂ VL2 or

VL2 ⊂ VL1 .

Let L = v0 + VL be a linear manifold in a �nitely dimen-

sional vector space V . For dimL = k ≤ n = dimV one can

choose in the director subspace VL a basis of �nite dimension

{v1, . . . , vk}. We have

L = {v = v0 + α1v1 + · · ·+ αkvk|αi ∈ F, i = 1, k}

We can consider an arbitrary basis (�xed) in V , let's say

E = {e1, . . . , en} and if we use the column vectors for the

coordinates in this basis, i.e. v[E] = (x1, . . . , xn)
⊤, v0[E]

=

(x01, . . . , x
0
n)

⊤, vj[E]
= (x1j, . . . , xnj)

⊤, j = 1, k, one has the

parametric equations of the linear manifold


x1 = x01 + α1x11 + · · ·+ αkx1k
...

xn = x0n + α1xn1 + · · ·+ αkxnk

The rank of the matrix (xij)i=1,n
j=1,k

is k because the vectors

v1, . . . , vk are linearly independent.

It is worthwhile to mention that:



72

� a linear manifold of dimension one is called line.

� a linear manifold of dimension two is called plane.

� a linear manifold of dimension k is called k plane.

� a linear manifold of dimension n− 1 in an n dimensional

vector space is called hyperplane.

5.6 The Gram determinant. Distances.

In this section we will explain how we can measure the distance

between some linear structures.

Let (V, (·|·)) be an inner product space and consider the

vectors vi ∈ V , i = 1, k.

The determinant

G(v1, . . . , vk) =

∣∣∣∣∣∣∣∣∣∣
(v1|v1) (v1|v2) . . . (v1|vk)
(v2|v1) (v2|v2) . . . (v2|vk)
. . . . . . . . . . . .

(vk|v1) (vk|v2) . . . (vk|vk)

∣∣∣∣∣∣∣∣∣∣
is called the Gram determinant of the vectors v1 . . . vk.

Proposition 5.12 In an inner product space, the vectors v1, . . . , vk are

linearly independent i� G(v1, . . . , vk) ̸= 0.

Proof. Let us consider the homogenous system

G ·


x1

x2
...

xk

 =


0

0
...

0

 .



73

This system can be written as
(v1|v) = 0
... where v = x1v1 + . . . xkvk.

(vk|v) = 0

The following statements are equivalent.

The vectors v1, . . . , vk are linearly dependent. ⇐⇒ There

exist x1, . . . , xk ∈ F, not all zero such that v = 0. ⇐⇒ The ho-

mogenous system has a nontrivial solution. ⇐⇒ detG = 0. □

Proposition 5.13 If {e1, . . . , en} are linearly independent vectors and

{f1, . . . , fn} are vectors obtained by Gram Schmidt orthogonalization pro-

cess, one has:

G(e1, . . . , en) = G(f1, . . . , fn) = ∥f1∥2 · . . . · ∥fn∥2

Proof. In G(f1, . . . , fn) replace fn by en − a1f1 − · · · −
an−1fn−1 and we obtain

G(f1, . . . , fn) = G(f1, . . . , fn−1, en).

By an inductive process the relation in the theorem follows.
Obviously G(f1, . . . , fn) = ∥f1∥2 · . . . · ∥fn∥2 because in the de-
terminant we have only on the diagonal (f1|f1), . . . , (fn|fn). □

Remark 5.14 Observe that:

� ∥fk∥ =

√
G(e1, . . . ek)

G(e1, . . . , ek−1)
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� fk = ek − a1f1 − . . . ak−1fk−1 = ek − vk one obtains ek = fk + vk,

vk ∈ span{e1, . . . , ek−1} and fk ∈ span{e1, . . . , ek−1}⊥, so fk is the

orthogonal complement of ek with respect to the space generated

by {e1 . . . , ek−1}.

The distance between a vector and a subspace

Let U be a subspace of the inner product space V . The

distance between a vector v and the subspace U is

d(v, U) = inf
w∈U

d(v, w) = inf
w∈U

∥v − w∥.

Remark 5.15 The linear structure implies a very simple but useful fact:

d(v, U) = d(v + w,w + U)

for every v, w ∈ V and U ⊆ V , that is the linear structure implies that

the distance is invariant by translations.

We are interested in the special case when U is a subspace.

Proposition 5.16 The distance between a vector v ∈ V and a subspace

U is given by

d(v, U) = ∥v⊥∥ =

√
G(e1, . . . , ek, v)

G(e1, . . . , ek)
,

where v = v1 + v⊥, v1 ∈ U, v⊥ ∈ U⊥ and e1, . . . , ek is a basis in U .

Proof. First we prove that ∥v⊥∥ = ∥v − v1∥ ≤ ∥v −
u∥, ∀u ∈ U . We have

∥v⊥∥ ≤ ∥v − u∥ ⇔

(v⊥|v⊥) ≤ (v⊥ + v1 − u|v⊥ + v1 − u) ⇔

(v⊥|v⊥) ≤ (v⊥|v⊥) + (v1 − u|v1 − u).
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The second part of the equality, i.e. ∥v⊥∥ =
√

G(e1,...,ek,v)
G(e1,...,ek)

, fol-

lows from the previous remark. □

De�nition 5.17 If e1, . . . , ek are vectors in V the volume of the k- paral-

lelepiped constructed on the vectors e1, . . . , ek is de�ned by Vk(e1, . . . , ek) =√
G(e1, . . . , ek).

We have the following inductive relation

Vk+1(e1, . . . , ek, ek+1) = Vk(e1, . . . , ek)d(ek+1, span{e1, . . . , ek}).

The distance between a vector and a linear manifold

Let L = v0 + VL be a linear manifold, and let v be a vector

in a �nitely dimensional inner product space V . The distance

induced by the norm is invariant by translations, that is, for

all v1, v2 ∈ V one has

d(v1, v2) = d(v1+v0, v1+v0) ⇔ ∥v1−v2∥ = ∥v1+v0−(v2+v0)∥

That means that we have

d(v, L) = inf
w∈L

d(v, w) = inf
vL∈VL

d(v, v0 + vL)

= inf
vL∈VL

d(v − v0, vL)

= d(v − v0, VL).

Finally,

d(v, L) = d(v − v0, VL) =

√
G(e1, . . . , ek, v − v0)

G(e1, . . . , ek)
,
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where e1, . . . , ek is a basis in VL.

Let us consider now the hyperplane H of equation

(v − v0|n) = 0 .

The director subspace is VH = (v|n) = 0 and the distance

d(v,H) = d(v − v0, VH).

One can decompose v − v0 = αn + vH , where vH is the

orthogonal projection of v − v0 on VH and αn is the normal

component of v − v0 with respect to VH . It means that

d(v,H) = ∥αn∥

Then, by taking into account the previous observations about

the tangential and normal part, we compute:

(v − v0|n) = (αn+ vH |n)

= α(n|n) + (vH |n)

= α∥n∥2 + 0

So, we obtained

|(v − v0|n)|
∥n∥

= |α|∥n∥ = ∥αn∥

that is

d(v,H) =
|(v − v0|n)|

∥n∥
In the case that we have an orthonormal basis at hand, the

equation of the hyperplane H is

a1x1 + · · ·+ akxk + b = 0 ,
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so the relation is now

d(v,H) =
|a1v1 + · · ·+ akvk + b|√

a21 + · · ·+ a2k
.

The distance between two linear manifolds

For A and B sets in a metric space, the distance between

them is de�ned as

d(A,B) = inf{d(a, b)|a ∈ A , b ∈ B}.

For two linear manifolds L1 = v1 + V1 and L2 = v2 + V2 it

easily follows:

d(L1, L2) = d(v1 + V1, v2 + V2) = d(v1 − v2, V1 − V2)

= d(v1 − v2, V1 + V2).

This gives us the next proposition.

Proposition 5.18 The distance between the linear manifolds L1 = v1+V1

and L2 = v2 + V2 is equal to the distance between the vector v1 − v2 and

the sum space V1 + V2.

If we choose a basis in V1+V2, let's say e1, . . . , ek, then this

formula follows:

d(L1, L2) =

√
G(e1, . . . , ek, v1 − v2)

G(e1, . . . , ek)
.

Some analytic geometry

In this section we are going to apply distance problems

in Euclidean spaces. Consider the vector space Rn with the
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canonical inner product, that is: for x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ Rn the inner product is given by

(x|y) =
n∑

i=1

xkyk.

Consider D1 , D2 two lines (one dimensional linear mani-

folds), M a point (zero dimensional linear manifold, we assim-

ilate with the vector xM = 0M), P a two dimensional linear

manifold (a plane), andH an n−1 dimensional linear manifold

(hyperplane). The equations of these linear manifolds are:

D1 : x = x1 + sd1,

D2 : x = x2 + td2,

M : x = xM ,

P : x = xP + αv1 + βv2,

respectively

H : (x|n) + b = 0,

where s, t, α, β, b ∈ R. Recall that two linear manifolds are

parallel if the director space of one of them is included in the

director space of the other.

Now we can write down several formulas for distances be-

tween linear manifolds.
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d(M,D1) =

√
G(xM − x1, d1)

G(d1)
;

d(M,P ) =

√
G(xM − xP , v1, v2)

G(v1, v2)
;

d(D1, D2) =

√
G(x1 − x2, d1, d2)

G(d1, d2)
if D1 ∦ D2

d(D1, D2) =

√
G(x1 − x2, d1)

G(d1, )
if D1 ∥ D2

d(M,H) =
|⟨xM , n⟩+ b|

∥n∥

d(D1, P ) =

√
G(x1 − xP , d1, v1, v2)

G(d1, v1, v2)
if D1 ∦ P

Exercises

5.1 Let S be the set of solutions of the following systems and �nd bases

in S and in the orthogonal complement S⊥:

a)


x1 + x2 + 2x3 = 0

2x1 + 2x2 + x3 = 0

x1 + x2 − x3 = 0

.

b)


2x1 + x2 − x3 + x4 = 0

x1 + x2 + 3x3 − x4 = 0

x2 + 7x3 − 3x4 = 0

.

5.2 Let S be the set of solutions of the system
x+ y + t = 0

2x+ y + z − 3v = 0

x− y + 2z − 3t− 6v = 0

.

Find an orthonormal basis in S.
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5.3 Verify that the following sets of vectors {v1, v2} are orthogonal and

complete them to form orthogonal bases of R4:

a) v1 = (1, 0,−2, 1) and v2 = (1, 1, 1, 1).

b) v1 = (1, 0, 2,−1) and v2 = (1, 2, 0, 1).

c) v1 = (1,−2, 2,−3) and v2 = (2,−3, 2, 4).

d) v1 = (1, 1, 1, 2) and v2 = (1, 2, 3,−3).

5.4 If V and W are linear subspaces of the inner product space U then:

a) (V +W )⊥ = V ⊥ ∩W⊥

b) (V ∩W )⊥ = V ⊥ +W⊥.

5.5 Let R4 be the inner product space with the canonical inner prod-

uct. Apply the Gram-Schmidt orthogonalization to construct orthogonal

bases for the subspaces spanned by the following sets of vectors:

a) (1, 2, 2,−1), (1, 1,−5, 3), (3, 2, 8,−7).

b) (1, 1,−1,−2), (5, 8,−2,−3), (3, 9, 3, 8).

5.6 Find an orthonormal basis for the subspace spanned by the vectors

v1 = (1,−1, 1,−1), v2 = (5, 1, 1, 1), v3 = (−3,−3, 1,−3).

5.7 Show that the vectors (1, 0, 1), (1, 1, 0) and (0, 1, 1) form a basis

of R3 and �nd an orthonormal basis of this space, by using the Gram-

Schmidt process.

5.8 For f, g ∈ C[1, e] denote

(f |g) =
∫ e

1

f(x)g(x)(lnx) dx.

a) Prove that this de�nes an inner product in C[1, e].

b) Find the norm of f(x) = x.

c) Find the polynomials of degree 1 which are orthogonal on the

constant functions.

5.9 Let p, q ∈ R2[X], p = a1X
2+ b1X+ c1, q = a2X

2+ b2X+ c2. De�ne

(p|q) = a1a2 + b1b2 + c1c2.
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a) Prove that this de�nes an inner product in R2[X].

b) Let p1 = 3X2 + 2X + 1, p2 = −X2 + 2X + 1, p3 = 3X2 + 2X + 5,

p4 = 3X2 +5X +2. Find p ∈ R2[X] which is equidistant with respect to

p1, p2, p3 and p4. Find also the common distance.

5.10 Prove Pythagoras' Theorem: If V is an inner product space and

x, y ∈ V are orthogonal, then

∥x+ y∥2 = ∥x∥2 + ∥y∥2.

5.11 Let a subspace L = span {(2, 1, 0, 1), (0, 2, 1,−1), (2,−1,−1, 2)} ⊂
R4 and a linear manifold K = {(x, y, z, t) ∈ R4|x− y+ z+ t = 1, x+ t =

4, x + y − 2z = 0}. If K = u0 + VK , �nd: a) bases and dimensions for

the subspaces L, VK and L+ VK ; b) d(L,K); c) (L+ VK)
⊥.

5.12 Let a linear manifold L = {(x, y, z, t) ∈ R4|3x−y+z+t = 5,−y+

t = 1} and U = span {(2, 1, 1, 0), (1, 0, 0,−1), (1, 2, 1, 0), (1, 1, 1, 1)} ⊂
R4. If L = v0+VL, where VL is the director subspace of L, �nd: a) bases

and dimensions for the subspaces U , VL, U + VL and U ∩ VL; b) d(L,U);

c) (VL)
⊥.

5.13 Let the sests S1 = {(x, y, z, t) ∈ R4 | 3x+ y − z + t = 2} and

S2 = span {(1, 0, 1, 0), (0,−1, 0,−1), (1,−2, 1,−2), (1, 1,−1, 0)}.
Find bases and dimensions for the subspaces related to the given sets of

vectors and for the union and intersection of these subspaces.

5.14 Let V = span {(1, 0, 0,−1), (2, 1, 1, 0), (1, 2, 1, 0), (0, 2, 1, 1)} and

L = {(x, y, z, t) ∈ R4 | x+ y − 2z + t = 2,−y + 3t = 0, z − t = 1}.
If L = u0 + VL, �nd: a) d(V, L); b) V

⊥
L .

Solutions
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5.1 a) The system has the determinant zero, and since

∣∣∣∣∣1 2

2 1

∣∣∣∣∣ ̸=
0, we choose x2, x3 the primary unknowns and x1 = α the

secondary unknown. We get x2 = −α, x3 = 0 so S =

{(α,−α, 0) | α ∈ R} with {(1,−1, 0)} a basis. The orthogo-

nal complement is S⊥ = {(a, b, c) | (a, b, c)⊥(1,−1, 0)}. We

obtain a− b = 0, so S = {(a, a, c) | a, c ∈ R} = {a(1, 1, 0) +
c(0, 0, 1) | a, c ∈ R}. A basis in S⊥ is {(1, 1, 0), (0, 0, 1)}.
b) A basis in S is, for example {(4,−7, 1, 0), (−2, 3, 0, 1)} and

a basis in S⊥ is {(1, 0,−4, 2), (0, 1, 7,−3)}.

5.2 The solution set of the system is S = {(−α+β+3γ, α−
2β − 3γ, α, β, γ) | α, β ∈ R}, with a basis {v1, v2, v3}, where
v1 = (−1, 1, 1, 0, 0), v2 = (1,−2, 0, 1, 0), v3 = (3,−3, 0, 0, 1).

To get an orthonormal basis we use the Gram-Schmidt proce-

dure. First, x1 = v1. Then x2 = v2 − c1x1 = (0,−1, 1, 1, 0)

(c1 =
(v2|x1)
(x1|x1)

= −1). Finally, x3 = v3 − c1x1 − c2x2 =

(1, 0, 1,−1, 1). This basis is orthogonal, in order to get an or-

thonormal one, we divide each vector to its own norm: x′1 =
1√
3
(−1, 1, 1, 0, 0), x′2 =

1√
3
(0,−1, 1, 1, 0) and x′3 =

1

2
(1, 0, 1,−1, 1).

5.3 a) Is clear that (v1|v2) = 0. We need two more vec-

tors to form a basis. Let v = (a, b, c, d). From (v1|v) = 0

and (v2|v) = 0 we have

{
a− 2c+ d = 0

a+ b+ c+ d = 0
so a = 2c − d,

b = −3c. Choosing c = 0, d = 1 we get v3 = (−1, 0, 0, 1).

Now v4 has to be orthogonal also on v3, that gives c = d.
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Choosing c = d = 1 we have v4 = (1,−3, 1, 1). Obviously, the

solution is not unique.

b) For example, they may be completed by adjoining the vec-

tors v3 = (1,−1, 0, 1) and v4 = (−1, 0, 1, 1).

c) v3 = (2, 2, 1, 0) and v4 = (5,−2,−6,−1).

d) v3 = (1,−2, 1, 0) and v4 = (25, 4,−17,−6).

5.4 a) Let x ∈ (V +W )⊥. Then, for any v ∈ V and w ∈ W ,

(x|v + w) = 0. Taking w = 0 follows that (x|v) = 0, for any

v ∈ V , that is x ∈ V ⊥. Taking v = 0 follows x ∈ W⊥. So

(V + W )⊥ ⊂ V ⊥ ∩ W⊥. Conversely, let x ∈ V ⊥ ∩ W⊥. Let

y = v + w ∈ V + W . Then (x|y) = (x|v) + (x|w) = 0 so

x ∈ (V +W )⊥. b) In the relation (a) we replace V by V ⊥ and

W by W⊥. We get (V ⊥ + W⊥)⊥ = (V ⊥)⊥ ∩ (W⊥)⊥ that is

(V ⊥ +W⊥)⊥ = V ∩W and further V ⊥ +W⊥ = (V ∩W )⊥.

5.5 a) (1, 2, 2,−1), (2, 3,−3, 2), (2,−1,−1,−2).

b) (1, 1,−1,−2), (2, 5, 1, 3).

5.6 A basis of the generated subspace is v1, v2. Applying

the orthogonalisation, we obtain the orthogonal basis u1 =

(1,−1, 1,−1) and u2 = (4, 2, 0, 2). An orthonormal basis is

w1, w2, where w1 = u1/ ∥u1∥ = 1/2(1,−1, 1,−1) and w2 =

u2/ ∥u2∥ = 1/
√
6(2, 1, 0, 1).

5.7 An orthonormal basis is formed by the three vectors

1/
√
2(1, 0, 1), 1/

√
6(1, 2,−1) and 1/

√
3(−1, 1, 1).

5.8 b) ∥f∥ =
1

3

√
2e3 + 1. c) p(x) = a

(
x− e2 + 1

4

)
, a ∈

R.
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5.9 b) p = X2 + 3X + 3. The common distance is 3.

5.11 a) A basis of L is {(2, 1, 0, 1), (0, 2, 1,−1)}, then dimL =

2. K = u0 + VK , a basis of VK is {(1, 1, 1,−1)}, dimVK = 1

and u0 = (4, 10, 7, 0) ∈ K. Also, dim(L+ VK) = 3.

5.12 a) A basis of U is {(2, 1, 1, 0), (1, 0, 0,−1), (1, 2, 1, 0)}
and a basis for the director subspace of L is, for example,

{(1, 0,−3, 0), (0, 1, 0, 1)}, with v0 = (0, 0, 4, 1). Also, dim(U+

VL) = 4 and dim(U ∩ VL) = 1. b) d(L,U) = 0.

5.13 A basis for the director subspace of S1 is, for example,

{(1, 0, 3, 0), (0, 1, 1, 0), (0, 0, 1, 1)} and a basis of S2 is

{(1, 0, 1, 0), (0,−1, 0,−1), (1, 1,−1, 0)}. The dimension of the

union is 4 and the dimension of the intersection is 2.

5.14 a) If L = u0 + VL, a basis of VL is, for example,

{(−2, 3, 1, 1)} and u0 = (4, 0, 0, 0). A basis of V is given

by {(1, 0, 0,−1), (2, 1, 1, 0), (1, 2, 1, 0)}. Then, d(V, L) = 0.



CHAPTER 6

Linear transformations

6.1 Linear transformations

Mappings between two vector spaces are, in many respects,

more interesting than vector spaces themselves. This applies

especially to linear transformations ( [3], [4], [5], [9], [10]).

Let V,W be two vector spaces over the same �eld K. Then

a mapping T : V −→ W is called a linear transformation from

V to W if it satis�es the following conditions:

(1) T (x+ y) = T (x) + T (y), ∀x, y ∈ V

(2) T (kx) = kT (x), ∀k ∈ K, x ∈ V.

An immediate consequence of (2) is that the zero vector of V

is mapped by every linear transformation into the zero vector

of W , that is T (0) = 0.
Sometimes we shall write T x instead of T (x).

Example 6.1.1 1) T : R2 −→ R3, T (x1, x2) = (2x1,−x2, x1 + x2)

de�nes a linear transformation from R2 to R3.

85
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2) D : K[X] −→ K[X], D(p) = p′ ∀p ∈ K[X] is a linear transforma-

tion, the well-known derivation of polynomials.

It is not di�cult to verify that T : V −→ W is linear if and only if

for any given integer r ≥ 2 we have

T (k1x1 + · · ·+ krxr) = k1T (x1) + · · ·+ krT (xr) ∀xi ∈ V, ∀ki ∈ K

An important consequence of this property is expressed in the
following theorem:

Theorem 6.1 A linear transformation T : Vn −→ W is uniquely deter-

mined by the images T (b1), . . . , T (bn) of a basis {b1, . . . , bn} of Vn.

Proof. Each vector x ∈ Vn can be expressed uniquely in the

form x = k1b1+ · · ·+knbn, ki ∈ K. Then T x = T (k1b1+ · · ·+
knbn) = k1T b1+ · · ·+kT bn, hence T x is uniquely determined.

□

For a linear transformation T : V −→ W denote

Ker(T ) = {x ∈ V | T x = 0}, Im(T ) = {T x | x ∈ V }.

Ker(T ) is called the kernel of T and Im(T ) the range of

T .

Theorem 6.2 Ker(T ) is a linear subspace of V . Im(T ) is a linear

subspace of W .

The (easy) proof is left to the reader.

Suppose that dimV = n; it can be shown that

dimKer(T ) + dimIm(T ) = n.



87

De�nition 6.3 A linear transformation T : V −→ W is called an iso-

morphism if it is both one-to-one and onto W . V and W are called

isomorphic.

The concept of isomorphism is of importance since any two

isomorphic vector spaces have identical structure in the sense

that any algebraic statement that is true for one space will

necessarily be true for the other.
The next theorem is fundamental:

Theorem 6.4 Two �nite dimensional vector spaces over the same �eld

are isomorphic if and only if they have the same dimension.

We omit the proof but we mention the following obvious

Corollary 6.5 Any vector space V over K and of dimension n is isomor-

phic to Kn.

The reader may question why, in view of this result, we do not

restrict our attention to the vector spaces Kn since these ex-

hibit all the algebraic properties of abstract �nite-dimensional

vector spaces. The answer is that to do so would lead to unnec-

essary complications, in exactly the same way as in elementary

vector analysis it is simpler to work with vectors as such, rather

than to reduce every vector to a set of components.

Finally, denote by L(V,W ) the set of all linear transforma-

tions from V to W . In L(V,W ) we de�ne addition and scalar

multiplication by

(T + S)(x) = T x+ Sx
(kT )(x) = kT x

∀x ∈ V, k ∈ K.
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It is very easy to verify that, with these operations, L(V,W )

forms a vector space over K.

Moreover, let V,W,U be three linear spaces over the same

�eld K and let T ∈ L(V,W ), S ∈ L(W,U). Consider the

composition S ◦ T : V −→ U (called also the product and

denoted simply by ST ). Then ST ∈ L(V, U); we leave the

proof to the reader.

The elements of L(V, V ) are called the endomorphisms of

the linear space V . Instead of L(V, V ) we shall write simply

L(V ).

Denote by I the identity transformation of V , that is Ix =

x, ∀x ∈ V . For T ∈ L(V ) let T 0 = I, T 1 = T , T 2 =

T T , . . . .

6.2 The matrix of a linear transformation

Let U, V be vector spaces over the same �eldK and let {u1, . . . , um},
{v1, . . . , vn} be bases of U, V respectively. If T ∈ L(U, V ) then

T vj ∈ U and so we may write

T vj =
m∑
i=1

tijui, tij ∈ K (6.1)

The scalars (t1j, . . . , tmj) are, for each j, the coordinates of T vj

relative to the given basis of U , and so are uniquely determined

by T .

Conversely, if we are given any set {tij|i = 1, . . . ,m; j =

1, . . . , n} of scalars, and bases {u1, . . . , um}, {v1, . . . , vn} of U
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and V , then equation (6.1) determines a unique linear trans-

formation T ∈ L(V, U) (see Th.6.1, Section 5.1).

Write T for the matrix (tij)i=1,...,m;j=1,...,n. Then T ∈ Mm,n(K)

will be called the matrix of T , or the matrix representing T ,

relative to the given bases of U and V . The columns of T are

formed with the coordinates of T v1, . . . , T vn relative to the

basis {u1, . . . , um}.
Since the de�nition of the scalars tij by (5.1) depends upon

the arbitrarily chosen bases of U and V , many di�erent matri-

ces represent the same linear transformation.

Let (x1, . . . , xn) be the coordinates of x ∈ V relative to

the basis {v1, . . . , vn}. Let (y1, . . . , ym) be the coordinates of

T x ∈ U relative to the basis {u1, . . . , um}. Denote

X =

 x1
...

xn

 , Y =

 y1
...

ym


Theorem 6.6 The coordinates of x and the coordinates of T x are con-

nected by the equation

Y = TX. (6.2)

Proof. We have x =
n∑

j=1

xjvj and T x =
m∑
i=1

yiui. On the

other hand, T x = T (
n∑

i=1

xjvj) =
n∑

j=1

xjT vj =
n∑

j=1

xj
m∑
i=1

tijui =

m∑
i=1

(
n∑

i=1

tijxj)ui.

Since the representation of the vector T x as a linear combi-

nation of the elements of the basis {u1, . . . , um} is unique, we
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may equate the coe�cients of ui, i = 1, . . . ,m and so obtain

yi =
n∑

j=1

tijxj , i = 1, . . . ,m.

This system is equivalent to (6.2). □

When U = V , to obtain a matrix representation of T ∈
L(V, V ) it is only necessary to choose one basis {v1, . . . , vn}
of V . In this case the theorem must be modi�ed by writing vi

for ui throughout the statement and proof.

We now interpret, in the language of matrices, the opera-

tions on linear transformations de�ned in Section 5.1.

Theorem 6.7 Let U, V,W be three vector spaces over the same �eld

K, of dimensions m,n, p respectively, and let {u1, . . . , um}, {v1, . . . , vn},
{w1, . . . , wp} be bases of U, V,W . Then, relative to these bases:

1) The zero linear transformation 0 ∈ L(V, U) is represented by the

zero matrix 0 ∈ Mm,n(K).

2) The identity transformation I ∈ L(V, V ) is represented by the unit

matrix I ∈ Mn,n(K).

3) If T ∈ L(V, U) is represented by the matrix T ∈ Mm,n(K), then

for all k ∈ K the transformation kT is represented by the matrix

kT .

4) If T ,S ∈ L(V, U) are represented by the matrices T, S ∈ Mm,n(K)

respectively, then T + S is represented by the matrix T + S.

5) If T ∈ L(V, U) and S ∈ L(U,W ) are represented by T ∈ Mm,n(K)

and S ∈ Mp,m respectively, then ST is represented by ST .

6) If T ∈ L(V, V ) is non-singular and is represented by the matrix

T ∈ Mm,n(K), then the inverse transformation T −1 is represented

by the inverse matrix T−1.
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Proof. All the statements follow immediately from the de�-

nitions, and we omit the details. We need also the following

result:

Let T ∈ L(V ) be represented by the matrix T relative to

the basis B = {b1, . . . , bn} of V , and by a matrix T ′ relative

to the basis B′ = {b′1, . . . , b′n} of V . Let C be the transition

matrix from B to B′. Then T ′ = C−1TC. □

6.3 Invariant subspaces. Eigenvalues and eigen-

vectors

We now begin a more detailed study of linear transformations.
Throughout the remainder of this chapter we shall be con-
cerned only with linear transformations of a vector space V
into itself, that is, with endomorphisms of V .

De�nition 6.8 Let T ∈ L(V ) and W be a subspace of V with the prop-

erty that T (W ) ⊂ W . Then T is called an invariant subspace of V under

the endomorphism T , or - more brie�y - W is said to be T -invariant.

Example 6.3.1 1) The improper subspaces V and {0} are invariant

under every endomorphism of V . Every subspace of V is invariant

under both the identity and zero transformations.

2) Kn[X] is an invariant subspace of K[X] under the endomorphism

D described in Example 5.1.1.

3) T i⃗ = j⃗, T j⃗ = −⃗i de�ne an endomorphism of the space V = {a⃗i +
b⃗j | a, b ∈ R}. It can be shown that V has no proper invariant

subspaces under T . (Exercise!)



92

De�nition 6.9 Let T ∈ L(V ). A scalar λ ∈ K is called an eigenvalue

(or proper value) of T if there exists a non-zero vector x ∈ V such that

T x = λx. The vector x is called an eigenvector (or proper vector) of T .

Let λ be an eigenvalue of T . Denote E(λ) = {x ∈ V | T x =

λx}. Clearly E(λ) consists of all the eigenvectors of T corre-

sponding to λ, together with the vector zero.

It is easy to verify that E(λ) is a linear subspace of V and,

moreover, it is T -invariant. (Exercise!) It will be called the

proper subspace of T corresponding to the eigenvalue λ.

Let now Vn be an n-dimensional linear space over K and

let B = {b1, . . . , bn} be a basis of Vn. Let λ ∈ K be an

eigenvalue and let x = x1b1 + · · · + xnbn be an eigenvector of

T corresponding to λ. Hence we have T x = λx and x ̸= 0.

Denote

X =

 x1
...

xn


Then (T −λI)(x) = 0, which is equivalent to (T −λI)X = 0,

where T is the matrix of T relative to the basis B (see Section

5.2).

The equation (T − λI)X = 0 may be written in the form
t11 − λ t12 . . . t1n

t21 t22 − λ . . . t2n

. . .

tn1 tn2 . . . tnn − λ




x1

x2
...

xn

 =


0

0
...

0

 (6.3)

This is a linear homogeneous system. Since x ̸= 0, it has
non-trivial solutions, that is det(T − λI) = 0. Let us denote
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P (λ) = det(T − λI); remark that P (λ) is a polynomial of
degree n.

Theorem 6.10 P (λ) does not depend on the choice of the basis B.

Proof. Let B′ be another basis of Vn and let T ′ be the matrix

of T relative to B′. Let C be the transition matrix from B

to B′. Then T ′ = C−1TC; see Section 5.2. We have to prove

that det(T ′ − λI) = det(T − λI) for all λ ∈ K. Indeed,

det(T ′ − λI) =det(C−1TC − C−1(λI)C) = det(C−1(T − λI)C) =

= detC−1 · det(T − λI) · detC =

= (detC)−1 det(T − λI) detC = det(T − λI),

so the theorem is proved. □

Since the polynomial P (λ) is independent of the choice of

the basis B, it will be called the characteristic polynomial of

T . If a matrix T represents T with respect to some basis,

P (λ) will be also called the caracteristic polynomial of T , and

we have simply P (λ) = det(T − λI).

Returning to the eigenvalues of T , we see that they are

exactly the roots in K of the characteristic polynomial of T .

There exist n roots, real or complex. If K = C, all of them
are eigenvalues; if K = R, only the real roots (if there exist

real roots!) are eigenvalues of T .

Now suppose that λ is an eigenvalue of T . Then (6.3) has

non-trivial solutions. Every such non-trivial solution gives us

an eigenvector x by means of the formula x = x1b1+· · ·+xnbn.
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6.4 The Cayley-Hamilton Theorem

Let P ∈ K[X] be an arbitrary polynomial, P (X) = amX
m +

· · · + a1X + a0, ai ∈ K. For a matrix A ∈ Mn,n(K) let

us denote P (A) = amA
m + · · · + a1A + a0I. The Cayley-

Hamilton Theorem asserts that if P (λ) = det(T − λI) is

the characteristic polynomial of a matrix T ∈ Mn,n(K), then

P (T ) = 0.
We shall use this result in order to prove

Theorem 6.11 Let A ∈ Mn,n(K). Then for each p ≥ n, Ap can be

expressed as a linear combination of I, A,A2, . . . , An−1.

Proof. Let P (λ) = det(A − λI) be the characteristic poly-

nomial of the matrix A. By virtue of the Cayley-Hamilton

Theorem, we have P (A) = 0.

Clearly P (λ) = (−1)nλn + kn−1λ
n−1 + · · ·+ k1λ+ k0, with

ki ∈ K. Hence

(−1)nAn + kn−1A
n−1 + · · ·+ k1A+ k0I = 0.

It follows that

An = cn−1A
n−1 + · · ·+ c1A+ c0I, ci ∈ K. (6.4)

Thus An is a linear combination of I, A,A2, . . . , An−1.

From (6.4)we deduce

An+1 = cn−1A
n + cn−2A

n−1 + · · ·+ c1A
2 + c0A (6.5)

If we substitute An taking into account (6.4), we obtain An+1

as a linear combination of I, A, . . . , An−1. By repeating this
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argument we �nish the proof. □

6.5 The diagonal form

Let V be a linear space over K.

Theorem 6.12 Let T ∈ L(V ) and let x1, . . . , xn be eigenvectors of T
associated with mutually distinct eigenvalues λ1, . . . , λn. Then the vectors

x1, . . . , xn are linearly independent.

Proof. Suppose that

(1) {x1, . . . , xn} is a linearly dependent set

Then there exist k1, . . . , kn ∈ K, not all zero, such that

(2) k1x1 + · · ·+ knxn = 0.

Renumbering the variables if necessary, we may suppose

that

(3) k1 ̸= 0.

From (2) we obtain k1T x1 + · · · + knT xn = 0. Since

T xi = λixi, it follows that

(4) k1λ1x1 + · · ·+ knλnxn = 0

Now (2) and (4) imply

(5) k2(λ2 − λ1)x2 + · · ·+ kn(λn − λ1)xn = 0.

We claim that {x2, . . . , xn} must be linearly dependent.

Indeed, if we suppose that they are linearly independent,

then k2 = · · · = kn = 0 since λi − λ1 ̸= 0, i = 2, . . . , n.

But (2) implies k1x1 = 0. Since x1 is an eigenvector, it is
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non-zero. Hence k1 = 0, which contradicts (3).

Thus (1) implies:

(6) {x2, . . . , xn} is a linearly dependent set.

Now we repeat the same arguments and conclude that (6)

implies:

(7) {x3, . . . , xn} is a linearly dependent set.

In this manner we deduce �nally that {xn} is a linearly depen-
dent set. On the other hand,the same set is linearly indepen-
dent, since xn ̸= 0 as an eigenvector. This contradiction shows
that (1) is false and the theorem is proved. □

Theorem 6.13 Let T be an endomorphism of a linear space Vn of �nite

dimension n ≥ 1 over K. Suppose that the characteristic polynomial

P (λ) of T has n simple roots λ1, . . . , λn in the �eld K. Then there exists

a basis of Vn relative to which the matrix of T is
λ1 0 0 . . . 0

0 λ2 0 . . . 0

. . .

0 0 0 . . . λn


Proof. Since the roots λ1, . . . , λn are in K, they are eigen-
values of T . For each i choose an eigenvector xi of T corre-
sponding to the eigenvalue λi. By hypothesis λ1, . . . , λn are
mutually distinct. Theorem 6.12 shows that x1, . . . , xn are lin-
early independent. Since dimVn = n, {x1, . . . , xn} is a basis.
We have T xi = λixi, i = 1, . . . , n, hence the matrix of T with
respect to this basis is the diagonal matrix of the theorem. □
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Corollary 6.14 Let T ∈ Mn,n(K). Suppose that the characteristic poly-

nomial of T has n simple roots in K. Then there exists a matrix C ∈
Mn,n(K) such that

C−1TC =


λ1 0 0 . . . 0

0 λ2 0 . . . 0

. . .

0 0 0 . . . λn

 ,

λ1, . . . , λn being the roots.

Proof. Let B be the canonical basis of Kn. Let T ∈ L(Kn)

be the endomorphism which has the matrix T relative to the

basis B. Theorem 6.13 shows that there exists a basis B′ of

Kn relative to which the matrix of T is

T ′ =


λ1 0 0 . . . 0

0 λ2 0 . . . 0

. . .

0 0 0 . . . λn


Let C be the transition matrix from B to B′. We know that

T ′ = C−1TC and the proof is complete. □

We shall denote

diag(λ1, . . . , λn) =


λ1 0 0 . . . 0

0 λ2 0 . . . 0

. . .

0 0 0 . . . λn


The algebra of matrices applies especially smoothly to diagonal

matrices: to add or multiply any two diagonal matrices, one

simply adds or multiplies corresponding diagonal entries.
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For instance, let T be as in the above corollary. Then

it is easy to compute T p for any p ≥ 1. Indeed, let T ′ =

diag(λ1, . . . , λn). Then C−1TC = T ′, that is T = CT ′C−1.

We have

T p = (CT ′C−1) · (CT ′C−1) · · · · · (CT ′C−1) = C(T ′)pC−1

But (T ′)p = diag(λp
1, . . . , λ

p
n) and hence

T p = C · diag(λp
1, . . . , λ

p
n) · C−1.

6.6 Reduction to diagonal form

We want to characterize the endomorphisms that can be "di-

agonalized", that is, for which there exists a basis relative to

which the matrix is a diagonal one.

Let Vn be a linear space of �nite dimension n ≥ 1 over the

�eld K. Let T ∈ L(Vn) and let λ0 be an eigenvalue of T . We

know that λ0 is a root in K of the characteristic polynomial

of T . Denote by m(λ0) the multiplicity of λ0 as a root of this

polynomial.

Consider also the proper subspace corresponding to λ0:

E(λ0) = {x ∈ Vn | T x = λ0x}.

Let B = {b1, . . . , bn} be an arbitrary basis of Vn and let T be
the matrix of T relative to this basis.

Theorem 6.15 dimE(λ0) = n− rank(T − λ0I) ≤ m(λ0)
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Proof. Let x ∈ Vn, x = x1b1 + · · ·+ xnbn. As usual, denote

X =

 x1
...

xn


Then the following statements are equivalent:

(1) x ∈ E(λ0)

(2) (T − λ0I)(x) = 0

(3) (T − λ0I) ·X = 0

We conclude that E(λ0) can be identi�ed with the set of the

solutions of the linear homogeneous system
t11 − λ0 t12 . . . t1n

t21 t22 − λ0 . . . t2n

. . .

tn1 tn2 . . . tnn − λ0




x1

x2
...

xn

 =


0

0
...

0


But this set is a linear subspace of Kn of dimension n −
rank(T − λ0I). Thus dimE(λ0) = n − rank(T − λ0I), and

the �rst statement of the theorem is proved.

Now denote q = dimE(λ0) and let {v1, . . . , vq) be a ba-

sis of E(λ0). Let us complete it in order to obtain a basis

{v1, . . . , vq, vq+1, . . . , vn} of Vn.

We have T vj = λ0vj, j = 1, . . . , q and T vj = t1jv1 + · · ·+
tnjvn, j = q + 1, . . . , n, tij ∈ K.
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Hence the matrix T ′ of T relative to the basis {v1, . . . , vn}
is

T ′ =



λ0 0 . . . 0 t1,q+1 . . . t1n

0 λ0 . . . 0 t2,q+1 . . . t2n

. . . . . .

0 0 . . . λ0 tq,q+1 . . . tqn

0 0 . . . 0 tq+1,q+1 . . . tq+1,n

. . . . . .

0 0 . . . 0 tn,q+1 . . . tn,n


The characteristic polynomial of T is P (λ) = det(T ′−λI). If

we take account of the form of T ′ we conclude that P (λ) is of

the form P (λ) = (λ0−λ)q ·Q(λ), where Q(λ) is a polynomial.

Now it is clear that the multiplicity of λ0 as a root of P (λ) is

at least q, that is m(λ0) ≥ q.
Thus n−rank(T−λ0I) ≤ m(λ0) and the theorem is proved.

□

De�nition 6.16 Let T be an endomorphism of a vector space Vn of �nite

dimension n over K. The endomorphism T is said to be diagonalizable if

there exists a basis of Vn consisting of eigenvectors of T , in other words

a basis relative to which the matrix of T is diagonal.

Theorem 6.13, Section 5.5 gives a su�cient condition for this

to be the case: namely that the roots of the characteristic

polynomial of T all lie inK and are all distinct. But it is easily

seen that this condition is not necessary: a trivial example is

the identity endomorphism whose matrix with respect to any

basis of Vn is diagonal, but whose characteristic polynomial,
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namely (1− λ)n has no simple roots (assuming that n > 1).

6.7 The Jordan canonical form

Let T ∈ L(Vn); suppose that all the roots of the characteristic

polynomial are in K. Let λ be such a root, i.e., an eigenvalue of

T . Letm be the algebraic multiplicity of λ, and q = dimE(λ).

Then m ≥ q ≥ 1.

It is possible to �nd q eigenvectors in E(λ) and m− q prin-

cipal vectors, all of them linearly independent; an eigenvector

v and the principal vectors u1, . . . , ur(r ≥ 0) corresponding to

it satisfy:

T v = λv; T u1 = λu1+v; T u2 = λu2+u1; . . . ; T ur = λur+ur−1.

All these eigenvectors and principal vectors, associated to all

the eigenvalues of T , form a basis of Vn, called a Jordan ba-

sis with respect to T . The matrix of T relative to a Jordan

basis is called a Jordan matrix of T . Such a matrix has the

form


J1

J2

. . .

Jp

, where J1, . . . , Jp are called Jordan cells.

Each cell represents the contribution of an eigenvector v and

the corresponding principal vectors
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u1, . . . , ur :



λ 1

λ 1

λ 1
... 1
...

λ


∈ Mr+1(K).

We see that: the Jordan matrix is a diagonal matrix ⇐⇒
there are no principal vectors ⇐⇒ m(λ) = dimE(λ) for each

eigenvalue λ.

Let T be the matrix of T with respect to a given basis B,

and J the Jordan matrix with respect to a Jordan basis B′. Let

C be the transition matrix from B to B′. Then J = C−1TC,

hence T = CJC−1. It follows that T n = CJnC−1.

The exponential of the matrix T is de�ned by

eT = I +
1

1!
T +

1

2!
T 2 + · · ·+ 1

n!
T n + . . . .

Example 6.7.1 1. Let T ∈ L(R3) have the matrix

T =

 0 1 0

0 0 1

2 −5 4


with respect to the canonical basis.

We �nd λ1 = 2, m(λ1) = 1,

E(λ1) =
{
α

 1

2

4

 ∣∣∣ α ∈ R
}
, hence q(λ1) = 1.
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λ2 = 1, m(λ2) = 2,

E(λ2) =
{
α

 1

1

1

 ∣∣∣ α ∈ R
}
, hence q(λ2) = 1.

So v1 =

 1

2

4

 , v2 =

 1

1

1

; the principal vector u1 associated

with v2 satis�es Tu1 = u1 + v2. Let u1 =

x

y

z

; then

−1 1 0

0 −1 1

2 −5 3


x

y

z

 =

 1

1

1

 .

We get x = y − 1, z = y + 1, y ∈ R. Choosing y = 1, we obtain

u1 =

 0

1

2

 .

The Jordan basis is B = {v1, v2, u1}.
Since

T v1 = 2v1 + 0v2 + 0u1

T v2 = 0v1 + v2 + 0u1

T u1 = 0v1 + v2 + u1,

the Jordan matrix will be

J =

 2 0 0

0 1 1

0 0 1

 .
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The transition matrix from the canonical basis to the Jordan basis

is

C =

 1 1 0

2 1 1

4 1 2

 .

We have J = C−1TC, T = CJC−1, T n = CJnC−1, Jn =

 2n 0 0

0 1 n

0 0 1

 .

2. T =

 0 0 0

−1 0 0

−2 −3 −1


In this case λ1 = −1, m(λ1) = q(λ1) = 1, λ2 = 0, m(λ2) =

2, q(λ2) = 1.

v1 =

 0

0

1

 , v2 =

 0

1

−3

 , u1 =

−1

1

2

 .

The Jordan matrix is

J =

−1 0 0

0 0 1

0 0 0

 .

3. T =

 1 1 0

−4 −2 1

4 1 −2

 .

We �nd λ1 = −1, m(λ1) = 3, q(λ1) = 1.

v1 =

 1

−2

2

 . The principal vectors u1 and u2 associated with v1

satisfy

Tu1 = −u1 + v1

Tu2 = −u2 + u1.
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We obtain u1 =

 0

1

−1

 , u2 =

 0

0

1

 .

The Jordan basis is {v1, u1, u2} and the Jordan matrix is

J =

−1 1 0

0 −1 1

0 0 −1

 .

6.8 Matrix functions

Let T ∈ L(Vn). Consider T the matrix of T with respect to

the basis B, and J the Jordan matrix corresponding to the

Jordan basis B′. Let C the transition matrix from the basis

B to the basis B′.

Remark: The transition matrix from the canonical basis to a

Jordan considered basis will contain the vectors of the Jordan

basis on the columns in the order given in the basis.

Then we have J = C−1TC , which results T = CJC−1.

Theorem 6.17 In the above hypotheses, we have

T n = CJnC−1.

Proof. T n = (CJC−1)(CJC−1) · · · (CJC−1) = CJnC−1. □

Consider now, f : D ⊂ R → R an analytical real function

which has the Taylor expansion (Mac-Laurin for x0 = 0):

f(x) =
∑
k≥0

f (k)(x0)

k!
(x− x0)

k
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We assume as known, the theoretical aspects related to power

series (studied at Calculus). In fact, a Taylor series is an in-

�nite polynomial. After the de�nition of a polynomial related

to a matrix, we will de�ne further, a matrix function like:

f(A) =
∑
k≥0

f (k)(x0)

k!
(A− x0I)

k

where f is an analytical function, A ∈ Mn(R) and I is the

unit matrix of order n.

Example 6.8.1 Mac-Laurin series expansions of some elementary func-

tions, will become for a matrix A ∈ Mn(R), as follows:

eA = I +
1

1!
A+

1

2!
A2 + · · ·+ 1

k!
Ak + · · · =

∑
k≥0

1

k!
Ak

cosA = I − A2

2!
+

A4

4!
− A6

6!
+ · · ·+ (−1)k

(2k)!
A2k + · · · =

∑
k≥0

(−1)k

(2k)!
A2k

sinA = A− A3

3!
+

A5

5!
+ · · ·+ (−1)k

(2k + 1)!
A2k+1 + · · · =

∑
k≥0

(−1)k

(2k + 1)!
A2k+1

Matrix functions for a diagonalizable matrix

Let A be tha matrix of a linear map T ∈ L(Vn). If A is

diagonalizabe, then exists a basis formed by eigenvectors in

Vn, for which is obtained the diagonal matrix of T , denoted

D = diag(λ1, . . . , λn).

D =


λ1 0 0 . . . 0

0 λ2 0 . . . 0

. . .

0 0 0 . . . λn


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Obvious, we have A = CDC−1.

Theorem 6.18 Let T being a matrix of the linear map T ∈ L(Vn) and

J a Jordan matrix corresponding to it. Then:

f(T ) = Cf(J)C−1.

Proof. Consider the general Taylor series expansion of the

form

f(x) =
∑
k≥0

akx
k.

Then

f(T ) =
∑
k≥0

akT
k =

∑
k≥0

ak(CJkC−1) = C

(∑
k≥0

akJ
k

)
C−1 =

= Cf(J)C−1. □

From Theorem 6.18, for a diagonalizable matrix A, with the

diagonal matrix D, we have

f(A) = Cf(D)C−1

where

f(D) =
∑
k≥0

akD
k =

∑
k≥0

ak


λk
1 0 0 . . . 0

0 λk
2 0 . . . 0

. . .

0 0 0 . . . λk
n


Then, for the diagonal matrix D, we consider the next result:
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Theorem 6.19

f(D) =


f(λ1) 0 0 . . . 0

0 f(λ2) 0 . . . 0

. . .

0 0 0 . . . f(λn)


where λ1, λ2, . . . , λn are the eigenvalues corresponding to the endomor-

phism T .

Matrix function for Jordan cells

Let T ∈ L(Vn) having a given Jordan matrix. Consider a

third order Jordan cell (block) of this Jordan matrix, of the

form:

J =

λ 1 0

0 λ 1

0 0 λ

 .

This matrix could be written in the equivalent form:

J = λI +N

where

N =

0 1 0

0 0 1

0 0 0

 .

N is a nilpotent matrix.

N 2 =

0 0 1

0 0 0

0 0 0

 ; Nk =

0 0 0

0 0 0

0 0 0

, ∀k ≥ 3.
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If for an analytical function f we have the Taylor expansion

in the vicinity of λ:

f(x) =
∑
k≥0

f (k)(λ)

k!
(x− λ)k

then

f(J) =
∑
k≥0

f (k)(λ)

k!
(J − λI)k =

∑
k≥0

f (k)(λ)

k!
Nk =

=
f(λ)

0!
I +

f (′)(λ)

1!
N +

f (′′)(λ)

2!
N 2

Finally,

f(J) =

f(λ) f ′(λ) f ′′(λ)
2!

0 f(λ) f ′(λ)

0 0 f(λ)


Generalization

Consider a Jordan cell of order r + 1 for the eigenvalue λ

with m(λ) = r + 1 and v the corresponding eigenvector with

u1, u2, . . . , ur principal vectors (associated to it), such that:

Jλ =


λ 1 0 . . . 0

0 λ 1 . . . 0

. . .

0 0 0 . . . 1

0 0 0 . . . λ

 ∈ Mr+1(R)
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then

f(Jλ) =



f(λ)
0!

f ′(λ)
1!

f ′′(λ)
2! . . . f (r−1)(λ)

(r−1)!
f (r)(λ)

r!

0 f(λ)
0!

f ′(λ)
1! . . . f (r−2)(λ)

(r−2)!
f (r−1)(λ)
(r−1)!

0 0 f(λ)
0! . . . f (r−3)(λ)

(r−3)!
f (r−2)(λ)
(r−2)!

. . .

0 0 0 . . . f(λ)
0!

f ′(λ)
1!

0 0 0 . . . 0 f(λ)
0!


∈ Mr+1(R).

Theorem 6.20 If a Jordan matrix of T ∈ L(Vn) has the form

J =


J1 0 0 . . . 0

0 J2 0 . . . 0

. . .

0 0 0 . . . Jp


where J1, . . . , Jp are the corresponding Jordan cells of the eigenvalues

λ1, . . . , λp, p ≤ n, then

f(J) =


f(J1) 0 0 . . . 0

0 f(J2) 0 . . . 0

. . .

0 0 0 . . . f(Jp)



Proof. If f is an analytical function in a su�ciently large

neighborhood of a point x0, we have:

f(J) =
∑
k≥0

f (k)(x0)

k!
(J − x0I)

k =
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=
∑
k≥0

f (k)(x0)

k!


J1 − x0I 0 0 . . . 0

0 J2 − x0I 0 . . . 0

. . .

0 0 0 . . . Jp − x0I


k

=

=
∑
k≥0

f (k)(x0)

k!


(J1 − x0I)

k 0 0 . . . 0

0 (J2 − x0I)
k 0 . . . 0

. . .

0 0 0 . . . (Jp − x0I)
k

 =

=


f(J1) 0 0 . . . 0

0 f(J2) 0 . . . 0

. . .

0 0 0 . . . f(Jp)

 .

□

The next result is important in obtaining a matrix function.

This is useful in many applications.

Theorem 6.21 If A is a given matrix of T ∈ L(Vn),with the Jordan

matrix of the form

J =


J1 0 0 . . . 0

0 J2 0 . . . 0

. . .

0 0 0 . . . Jp


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then

f(A) = C


f(J1) 0 0 . . . 0

0 f(J2) 0 . . . 0

. . .

0 0 0 . . . f(Jp)

C−1.

Exercises

6.1 Let T : R3 → R2 be the linear transformation de�ned by:

T (0, 1, 2) = (1, 0), T (−1, 1, 1) = (−1, 1), T (3, 0,−1) = (2, 1). Deter-

mine:

a) the matrix of T relative to the canonical basis in R3 and R2

b) bases in the subspaces KerT and ImT

6.2 Let T : R2 → R3 be the linear transformation given by:

T (−1, 2) = (−7, 6, 3), T (1, 3) = (2, 9, 7). Determine:

a) the image of an arbitrary vector of R2 through T
b) KerT and ImT

6.3 Let T ∈ L(R3) be de�ned by T x = (x1 + x2 + x3, x1 + x2 + x3, x1 +

x2 + x3). Determine bases in KerT and ImT .

6.4 Consider the basis B′ = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} in R3 and the

linear transformation T : R3 → R3, T (x1, x2, x3) = (x1+x2−x3, x3, 2x2+

3x3). Determine the matrix of T with respect to the basis B′.

6.5 Determine the eigenvalues and the eigenvectors for the matrix of

order n: 
0 1 1 . . . 1

1 0 1 . . . 1

1 1 0 . . . 1

. . . . . . . . . . . . . . .

1 1 1 . . . 0


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6.6 Determine the eigenvalues and the eigenvectors for the matrix of

order n: 

0 0 . . . 0 0 1

1 0 . . . 0 0 0

0 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0

0 0 . . . 0 1 0


6.7 Denoting by P2 the space of polynomial functions of degree at most

two, let T : P2 → P2 be the linear transformation given by T (1 +X) =

1 − X2, T (1 + X2) = −4X and T (2X2) = 4X2. Find the eigenvalues

and the eigenvectors of T .

6.8 Let V = C(0, 1), let T : V → V be an endomorphism de�ned by

T (f)(x) = xf(x). Determine the eigenvalues and eigenvectors of T .

6.9 Let V = C∞(a, b), where 0 /∈ (a, b), let T : V → V be an endo-

morphism de�ned by T (f)(x) =
1

x
f ′(x). Determine the eigenvalues and

eigenvectors of T .

6.10 Find a Jordan basis and the corresponding Jordan form for:

a) A =

 6 6 −15

1 5 −5

1 2 −2

, b) B =

 4 0 0

0 1 3

0 3 1

,

c) C =

 0 1 1

1 0 1

1 1 0

.

6.11 Find the Jordan form and the transfer matrix for:

a) A =

 4 1 1

−2 1 −2

1 1 4

, b) B =

−2 −1 1

5 −1 4

5 1 2

.

6.12 Determine An, n ∈ N for:
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a) A =

−1 6 2

−2 6 1

2 −4 1

, b) A =

 0 2 −3

4 7 −12

3 6 −10

,

c) A =

−2 −1 1

5 −1 4

5 1 2

, d) A =

(
−61 36

−105 62

)
.

6.13 Determine eA, for:

a) A =

(
−2 −4

3 5

)
,

b) A =

(
4 −2

6 −3

)
.

6.14 For the matrix A =

(
1 2

2 1

)
determine eA and sinA.

6.15 A matrix A ∈ Mn(C) is called self-adjoint if A
t
= A. Prove that if

A is self-adjoint then all the roots of its characteristic polynomial are real,

and the eigenvectors corresponding to distinct values are orthogonal.

6.16 A matrix T ∈ Mn(C) is called unitary if (T
t
)T = I. Prove that if

T is unitary then

a) For each eigenvalue λ of T we have |λ| = 1.

b) The eigenvectors corresponding to distinct values are orthogonal.

Solutions

6.1 a) Denoting by e1, e2 and e3 the vectors of the canonical

basis inR3, we get the system


T e2 + 2T e3 = (1, 0)

−T e1 + T e2 + T e3 = (−1, 1)

3T e1 − T e3 = (2, 1)

with the solutions T e1 = (1, 0), T e2 = (−1, 2) and T e3 =



115

(1,−1). So the matrix of T relative to the canonical basis is

T =

(
1 −1 1

0 2 −1

)
.

b) For (x1, x2, x3) ∈ R3 we have

T (x1, x2, x3) = x1(1, 0)+x2(−1, 2)+x3(1,−1) = (x1−x2+x3, 2x2−x3).

The kernel of T is KerT = {(x1, x2, x3) ∈ R3 | (x1 − x2 +

x3, 2x2−x3) = (0, 0)} = {(−α, α, 2α) | α ∈ R}, and {(−1, 1, 2)}
is a basis of KerT .

The image is ImT = {(x1 − x2 + x3, 2x2 − x3) | x1, x2, x3 ∈
R} = sp{(1, 0), (−1, 2), (1,−1)} = sp{(1, 0), (−1, 2)} = R2.

6.2 We have T e1 = (5, 0, 1), T e2 = (−1, 3, 2) and so T (x1, x2) =

(5x1 − x2, 3x2, x1 + 2x2). KerT = {(0, 0)},. The image is

ImT = {(5x1 − x2, 3x2, x1 + 2x2) | x1, x2 ∈ R}, with a ba-

sis {(5, 0, 1), (−1, 3, 2)}. Denoting 5x1 − x2 = x, 3x2 = y,

x1 + 2x2 = z and eliminating the variables x1, x2 we get

ImT = {(x, y, z) ∈ R3 | 3x+ 11y − 15z = 0}.

6.3 A basis in KerT is {(1, 0,−1), (0, 1,−1)} and in ImT is

{(1, 1, 1)}.

6.4 The matrix of T relative to the canonical basis is T =1 1 −1

0 0 1

0 2 3

. The matrix relative to the new basis B′ is T ′ =

C−1TC, where C is the transition matrix from the canonical
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basis to B′. We have

C =

1 1 0

1 0 1

0 1 1

 ; C−1 =
1

2

 1 1 −1

1 −1 1

−1 1 1

 so T ′ =

0 −1 −2

2 1 2

0 2 3


Another method to �nd the same matrix is to write the images

of the vectors from the basis B′ through T :

T (1, 1, 0) = (2, 0, 2) = 2(1, 0, 1)

T (1, 0, 1) = (0, 1, 3) = −(1, 1, 0) + (1, 0, 1) + 2(0, 1, 1)

T (0, 1, 1) = −2(1, 1, 0) + 2(1, 0, 1) + 3(0, 1, 1).

6.5 The characteristic polynomial is P (λ) = (−λ−1)n−1(−λ+

n− 1), so the eigenvalues are λ1 = λ2 = · · · = λn−1 = −1 and

λn = n− 1. For λ = −1, the eigenvectors are the solutions of

the '"system"

x1 + x2 + · · ·+ x3 = 0,

that is,


1

0
...

0

−1

,


0

1
...

0

−1

, ...,


0

0
...

1

−1

. For λ = n− 1, we get

the system 
(1− n)x1 + x2 + · · ·+ xn = 0

x1 + (1− n)x2 + · · ·+ xn = 0

. . . . . . . . .

x1 + x2 + · · ·+ (1− n)xn = 0
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Expressing xn = (n − 1)x1 − x2 − · · · − xn−1 from the �rst

equation and plugging it into the other equations, we get x2 =

x1, x3 = x1, ... xn = x1 and the only linearly independent

eigenvector is


1

1
...

1


6.6 It is easier to calculate the characteristic polynomial by

transposing the determinant, which is a circular determinant:

P (λ) = C(−λ, 0, . . . , 0, 0, 1) = C(−λ, 1, . . . , 0, 0, 0) =

= (−1)n(λn − 1).

The eigenvalues are λk = εk, k = 0, . . . , n− 1 (the n-th roots

of 1). For each eigenvalue εk, we determine the eigenvectors

as the solutions of the system:

−εkx1 + xn = 0

x1 − εkx2 = 0

x2 − εkx3 = 0

. . . . . . . . .

xn−1 − εkxn = 0

that is vk =


εn−1
k

εn−2
k
...

εk

1





118

6.7 From the given data we get T (1) = −4X−2X2, T (X) =

1 + 4X + X2, T (X2) = 2X2, so the matrix of the transfor-

mation, in the canonical basis 1, X,X2 is T =

 0 1 0

−4 4 0

−2 1 2

. It

has a triple eigenvalue λ = 2, and the subspace of eigenvectors

has dimension 2. Two linearly independent eigenvectors are

v1 = 1 + 2X and v2 = X2.

6.8 If λ ∈ R is an eigenvalue, then T (f)(x) = λf(x), for

any x ∈ (0, 1). We get (x − λ)f(x) = 0, for any x ∈ (0, 1).

We study two situations. If λ /∈ (0, 1), then x − λ ̸= 0, so

f(x) = 0, for every x ∈ (0, 1), which is not convenient for

an eigenvector. If λ ∈ (0, 1), then f(x) = 0, for x ̸= λ,

and f(x) = α, α ∈ R, an arbitrary value. But f has to be

continuous, which yields α = 0, and f = 0, not convenient for

an eigenvector. In conclusion, T does not possess eigenvalues.

6.9 If λ ∈ R is an eigenvalue, then T (f)(x) = λf(x), for

any x ∈ (a, b). We get
1

x
f ′(x) = λf(x) or

f ′(x)

f(x)
= λx.

Integrating, follows that ln|f(x)| = λx2

2
+ ln c, that is f(x) =

ce
λx2

2 , c ∈ R. So each λ ∈ R is an eigenvalue, with an in�nity

of eigenvectors, f(x) = ce
λx2

2 , c ∈ R∗.

6.10 a) JA =

3 0 0

0 3 1

0 0 3

, with the basis consisting of the
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eigenvectors

−2

1

0

,

3

1

1

 and the principal vector

1

0

0

.

b) JB =

−2 0 0

0 4 0

0 0 4

, v1 =

 0

1

−1

, v2 =

1

0

0

, v3 =

0

1

1

.

c) JC =

−1 0 0

0 −1 0

0 0 2

, v1 =

−1

1

0

, v2 =

−1

0

1

, v3 =

1

1

1

.

6.11 a) JA =

3 0 0

0 3 1

0 0 3

, C =

−1 1 −1

0 −2 1

1 1 0

. a) JB =

−2 1 0

0 −2 0

0 0 3

, C =

−1 1 0

1 0 1

1 −1 1

.

6.12 a) The eigenvalues of A are λ1 = 1, λ2 = 1 and λ3 =

3, the matrix is diagonalizable. The transition matrix from

the canonical basis to the basis consisting of eigenvectors is

C =

 2 2 1

1 1 1

−1 0 −1

, with the inverse C−1 =

 1 −2 −1

0 1 1

−1 2 0

.
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Finally we get

An =

 2− 3n −4 + 2n+1 + 2 · 3n −2 + 2n+1

1− 3n −2 + 2n + 2 · 3n −1 + 2n

−1 + 3n 2− 2 · 3n 1

 .

b) J =

−1 1 0

0 −1 0

0 0 −1

, C =

1 1 3

4 0 0

3 0 1

 and

An =

 (−1)n−1(n− 1) 2n(−1)n−1 3n(−1)n

4n(−1)n−1 (−1)n−1(8n− 1) 12n(−1)n

3n(−1)n−1 6n(−1)n−1 (−1)n(9n+ 1)

 .

c)An =

 (−2)n −n(−2)n−1 n(−2)n−1

3n − (−2)n n(−2)n−1 + (−2)n 3n − (−2)n−1(n− 2)

3n − (−2)n n(−2)n−1 3n − n(−2)n−1

 .

d) An =

(
21(−1)n − 20 · 2n 12(2n − (−1)n)

35((−1)n − 2n) 21 · 2n − 20(−1)n

)
.

6.13 a) The eigenvalues ofA are λ1 = 2 and λ2 = 1, with two

corresponding eigenvectors v1 =

(
1

−1

)
and v2 =

(
4

−3

)
.

The diagonal form of A is JA =

(
2 0

0 1

)
and the transition

matrix is C =

(
1 4

−1 −3

)
. From An = CJn

AC
−1 we get An =(

−3 · 2n + 4 −4 · 2n + 4

3 · 2n + 3 4 · 2n − 3

)
and �nally
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eA =

(
−3e2 + 4e −4e2 + 4e

3e2 + 3e 4e2 − 3e

)
.

b) λ1 = 0, λ2 = 1. Using the Cayley-Hamilton Theorem

we have that A2 − A = 0, so An = A, for n ≥ 1. eA =(
4e− 3 2− 2e

6e− 6 4− 3e

)
.

6.14 An = 1
2

(
3n + (−1)n 3n − (−1)n

3n − (−1)n 3n + (−1)n

)
,

eA = 1
2

(
e3 + e−1 e3 − e−1

e3 − e−1 e3 + e−1

)
,

sinA =
1

1!
A− 1

3!
A3 +

1

5!
A5 − · · · =

= 1
2

(
sin 3 + sin(−1) sin 3− sin(−1)

sin 3− sin(−1) sin 3 + sin(−1)

)
.





CHAPTER 7

Quadratic forms

Consider the n-dimensional spaceRn and denote by x = (x1, . . . , xn)

the coordinates of a vector x ∈ Rn with respect to the canon-

ical basis E = {e1, . . . , en} . A quadratic form is a map

Q : Rn → R

Q(x) = a11x
2
1+. . . annx

2
n+2a12x1x2+· · ·+2aijxixj+. . . 2an−1,nxn−1xn,

where the coe�cients aij are all real.

Thus, quadratic forms are homogenous polynomials of sec-

ond degree in a number of variables.

Using matrix multiplication, we can write Q in a compact

form as

Q(x) = X⊤AX,

where

123
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X =


x1

x2
...

xn

 and A =


a11 a12 . . . a1n

a12 a22 . . . a2n
...

...
...

a1n a2n . . . ann

 .

The symmetric matrix A (notice that aij = aji) is called the

matrix of the quadratic form. Being symmetrical (and real),

A is the matrix of a self-adjoint operator with respect to the

basis E. This operator, denoted by T , is diagonalizable and

there exists a basis B = {b1, . . . , bn} formed by eigenvectors

with respect to which T has a diagonal matrix consisting of

eigenvalues (also denoted by T )

T = diag{λ1. . . . , λn}.

Let C be the transition matrix from E to B and

X ′ =


x′1

x′2
...

x′n


the coordinates of the initial vector written in B. We have

than

X = CX ′

Knowing that T = C−1AC, and that C−1 = C⊤ we com-
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pute

Q(x) = X⊤AX

= (CX ′)
⊤
A (CX ′)

= X ′⊤C⊤ACX ′

= X ′⊤TX ′

= λ1x
′2
1 + · · ·+ λnx

′2
n,

and we say that we have reduced Q to its canonical form

Q(x) = λ1x
′2
1 + · · ·+ λnx

′2
n.

This is called the geometric method.

The quadratic form is called

� positive de�nite if Q(x) > 0 for every x ∈ Rn \ {0}

� negative de�nite if Q(x) < 0 for every x ∈ Rn \ {0}.

We characterize the positively de�nite quadratic form in

terms of the diagonal minors of its matrix, as follows:

D1 = a11, D2 =

∣∣∣∣∣a11 a12a12 a22

∣∣∣∣∣ , . . . , Dn = detA.

We have the following criteria:

� Q is positive de�nite i� Di > 0 for every i = 1, n

� Q is negative de�nite i� (−1)iDi > 0 for every i = 1, n.
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7.1 Conics and quadrics

7.1.1 Second degree curves

The general form of a second degree curve (a conic) is:

a11x
2 + 2a12xy + a22y

2 + 2a13x+ 2a23y + a33 = 0

where (x, y) ∈ R2 and not all the coe�cients a11, a12, a22 = 0.

We consider the third and the second order determinants

obtained from the coe�cients aij, i, j = 1, 2, 3 as follows:

∆ =

∣∣∣∣∣∣∣
a11 a12 a13

a12 a22 a23

a13 a23 a33

∣∣∣∣∣∣∣ and δ =

∣∣∣∣∣a11 a12a12 a22

∣∣∣∣∣
Classi�cation of the conics

A) Non degenerate conics (∆ ̸= 0) and their canonical

form:

� Ellipse (δ > 0):
x2

a2
+

y2

b2
= 1

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

� Parabola (δ = 0): y2 − 2ax = 0
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-8 -6 -4 -2 2 4 6 8

-4

-3

-2

-1

1

2

3

4

� Hyperbola (δ < 0):
x2

a2
− y2

b2
= 1.

-8 -6 -4 -2 2 4 6 8

-2

-1.5

-1

-0.5

0.5

1

1.5

2

B) Degenerate conics (∆ = 0):

� One point, nothing (δ > 0)

� Two parallel lines, one (double) line (δ = 0)

� Two intersected lines (δ < 0)

The reader is assumed to know from the high school, the

graphic representations of the conics, so, we leave this as an

exercise.

7.1.2 Second degree surfaces

The general equation of a second degree surface (a quadric sur-

face) is:
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a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a13xz + 2a23yz

2a14x+ 2a24y + 2a34z + a44 = 0

where (x, y, z) ∈ R3.

From a geometric point of view, quadrics, which are also

called quadric surfaces, are two-dimensional surfaces de�ned

as the locus of zeros of a second degree polynomial in x, y and

z. Maybe the most prominent example of a quadric is the

sphere (the spherical surface).

The type is determined by the quadratic form that contains

all terms of degree two

Q = a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a13xz + 2a23yz.

We distinguish, based on the sign of the eigenvalues of

the matrix of Q, between: ellipsoids, elliptic or hyperbolic

paraboloids, hyperboloids with one or two sheets, cones and

cylinders.

The canonical form of a quadric

Further, the geometric method to reduce the general equa-

tions of a quadric to canonical form, is presented.

Consider the matrix A associated to Q. Being symmetric,

A has real eigenvalues λ1, λ2, λ3. If they are distinct, the cor-

responding eigenvectors are orthogonal (if not we apply the

Gram-Schmidt algorithm). Thus, we obtain three orthogonal

unit vectors {b1, b2, b3}, a basis in R3.
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Let R be the transition matrix from {i, j, k} to the new

basis {b1, b2, b3}. We recall from previous chapters that R has

the three vectors b1, b2, b3 as its columns

R = [b1|b2|b3] .

Now, we compute detR and check whether

detR = 1.

If detR = −1, we must change one of the vectors by its op-

posite (for example take R = [−b1|b2|b3]) to obtain detR = 1.

This assures that the matrix R de�nes a rotation and the new

basis is obtained from the original one, by this rotation.

Let (x, y, z) and (x′, y′, z′) be the coordinates of the same point

in the original basis and in the new one, we havex

y

z

 = R

x′

y′

z′

 .

We know that with respect to the new coordinates

Q = λ1x
′2 + λ2y

′2 + λ3z
′2,

and thus, the equation of the quadric reduces to the simpler

form

λ1x
′2 + λ2y

′2 + λ3z
′2 + 2a′14x

′ + 2a′24y
′ + 2a′34z

′ + a44 = 0.

To obtain the canonical form of the quadric we still have to

perform another transformation, namely a translation. To
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complete this step we investigate three cases: (A) when we

have three nonzero eigenvalues, (B) when one eigenvalue is

zero and (C) when two eigenvalues are equal to zero.

(A) For λi ̸= 0 we obtain

λ1(x
′ − x0)

2 + λ2(y
′ − y0)

2 + λ3(z
′ − z0)

2 + a′44 = 0

Consider the translation de�ned by

x′′ = x′ − x0,

y′′ = y′ − y0,

z′′ = z′ − z0.

In the new coordinates the equation of the quadric reduces to

the canonical form

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 + a′44 = 0.

The cases (B) and (C) can be treated similarly.
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Quadrics on the reduced equations

1. The Sphere

A sphere with the center at C(a, b, c) and radius R has the

equation

(x− a)2 + (y − b)2 + (z − c)2 = R2.

2. The Ellipsoid

The equation of an ellipsoid has the form

x2

a2
+

y2

b2
+

z2

c2
− 1 = 0.
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To investigate the shape of the surface, one can use the method

of parallel sections. This consists of intersecting the surface

with planes that are parallel to the coordinate planes and de-

termining the intersection curves.

The intersection with the plane xOy:{
z = 0
x2

a2 +
y2

b2 − 1 = 0
is an ellipse.

Intersections with planes parallel to xOy:{
z = k
x2

a2 +
y2

b2 = 1− k2

c2 ,
with k ∈ R. If |k| < c we get an ellipse,

if |k| = c, a point is obtained and if |k| > c results the empty

set.

Intersections with planes parallel to xOz:{
y = k
x2

a2 +
z2

c2 = 1− k2

b2 ,
with k ∈ R. If |k| < b we get an ellipse,

if |k| = b, we obtain a point and if |k| > b, the empty set.

Intersections with planes parallel to yOz:{
x = k
y2

b2 +
z2

c2 = 1− k2

a2 ,
with k ∈ R. If |k| < a we get an ellipse,

if |k| = a, a point and if |k| > a, the empty set.

3. The Hyperboloid of one sheet

The equation of a hyperboloid of one sheet has the form

x2

a2
+

y2

b2
− z2

c2
− 1 = 0.
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-An ellipse is obtained by intersecting the hyperboloid of one

sheet with planes parallel to xOy:{
z = k
x2

a2 +
y2

b2 = 1 + k2

c2 ,
with k ∈ R.

- A hyperbola: by intersection with planes parallel to xOz:{
y = k
x2

a2 −
z2

c2 = 1− k2

b2 ,
- A hyperbola: by intersections with planes parallel to yOz:{
x = k
y2

b2 −
z2

c2 = 1− k2

a2 ,
This surface has the special property that it can be gener-

ated by two distinct families of straight lines (doubly ruled).

Theorem 7.1 For any point M on the surface, there exist two straight

lines lying entirely on the surface, which pass through the point M .

Proof: The equation of the hyperboloid can be written(x
a
− z

c

)(x
a
+

z

c

)
=
(
1 − y

b

)(
1 +

y

b

)
. From this, we get that

the two families of straight lines are:

Gλ :


x

a
− z

c
= λ

(
1− y

b

)
x

a
+

z

c
=

1

λ

(
1 +

y

b

) , λ ∈ R
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Gµ :


x

a
− z

c
= µ

(
1 +

y

b

)
x

a
+

z

c
=

1

µ

(
1− y

b

) , µ ∈ R.

4. The Hyperboloid of two sheets

The equation of a hyperboloid of two sheets has the form

x2

a2
+

y2

b2
− z2

c2
+ 1 = 0.

Study the intersection curves with the planes parallel to the

coordinate planes.

5. The Elliptic paraboloid

The equation has the form

z =
x2

a2
+

y2

b2
.
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-An ellipse: intersections with planes parallel to xOy:

{
z = k
x2

a2 +
y2

b2 = k,
with k ∈ R. If k < 0, we get the empty set, if k = 0 a point,

if k > 0.

- A parabola: intersections with planes parallel to xOz:{
y = k
x2

a2 +
k2

b2 = z

- A parabola: intersections with planes parallel to yOz:{
x = k
y2

b2 +
k2

a2 = z

6. The Hyperbolic paraboloid

The equation has the form

z =
x2

a2
− y2

b2
.
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- A hyperbola: intersections with planes parallel to xOy:{
z = k
x2

a2 −
y2

b2 = k,
- A parabola: intersections with planes parallel to xOz:{
y = k

z = x2

a2 −
k2

b2 ,
- A parabola: intersections with planes parallel to yOz:{
x = k

z = −y2

b2 +
k2

a2 = z,

Theorem 7.2 For any point M on the surface, there exist two straight

lines lying entirely on the surface, which pass through the point M .

Proof: The equation of the paraboloid can be written

z =
(x
a
+

y

b

)(x
a
− y

b

)
. From this, we get that the two families

of straight lines are:

Gλ :


x

a
− y

b
= λz

x

a
+

y

b
=

1

λ

, λ ∈ R Gµ :


x

a
+

y

b
= µz

x

a
− y

b
=

1

µ

, µ ∈ R.
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7. Cylinders (Degenerate quadrics)

-Elliptic cylinder
x2

a2
+
y2

b2
−1 = 0 (the generators are parallel

to Oz and intersect a given ellipse).

- Hyperbolic cylinder:
x2

a2
− y2

b2
− 1 = 0.

- Parabolic cylinder: y2 − 2px = 0.
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8. The Elliptic cone

The equation of an elliptic cone (degenerate quadric) has

the form
x2

a2
+

y2

b2
− z2

c2
= 0.

Exercises

7.1 Write the equation of the circle that passes through the points

A(−1, 2), B(3, 0) and has the center on the line 3x− y + 2 = 0.

7.2 Write the equation of the conic who passes through the points

M1(2, 0), M2(3, 0), M3(0, 1), M4(0, 4), M5(5, 4).
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7.3 Find the canonical form and draw the conic:

a) 4x2 + 6xy + 4y2 − 10x+ 10y + 1 = 0

b) 7x2 − 8xy + y2 − 6x− 12y − 9 = 0

c) xy = 1

d) 9x2 − 6xy + y2 + 20x = 0

e) 5x2 + 6xy + 5y2 − 16x− 16y − 16 = 0

f) 3x2 + 10xy + 3y2 − 2x− 14y − 13 = 0

7.4 Determine the nature of the conics:

a) x2 + 4xy + 4y2 − 3x− 6y = 0

b) x2 − 4xy + y2 + 3x− 3y + 2 = 0

c) 2x2 + 3xy + y2 − x− 1 = 0

d) x2 − 6xy + 9y2 + 4x− 12y + 4 = 0

e) x2 − 4xy + 4y2 + 2x− 4y − 3 = 0

7.5 Study the type of the following conics when α ∈ R:
a) x2 − 2xy + αy2 − 4x− 5y + 3 = 0

b) αx2 + 2xy + y2 + 2αy + α = 0.

7.6 Find the values of the parameters α and β for which the conics

αx2 + 12xy + 9y2 + 4x+ βy − 13 = 0

a) Have a center;

b) Are non degenerate conics but without a center.

7.7 Find the values of the parameters α, β ∈ R for which the conic

x2 + 4xy + αy2 − 3x+ 2βy = 0 represents two parallel lines.

7.8 Determine the parameters α, β, γ ∈ R such that, the equation

x2 − 2αxy + 2βy2 + βx− 2αy + γ = 0 represents a double line.

7.9 Find the nature of the conics and show they have the same center

6x2−5xy+y2−22x+9y−4 = 0 and 3x2−2xy−y2−10x−2y+12 = 0.

7.10 Find the projection of the curvex2 +
y2

9
+

z2

4
− 1 = 0

x+ y + z − 1 = 0
on the plane xOy.
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7.11 Find the canonical form of the following quadrics:

a) 38x2 + 35y2 + 26z2 − 28xy − 8xz + 20yz − 54 = 0

b) 2x2 + 16y2 + 2z2 − 8xy + 8yz − 2x− y + 2z + 3 = 0.

c) x2 + y2 + 5z2 − 6xy + 2xz − 2yz − 4x+ 8y − 12z + 14 = 0

d) 2y2 + 4xy − 8xz − 4yz + 6x− 5 = 0

e) x2 + 3y2 + 4yz − 6x+ 8y + 8 = 0

7.12 a) Find the canonical form of the quadric xy = z.

b) Determine the straight lines that belong to the surface of the

quadric and are parallel to the plane x+ y + z = 1.

7.13 Determine the center and the radius of the circle given by{
x2 + y2 + z2 − 2x− 4z − 4 = 0

x− 2y + z + 3 = 0

7.14 Find the geometrical locus generated by the lines{
2x+ 3αy + 6z − 6α = 0

2αx− 3y − 6αz − 6 = 0
, α ∈ R.

7.15 Find the intersection of the line x − 3 = y − 1 =
z − 6

3
with the

elliptic hyperboloid
x2

4
+ y2 − z2

9
+ 1 = 0.

7.16 Determine the straight lines that belong to the surface of the hy-

perboloid of one sheet
x2

25
+

y2

16
− z2

4
− 1 = 0 and pass through the point

M(−5, 4, 2).

7.17 Find the straight lines of the quadric Q which are parallel to the

plane P , if:

a) Q:
x2

4
+

y2

9
− z2

16
− 1 = 0 and P : 6x+ 4y + 3z − 17 = 0

b) Q:
x2

16
− y2

4
= z and P : 3x+ 2y − 4z = 0.

7.18 Find the equation of a plane tangent to the sphere x2 + y2 + z2 −
2x + 6y + 2z + 8 = 0 and containing the line x = 4t + 4, y = 3t + 1,

z = t+ 1.
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Solutions

7.1 If the center is C(a, b), then a and b satisfy the system:{
3a− b+ 2 = 0√
(a+ 1)2 + (b− 2)2 =

√
(a− 3)2 + b2

. We obtain a =

−3, b = −7 and the radius r =
√
85. The equation is

(x+ 3)2 + (y + 7)2 = 85.

7.2 2x2 + 3y2 − 10x− 15y + 12 = 0.

7.3 a) The eigenvalues are 1 and 7 and a possible basis of

eigenvectors is v1 = (
1√
2
,− 1√

2
), v2 = (

1√
2
,
1√
2
). The new

system of coordinates is obtained by a rotation, by −π

4
. The

equation in these new coordinates is x′2+7y′2− 20x′√
2
+1 = 0.

Then, by a translation x′′ = x′ − 5
√
2, y′′ = y′, we get the

equation of an ellipse
x′′2

49
+

y′′2

7
= 1.

y

x

x’=x’’

y’

y’’

O=O’

O’’

b) Determining a basis of eigenvectors v1 = (
1√
5
,
2√
5
) and
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v2 = (− 2√
5
,
1√
5
) we perform a rotation and get the equation

−x′2 + 9y′2 − 30x′√
5

− 9 = 0. Then, by a translation x′′ = x′ +

3
√
5, y′′ = y′, we get the equation of a hyperbola

x′′2

36
−y′′2

4
= 1.

c) By a rotation of
π

4
the new system of coordinates is ob-

tained and the new equation is
1

2
x′2− 1

2
y′2 = 1, an equilateral

hyperbola.

O

y

x

y’ x’

d) λ1 = 0, λ2 = 10, v1 = (
1√
10

,
3√
10

), v2 = (
−3√
10

,
1√
10

),

after a rotation and a translation the equation becomes 10y′′2+

2
√
10x′′ − 9 = 0, a parabola.

e)
x′′2

4
+

y′′2

16
− 1 = 0, an ellipse.

f)x′′2 − y′′2

4
− 1 = 0, a hyperbola.

7.4 a) ∆ = δ = 0, so the conic is degenerate, of parabolic

type, it represents two parallel lines. b) ∆ ̸= 0, δ < 0 it

is a hyperbola. c) ∆ = 0, δ < 0 degenerate, of hyperbolic
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type, that means two intersecting lines. The equation can be

written as (2x + y + 1)(x + y − 1) = 0, which gives the two

lines 2x+ y + 1 = 0 and x+ y − 1 = 0. d) One (double) line:

(x− 3y + 2)2 = 0. e) Two parallel lines: x− 2y − 1 = 0 and

x− 2y + 3 = 0.

7.16 One family of straight generators isGλ :


x

5
+

z

2
= λ

(
1− y

4

)
x

5
− z

2
=

1

λ

(
1 +

y

4

)
From the condition M ∈ Gλ we get λ = −1, so one of the

requested lines is

{
4x− 5y + 10z + 20 = 0

4x+ 5y − 10z + 20 = 0
. From the other

family of generators Gµ :


x

5
+

z

2
= µ

(
1 +

y

4

)
x

5
− z

2
=

1

µ

(
1− y

4

) we get µ = 0

so the line will be

{
2x+ 5y = 0

y = 4
.

7.5 a) Hyperbola for α ∈ (−∞,−77/4) ∪ (−77/4, 1); inter-

secting lines for α = −77/4; ellipse for α ∈ (1,∞); parabola

for α = 1.

b) Hyperbola for α ∈ (−∞, 0) ∪ (0, 1); intersecting lines for

α = 0; ellipse for α ∈ (1,∞); parabola for α = 1.

7.6 a) α ̸= 4; b) α = 4 and β ̸= 6.

7.7 α = 4, β = −3 and the lines are x + 2y = 0 and x +

2y − 3 = 0.

7.8 For α = β = γ = 0 the line is x = 0; α = −2, β = 2, γ =

1 ⇒ x+ 2y + 1 = 0; α = 2, β = 2, γ = 1 ⇒ x− 2y + 1 = 0.
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7.9 The common center is C(1,−2).

7.10 By eliminating z between the equations we obtain the

curve 45x2+18xy+13y2−18x−18y−27 = 0, so the projection

is an ellipse

{
z = 0

45x2 + 18xy + 13y2 − 18x− 18y − 27 = 0

7.11 a) We have an ellipsoid of the canonical form x
′2

1 + y
′2

2 +
z
′2

3 − 1 = 0. b) An elliptic paraboloid y′′2 = 2x
′′2

3 + 6z′′2
1 . c)

−1

3
x′′2 +

1

2
y′′2 + z′′2 + 1 = 0. d) x′′ =

√
6z′′2 − 2

√
6

3
y′′2. e)

−x′′2 + y′′2 + 4z′′2 − 1 = 0.

7.12 a) The eigenvalues are −1

2
,
1

2
and 0. A possible basis of

eigenvectors consists of v1 = (
1√
2
,− 1√

2
, 0), v2 = (

1√
2
,
1√
2
, 0)

and v3 = (0, 0, 1). In the new system of coordinates the equa-

tion becomes z′ =
1

2
(y′2−x′2), that is a hyperbolic paraboloid.

b) One of the families of generators is

{
x = λ

y = 1
λz

, with the

direction vector l⃗λ = (0,
1

λ
, 1). From the parallelism follows

that the direction vector is perpendicular on the normal to the

plane, n⃗ = (1, 1, 1), that is l⃗λ · n⃗ = 0. We get λ = −1 and

so the straight line is

{
x = −1

y + z = 0
. From the other family of

generators

{
x = µz

y = 1
µ

we obtain

{
x+ z = 0

y = −1
.

7.13 C(0, 2, 1), r =
√
3.
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7.14 By eliminating α we obtain an elliptic hyperboloid of

one sheet 4x2 + 9y2 − 36z2 − 36 = 0.

7.15 x = 4, y = 2, z = 9.

7.16 One family of straight generators isGλ :


x

5
+

z

2
= λ

(
1− y

4

)
x

5
− z

2
=

1

λ

(
1 +

y

4

)
From the condition M ∈ Gλ we get λ = −1, so one of the

requested lines is

{
4x− 5y + 10z + 20 = 0

4x+ 5y − 10z + 20 = 0
. From the other

family of generators Gµ :


x

5
+

z

2
= µ

(
1 +

y

4

)
x

5
− z

2
=

1

µ

(
1− y

4

) we get µ = 0

so the line will be

{
2x+ 5y = 0

y = 4
.

7.17 a) 6x− 4y − 3z + 12 = 0, 6x + 4y + 3z + 12 = 0 and

6x− 4y − 3z − 12 = 0, 6x+ 4y + 3z − 12 = 0.

b) x − 2y − 4z = 0, x + 2y − 4 = 0 and x + 2y − 2z = 0,

x− 2y − 8 = 0.

7.18 x− y − z − 2 = 0.
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