
Eugen-Richard	ARDELEAN

U.T.PRESS
Cluj-Napoca,	2024

ISBN	978-606-737-718-7

Computational	Methods	for	
Brain	Signal	Analysis
during	Perception	and	Behaviour

Eugen-Richard ARDELEAN

 Computational Methods for Brain Signal Analysis

 during Perception and Behaviour

U.T.PRESS
Cluj - Napoca, 2024

ISBN 978-606-737-718-7

 Editura U.T.PRESS
 Str. Observatorului nr. 34
 400775 Cluj-Napoca
 Tel.: 0264-401.999
 e-mail: utpress@biblio.utcluj.ro
 http://biblioteca.utcluj.ro/editura

Recenzia:

Prof.dr.ing. Rodica Potolea
Prof.dr.ing. Mihaela Dînșoreanu
Conf.dr.ing. Costin Chiru
Prof.dr.ing. Călin Adrian Popa
C.S.l.dr. Raul Cristian Mureșan
Conf.dr.ing. Camelia Lemnaru

 Pregătire format electronic on-line: Gabriela Groza

Copyright © 2024 Editura U.T.PRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte este posibilă
numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-718-7

PREFACE

This work is based on the PhD thesis with the same name. I would like to thank

my PhD supervisor, Prof. Dr. Eng. Mihaela Dînșoreanu, all the members of the guidance

and examination committees for spending valuable time in reading and helping me

amend this work. I would like to thank Prof. Dr. Eng. Rodica Potolea and Prof. Dr. Eng.

Mihaela Dînșoreanu for trusting me and allowing me to teach the laboratory sessions of

their disciplines, thus giving me the opportunity to attain one of my dreams. I would like

to thank my colleagues at the Transylvanian Institute of Neuroscience for the various

discussions (especially, during smoke breaks), those related to research and even more

for those that were not. I would like to thank the students, with whom I had the pleasure

to have worked with, those that have chosen me as their supervisor or co-supervisor and

those that have shown interest in the domain of neuroscience.

I dedicate this work to the woman that raised me even though she did not birth

me, without whom I would never have been able to get to where I am today, to my mother

Monica-Adriana Ardelean (Petcheși).

TABLE OF CONTENTS
1. Introduction 1

Context: An abridged history of neuroscience 1

Motivation: Bridging the gap between neuroscience and computer science 1

Methods for brain activity identification 2

Methods for brain activity characterisation 2

From brain activity to behaviour 2

Structure 3

2. Domain knowledge 5

2.1. Neuroscience domain knowledge 5

2.1.1. The brain 5

2.1.2. Brain complexity 7

2.1.3. Brain oscillations 16

2.1.4 Brain recording techniques 18

2.2. Computer science domain knowledge 24

2.2.1. Architectures of artificial neural networks 24

2.2.2. Machine learning approaches 36

2.2.3. Signal processing 36

2.3. Neuroscience and computer science 40

2.3.1. Spike sorting 40

2.3.2. Burst detection 56

2.3.3. Symbolic Analysis 58

2.3.4. Detection of oscillations 59

3. Methods for brain activity identification 61

3.1. Data analysis in spike sorting 61

3.1.1. Introduction 61

3.1.2. Data 62

3.1.3. Methods 66

3.1.4. Conclusions 108

3.2 Burst detection 109

3.2.1. Introduction 109

3.2.2. Data 110

3.2.3. Methods 111

3.2.4. Conclusions 117

4. Methods for brain activity characterisation 119

4.1. Symbolic analysis 119

4.1.1. Introduction 119

4.1.2. Data 120

4.1.3. Methods 120

4.1.4. Conclusions 128

4.2. Detection of oscillation packets 129

4.2.1. Introduction 129

4.2.2. Data 129

4.2.3. Methods 129

4.2.4. Conclusions 139

5. From brain activity to behaviour 140

5.1. Experimental environment development for behaviour quantification 140

5.1.1. Introduction 140

5.1.2. Methods 141

5.1.3. Conclusions 147

5.2. Behaviour quantification through tracking 149

5.2.1. Introduction 149

5.2.2. Methods 152

5.2.3. Conclusions 156

REFERENCES 157

APPENDICES 170

List of figures 170

List of tables 177

List of abbreviations 179

Glossary 181

1

1. Introduction

Context: An abridged history of neuroscience
The brain has been the focus of devoted research for more than a hundred years

starting with the pioneering work of Santiago Ramon y Cajal and Camillo Golgi during the
late 19th century. Their eminent work is the basis of neuroscience today and it allowed
the segregation of neuroscience from medicine as a freestanding multidisciplinary
science. Nevertheless, the interest in the brain did not start so late.

It is sensible to say that it has been around for a long time as even Egyptian
manuscripts hint that brain damage symptoms were a part of the knowledge of the time.
Moreover, in the process of mummification, the brain was one of the organs that was
excised. Admittedly, at that time, it was the heart that was thought of as the ‘seat of
intelligence’, a paradigm that would last until Hippocrates and Plato. The role and
functions of the brain have been much discussed by philosophers to this day.

The mediaeval epoch in the Muslim world was another leap for neuroscience, as
the first steps in neurosurgery and neurological diagnosis were made by Abulcasis and
others. During the Renaissance, physician and anatomist Andries van Wesel had created
the most detailed portrayal of brain anatomy up to that time.

The invention of the microscope and the silver-based staining method of Golgi
allowed further advancement in the study of the brain. This staining procedure was used
by Ramon y Cajal in his work and through it the neuron doctrine was established - the
idea that the neuron is the functional unit of the brain.

Motivation: Bridging the gap between neuroscience and
computer science

Lately, there is a tendency towards interdisciplinarity, and we can see it even
within the field of computer science. During the 20th century, biologically inspired
algorithms have been developed, such as the neural network or genetic algorithms. These
kinds of algorithms are widely used today, although their association to biology has been
diminished. Domains such as ‘Computational Neuroscience’ attempt to reestablish these
connections and bridge the gap by combining experimental neuroscience, theoretical
biology, molecular biology and engineering, and computer science.

In recent times, we have seen computer science algorithms find applications in
various domains through the rise of neural networks. In neuroscience, new brain
recording tools [1] have been developed with hundreds or even thousands of electrodes
that can record brain signals resulting in a never-before-seen amounts of data rendering
many analysis methods inadequate. Because of this, neuroscience now truly requires
advanced computer science techniques that can deal with all this information as
efficiently and robustly as possible. For a long time, neuroscience and computer science
existed as separate disciplines, but this need has made both neuroscientists and
computer science experts more interested in working together more than ever. This
collaboration can allow both disciplines to grow as neuroscience knowledge may inspire
the creation of new algorithms and computer science algorithms may provide new
discoveries of how the brain works.

2

It is within this domain that the author attempts to bring a contribution as no
endeavour seems more honourable than aiding, however insignificantly, the
advancement towards our goal to understand others and ourselves.

Methods for brain activity identification
Neurons communicate through electrical impulses, or spikes, which are recorded

using electrodes. Analysing these spikes is important for the understanding how
information is processed in the brain at a neuronal level. Spike sorting [2] is a first
example of how neuroscience and computer science have come together as it involves the
identification and categorisation of spikes through machine learning and signal
processing approaches. And it is also a primary research direction for this work. From a
computer science perspective, spike sorting [2] can be viewed as a signal processing
problem that involves a pipeline of several steps: data filtering, feature extraction, and
clustering algorithms. In many cases, spike sorting is still done manually, semi-automatic
or with simple approaches such as a combination of Principal Component Analysis [3]
and K-means [4]. These methods have been shown to have decent performance but there
is a lot of room left for improvement, creating the need for more complex algorithms that
are capable of handling the challenges of neural data. Moreover, with the recent hardware
advancements [1], there is an increased need for more performant algorithms.

Methods for brain activity characterisation
Shifting from identification to characterisation, an efficient method is required to

characterise and interpret the neural activity once it has been identified. Due to the large
amounts of data and their complexity, extracting the relevant information with an
automated approach and an interpretable format remains a challenge. Symbolic analysis
[5] is one approach taken within this work of how to decipher these complex patterns
within continuous neural signals through computer science approaches. Through
symbolic analysis, neural signals can be encoded into a format more manageable for
computation and more interpretable format for us.

Another type of characterisation can be made through the detection and analysis
by computer science methods of brain oscillations by moving into the time-frequency
domain through signal processing methods. Oscillations have linked to various brain
states, and as such through their characterisation, the mechanism through which the
brain processes information can be determined.

From brain activity to behaviour
 Many experiments are done on anaesthetised subjects that do not allow us to see
any link between brain activity and behaviour and they can alter brain activity such that
we do not see the normal everyday activity in the brain. As exciting as brain activity
analysis is, to understand the brain it is important to link brain activity to behaviour and
this can only be done through behavioural experiments. These experiments allow us to
understand the brain's responses to stimuli, but they introduce challenges related to
experimental design and data analysis. Behavioural experiments must be reproducible
and reliable [6], thus their design must be well thought-out to ensure that the measured
effects are caused by the control variable and not by other confound factors.

Traditional laboratory settings again do not capture the intricacies of everyday life
for any subject; thus, they cannot truly reflect the normal activity of the brain. In contrast,

3

real-life environments are more dynamic as they involve constant sensory and motor
activity. A more naturalistic approach in the experimental environment design [6] can
result in more organic behaviour and thus, neural activity which enables researchers to
investigate how the brain truly processes information and responds to stimuli.

Computer science can again contribute to this research direction by creating
precisely controlled experimental settings, and most importantly by reducing
confounding variables. Another avenue for computer science intervention is behaviour
tracking. Through computer science methods, meaningful information can be gleaned
from the subject’s behaviour while also automating the analysis of complex behavioural
patterns.

Structure
 The first chapter aims to bridge the gap between the neuroscience and computer
science domains. Due to recent advancements in hardware, neuroscience requires more
performant analysis techniques that computer science can provide.
 The second chapter aims to provide the reader with a comprehensive
understanding of fundamental concepts in neuroscience (section 2.1), computer science
(section 2.2) and computational methods applied in neuroscience (section 2.3). The first
section starts with the structural and functional organisation of the brain (section 2.1.1).
It continues with a presentation of the structure and functionality of neurons (section
2.1.2) and is concluded with a discussion about intrinsic synchronisation mechanisms of
the brain, called brain oscillations (section 2.1.3). This introductory part of the
neuroscience domain ends with an overview of different brain recording techniques that
provide the researcher with a “window” into the brain for the analysis of data (section
2.1.4). The second section of this chapter presents common machine learning algorithms
from computer science, specifically neural networks and signal processing techniques.
The last section present computational methods that are applied today within the field of
neuroscience.

The next chapters focus on the practical and experimental work done by the
author in the domain of neuroscience; a part of this work has been done at the
Transylvanian Institute of Neuroscience (TINS). These chapters have been divided into
different levels of analysis of experiments.

Chapter 3 presents several newly developed methods for brain activity
identification and their analyses. Neurons have two functioning modes (firing patterns),
namely tonic firing and bursting, each with its own characteristics. The choice between
extracellular recording and intracellular recording involves a trade-off. In intracellular
recording, each recorded activity belongs to the neuron into which the electrode was
inserted. While in extracellular recordings, where the electrode is introduced between
neurons, identifying the activity of a specific neuron becomes challenging due to the
overlap with the activity of neighbouring neurons. The assignment of activity to their
source neurons is addressed through spike sorting, a pipeline of several techniques.
However, spike sorting may not be ideal when dealing with bursting activity, where
neurons fire multiple spikes rapidly. In the first section of this chapter (section 3.1),
several new approaches are presented that are more efficient and have better
performance than several current approaches. These algorithms address the steps of the
spike sorting pipeline and tackle the complexities of neuronal data. These algorithms
have been shown to have increased performance when compared to classical approaches.

4

This chapter starts with an introduction to spike sorting (section 3.1.1). Multiple
approaches that improve the spike sorting pipeline and their comparative analyses are
presented (section 3.1.3): amplitude thresholding approaches based on neural networks
(section 3.1.3.1), a new approach in spike sorting for feature extraction based on
autoencoders (section 3.1.3.2), a new feature extraction approach for spike sorting based
on signal processing (sections 3.1.3.3-4), an approach that combines feature extraction
and clustering in a single step (section 3.1.3.5), a new clustering method specifically
designed for spike sorting (section 3.1.3.6), an improved version of the clustering
algorithm and a new performance evaluation metric for clustering (section 3.1.3.7), and
a new approach to distance computation that has applications in clustering and clustering
evaluation (section 3.1.3.8). Finally, an overview and the conclusions are presented
(section 3.1.4). Section 4.2 presents a new approach for the detection of bursting activity
that encompasses the characteristics of neuronal bursts given in the literature. It includes
a comparative analysis of existing methods on synthetic data, and it proposes a
correlation analysis for real data.

After the identification of brain activity, characterisation is the next necessary step
to understanding brain function. Chapter 4 shifts to methods for brain activity
characterisation. Section 4.1 presents several approaches to symbolic analysis of EEG
data. Symbolic analysis transforms the high amount of data into a more manageable
format for information inference and pattern emergence. Section 4.2 presents a newly
developed algorithm designed for the detection of brain oscillations from time-frequency
representations. Current methods of brain oscillation detection are simple approaches
that have limited performance. The introduced method offers a better descriptive power
and detection performance albeit with additional execution time.

Chapter 5 makes the transition from brain activity to behaviour as brain activity
does not happen in a vacuum and it is inherently related to actions. Section 5.1 presents
experimental environment modelling for an experiment that attempts to answer
questions about the effects of amblyopia, a visual system disorder, on the brain. Two
configurable experimental environments have been developed, the first has the purpose
of evaluating the contrast sensitivity of the subject, while the second is the actual
experiment to find the impact of amblyopia on visual prediction. Section 5.2 presents a
convolutional neural network approach for tracking zebrafish exposed to pharmaceutics.
Through tracking and postprocessing that obtains information about location, speed,
orientation and movements, the impact of the pharmaceuticals upon the fish can be
inferred.

Chapter 6 presents an overview of the whole work in connection to the objectives
presented and the results obtained.

5

2. Domain knowledge

2.1. Neuroscience domain knowledge
Throughout nature, a myriad of complex systems have developed and without a

doubt, the brain is one such system. This chapter starts with a brief description of the
brain from a structural and functional perspective, followed by an in-depth description
of the finer components, neurons and neuronal circuits, and how they interact with each
other.

Neuroscience has the goal of understanding the intricacies of the complex
interactions within the brain and deciphering how it functions. Neuroscientists are
working towards unravelling the mysteries hidden behind the inherent characteristics
that define a healthy functioning brain such as cognition, memory, learning, behaviour,
and perception, among many others.

2.1.1. The brain
 The brain is a bewilderingly intricate system capable of unifying information from
both interoception and exteroception while at the same time receiving continuous
information and preserving equilibrium in a chaotic environment and allowing actions to
be performed and decisions to be made almost instantly. Sight, hearing, touch are the
senses through which the brain is able to assess the outside world, whilst the body is a
means for interaction. Actions incorporate an unending feedback loop between sensory
information received, processing in the brain and behaviour. The brain processes
information in a similar fashion, through loops between different areas or subregions
until a conclusion is reached in a very short interval.

The brain is only one part of the central nervous system (CNS), which is itself only
one part of the nervous system along with the peripheral nervous system. The CNS also
includes the spinal cord. The human brain is proportionally similar to that of other
primates. The brain weighs about 1.45 kilograms [7], less than 2% of body weight and yet
it consumes about 20% of the energy. It is engulfed by the skull, occupying a volume of
1.13 litres in females and 1.26 litres in males (excluding cerebrospinal fluid) [8].

The brain can be anatomically divided into three parts: the brain stem, the
cerebellum, and the cerebrum (Figure 2.1). The brain stem can be viewed as the bridge
between the cerebrum and the spinal cord. It is heavily involved in the regulation of heart
and breathing rate and the sleep cycle. Motor and sensory information of the face, neck
and body is bidirectionally sent to and from the brain through the brain stem [9]. The
cerebellum, located under the temporal and occipital lobes and in the dorsal part of the
brain, is involved in motor control, particularly that of more delicate movements that
require coordination and precision [10]. The cerebrum develops prenatally and is the
largest and the most developed part of the brain, it incorporates the cerebral cortex and
several subcortical regions. The cerebral cortex is present only in mammals, and in larger
mammals its surface folds into ridges and furrows, called gyri and sulci, respectively,
which greatly enhance its surface area without increasing the volume [11]. It is
considered to be the seat for neural integration as it was found to be involved in:
awareness, consciousness, thought, attention, memory and language [12]. The cerebral
cortex can be further divided into four lobes by the major sulci and gyri, namely: the
frontal, temporal, parietal and occipital lobes (as shown in Figure 2.1) [11].

6

The central sulcus delimits the end of the frontal lobe and immediately ventral to
it, the motor cortex is located (see Figure 2.1) [11]. Whilst the lateral sulcus separates the
frontal from the temporal lobe. The frontal cortex has been linked to action, while much
of the rest has been linked to sensory processing. The prefrontal cortex is the largest in
humans [11] and it develops the latest at the age of 25 years on average. It has been
deemed responsible for executive functions such as judgement, controlling short-sighted
behaviour rendering it the part responsible for long-term goal orientation, decision
making and problem solving. Bidirectional communication between sensory regions and
the prefrontal cortex is the driving force of action enactment [11]. The assignment of
function to sub-regions still eludes us, a reasonable assumption is that the functions
emerge based on the communication of distributed networks. Nevertheless, single-case
studies and neuroimaging confirm that damage to this area results in impairment of
executive functions.

The parietal cortex is responsible for integrating sensory information including,
but not limited to, proprioception, the cortical homunculus, and skin-related sensory
inputs such as temperature or pain. The somatosensory cortex is a part of the parietal
cortex and is located dorsally to the central sulcus (see Figure 2.1) [11]. The
somatosensory cortex contains the cortical homunculus which is a distorted mapping of
the human body based on the sense of touch. Highly sensitive areas such as the tip of the
fingers are extensively represented, in contrast areas such as the back occupy only a small
volume. The parietal lobe is also involved in visuospatial processing, object manipulation
and the processing of information required for motor control.

Figure 2.1 - The human brain from a lateral perspective presenting the coarse grouping into lobes. The
image was taken from Wikimedia Commons (public domain) and adapted.

7

The temporal lobe has been found to be involved in memory due to its connections
to the hippocampus, language comprehension and processing of sensory inputs. The
primary auditory cortex is located in the temporal lobe and as such is responsible for the
processing of auditory stimuli. Neuroimaging techniques have shown that the temporal
lobe activation in tasks related to language comprehension [13], even signed language,
and verbal memory.

The occipital lobe is located at the back of the head and is the main site of visual
processing in mammals. The visual cortex is located in this lobe and contains the primary
visual cortex, also called V1, which is one of the most studied areas of the brain. V1
processes the visual input of the retina through a very precise retinotopic mapping,
although inverted.

2.1.2. Brain complexity
Neurons are the fundamental processing units of the brain and one of the main

focuses of Neuroscience. However, in reality, approximately 50% of the cells in the brain
are not neurons, they are glia [7,14]. It was thought that glia made up 90% of the human
brain [7,14], a plausible origin of the myth would be another myth which claims that
human beings only use 10% of the brain. This ratio of 10 to 1 of glial cells to neurons
seems to be limited to only a low number of brain regions, with other regions, such as the
cerebellum, where glial cells are heavily outnumbered by neurons [14].

Take into consideration the typical morphology of cells, they are encased in a
membrane that gives them an ovoidal or spherical shape. This is the form of, for example,
red or white cells. When looking at a neuron, it is strikingly asymmetric making them
decidedly distinctive as cells. Figure 2.2 shows a drawing of neurons made by Santiago
Ramon y Cajal, in the early twentieth century, using the Golgi staining technique. Neurons
are elongated cells with appendages projecting throughout the encompassing space
similar to the branches of a tree, explaining the term “arborized” that is attributed to them
[15]. Other neurons in the human body, located most commonly in the spinal cord, have
exceptionally long projections exceeding one metre. Evidently, in larger species such as
whales, these projections can become even longer.

Humans have the highest ratio of brain size to body size in the animal kingdom
[14], although the exact value is dependent on what species is used in the computation.
The relative size of brain regions do not determine the number of neurons they contain,
as an example the cerebral cortex that weighs 82% of the total brain mass only contains
19% of the neurons [14] while the cerebellum which weighs only 10% of the body mass
contains 80% of the neurons. To get a sense of the scale and distribution of neurons in
the human brain, there are about 85 billion neurons in the brain, each having between
1000 to 10000 connections to other neurons [16], called synapses. A mention of the scale
on which Neuroscience works on, in a single millimetre cube of nervous tissue 100.000
neurons can be found with 0.4 kilometres of dendrites, 4 kilometres worth of axons and
109 synapses [17].

8

Figure 2.2 - One of Cajal’s drawings of neurons using the Golgi staining technique from 1899 [17,18].

 Brain complexity at the level of one neuron
A neuron is a complex cell that in general structurally consists of the following

main parts: cell body, dendrites, and axon (Figure 2.3). Neurons are electrically excitable
cells that communicate through synapses. If we were to make a truly simplified analogy,
in the case of neurons, the dendrites would be the ears that are listening to what the
previous neurons are saying. Thus, the axon becomes the proverbial mouth in this
analogy that is talking to the adjacent neurons.

The output - the axon - is a long wire, but at some point, it starts branching. These
ramifications are called axonal endings or terminals. The axonal terminals of previous
neurons are connected to the dendrites of the following neuron, in this way when neurons
are activated, they send information, and the adjacent neurons are informed through the
dendrites that the previous neurons have been activated. Thus, communication is
achieved through the connection of the axon terminals of a neuron with the dendrites of
another neuron. The point of connection is called a synapse.

Information is transmitted from a neuron to another at the synapse, usually as
electrical impulses that are carried down the axon of the first neuron. Upon reaching the
synapse, the connection point of an axon terminal of a presynaptic neuron with the
dendrite of a postsynaptic neuron, this electrical impulse is converted into a chemical
signal, called a neurotransmitter. This chemical signal is then converted by the
postsynaptic neuron back into an electrical impulse.

9

Figure 2.3 - The neuron and its main parts. The cell body, or soma, contains the organelles of the cells, while
the axon and dendrites connect the neuron, by forming synapses, to other neurons. The image was taken
from Wikimedia Commons (public domain) and adapted.

Thus, the view of a neuron can be simplified as an input-output system, where the
dendrites are inputs, and the axon is the output. This simplification was what inspired
the creation of the perceptron. However, the brain is a complex system and there are
exceptions to this view. For example, in some cases retrograde signalling appears, where
the information is sent backward [19] along the axon. Neurons can also communicate
through ephaptic interactions, where the electrical fields generated by a neuron can
influence other neurons. Moreover, gap junctions allow for direct electrical
communication between neurons.

In simple terms, an action potential is required to induce the transmission of
information between neurons. In general, the action potentials of a single neuron are
similar with respect to their duration, amplitude and shape. These being used as a way of
encoding the transmitted information. In the following pages, a more detailed view of the
inner workings of the action potential is presented, a first view of the action potential is
presented in Figure 2.4.

The action potential
Due to their excitable membrane, neurons generate action potentials at the

membrane level. An excitable cell is at rest when it does not generate action potentials.
When at rest, a neuron has a negative electrical charge, called resting membrane
potential. An action potential is reversal of charge, for a short amount of time the charge
of a neuron’s membrane becomes positive with respect to the outside. This reversal of
charge is produced by the ion channels, these allow for transfer of ions between the inside
and the outside of the cell. There are multiple types of ion channels, for Na+, Ca2+, K+ and
Cl- and each of these is mostly selective for only their type of ion. As mentioned before,
an action potential is a change of charge in the membrane, but this change does not occur
linearly, and this is due to the gates of the ion channels that allow the channels to be
opened or closed [17].

10

Figure 2.4 - The action potential and its structure. The time course of the membrane potential during the
spiking of a neuron and various terminology used that determine its parts. The image was taken and
adapted from Wikimedia Commons (public domain). The left and right panels present synonyms that are
used within this domain.

The resting potential of neurons, which is an unconditional necessity for
functioning, is at -65mV. At rest, the neuron is highly permeable to K+ and thus, it is a
very close value to the potassium equilibrium potential of -80mV. But due to some
permeability to Na+, this charge is slightly higher. This ratio of permeability can be
computed using the Goldman equation and it results in a 40 to 1 permeability in favour
of K+ [17]. An action potential can be measured with an electrode implanted in the
neuron. The measurement is the difference in potentials between the potential of the cell
interior recorded through the electrode and the potential outside the cell (usually
connected to the ground). The potential difference of -65mV is displayed when the
membrane is at rest. Neurons contain more potassium ions than sodium as the membrane
is more permeable to potassium. Any change in the neuron’s ion concentration results in
a change of membrane potential.

The recording of the potential is made through a comparison between the inside
of the cell and the outside. Translating these facts into real world applications, it requires
expensive hardware that allows for high precision due to the small size of neurons. Action
potentials can be measured due to current loops closing through the outside of the cell as
well [20]. Because during a spike the positive ions flow into the cell, on the outside the
potential is decreasing. This reversal between intracellular and extracellular recordings
of the action potential can be viewed in Figure 2.5. Taking the measurements from
outside of the cell is cheaper and easier to do, but action potentials of multiple neurons
in the vicinity of the electrode are recorded which can be both an advantage and a
disadvantage. Furthermore, cells are not injured resulting in longer and more stable
recordings.

An example of an action potential and its defining components is presented in
Figure 2.4. An action potential, with all of its parts, is completed in about 2 milliseconds
and due to their shape, action potentials are also called spikes [17]. Certain parts of action
have been identified, once the depolarization of the membrane starts, the first part called
rising phase appears. This only happens once the depolarization surpasses a threshold;
thus, action potentials occur only if the depolarization passes a critical level.
Depolarization is produced by the Na+ channels being opened as a reaction to the
neurotransmitters of other neurons [17]. Once the membrane potential is depolarized
sufficiently, a cascade of Na+ ion channels start opening that produce the rising phase.

11

Through the rising phase, the potential increases until it becomes positive with respect
to the outside up to a peak of about 40mV, called an overshoot. This happens due to an
increased Na+ permeability of the membrane, which has the equilibrium potential at
62mV. After the peak is reached, the repolarization, called the falling phase, starts. During
repolarization, the Na+ channels are closing, the membrane remains only permeable to
K+ which exit the cell, restoring the negative polarisation of the cell’s interior. Through
the falling phase, the potential briefly undershoots below the resting potential, but it is
gradually restored to equilibrium. This restoration period is called the refractory period
because the sodium channels are closed, and another action potential cannot or is difficult
to be produced. Once a sufficiently negative potential is reached the sodium channels
open again.

Figure 2.5 - Particularities of action potentials on different types of recordings (left, extracellular from TINS
and right, intracellular from [21]).

 Electrical excitation is needed in order to communicate. An influx of ions generates
electrical excitation that goes through the neuron, from its dendrites to the axon
terminals. The excitation of a neuron through a single dendrite allows the flow of ions
from the outside to the inside of the neuron, and vice versa. Vast excitation influx is
required from the presynaptic neurons, for the membrane potential of the neuron in
question to become positive (depolarization). This is the contrasting dichotomy of
neuronal signalling, for a neuron to “speak”, its inside needs to become positively
charged, whilst when the inside is negatively charged it remains silent. For a neuron to
generate an action potential, a lot of energy is consumed. The neuron has to use this
energy to coordinate pumps and channels in order to generate these action potentials
and to maintain the difference of potential between the interior and exterior at rest. It
uses the sodium-potassium channels in the membrane to allow more positive ions to
leave the cell than to enter it in ratio of 3 to 2 which reduces the membrane potential to
reach the resting state. When excitatory signals are received, the pumps are stopped, and
channels open allowing positive ions to penetrate the membrane and increase the charge
of the neuron’s membrane. After this excitation passes, the channels close and the pumps
start reestablishing the resting state. All of these actions require energy, and neurons
spend half of their energy on the pumps [15]. These facts make it easier to understand
how an organ that weighs 2% of body weight manages to consume more than 20% of the
energy budget.
 Looking back on the drawing of Cajal, presented in Figure 2.2, each neuron has
dendritic arborization, each of those wires ending in, what are called, dendritic spines.
When a neuron is in its resting state, that is to say that it is negatively charged, if it
receives excitation through only a single dendrite it generates relatively little

12

depolarization in the neuron. Excitation from one dendrite is often not enough to
generate an action potential, it only makes the soma of the neuron slightly less negatively
charged. The influence of the excitation dissipates the farther we go from the excitation
point. Thus, vast amounts of excitation are needed for the change of charge to affect the
axon. Repeated stimulation is needed or, most typically, the simultaneous excitation of
multiple dendrites, which implies synchronous activation of presynaptic neurons [15].

This picture becomes even more complicated with the introduction of the axon
hillock. The axon hillock connects the cell body and the axon, it is a highly specialised
component that generates the spike, which then propagates along the axon. More
precisely, the excitation arriving at the dendrites travels towards the hillock and when
the hillock depolarizes to approximately -40mV the action potential is triggered and
transmitted through the axon. After reaching the absolute peak, the depolarization
process is followed by repolarization in which voltage is decreased by an efflux of K+ ions.
The repolarization is often followed by hyperpolarization, or refractory period, in which
the voltage goes below the resting voltage due to a continued efflux of K+ ions or an influx
of Cl- ions. The hyperpolarization lasts for about 2 milliseconds, a time during which the
neuron is unable to generate another action potential. Finally, Na+ and K+ pumps restore
equilibrium by bringing the membrane back to its resting potential of -70 mV.

The transfer of the action potential to the axon involves the same ion channels,
thus the travelling of the spike along the axon is more of a regeneration process. Thus, we
can treat the spreading of excitation from the dendrites to the cell body as a continuous
phenomenon which may or may not produce an action potential at the axon hillock.
However, once an action potential is generated, it is usually treated as an all-or-nothing
event, an activation that propagates throughout the axon as a discrete phenomenon.

Brain complexity at the level of one neuron
It was established that neurons communicate at the level of synapse and that

somehow an action potential once it reaches the axon can generate an action potential in
another neuron under some conditions. Synapses are microscopic gaps between the
dendritic spines and the axon terminals. As mentioned previously, these signals are
converted. Electrical excitation does not get transferred between one neuron to the next,
it is converted into a chemical signal and only that is transferred to the following neuron.
Notably, a small percentage of synapses do not signal chemically, but rather electrically,
the retinal gap junctions are an example [22].

These chemical signals are called neurotransmitters. Spherical objects, called
vesicles, can be found in the axon terminal and these contain multiple copies of
neurotransmitters. The action potential travels down the axon, setting off the release of
neurotransmitters into the synapse [17]. To be specific, the action potential opens
calcium channels, and it is the influx of calcium that actually drives the vesicles and allows
them to release the neurotransmitters into the synaptic cleft.

Up to this point, neurons have been referred to as ‘previous’ or ‘next’, within this
domain, they are denominated in relation to the synapse. As such, the neuron that has an
action potential sending neurotransmitters through the synapse is called presynaptic
neuron. While the neuron that receives these neurotransmitters is called a postsynaptic
neuron. Each neurotransmitter has a unique shape, naturally each copy has the exact
same shape. The postsynaptic neuron receives these neurotransmitters through

13

receptors, each of these having a unique shape in order to receive a certain
neurotransmitter. The analogy used in the field is that of a lock and key, only the
corresponding neurotransmitter can ‘open’ its affiliated receptor [15]. Once the receptor
is ‘unlocked’ by the neurotransmitter, it causes the opening of channels in the dendritic
spine which starts the excitation by allowing ions to enter the dendrite of the
postsynaptic neuron. This process is shown in Figure 2.6. Thus, one neuron can generate
an action potential in a connected neuron.

At this point, another complication appears. These neurotransmitters cannot
remain linked to the receptors indefinitely, or it would block the generation of new action
potentials or hold the cell in permanent excitation. There are two ways in which the brain
solves this problem, reuptake, or degradation. Reuptake is done by the axon terminal
with specialised pumps that salvage the neurotransmitter and package them back into
vesicles for later use. Degradation is done in the synapse by a specialised enzyme and the
residual material being expelled from the cerebrospinal fluid into the bloodstream.

Figure 2.6 - The synapse and its inner workings. The image was taken and adapted from Wikimedia
Commons (public domain).

As mentioned previously, the excitability of a neuron can change over time. This
can happen in multiple ways in the synapse, by increasing the probability of generating
an action potential in the postsynaptic neuron. Firstly, the amount of neurotransmitter
released by the presynaptic neuron gets increased. Secondly, the number of receptors in
the postsynaptic neuron increases. A more interesting way in which this can be done is
to lower the reuptake activity. This will result in lower amounts of neurotransmitters
being extracted from the synapse. Thus, increasing the duration in which they influence
the synapse and amplifying excitation. Evidently, by lowering the levels of degradation

14

the same result can be obtained. Even though it is yet little understood, a theory that has
been around since the 1950s is that memory is located in the synapse [23]. This has been
adapted over time, as different parts have been found to influence the storing of memory.
But the idea remains, the synapse and its mechanisms persist as a point of interest for the
neuroscientist [24].

It was alluded to above, there are multiple types of neurotransmitters. And to
make it even more perplexing or beautiful, depending on the perspective, multiple types
of receptors. Some neurotransmitters are excitatory, some inhibitory and the function of
some depends on the receptor it binds to. As such, a neuron with 10 dendritic spines may
receive excitatory neurotransmitters from 5 presynaptic neurons and 5 inhibitory ones.
This makes for an exquisitely complex system where information can be coded in many
unique ways.

Brain complexity at the level of multiple neurons
In order to simplify, we have been referring to the synapse as the connection of

the dendrite of one neuron to the axon of another. In reality, only axo-dendritic synapses
have been discussed. In fact, synapses present a variety of different arrangements, axo-
axonic, dendro-dendritic and many others. This section presents concepts of neuron
circuitry, while still remaining at a micro level. These wirings are simple when compared
to the level of complexity found when looking at more vast regions that regulate
behaviour.

A case of neuromodulation through different types of synapses can be seen in
Figure 2.7. Neurons 1 and 2 are connected in a classical axo-dendritic synapse, Neuron 1
releases an excitatory neurotransmitter. In comes Neuron3 with an axo-axonic synapse
to Neuron1’s axon releasing an inhibitory neurotransmitter, called GABA, that attaches
to Neuron1’s receptors. This type of link will stop the action potentials of Neuron1 to
release neurotransmitters that would influence Neuron2, thus keeping Neuron2 from
spiking, this is an example of neuromodulation.

Figure 2.7 - Neuron circuitry. The image was taken from Wikimedia Commons (public domain) and
adapted.

15

 These circuits can also create loops as is presented inFigure 2.8. Neuron1 forms
an axo-dendritic synapse with Neuron2 and another one with Neuron3, both excitatory.
Nevertheless, Neuron3 forms another synapse in a feedback loop with Neuron1 that is
inhibitory. In the hypothetical case that Neuron1 has several action potentials, because
of the two projections, it will excite both neurons 2 and 3. Once Neuron3 has an action
potential it will inhibit the firing of Neuron1, thus can Neuron1 influence itself. This
process is called the sharpening of a signal [15]. Additionally, Neuron1 can even control
the strength of the feedback loop by the number of axonal projections that it binds to
Neuron3.

Figure 2.8 - Looping in neuron circuitry. The image was taken from Wikimedia Commons (public domain)
and adapted.

Brain complexity at the level of brain regions
 When looking at cells in different organs of the body under a microscope, there
are rows upon rows of homogeneously distributed cells. Unless an infection occurs that
may damage the organ, all cells are arranged correspondingly, and it becomes
monotonously similar. This is not the case of the brain, the internal configuration is much
more asymmetric, showing extraordinary levels of complexity.

Brain regions are organised by function, thus all neurons in that region have a
related role in achieving said activity. Different regions communicate with each other by
accompanying intertwined groups of axonal projections, called cables. Thus, resulting in
different regions having different functions while also communicating and influencing
each other.

A few of these regions, such as the hypothalamus and hippocampus, have familiar
names and functions. While others, like the superior olivary nucleus, have less so.
Nevertheless, all of these regions number neurons in the millions.

Unquestionably, the information presented here only begins to scratch the surface
of the true intricacy of how the brain functions and generates behaviour. Its purpose is to
introduce the reader to the complexities that can be found even at the microscopic level,
thus allowing to deduce the actual elaborateness of high-level processes in the brain.
These are the difficulties with which a neuroscientist has to deal with.

16

2.1.3. Brain oscillations
 The neuronal rhythmical activity has been denominated as brain oscillations.

Brain oscillations offer another avenue to further our understanding of the brain as they

can be found in many brain areas and have been found as essential to high-level functions

such as perception, cognition and behaviour. Through the detection of oscillations during

experiments, insights can be gained about how information is processed in the brain.

Furthermore, anomalies in brain oscillations have been linked to diseases, increasing the

need for precise detection of brain oscillations.

The first type of oscillation, the alpha, was discovered and described by Hans

Berger shortly after the invention of the EEG [25] as it was the single oscillation strong

enough to be visible to the naked eye. Oscillations were used as a marker for diseases that

altered normal brain activity. Later studies have shown that brain oscillations are

correlated to brain states and have been involved in clinical and research applications

[26]. Curiously, these rhythms are similar across mammalians in spite of the disparity

between brain mass and complexity [17].
These oscillations have been demonstrated to be ubiquitous in the brain [27] and

have been found at various spatial scales. They can be found in the sub-threshold
dynamics of neurons, in the rhythmic discharges of individual neurons, in the coordinated
activity of larger neural circuits or even cortical areas large enough to produce rhythmic
activity detectable in the EEG. Brain oscillations are intimately connected to cognitive
processes. Nevertheless, it has not yet been determined whether the oscillatory activity
of the brain is a fundamental functionality of the brain or just a side effect of an underlying
phenomenon [28].

Oscillation types
 These oscillations have been discretized into bands by using frequency as a

criterion, but have been associated with various aspects of information processing and

transmission in the central nervous system:

• Infra-slow activity (0.02-0.1Hz): these types of oscillations remain a debate, it is

speculated that they could be generated by non-neuronal activity and that they

may synchronise and modulate faster oscillations [29].

• Slow activity (0.1-15Hz): these types of oscillations occur predominantly during

slow-wave sleep and under specific anaesthetics [29]. These also include the slow

oscillations, the delta, theta and alpha band.

○ Slow oscillations (0.1-1Hz): in EEG recordings, it appears that cortical

activity vacillates between an excitatory and an inhibitory state during

slow oscillations [29].

○ Delta band (1-4Hz): it is suggested that delta oscillations may emerge from

two sources, the neocortex and the thalamus [29]. While thalamic delta

activities are known to appear during deep sleep [17] through neuron

hyperpolarization effects, the neocortical delta oscillations are

hypoworked to be produced by bursting neurons [29].

○ Theta band (4-8Hz): appear in the limbic system and most commonly in

the hippocampus [13], they can appear in both awake and asleep states

17

[17]. Although coherent overall, inter-region fluctuations are present. As

they occur most frequently in the hippocampus, it has been suggested that

they are involved in memory-related mechanisms, such as memory

formation and recall [13]. At a synaptic level, the process of long-term

potentiation (LTP) by the theta activity is present during a task [13].

○ Alpha band (8-12Hz): these types of oscillations were the first to be

discovered. They are prevalent in the thalamus [26], have also been found

in the hippocampus and the reticular formation [13], but are largest in the

occipital cortex. Alpha rhythms have been linked to quiet waking states

[17] and increased attention, more specifically when disregarding

unnecessary information [30]. The synchronisation and coordination of

excitatory and inhibitory interplay is the source of the alpha oscillatory

activity [13]. The alpha oscillations have also been associated with the

coordination of gamma activity [13].

• Fast activity (20-100Hz): includes the activity that falls under the umbrella of beta

and gamma oscillations. These fast rhythmic activities are the most common

oscillation types in the waking state [29]. They appear synchronised across adjoining

cortical areas and are present during specific anaesthetics, slow-wave and REM sleep

[29].

○ Beta band (15-30Hz): these oscillation types have been found in every area

of the cortex and their origination has been associated with

neurotransmitter systems [13]. Beta activity can be found in the awake

state during various cognitive undertakings, for instance, learning,

voluntary motor movements, novelty identification and reward

assessment [13]. Studies indicate that they may occur when a noteworthy

stimulus is present and that they regulate the coordination of neuronal

activity [13].

○ Gamma band (30-80Hz/200Hz): the upper bound of the gamma band is

still under debate and it is further classified into low and high gamma [13].

Similar to the beta activity, gamma oscillations are reliant upon the

neurotransmitter system. Gamma oscillatory activity has been linked to

various cognitive processes, such as consciousness, memory, sensory

perception, motor coordination, prediction, attention and language

processing [13,17,29]. Increased gamma synchronisation has been also

linked to perceptual integration, such as the binding of parts to form a

whole [31]. It has also been found that gamma oscillations are produced by

the synchronised excitatory and inhibitory activity of local circuits [32].

Each oscillation band has been found to be linked to different cognitive brain

functions, yet different brain regions can generate oscillations at different frequencies

[22]. A direct relationship between oscillation, brain region and cognitive function is

unlikely to be found. A plausible reason is that the amount of oscillatory activity is

insufficient to fully comprehend the complex mechanisms of the brain [22]. Nevertheless,

they can serve as another method by which our understanding of the brain increases.

18

Oscillations in the cortex
 By and large, high-frequency activity is linked to states of wakeful alertness and

the dreaming phase of sleep. Whilst, low-frequency activity is linked to non-dreaming

phases of sleep, anaesthetised or coma states [17]. The logical hypowork is that

information processing is such a complex state that the activity level is high but

uncoordinated, that is to say that small groups of neurons would work together on

connected yet different tasks in order to achieve overall cognition [17]. The overall

synchronisation is low, such that localised oscillations, mostly in the beta and gamma

bands, become more prevalent. In comparison, in states of deep sleep where lower

frequency oscillations dominate, many neurons are excited by the same process and they

synchronise as no conscious information processing is happening [17].

Oscillatory activity is omnipresent in the brain at various frequency ranges. It has

been suggested that they offer a temporal frame upon which information encoding would

be possible and even, propitious [13]. Although present and measurable, many concepts

remain unclear. It has not yet been established whether an underlying process exists that

produces the oscillatory activity as a side effect. The classification of oscillatory behaviour

into bands can be slightly different depending on the studied species but they respect a

logarithmic distribution. The beta and gamma bands have overlapping functionalities and

may be produced by a common mechanism, raising the question if they should be

considered as rigorously independent of each other, as a collective or as a continuum [13].

Moreover, the opposite is not implausible either, a possibility is that different

mechanisms produce such bands and that a discretization into sub-bands is required

[13]. Furthermore, several diseases have been linked to improper oscillatory activity. The

question of whether they are the cause or just an effect still remains unanswered.

2.1.4 Brain recording techniques
Different recording techniques provide different scales (temporal and spatial) of

observation of nervous activity. Brain recording techniques can be categorised based on

the type of signals they record: electrical, magnetic, or hemodynamic. However, they can

also be categorised depending on whether they are invasive or not. Invasive methods

require insertion of a probe into neural tissue, capturing signals with high precision,

while non-invasive methods allow for the study of brain activity without this

requirement. Electrical signals can be obtained through the use of microelectrode

recordings (MER) or electroencephalography (EEG). MER is an invasive technique that

can provide recordings of the activity of a single neuron or a small population of neurons.

EEG measures the electrical activity of a large population of neurons through the use of a

cap placed on the scalp. Magnetoencephalography (MEG), another non-invasive

technique, captures the brain's magnetic fields generated by neural currents.

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that utilises

magnetic fields and that can modulate neural activity which has shown potential for

therapeutic applications. Functional magnetic resonance imaging (fMRI) can be

categorised as hemodynamic as it measures oxygen consumption changes in the blood

flow associated with neural activity. A modified fMRI machine can be used together with

EEG for simultaneous recordings, alongside behaviour indicators such as with reaction

19

time, error rate, and others, that can help in the formation of theories about the task and

brain activation resulting in a finer function-to-structure mapping [33]. Table 2.1 offers a

short description of these brain recording techniques and their various features.

Table 2.1 – A descriptive summary of various brain recording techniques.

Method Type Description Applications Resolution
(Temporal/

Spatial)
MER Invasive Captures intricate

recordings of the activity
of single or small
populations of neurons.

Neuroscience
research

Very High / Low

EEG Non-invasive Measures the electrical
activity of a large
population of neurons
through electrodes
placed on the scalp.

Clinical
diagnosis,
cognitive
neuroscience
research

High / Low

MEG Non-invasive Captures the brain's
magnetic fields
generated by neural
currents.

Cognitive
neuroscience,
presurgical
mapping

Very High /
Moderate

TMS Non-invasive Utilizes magnetic fields
to modulate neural
activity.

Research on
brain function,
therapeutic
applications

Moderate /
Moderate

fMRI Non-invasive Measures oxygen
consumption changes in
blood flow associated
with neural activity.

Cognitive
neuroscience,
clinical
diagnosis

Low/ High

This work focuses on two of the most common brain recording techniques: ‘in

vivo’ microelectrode recordings, and EEG. The microelectrode recording technique

allows the recording of even single cells, while EEG allows for the recording of global

activity. The global activity of the brain has been correlated with certain behaviours [34]

and diseases [35]. Generally, invasive methods are more difficult to perform because of

the trauma and the microscopic precision needed and they can only record very small

regions, but they offer a cleaner signal and have a better temporal resolution.

‘in vivo’ microelectrode recordings
Microelectrode recordings are an intracranial recording technique requiring

direct access to the brain. Such experiments are more difficult to perform due to the
required hardware and the level of precision and was most commonly performed on
anaesthetised animals because of their invasiveness. It can be performed on humans
during operations on the brain, although it happens rarely. The new trend of
electrophysiology is to insert chronic implants for a long-term analysis of behaviour.

20

These types of experiments can be further segregated into two subtypes, namely
intracellular and extracellular recordings. Intracellular recordings induce a higher degree
of complexity as the recording electrode must be inserted in the cell, which limits the
number of neurons that can be recorded and increases the risk of death of the recorded
neuron [36]. Although harder to perform, there are advantages, intracellular recordings
can provide the inside, sub-threshold view that extracellular recordings lack.

Extracellular recordings imply the insertion of the recording electrode between
neurons, thus recording the activity of adjacent neurons allows researchers to process
and hopefully understand how neuron populations interact. When measuring potential
with an electrode placed in the neuronal field, a reference electrode must be placed in
contact with tissue at an area sufficiently far apart so as not to be influenced by the
activity within the recording volume. Nevertheless, activity from multiple neighbouring
spiking cells, from circuits farther away (orders of mm) and noise are also picked up by
the electrodes. Thus, the neuronal activity has to be separated from background noise
and individual spiking neurons need to be separated from each other.

Due to the high density of neurons in the brain, neuronal activity can create fields
that sum up. Such superpositions of action potentials can appear in the recording in the
form of low frequency ripples of up to 300 Hz called Local Field Potentials (LFP) [37] as
shown in Figure 2.9. LFP activity can be isolated using a low-pass filter with a cut-off
frequency of 300Hz. LFPs comprise the activity of both excitatory and inhibitory neurons
and are brought about by a superposition of electric fields produced by a multitude of
processes including synaptic activations, oscillations, spikes and afterpotentials that
propagate theoretically in a volume of up to several mm3 [38].

Figure 2.9 - Raw signal filtering resulting in Local Field Potentials and/or Spiking Activity.

The spiking activity, also called multi-unit activity, can be isolated through the use
of a band-pass filter with 300-7000Hz cut-off frequencies as shown in Figure 2.9. Activity
of individual cells have to be disentangled based on certain characteristics in order to
investigate the interactions between individual neurons. This is where Spike Sorting
algorithms are used. Figure 2.5 shows the differences between intracellular (Figure 2.5
right) and extracellular (Figure 2.5 left) recordings.

As always, the picture painted here is not as simple in reality. There are many
factors that can affect the quality of the recording. Moreover, the distance of the neuron
to the recording electrode affects the amplitude of the recorded signal, while the

21

orientation and the morphology of the dendritic tree can also affect the shape of the
action potential [17]. Neurons within 0-50μm can be identified as single units, that is to
say their activity is easily separable from the activity of other neurons. While neurons
within 50-140μm can only be identified as multi-unit as they can hardly be identified by
using their amplitude, that is to say that their activity is likely to be merged with the
activity of other neurons in that range. At distances larger than 140μm neuronal activity
becomes drowned by the background noise and cannot be separated at all [39].

Despite their name, Local Field Potentials (LFP) [40] are not only local and can be
present even when spiking is not present in the recorded area, in which case it indicates
that their source may be further away and that LFP amplitude is not always correlated to
the local activity. Furthermore, electrodes do not present spatial sensitivity as the
electrode records any field potentials that arrive in their neighbourhood. Electrical
properties and source geometry are factors that indicate whether a field potential is
recorded at a distance. LFPs are residual currents of neuronal population activity [40]
that present certain correlations to engaging neurons. The relationship between
individual neuronal activity and LFP remains a topic of debate due to its inherent
complexity; it has been found that the activity of a subset of neurons is aligned to LFPs
while others have no correlation. The characteristics of LFPs are controlled by structural
factors at both micro and meso-scale, while temporal patterns are configured as the mix
of the temporal dynamics of source neurons.

Multitrodes
The separation of single-unit clusters in extracellular recordings is made on the

assumptions that different neurons produce unique amplitudes and waveforms on the
recording electrodes. Under this assumption, using these characteristics, partitioning of
spikes into groups produced by the same neurons can be achieved.

Multi-channel electrodes are able to capture the action potentials of multiple
neurons at different distances on each channel. Therefore, a spike recorded with such a
multitrode can have a different amplitude on each recorded channel, depending on the
distance and the shape of the neuron producing the spike. In a manner similar to
triangulation in 2D space, due to the amplitude differences between channels for a single
spike, the identification of source neurons is easier to make [41,42] because ambiguities
can be resolved easier using information from multiple channels.

This is the case especially for neurons firing at the same time on single-channel
electrodes; the waveform of superimposing spikes is difficult to disentangle. Usually,
these overlaps are approached in single-channel recordings through template matching
[43]. While for a multi-channel electrode this overlap may happen on only a subset of the
channels and the rest may allow the separation of these simultaneous firings [41].
 In the case of highly active neurons, this increased spatial resolution of

multitrodes may improve performance by reducing the number of overlapping spikes

[43,44]. This spatial resolution appears from the correlation between the amplitude of a

spike and the distance between the electrode tip and the firing neuron [41].
Knowing these, it might be expected that a further increase of the number of

channels should also result in an increased ability to identify the source neurons. One
study found that, in recordings that contain a lot of noise, heptodes (seven channels) are
better than tetrodes, while in less demanding situations they perform equally. PCA was
used in order to reduce the dimensionality and it was determined that the number of

22

principal components has an impact on the spike sorting performance, with a higher
number of principal components increasing the performance. These analyses were made
through the use of a signal simulation algorithm [44].
 Another study evaluated the impact of noise and number of neurons on the

performance of spike sorting with regard to the number of channels available. It has been

shown that tetrodes and heptodes outperform single-channel electrodes as the number

of neurons or the standard deviation of noise increases. Additionally, heptodes have a

slightly higher performance for spike sorting than tetrodes [41,43].
The multi-channel approach, although it solves certain difficulties, brings other

challenges: very large amounts of data and high-dimensionality [2]. This is certainly
the case for the new types of electrodes, like Neuropixels, that allow the recording of
hundreds to thousands of neurons [1]. These new developments bring the question of
how to process all the information as current methods have been underperforming for
higher numbers of neurons in a recording. One study shows that out of 20 neurons,
current methods are only able to identify 8-10 [45].

Data acquisition
Adult mice of the C57/BL6J strain were used for the recording of in vivo

electrophysiological data. The mice were anaesthetised using isoflurane in oxygen (5%
for induction, 2 - 2.5% for surgery, 1-3% for maintenance) and then mosunted in a
stereotaxic frame (Stoelting Co, Illinois, United States). The heart rate, respiration rate,
core body temperature, and pedal reflex were constantly monitored. The body
temperature of the animal was maintained at 37°C using a feedback-controlling heating
pad with a rectal probe (Harvard Apparatus). The animal's head was shaved and
prepared with povidone-iodine and a local anaesthetic (Xylocaine). Then, a midline
incision was made, and a circular 2 mm craniotomy was carried out on the left
hemisphere. The craniotomy was positioned at stereotaxic coordinates that
corresponded to the visual cortex, specifically 0.5-1 mm anterior to lambda and 2-2.5 mm
lateral from the midline.

Electrophysiological data was collected using A32-tet probes (NeuroNexus
Technologies, Inc) at a sampling rate of 32 kSamples /s (Multi Channel Systems MCS
GmbH) while the mice performed a visual perception task involving moving stimuli. The
stimuli used were full-field drifting gratings presented monocularly on a Beetronics
12VG3 12-inch monitor with a resolution of 1440x900 at 60fps. The gratings had a spatial
frequency of 0.11 cycles/deg and a temporal frequency of 1.75 cycles/s. In some of the
datasets used their contrast varied between 25% and 100% and the gratings were
presented in eight different directions in steps of 45°. Others had a fixed contrast of 100%
while the directions were presented in steps of 45° or 30°.

The electrophysiological signals were recorded at a sampling rate of 32kHz (Multi
Channel Systems GmbH), and local field potentials (LFPs) were obtained by applying a
band-pass filter (bidirectional, 3rd order Butterworth IIR filter) from 0.1 to 300 Hz,
followed by downsampling to 1kHz. Line noise artefacts and their harmonics were
eliminated by applying a series of notch filters (bidirectional, 3rd order Butterworth IIR
filter) at 50, 100, and 150Hz. In contrast, for multiunit activity, the data has been digitally
band-pass filtered (bidirectional, 3rd order Butterworth IIR filter) between 300 - 7000
Hz. Afterwards, a threshold is computed as the standard deviation (SD) of the filtered
signal multiplied with a coefficient, which was typically set between 3 and 5 times the SD.

23

All threshold crossings were then identified as spikes and served as input for the feature
extraction algorithm.

All animal experiments were carried out respecting directive 86/609/EEC of the
European Communities Council from 24 November 1986, directives 2010/63/EU of the
European Parliament and 2010/63/EU of the Council from 22 September 2019. These
procedures have been approved by the Local Ethics Committee (approval
3/CE/02.11.2018) and National Sanitary and Veterinary Authority (approval ANSVSA
147/04.12.2018) and performed in accordance with the ethical guidelines of the
European Communities Council Directive 2010/63/EU Society for Neuroscience,
Romanian laws for the protection of animals and Romanian Law 43/2014 on proper
conduct in scientific research. Multiple datasets were collected over 4–6h from each
animal to minimise the number of animals and animal use.

Electroencephalography (EEG)
Electroencephalography (EEG) is one of the oldest techniques of brain recording

and it is often referred to as a "window on the cortical brain activity" [46]. Moreover, it is

non-invasive and commonly used in research and clinical applications as the electrodes

are placed on the scalp and it is the best option from an ethical and cost-efficiency

perspective. In extracranial recordings, the electrical field generated by neuronal activity

must travel through the cerebrospinal fluid, skull, head muscles, and skin in order to be

able to reach the recording electrodes. Thus, only the coordinated activity of large neuron

populations is recorded, providing a poor spatial resolution due to the smearing effect on

the potential. It is not the axonal currents of the action potential that are represented in

the EEG signal as the myelination of the axons insulates them, but rather the postsynaptic

dendritic currents [47]. Postsynaptic dendritic currents form in the dendrites and soma

of a postsynaptic neuron as neurotransmitters from the presynaptic neurons bind to the

receptors of the postsynaptic neuron. EEG signals have been correlated to different states

of behaviour, such as sleep, focus and perception [26], and used to identify diseases, such

as schizophrenia [48] or Alzheimer’s disease.

EEG electrode positions have been standardised as their positions have a great

effect on the analysis and the interpretations of the data. The recording electrodes must

have a reference as the signal is measured as the voltage between the electrode and the

reference. Additionally, the contact resistance can be lowered through the use of a special

electrically conductive gel.

 Data acquisition
Healthy human subjects participated in a visual recognition task, during which

EEG data was collected using a high-density EEG cap (Biosemi ActiveTwo) that had 128
electrodes and recorded at a sampling rate of 1024 Hz. Visual stimuli were created using
the "Dots" method and were displayed on a 22-inch Samsung SyncMaster 226BW LCD
monitor with a resolution of 1480 x 11050 @ 120 fps, and a viewing angle of 8.7x5.6,
placed 1.12m away from the participant. After the recording, the EEG data was subjected
to band-pass filtering between 0.1-200Hz (Butterworth 3rd order) and power line noise
was removed using a band stop filter (49.5-50.5 Hz, 4th order Butterworth). To avoid
phase distortions, both filters were applied bidirectionally.

24

The conducted experiment used a set of 210 stimuli composed of dot lattices
resembling the contours of 30 known objects with varying levels of deformation. Each
trial consisted of three intervals: fixation, stimulation, and response. During the fixation
period, the participants were instructed to maintain fixation for a duration of 1500-
2000ms, which served as a baseline period before the stimulus was presented on the
monitor. Once the stimulus appeared, the participants were allowed to visually explore
the scene to reach a perceptual decision on the stimulus identity. Finally, the response
interval required the participants to press one of the three buttons that corresponded to
their perceptual decision - seen, uncertain, and nothing.

Human experiments were carried out in compliance with Directive (EU)
2016/680 and Romanian Law 190/2018 and were reviewed and approved by the Local
Ethics Committee (1/CE/08.01.2018). All participants involved in the study have
provided their written informed consent.

2.2. Computer science domain knowledge

2.2.1. Architectures of artificial neural networks
A neuron can be simplified into an input-output system with multiple inputs

(dendrites) and a single output (axon). This simplified model was used in the creation of
artificial neural networks as its most basic processing unit and is shown in Figure 2.10.
They were inspired by the inner workings of the biological brain and thus mimic its
functionality and structure.

A neural network consists of a set of interconnected computational units, namely
artificial neurons. Similar to its organic counterpart, the role of a neuron is to receive
signals, process them and transmit the output signal to the connected neurons. Generally,
artificial neurons in an artificial neural network are grouped into layers. In the simplest
architectures, the neurons of one layer receive input from the neurons of the preceding
layer and send the outputs to the succeeding layer. More complicated network structures
with recurrent connections have also been used and studied.

Figure 2.10 - A simple diagram of the perceptron, where w indicates the weights, b the bias, and f the
activation function.

Autoencoders
Autoencoders [49,50] are a type of neural network that are capable of learning the

intrinsic relationships between data points without the use of ground truth.
Autoencoders try to reproduce the input at the output, usually with the same number of
features. The autoencoder is part of unsupervised learning as it does not require labelled

25

data, it learns to represent the data, usually, through a low number of features while
ignoring the noise and redundant information. Because it can learn to represent the data
in a low-dimensional space while also being able to recreate the input, it is an appropriate
method of dimensionality reduction. The general architecture of an autoencoder is
presented in Figure 2.11.

A general structure of an autoencoder can be defined as n-p-n, where 0 < p < n.
The autoencoder can be split into three principle interconnected components: encoder,
latent code and decoder. The encoder and the decoder can each be viewed as neural
networks and can contain multiple hidden layers. The encoder receives the original data
and throughout its layers decreases consecutively the number of neurons until it reaches
the latent code, thus the output of the encoder is the code. The decoder receives as input
the latent code and throughout its layers increases consecutively the number of neurons
until it reaches the final output, which usually is of the same size of the input. The goal of
the autoencoder is to reproduce the input at the output, while passing the data through a
bottleneck. This bottleneck, called the latent code, can be used as a new reduced set of
features, as it is able to reproduce the input by using it, thus the autoencoder can be used
as a Dimensionality Reduction method.

Figure 2.11 - A simple example of an autoencoder architecture.

Autoencoders allow for the design of custom architectures with a chosen number
of layers and of neurons per layer. And naturally, the autoencoder is able to learn more
complex codes by increasing the complexity of the architecture. Through its quality of
being a neural network, the encoder and the decoder can have many variations, with
symmetric or asymmetric structures, fully connected layers or even convolutional layers
for images.

The goal of an autoencoder is to reconstruct the input at the output as precisely as
possible, in order to achieve this, it uses a loss function, generally the mean squared error
between input and output. Indiscriminate of the choice of loss function, its role is to
punish the autoencoder when the output does not reflect the input, thus by minimising
the error, the autoencoder is able to reconstruct the input at the output.
 Autoencoders have been shown as a viable dimensionality reduction strategy [51–
53] for computer vision using datasets such as MNIST. Recent developments have been

26

made even on autoencoder-based methods for spike sorting [54,55]. Although their
evaluation is limited to synthetic datasets with low numbers of clusters, the evaluation
has been made using accuracy as a metric, which is unsuitable for an imbalance problem
such as spike sorting.

Variants of autoencoders
There exist many autoencoder variations. Tied [56] autoencoders have the

weights of the encoder and the decoder linked from initialisation throughout the learning
process, they have been shown to have a faster convergence and to provide better
reconstructions.

Autoencoder, just as other neural networks can be pretrained in multiple
manners, one option of pretraining is a greedy layer-wise approach [57]. Pretraining can
provide a better way of weight initialisation that can increase performance by increasing
the likelihood of circumventing local minima. As the name suggests, the layers are trained
in a one-by-one fashion and then saved.

The Long Short-Term Memory (LSTM) [58] is a type of neural network that solves
the problem of long-term dependencies being lost on Recurrent Neural Networks (RNN).
In RNNs, initial inputs are learned, and as new inputs appear, the old ones start to lose
importance, this phenomenon is called vanishing. From a distance, an LSTM cell works
similarly to that of an RNN cell. The LSTM is composed of three parts, called gates, the
input gate, the forget gate and the output gate and an additional part the hidden state.
Information as inputs, passes through the LSTM and it automatically modulates whether
the information that is retained or forgotten. LSTM cells can be used in any neural
network architecture.

Orthogonality [59] is a constraint that can be applied to the weights of a neural
network. In the case of autoencoders, it forces the weights of the encoder and decoder to
be orthogonal through a kernel regularizer. It can reduce the correlation between the
encoded characteristics by applying a penalty on the characteristics based on the
covariance matrix.

Contractive [60] autoencoders bring a modification of the loss function. The
weights of the autoencoder are constrained through regularisation to remain small. Thus,
bestowing robustness to noise by favouring the contraction of the input samples,
increasing the robustness or the encoded characteristics but not necessarily that of the
reconstruction. The squared Frobenius norm of the Jacobian is used, instead of the usual
L2 norm, as the regularizer term. The new loss function is given by the following formula:

𝐽𝐶𝐴𝐸(𝜃) = ∑ (𝐿 (𝑥, 𝑔(𝑓(𝑥))) + 𝜆||𝑗𝑓(𝑥)||𝐹
2)

𝑥𝜖𝐷𝑛

(1)

where λ is a hyper-parameter that represents the strength of the regularisation, L is the
reconstruction error, typically chosen as Mean Squared Error (MSE) or crossentropy.

The Generative Adversarial Network
Generative Modelling makes part of the subdomain of Unsupervised Learning in

Machine Learning. It focuses on discovering and learning the underlying pattern of the
input data in order to be able to generate new samples that could have seemingly come
from the original set of data.

27

Generative Adversarial Networks (GAN) [61] formulate the problem of Generative
Modelling as Supervised Learning by separating the solution into two models, a generator
and a discriminator. The Generator Model is trained to generate new samples, whilst the
Discriminator Model learns to identify (classifies) if the given sample is a real one (from
the data) or fake (generated by the Generator). These models are trained adversarially,
also known as a zero-sum game, until the Generator is able to deceive the Discriminator
consistently but not completely. Reaching this point indicates that the Generator is able
to generate samples that are very similar to the original.

GANs can be considered a deep-learning generative model. Moreover, they are an
architecture for the training of a generative model and most commonly deep models are
used. This introduction of deep models, named Deep Convolutional GAN (DCGAN), into
the GAN framework has helped stabilise the generative model. [62] Therefore, most GAN
models today are based on the DCGAN [63].

The Generator
The Generator Model receives inputs as vectors of a fixed length containing

random values, and as output generates samples in a targeted domain. Usually, the vector
contains a random Gaussian distribution. Succeeding the training, the points represented
by the fixed-length vector space correspond to the points of the problem domain, thus a
compressed representation of the data is formed.

This fixed-length vector space is also called a latent space, another version used is
to refer to the vector space as containing latent variables. These latent variables are
defined as random variables that cannot be observed directly. [64] The latent space
represents a compression of the raw data distribution. For the particular case of GANs,
the latent space of points receives meaning from the inner workings of the model, such
that each new point of the latent space given to the Generator is used to generate a new
and different sample. A simple illustration of the Generator and its inputs and outputs is
shown in Figure 2.12.

Figure 2.12 - A simple diagram of the Generator model inputs and outputs.

The Discriminator
The Discriminator Model is trained to be able to perform a binary classification,

given a new sample it decides whether it is a real sample or a generated one. A real sample
comes from the set of data, while a generated sample comes from the Generator Model.
The network type of the Discriminator is a well-known normal and simple network
architecture, the novelty comes from its use in combination with the Generator. A simple
illustration of the Discriminator and its inputs and outputs is shown in Figure 2.13.

28

Figure 2.13 - A simple diagram of the Discriminator model inputs and outputs.

Generator and Discriminator Interaction, A Two Player Game
As mentioned above, the GAN architecture allows the framing of the generative

modelling problem, which is of the unsupervised learning sort, as a supervised learning
algorithm. The generator and discriminator are trained together. The flow starts with the
generator’s generation of a batch of samples which are given to the discriminator to be
classified. This is followed by the update of the discriminator to improve its performance,
while the generator is updated on its ability to fool the discriminator. An illustration of
the interaction between the Generator and Discriminator in order to create the GAN
model is shown in Figure 2.14.

Figure 2.14 - The interaction between the Generator and Discriminator models creating the GAN.

Therefore, the two models are competing against each other and playing a zero-
sum game, the term adversarial was taken from game theory to describe the behaviour
of this architecture. When the discriminator correctly identifies between real and fake
samples, the generator is heavily penalised - large updates are made to the model
parameters in order to improve the generation, while the discriminator receives no
change. And when the discriminator is fooled, the inverse happens.

The ideal case of the GAN, when convergence is reached, would be a generator that
creates perfect replicas of the input, which would result in the discriminator being unable
to distinguish between real and fake samples and therefore, its predictions being unsure
in every case with a 50% accuracy. [64] This point need not be reached in order to create
a successful generator model.

Other Uses
GANs are most typically used when working with images, thus they are using

Convolutional Neural Networks (CNN) to implement the generator and discriminator. For
the modelling of image data, the latent space - the input of the generator - yields a
compressed representation of the data set of images used for training. As expected, the
Generator will then generate new images, an output that is easily visualisable by
observers allowing for empirical validation of the generation.

A critical development added to the GAN architecture was the Conditional GAN. In
this case, the generative model is trained to generate new samples conditioned by some
additional input. [65] This additional information conditions both the generator and the

29

discriminator, for example: a class label. The conditioning can be done by feeding the
condition as an additional input layer to both.

Given that the discriminator also receives the conditional information, when
classifying the discriminator expects the input to be of the given type. Thus, it forces the
generator to create samples of that class otherwise being unable to fool the discriminator.
In such manner, a Conditional GAN learns to generate samples from a given domain.

The Conditional GAN models allow for applications such as image-to-image
translation [66], these permitting more impressive transformations: season change in
images, day-to-night switch, writing style transfer, colorization of images. Within
applications such as these, the discriminator is given examples of both real and fake of
the intended transform, while being conditioned on the real images of the original.

What GANs provide
Data augmentation is a technique commonly used to boost the model’s capacity to

learn, while also contributing with a regularisation effect by increasing the model’s ability
to generalise. The idea behind it is to create new samples from the original dataset on
which to train the model on. Thus, it also allows the expansion of small datasets that have
too few examples to train a model. In its most simple form, data augmentation is
comprised of elementary image processing operations, such as: flips, crops, rotations,
addition of noise and others. Therefore, by its definition, generative modelling could be
classified as a data augmentation method as it generates new examples, although it
provides a more complex and possibly more specific to a given domain approach. Another
way of looking at it, data augmentation could be viewed as a more simplified variant of
generative modelling [67]. With the emergence of GANs, Variational Autoencoders were
quickly replaced in data augmentation.

GAN Failure
The training of the generator and discriminator concomitantly in a zero-sum game

results in a trade-off. Improving either model is made at the cost of the other. Thus, a
point of balance has to be found in the competition. As the two models each change their
parameters separately, the optimization of each keeps changing which generates a
dynamic system. Therefore, it is expected to see a higher variance in accuracy and loss
than in typical models during the training period. While the most accurate generation of
samples is done when stability occurs. It is easy to infer that GANs can have failure to
converge. As an example, a discriminator with perfect accuracy in classifying will not
produce a suitable generator.

Another difficulty that may appear in the training of GANs is called mode collapse.
Mode collapse refers to the case in which the generator maps different inputs to the same
output [68]. Thus, resulting in only a small subset of generated samples, or modes [63].
In this case, the mode appertains to the output distribution. As an example, multi-
modality refers to the presence of multiple peaks, while mode failure in GANs is the
inability to generate diverse samples from a hyper-dimensional input space. The mode
collapse in the generator can be identified in two manners. Firstly, an examination of a
large number of generated samples will highlight little diversity, as similar or identical
samples have been generated. Secondly, an examination of the generator loss will display
oscillations that are corresponding to the generator jumping from one mode to another,
as the losses are different. The most common occurrence of mode collapse is an
insufficiently large input latent space.

30

Convergence failure happens when the GAN is unable to find the balance point
between the generator and discriminator. The most common case is the high accuracy
and low loss of the discriminator. In these instances, the generator is creating easily
identifiable samples. When applying GANs on images, this can happen due to aggressive
loss function, too large or too small kernel sizes. These types of failure are effortlessly
detectable by visualising the loss during training.

Wasserstein GAN
Wasserstein GANs (WGAN) have been shown to overcome the most common

failures of GANs, in training [69]. WGANs apply a different approach to the GAN
formulation, they designate the latent space with a fixed distribution and pass it through
a parameterized function, in order to map it to a new distribution. Thus, by varying the
parameters the new distribution varies as well. Two advantages emerge from this
approach: a higher number of distributions can be learned and the generation of new
samples from the latent space becomes easier. In the original paper [69], they propose
the use of a different distance metric called Earth Mover or Wasserstein metric. This
metric measures the minimum cost required to transform a distribution into another of
the same size.

Worth mentioning is the role change of the Discriminator in this approach. In this
configuration, it is also called a Critic. Additionally, to distinguish between real and fake
samples, it converges to a linear function that is used to improve the training of the
generator.

Another improvement added to WGANs is related to the optimization task, as
using weight clipping causes issues of exploding and vanishing gradients [70]. The
proposed approach is gradient penalty (WGAN-GP). The Discriminator, or Critic, receives
a penalty of its gradient norm output with respect to the input, while also adding a light
variant for random samples.

A notable improvement has been made through the leveraging of nearest
neighbour search algorithms. [71] This allows the training of GANs with a lower amount
of data by finding the nearest real sample to each generated sample and adjusting the
parameters to narrow the gap. This improvement should also neutralise the mode
collapse failures and, allegedly, the instability and vanishing gradient issues. A
disadvantage that emerges is the computational cost of nearest neighbour search
algorithm addition.

Self-Organizing Map
The Self-Organising Map (SOM), introduced by Teuvo Kohonen in 1981 [72], is an

unsupervised learning technique that transforms the input space into a bidimensional (in
its most classical form) map of processing units (also called neurons in the literature). It
is able to project high-dimensional data into two-dimensional space while preserving the
topological structure of the data. SOMs are trained using competitive learning instead of
the typical backpropagation with gradient descent. Its most common uses are in data
visualisation and analysis [73].

The SOM generates a two-dimensional matrix of neurons, where the width and the
height are parameters to be chosen, where each cell contains a weight vector that is
randomly initialised. For each sample, during training, the closest node to a given sample,
or Best Matching Unit (BMU), is found and the BMUs weights are updated towards the
sample according to a learning rate parameter. This is considered the competition part of

31

the algorithm. The neighbouring nodes are also updated to a smaller degree following a
gaussian function, which is the collaboration part. The iterative training process can be
stopped after a certain number of iterations or when only minimal changes occur in the
mapping. Commonly, during training the learning rate and neighbourhood radius can
also be decreased iteratively [74]. The competition part consists of finding the most
similar unit, formulated in the first equation, while the collaboration is the sharing of the
winner unit i with units j within a certain distance di,j [75].

𝑖(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗||𝑥 − 𝑤𝑗||2 where 𝑗 = 1,2, … , 𝑚 (2)

ℎ 𝑖,𝑗(𝑑𝑖,𝑗) = exp (
−𝑑𝑖𝑗

2

2𝜎2
) (3)

 The training of a SOM network can be expressed in pseudocode:

 function train(samples):
 learning_rate = 1
 radius = 1
 som_size =10

som = initialize_som(som_size)
for k in 1 to len(samples):
 bmu = find_bmu(samples[k])
 update_weights(samples[k], bmu)
 decay(learning_rate)
 decay(radius)

 Many variations and extensions have been designed [73], and parameters can be
changed, such as extending the SOM into a three-dimensional cube and incorporating
various neighbourhood and distance functions. The recommended map size depends on
the number of training samples [76]:

𝑆𝑖𝑧𝑒 = 5 ∗ √𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (4)

The initialization method is crucial for SOM training [77], with random
initialization being the most common, even though it induces non-determinism and has
longer execution times. A more efficient alternative is to initialise the SOM weight vectors
with samples from the training data thus reducing the initial distances and updates
required, but it does not address the non-determinism. A deterministic alternative is to
initialise the weight vectors with linear combinations of principal components (PCs).
Nevertheless, it seems that random initialisation has a better performance for non-linear
datasets than the PCA initialisation [77].
 As other neural networks, SOMs try to minimise the error computed as the
distance between samples and nodes. In the case of SOMs, its training performance can
be evaluated through quantization or topographic errors. The quantization error (QE) is
computed by calculating the average distance of the input data point to the closest nodes
in the lattice, given by the following formula:

32

𝑄𝐸 =
1

|𝐷|
∑ ||𝑥𝑖 − 𝑤||2

|𝐷|

𝑖=1

 (5)

where D represents the input data, x the current sample and w the weight vector of the
best-matching unit.

It is important to highlight that the quantization error (QE) decreases as the SOM
lattice becomes larger, therefore it cannot be used to compare maps of different sizes
[78].

In contrast, the topographic error (TE) measures the preservation of the data
shape in the map. In its simplest form, it calculates the proportion of inputs where best-
matching units and second-best-matching units are neighbours in the map, given by the
following formula:

𝑇𝐸 =
1

|𝐷|
∑ 𝑡𝑒(𝑥)

𝑥𝜖𝐷

 (6)

where D represents the input data and ci the i-th best matching unit, and te(x) is equal to
1 if c1(x) and c2(x) are neighbours, and 0 otherwise.

The SOM training time has a linear complexity with regard to the number of
samples and a quadratic time complexity in relation to the map size [74]. Besides those
presented, many other parameters are involved in the training of a SOM.
 The main utility of this method is visualisation as the nodes created are viewed as
independent clusters, then the number of clusters is equal to the number of nodes in the
map. However, by using SOM as a feature extraction algorithm and combining it with a
clustering method, such as agglomerative clustering, it can provide satisfactory results as
a feature extraction algorithm for clustering [79,80].

U-matrix
The U-matrix, also known as the unified distance matrix or the distance map, is a

visualisation technique used to understand the resulting topology and relationships
between the artificial neurons of a self-organising map (SOM) post-training. It is
represented as a grid, of the same size as the SOM, of values where each cell represents
the distance or dissimilarity between neighbouring neurons in the SOM grid. The distance
is typically calculated using the Euclidean distance between weight vectors of adjacent
neurons. By calculating the U-matrix, a visual representation is obtained of the
relationships between neurons allowing us to understand the topology of the SOM by
identifying areas of high and low density, allowing underlying structures within the input
data.

Pulse Coupled Neural Networks
Pulse Coupled Neural Networks (PCNN) were modelled after the cortical neurons

of the cat’s visual cortex and the phenomena of oscillating pulses [81,82] and was inspired
by gamma band synchronisation, where neurons fire synchronously in a region based on
similarity and proximity [81]. PCNN proved to be appropriate for image processing and
modifications of the original made have been created to optimise image segmentation
and other procedures [83].

33

The pulses generated by the neurons of the PCNN are resulted from the excitation
obtained by the stimulus and the interaction between neighbouring neurons. These
determine synchronous firing in the homogenous areas of the image [84]. The neurons
used in PCNN are a specific type of leaky integrators, where exponential decay is used as
the rate of leaking [81]. While the refractory period of the neurons is modulated through
the use of the dynamic threshold by an exponential decrease after firing [81,84] and
following pulses require increased amplitudes. Using images as stimuli results in a non-
linear transformation, due to the exponential decays and the couplings among neurons
[82].

Generally, PCNNs are single-layered 2D networks, where each pixel has a neuron
as a correspondent. They can be separated into five main parts: feeding input (F), linking
input (L), internal activity (U), the dynamic threshold (𝛩), and the output (Y) [85]. The
formulas of the different parts of the PCNN model are described by the formulas below
[81–85]. The current iteration is defined as “n” in these equations and these formulas are
applied for each neuron of the network identified by the i and j indexes and the
neighbours of neuronij are identified by the k and l indexes.

Additionally, the dynamic threshold, feeding and the linking input contain
exponential decay factors of the previous states: 𝑒−𝛼𝑓, 𝑒−𝛼𝑙 and 𝑒−𝛼𝜃. Wkl and Mkl are the
local synaptic weights of the feeding and linking inputs, respectively. Thus, the
neighbouring neurons of the PCNN create a visual receptive field, where the strength of
the local synapses is given by the weights. Vf, Vl and Vθ are used to modulate the
surrounding neurons of the current and Vθ regulates the refractory period by increasing
the threshold after a pulse. 𝞫 is a constant used to amplify the linking input. The external
stimulus is defined as S, thus each pixel is a stimulus for a certain neuron of the model.
The neuron output (Yij) is set to 1 when the internal activation (Uij) surpasses the dynamic
threshold (ϴij) [81–85]. Figure 2.15 exemplifies the simplified flow of the PCNN model.

𝐹𝑖𝑗(𝑛) = 𝑒−𝛼𝑓 𝐹𝑖𝑗(𝑛 − 1) + 𝑉𝑓 ∑(𝑀𝑘𝑙𝑌𝑘𝑙(𝑛 − 1)) + 𝑆𝑖𝑗

𝑘𝑙

(7)

𝐿𝑖𝑗(𝑛) = 𝑒−𝛼𝑙 𝐿𝑖𝑗(𝑛 − 1) + 𝑉𝑙 ∑(𝑊𝑘𝑙𝑌𝑘𝑙(𝑛 − 1))

𝑘𝑙

(8)

𝑈𝑖𝑗(𝑛) = 𝐹𝑖𝑗(𝑛) (1 + 𝛽𝐿𝑖𝑗(𝑛 − 1)) (9)

𝛩𝑖𝑗(𝑛) = 𝑒−𝛼𝜃 𝛩𝑖𝑗(𝑛 − 1) + 𝑉𝜃𝑌𝑖𝑗(𝑛 − 1) (10)

𝑌𝑖𝑗(𝑛) = 1 𝑖𝑓 𝑈𝑖𝑗(𝑛) > 𝛩𝑖𝑗(𝑛) 𝑒𝑙𝑠𝑒 0 (11)
PCNN models have numerous uses within image processing: image fusion, image

segmentation[86], image denoising, image enhancement, feature extraction, image
restoration [81]. They have been used in MRI image enhancement [82] and medical image
segmentation [85,87]. Moreover, using the results obtained by the PCNN, Artificial
Neural Networks (ANN) classifiers can be trained [84,87].

34

Figure 2.15 - The flow of the PCNN model.

Several modifications of the classic model of PCNN have been developed. The
Intersecting Cortical Model (ICM) [85,87] removes the linking unit and therefore is the
equivalent of setting 𝞫 = 0. The ICM model has been shown to offer the best advantages
in image segmentation [88]. Such a model is capable of extracting the fundamental
characteristics of an image, such as edges and segments without requiring training on a
large dataset of images. Edges or segments are extracted as groups of neurons in a similar
state fire together, thus synchronising the firing of neurons according to the texture of
the image. Furthermore, the result is a binary image that can be presented to more
complex recognition algorithms for analysis.

In the Spiking Cortical Model (SCM) [81,83,87], the membrane is defined only by
the linking unit. In the Sigmoidal-Linking Model (SLM) in which the linking input has been
changed into the step activation function has been replaced with another function, such
as a sigmoid function. In the Feature-Linking Model, the model is further reduced, as are
its parameters, it contains only the internal activity module with an additional inhibitory
linking term. The Multiple-Linking model contains internal iterations of the classical
model and an additional outer calculation of the feeding and internal activity modules,
where the internal activity is computed as the geometric mean of the internal linking
modules [81].

Performance evaluation metrics
The performance evaluation metrics presented in this section can be calculated

from the confusion matrix, normally used to evaluate classification correctness.
Fundamentally, given a confusion matrix C, each cell Ci,j contains the number of samples
of class i that have been predicted to be in class j. In a binary classification there are only
4 cells in the confusion matrix as shown in Table 2.2 [89].

Table 2.2 - Explanation of the Confusion Matrix [89].

 Predicted

 Negative Positive

Actual

Negative True Negative (TN) False Positive (FP)

Positive False Negative (FN) True Positive (TP)

35

The confusion matrix presents the counts of predicted versus actual labels in

classification. True Negative (TN) is the count of values that have been correctly classified
as negative, while True Positive is the count of values correctly classified as positive. The
negative and positive denominations are relative to the class of interest. False Positives
get assigned the instances in which the actual label was negative, but the classifier
marked it as positive. Similarly, False Negative indicates the number of instances that
have the actual label as positive but were labelled negative by the classifier.

Accuracy is the most common metric used in classification, however, for
imbalanced datasets accuracy can be misleading. To give a simple example, having a
dataset of 1000 images showing tumours, of which 990 are benign and only 10 are
malignant. The classifier may fail during training and assign to all images the label
‘benign’. This would result in an accuracy of 99%. Thus, accuracy, as any other metric, can
be useful in certain instances but has to be used mindfully [90–93]. Essentially, accuracy
shows the probability with which the classifier predicts correctly. Accuracy can also be
expressed mathematically using the confusion matrix:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12)

Precision can be thought of as a measure of exactness or quality of prediction.
Precision, also known as positive predictive value, is the measure of the ratio of predicted
positives that are in fact correctly predicted. It is often used together with recall in order
to evaluate classification performance. Precision depends upon the distribution of classes
as imbalanced classes may induce lower precision values, nevertheless it is often used as
a measure of quality. Precision can be defined mathematically using the confusion matrix:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13)

Precision has its main uses in real-world applications, such as spam filtering. For
applications such as these, usually a greater cost assigned is assigned to false positives,
thus precision is used to minimise false positives. Similarly, seeking high recall values
reduces the number of false negatives.

Recall, also known as sensitivity or true positive rate, measures the ability of the
model to correctly classify actual positives. High recall is indicative of a model that is
reliable in identifying both positive and negative samples. Recall is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14)

Recall has been found useful in various real-world applications, such as fraud
detection, sentiment analysis and medical diagnosis.

Notably, precision may not decline with recall. Usually, classification employs a
prediction threshold. In such cases, a higher threshold might generate more true
positives and fewer false positives which increases precision. Thus, by lowering the
threshold below the correct value, the number of false positives increases, decreasing
precision but leaving recall unchanged. By contrast, recall is not as dependent on the

36

prediction threshold. Lowering the threshold may increase recall by introducing true
positives, which is desirable. But it may also leave recall unchanged as no other true
positives are found, while precision wavers.

F1 score is used as an alternative to accuracy, which better reflects the classifier
quality. It is often used when optimising recall or precision results in decreased model
performance. Mathematically, F1 is the harmonic mean of precision and recall, but it can
also be defined using the confusion matrix.

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (15)

A generalisation of the F1 score, denoted as Fβ score uses a real factor β to create
a weighted version of this metric. Through this parameter, recall or precision can be
considered more in the computation of the score.

𝐹β = (1 + β2)
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

β2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(16)

These metrics are most commonly used in conjunction with each other in order to
apprehend all aspects of the model.

2.2.2. Machine learning approaches
SVM is a supervised learning technique that can be applied for classification,

outlier detection and even, regression. It is highly adjustable through its kernel and
effective for hyper-dimensional data. SVM is considered to be decidedly robust as it is
based on statistical learning. In training, SVM attempts to magnify the gap width between
the different classes. New samples are assigned to a class by their location in space in
relation to said gap.

RandomForests, as the name implies, consist of a number of decision trees that
have gone through the learning process independent of each other. Just as its precursor,
RandomForest is a supervised learning technique. The data can be split into subsets in
order to further dissociate the decision trees, with the additional benefit of reduced
training time. Depending on the data, there are multiple ways in which the output of these
trees can be combined into a single one. One option is the classical majority vote, where
the most common output is chosen, other options are mathematical operations as the
average. More complicated options are placed under the banner of ensemble learning.

2.2.3. Signal processing
Spike sorting is using signal processing even in its first step, the filtering. The spike

detection is done based on the characteristics of the filtered signal and the spikes
themselves are segments of the filtered signal. As such, signal processing techniques can
be applied to the domain of spike sorting. One avenue is to increase the amount of
information from the spikes by obtaining the frequency information through signal
processing techniques such as the Fourier Transform.

Time dependent functions can be represented from the perspective of their
frequencies. Mathematically, the frequency domain uses complex numbers for
representation. An intuitive representation of the correspondence between time and the
frequency domain is presented in Figure 2.16.

37

Figure 2.16 - Time vs Frequency Domain. The red trace is the sum of the light blue sinusoidals. The image
was taken from Wikimedia Commons (public domain).

Fourier Transform
Jean Baptiste Fourier stated that any function, even non-periodic ones, can be

expressed as a sum of sine and cosine functions. A perfect representation requires an
infinite sum which can be expressed mathematically as an integral:

𝑓(𝑥) = ∫ 𝐴𝜔 cos(𝜔𝑥) + 𝐵𝜔 sin(𝜔𝑥) 𝑑𝜔
∞

−∞

(17)

The sine and cosine coefficients in the Fourier Integral represent the contribution
of each frequency. These coefficients are used in the computation of the Fourier
Transform (FT), one of the most common transformations from the time to the frequency
domain. FT allows any function to be written as a sum of harmonic functions, sines and
cosines:

𝑆𝑥(𝑓) = ∫ 𝑥(𝑡) ⋅ 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 (18)

Worth mentioning is that although the FT is applied most commonly on complex
functions resulting in complex values, it can also be applied on real functions, but the
result is still a complex-valued representation, albeit with some spectral symmetries
between the positive and negative frequencies. Moreover, the Fourier Transform is
invertible, thus the original function can be reconstructed, making the time domain and
the frequency domain equivalent.

The Discrete Fourier Transform (DFT) is used to apply the FT on digitally sampled
signals, which can be represented by a sum of base frequencies multiplied with a factor
with a shift from the origin [94].

The Short Time Fourier Transform (STFT) is a FT variant and a modification of the
DFT that accounts for time in its representation of the frequency domain.

𝑋𝑙[𝑘] = ∑ 𝑤[𝑛] ⋅ 𝑥[𝑛 + 𝑙𝐻] ⋅ 𝑒
−𝑖2𝜋𝑘𝑛

𝑁

𝑁
2

−1

𝑛=−
𝑁
2

, where l = 0,1, … (19)

The main addition to the original formula is the windowing function. The main
parameters of the STFT are: the window, the frame number and the hop size. The window
is used with the original signal in a convolution. The signal at a given moment is
multiplied with the window values. The frame number, notated “l” in the formula, is the

38

time index. It is used to iterate over the signal and obtain the number of segments. Thus,
the time is segmented and only then is the transition to the frequency domain made, thus
introducing temporal information in the representation. The hop size, notated “H” in the
formula, represents the jump from one time segment to another. The attentive reader has
realised that STFT then outputs a sequence of spectra instead of a single spectrum as the
FT does. Each time segment is represented by a spectrum, all of them having the same
size.

Returning to the topic of windows, there are many types, such as Blackman,
Bohman, Hamming, Hann, and others. Each window offers unique spectra leakage
mitigation properties, which are related to the main and side lobes. A thinner main lobe
and smaller side lobes reduce the spectral smearing trough leakage. Nonetheless, the
window of choice is problem dependent. The STFT uses the concept of windows to apply
a sequence of Fourier Transforms to the signal. By contrast to the conventional Fourier
Transform, STFT is able to localise in time the spectral information and is useful when
the signal’s frequency components change over time. With its fixed window size, STFT
has a good frequency resolution but its relative temporal precision decreases as
frequency increases because the length of an oscillation cycle becomes smaller in
comparison to the window size.

Wavelet Transform
One transform that is able to overcome this limitation of the STFT is the Wavelet

Transform. Similarly to the STFT, the Wavelet Transform can describe a signal by a series
of wavelet coefficients obtained by convolving the signal with the wavelets. The Wavelet
Transform can be used, as well, for both the analysis and the synwork of signals. Unlike
the Fourier Transforms, base functions which are infinite in time, the wavelets are
localised in time. Thus, the Wavelet Transform is best suited to pinpoint oscillation with
finite duration.

The wavelet transform contains two main parameters: the mother wavelet and
the scale. There are many choices for the mother wavelet, but one of the most widely used
is the Morlet, which is obtained by multiplying a complex plane wave with a Gaussian
envelope. The scale is used to compress or expand the mother wavelet in time. In doing
such the scaled wavelets can be adapted to analyse various frequencies and obtain a full
spectrum of a signal. A mother wavelet can be longer or shorter. For instance, for a Morlet,
one could choose the number of cycles of the complex wave that fill the Gaussian
envelope. This choice of length has impact on the analysis. For a given frequency, short
wavelets have good temporal resolution but low resolution in frequency. Conversely,
longer wavelets have a greater frequency resolution and lower resolution in time. Take
for instance a finite packet of oscillation. If analysed with a much longer wavelet than
itself, the oscillatory packet’s contribution to the wavelet response is small and the packet
is not well revealed by the wavelet representation, a process that is called dilution [95].
Thus, the length of the wavelet requires a compromise between the time and frequency
resolutions. Same dilution problems are also found in the FT, when short burst of
oscillations is analysed with a too long window. This usually happens when the window
is adapted to capture well a couple of cycles of low oscillations.

Superlet Transform
The Heisenberg-Gabor Uncertainty Principle (UCP) explains the limitations of

representations that use any sort of finite-length windowing functions such as STFT and

39

Wavelet. According to UCP signals cannot be localised simultaneously both in time and in
frequency precisely [95]. Intuitively, short signals must have broad spectra, and for
narrow spectra, the signal must be long. The same principles apply to the window
function of the representation which influence the representation itself. For example,
STFT is able to provide good temporal resolution with short windows at the cost of
frequency resolution, while with long windows it is able to provide a good frequency
resolution albeit at the cost of temporal resolution.

The Superlet Transform (SLT) [95] was developed in order to overcome these
limitations. At a given frequency (or scale) it combines several wavelets (short and long)
in order to pinpoint signals both in time and frequency. Consider a mother wavelet with
several cycles and the family of wavelets derived from it. The family comprises
compressed and stretched variants of the mother wavelet, each of the variants has its
own scale or central frequency and is used by the wavelet transform to generate the
spectra at various frequencies (or scales). The family provides a certain amount of time
and frequency resolution that is frequency dependent. The frequency resolution
decreases as the wavelet’s centre frequency rises to match high frequency signal
components. By increasing the number of cycles of the mother wavelet the Continuous
Wavelet Transform (CWT) displays increased frequency resolution but lower temporal
resolution across the whole spectrum.

A Superlet (SL) is defined as a set of wavelets grouped around a central frequency
that extend over a range of numbers of cycles, this is represented mathematically in
following Equation, where o represents the order number (the number of wavelets,
bounded within the [2,15] interval, while the number of base cycles within the [1.5, 3]
interval) and c’s correspond to the number of cycles of each wavelet (a function of the
bandwidth of the wavelet). With these parameters the time-frequency resolution can be
adjusted. Each SL of the SLT approximates a subset of oscillations of a certain frequency
from the signal, thus super-resolution in both time and frequency is achieved.

𝑆𝐿𝑓,𝑜 = {𝜓𝑓,𝑐| 𝑐 = 𝑐1, 𝑐2, … , 𝑐𝑜} (20)
The Superlet Transform of a signal x is the geometric mean of all wavelet

responses to x:

𝑅[𝑆𝐿𝑓,𝑐𝑖
] = √∏ 𝑅[𝜓𝑓,𝑐𝑖

]

𝑜

𝑖=1

𝑜

(21)

𝑅[𝜓𝑓,𝑐𝑖
] = √2 ⋅ 𝑥 ∗ 𝜓𝑓,𝑐𝑖

 (22)

where R[ψf,ci] is the i-th wavelet response to the signal.
 The two parameters are highly sensitive can produce very different results based
on the choice of values. These are the order o and the number of cycles c. The order
represents the number of wavelets used in the transformation and can take values
between [2,15], whilst the number of cycles is given for the first wavelet and can take
values between [1.5, 3], and the following wavelets are calculated by the following
formula dependent upon the order:

𝑐𝑖 = 𝑖 ∗ 𝑐1 𝑤ℎ𝑒𝑟𝑒 𝑖 = 2,3, … , 𝑜𝑟𝑑𝑒𝑟 (23)

40

2.3. Neuroscience and computer science

2.3.1. Spike sorting
The communication between neurons can be recorded through electrodes

inserted into the brain as changes in voltage. This transmission of information between
neurons is called an action potential, or spikes. Spike sorting [2] is the separation of these
spikes into groups based on the neurons that fired them. Spikes are of known fixed
duration (of about 2-3ms) and the information about their provenance (the neuron that
produced them) is encoded in the distribution, amplitude and their shape. Spike sorting
is the strategy that aims to ‘sort’ these signals into groups based on similarities of shape,
as the geometrical conformation of each neuron and the distance to the electrode defines
the shapes sensed by the electrode [96]. In other words, spikes fired by the same neuron
have similar shapes at the recorded site.

Spikes need to be detected from the raw signal recorded by the electrode. Spike
sorting distinguishes the spikes of individual neurons from extracellular recordings
where their action potentials are mixed. For small or far away neurons from the
electrode, the amplitudes of the spikes on the recording electrode are so low that they
cannot be disentangled from noise.

The spike sorting pipeline
Spike sorting is a sequential process that has been refined into four principal steps

(Figure 2.17) [2]:
• Filtering
• Spike Detection
• Feature Extraction
• Clustering

The first step of spike sorting is the filtering of the raw signal through the use of a

bandpass filter. The bandpass filter allows the separation of signals that are between two
specific frequencies from the rest of the spectrum. Through filtering a portion of the noise
and low frequencies are removed, while the spectral components of the spikes are kept.
The low-pass part of filtering removes the slow components of the raw data, while the
high-pass part reduces the noise in shape of the spikes [97,98]. A trade-off in band size
has to be made, as a narrow filter can diminish the features of the spike shape, while a
broad band introduces noise into the shape.

 Spikes are determined by higher amplitudes. The second step of spike
sorting is spike detection usually done via amplitude thresholding, whereby voltages
above the threshold are considered spikes. Another trade-off needs to be made for the
threshold value. A high threshold results in the loss of low-amplitude spikes, while a low
threshold can leak noise into the spikes. The standard threshold value [2] is presented in
Equation (1).

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜎𝑛, 𝑤ℎ𝑒𝑟𝑒 𝜎𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛 {
|𝑥|

0.6745
} (24)

41

Figure 2.17 – The spike sorting pipeline [2].

The third step of Spike Sorting is the Feature Extraction which consists of the
transformation of the initial feature set, composed of the samples of a waveform, that
represents the spike into a smaller feature set that retains most of the information of the
detected spike. Each spike is defined initially as a waveform through the spike detection
step; therefore, it can be viewed as a vector where each feature is a dimension. Thus, a
spike is in a waveform length dimensional space. Through Feature Extraction the
dimensionality of the spikes is reduced while retaining as much of the information that
distinguishes between the spikes of different neurons. Dimensionality reduction reduces
the processing time of the clustering algorithm while minimally affecting the
performance as the information that separates the spikes is preserved. Usually, the spikes
are moved into a 2-/3-dimensional space in order to be visualised by an expert.

The last step of Spike Sorting is the Clustering which receives as input the new
feature space returned by the Feature Extraction. Clustering can be done manually by an
expert observer, but the use of an automated machine learning algorithm is preferred as
manual clustering is a tedious and time-consuming process. Manual intervention is used
when automated algorithms are not able to perfectly distinguish clusters, it involves the
inspection and categorisation of spikes based on waveform shape, amplitude, duration
and other characteristics. Additionally, there are semi-automatic spike sorters, such as
WaveClus [99], that require manual toning for top performance. The goal of clustering is
to group spikes based on their similarities.

The challenges of spike sorting
Clustering is an unsupervised algorithm, meaning that it does not require the

ground truth. Most of the time, the ground truth, the true identity of the neuron that has

42

fired a certain spike, is not known. Thus, the performance of the result is hard to interpret
and is evaluated through special metrics that assess different properties of the spikes
within the cluster, such as, the cluster size, the intracluster and intercluster distances and
dispersions among others.

Spike sorting is a complex task as many challenges can appear due to the high
complexity of neural interactions that appear in the data which translates into a harder
task for any computer science algorithm:
• The distance and orientation of a neuron with respect to the probe can modify the

spike shape [100]. Greater distance to the probe results in lower amplitudes in the
recording which increases the difficulty of spike detection. Moreover, these
differences in amplitude and shape must be accounted for by both the feature
extraction and clustering methods.

• overlap of spikes: Two or more neurons may fire synchronously within a small
window of time producing overlapping spikes in the recording. In this case, the spikes
from different neurons are difficult, if not impossible to disentangle. Overlapping
spikes result in distorted shapes that increase the difficulty for the feature extraction
algorithm to capture relevant characteristics. Furthermore, these overlapping spikes
insert ambiguity that may bias the clustering algorithm towards misclassification.

• electrode drift [101]: This phenomenon consists in the change of the spike shape
of a single neuron due to the movement of the electrode throughout the recording,
this can lead to increased similarity between spikes of different neurons that results
in overlapping clusters. Confoundingly, electrode drift may change the shape of the
spike, throughout the experiment, so much that it may appear as being produced by
different neurons. This spike shape change can lead to spikes from different neurons
becoming more similar in shape, blurring the boundaries between clusters resulted
from the feature extraction. Moreover, these overlapping clusters hinder the
performance of clustering algorithms.

• different firing rates: Neurons have different firing rates due to their roles; this leads
to less spikes of some neurons being recorded which results in imbalanced clusters.
From a computer science perspective, algorithms designed for spike sorting must be
robust enough to handle such imbalanced datasets.

• bursting: Repeated firing of the same neuron in a small amount of time that may
produce different spike shapes. Bursting introduces ambiguity in spike shapes, as
spikes from the same neuron may exhibit variability in waveform shape, such as
reduced amplitude. Bursting introduces another variable that is not taken into
consideration in the most common spike sorting approaches as they consider spikes
as singular events. The temporal dependency of bursting and the modified shape can
induce difficulties for the clustering step of the spike sorting pipeline.

All of these complexities (imbalance, overlap, noise, etc.) have specific techniques
that are able to deal with them, but when they appear simultaneously, complexity
accentuates, and traditional techniques cannot cope [102].

Other challenges are inherent to the problem, or may appear through the use of
inappropriate algorithms, thresholds or parameters for the dataset:
• lack of ground truth: The spikes of two or more neurons may be identified as a

single cluster even though they were produced by different neurons as separation
was unachievable. The closest equivalent to ground truth are patch clamps, although

43

they can only be applied to a single neuron and as such can be used as a partial ground
truth for extracellular recordings. Without ground truth, the performance of spike
sorting has an inherent uncertainty.

• noise: In noisy neural data, the shapes of spikes can be distorted and as such it is
harder for a feature extraction algorithm to correctly approximate a new feature set
that offers separability. Noisy data can result in overlapping clusters as noise tends to
blur the cluster boundaries, thus a high amount of noise may extend clusters one over
the other.

• high dimensionality of the feature space: It can hinder the performance of clustering
algorithms through the curse of dimensionality, but it certainly increases the
execution time depending on the time complexity of the clustering algorithm. There
can be overcome using feature extraction, as long as the features provide separation.
Nevertheless, the more features there are, the harder it is to project them in a lower-
dimensional space while also preserving separability.

• over and underclustering: Overclustering is the identification of the spikes of a
single neuron as having been produced by multiple neurons, while
underclustering is the identification of the spikes of multiple neurons as having
been produced by a single neuron. Both are symptoms of improper assignment of
labels of the clustering algorithm. Nevertheless, depending on the clustering
algorithm, this may be reduced or completely removed through a more performant
feature extraction technique. Within the context of spike sorting, overclustering is
acceptable because subsequently an expert observer or a post-processing algorithm
can be used to merge similar clusters.

The challenges presented above can affect any method in various ways. Thus, it is

important to be aware of these challenges, and to employ multiple techniques of feature
extraction and clustering in order to achieve adequate spike sorting. Also, it is imperative
to highlight the distinct functionalities of the feature extraction and the clustering. The
separation of clusters is based on the extracted features. Thus, the quality of the
clustering, regardless of the algorithm of choice, is intimately intertwined with the
performance of the chosen feature extraction algorithm.

In this subsection, various types of techniques are presented that have been used

in the identification of brain activity at a multi-cellular level through spike sorting. A

subset of these techniques are well established within the domain of spike sorting, while

others are well-known techniques that have not been introduced to spike sorting. All of

these techniques have been utilised throughout the analyses made in this work.

Steps of the spike sorting pipeline
 In this section, various options for the spike detection, feature extraction and

clustering techniques of the spike sorting pipeline are presented. Additionally, several

performance evaluation metrics are presented as well as ways to analyse the

performance of the spike sorting pipeline.

Spike Detection
Traditional spike detection methods apply a simple amplitude threshold, either

set manually or automatically, to identify spikes from the filtered signal. However, this
approach has limitations. This type of threshold implies a compromise, high thresholds

44

may miss spikes with a lower amplitude than the threshold [2], while low thresholds can
lead to the false detection of noise as spikes [2]. A more recent approach is based on
template-matching, where waveforms extracted through spike sorting are compared to
the signal using cross-correlation to detect spike-like activity [103]. However, these types
of approaches often require extensive manual curation, rendering them impractical for
datasets recorded using a large number of electrodes.

Feature extraction methods
 A couple of concepts have to be defined in order to explain what Feature
Extraction does. Feature Selection, as its name indicates, is the selection of relevant
features from a given feature space. This is done in order to remove uninformative
features, whilst retaining most of the information. Feature Extraction is the generation of
new features, usually a smaller set, using the original feature space (i.e. the waveform of
the spike), that incorporate the majority of the information. Therefore, the main
distinction is that feature selection selects certain features, whilst feature extraction uses
the original set of features (the waveform and possibly other existing features) to create
new features.

Both of these types of algorithms can be framed under the concept of
Dimensionality Reduction, which is done in order to avoid, what is called, the Curse of
Dimensionality. The Curse of Dimensionality mainly refers to the struggle of algorithms
to identify models because of the high number of features and is particularly relevant to
distance-based clustering algorithms. Moreover, by reducing dimensionality (to 2 or 3),
the data becomes easy to visualise which is important to attain a better understanding of
the data and it also reduces the required processing time.

In a real-world scenario, the spike shape is affected by noise, factors and
phenomena that can modify spike shape (e.g. electrode drift) that may lead to overlapping
clusters. The objective of feature extraction is to generate a representation that remains
separable under minor alterations in waveform shape. This invariance to noise provides
the basis for separability of the activity of different neurons. There is no universally
adopted feature extraction method, as their performance depends on the specific
characteristics of the data being analysed [2]. Figure 2.18 shows an example of how
feature extraction can separate spikes from a real dataset in the new feature space, while
Error! Reference source not found. offers a short description for multiple feature e
xtraction techniques highlighting their limitations.

Linear approaches
Principal Component Analysis (PCA) [3,104] is the standard Feature Extraction

method used. It is the most common dimensionality reduction algorithm that allows
significant reduction of the feature set with minimal loss of information [105,106]. PCA
has also been used in spike sorting [107]. PCA creates new features that are called
Principal Components. These new features, orthogonal amongst them, are linear
combinations of the original features. PCA renders the dimensionality reduction of the
feature space into a problem of eigenvalues and eigenvectors, while also trying to
preserve most of the variance when reducing the number of features. Most commonly,
two or three principal components obtained through PCA are kept [105,106] and they
usually conserve more than 70% of the variance of the original features. As expected,
when data is separable along the directions with the largest variance, PCA can be a useful

45

tool. However, variance does not always provide the best separability [2,101]. This
implies that the separation is captured by the features that have been discarded, which
only have a low variance. PCA along with its variants have been used in spike sorting at
length [2] and newly developed spike sorting techniques incorporate them [97].

Figure 2.18 – An example of feature extraction process. Spikes produced by three distinct neurons produce
separable features in the PCA space.

Independent Component Analysis (ICA) [108] is another common feature
extraction technique, which can be categorised as blind source separation method. ICA
identifies independent sources, where independent sources are found under the
assumption of non-Gaussianity. Within the context of machine learning, it is a linear
unsupervised technique that can provide dimensionality reduction by choosing
components based on the explained variance criterion or the kurtosis criterion [108]. In
contrast to PCA, which aims to maximise variance, ICA’s aim is to create independent
components. This transpires from its signal processing uses. As a signal can be composed
of numerical addition of several sources, the focus of ICA was to identify these
independent sources. ICA as a feature extraction technique, has also found uses within
spike sorting with encouraging performance [109,110].

Linear Discriminant Analysis (LDA) [111] is a dimensionality reduction technique
that finds linear combinations of features that provide separation between different
clusters. It is akin to PCA from this perspective as in they both search for linear

46

combinations. Nevertheless, LDA attempts to model the difference between classes by
increasing inter-cluster and decreasing inter-cluster distances. It is a supervised learning
technique that assumes a Gaussian distribution of the data. Within spike sorting, LDA is
not a suitable candidate on account of multiple factors. Synthetic datasets may allow the
evaluation of LDA by providing labels. Nevertheless, spike sorting is unsupervised and
ground truth labels are inexistent, while LDA requires the labels of data to function.
Additionally, the assumption of Gaussian distribution is the ideal of spike sorting. The
irrefutable reality is that this assumption is frequently breached. A subset of issues that
impede the generation of Gaussian distributions have been presented above: spike
overlap, electrode drift, shape variation. Other effects are multi-unit activity and non-
stationary background noise [101].

Non-linear approaches
Isomap [112] is a common low-dimensional embedding method of high-

dimensional samples. It is also a non-linear dimensionality reduction method. As for its
inner workings, Isomap estimates the inherent geometry of the samples by retaining
neighbour distances. Isomap learns the low-dimensional projection of the data through
the incorporation of the manifold structure. It uses the geodesic distance, the sum of edge
weights along a path over the curved surface of the manifold space, and a neighbourhood
graph. It is non-linear which may provide advantages in spike sorting in situations in
which clusters are not linearly separable. Furthermore, it is also an unsupervised
technique, thus rendering it into a suitable method for comparison.

T-distributed Stochastic Neighbour Embedding (t-SNE) [113], like Isomap, is a
non-linear dimensionality reduction method. In contrast to Isomap, t-SNE aims to
minimise the Kullback-Leibler (KL) divergence between the low-dimensional projection
and the high-dimensional data through the use of pairwise probability similarities. The
KL divergence of two distributions is minimised through gradient descent. As such,
similar samples become proximal, while dissimilar samples are modelled as distal in the
projection. The main function of t-SNE is visualisation. Its time complexity is orders of
magnitude higher than that of other feature extraction methods. Through empirical
evaluations, it has not been able to provide the separation required for spike sorting.

Clustering Methods
Clustering, from a computer science perspective, becomes intractable as the

number of samples and dimensions increase. Clustering through K-Means, which can be
considered the most efficient clustering algorithm, is a NP-hard problem [114] and the
solution is to use approximation which do not guarantee an optimal solution. Besides the
inherent complexity of clustering, neural data brings additional difficulties through their
characteristics.

Clustering is the fourth and last step of Spike Sorting that takes the features as
input and maps them onto a set of labels that identify the set of spikes fired by one neuron.
The Feature Extraction step reduces the number of dimensions while leaving the number
of samples unchanged. The clustering step in Spike Sorting belongs to the Unsupervised
Machine Learning algorithm that divides a set of points (in the feature space) into groups,
called clusters. The main trait of this separation being that objects within a group are
more similar, in a certain sense, to the objects of that cluster than to the objects of another

47

cluster. An illustration is presented in Figure 2.19, while Table 2.3 offers a short
description of various clustering methods also highlighting their limitations.

Figure 2.19 - An illustration of clustering on simple data.

There are many algorithms that implement clustering and among these the two
most commonly used are K-Means and DBSCAN. A number of clustering algorithms are
presented in the following subsections that were used in the comparative analyses. These
algorithms have been applied to spike sorting before. In a historical overview of
clustering algorithms [115], these clustering algorithms were analysed comparatively in
the domain of spike sorting. One of the most recently developed methods, called ISO-
SPLIT, achieves the highest performance for the chosen datasets. K-Means, despite being
one of the oldest clustering algorithms used, still performs well and ranks third out of the
25 algorithms evaluated. Agglomerative Clustering ranks fifth, Fuzzy C-Means (FCM)
ranks seventh, MeanShift ranks twelfth, and DBSCAN ranks last in terms of performance.

Table 2.3 - A descriptive summary of various clustering methods.
Name Type Description Parameters Challenges

K-Means Centroid
-based

Partitions data into k
clusters by iteratively
assigning each data point to
the nearest centroid and
updating the centroids
based on the mean of the
points in the cluster.

- number of
clusters

-identification of cluster
number
- overlapping clusters
- non-convex clusters

Fuzzy C
Means

Centroid
-based

KMeans extension, where
each data point can belong
to multiple clusters with
varying degrees of
membership, which is
calculated based on the
distances to cluster
centroids.

- number of
clusters
- fuzziness

Same limitations as K-
Means.

DBSCAN Density-
based

Groups together densely
packed points, thus it
separates regions of high
density from low density
ones.

- maximum
distance in
neighbourhood
- minimum
cluster size.

- clusters of different
densities
- overlapping clusters

HDBSCAN Density-
based

DBSCAN extension that
automatically determines
the number of clusters and
can handle clusters of
varying densities. Utilizes a
hierarchical approach to
cluster assignment.

- minimum
cluster size

- overlapping clusters

Agglomera
tive
Clustering

Hierarch
ical-
based

Starts with each data point
as a separate cluster and
merges the closest clusters

- number of
clusters /
distance
threshold

- high execution time.
- noise sensitivity
- non-convex clusters
- overlapping clusters

48

at each step until a stopping
criterion is reached.

- linkage method

MeanShift Mode-
based

Identifies clusters by
shifting data points towards
the mode of the density
function in the feature space.

- bandwidth - overlapping clusters
- non-convex clusters

ISO-Split Mode-
based

Recursively splits the data
based on the density peaks,
creating clusters by
identifying regions of high
density.

- - overlapping clusters

Centroid-based approaches
K-Means [116] is a centroid-based clustering algorithm that divides sample space

into K partitions by assigning samples to the cluster with the closest mean. It uses
Euclidean distances within a cluster to minimise intracluster variance. K-Means is an
iterative process, which repeats two main steps: the first is the assignment of each sample
to a single centroid based on distance, whereas the second step is the update of the
centroid location to the mean of all the samples assigned to the cluster of the centroid. It
has a few disadvantages: it requires the number of centroids as input, it is not
deterministic, and has difficulty identifying clusters of arbitrary shapes. In spite of these
disadvantages, K-Means is one of the fastest clustering algorithms. It has a time
complexity of O(ndki), where n is the number of samples, d is the number of dimensions,
k is the number of clusters given as input, and i is the number of iterations. Introduced in
1988 to spike sorting [115,117], it has been intensively used for spike sorting [115] and
new clustering and new spike sorting methods are still developed with K-Means as their
basis [118,119].
 Fuzzy C-Means (FCM) [120] is the progeny of K-Means. In contrast to its precursor,
FCM is a soft-clustering algorithm. Hard clustering algorithms, as K-Means, assign one
and only one label for each sample of the data, whereas soft-clustering assigns a
probability and therefore one sample can be assigned to more than a single cluster. As a
descendant of K-Means, FCM has similar inner mechanisms to those of K-Means. It starts
with a random initialization of cluster centres. Through iterative updates its cluster
centres are shifted to positions that minimise distances. Just as K-Means, it requires the
number of clusters as an input parameter which can become a disadvantage when the
number of clusters in the data is not known. Even nowadays, FCM variations are being
developed to improve its performance for specific tasks in clustering applications, such
as image segmentation pipelines.

Density-based approaches
DBSCAN [121], or Density-Based Spatial Clustering of Applications with Noise, is

a density-based clustering algorithm. It starts by identifying the cores of clusters as
regions with high densities and expands them. Therefore, it defines clusters as high-
density regions while low density regions are labelled as noise. It can be inferred that,
despite its name, DBSCAN has a high performance only if clusters of similar densities are
provided. It has difficulties in separating overlapped clusters and especially embedded
ones. Unlike K-Means, DBSCAN does not require the number of clusters as input. In
addition, DBSCAN is able to identify clusters with arbitrary shapes and is a mostly

49

deterministic algorithm. DBSCAN's main disadvantage is its inability to distinguish
between different densities of clusters, a significant issue in Spike Sorting due to varying
firing rates of neurons. DBSCAN has a time complexity of O(n2), where n is the number of
samples, while the memory complexity of DBSCAN may vary between O(n) and O(n2)
depending on the implementation. This complexity appears from the necessity of
computing distances among neighbourhoods. DBSCAN has also found uses within the
domain of spike sorting [115].

HDBSCAN [122], as the name suggests, is a modification of the DBSCAN algorithm
into a hierarchical approach. Like DBSCAN, it identifies dense groups as clusters and
labels sparser groups as noise. Its approach is to associate points as a weighted graph
with connections made based on a minimum spanning tree that can be built from
algorithms such as Prim’s greedy method. Similar to its precursor, it does not require the
number of clusters as an input parameter. The most definitory parameter is the minimum
cluster size that dictates the lowest number of points that need to be close enough for a
cluster to form. The time complexity of the algorithm remains identical, O(n2), where n
represents the number of samples in the dataset. The space complexity of HDSCAN is
O(dn), where d represents the number of dimensions (or features) of a sample.

Hierarchical-based approaches
Agglomerative Clustering [123] applies a “bottom-up” approach to hierarchical

clustering. Initially, each sample is assigned to an individual cluster. As the algorithm
progresses through its iterations these clusters are being merged. Pairs of clusters are
merged based on a proximity matrix, which contains distances between points.
Agglomerative Clustering uses a linkage function to merge clusters based on distance
information. One type of linkage is the ward linkage which analyses cluster variance
rather than directly analysing distance. Its main disadvantage is that it requires the
number of clusters as input. In addition, its complexity is demanding as well. Considering
a dataset with n samples, its time complexity is O(n3) and its space complexity O(n2). As
spike sorting data can reach high volumes, its taxing complexity can become a challenge.
Moreover, the overlap inherent to spike sorting data may also yield unsatisfactory
clustering, which could be approached with adequate feature extraction.

Mode-based approaches
MeanShift [124,125] is categorised as a mode-seeking algorithm. It offers a

mathematical analysis for the localization of the maxima of a density function. From a
clustering perspective, it identifies clusters by the update of centroid candidates to the
mean of regional points and in this way, it is similar to K-Means as its geometry is also
based on distances between points. Mean Shift is an iterative process that shifts this
kernel to a high-density region where it reaches convergence. Considering a dataset with
n samples, the time complexity of MeanShift is O(n2). In contrast to K-Means and FCM, it
does not require the number of clusters as an input. Within the context of spike sorting,
MeanShift has difficulties with overlapping clusters and can result in underclustering.
Nevertheless, this can be circumvented by the feature extraction step and additionally,
MeanShift can tackle a high number of clusters and imbalance.

ISO-SPLIT [126] was designed specifically for spike sorting. It operates on the
assumption of unimodality of clusters which is determined through iterative isotonic
regression. ISO-SPLIT was shown to outperform traditional approaches such as K-Means

50

or Gaussian Mixture Models in a variety of datasets [115,126]. Its most appealing
qualities are that it does not require any parametrization, i.e. it does not require the
number of clusters to be known apriori, and that it can deal with non-gaussian clusters
as well.

Other approaches
Spectral clustering (SC) [128] converts the data into a graph representation in

which nodes stand for data samples and edges for the connections between them. A
similarity matrix is created from the data, and based on the eigenvalues and eigenvectors,
the graph is divided into K clusters. Due to its reliance on distance measures in the
original feature space, SC is able to capture nonlinear relationships, thus clusters of any
shape, more effectively than K-Means by using space transformation.

SC is a multi-step process. Using metrics like Gaussian kernel similarity or k-
nearest neighbours, a similarity matrix is built based on pairwise similarities between
data points which is used to calculate the graph's Laplacian matrix. Next, the Laplacian
matrix's eigenvectors that match its smallest eigenvalues are extracted. The data is
embedded into a lower-dimensional space using these eigenvectors, which also encode
the data's underlying structure. Lastly, K clusters are created by applying common
clustering algorithms to the embedded data, like K-Means [116] or normalised cuts [127].
The similarity matrix of all points and the Laplacian matrix's eigenvalue decomposition
computations yields an approximate O(n3) time complexity, where n represents the
number of samples. The eigenvalue decomposition step may make it computationally
expensive, especially when working with large datasets.

Clustering performance metrics
Clustering performance metrics can be categorised into two types: external and

internal. External metrics require both the ground truth labels and the clustering labels.
They compare, through different statistical methods, the correlation between the labels
resulting from the clustering algorithm and those of the ground truth in order to evaluate
the correctness of clustering. External metrics are generally not usable in the
neuroscience domain as ground truth labels are not available. In general, external metrics
(Purity is an exception) have the disadvantage of punishing overclustering which can
usually be solved through post-clustering merging.

Internal metrics require the dataset and a set of labels, these metrics analyse the
shape of the clusters, their intracluster and intercluster distributions, and other such
characteristics in order to assess that the clusters defined by the labels fulfil the
assumptions of a standard cluster. Table 2.4 offers a short description for multiple
performance metrics, indicating the limitations of each along with other features. From a
computer science perspective, internal metrics are restrictive with regards to the
characteristics of the clusters obtained, convex cluster that have high distances between
clusters (as in no overlap) will receive higher scores, even if a clustering algorithm is
capable of perfectly separating overlapping clusters.

Table 2.4 – A descriptive summary of various clustering performance metrics.
Name Type Description Range

[worst,
best]

Challenges

51

ARI External Pair-by-pair comparison whether the points in
the predicted cluster belong in the same true
cluster.

[-1, 1]

Require
knowledge of
ground truth

(inexistent for
real data)

AMI External Mutual information based on entropy is used
to calculate the agreement of true and
predicted labels.

[0, 1]

FMI External Pairwise comparison between true and
clustered data points.

[0, 1]

Purity External Cluster homogeneity as the majority class
assignment.

[0, 1]

VM External Harmonic mean of conditional entropies
between the true and predicted clusters.

[0, 1]

DBS Internal Ratio of the inter-cluster and intra-cluster sum
of squared distances.

(Inf, 0] Higher values for
convex and
separated

clusters, even if
overlapping
clusters are
identified
correctly

CHS Internal The average of a function that evaluates inter-
cluster distances and the size of the cluster

[0, Inf)

SS Internal Cluster quality is evaluated as the balance
between a cluster’s tightness and separation

[-1, 1]

External metrics
As mentioned previously, external metrics require both the ground truth, or true

labels, and the clustering labels, or predicted labels. The metrics discussed next are
bounded and higher values correspond to better clustering.

Adjusted Rand Index

Adjusted Rand Index (ARI) [127,129–132] is an external metric derived from the
Rand Index (RI) metric. RI makes comparisons between pairs of labels, one from the true
labels and one from the predicted labels whilst ignoring permutations. Comparisons are
made between pairs of labels to determine whether they are part of the same cluster in
both true and predicted labels. Two cases can be distinguished: when the two are in the
same cluster, called an agreement, and when the two belong to different clusters, called
a disagreement.

The RI score is computed as the division of the total number of agreements to the
sum of agreements and disagreements. This sum of agreements and disagreements is also
the equivalent of the total number of pairs. Therefore, RI can be viewed as the probability
of the two sets of labels to agree on a randomly chosen pair. Taking this into
consideration, RI is defined as shown in Equation (20).

𝑅𝐼 =
𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠

𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠 + 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠
 (25)

Starting from RI, ARI uses an expected index E to adjust for agreements made by
chance in order to ensure a consistent score for random labelling:

𝐸 (∑ (
𝑛(𝑖, 𝑗)

2
)

𝑖,𝑗

) =
∑ (

𝑛(𝑖)
2

)𝑖 ∑ (
𝑛(𝑗)

2
)𝑗

(
𝑛
2)

(26)

52

With the expected index, ARI is computed as:

𝐴𝑅𝐼 =
𝑅𝐼 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝐼

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑅𝐼 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝐼
(27)

ARI scores are bounded within the [-1, 1] interval, with negative values meaning
individual assignments and values close to 1 meaning correct clusterings. The advantage
of using ARI is that it allows for the identification of random labelling that correspond to
values close to 0.

Adjusted Mutual Information

Adjusted Mutual Information (AMI) [133,134] is an external metric derived from
the Mutual Information (MI) metric. Moreover, AMI also has the normalisation step of
Normalised Mutual Information [135,136]. MI is based upon the concept of entropy (H)
defined in Equation (23) which is based upon probability.

𝐻(𝑈) = − ∑ 𝑃(𝑖) 𝑙𝑜𝑔 (𝑃(𝑖))

|𝑈|

𝑖=1

 (28)

where P(i) is the probability that a sample of U falls into the class Ui, calculated as the
division of the number of samples that have this property (defined as |Ui|) to the total
number of samples (defined as N).

By defining U and V as two label assignments and by deriving the formula of
entropy, the formula of MI is obtained in Equation (26):

𝑀𝐼(𝑈, 𝑉) = ∑ ∑ 𝑃(𝑖, 𝑗) 𝑙𝑜𝑔 (
𝑃(𝑖, 𝑗)

𝑃(𝑖)𝑃(𝑗)
)

|𝑉|

𝑗=1

|𝑈|

𝑖=1

 (29)

where P(i, j) is the probability of a sample being a part of both Ui and Vj. This is the
equivalent of the division of the number of samples of the intersection of Ui and Vj to the
total number of samples. Thus, the formula of MI can be written also as:

𝑀𝐼(𝑈, 𝑉) = ∑ ∑
|𝑈𝑖 ∩ 𝑉𝑗|

𝑁
𝑙𝑜𝑔 (

𝑁 |𝑈𝑖 ∩ 𝑉𝑗|

|𝑈𝑖 || 𝑉𝑗|
)

|𝑉|

𝑗=1

|𝑈|

𝑖=1

 (30)

Using the expected index E, MI can be adjusted for chance to guarantee a
consistent score for random labellings defined as AMI:

𝐴𝑀𝐼(𝑈, 𝑉) =
𝑀𝐼(𝑈, 𝑉) − 𝐸{𝑀𝐼(𝑈, 𝑉)}

𝑚𝑒𝑎𝑛{𝐻(𝑈), 𝐻(𝑉)} − 𝐸{𝑀𝐼(𝑈, 𝑉)}
(31)

AMI allows for the identification of random labelling through its adjustment for
chance by resulting in values close to 0. This metric is bounded within the [-1, 1] interval,
with negative values meaning individual assignments and values close to 1 representing
correct clustering.

53

Purity

Purity [137,138] is an external metric and it computes the percentage of samples
clustered correctly. This is computed as the division of the sum of the maximum
intersections between the true and predicted labels for each cluster by the total number
of samples:

𝑃𝑢𝑟𝑖𝑡𝑦 =
1

𝑁
∑ 𝑚𝑎𝑥|𝐶𝑖 ∩ 𝐿|

𝑘

𝑖=1

(32)

Where N represents the total number of samples in the dataset, k is the number of clusters
in the set of predicted labels, Ci represents the samples of a cluster, i, of the predicted set
of labels and L is the set of true labels. Thus, Purity can be viewed as a measure of how
many of the samples of the predicted cluster belong to a single true cluster.

Purity is bounded between the [0, 1] interval, where 1 represents a perfect
clustering. By definition, purity does not punish overclustering and this is its
disadvantage. By assigning each point to a different cluster, a score of 1 is obtained.
Therefore, the correctness of the clustering does not consider the number of clusters.
Moreover, imbalanced clusters tend to receive high scores as clusters with a lower
number of samples receive higher scores in most cases.

Fowlkes-Mallows Index

Fowlkes-Mallows Index (FMI) [139] is an external metric that can be defined as
the geometric mean of the pairwise precision and recall, described by the following
formulas:

𝐹𝑀𝐼 = √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)
(33)

FMI makes no assumption of cluster structure as it only uses the number of
samples that belong to a set of labels. It is bounded within the [0, 1] interval. Random
labelling receives a value of 0, as the label assignments are independent, while a value of
1 represents significant agreement between the set of true and the set of predicted labels.

V-Measure, Homogeneity and Completeness

V-Measure (VM) [140] is an external metric defined as the harmonic mean of
Homogeneity and Completeness. The latter can be weighted through the beta parameter:
values higher than 1 give more weight to completeness, while values lower than 1 to
homogeneity. VM is defined by the following formula:

𝑉𝑀 =
(1 + 𝑏𝑒𝑡𝑎) ∗ (𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)

(𝑏𝑒𝑡𝑎 ∗ 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)
(34)

Homogeneity and completeness are both defined as conditional entropy of the
class distribution, as follows:

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = 1 −
𝐻(𝑈, 𝑉)

𝐻(𝑈)
(35)

54

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 1 −
𝐻(𝑉, 𝑈)

𝐻(𝑉)
(36)

Where U and V are label assignments, and the formula of entropy (H) is defined above for
AMI.

Within this context, classes refer to true labels and clusters to the predicted labels.
A cluster is considered homogeneous if and only if all samples of a cluster belong to a
single class (as defined by the true labels), while a cluster is considered complete when
all samples of a class (as defined by the true labels) have been identified as belonging to
the same cluster. Both homogeneity and completeness are bounded within [0, 1] as VM
is, with values closer to 1 representing a better clustering. No assumption of cluster
structure is made, and random labelling does not yield zero scores for a high number of
clusters due to the fact that neither homogeneity or completeness are normalised and
consequently, neither is V-Measure.

Internal metrics
Internal metrics require the dataset and a set of labels, which can be the true labels

or a clustering assignment. Nevertheless, these metrics do not require a ground truth,
they are most commonly used to evaluate clustering with respect to certain
characteristics such as: intracluster and intercluster distributions, the shape of clusters
and the separation of clusters. Clusters that respect the standard concept, i.e. well
separated convex clusters and with high density, receive higher scores. Due to the fact
internal metrics require only one set of labels, they can have a dual purpose. They can be
used to evaluate a clustering assignment but also the ground truth. When evaluating with
a clustering assignment, these metrics evaluate the ability of the clustering algorithm to
separate the data based on its structure into cohesive clusters. When evaluating the data
with the true labels, these metrics can be used to evaluate the structure of the data and
its separability into clusters, this can be especially useful to evaluate how much
separability a feature extraction algorithm can induce into the new feature set provided.

Calinski-Harabasz Score

Calinski-Harabasz Score (CHS) [138,141], also known as Variance Ratio Criterion,
is an internal metric defined as the ratio between the mean of intercluster dispersion and
intracluster dispersion, where dispersion is defined as the sum of squared distances:

𝐶𝐻𝑆 =
𝑡𝑟(𝐵𝑘)

𝑡𝑟(𝑊𝑘)

𝑛 − 𝑘

𝑘 − 1
(37)

Where tr(B) is the trace of the intercluster dispersion matrix, tr(W) is the trace of
the intracluster dispersion matrix, n is the number of samples of a dataset clustered into
k clusters.

CHS is only lower bound at 0 with higher scores representing better clustering.

Davies-Bouldin Score

Davies-Bouldin Score (DBS) [138,142,143] is an internal metric computed as the
mean similarity of a cluster and the cluster most similar to it. In this case, similarity is
defined as the ratio of the distances in a cluster and the distances between clusters:

55

𝑅𝑖𝑗 =
𝑠𝑖 + 𝑠𝑗

𝑑𝑖𝑗

(38)

where, Rij represents the similarity between a cluster i and its most similar cluster j, s is
the mean distance between any point of the cluster and its centroid, while dij is the
distance between the centroids of cluster i and j.

Finally, the score is computed as the arithmetic mean of the maximum similarity
R of pairs of clusters i and j. As this metric only uses distances between samples to
evaluate correctness, its evaluation is exclusively dependent on inherent characteristics
of the dataset.

𝐷𝐵𝑆 =
1

𝑘
∑ max (𝑅𝑖𝑗)

𝑘

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 ∀ 𝑗 ∈ [1, 𝑘] 𝑎𝑛𝑑 𝑖 ≠ 𝑗 (39)

where, k is the number of clusters.
DBS is lower bounded at 0, with 0 corresponding to better separation between

clusters. DBS also has higher scores for convex clusters than for other types.

Silhouette Score

Silhouette Score (SS) [138,144] is an internal metric that is computed for each
sample of the dataset and it is composed of two other scores b and a. SS computes the
distances between a point and all other samples within a cluster and the distances
between a point and all samples of a different cluster. The formula by which the score of
one sample is computed is:

𝑠 =
𝑏 − 𝑎

max(𝑎, 𝑏)
(40)

where, b is the mean distance between a sample and the closest different cluster, and a is
the mean distance between a sample and the other samples of that cluster. The SS of the
dataset is computed as the average of the score of each sample.

SS is bounded within the [-1, 1] interval, where -1 is considered incorrect
clustering as samples would be better suited to be assigned to another cluster, 1 is a dense
clustering as intracluster distances are low while intercluster distances are high, and
values close to 0 represent overlapping clusters.

Spike sorters
Spike sorting algorithms involve multiple steps of the spike sorting pipeline: spike

detection, feature extraction, clustering, cluster merging, and potentially even more.
Depending on the specific algorithm, they may include additional steps or skip some steps
from the standard spike sorting pipeline. Several spike sorting algorithms have been
developed over the years, with notable examples being KiloSort [119], SpykingCircus
[145], and WaveClus [99].

KiloSort [119] is an automated spike sorting pipeline that is specialised in the
analysis of recordings originating from high-density electrodes in real-time. It offers the
option for human intervention through a manual user interface for post-processing

56

curation. Spike detection in KiloSort is performed using template matching instead of the
classical amplitude thresholding, and spike prototypes are stored based on the L2 norm
difference. KiloSort utilises these spike templates to initialise a modified version of K-
Means that employs a custom loss function, which is designed to be invariant to
amplitude changes in spikes. One of the main advantages of KiloSort is its computational
efficiency, achieved through the use of mathematical models for spike template creation.
Notably, KiloSort encompasses more steps in the spike sorting pipeline than clustering
such as template matching for spike detection and feature extraction.

SpykingCircus [145] is another automated spike sorting pipeline designed with
the purpose of analysing high-density multielectrode arrays. It employs a fast
approximate template matching strategy to identify spikes by comparing them to set of
predefined templates representative of the waveform shapes of different neurons. To
define the templates, a new clustering approach was developed and applied on a subset
of all spikes through the use of a smart sub-sampling approach, where spikes are detected
as threshold crossings. Additionally, SpykingCircus applies whitening to the data to
remove noise and spatio-temporal correlations between channels for overlapping
waveforms.

WaveClus [99] is an automated spike sorter developed for extracellular
recordings. This sorter applies the classical spike sorting pipeline using a threshold
approach for the detection of spikes. For the feature extraction method, it uses a
multiresolution decomposition using wavelets, while the clustering is done through the
Superparamagnetic Clustering (SPC) algorithm. Additionally, the remaining waveforms
that have not been assigned to a cluster are then introduced into a template-matching
approach to be assigned to a cluster.

2.3.2. Burst detection
The ISIn [146] operates on the sorted array of timestamps, that represents the

occurrences of action potentials at a given time, as its input data. This method uses two
parameters regarding the ISI for the detection of bursts. A parameter N determines the
responsiveness of the algorithm, and it represents the number of spikes between which
the ISI is computed. The algorithm computes the time interval between a first spike and
the following N-th spike, thus for instance, for a value of 2, the algorithm analyses the
time interval between a first spike and the immediate next one. The second parameter is
a threshold, for a burst to be initiated, the ISI between a given spike and the following N-
th spike must be below this given threshold. A histogram can be computed, usually in the
logarithmic scale with smoothing, to visualise the distribution of ISIs to help establish
these parameters. Through iteration of the spiking data, consecutive spikes that have
smaller ISIs than the threshold are considered to be a part of the same burst. Thus, the
presence of burst activity is indicated by a high frequency of action potentials that are
temporally proximal. This approach provided several advantages including a simple
implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst
boundary time points. Unlike existing approaches, detection was not biassed toward
longer bursts and could correctly detect the presence of shorter bursts.
 The ISI Rank Threshold (IRT) [147] operates on the timestamp data sorted in
ascending order. This method involves the computation of the interspike intervals (ISIs)
by subtracting consecutive timestamps. Each of the computed ISIs receive a rank relative
to the largest ISI in the given spike data, for example the smallest ISI receives the rank of

57

1. The IRT method uses two thresholds, a given rank threshold and a computed spike
count threshold based on a given input. The probability distribution of spike counts is
computed using one-second bins in order to calculate the spike count cutoff in such a way
that the probability of observing a number of peaks exceeding the threshold is kept below
a specified probability limit. A burst is identified if the ISI at a given time point has a lower
rank than the rank cutoff, indicating a transition from the inter-burst to a bursting event,
and the number of spikes contained in the following one-second timeframe surpasses the
spike count cutoff. The burst is considered to have stopped when the spike count in a one-
second interval falls below the spike count cutoff divided by two.

The Max Interval (MI) [148] method necessitates the following five parameters
that define the characteristics required for burst detection: maximum start interval of an
ISI, the maximum end interval of an ISI, the minimum inter-burst interval (IBI), the
minimum burst duration, and the minimum number of action potentials of a burst.
Chronologically sorted timestamps are the required input for this algorithm. By iterating
through these timestamps, a burst is detected when the interval between two consecutive
action potentials exceeds the maximum start interval parameter of an ISI. Conversely, a
burst is considered terminated when the interval between two action potentials
surpasses the maximum end interval parameter of an ISI. IBIs are calculated by
subtracting the first timestamp of a current burst from the last timestamp of the
preceding burst and are utilised for the merging of bursts. If the combined duration of
neighbouring pairs of bursts is smaller than the minimum inter-burst interval, they are
merged to encompass both bursts. Subsequently, the algorithm iterates through the
resulting bursts, assessing whether they satisfy the conditions of the minimum burst
duration and the minimum number of action potentials. Bursts that do not meet these
criteria are not considered for further analysis. In conclusion, the Max Interval algorithm
is rather simple as any spike train that satisfies the five given thresholds is considered a
burst.

The Cumulative Moving Average (CMA) [149] method utilises the cumulative sum
of ISIs within a sliding window to detect bursts. The input data consists of a sequence of
timestamps that indicate the occurrences of action potentials. The time interval between
consecutive action potentials, or ISI, is calculated by subtracting the corresponding
consecutive timestamps. The histogram of ISI is computed, and the cumulative moving
average is calculated as the sum of the bins of the ISI histogram divided by the bin
number. The skewness of this distribution determines the values of the thresholds, α1
and α2, used in the detection of bursts. The maximum value of ISI is considered to be
found at the bin which has the closest value of maximum CMA multiplied by α1. Bursts
are identified as any spike train of a minimum of three spikes where each ISI is lower than
the maximum ISI found. The authors suggest a second cutoff, which is used to extend the
bursts to include burst-related spikes and it is computed as the maximum cumulative
moving average multiplied by α2.

The Rank Surprise (RS) [150] operates on the concept that bursts exhibit an
elevated firing rate of a neuron, which can be detected by comparing the observed ISI
with a distribution. Unlike the Poisson Surprise method, RS focuses on the values of the
inter-spike intervals rather than the firing rate. The intervals are sorted in ascending
order, and each interval is assigned a rank, starting from 1 for the smallest ISI found with
ties given the same rank. A fixed threshold for maxISI is determined based on the
probability distribution of ISIs in the spike train. Bursts are selected such that the

58

surprise statistic is maximised. The algorithm searches for the first sequence of at least
three consecutive spikes with all ISIs smaller than this maxISI. Within this sequence, all
possible subsequences of ISIs are iterated through to identify the subsequence that yields
the highest surprise value. If the surprise value exceeds the predetermined minimum
threshold given by a parameter, it is considered a burst.

The Poisson Surprise (PS) [151] method was developed upon the assumption that
bursts are characterised by an increase in the firing rate of a neuron and the firing rate of
tonic activity follows a Poisson distribution. The algorithm computes the expected firing
rate based on a Poisson distribution and the surprise value as the probability of a number
of spikes to occur in a given time given a Poisson process. Initially, bursts are identified
as sequences of three consecutive spikes with inter-spike intervals (ISIs) shorter than
half of the mean ISI observed in the spike train. The algorithm maximises the surprise
statistic by iteratively adding to the end and removing from the beginning spikes of each
identified burst. This process aims to refine the burst definition by selecting the subset of
spikes within the initial burst that exhibits the highest deviation from the expected firing
rate. Any bursts found that have a surprise value below the predetermined threshold are
discarded, as they do not exhibit a significant deviation from the expected firing rate and
are therefore not considered bursts.

2.3.3. Symbolic Analysis
The technique of Colour Sequences was introduced in [152], as a visualization tool

for obtaining representations of multiple spike-trains. As its name implies, the visual
exploration of the data set is done using sequences of colours that encapsulate the
characteristics of input data in a time defined context. It aims to detect meaningful
patterns of the activity of neurons during the evolution of the recording.

The working principle of Colour Sequences relies exclusively on a three-
dimensional Self-Organising Map for localizing and obtaining the colour label of each
sample from the input data set. Colour assignment is performed depending on the
position of each model vector in the self-organised map. Each dimension of the map
defines the intensities of red, green and blue channels respectively, used in the
composition of final RGB values of the colour label. In this way, the space of model vectors
envisions an RGB subspace delimited by the size of the self-organising map. All colours
composing a colour sequence of a trial reside in this subspace and are found using the
same process. In order to obtain the final representation of a colour sequence, the colours
of all samples in a trial are placed one after the other where each colour band indicates a
unit timestamp of 1ms. An individual colour sequence may not be useful for obtaining
meaningful information on the possible brain activity patterns. Nevertheless, groups of
colour sequences organized according to a specific criterion, could point out regions with
similar patterns. In the case of multi-electrodes spike trains several patterns could be
identified by employing such a visualization method.

The large amount of visual information conveyed by colour sequences plots of
high dimensional data sets cannot be fully comprehended only by visual colour
inspection. Some meaningful patterns can appear by themselves multiple times
throughout colour sequences groups, rather than in regions of patterns at certain
timestamps. Pattern Specificity Index (PSI) can perform an in-depth colour pattern
analysis by ensuring the capture of all the patterns related to a predefined relevant
threshold value. The index is computed for a specific pattern, p, in the context of a

59

stimulus, s, by dividing the number of occurrences of p during trials corresponding to
stimulus s, by the number of occurrences of p across all stimuli:

𝑃𝑆𝐼𝑝,𝑠 =
𝑐𝑜𝑢𝑛𝑡(𝑝|𝑠𝑡𝑖𝑚 = 𝑠)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑝|𝑠𝑡𝑖𝑚 = 𝑗)𝑗
 (41)

Event Triggered Average (ETA) is a commonly used measure in various domains,
employing different names but having an equivalent meaning and representation. This
measure has the purpose of observing a certain process around the time interval an event
took place. In neuroscience, the Spike-Triggered Average [5] describes how another
signal, such as the local- field potential, evolves around individual spikes. In this paper,
the Pattern-Triggered Average (PTA) is used to evaluate what happens, on average, with
the EEG signal around the moments when a pattern appears. The general idea of
computing the event triggered average of a repeating signal is to observe it in a time-
defined interval by taking a window of values before and after the timestamp of
occurrence. For every signal, these values are added in an arrayof size 2*window_size+1
at the corresponding positions, which are then divided by the number of signal
occurrences.

The Peri-stimulus Time Histogram (PSTH) represents an analysis tool used in
neuroscience in order to obtain a visual estimation of the rate at which certain patterns
of neural activity occur over time. PSTH divides the time axis into small bins of width δ
and then counts the frequency of each pattern within the bin. As a result, it establishes a
relationship between the occurrences of a certain pattern and time, providing
information on the temporal dynamics of a meaningful pattern across stimuli. From a
statistical perspective, the classical PSTH is considered a model approximating the
Poisson process intensity through bins with width of duration δ. PSTH aims to provide an
estimation on the number of occurrences of an event between two timestamps given by
the width of the bin.

2.3.4. Detection of oscillations
OEvents is an algorithm for the detection of brain oscillations [153], which

operates not on individual frequencies but rather on the whole time-frequency plane
where it detects oscillation bursts as local maxima. Bursts span over time and frequency
to an extent defined by per-frequency thresholds. Finally, each burst is localized within a
rectangular bounding box and is quantified by a set of parameters such as, extent, number
of cycles, dominant frequency, and power, etc. In this particular instance, the wavelet TFR
was used, and frequencies were equalized in a pre-processing step, which is one of the
main strengths of the algorithm and the reason why the algorithm was able to operate up
to 200 Hz. This is by far the most successful algorithm to date and has been used to
characterize oscillation bursts in intracranial recordings from humans and monkeys.
Nevertheless, there is room for improvement. One of the downsides of OEvents is that the
fine spatial structures of the oscillations are lost. Rectangular bounding boxes fail to
properly characterize the rich repertoire of shapes found in TFRs.

OEvents is designed to identify and analyze oscillation packets in
electrophysiological signals by inspecting TFRs. Originally, OEvents was developed on
wavelet based TFRs using 7 cycle Morlets. However, the algorithm is readily usable on
other TFRs as well. At the core of OEvents are adaptive thresholds. It first computes the

60

statistics of each frequency of interest across the whole dataset. Next, a local maximum
filter is used to detect peaks in the spectrogram, per frequency. Peaks exceeding 4 times
the median are considered as moderate power to high-power events. The authors defined
a local power peak within a 3x3 window and then seek the time-frequency bounds
around it by expanding the peak as long as the power is above a threshold, which is
defined as 50% of the peak value or 4x the median, whichever is lower. Next, packets with
overlapping areas greater than 50% of the minimum area of each individual event are
merged together. Finally, OEvents computes various packet features including frequency
span, time span, peak frequency, and other customizable features. The algorithm has been
shown to reliably detect the number of cycles and peak frequency of oscillation events
with high accuracy for most frequency bands, and at multiple event durations.

61

3. Methods for brain activity identification
Neurons transmit information through electrical impulses that travel through

their axon to adjacent neurons. To further complicate this image, two modes of function

have been found when considering multiple instances of activity: the tonic mode and the

burst mode. These two modes of function are different from the perspective of the time

interval between the instances of activity of the same neuron. Tonic activity is the regular

mode of function and most activity seen in the brain is of this type. Instances of neuronal

activity in this mode tends to have larger time intervals between them, typically larger

than the refractory period. In contrast, when neurons enter burst mode, there is no

refractory period as neurons are not able to return to their resting state before the next

action potential. Moreover, the shape of these instances of activity tend to get distorted

as the burst train progresses. It may seem at this point that they can be easily

distinguished, and they can be but only when recording a single neuron. If multiple

neurons are recorded at the same time, as is the case in extracellular recordings, it is

important to determine whether an interval of high activity represents the synchronized

activity of multiple neurons or the burst of a single neuron.

This chapter explores computational methods for the identification of tonic and

burst types of activities. The first subchapter proposes various original computer science

methods that can improve the identification of tonic activity, while the second subchapter

proposes an original method to identify bursting activity and a analytic method to

validate the correctness of this identification. From a scientific perspective, the correct

identification of tonic activity and bursting activity can improve our understanding of

brain functions such as visual processing, while burst activity has been linked to encoding

and learning. Moreover, anomalies in bursting have been connected to certain medical

conditions such as epilepsy and schizophrenia.

3.1. Data analysis in spike sorting

3.1.1. Introduction
To address the limitations derived from the complexities of spike sorting, this

subchapter proposes several original approaches in which the spike sorting pipeline can
be improved are presented. Beside the filtering, each step of the pipeline has been
addressed and improvements have been proposed in the form of new approaches in spike
sorting or even new algorithms. Neural network-based approaches are proposed for the
improvement of the standardised threshold method for the detection of spikes. The
discrimination of tonic and bursting activity has been tackled, a subject that is rarely
addressed. New approaches have been explored and validated for the feature extraction
step exhibiting improved performance compared to classical methods. A new clustering
algorithm specifically designed for spike sorting is proposed that is capable of handling
the challenges of neuronal data that traditional algorithms struggle with. A new
clustering performance metric designed for spike sorting data is proposed.
 From the challenges presented, a hypowork emerges. The development of novel

algorithms for spike sorting, specifically focusing on feature extraction and clustering

techniques, can significantly enhance the performance of spike sorting. As the classical

approach is based on a simple amplitude threshold for the detection of spikes which may

62

ignore a part of the neural activity that is below this threshold, spike detection can also

be improved.

Feature extraction algorithms were designed to extract relevant temporal and

spectral features from neural recordings, capturing the intricate patterns inherent in

neuronal spike waveforms. The aim was to research and develop methods that can

effectively discriminate between different spike waveforms producing new feature sets

that offer maximum separability for the clustering step of spike sorting. Another objective

is to explore clustering techniques for grouping these extracted features into distinct

clusters representing the spikes of individual neurons. Traditional clustering methods

face challenges in handling separating overlapping clusters and high-dimensional data,

and with enough dimensions the problem can become intractable. Therefore, the feature

extraction is an important step that can not only reduce dimensionality, but it can also

create more informative features at the same time.

Newly developed algorithms within the domain of spike sorting must be highly

performant and computationally inexpensive; thus, a critical aspect of this work involves

the rigorous evaluation and validation of the proposed algorithms. Comprehensive

experiments were conducted using both simulated and real neural datasets to assess the

performance of the developed methods. Multiple evaluation metrics were used to provide

insights into the strengths and limitations of the algorithms compared to existing spike

sorting techniques. As the evaluation has been done on real neural datasets, the

developed algorithms can be seamlessly integrated into practical spike sorting pipelines,

ensuring their usability.

3.1.2. Data

Benchmark synthetic spiking datasets
Synthetic spike data was used to quantify the performance of different clustering

algorithms. The data was generated within the Department of Engineering, University of
Leicester UK. It contains 95 simulations (datasets), created based on the characteristics
of a real “in vivo” dataset recorded from the monkey neocortex. The whole synthetic
dataset contains 594 different shapes of spikes. This synthetic dataset contains the
ground truth for each spike in each simulation, meaning that each spike has the true label,
the correct cluster it should be assigned to [45].

Originally, the data was sampled at a frequency of 96KHz, resulting in waveforms
of a length of 316 samples, these were afterwards downsampled to a frequency of 24KHz,
which also reduced the length of the waveforms to 79 samples. Therefore, in this dataset,
each spike is described by a signal of 79 values, or features, resulting into a 79-
dimensional feature space.

The simulations have varying numbers of clusters from 2 to 20, with five
simulations for each unique number of clusters, resulting in 95 simulations. Within this
dataset, clusters represent a single-unit and are emulating the spikes of neurons within
50μm from the electrode. The amplitudes of single-unit cluster have been set to follow a
normal distribution and have been scaled between 0.9 and 2, whereas the firing rate of
these neuron models have been set to follow a Poisson distribution with a mean between
0.1 and 2Hz. In order to simplify the problem, no (time) overlapping spikes have been
generated. Each spike is separated from another by an interval of at least 0.3ms [45].

63

Additionally, in order to increase the complexity of clustering problem, a multi-unit
cluster was introduced. This multi-unit cluster incorporates 20 different spike shapes to
emulate the characteristics of the noise in real data. The neuron models that fire the
spikes within the multi-unit cluster are between 50 to 140μm from the electrode. Neuron
models that are further away from the electrode, more than 140μm, were considered to
be too far away to be identified by the spike detection. The amplitudes of multi-unit
clusters have been scaled to 0.5 and have been set to follow a normal distribution. The
value of 0.5 was chosen to close to the detection threshold. The firing rate was set to 5Hz
and for the 20 neuron models in the multi-unit cluster the firing rate was set according to
a Poisson distribution with a 0.25Hz average firing rate [45].

The availability of the ground truth allows different perspectives on the spikes. In
theory, all the spikes of a neuron have similar shapes. That is the spikes of a cluster should
be similar as can be seen from the left side of Figure 3.1. By contrast, each spike presented
in the right side of Figure 3.1 belongs to a different cluster. A lot of variability can be
observed between the spikes produced by different neurons. Figure 3.1 shows spikes
extracted from one of the simulations presented, showing how spikes from the same
neuron model and from different neuron models look in these datasets.

The synthetic datasets [45] were specifically designed to contain no overlapping
waveforms. While this simplification does not capture the complexities of real spike
sorting data, the study describing the datasets aimed to assess the performance of
clustering algorithms. Even with the simplifications in place, including the absence of
overlapping waveforms and the presence of a single multi-unit cluster, it was found that
no clustering algorithm was able to identify more than 8-10 clusters out of a maximum of
20. This suggests that precise identification and separation of distinct clusters in spike
sorting remains a challenging task, even with simplified data characteristics.

Figure 3.1 - (Left) Synthetic spikes of one neuron model show that even though some variability exists, they
are very similar. (Right) Each synthetic spike is from taken randomly from all spikes of a different neuron
model showing that there is a high amount of variability between the spikes of different neuron models.

When preprocessing the data, different techniques can be applied depending on
the feature extraction method. A few examples of simple preprocessing techniques are:
normalisation, scaling and alignment. All of these can have dramatic effects on the
performance. Take alignment as an example, it is a simple shifting of all samples in order
to line up a common component at a chosen index. Alignment can be reduced to a simple
formula:

𝑛𝑒𝑤𝑠𝑡𝑎𝑟𝑡 = 𝑜𝑙𝑑𝑠𝑡𝑎𝑟𝑡 − (𝑖𝑛𝑑𝑒𝑥𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 − 𝑖𝑛𝑑𝑒𝑥𝑝𝑒𝑎𝑘) (42)

64

Naturally, when working with signals, the alignment implies changing the starting
index of the signal indicated by new_start and old_start. The alignment index indexalignment
represents the index at which all the signals are shifted to by the point of interest. In this
case, the point of interest is given by the global maxima. In the formula, the point of
interest is the indexpeak and it is different for each signal. After this preprocessing step, the
indexes of the points of interest are aligned to the chosen index, given by indexalignment.

Figure 3.2 shows the impact that such a simple technique can have on the feature
extraction, the colours shown are the labels of the ground truth. In this case, PCA was the
chosen feature extraction technique, without the alignment it splits a cluster into two
subclusters. Unfortunately, this cannot be remediated by any clustering technique, as
most likely they are identified as two separate clusters and no observer seeing those
clusters can consider them as belonging together.

Figure 3.2 - The influence of spike alignment on feature extraction through PCA on synthetic data. Panel A
shows the unaligned spikes on the left and the result of feature extraction on the right, the colours represent
the ground truth, it is clearly visible that unaligned spikes created a feature space in which the white cluster
is fragmented. Panel B shows the aligned spikes on left and the result of PCA on the right, in this case
clusters are not fragmented.

 The following subset of the 95 datasets are presented within this work:
• Simulation 1 (Sim1), containing 17 clusters in total (15 single-unit clusters and a

multi-unit cluster) with 12012 spikes.
• Simulation 3 (Sim3), containing 3 clusters in total (2 single-unit clusters and a

multi-unit cluster) with 3494 spikes.
• Simulation 4 (Sim4), containing 5 clusters in total (4 single-unit clusters and a

multi-unit cluster) with 5127 spikes.
• Simulation 9 (Sim9), containing 19 clusters in total (18 single-unit clusters and a

multi-unit cluster) with 15653 spikes.
• Simulation 10 (Sim10), containing 20 clusters in total (19 single-unit clusters and

a multi-unit cluster) with 15149 spikes.

65

• Simulation 11 (Sim11), containing 20 clusters in total (19 single-unit clusters and
a multi-unit cluster) with 14982 spikes.

• Simulation 12 (Sim12), containing 20 clusters in total (19 single-unit clusters and
a multi-unit cluster) with 13488 spikes.

• Simulation 15 (Sim15), containing 10 clusters in total (9 single-unit clusters and a
multi-unit cluster) with 9098 spikes.

• Simulation 79 (Sim79), containing 21 clusters in total (20 single-unit clusters and
a multi-unit cluster) with 14536 spikes.

Real neural datasets
 As with any computational endeavour, an important part is the data. The data
presented here was recorded by the Transylvanian Institute of Neuroscience with 32-
channel probes from the visual cortex of mice (details about the data acquisition
procedure can be found in the Appendices). In the analyses that can be found throughout
this subchapter several real datasets have been used, as follows:

• M022 – recorded with a 32-channel probe with a sampling frequency of 32kHz for
~10 minutes resulting in a signal composed of 18,780,800 samples.

• M045 – recorded with a 32-channel probe with a sampling frequency of 32kHz.
The raw data has been filtered in the 300 to 7000Hz frequency band and spikes
have been detected using an amplitude threshold. The waveforms of the spikes
have been set at 58 samples; thus, each spike has 58 features.

o M045-C1 – represents the 1-st channel of the M045 dataset in which 11675
spikes have been detected.

o M045-C4 – represents the 4-th channel of the M045 dataset in which 4672
spikes have been detected.

o M045-C8 – represents the 8-th channel of the M045 dataset in which 18894
spikes have been detected.

o M045-C17 – represents the 17-th channel of the M045 dataset in which
8990 spikes have been detected.

66

3.1.3. Methods

3.1.3.1. Enhancing spike detection through neural networks
Traditional spike detection methods employ a simple amplitude threshold, either

set manually or automatically, to identify potential spikes. However, this approach has
limitations. This type of threshold implies a compromise, high thresholds may miss spikes
with a lower amplitude than the threshold [2], while low thresholds can lead to the false
detection of noise as spikes [2]. A more recent approach is based on template-matching,
where waveforms extracted through spike sorting are compared to the signal using cross-
correlation to detect spike-like activity [103]. However, these types of approaches often
require extensive manual curation, rendering them impractical for datasets recorded
using a large number of electrodes.

Source separation in spike sorting
In this section, source signal separation is analysed whether it is applicable within

the spike detection step of the spike sorting pipeline. Through its functionality, the GAN
architecture can be a candidate for spike detection with an additional advantage of having
the capacity to extract spikes from distal neurons that have been drowned in noise.

The aim of source separation is to separate a mixed signal into its estimated
sources. The approach of this method is to train a model to approximate as accurately as
possible the sources that produced the mixture signal. Typical methods achieve this by
minimising the reconstruction error for the mixture, correspondingly the conditional
distribution of the mixture related to the estimates is maximised. The method presented
accomplishes this through the use of Generative Adversarial Networks. The classic min-
max game of the GAN revolves, in this case, around the Generator generating signal
samples and the Discriminator attempting to classify them as real or fake [154].

A well-known analogy, used in this domain, is that of the Cocktail Party. The
problem of isolating the speech of multiple individuals from a single blended recording.
Many techniques have been applied to this problem; the GAN approach proposes the use
of GANs in order to estimate the sources of a mixture signal. A noteworthy benefit is that
the output distribution is learned implicitly by the GAN and does not need to be specified
[154].

The proposed method suggests the creation of a GAN for each of the source
estimates. After training, the discriminator can be removed from the problem, while the
generator remains as a major component. To better exemplify the inner workings, let us
assume that the overall model tries to separate the informative signal and the noise from
a recording. Thus, two GANs are created, one for noise and another for the signal. Once
the training has finished, two Generators emerge, one able to generate noise samples and
another informative signal samples. In order to get the estimated sources another
intermediate step needs to occur. The generated samples of the two generators are added
together and subtracted from an original mixed signal. The result of the subtraction is
then used to find the optimal latent variables of each generator in order to minimise the
reconstruction error.

In the original paper [154], the authors also recommend the use of the Fourier
Transform in the training of the GANs, transforming the input from the original signal
into the concatenation of the real and imaginary outputs.

Approach

67

The Source Signal Separation approach [154] can be adapted for Spike Detection
in Spike Sorting. Starting from a filtered signal and the selection of spike and noise
windows of a fixed size, two GANs are created — their architectures are given by Table
3.1 — that receive inputs preprocessed using the Fourier Transform. A diagram showing
this process is shown in Figure 3.3 as the GAN component. Thus, each GAN is trained on
Fourier transformed inputs, as the concatenation of the real and imaginary outputs of
each initial signal. At the end of the training procedure, two generators are ready to be
used, one for spikes and one for noise. These generators are then used in the second part
of the process, and they are shown in Figure 3.3, as “C1 Spikes” and “C1 Noise”. Each
generator is given a latent space, or hash, which it uses to generate Fourier transformed
spikes or noise. These generated signals are then added in order to create a mixture. This
mixture is then subtracted from a spike from the original dataset, naturally the Fourier
Transform has been applied to this spike as well. The subtraction is then translated as the
error of separation and used to update the latent space, notated as “Hash” in Figure 3.3.
The latent space is being updated for a given number of iterations and it generates
increasingly better separations as the number of iterations becomes higher, thus the
estimated spike and noise are generated. The last step is the classification of the
estimated spikes into actual spikes or not. This can be done in multiple ways. The
Discriminator of the GAN Spikes can be used. Given the scores outputted by the
Discriminator for the estimated spikes, a threshold is chosen as having the best F1 score.

Figure 3.3 - The proposed architecture. At the top a GAN component is shown having as input a random
vector, called Hash, and an output, the generated signal. The source signal separation architecture uses two
GANs, one that generates each type of source. In this case, the two sources are spikes and noise. This

68

architecture attempts to generate by iterative updates, the two sources that estimate as well as possible
the original signal.

Table 3.1 - Architecture of the Generator and Discriminator in the GAN.

Generator Layer / Units Discriminator Layer / Units
Latent space / 100 Input Sample Size / 79
Hidden Linear / 200 Hidden Linear / 40
Softplus / 200 Tanh / 40
Hidden Linear / 200 Linear Output / 1
Softplus / 200
Linear Output / 79

For the training process, many parameters are used. The GANs have been trained

initially on 100 epochs with batch sizes of 64 using the Adam optimizer with a learning
rate of 0.002. In order to increase the performance of the generator, for each iteration of
its training, the discriminator receives 5 training epochs. The initially chosen number of
iterations for the update of the latent space was 100. The loss is presented in Figure 3.4
and it can be seen that the model becomes stable as it goes through the training process.

Figure 3.4 - Loss and accuracy of GAN training.

The training of the GAN was made using the Fourier Transform as it increased the

reconstruction error of the estimation in the following steps. As such, the generator
produces samples that have the characteristics of the Fourier transformed samples,
shown in Figure 3.5, while Figure 3.6 shows the Inverse Fourier Transform of these
generated samples and they do resemble the attributes of the original samples.

69

Figure 3.5 - Signals produced by the Generator model trained on the FFT signal of spikes.

Figure 3.6 - The inverse Fourier Transform of the signals produced by the Generator model shown in Figure
3.5.

Fourier Transform Preprocessing
With regard to the inclusion of the Fourier Transform as a preprocessing step and

the input of the GAN becoming the concatenation of the real and imaginary parts of the
output, it greatly improves the reconstruction error of the estimated sources as it can be
seen from Figures 3.17 and 3.18. The Fast Fourier Transform was applied, which
calculates the Discrete Fourier Transform (DFT). When the input of the DFT is only real
it still outputs a complex vector, but the real and imaginary parts are mirrored. Thus, the
DFT of a signal is described by N/2 complex values or N values if their real and imaginary
parts are concatenated. An advantage of the DFT is that it is invertible, thus the GAN can
be trained on the transformed signals and view the results by using the inverse transform.
Figure 3.7 shows a spike and its DFT. The reconstruction of the GAN, as a sum of
component signals, can be viewed in Figure 3.8 and Figure 3.9. By comparing these two
figures, the impact of the Fourier preprocessing can also be seen.

The DFT is described by the following formula:

𝑋𝑘 = ∑ 𝑥𝑛 ⋅ 𝑒−𝑖
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0 (43)

70

Figure 3.7 - A spike and its Fourier transform.

Figure 3.8 - Separation of a signal into spike and noise compared with the original signal with no
preprocessing before insertion in the training of the GAN.

Figure 3.9 - Separation of a signal into spike and noise compared with the original signal when the signal
was preprocessed using Fourier Transform before insertion in the training of the GAN.

71

Drowning Spikes using Signal-to-Noise Ratio
Drowned spikes can be generated through the change of the signal-to-noise ratio

(SNR). This allows for the evaluation of the spike detection in various circumstances. The
drowned spikes were generated as a linear scaling of a genuine spike with a scaling factor
(SF) with an addition of noise:

𝑆𝑑𝑟𝑜𝑤𝑛𝑒𝑑 = 𝑆𝐹 ∗ 𝑆𝑠𝑝𝑖𝑘𝑒 + 𝑆𝑛𝑜𝑖𝑠𝑒 (44)
The SNR can be defined as the root mean square of the scaled spike divided by the

root mean square of the noise, all to the power of two, for a given spike and noise signal
of a fixed size:

𝑆𝑁𝑅 =

√ 1
𝑆𝑖𝑧𝑒 ∑ 𝑆𝐹2 ⋅ 𝑆𝑠𝑝𝑖𝑘𝑒

2

√ 1
𝑆𝑖𝑧𝑒 ∑ 𝑆𝑛𝑜𝑖𝑠𝑒

2

 = 𝑆𝐹2
∑ 𝑆𝑠𝑝𝑖𝑘𝑒

2

∑ 𝑆𝑛𝑜𝑖𝑠𝑒
2

(45)

Through some mathematical calculations, using the above formula, the SF can be
extracted as:

𝑆𝐹 = √𝑆𝑁𝑅
∑ 𝑆𝑠𝑝𝑖𝑘𝑒

2

∑ 𝑆𝑛𝑜𝑖𝑠𝑒
2 (46)

Using the formula for the generation of drowned spikes on a spike greatly reduces
the overall amplitude and the magnitude of each oscillation, this can be viewed in Figure
3.10 where a SNR of 3 was applied.

Figure 3.10 - Generation of drowned signals by changing to the signal-to-noise ratio.

Analysis of spike detection using GANs
Provided a specific dataset with a fifty-fifty proportion of spikes and noise that has

been generated from synthetic data, this approach can have an overall better
performance than the classical amplitude thresholding across all signal-to-noise ratios as

72

can be seen in Figure 3.11. This figure shows four plots indicating the performance of this
approach across four metrics, the x-axis indicates the SNR applied to the dataset. In this
case, the classic performance metrics of accuracy, f1 score, precision and recall were
chosen rather than analysing the whole spike sorting pipeline with clustering
performance metrics as the latter would reflect the performance of feature extraction and
clustering as well without the ability to separate how much each of them influences the
results.

Figure 3.11 - Performance evaluations of spike detection using GANs with a specifically designed dataset of
half spikes and half noise on training data. Each plot shows the performance from the perspective of a
different metric. Lines in plots indicate the method used to detect spikes, whether it is the proposed
approach, or the threshold based on the standard deviation. The x-axis indicates the SNR applied to the
dataset.

The approach presented above was a proof-of-concept to assess that GANs would
be able to manage the task of Spike Detection. To actually evaluate their performance, the
data has to be as similar to other datasets used in Spike Sorting. In this case, no such
perfect separation of half spikes and half noise can be made. Thus, the generation of the
data has to be changed for suitable testing.

Knowing the window size of spikes, the dataset was separated into such windows
that traverse the filtered signal with a given hop size, preferably smaller than the window
size. For the circumstances presented here, the window size is 79 and the hop size is 10.
The Spike GAN is trained to generate spikes from different perspectives due to the
hopping through the signal. Naturally, the SNR is applied only to the windows that contain
actual spikes. The results are unsatisfactory, viewable in Figure 3.12. As previously
mentioned, even though the accuracy is high, the model does not have a high
performance. This happens due to the fact that there are very few spike examples in
comparison to noise examples.

Nevertheless, the performance of such a model trained on correctly generated
data can be improved, as can be seen by comparing Figure 3.12 and Figure 3.13, by

73

increasing the number of training iterations. The number of epochs of the GAN training
has been increased from 200 to 1000, while the separation update was increased from
100 to 1000.

Figure 3.12 - Performance evaluations on the training data of spike detection using GANs on a synthetic
dataset with a low percentage of spike windows in comparison with noise examples.

Figure 3.13 - Performance evaluations on the training data of Spike Detection using GANs on a synthetic
dataset with a low percentage of spike windows in comparison with noise, with an increased number of
training iterations.

74

Predicting sub-threshold spikes

Proposed method
 Our proposed approach is to utilise an Artificial Neural Network (ANN) to enhance
the effectiveness of the amplitude threshold-based detection through the identification
of sub-threshold spikes based on similarity to those above the threshold. Spikes from
neuronal recordings are detected using a hard amplitude threshold determined by a
customizable factor of the standard deviation (SD) of the filtered signals. A classifier is
trained using the spikes detected by the threshold and random noise segments (of equal
size to the spikes) extracted from the recording. The ANN classifier learns to distinguish
between the two classes, spikes and noise. To obtain new spikes that have been missed
by the threshold, a sliding window is applied to the filtered signal, moving sample by
sample, then each extracted window is inputted into the trained classifier to evaluate
whether a spike exists within the window. Windows for which the classifier's target
output is higher than a given threshold are recognized as spikes.

This approach was applied to the M022 real dataset and as such, it required the
preprocessing of data involving several steps of the spike sorting pipeline. First, the
channel underwent band-pass filtering using a bidirectional Butterworth IIR filter of
order 3 with cutoff frequencies set between 300 Hz and 5000 Hz to obtain signals
containing spiking activity. An amplitude threshold was set based on a factor of the
standard deviation (SD) of the filtered signal, which is typically between 3 and 5 [2].
Spikes were identified as threshold crossings and were aligned and extracted from the
signal.
 The neural network architecture of the trained model is presented in Table 3.2
and was achieved through empiric evaluations in the search of a model that is able to
learn the shape of spikes without overfitting in order to be able to find the sub-threshold
spikes. It contained three hidden layers using the SELU activation function with
decreasing sizes of artificial neurons, while the output was composed of a softmax
activation function with the size equal to the number of classes. The training of the model
was made on a dataset composed of half-spikes and half-noise to avoid imbalance in data,
an example is shown in Figure 3.14. The loss function used was binary crossentropy and
the optimizer used was RMSprop with a learning rate of 1e-4 and a momentum of 0.8.
The loss and accuracy of the training of the model can be viewed in Figure 3.15 indicating
that the training of the model becomes saturated at the beginning. Similar results can be
obtained with a variety of hidden layer activation functions and optimizers.

Table 3.2 - Architecture of the classifier.

Layer Units Activation
Input 58 -
Hidden Linear 40 SELU
Hidden Linear 20 SELU
Hidden Linear 10 SELU
Output 2 Softmax

75

Figure 3.14 - Training data of the classifier: (A) extracellular spikes, (B) noise. The spikes and the noise
segments were extracted from the M022 real dataset.

Figure 3.15 - Loss and accuracy of the classifier during training on the M022 real dataset.

 Once the classifier has been trained, it can be employed for the detection of spikes
by providing it with a window of the signal having the same size as a spike. This window
is then moved sample by sample across the entire signal, and the output for the spike
class can be recorded at each step.

Performance analysis
In a subsequent step, spikes identified by the classifier are localised by applying a

high probability threshold, typically set around 0.99. The spike waveforms can then be
extracted from the original signal by selecting windows of the size of a spike where the
probability threshold is crossed. This process often yields a large number of potential
spikes, including misaligned spikes. To address this issue, spikes that do not have the
peak properly aligned with the 20th sample can be discarded. Moreover, the classifier
also finds spikes that were identified by the amplitude threshold and that were in the
training data, these can also be discarded. A short analysis through a histogram of the
predictions over the whole signal, indicates that none of the spikes used in the training
data are given a high probability of noise with the highest value being 1e-07. Moreover,
all of them are identified even with such a high probability threshold.

The assessment of the validity of the new spikes found by the classifier is difficult.
The analysis opted for was a comparison of spike amplitudes and spike shapes between
the spikes extracted by the amplitude threshold, those identified by the classifier and all
of them together. The comparison between the amplitude threshold approach and the
classifier approach reveals differences in the spike amplitude distribution. The

76

distribution of the amplitude threshold approach appears skewed distribution towards
positive values and cut off by the threshold, indicating that some information might be
missing. However, incorporating the spikes identified by the classifier shows a more
natural distribution with a drop off. Examination of the spike shapes indicates that the
shape of spikes detected by the classifier are similar to those of the amplitude threshold;
this is also supported by the average waveform. This interpretation can be extracted from
Figure 3.16.

Furthermore, an analysis through PCA shows that the new spikes found by the
classifier have more overlap with those found by amplitude threshold than random noise
from the signal. This can be viewed in Figure 3.17. To acquire a numeric value of the
overlap, the convex hulls of the spike and noise clusters can be calculated and the mean
distances between new spikes to each cluster can be used to obtain a metric that denotes
with which of these two clusters has the most overlap. Using this metric, the distance
between the cluster of new spikes and those obtained by the threshold are 6e-5, while
the distance between the cluster of new spikes and that of the noise is 0.49, indicating
that the new spikes are more similar to those obtained by thresholding than to noise.

Figure 3.16 - The left side shows histograms of the distributions of spike amplitudes, while the right side
shows the spike shapes. The top represents spikes found by the amplitude thresholding approach, the
middle shows spikes found by the classifier approach and the bottom shows the sum of the two approaches.

77

Figure 3.17 - PCA analysis of spikes found by amplitude thresholding (red), new spikes found by classifier
(blue), and noise (white).

The proposed ANN classifier requires a new training for every recording,
conceivably even for every channel of a recording as there is a high variation across
recording sessions and even between the electrodes of a probe in a single recording. Its
utility is highest for offline processing in spike sorting.

Findings
Incorporating a classifier alongside traditional threshold-based approaches

provides more advantages. While the amplitude threshold method may skew the

distribution of spike amplitudes and potentially miss relevant information due to its

cutoff nature, the classifier-based approach presents a more natural distribution with

discernible drop-offs. Moreover, the similarity in spike shapes and waveforms between

the two methods indicates that the classifier's outputs are sub-threshold spikes. This is

further supported by the PCA analysis, which demonstrates that the spikes identified by

the classifier have more overlap with those detected by amplitude thresholding than with

random noise from the signal.

The proposed ANN classifier requires retraining for each recording or even for

each channel within a session due to the high variability across recordings and electrodes.

Consequently, its primary use lies in offline spike sorting applications.

78

3.1.3.2. Autoencoders in spike sorting
The autoencoder architectures are neural networks created as multiple fully

connected hidden layers, symmetric between the encoder and the decoder that are linked
through a bottleneck, and as such they fall into the category of deep autoencoders. In the
case of spike sorting, they have been shown to give superior results [54,55] as they are
more capable of learning the intricacies of neuronal data.

Proposed method
 We propose [155] autoencoders as a feature extraction method for spike sorting.
Several variations of autoencoder architectures and preprocessing options have been
tested in order to assess the best configuration for neuronal data. Several variants have
been previously described. A combination of PCA and AE has been tested, the
autoencoder encodes the data into a new lower-dimensionality intermediate space
followed by PCA to further reduce the space into a visualizable scope. The Fourier
Transform has been added as a preprocessing alternative before entering the training of
the AE. By applying the FT, a real and imaginary part are received that can be combined
in multiple ways of use: real part, imaginary part, magnitude, phase, power, and various
combinations of these. Here, two major options are available: the classical preprocessing
of transforming the data using the FT by introducing the real part as the training samples
and a windowed variant of FT using the Blackman window as they produced the best
results. Additionally, multiple network depths are evaluated in order to assess their
performance.
 Multiple different performance metrics, both internal and external, have been
used to appraise the performance of the various models. These metrics have already been
described and presented previously. As the evaluation of the AE as a feature extraction is
made in the context of spike sorting, they must be combined with a clustering algorithm
in order to correctly evaluate their performance, for this purpose K-Means has been
chosen.
 The variants presented here have several identical items of configuration, a
general representation is shown in Figure 3.18. The encoder and decoder have symmetric
mirrored layers containing ReLU activation functions, while the code and output layers
have the tanh activation function. As the tanh function is bounded within the [-1,1] range
the input data must be scaled to fit within these bounds.

Figure 3.18 - General architecture of an AE.

79

Additionally, the code layer contains an L1 regularisation of 10e-7 in order to help
with preventing overfitting of the training data. The optimiser chosen is the Adam
optimizer with the Mean Squared Error (MSE) as the loss function. The MSE produces the
best point-by-point estimation of the input at the output. This is important because the
reconstruction exhibits the ability of the AE to encode and decode information through
the bottleneck.

Performance analysis of autoencoder variants
 A simple preprocessing with a high impact on the performance of the feature
extraction is the alignment. The assessment of performance of PCA and a general
architecture of AE is presented in Table 3.3.

Table 3.3 - Alignment impact on the performance evaluation for PCA and AE on the Sim4 synthetic dataset.

 ARI AMI VM DBS CHS SS
PCA-Unaligned 0.52 0.77 0.77 0.54 5383 0.47
PCA-Aligned 0.57 0.8 0.8 0.58 7550 0.48
AE-Unaligned 0.7 0.83 0.83 0.62 6260 0.49
AE-Aligned 0.98 0.96 0.96 0.55 7807 0.61

 The influence of AE training hyperparameters on the performance of a general
architecture of AE was analysed. Table 3.4 presents the effect of various numbers of
epochs, while Table 3.5 presents the performance of multiple values of learning rates.

Table 3.4 - Performance of different values of the number of epochs for the training process on the Sim4
synthetic dataset.

 ARI AMI VM DBS CHS SS
Epochs=50 0.98 0.97 0.97 0.27 52012 0.79
Epochs=100 0.91 0.88 0.88 0.35 28541 0.66
Epochs=500 0.98 0.96 0.96 0.55 7807 0.61

Table 3.5 - Performance of different values of learning rates for the training process on the Sim4 synthetic
dataset [155].

 ARI AMI VM DBS CHS SS
LR=0.1 0 0 0 0 0 0
LR=0.01 0.47 0.69 0.69 0.47 12450 0.39
LR=0.001 0.98 0.96 0.96 0.55 7807 0.61
LR=0.0001 0.98 0.97 0.97 0.43 12343 0.62

 The AE variants presented have been compared against widely used feature
extraction methods that have been described, namely PCA, ICA and Isomap. The
evaluation of the methods has been done on multiple synthetic and real datasets with
various numbers of clusters and samples for an exhaustive performance evaluation as
different techniques may be more appropriate for different numbers of clusters and
samples. Figure 3.19 presents the Sim4 synthetic dataset as it offers a relevant
visualisation. The performance evaluation of the presented methods is available in Table
3.6.

80

Figure 3.19 - Feature extraction of the Sim4 dataset containing 5 clusters, the colour coding shown
represents the ground truth.

Table 3.6 - Evaluation of feature extraction methods on Sim4 containing 5 clusters.

 ARI AMI VM DBS CHS SS
PCA 0.57 0.8 0.8 0.58 7550 0.48
ICA 0.61 0.8 0.8 0.53 7000 0.51
Isomap 0.96 0.95 0.95 0.47 17722 0.61
Shallow AE 0.99 0.98 0.98 0.43 13835 0.65
AE 0.98 0.96 0.96 0.55 7807 0.61
Tied AE 0.59 0.8 0.8 0.44 13698 0.68
PCA AE 0.59 0.79 0.79 0.65 8959 0.51
Pretrained AE 0.91 0.92 0.92 0.27 33,910 0.73

81

LSTM AE 0.31 0.59 0.59 0.82 3592 0.25
FT AE 0.36 0.51 0.51 1.63 2672 0.18
WFT AE 0.43 0.59 0.59 9.13 2293 0.28
Orthogonal AE 0.32 0.44 0.44 8.71 4866 0.05
Contractive AE 0.97 0.95 0.95 0.46 14852 0.62

A general analysis of the 95 simulated synthetic datasets can be viewed in Figure

3.20 with regard to each of the 6 performance metrics used. Additionally, a ranking of the
methods has been made using the Borda rank aggregation [156] and it is presented in
Table 3.7.

Figure 3.20 - Evaluation of performance for all approaches applied on all 95 synthetic simulations with
regard to each performance metric.

Table 3.7 - Approaches ranked using the Borda ranking system with regard to each metric after applying
them on all 95 synthetic simulations.

Rank ARI AMI VM DBS CHS SS
1 AE Shallow AE Shallow AE AE AE Shallow AE
2 Shallow AE AE AE Shallow AE Shallow AE AE
3 Isomap Isomap Isomap ICA PCA LSTM AE
4 LSTM AE LSTM AE LSTM AE Pretrained

AE
LSTM AE Pretrained

AE
5 PCA AE Pretrained

AE
Pretrained
AE

Contractiv
e AE

Orthogona
l AE

Isomap

82

6 Pretrained
AE

WFT AE WFT AE PCA Isomap PCA AE

7 Tied AE Tied AE Tied AE LSTM AE Pretrained
AE

WFT AE

8 Contractiv
e AE

PCA AE PCA AE FT AE ICA Orthogona
l AE

9 FT AE Contractiv
e AE

Contractiv
e AE

PCA AE WFT AE FT AE

10 Orthogona
l AE

Orthogona
l AE

Orthogona
l AE

Orthogona
l AE

PCA AE Tied AE

11 WFT AE FT AE FT AE Tied AE FT AE Contractiv
e AE

12 PCA PCA PCA WFT AE Contractiv
e AE

PCA

13 ICA ICA ICA Isomap Tied AE ICA

 The following analysis considers the performance of the presented methods on
real data, denoted as M045-C17, that was recorded extracellularly from the brain of a
mouse. The M045-C17 dataset does not contain a ground truth that can be used, as such
the analysis of the approaches are reduced in complexity and only use three of the six
performance metrics, namely the internal metrics: CHS, DBS and SS. It is important to
mention that this renders the performance biassed with regard to the ability of the
clustering algorithm. Table 3.8 presents the analysis of performance for all feature
extraction methods, while the results can be visualised in Figure 3.21.

Table 3.8 - Performance analysis of all feature extraction methods on the M045-C17 real dataset.

 DBS CHS SS
PCA 0.63 20637 0.76
ICA 0.72 8200 0.64
Isomap 0.45 68339 0.86
Shallow AE 0.65 14000 0.72
AE 0.24 14100 0.95
Tied AE 0.45 34700 0.8
PCA AE 0.19 52767 0.87
Pretrained AE 0.32 45700 0.92
LSTM AE 1 3844 0.38
FT AE 0.84 12555 0.61
WFT AE 0.79 8700 0.45
Orthogonal AE 0.58 20500 0.58
Contractive AE 0.36 31881 0.8

83

Figure 3.21 - Feature extraction methods applied on the M045-C17 real dataset; colours indicate the labels
obtained through K-Means.

Findings
The Autoencoder based variants have demonstrated the ability to generate

features that provide enhanced separability for the clustering neuronal spikes, both
visually and based on multiple performance evaluation metrics on a large number of
datasets. Just as the state-of-the-art methods, these variants do not require prior
knowledge of informative features. Among the examined variants, the AE variant
consistently outperformed all other methods and autoencoder variants both for synthetic
and real datasets when used in conjunction with K-Means. This observation is supported
by the evaluations presented of various metrics and the Borda ranking of methods. Other
AE variants have shown situational performance, such as the Shallow AE variant, which
performed well, but only on synthetic datasets. For real data with more complex spikes,
additional layers seem to be necessary to achieve better separation, as demonstrated by
the superior performance of the AE variant compared to the Shallow AE variant.

84

Autoencoders, being unsupervised models, offer a suitable solution for spike
sorting as they do not require the ground truth labels of data. They also do not require a
segregation between training and testing datasets, as the model is trained on the entire
dataset and the latent feature space can be extracted. This inherent characteristic ensures
robustness and avoids performance drops due to improper training. However,
autoencoder models need to be trained for each new dataset, inducing additional costs in
terms of execution time. The additional cost is dependent upon the number of samples of
the data and the chosen number of epochs. Despite the additional costs, the improvement
in performance justifies the expense.

3.1.3.3. The Superlet Transform in spike sorting. Evaluation of the superlet
features

Proposed method
Our proposed method [157] employs the Superlet Transform as a feature

engineering algorithm combined with PCA to reduce the dimensionality. The superlet is
composed of o wavelets, each wavelet of the set has its own number of cycles that is
increased multiplicatively. The choice of these parameters can impact the results, as
shown in Figure 3.22 and Figure 3.23, as such each parameter must be analysed in order
to understand its influence on the results. In this case, the Superlet Transform has been
applied to the Sim8 synthetic dataset The transform returns a spectrogram, as shown in
Figure 3.24, that is then used as input for PCA in order to reduce the dimensionality to 2
for visualisation. Therefore, the Superlet Transform is used as a feature engineering
technique.

Figure 3.22 - Feature extraction using the Superlet Transform and PCA on the Sim8 synthetic dataset with
various values for the cycles parameter (c=1.5, left and c=3, right).

In this case, the Superlet Transform is used as a feature engineering technique in
the process of Spike Sorting followed by a feature extraction step, the clustering
performance must be taken into consideration to determine the most performant
parameter values by varying both of these. Through observations made on a number of
simulated datasets with varying numbers of clusters, the most performant values for the
parameters were found to be the minimum values of each, as shown by Table 3.9.
Moreover, these set of parameters seem to be the most performant not only for PCA but
for other feature extraction techniques as well. Nevertheless, Superlets produced the best
results in combination with PCA.

85

Figure 3.23 - Feature extraction using the Superlet Transform and PCA on the Sim8 synthetic dataset with
various values for the order parameter (o=5, left and o=15, right).

Performance analysis
 As the dataset also provides the ground truth, the impact of different parameter
values on the spectrogram can be analysed through the learning capabilities offered
through neural network classification. This can be viewed in Figure 3.24, as the
spectrogram of a whole cluster was calculated. Here, it is highlighted that the ideal
precision in both time and frequency is achieved by the minimum values of the
parameters as can be seen from Table 3.9. As the parameters are modified, it produces
higher precision in either time or frequency.

Figure 3.24 - Spectrogram of a cluster from a simulated dataset (Sim8) with varying values for the
parameters. The left image shows the best precision with c=1.5 and o=2, the minimum values. The middle
image has a high order value resulting in a high frequency precision, while the right image has a high cycle
value resulting in a high temporal precision.

Table 3.9 - Performance evaluation of Superlets features.

 ord c1 DBS CHS SS
Sim 8
(3 clusters)

2 1.5 0.994 7110.6 0.731
2 3 1.267 3097 0.639
5 1.5 1.248 3614.6 0.656
10 1.5 1.507 2346 0.603
15 1.5 1.661 1885.3 0.574

Sim 15
(10 clusters)

2 1.5 0.853 40316.1 0.541
2 3 0.947 36443.7 0.471
5 1.5 0.916 35179.4 0.489
10 1.5 1.146 23950.9 0.418
15 1.5 1.521 28150.9 0.379

Sim 79
(21 clusters)

2 1.5 1.697 10183.8 0.296
2 3 1.828 7481.8 0.255

86

5 1.5 1.481 5331.6 0.242
10 1.5 2.092 4120 0.226
15 1.5 2.188 4217.5 0.197

 The relevance of the features produced by the Superlet Transform can be assessed
by classification. As the data contains the ground truth, a neural network can be trained
to classify the data by their spectrograms. Thus, if a neural network model is able to learn
and predict with a high accuracy the cluster of a spike by its Superlet features then it can
be confidently said that the Superlet Transform provides relevant information.
 The spectrograms of the data, each signal having its own unique Superlet
representation, is split into the training, validation and testing subsets, as is commonly
done. Most datasets contain upwards of 3 clusters, as such the problem becomes one of
multi-label classification. I have chosen a multi-layer feedforward neural network with
500 neurons for the input, 3 hidden layers of decreasing numbers of neurons by dividing
with powers of 2 and an output layer equivalent to the number of unique labels of the
dataset. The input represents the number of values in the time-frequency bins of the
Superlet representation. The activation of the hidden layer was chosen as ReLU, while the
output contains a softmax activation. The chosen loss function was the categorical
crossentropy. The labels have been one hot encoded to work with the softmax activation.
The evolution of the loss and the performance metrics during training can be viewed in
Figure 3.25. The final results in terms of performance of this method on multiple datasets
with varying numbers of clusters can be viewed in Table 3.10.

Table 3.10 - Evaluation of the neural network’s learning from superlet features.

 Loss Accuracy F1
Sim8 (3 clusters) 0.03 0.988 0.986
Sim33 (5 clusters) 0.06 0.976 0.976
Sim84 (7 clusters) 0.01 0.996 0.993
Sim63 (15 clusters) 0.04 0.983 0.983
Sim79 (21 clusters) 0.06 0.981 0.981

87

Figure 3.25 - Evolution of loss and performance metrics (accuracy and F1 score, they are overlapped)
during training of the Sim79 dataset with 21 clusters.

Findings
 The characteristics provided by Superlet Transform have demonstrated superior
performance in enhancing the distinguishability of clusters in the spike sorting domain
compared to features provided by traditional feature extraction methods.
 The performance evaluation indicates that using the minimum values for the
Superlet parameters resulted in best performance for the clustering phase and with these
parameters it consistently performed well, regardless of the number of clusters.

88

3.1.3.4. The Superlet Transform in spike sorting. Identifying superlet feature
importance through perturbation

In our prior research [157], we have shown that the characteristics provided by
Superlet Transform can be used to outperform traditional feature extraction methods by
introducing new information that enhance the distinguishability of clusters in spike
sorting. Building upon this finding, the objective was to determine the key features within
the spectrogram, generated through the Superlet Transform, that facilitate effective
differentiation among various spike clusters.

In order to investigate the advantages of the Superlet transform in feature
separability, experiments were conducted using real datasets obtained from
electrophysiological recordings in the brains of anaesthetised rodents. Additionally, the
recorded data underwent manual spike sorting by an expert to establish a reliable
"ground truth" for classification and comparative analysis.

Proposed method
Our proposed approach [158] for determining the significant feature areas crucial

to model learning is a sequential pipeline illustrated in Figure 3.26. The initial step of the
proposed pipeline involves computing the Superlet spectrum for each spike. To reduce
dimensionality and computation time, downsampling of the spectra is performed using
bicubic interpolation, although this step is not essential for the pipeline. Instead of
perturbing individual features, all correlated features are perturbed together to account
for compensation from correlated features during training. Thus, the subsequent step in
the pipeline entails identifying sets of features that exhibit correlations above a specified
threshold. This is accomplished by processing the correlation matrix. Once the correlated
feature sets are identified, the comparison process can commence. An instance of the
neural network is first trained on the unperturbed features. Next, each individual set of
correlated features is perturbed, and a neural network of the same architecture is trained
on the modified dataset that contains the perturbation of a single feature set. Through the
difference in performance of the neural networks trained on the unperturbed and
perturbed dataset, the impact in learning of the feature set is obtained. The following
subsections provide a detailed description of these steps.

The classifier (neural network model) takes the spectrogram, generated through
the Superlet Transform, as its input. Therefore, it is the characteristics of the spectrogram
that is perturbed in the proposed method. Figure 3.27 displays the time-frequency
spectrum of three average spike waveforms obtained by applying the Superlet method
(order 2, with a cycle number of c1 = 1.5) to the M045-C4 real dataset. The top section of
each figure illustrates the average spike from each cluster, while the bottom section
presents the representation of the spike in the time-frequency domain.

The spectrogram matrix was resized from its original size of [58, 50] to a smaller
size of [14, 12] through bicubic interpolation. This resizing resulted in a total of 168
features remaining in the spectrogram matrix. The bicubic interpolation technique [159]
is employed to estimate values between adjacent data points in a two-dimensional
representation offering several advantages, particularly in applications such as feature
extraction. It simplifies the process of aligning the data in a standardised format, enabling
both quantitative and qualitative analyses to be performed on the recorded signals.

89

Figure 3.26 - The flow of the correlated feature set perturbation pipeline.

Figure 3.27 - Average spikes and their corresponding spectrograms for 3 different clusters (neurons) of a
M045-C4.

The correlation matrix was calculated to visually represent the strength of
correlations between the characteristics of the action potentials. This matrix displays the
degree of association between all possible pairs of values. Correlation coefficients range
from -1 to 1, where -1 indicates a perfect negative correlation, 1 indicates a perfect
positive correlation, and 0 indicates no correlation between the coefficients [160]. Figure
3.28 illustrates the correlation matrix using a heat map, where the intensity of the colours
(red for high values and blue for low values) represents the magnitude of the correlations
between features.

90

Figure 3.28 - An example of a correlation matrix obtained from M045-C4 real dataset after the
downsampling of spectrograms through bicubic interpolation.

In the final step, bicubic interpolation is applied to upscale the perturbation matrix
from the reduced shape of [14, 12] back to its original shape of [58, 50]. Figure 3.29 is an
example of a perturbation matrix before interpolation and Figure 3.30 shows the matrix
from Figure 3.29 after applying interpolation to return it to the original shape of [58, 50].

Figure 3.29 - Perturbation matrix showing the effect of perturbation on the learning of a neural network on
each feature.

91

Figure 3.30 - Bicubic interpolation for upsampling to obtain original size.

The feature perturbation method assesses the importance of each feature set in the

learning process. Perturbations were applied to each feature set using different

thresholds and perturbed them 10, 20, and 50 times. Each feature set contains those

features that have a correlation greater than or equal to a certain threshold, and the

threshold refers to a value used to decide whether two features are considered correlated

or not. After a thorough analysis of the three cases, we noticed significant differences

between them. Permuting the features of the spikes 50 times rather than 10 or 20 times,

leads to a more stable statistical estimation of the effect of perturbation. Additionally, the

more extensive perturbation can help identify features with a greater contribution to

correct classification, helping in the elimination of irrelevant features.

In order to determine the most significant spike characteristics for automated

learning, they were incorporated into the training of a classifier, in this case a neural

network. We used a neural network that features an input layer, a hidden layer with the

ReLU activation function, and an output layer with the Softmax activation function. The

input layer has the role of receiving the input values of each data set, the number of

neurons being determined by the size of a sample of the input data. Regarding the output

layer, it produces the final result of the neural network, both for the original set of

features and for the disturbed one, and the activation function returns a vector with the

length equal to the number of classes in the [0,1] interval and ensures that the sum of

probabilities of all classes is 1. The number of classes for a certain data channel is equal

to the number of individual neurons observed on the channel and separated during

manual spike sorting in order to obtain the ground truth.

Different parameters of the Superlet Transform can impact its performance.
Experiments were conducted to select the more performant parameters by testing
various combinations and comparing the results. Specifically, the Superlet of order 1
(Wavelet), Superlet of order 2, and Superlet of order 5 were compared on the same real
dataset, as depicted in Figure 3.31 on the left panel, middle panel and right panel,
respectively. Analysing these visual representations, it was observed that the Wavelet has
favourable temporal resolution and the higher order Superlet has favourable resolution

92

in frequency, while the 2nd-order Superlet exhibits superior precision in multiple areas,
including low frequencies, high frequencies, and transient frequencies over time.

Figure 3.31 - Superlet parameterization impact on a single cluster of spikes from the M045-C4 real dataset,
where the heatmap values represent the power values of the spectrogram.

The Superlet Transform has several parameters that may affect performance.
Choosing these parameters was done by testing various combinations and comparing
results. Thus, we made a comparison between the following parameters: Superlet of
order 1 (Wavelet), Superlet of order 2, respectively Superlet of order 5 shown in Figure
3.32 on the same real dataset. Considering these graphical representations, we found that
the Wavelet has a good temporal resolution, but the 2nd-order Superlet offers the best
precision across multiple areas such as low frequencies, high frequencies, and transient
frequencies in time.

Figure 3.32 - Superlet parameterization impact on the drop in performance, where the values of the
heatmap represent the change in performance given by the perturbation of each characteristic at those
positions [158].

Parameter dependence analysis
Threshold Dependence
From the comparative analysis we performed in Table 3.11, we can note that when

we identify the correlation sets, applying a threshold of 0.3, we obtain a higher
performance than in the other cases. This is because the lower the threshold value, the
larger the correlated feature sets. Another aspect that emerges from the analysis is that
the Accuracy performance metric is not always the best solution to determine how
important a feature set is. This analysis has been made on the M045 real dataset.
Regarding the values obtained for M045-C8, a big difference can be observed between
the results of the 2 metrics, the F1 score having better statistics than accuracy regarding
the performance in learning the characteristics of action potentials.

Table 3.11 - Comparative analysis between performance metrics applied to multiple channels with
different thresholds on real data.

Data ACCURACY F1 SCORE
thr=0.3 thr=0.5 thr=0.8 thr=0.3 thr=0.5 thr=0.8

M045-C1 30% 15% 6% 20% 15% 8%

93

M045-C8 6% 1.5% 2% 12.5% 6% 8%
M045-C17 40% 8% 6% 25% 7% 5%

Superlet Order Dependance
Based on the results obtained in Table 3.12 for the M045 real dataset, comparing

the prediction values for the three orders and applying a threshold of 0.5, a significant

difference can be identified. Thus, for the Superlet of order 5, with regard to the values of

the two metrics, they are lower than the Superlet of order 1, respectively 2. This

demonstrates the fact that, although the Superlet of order 5 offers a better resolution in

the frequency domain, the temporal characteristics of the spikes play a crucial role in the

process of spike sorting.

Table 3.12 - Comparative analysis between the performance metrics, applied to Superlet of orders 1, 2 and
5 on the M045-C17 real dataset.

THR ORD NCYC ACCURACY F1 SCORE
0.3 1 1.5 30% 25%
0.5 1 1.5 17.5% 20%
0.3 2 1.5 40% 25%
0.5 2 1.5 8% 7%
0.3 5 3 25% 15%
0.5 5 3 3% 1.5%

Findings
We have explored why the Superlet transform provides useful features for spike

sorting. We showed that it is able to isolate important time and frequency components

that enable distinguishing spikes of different neurons from one another. It was proven

that the Superlet transform of order 2, and the number of cycles 1.5, achieves a better

performance regarding spike sorting. This aspect is due to the consideration that the 5th

order transform loses its temporal precision, compared to the Wavelet and the 2nd order

superlet. The latter seems to offer a sufficient precision both in time and frequency to

enable a reliable identification of spikes.

We have found that information about spike characteristics is localized

predominantly around the spike peak, extending upwards in frequency, and around a

lower frequency component that carries a large fraction of the energy of the spike.

Perturbations of this area have the most impact on the learning performance, indicating

its relevance to the separability between the activity of different neurons. On the other

hand, the amplitude peak of spikes and the temporal width of this peak also seems to be

very informative. Indeed, spikes of excitatory neurons are usually wider and larger than

spikes that arise in inhibitory neurons [161].

94

3.1.3.5. A Self-Organizing Map approach for spike sorting
It is normally recommended to normalise all features to the same scale before

introducing them to the SOM [74] as to not bias the network towards features that contain
higher values or higher variance. In spike sorting, however, action potentials do not have
significant differences between them (this is not the case when comparing them with
noise). Moreover, information may be encoded in said differences, such as the amplitude,
thus normalisation is not recommended in this case. Nevertheless, as a preprocessing
step, alignment of the spikes is applied. Figure 3.33 presents the quantization and
topographic errors (which have been detailed in the section explaining the self-
organising map) of 1000 iterations of training on the Sim4 synthetic dataset. Figure 3.34
presents the results of the SOM training on the Sim4 dataset, alongside with the SOM
distance map that represents the average distance between each neuron and its
immediate neighbours resulted after training. The distance map can also be visualised in
Figure 3.34.

Figure 3.33 - Plot of the quantization and topographic errors during the SOM training across 1000 iterations
on the Sim4 synthetic dataset.

Proposed method
Our proposed SOM-based spike sorting method [162] exploits the characteristics

of the U-matrix that can be obtained after the SOM training process. Based on the
assumption that spikes from the same neuron exhibit greater similarity compared to
spikes from different neurons, it is expected that they are located closer to each other in
the SOM projection. The U-matrix contains ridges that represent the separation between
neurons in the resulting lattice. These ridges serve as markers that define the boundaries
of the actual clusters. This can be viewed in Figure 3.35, where the left panel displays the
U-matrix resulted from the SOM training on the Sim11 synthetic dataset, and the right
panel shows the same U-matrix annotated with ground truth markers represented by
different colours for each cluster.

95

Figure 3.34 - (Left) Result of SOM on the Sim4 synthetic labelled dataset, each colour represents a different
cluster in the ground truth. (Right) Plot of distance matrix obtained by the SOM from the training on the
Sim4 dataset.

Once the U-matrix is obtained, the clustering problem can be transformed into the
task of identifying the ridges, thus identifying the regions separated by them as well. This
can be seen as an image segmentation problem, for which various image processing
techniques already exist. However, due to the high variability of values within these
ridges, most methods may struggle to perform the segmentation. While a convolutional
neural network (CNN) approach could be trained for this purpose, it becomes impractical
due to the large number of examples required and the need for manual labelling. The
extensive dataset and manual labelling process make the CNN approach infeasible in this
context.

Figure 3.35 - (Left) The resulted U-matrix from SOM training based on the Sim11 synthetic dataset plotted
as an image of higher and lower distances denoted by pixel intensity levels, marking the spatial structure
of the clusters given by the organisation of the SOM network. (Right) A plot of the resulted U-matrix
obtained from the SOM training on the Sim11 synthetic dataset, with the addition of the corresponding
ground truth as overlaid annotations over the U-matrix. Each annotation (the individual combinations of
colour and shape) represents a distinct cluster.

96

 Our proposed approach utilises simple kernels, specifically horizontal, vertical,
and the two diagonal 3x3 kernels, to detect the local maxima. These kernels are applied
to generate matrices of the same size, where each cell of the matrix contains a Boolean
value indicating the presence or absence of a local maximum at that location. The
resulting matrices from each of these kernels are then combined using the logical OR
operator. To ensure that the resulting segmentation shape represents a single
component, the binary closing operation from image processing is applied to fill any
remaining gaps. An automated threshold can be applied to remove lower local maxima
that appear as small ridges in the U-matrix which are often associated with sparse
clusters. The threshold is determined by calculating the cumulative sum of the histogram
of local maximum values and selecting the threshold that surpasses 20% of the total. A
specific threshold can also be chosen for each dataset, and in some cases, it offers
enhanced performance. Figure 3.36 illustrates an example of the local maxima found on
a U-matrix, it can be seen that the local maxima actually follow the ridges of the U-matrix.
By comparing with the right panel of Figure 3.36, it can be seen that these ridges actually
separate the clusters, thus the local maxima will be used to segment the data into clusters.

Figure 3.36 - Example of resulted U-matrix local maxima-based segmentation on the same data as in Figure
2. (Left) The computed local maxima with binary closing overlaid as red pixels over the afferent U-matrix.
(Right) The label annotations for the resulting clusters determined by the U-matrix local maxima
separation method.

By using a simple object detection algorithm, disconnected individual regions can
be extracted from the segmented U-matrix , where neighbouring true values form a
region, and false values form boundaries. It is worth noting that the identified ridges are
typically wider than the actual separation between clusters. To capture as many points
as possible, an iterative expansion of each region to its unlabelled neighbours is
performed until the regions start connecting, at which point the expansion stops. For easy
visual comparison, the obtained labels from Figure 3.36 are projected onto a 2D space
using PCA. The ground truth labels of the data are plotted side by side, in Figure 3.37, with
the resulting labels from our proposed method (on the same PCA projection).

Our SOM-based spike sorting method was configured as follows:

• Shape: The shape of the SOM grid is determined by the formula 2 ⋅ √5 ⋅ √𝑁, where N
represents the number of samples in the dataset.

97

• Features: The number of features is equal to the number of dimensions of a spike,
which is 79 for the synthetic datasets used in this study (Sim9, Sim10, Sim11 and
Sim12).

• Initialization: PCA initialization is chosen instead of randomised initialization to
ensure deterministic results.

• Sigma: The sigma parameter is set to 12 for the datasets used in this study as they
have a high number of samples. The sharp exponential decay will heavily reduce the
sigma parameter throughout training.

• Learning rate: Empirical testing suggests that values between 1e-1 to 1e-4 yield
similar results, and a value of 1e-2 is selected.

• Iterations: The number of iterations is determined by multiplying the number of
samples in the dataset by a constant factor. A factor of 5 is set to ensure that each
sample updates the weights multiple times.

• Neighbourhood: The neighbourhood function used is Gaussian.
• Distance: The distance metric employed is Euclidean.
• Topology: The SOM grid is configured to have a rectangular topology.

Figure 3.37 - (Left) The ground truth clusters labels mapped to the corresponding data projected in a 2D
space by the PCA method. (Right) The resulted clusters’ labels mapped to the same corresponding data
projected in the PCA-based 2D space.

Performance analysis
The performance analysis of the proposed approach is made in comparison to

several combinations of feature extraction methods and clustering algorithms with
regards to the metrics presented above on four different synthetic datasets. The
presented feature extraction methods have been used to reduce the dimensionality of the
data from the original 79-dimensional space to a 2-dimensional space. The two-
dimensional space is then given to the clustering algorithm to obtain the labels which are
the end result of the spike sorting process. These metrics analyse the amount of overlap
between the clustering labels and the ground truth labels. Table 3.13, Table 3.14, Table
3.15 and Table 3.16 display the combination of PCA and Isomap with each clustering
algorithm for each of the four datasets. In these tables, the columns indicate the
performance metric, while the rows indicate the approach used. The largest values of
each column of the tables are bolded to highlight the best results.
 The performance analysis indicates that the proposed method can outperform all
compared methods across all the datasets and metrics. On the last row of each table, the
best threshold, found through a grid search and the performance values obtained with it,
is added in italics. The performance can be increased through a manual selection of the
threshold. Nevertheless, the automatic threshold has a similar performance, and in some

98

cases, it even finds the optimal threshold. The choice of feature extraction method
appears to have a slight effect on the performance of the clustering algorithms with
Isomap increasing the performance by up to 10%, however the performance is
significantly lower than the proposed approach. In most cases, the clustering
performances of K-Means, Agg and Iso-split are similar, while HDBSCAN has a reasonably
lower performance. The visual representation of the result of each method on the Sim11
synthetic dataset can be viewed in Figure 3.38.

Figure 3.38 - A comparison of all methods on Sim11, on the left side, each clustering method with PCA is
presented, while on the right side with Isomap, the result of the proposed approach can be found as the last
panel.

Table 3.13 - Comparison through multiple metrics of various clustering algorithms combined with PCA or
Isomap against the proposed method on the Sim9 synthetic dataset.

Sim9 ARI AMI FMI Purity
PCA + K-Means 0.509 0.720 0.548 0.756
PCA + Agg 0.500 0.709 0.538 0.591
PCA + HDBSCAN 0.310 0.595 0.43- 0.495
PCA + Iso-split 0.534 0.734 0.615 0.603
Isomap + K-
Means

0.532 0.744 0.566 0.734

Isomap + Agg 0.500 0.738 0.537 0.717
Isomap +
HDBSCAN

0.461 0.698 0.527 0.615

99

Isomap + Iso-split 0.555 0.780 0.625 0.695
Proposed method 0.687 0.845 0.716 0.900
Proposed method
with a threshold
of 15

0.753 0.868 0.773 0.903

Table 3.14 - Comparison through multiple metrics of various clustering algorithms combined with PCA or
Isomap against the proposed method on the Sim10 synthetic dataset.

Sim10 ARI AMI FMI Purity
PCA + K-Means 0.446 0.708 0.485 0.689
PCA + Agg 0.432 0.689 0.471 0.656
PCA + HDBSCAN 0.314 0.609 0.461 0.466
PCA + Iso-split 0.336 0.676 0.505 0.482
Isomap + K-Means 0.558 0.789 0.59 0.756
Isomap + Agg 0.550 0.783 0.582 0.758
Isomap + HDBSCAN 0.387 0.718 0.521 0.557
Isomap + Iso-split 0.476 0.763 0.54 0.598
Proposed method 0.693 0.873 0.717 0.811
Proposed method
with a threshold of
10

0.815 0.896 0.837 0.814

Table 3.15 - Comparison through multiple metrics of various clustering algorithms combined with PCA or
Isomap against the proposed method on the Sim11 synthetic dataset.

Sim11 ARI AMI FMI Purity
PCA + K-Means 0.479 0.735 0.518 0.747
PCA + Agg 0.483 0.723 0.520 0.717
PCA + HDBSCAN 0.346 0.667 0.492 0.554
PCA + Iso-split 0.434 0.745 0.520 0.591
Isomap + K-Means 0.576 0.804 0.607 0.811
Isomap + Agg 0.600 0.801 0.630 0.814
Isomap + HDBSCAN 0.472 0.744 0.552 0.699
Isomap + Iso-split 0.496 0.781 0.592 0.685
Proposed method 0.774 0.889 0.793 0.907
Proposed method
with a threshold of 5

0.774 0.889 0.793 0.907

Table 3.16 - Comparison through multiple metrics of various clustering algorithms combined with PCA or
Isomap against the proposed method on the Sim12 synthetic dataset.

Sim12 ARI AMI FMI Purity
PCA + K-Means 0.450 0.712 0.497 0.710
PCA + Agg 0.461 0.705 0.507 0.726
PCA + HDBSCAN 0.250 0.600 0.442 0.486
PCA + Iso-split 0.496 0.741 0.616 0.578

100

Isomap + K-Means 0.550 0.781 0.588 0.772
Isomap + Agg 0.558 0.781 0.596 0.769
Isomap + HDBSCAN 0.574 0.757 0.633 0.686
Isomap + Iso-split 0.609 0.801 0.678 0.707
Proposed method 0.850 0.877 0.863 0.832
Proposed method
with a threshold of
10

0.850 0.877 0.863 0.832

Findings
Our proposed SOM-based spike sorting method [162] has demonstrated its

effectiveness when dealing with datasets with a high number of clusters that are
imbalanced and overlapping. This method successfully addresses the two most
challenging steps of the spike sorting pipelines, namely feature extraction and clustering.
In the comparison with other common methods, through the perspective metrics such as
ARI, AMI, FMI, and Purity, the proposed method consistently outperformed all
combinations of feature extraction and clustering methods. The choice of threshold for
local maxima does have an impact on the results, but the option for the automatic
threshold selection provides comparable or slightly lower performance. Thus, the
proposed method provides an effective solution for spike sorting with higher
performance than other conventional methods, particularly for datasets characterised by
imbalanced and overlapping clusters while using an outside-the-box procedure that can
substitute both the feature extraction and clustering steps of the spike sorting pipeline.

3.1.3.6. Space Breakdown Method
One of our earliest research works in field of neuroscience is the Space Breakdown

Method, or SBM [163], a grid-based clustering algorithm that I developed during my
Bachelor’s Work. SBM was designed with Spike Sorting in mind and as such, it works on
the assumption of a unimodal distribution of clusters, where the centre of the cluster is
also the densest. Through the use of a grid, SBM can reduce any number of samples to a
chosen interval, thus reducing the sample space, while retaining information about the
distribution of the data as their densities.

SBM requires two parameters: a partitioning number (PN) and the minimum
number of points of a centroid. The minimum number of points of a centroid was
introduced as a threshold in order to avoid the labelling of low amounts of clumped points
as clusters when in reality they may be noise. This parameter should be adjusted
according to the data. The partitioning number is the main parameter of the algorithm,
and it represents the number of bins, called chunks. It is easier to think of these chunks
in the terms of the bins of a histogram. Similarly to a histogram, SBM divides the data into
subsections of a fixed length and retains the number of points in each chunk.

The algorithm consists of five main steps: normalisation, chunkification, centroid
search, expansion of the centroids and dechunkification. It starts by normalising the data
between zero and the partitioning number [0, PN]. By taking chunks of a fixed size of 1,
there are PN chunks created. For the particular case of 2 dimensions, it can be viewed as
a matrix of size PNxPN and the chunks as squares, where just as in a histogram, each
chunk retains the number of points enclosed within the fixed interval. Therefore, for the

101

cell 0x0 in the matrix, it counts the number of points that are between the [0, 1) interval
in both dimensions. For this case of 2 dimensions, the chunkification is the conversion of
the original data into said matrix. And similarly, for the case of 3 dimensions, the chunks
could be viewed as cubes.

The centroids of clusters are chunks that contain a higher number of points than
all the neighbouring chunks, as such finding the local maxima. Chunks are considered
neighbours by adjacency and validated for existence, for instance, the (0,0) cell, would
have the following neighbours: (0,1), (1,0) and (1,1). With the additional condition that
the centroid needs to have more points than the minimum threshold, that is a parameter.
Once all possible cluster centroids have been discovered, the expansion of the clusters
starts from their centroids. Perpetually through the expansion, a unimodal distribution is
assumed, as a new chunk is required to be smaller than the point of expansion as the
expansion becomes more distant with respect to the centroid in order for it to continue.

SBM does not require the number of clusters as input. In addition, it has a linear
time complexity with regard to the number of samples. But it has an exponential time
complexity with regard to the number of dimensions. Therefore, it requires the feature
extraction step to reduce the number of dimensions and improve the processing time.
Furthermore, the consideration of unimodal distributions as clusters limits the
algorithm's ability to identify specific types of clusters, such as uniform or multimodal.
Nevertheless, in comparison with other algorithms such as K-Means or DBSCAN, its
performance is higher when dealing with overlapping and imbalanced clusters. The
overall complexity of the algorithm is O(n + PNd), where n is the number of samples, PN
is the partitioning number and d is the number of dimensions of the data.

Limitations of the Space Breakdown Method
Let there be a dataset with n samples in a d dimensional space and PN the

partitioning number given as a parameter to the SBM algorithm. Deducibly, the
chunkification step of SBM creates a d-dimensional array of size PNd to store the new
space. Naturally, such a space becomes impossible to store as the number of dimensions
gets higher while also increasing the complexity of the algorithm exponentially. For
example, let there be a dataset with 10,000 samples and d=10 dimensions, even for a low
value for the partitioning number PN=5, it requires a space of PNd = 510 = 9,765,625 to
store the auxiliary structure and majority of these chunks contain a value of zero that do
not affect the result but increase both the space and time complexity of the algorithm.

102

3.1.3.7. Improved Space Breakdown Method
Proposed improvements

 To address the limitations of our initial work, the SBM clustering algorithm [163],
we propose two improvements [164]. The first improvement brought to the algorithm
can be encompassed by a transition to a graph structure from the original d-dimensional
array structure. As the concept of neighbours and that of BFS are available for the graph
structure, the algorithm functionality remains unchanged, while the storage space and
the complexity are reduced. The pseudocode of the improved version remains similar to
that of the original algorithm [163,164]:

SBM(dataset, PN, threshold):
1. X = normalise(dataset, PN)
2. graph = chunkification(X, PN)
3. ccs = findCentroids(graph, threshold)
4. for cc in ccs:
5. expand(graph, cc, label, ccs)
6. labels = dechunkification(graph, X)
7. return labels

By changing the approach of the clustering algorithm from an array structure to a

graph structure, the performance remains unaffected but this can limit the maximum
numbers of chunks created to the number of samples of the dataset resulting in a
significant pruning of the storage space required as shown in Figure 3.39, especially for
hyper-dimensional data.

Figure 3.39 - A comparison of the chunkification step of SBM and ISBM, the space presented is already
normalised as the first step of the algorithms in the [0,5) interval. Every cell in the grid shown contains a
number in the lower-left representing the value of the chunk in both SBM and ISBM chunkification. The

103

difference appears in the final structure, while SBM saves the whole array, ISBM only retains the values
that are encircled, where circles represent the nodes and the lines the edges of the final graph structure.

 The second improvement regards the partitioning number. The original version
partitions the space equally for all dimensions. The improved version only has the PN
separation on the most informative dimension. In this case, the most informative
dimension is considered as the one with the highest variance. Consequently, each
dimension has a partitioning number scaled proportionally with the amount of variance
it has in comparison to the highest variance.

Complexity analysis
The analysis of the algorithm includes the space complexity evaluation between

the original version and the improved version shown in Table 3.17. In this evaluation, the
Sim4 synthetic dataset was used. For the evaluation, the dimensions were reduced using
PCA.

Table 3.17 - Evaluation of the number of chunks/nodes by varying the PN parameter on the Sim4 synthetic
dataset.

Number of
dimensions

SBM
(array structure)

First improvement
(graph structure)

ISBM
(both improvements)

2 625 343 188
3 15,625 1659 321
4 390,625 4072 532
5 9,765,625 4981 744
6 244,140,625 5111 988

The time complexity analysis includes both the variation of the number of

dimensions and the variation of the number of samples. For the dimensionality influence
on the complexity the evaluation was made on the Sim4 synthetic dataset. PCA was used
to reduce the dimensionality of the dataset from 2 to 6, the time evaluation is shown in
Table 3.18. For the influence of the number of samples, a 2-dimensional synthetic dataset
was used (see Synthetic Data section). The evaluation of the execution time is shown in
Table 3.19. Neither of the improvements affect the linear time complexity in relation to
the number of samples.

Table 3.18 - Evaluation of the execution time (in milliseconds) for 100 runs for the number of dimensions
on the Sim4 dataset using PCA to reduce dimensionality to the chosen values.

 KMeans DBSCAN MeanShif
t

Agglom. FCM HDBSCA
N

ISO-
SPLIT

SBM ISBM

2 39 36 1450 475 68 84 83 133 31
3 43 39 1685 496 80 168 143 161 72
4 38 43 1946 515 119 205 145 445 146
5 43 50 2416 526 187 253 135 2204 652
6 43 56 3118 546 334 306 151 59311 2780

Table 3.19 - Evaluation of the execution time (in milliseconds) for 100 runs by varying the number of
samples.

 KMean
s

DBSCA
N

MeanS
hift

Agglom
.

FCM HDBSC
AN

ISO-
SPLIT

SBM ISBM

4300 48 0.068 1650 254 204 66 65 79 38
8600 54 174 2154 1183 384 143 78 119 60

104

12900 79 300s 2389 2930 636 221 103 184 79
17200 91 485 2636 5133 952 345 141 227 102
21500 107 686 2728 7970 1224 496 156 263 119
25800 124 873 2911 12075 1637 622 198 305 138
30100 155 1153 3295 16499 2012 705 236 361 165
34400 166 1564 3613 21577 2323 798 278 412 187
38700 200 1783 4040 29510 2537 947 312 441 205

Spike Cluster Score
 In an exploratory examination, the state-of-the-art clustering performance
metrics previously presented have been found unsuitable for the clustering of neuronal
data. These metrics are biassed towards punishing overclustering, which is an acceptable
case for spike sorting as an expert observer can merge the cluster as a post-processing
step. The only exception is the Purity metric [137,138] that through its design does not
punish overclustering, as the labelling of each sample as an individual cluster results in a
perfect score. A second reason to discount classical clustering performance metrics is
that algorithms such as DBSCAN [121] that produce noise labels is penalised.

Therefore, a new metric was proposed [164], designated as Spike Cluster Score
(SCS) that does not punish overclustering but penalises underclustering. SCS is an
external metric and thus, requires the ground truth. It is calculated as the arithmetic
mean of the agreement between a true label T and its best matching predicted label P. For
every true label Ti, let P(Ti) be the corresponding predicted labels of the samples with the
true label Ti. Thus, the total number of occurrences of a predicted label j within all
samples of true label i is defined as count(P(Ti) = Pj). The score of a singular label is
therefore, computed as the best matching, by count, predicted label divided by the total
number of the indicated predicted label. Intuitively, this calculates how many of the
points of a predicted label are part of a single true label. The overall performance is given
by the following formula:

𝑆𝐶𝑆 =
1

𝐶
∑

𝑐𝑜𝑢𝑛𝑡(𝑃(𝑇𝑖) = 𝑃𝑗)

𝑐𝑜𝑢𝑛𝑡(𝑃 = 𝑃𝑗)

𝐶

𝑖=1

(37)

where C is the total number of true clusters, i is the current cluster and Pj is the predicted
label with the highest count.
 This metric is similar to Purity, as it evaluates the case of each sample as its own
cluster as a perfect clustering. The disadvantage brought by Purity, that SCS is not affected
by, is that it does not punish underclustering. Subsequently, the performance score given
by Purity had a low variance across algorithms. Furthermore, SCS is unaffected by noise
points as they do not change the performance score, while other metrics require the
removal of noise points to obtain a correct evaluation.
 Within spike sorting, it is the responsibility of the experimenter to determine the
acceptable degree of overclustering for each situation. SCS is not the gold standard, it is
recommended to be used with other performance metrics as each evaluates the
clustering performance from its own perspective as every method has its own strengths
and weaknesses. A comparison of the metric versus the state-of-the-art performance
metrics can be viewed by analysing Figure 3.40 and Table 3.20.

105

Performance analysis
The clustering performance of the algorithm was evaluated using the multiple

clustering performance metrics against the original version and multiple clustering
algorithms. The performance dataset was evaluated on the Sim4 synthetic dataset which
was reduced to 2 dimensions through PCA, the result of each algorithm is presented in
Figure 3.40 and the scores of the clustering performance metrics including SCS are
presented in Table 3.20.

Figure 3.40 - (a). Simulation 4 (Sim4), a synthetic dataset with its ground truth (b). The clustering of K-
Means on the dataset (c). The clustering of DBSCAN on the dataset (d). The result of MeanShift on the Sim4
dataset (e). The clustering of Agglomerative Clustering on the Sim4 dataset (g). The clustering of HDBSCAN
on the dataset (f). The clustering of FCM on the dataset (h). The clustering of ISO-SPLIT on the dataset (i).
The clustering of the original version of SBM on the dataset (j). The clustering of the improved SBM (ISBM)
on the dataset.

Table 3.20 - Evaluation of clustering algorithms using various performance metrics on Sim4.
 KMeans DBSCA

N
MeanSh
ift

Agglom. FCM HDBSC
AN

ISO-
SPLIT

SBM ISBM

ARI 57.3 75.5 58.6 59.1 52.6 79.9 91.7 77.5 80.2
AMI 79.6 77.9 80.5 77.7 73.4 87.0 91.6 80.2 85.0
Purity 91.3 88.6 96.3 90.9 87.1 91.0 96.9 90.5 92.0
FMI 71.1 85.2 72.3 72.4 67.6 88.5 94.6 85.3 87.1
VM 79.6 77.9 80.5 77.8 73.5 87.0 91.6 80.2 85.0

106

SCS 85.6 80.0 94.0 85.0 85.2 79.8 94.9 93.8 94.9

The evaluation of the algorithm would be incomplete without taking into
consideration its performance on real data. Figure 3.41 presents a single channel of a
recording from the brain of a mouse, the dataset is denoted by M045-C1. The data has
been filtered and PCA was used to reduce the dimensionality to only 3 dimensions. As
real data contains no ground truth, K-Means was used to generate a reference. It
generates a natural bias towards K-Means in the performance that can be seen in Table
3.21.

Figure 3.41 – The M045-C1 real dataset that has been cleaned and filtered and recorded from the brain of
a mouse (a). Ground truth generated through K-Means (b). The clustering of K-Means on the dataset (c).
The clustering of DBSCAN on the dataset (d). The result of MeanShift on the Sim4 dataset (e). The clustering
of Agglomerative Clustering on the Sim4 dataset (g). The clustering of HDBSCAN on the dataset (f). The
clustering of FCM on the dataset (h). The clustering of ISO-SPLIT on the dataset (i). The clustering of the
original version of SBM on the dataset (j). The clustering of the improved SBM (ISBM) on the dataset.

107

Table 3.21 - Evaluation of clustering algorithms using various performance metrics on M045-C1.

 K-
Means

DBSCA
N

MeanSh
ift

Agglom. FCM HDBSC
AN

ISO-
SPLIT

SBM ISBM

ARI 98.8 97.0 97.7 98.4 53.7 98.0 98.9 49.3 98.2
AMI 96.3 90.5 91.1 95.8 70.8 92.9 96.6 64.0 93.9
Purity 99.3 97.8 99.0 99.2 91.5 98.8 99.3 85.9 98.7
FMI 99.4 98.4 98.7 99.1 71.9 98.9 99.4 84.0 99.0
VM 96.4 90.5 91.2 95.8 70.8 92.9 96.6 64.0 93.9
SCS 98.9 96.5 99.5 98.9 74.8 98.6 99.0 62.2 97.2

Findings
We introduced an improved version of the original SBM clustering algorithm and

investigated its performance by comparing it to the original version and other algorithms.
Through the improvements presented here, the space complexity of SBM has been
significantly improved. Moreover, the processing time has been further reduced for high-
dimensional data, allowing the algorithm to be used on high-dimensional datasets. With
the addition of these improvements, the linear scalability of SBM with regard to the
number of samples has not been changed and its performance on neural data has been
increased, being able to outperform other methods on multiple datasets and on almost
all the metrics we have used.

The first improvement presented here tackles the space and time complexity
regarding the number of dimensions, but without affecting the linear time complexity
regarding the number of samples. The space complexity of SBM has been reduced from
O(PNN) to only O(n), where PN is the partitioning number, N is the number of dimensions,
and n is the number of samples. The overall time complexity of the algorithm has been
reduced to O(n + (V+E)), where n is the number of samples, V is the number of nodes, and
E is the number of edges between the nodes of the graph. This complexity is still
exponential because, as the number of dimensions increases, the number of edges
increases exponentially. However, this second improvement has achieved the goal of
increasing the accuracy of the algorithm for neural data. Thus, we have improved the
complexities of the algorithm while also increasing its accuracy on overlapping and
imbalanced clusters.

108

3.1.4. Conclusions
 The methods presented in this chapter bring improvements to the spike sorting
pipeline that allows in time a better understanding of brain functions. The steps of spike
detection, feature extraction and clustering have all been addressed and new methods
proposed for each. Each of the proposed methods has been thoroughly validated through
analyses using several performance metrics and datasets.

Several studies have been conducted within the domain of spike sorting. Spike
detection was improved by combining classifiers with threshold-based approaches
enhances performance but requires retraining for each recording, limiting real-world
applications. A method based on Self-Organizing Maps (SOM) was proposed to address
both the feature extraction and clustering steps of spike sorting that proved highly
effective for datasets featuring numerous clusters with imbalanced and overlapping
characteristics. We have proposed the Superlet Transform as a feature engineering
approach for spike sorting and its analysis in spike sorting demonstrates that it can
outperform traditional methods as its features enhance cluster separability. The best
performance is achieved by using minimum values for Superlet parameters, and the
performance is consistent for datasets with different cluster numbers. Autoencoder
variants are proposed as a feature extraction method in spike sorting and have been
shown to consistently outperform other commonly used feature extraction algorithms.
Although training autoencoder models incurs additional costs, their improved
performance justifies this expense. Regarding the clustering step, we have proposed an
approach called ISBM which outperforms other clustering algorithms in neural data
clustering. ISBM is an improved version of a simpler proposed clustering algorithm called
SBM, which enhances performance and scalability, making it practical for large datasets.
Throughout this work, we have demonstrated that evaluation metrics are not perfect and
in line with this, we propose our own metric developed specifically for spike sorting.
Moreover, we propose a new approach for distance computation that is applicable in both
clustering and performance evaluation that has shown improved performance for non-
convex clusters and similar performance for convex clusters in comparison to traditional
approaches.

109

3.2 Burst detection

3.2.1. Introduction
Neurons within the communicate with each other through action potentials, also

known as spikes. Neurons have two firing patterns: tonic mode, characterised by
individual spikes occurring at relatively distant time intervals, and burst mode, where
neurons tend to discharge sequences of spikes in rapid succession. Gaining an
understanding of the dynamics underlying neuronal burst activity is essential to
understand the mechanisms involved in neural information processing. However, the
detection of bursts in extracellularly recorded neural data poses significant challenges.
Thus, the process of burst detection is closely tied to that of spike sorting, the filtering
and the spike detection steps are also used in the detection of bursting activity.

A neuronal burst is defined as a segment of signal representative of brief time
period in which there is heightened occurrence of spikes from a single source neuron.
They differ from high-frequency tonic activity in which the activity is produced by
multiple source neurons. However, intervals between bursts are juxtaposed with
intervals of low-frequency tonic activity. Burst detection algorithms can be categorised
into two primary types, yet all these methods rely solely on the analysis of spike timings
to discern the presence of bursts. Rate-threshold-based approaches employ a
predetermined threshold of firing rates to identify whether the neuronal activity
surpasses the threshold. If this criterion is met, the activity is classified as a burst. Inter-
spike interval (ISI)-based methods examine the duration between consecutive action
potentials. If the duration falls below a predefined threshold, it is classified as a burst.
Other methods use a combination of these first two. Hence, these techniques are founded
upon the computation of statistical properties inherent in the data and the utilisation of
either manually determined or calculated thresholds to identify bursts.

A key feature of bursts is the time interval between two consecutive spikes (action
potentials) within the burst. This interval is utilised in ISI-threshold algorithms, which
set a range for this interval based on literature findings. Typically, the minimum interval
ranges from 2-3ms, while the maximum interval ranges from 7-9ms [28]. Analysing the
time interval between spikes is thus critical for the detection of bursts.

The literature discusses several other characteristics related to bursts. For
example, it is observed that within a burst, the neuron is unable to generate spikes of the
same amplitude, and there is only a gradual decrease in amplitude between consecutive
action potentials [166]. During bursts, neurons do not return to the resting state between
spikes. Bursts can be triggered by a slow depolarizing mechanism (such as the T-type
calcium ionic current) that prevents the repolarization of the neuron and the initiation of
the refractory period, allowing for the generation of consecutive spikes. Signals that do
not exhibit these characteristics have not been considered as burst candidates.

Several approaches have been proposed for burst detection; however, none of
them have gained widespread adoption within the field. This can be attributed to the
inherent complexity of many algorithms, which often necessitate the adjustment of
multiple parameters, the inclusion of additional criteria to yield satisfactory results and
additional steps of postprocessing. Among the methods under consideration are ISIn
[146], ISI Rank threshold (IRT) [147], Max Interval (MI) [148], Cumulative Moving
Average (CMA) [149], Rank Surprise (RS) [150], and Poisson Surprise (PS) [151].
However, the disadvantage of these approaches is that they rely solely on the timing of

110

action potentials, thereby disregarding valuable information inherent in the signal. The
objective was to devise a novel method that incorporates the established criteria for burst
characteristics outlined in the literature; thus, enhancing detection by using as much
available information as possible from the recorded data.
 The primary challenge lies in effectively distinguishing between close action
potentials originating from different neurons, a phenomenon referred to as
superposition, and consecutive action potentials generated by the same neuron within a
short timeframe, which are known as bursts. Addressing this challenge involves
exploring approaches that aim to differentiate the waveform shapes of action potentials
from distinct neurons through correlation in the time-frequency domain. Our proposed
hypowork [167] was that the statistical analysis of the correlation coefficient could be
used to differentiate between the sub-spikes of a burst and the tonic activity. This is based
on the observation that sub-spikes within a burst share similar shapes as they originate
from the same neuron. Therefore, it was expected that burst sub-spikes would exhibit a
higher correlation compared to spikes from tonic activity. The aim of analysing the
correlation coefficients was to establish a threshold that would enable the separation of
bursting activity from tonic activity.

3.2.2. Data

Benchmark synthetic burst data
 A part of the evaluation was made using synthetic burst data [168], consisting of
labelled simulations spanning 300 seconds, enabling the assessment of method
correctness. Different types of data were generated, including non-bursting and non-
stationary data without bursts, as well as regular, long, high frequency, and noisy data
containing bursts. Each data type consisted of 100 spike train examples. Figure 3.42
displays a representative spike train from each data type.

Figure 3.42 - Types of bursts, each subplot shows a different type of simulated data [168] indicated by the
label on the left of each subplot. The data is composed of timestamps and as such 1s indicate activity and
0s no activity.

Real neural data
The data presented here was recorded by the Transylvanian Institute of

Neuroscience with 32-channel probes from the visual cortex of mice (details about the
data acquisition procedure can be found in the Appendices). In the analyses that can be
found throughout this subchapter several real datasets have been used, as follows:

• M029 – recorded with a 32-channel probe with a sampling frequency of 32kHz for

~10 minutes resulting in a signal composed of 19,456,000 samples. The raw signal

was filtered within the [300, 7000] frequency band, where spiking activity is

111

typically observed [2]. The identification of individual spikes is carried out using

an amplitude threshold, typically set as a multiple (between 3 and 5 [2]) of the

signal's standard deviation.

o M029-C23 – represents the 23-rd channel of the M029 dataset.

3.2.3. Methods

Proposed method
In our proposed approach [167], burst candidates are identified by iterating

through the signal and finding peaks that exceed the threshold (usually in the negative

potential direction). The distance between peaks is configurable. Based on the literature,

we have chosen the 2 to 7ms interval. In Figure 3.46, the red dots are the peaks, and they

were extracted by finding local minima on a neighbourhood of ~0.3ms. In addition, we

imposed that the values of the peaks of each subsequent sub-spike within a burst must

have a higher value than the preceding one (decreasing amplitude).

The Superlet Transform allows us to extract time and frequency information

simultaneously and enables for a better characterization of a burst, burst candidate, or

spike. To obtain the spectrum, the following parameters were used: order 2, 1.5 number

of cycles, and a sampling frequency of 32000. The spectrum is visualized within the

frequency range of spikes of 300 Hz to 7000 Hz. These parameters were found to be

optimal for the classification of spikes [157]. Figure 3.43 shows an example of the

spectrogram obtained by the Superlet transform and its corresponding burst signal.

To split the spectrograms, our initial approach was to divide the signal first and
then generate spectrograms for each segment. However, this approach is flawed because
abrupt transitions at the edges of the signal can generate border effects that distort the
spectrogram's edge. One solution to mitigate the border effects is to pad the signal with
zero values or gradually transition towards zero from the last value. However, this
solution is computationally more expensive compared to calculating the spectrogram for
the entire signal, where there are no border effects, and then selecting the sub-matrices
of interest afterward.

Another problem we had to solve is that the separation of burst candidates into

spikes based on local minima results in action potentials of different lengths, which

consequently leads to spectrograms of different lengths, leading to a different number of

columns.

To analyse individual sub-spikes within bursts and calculate correlations, the
burst candidate spectrogram needs to be divided into smaller spectrograms specific to
each spike in order to allow the analysis of individual sub-spikes within bursts and enable
the calculation of the correlation. By examining sub-spikes from the same channel and
comparing with sub-spikes from different channels located at a relatively large distance,
we computed the distributions of the expected correlations between spectrograms of
spikes from the same and from different neurons. Because at a large distance, it is very
unlikely to record spikes from the same neuron, across channel correlations give us the
expected value of correlation between spike spectrograms of different neurons. The
distribution of correlations between spectrograms of spikes within channels should in
principle have a larger expected value than that of correlations across distant channels.

112

Figure 3.43 - Spectrogram of a burst candidate, extracted from the M029-C23 real dataset by the proposed
method, containing three sub-spikes.

To calculate the correlation coefficient between two spikes, we need spectrograms

of the same size so that the correlation will result in a single value. The method used to

separate burst candidates based on the indices of action potentials results in spikes and

spectrograms of different sizes. This problem is resolved by truncating the spectrogram

of one or both action potentials. The duration from the beginning of the spectrogram to

the column representing the peak of the action potential, as well as the duration from the

peak column to the end, is calculated. The spectrogram(s) are then cropped accordingly,

so that both have the shorter duration of either spectrogram before and after the peak.

This ensures that the spectrograms being analysed are of equal size, facilitating the

calculation of correlation coefficients.

Several types of correlation analyses have been made on the sub-spikes of burst

candidates from single-channel and multi-channel perspectives. We have considered the

correlation as adequate to indicate the correctness due to the characteristics of bursts.

Spikes of the same neuron will have similar shapes [2] and as bursts are the spiking

activity of a single neuron in a small timeframe, it is to be expected that the correlation of

intra-burst spikes to be higher than the correlation between intra-burst spikes and tonic

spiking activity. Furthermore, the correlation coefficients were calculated for sub-spikes

113

originating from bursts on the same channel, as well as from bursts on different channels

at a distance. As distant channels will record the activity of different neurons, it is to be

expected that the bursts found on a channel by any burst detection method will have

higher correlation coefficients than the bursts of different channels as they present the

activity of different neurons. After calculating the coefficients, the distribution of values

is analysed using histograms that have been normalized into Probability Density

Functions (PDF) through division by their sum. The PDF was chosen as it provides

comparable distributions.

Performance analysis of burst detection methods
In order to compare the burst detection algorithms, two metrics were used: the

true positive fraction (the number of action potentials correctly identified as part of
bursts and labelled as bursts, divided by the total number of action potentials labelled as
bursts) and the false positive fraction (the number of non-burst action potentials
incorrectly identified as bursts, divided by the total number of action potentials in
bursts). These metrics provide a quantitative measure of the algorithms' performance in
detecting bursts and avoiding false positives as they assess the performance of the
algorithms in detecting bursts (true positives) and incorrectly identifying non-bursts as
bursts (false positives) on benchmark synthetic burst data [168].

Each method was analysed with the parameterizations suggested in the
corresponding articles and the metrics were calculated for each type of data. In Figure
3.44, we present the true positives for each data type as a panel, and the x-axis indicates
the method, the same layout is used for false positives presented in Figure 3.45.

Upon the examination of Figure 3.45, it can be observed that the methods do not,

generally, misidentify non-bursting activity as bursts. For high-frequency bursts, long

bursts, and regular bursts, the fraction of elements misidentified as bursts is 0. This

suggests that the parameterization of the data for these algorithms is very good, as the

elements identified as bursts are clearly bursts due to the lack of false positives.

The only case in which misidentification is present is for noisy bursts, which are

the hardest to identify. The Rank Surprise, Poisson Surprise, and Cumulative Moving

Average algorithms rarely misidentify a non-burst as a burst. ISI Rank Threshold falls in

the middle, identifying more errors, while ISIn and MaxInterval misidentify bursts more

frequently than the other methods. Although ISIn and MaxInterval have more false

positive identifications, the overall error rate, as seen in the figure, is not very high,

averaging around 22%.

Although Rank Surprise, Poisson Surprise, and Cumulative Moving Average

algorithms have a very low rate of false positives, as seen in Figure 3.45, they also have a

very low rate of true positives as can be seen in Figure 3.44. The ISI Rank Threshold

algorithm performs slightly better in burst detection than the previous two. On the other

hand, ISIn and MaxInterval, despite having an approximate 20% false positives rate, but

only in the case of noisy bursts, also have the highest rates of correctly identifying bursts.

114

Figure 3.44 - True positive percentage (indicated on the y-axis labels), each subplot shows the evaluation
on the percentage of true positives (ranging from 0 to 1) found in a specified data type (indicated by the
subtitle) by each method (indicated on x-axis labels) on the benchmark synthetic burst data.

Figure 3.45 - False positive percentage (indicated on the y-axis labels), each subplot shows the evaluation
on the percentage of false positives (ranging from 0 to 1) found in a specified data type (indicated by the
subtitle) by each method (indicated on x-axis labels) on the benchmark synthetic burst data.

Analysing the perspective of correctly identified burst types by these two algorithms,

for high-frequency bursts, MaxInterval has an average identification rate of almost 100%,

compared to ISIn which has an identification rate of approximately 96%. From the

perspective of long bursts, as seen in Figure 3.44, MaxInterval performs much better,

correctly identifying approximately 82%, compared to ISIn which only identifies about

30%. This significant difference can also be observed for regular bursts, with MaxInterval

115

providing an identification rate of approximately 97%, compared to ISIn which has

around 62%. However, in the context of noisy bursts, ISIn performs slightly better than

MaxInterval, with the former having an approximate 90% identification rate, while the

latter has approximately 85%.

Correlation analysis
The MI burst detection method offers promising results for the simulated data.

This subsection analyses its performance on real electrophysiological data, that has no
ground truth, through the correlation coefficient. We have analysed the performance of
the MI method using the parameterization suggested by the authors of the method and
also using empirically chosen parameters. We compare the proposed method [167] with
the two aforementioned options for the MI method. Figure 3.46 displays a burst extracted
using the MI method with the suggested parameterization.

Figure 3.46 - Burst candidate extracted from the M029-C23 real dataset by the MI [148] burst detection
method (left) and the proposed method (right), the blue line represents the signal, the red dots show the
peaks of spikes, and the dashed red line represents the amplitude threshold used in the detection of spikes.

An initial hypowork was that the correlations would be higher for action

potentials originating from bursts on the same channel compared to those from different

channels at a distance. This would aid in the problem of burst detection, as the

identification of the source of action potentials, whether from a burst or an individual

discharge, could be based on a simple correlation threshold. If the action potentials

originated from different neurons, they would not form a burst. This analysis is shown in

Figure 3.47 for the both the proposed method (left) and the MI method with the suggested

parameterization (right). The correlations resulted from the sub-spikes of bursts

identified by the proposed method on a single channel are much more concentrated

towards values of 1 than those of the MI method, indicating that the sub-spikes identified

are more similar. Furthermore, there is a visible disparity between the distributions of

the same channel versus different channels for the two methods, indicating that the

bursts detected by the proposed method are more distinctive across channels. As

mentioned previously, it is to be expected that the sub-spikes of bursts from different

channels to have lower correlation values as they originate from different neurons. In

Figure 3.48, we show the comparison between the correlation PDFs for the same channel

across the three methods on the left and for distant channels on the right. The highest

correlation values for the burst sub-spikes are given by the proposed method, however

the suggested parameterization of MI results in the most skewed distribution towards

116

lower values for the burst sub-spikes of different channels. For this analysis, the

correlations provided by the chosen parameterization of MI results in a distribution with

its peak between the two methods.

Figure 3.47 - The left panel shows a comparison between the correlation PDF between intra-burst sub-
spikes of a single channel versus the burst sub-spikes and tonic spiking activity for the proposed method,
the right panel shows the same analysis for the MI [148] method with the suggested parametrization.

Figure 3.48 - The left panel shows the correlation PDF of intra-burst sub-spikes of a single channel for each
of the methods, the right panel shows the correlation PDF between burst sub-spikes and the tonic spiking
activity of a single channel.

Another hypowork was that the correlations between intra-burst sub-spike would

be higher than the those between burst sub-spikes and the tonic activity of the same

channel because burst sub-spikes will have more similar waveform shapes than tonic

activity as the sub-spikes originate from the same neuron. This analysis is shown in

Figure 3.49, for the both the proposed method (left) and the MI method with the

suggested parameterization (right). The correlations resulted from the intra-burst sub-

spikes identified by the proposed method are much more concentrated towards values

of 1 than those of the MI method, indicating that the sub-spikes identified by the proposed

method are more similar. Our hypowork was partially confirmed as the correlation

values of intra-burst sub-spikes are indeed overall higher than those between burst sub-

spikes and tonic activity, however not by a significant amount regardeless of the burst

detection method. In Figure 3.50, we compare the correlation PDFs for the intra-burst

sub-spikes across the three methods on the left and for bursting against tonic activity on

the right. In spite of the noticeable difference between the distributions on intra-burst

117

sub-spikes of the three methods, the comparison across methods between burst sub-

spikes and tonic activity shows no significant difference across the three methods.

Figure 3.49 - The left panel shows a comparison between the correlation PDF between burst sub-spikes of
a single channel versus the burst sub-spikes of distant channels for the proposed method, the right panel
shows the same analysis for the MI [148] method with the suggested parametrization.

Figure 3.50 - The left panel shows the correlation PDF of all burst sub-spikes against each other of a single
channel for each of the methods, the right panel shows the correlation PDF between burst sub-spikes of
two different distant channels.

Upon these explorations, a clear differentiation point in the distribution peak

could not be found for each case and for some cases the values are distributed quite

similarly and close to the value of 1. Therefore, it is not possible to find a simple threshold

that would produce separation for every situation. Consequently, a more suitable

similarity metric on correlation is available for exploration and other correlation

functions could be investigated. Nevertheless, the comparative analysis of correlation

values can offer insights into the performance of detection methods for a variety of

conditions.

3.2.4. Conclusions
Alongside a novel burst detection method, we propose correlation as a viable

analysis tool for the comparison of performance of burst detection methods and for the

validation of correctness of these methods. Regarding the ability of burst detection

algorithms to identify bursts, although it is desirable to have as few incorrectly identified

118

bursts as possible, we also need a large number of correctly identified bursts. Analysing

the overall results, we can say that the MaxInterval method offers the highest

performance for all types of bursts on the analysed synthetic data compared with all other

existing burst detection methods.

 Our comparative analysis is based upon the evaluation of correlation values across

a variety of conditions between the proposed method for burst detection and the

MaxInterval method that obtained the highest results on synthetic data. In this study, we

have analysed whether correlation can be used to differentiate between the bursting

activity of different channels by comparing the results to the values obtained for the

bursting activity of the same channel across these burst detection methods. We have also

analysed whether the bursting activity detected by these methods can be separated from

tonic activity through an evaluation of correlation values.

Our exploration of correlation as a potential measure for differentiation revealed

certain limitations. Despite initial expectations, the correlation values obtained from

various cases were remarkably similar, making it challenging to establish a clear

threshold for separation. Consequently, correlation alone proved inadequate for

distinguishing between burst and non-burst cases. It would be unfair to exclude from

contemplation the possibility that correlation might be an adequate tool and it is the burst

detection methods that hinder its efficiency. However, this is a question that can only be

answered as a deeper understanding of the bursting phenomenon is achieved in the

domain.

119

4. Methods for brain activity characterisation
The identification of brain activity is only the first step in understanding the brain.

Once identified, this activity needs to be characterised. The most common and oldest

method of brain recording is EEG which can now provide a high-volume data which

requires efficient computer science methods to be analysed. One option is to encode the

high-dimensional space of EEG data into a simpler format through symbolic analysis. The

first subchapter proposes an original method, a SOM-based symbolic analysis pipeline,

for the encoding of EEG data and several visualization techniques that can offer insights

into the brain activity that is happening during experiments through the identification of

recurring patterns of activity.

The second subchapter takes a slightly different avenue. Oscillatory activity has

been found all throughout the brain, with each frequency band linked to various brain

states and activities. To be able to correctly characterise the oscillatory activity, they must

be first be precisely detected. We propose an original detection method for brain

oscillations that is able to separate oscillatory activity from background noise with higher

precision than other existing methods. Through the detection of these oscillations and

their characterisation, by certain criteria as in location in time and frequency or power,

links can between behaviours in tasks of experiments and these oscillations.

From a scientific perspective, the characterisation of EEG data, as it records the

whole activity of the cortex by regions, can help us understand how different areas

interact during an experiment, such as when the visual processing starts, when a decision

has been made or when a conclusion has been reached. Moreover, anomalies in EEG data

and oscillatory activity have been linked to various conditions such as schizophrenia,

dementia, and many others.

4.1. Symbolic analysis

4.1.1. Introduction
The recent advancements in computer hardware and software have led to the

recording of large datasets, making it challenging for traditional methods to efficiently
analyse them and extract insights. One option is to summarise large datasets in a manner
that results in a manageable format while preserving as much knowledge from the
original dataset as possible [5]. Symbolic analysis is one of the many ways that data can
be summarised into a more manageable format.

Through symbolic analysis, the task of knowledge discovery becomes easier to
manage from a computational perspective and requires less execution time for the
algorithms. Other various visualisation techniques applied as postprocessing operations
allow for the interpretation of results. One of the many methods of symbolic analysis was
developed for the analysis of EEG data, namely EEG microstates.

The main challenge of analysing EEG data comes from its high dimensionality
introduced by using multiple electrodes for recording. Regardless of its placement on the
scalp, an electrode records electrical signals from multiple brain regions due to the
interference of signal sources, making it difficult to distinguish data from different parts
of the brain. External factors such as eye blinks, body movements or electrical noise

120

introduce unwanted artifacts regarded as noise, hindering the analysis process. Since the
electroencephalogram is a non- invasive technique, the electrical signal has to bypass
several layers including the scalp and skull until it is picked up by the electrode. This
results in the final signal being heavily attenuated and smeared.

The hypowork is that symbolic analysis can be applied to various types of
neuronal data in order to transform the massive amounts of recorded data into a more
manageable format for both the researcher and the algorithms. EEG recordings were
analysed, and several techniques were used to visualise the transformed data and to
detect patterns that were invisible to the naked eye from the raw or transformed data.

4.1.2. Data
The datasets found in this subchapter were recorded by the Transylvanian

Institute of Neuroscience (details about the data acquisition procedure can be found in
the Appendices):

• LFP data – recorded with a 32-channel probe at a sampling rate of 32kHz that was
band-pass filtered in the 0.1-300Hz range and downsampled to 1kHz (additional
band stop filter at 50, 100 and 150Hz to remove noise).

• EEG data – recorded with a high-density EEG cap of 128 electrodes at a sampling
rate of 1024Hz that was band-pass filtered between 0.1-200Hz (additional band
stop filter between 49.5 and 50.5 to remove noise).

o EEG recordings were obtained during an experiment involving an object
recognition task. Participants were presented with deformed two-
dimensional lattices of points, where each represented an object; different
visibility levels could be created through the adjustment of the level of
deformation [169]. The subjects were given the freedom to visually explore
the scene and their task was to identify the object and then press a specific
key corresponding to their perception. They had three possible response
options: "Nothing" if they did not recognize the object, "Certain" if they
were able to name the object, and "Uncertain" if they identified an object
but could not name it. The experiment consisted of seven blocks of trials
(each composed of 30 trials with unique objects), with each block
corresponding to a different visibility level where visibility levels ranged
from 0 to 0.3 with increments of 0.05, thus creating a total of 210 trials. Due
to the variable duration of trials resulted from the free exploration, several
event timestamps were defined to identify important moments in the
recorded neuronal activity. These timestamps included "stimulus on" to
mark the onset of the stimulus, "key press" to indicate when the subject
pressed a key, "message for verbal response" to note the moment when a
verbal response was provided, and "stimulus off" for when the stimulus
disappeared off the screen.

4.1.3. Methods

Proposed method
Our proposed pipeline [170] draws inspiration from the analysis methods for

spike-trains introduced in paper [152]. A first question that emerges is whether such

121

analysis methods can be applied to EEG data resulting in relevant findings. Three-
dimensional SOMs are proposed as a way to encode the EEG data into symbols.

After the training of the SOM, the distance map can be computed. In Figure 4.1 ,
we illustrate three types of 3D plotting techniques for the visualization of the distance
map. The left side of Figure 4.1 represents a scatter plot, where each point represents a
value of the distance map placed at its corresponding coordinates in the Cartesian system.
In the middle of Figure 4.1, we show a voxel plot in which the values of the distance map
are 1×1×1 cubic cells forming the three-dimensional volume. The right side of Figure 4.1
illustrates a volume slice plot, which displays the distance map as an interactive cube,
whose x, y and z planes can be moved on their corresponding axes to showcase the values
of the map at any coordinates.

Every sample from the data set has a corresponding best- matching unit in the
map. If the BMU is close to its adjacent neurons, then the input sample is very similar to
its neighbours, forming a cluster with related features. However, if the BMU is distant,
having values close to 1 in the distance map, this means that it becomes differentiated
from its neighbours, having distinct characteristics. In the same context, yellow regions
on the plots usually act as cluster separators, while the input samples are mapped on the
purple areas.

Figure 4.1 - Several ways of visualisation of the distance map: scatter plot (left), voxel plot (middle), and
volume slice plot (right).

Clustering of the distance map
The subsequent phase in the proposed pipeline after visualizing the results of the

SOM training is clustering the data set. The distance map plots have already given us an
idea about how the possible clusters are distributed in the 3D SOM space, but we cannot
indicate visually exactly how many groups the data can be divided in. Finding clusters in
the SOM lattice implies identifying samples which resemble each other in some respects.

The method we propose [170] for cluster assignment iterates through the samples
from the data set and assigns them cluster labels one by one. Initially, we set the number
of found clusters to 0. Then, we take one sample from the input data set, we find its best
matching unit from the trained SOM, and we assign it to a new cluster. At this point of the
algorithm, the assumption is that the current sample will form a cluster on its own.
Meanwhile, we also keep track of the samples and their best matching units that have
already received a cluster number. The next step in the algorithm is to iterate through all
the already clustered BMUs and compute the normalized distance between them and the
current sample. If the minimum value from all the distances is also smaller than a
predefined threshold, it means that the current sample is close enough to the cluster of
that BMU to be considered part of it. This indicates that the initial assumption was
incorrect, and we update the cluster label of the sample accordingly. If, however, we don’t

122

find any distance within the threshold, the initial cluster assigned to the sample remains
unchanged. If the cluster has indeed changed since the initial assignment, then the
number of total clusters that have been found is incremented. These steps are repeated
for all input vectors from the data set.

After having labelled every sample, we assign to each individual cluster a unique
combination of a marker and a colour that will represent it for visualization purposes.
Regarding the threshold used in the clustering method, it should be a number between 0
and 1, as all the distances are normalized in that range. Its value should be chosen
depending on the data set by employing a trial-and-error principle. The resulting number
of clusters that will be obtained using this method is influenced by the threshold as well
as the values of the parameters used in training the self-organizing map.

For visualizing the clustered data, we have implemented a scatter plot similar to
the one used for illustrating the distance map, replacing the points with specific markers.
The plot is made by taking each sample, finding its best matching unit and placing the
marker corresponding to the cluster of that sample on the BMU’s coordinates in the 3D
lattice. In Figure 4.2, the plot obtained after clustering the data set using a threshold of
0.21 is displayed. The number of clusters is 7.

Figure 4.2 - Scatter plot with the clusters obtained from the clustering of the EEG data.

Colour sequences
Our proposed pipeline [170] uses the technique of colour sequences to build a

visual representation of the brain activity acquired during EEG recording. Each trial will
have its own colour sequence defined by the colours of the samples in the trial. The
pipeline defines two approaches for the colour assignment of each sample.

In the first approach, the set of colours is obtained using the corresponding
colours of the best matching units from the three-dimensional self-organised map of the
EEG data set. The process of colour labelling of a sample implies finding its model vector
in the self-organised map and then mapping its spatial coordinates to corresponding RGB
values in the RGB colour subspace defined by the size of the map, as shown in Figure 4.3.
The size of the self-organising map determines the range of RGB values that can be
assigned to each sample.

Figure 4.3 - The process of colour assignment of a sample.

123

A second approach is to use the previously proposed clustering approach [170]
prior to constructing colour sequences, where samples are grouped into distinct clusters
based on their similarity. Once the clustering is completed, each sample is assigned the
colour corresponding to the cluster it belongs to. This ensures that samples within the
same cluster share the same colour in the resulting colour sequences.

Since the colour sequences are positioned in an adjacent and time-aligned manner,
one below the other, an essential thing to consider is the grouping approach of the
sequences. Different regularities and meaningful patterns can be detected according to
the criteria by which the trials are organised into subsets. Based on the particularities of
the EEG data set, we decided to group the trials considering three different key criteria:
the response of the subject (Nothing/Certain/Uncertain), the stimulus and the visibility
level of the stimulus. For example, ‘Nothing’, ‘Certain’ and ‘Uncertain’ are referred to as
sub- groups within the grouping criteria ‘group by response’.

As stated in the beginning, the colour sequences are visual representations of the
EGG trials. Consequently, they encapsulate the structural properties of trials, including
their length. Due to the exploratory manner of the object recognition task, the subject is
allowed to respond when he has reached a decision, therefore the length of each trial will
be different. Moreover, this temporal variation of events leads to the misalignment of
colour sequences which implies that they cannot properly capture the regularities of a
pattern possibly triggered by an event. The solution to this issue involved trimming
the colour sequences representation between the timestamp corresponding to ‘stimulus
on’ event and the timestamp corresponding to ‘stimulus off’ and then performing an
alignment operation using these two events, identified as left alignment and right
alignment. Figure 4.4 illustrates the left alignment of colour sequences of trials grouped
by the response of the subject. In this figure for the "Certain" response, a pattern can be
observed that appears approximately 150ms after the 'stimulus on' event. In contrast,
Figure 4.5 shows the second option of visualising colour sequences created using clusters
from the input dataset. However, this visualisation method fails to retain the patterns that
were previously identified using the alternative.

Figure 4.4 - Left-alignment of colour sequences of the "Certain" (left), "Uncertain" (middle) and "Nothing"
(right) responses of subjects.

124

Figure 4.5 - Left-alignment of colour sequences of the “Certain” response of subjects.

The subsequent step, in the process of accomplishing a thorough analysis of the
information depicted by the colour sequences, was to inspect the representation on a
time-limited window given by the shortest duration among all trials in the group. After
establishing a fixed length interval, the pipeline applies two rules for building the
sequences: the former implies taking a number of samples equal to the length of the
interval from the beginning of each sequence, while the latter comprises a visualization
of the sequences on a same length window but aligned at the end. The result of these
two approaches is illustrated by Figure 4.6 left and right, respectively. As it can be seen
in both figures, the analysis on a time-limited window emphasises the presence of a
pattern in the brain activity triggered by ‘stimulus on’ respectively by ‘stimulus off’.

Figure 4.6 - Windowed colour sequences of the “Certain” response of subjects with left-alignment (on the
left) and with right-alignment (on the right).

Pattern Specificity Index
The Pattern Specificity Index (PSI) serves as a basis for various analysis methods

in the proposed pipeline. By assigning numerical values to the PSIs of patterns (colours)
within the RGB subspace defined by the size of the self-organising map, thresholding
techniques can be applied. This allows us to generate colour sequence plots that include
only the patterns that surpass the threshold, thereby highlighting the most relevant and
specific patterns in the data.

125

The PSI equation takes into account the number of occurrences of a pattern p in a
specific stimulus s, as well as the total number of occurrences of that pattern across all
stimuli in the experiment. However, the pipeline utilises alternative methods of grouping
the data that go beyond solely relying on the stimulus of each trial. Instead, it considers
conditions specific to the structure of the EEG dataset. When computing the PSI for a
pattern belonging to a subgroup defined by the subject's response
(Nothing/Certain/Uncertain), it is important to consider its occurrences not only within
that subgroup but also in the other subgroups. This is necessary due to the structural
characteristics of the EEG trials. However, there are other factors that need to be taken
into account to ensure correct results, as the formula alone may not fully capture the
complexities of the EEG trial structure.

The PSI computation becomes imbalanced when using the original equation to
handle groups of colour sequences that have trials of varying lengths and an unequal
number of trials. Specifically, by grouping the sequences based on the subject's response,
the resulting groups have different trial counts. Additionally, the outcome is further
affected by the observation that trials associated with the 'Nothing' response are
considerably longer, containing a greater number of patterns, compared to subgroups of
'Certain' and 'Uncertain' responses.

Our pipeline proposes a new technique called "Weighted PSI" [170] to address the
challenge of imbalanced distributions of structural properties in colour sequence groups.
Its purpose is to weigh the contribution of PSI values from each subgroup within a
condition with the intention of ensuring that each PSI has an equal impact on the final
value. The final PSI formula for a pattern within a subgroup becomes a derivation of the
original formula as it implies a multiplication of the initial PSI value with a weight
Wsubgroup, which corresponds to the specific subgroup it belongs to.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝑆𝐼𝑝,𝑠 = 𝑊𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 ⋅
𝑐𝑜𝑢𝑛𝑡(𝑝│𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝=𝑠)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑝│𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝=𝑗)𝑗
 (39)

Finding PSI weights of a group of trials can be viewed as a linear system of
equations where the weights of all subgroups must add up to 1 and all multiplications of
a subgroup weight and the probability of choosing a sample from that subgroup must be
equal. Thus, the PSI remains in the 0 to 1 range.
 Meaningful patterns, those appearing the most during the colour sequences of
each group, are identified by thresholding the PSI values of all patterns. We identify a
pattern as a meaningful or significant if its corresponding pattern specificity index value
satisfies the condition:

𝑃𝑆𝐼𝑝,𝑔𝑟𝑜𝑢𝑝 − µ > 𝑐𝑜𝑒𝑓𝑓 ∗ 𝜎

where µ is defined as the mean of all PSI values of patterns in a given grouping criterion,
and σ expresses the standard deviation of the values, while the term coefficient (coeff)
determines the degree of restrictiveness that determines the significance or relevance of
a pattern within a particular group. This coefficient is closely linked to the size of the self-
organised map. The patterns shown in Figure 4.7 were obtained by setting coeff equal to
3.

126

Figure 4.7 - Example of PSI with left-alignment for subject’s response: “Certain”, highlighting the most
meaningful patterns.

Pattern Triggered Average
The computation of PTA starts from the PSI that has been determined in the

previous step from the pipeline. We are interested in visualizing how the signal looks like
only for those patterns that are specific for a group of trials. We carried out the PTA
computation for every meaningful subgroup of trials (e.g. ‘Nothing’) that we have defined
when constructing the colour sequences for a grouping criterion. For every pattern
identified by PSI in such a group, the outcome of this process will be a figure containing a
subplot for every trial in the subgroup. One such subplot will showcase the average of the
EEG signal on a specific channel, offering a glimpse into how the signal behaves when
that pattern occurs in the trial. If the pattern doesn’t appear for all trials in the subgroup,
those subplots are left empty. The computation of PTA starts with saving the timestamps
at which each meaningful pattern appears within a trial. At the end of this step, each trial
will be represented by a dictionary, having as keys the patterns and as values lists of
corresponding positions at which the pattern appeared. This process is repeated for each
subgroup generated by the grouping criterion used in the construction of the colour
sequences.

Subsequently, the PTA is computed for every vector for each pattern in a trial. The
PTA vector is obtained by averaging the signal values for each occurrence of the pattern
in the trial. The values considered in the computation of the PTA vector are the values of
the signal in a time interval centred at the point of occurrence of the pattern. The limits
of the interval are computed by defining a fixed portion of time, referred to as window.
The default window is of 100ms. For each pattern, we generate an image displaying the
shape of the signal in every trial from the subgroup. All signal values considered in this
computation correspond to a chosen channel. Besides this way of PTA visualization, we
have also generated an average signal that encapsulates the overall behaviour of all the
signals in a subgroup for a specific pattern.

127

On the right side of Figure 4.8, a pattern is chosen and a subset of its appearances
in trials are shown (empty plots indicate that the pattern does not appear in that trial).
While, on the right side of Figure 4.8, the average PTA for that pattern is shown. The shape
of PTAs of high specificity patterns (found through PSI) in the occipital part of the brain
feature a negative deflection, indicating the presence of synchronized activity of a large
number of neurons for the visual processing of the stimuli. Due to the nature of EEG data,
this method is rendered potent by its ability to capture such effects.

Figure 4.8 - PTA for a subset of trial in the subgroup “Certain”, pattern (0.1, 0.9, 0.9) on channel D23 (left)
and the Average PTA for subgroup ‘Certain’, pattern: (0.1, 0.9, 0.9) on channel D23 (right).

Peri-Stimulus Time Histogram
The pipeline generates the PSTH of each meaningful pattern discovered after PSI

computation performed for each group of trials. The PSTH computation process is carried
out during the reconstruction of colour sequences, which are time aligned on the stimulus
onset, and it involves counting the occurrences of each colour pattern at a particular
timestamp across all trials in a specific group. As a result, the histogram will provide
information on the distribution of the meaningful pattern across each group of trials.

Considering the length of trials, the default bin size is 50ms and each bin contains
the sum of occurrences of a pattern appearing over a time period of 50 timestamps. PSTH
is a type of analysis that can only be performed on a time-limited window as it presents
the distribution of a meaningful pattern across all trials in a subgroup. The PSTH
presented in Figure 4.9 prove that these patterns are indeed meaningful as they are
recurrent in the brain activity recorded during the experiment.

.

Figure 4.9 - PSTH of pattern (0.1, 0.0, 0.0) for subject’s response: “Uncertain”.

128

Findings
The proposed approach [170] is capable of identifying the onset of visual

processing that ensues when the subject is presented with visual stimuli, as well as the
disappearance of the stimuli. The ability to identify these phenomena, clearly associated
with visual processing through their timings, indicates that the proposed approach is
suitable for the task.

Several patterns with a fascinating behaviour have been identified in trials in
which the response of the subject has been uncertain or nothing. It seems that some of
the patterns found appear at the presentation of stimuli followed by a period of inactivity
after which they emerge again. The reappearance of the pattern after its suppression can
be certainly motivated by ocular movements, such as saccades and fixations.
Nevertheless, this behaviour indicates a dualistic processing system for hard-to-identify
visual stimuli. Immediately after the presentation of the stimulus there is a first attempt
at identification, during which the pattern is suppressed. The reemergence could indicate
another attempt of the subject to identify the stimulus and the pattern reappears as the
search begins through fixations and saccades on different parts of the screen.

4.1.4. Conclusions
The techniques described here were able to extract meaningful patterns from

multiple types of neuronal data that otherwise would have gone unnoticed. The depth of
anaesthesia can be extracted through microstates even on LFP data that is positively
 different from EEG data although it requires a higher number of microstates.

The analysis of spiking activity through the creation of states by means of K-Means
or SOM result in patterns that are recognizably related to the events of stimulus
appearance and disappearance through visualisation of colour sequences. This indicates
that these methods are capable of encoding complex information without loss of it.
Visualisation techniques such as PSTHs, Tuning Curves and Correlograms offer
information about the neuronal activity from different perspectives such as activity of a
neuron throughout a trial or its attunement to a certain type of stimulus.

The same visualisation techniques can be applied to the case of EEG data as well
with informative outcomes indicating that symbolic analysis is a powerful tool for the
processing of such data into patterns that are meaningful from the perspective of
neuroscience.

129

4.2. Detection of oscillation packets

4.2.1. Introduction
Neural computations and information transmission in the brain are accompanied

by oscillations [171] embedded in rich time-frequency landscapes [95,172]. Oscillations
often appear as events of finite duration and finite frequency span, called oscillation
bursts or packets, intermixed with sustained oscillations and transient broadband events
[173]. For instance, bursts of gamma and beta oscillations have been found to modulate
attention, memory encoding and retrieval, and transiently couple distant areas in the
brain. Oscillations have been found virtually in all relevant frequency bands, and even
Berger [174] in his historical account depicted alpha oscillations as transient events.

Given the frequent transient expression of neural oscillations, it is crucial to
develop tools that can precisely detect them in brain signals, enabling the quantification
of their expression and statistical properties. Another difficulty in detecting oscillation
packets in brain signals is related to the variety of patterns that such packets can take in
time-frequency representations (TFRs), or spectrograms [95]. Different oscillation
packets can have different shapes and extents, and this diversity is often not fully
captured by simple detection algorithms that rely on thresholding or other
straightforward measures. Instead, more complex algorithms that take into account the
specific shapes of oscillation packets can be used to improve detection performance and
specificity. In this context, the use of superlet TFRs and more complex detection
algorithms that can capture the structure of oscillation packets, including their contours
and sub-peaks, can be instrumental in probing single-trial oscillation dynamics.

4.2.2. Data
 The datasets presented here were recorded by the Transylvanian Institute of
Neuroscience (details about the data acquisition procedure can be found in the
Appendices). In the analyses that can be found in this subchapter several real datasets
have been used, as follows:

• EEG data – recorded with a high-density EEG cap of 128 electrodes at a sampling
rate of 1024Hz that was band-pass filtered between 0.1-200Hz (additional band
stop filter between 49.5 and 50.5 to remove noise).

• LFP data – recorded with a 32-channel probe at a sampling rate of 32kHz that was
band-pass filtered in the 0.1-300Hz range and downsampled to 1kHz (additional
band stop filter at 50, 100 and 150Hz to remove noise).

4.2.3. Methods

Proposed method
Our newly developed method for brain oscillation detection [175] is based on a

clustering algorithm for neural spike sorting that was published in Ardelean et al., 2019
[163], one of the earliest research works in this work. The base method itself is actually
a density-based clustering algorithm that quantizes the points to be clustered and
estimates the extent of the clusters in this discretized space. For our ends in peak extent
finding, since the power spectrum is already a discretized image (time- and frequency
bins), we only need the extent finding part of the algorithm, that can be summarised as
follows: using a threshold, normally set to a percentile of the distribution of the spectral

130

coefficients, all local maxima (peaks) are detected above that threshold. This is to ensure
that the background does not produce too many peaks that would slow the algorithm and
corrupt its detection capabilities.

Being based on the Space Breakdown Method (SBM) clustering algorithm, the
proposed method has been denominated as Time-Frequency Breakdown Method
(TFBM). TFBM identifies potential peaks of oscillations by traversing the discretized
space and searching for local maxima, which serve as cluster centre candidates. The
second parameter of the algorithm imposes a lower bound on these candidates, so only
maxima above the threshold are considered. After identifying the peaks, a modified BFS
expansion is applied to each candidate. However, for clustering and segmentation
purposes, a stopping criterion is necessary to ensure that the BFS only expands to the
extent of the cluster or oscillation packet. The expansion from one point to another must
satisfy certain conditions, including being unvisited, having a lower value than the
current point, and a higher value than the computed dropoff. The dropoff is determined
through a formula similar to the root mean square of the neighbouring points of the
cluster centre candidate. The algorithm iteratively expands each cluster centre until it can
no longer expand, or it encounters a conflict with another assigned cluster. If a conflict
arises, the algorithm initiates a disambiguation process, which evaluates the statistics of
the conflict point, each of the cluster candidates, and the distance between them. Based
on this evaluation, the disambiguation process concludes that the conflict point belongs
to the current cluster, the old cluster, the whole old cluster should be included in the new
expanding cluster, or the new cluster should be a part of the old cluster.

Although no map needs to be created, as SBM does, the algorithm still relies on the
local statistics. Disproportionate time-frequency scales can skew the distance calculation,
so we have included a homogenous scaling step as the first step. This step scales the
power values between [0, 100] and modifies the Euclidean distance formula by
multiplying each term with a factor determined by the resolution in time or frequency of
the data. This ensures that the highest possible distance between two points in time,
frequency, and power is 100, regardless of the number of samples.

To limit elevated plateaus to one point, we only consider local maxima as valid if
they have no neighbouring local maxima. Additionally, these maxima must surpass a
threshold parameter, as in the original version. For example, in Figure 4.10, the algorithm
identifies three peaks. However, we have now incorporated an automated approach for
calculating the threshold. By analysing the cumulative distribution of the power spectra,
we determine the threshold as the value below which 90% of the power values lie. This
method removes only a small portion of the power range and eliminates low-power, low-
prominence local maxima candidates that would slow down execution and affect
performance. It's worth noting that this threshold only affects valid local maxima, and the
algorithm can continue expanding through such points. Once the valid local maxima have
been identified, they are sorted in descending order, with the highest peaks given priority
for expansion.

In Figure 4.11A, all local maxima discovered in a spectrogram generated using SLT
and actual electrophysiology data are depicted. In contrast, Figure 4.11B illustrates only
the local maxima that surpass the threshold. Power values below the threshold have been
set to zero to emphasise the minimal impact of this restriction. The upper part of Figure
4.11C represents the distribution of power values divided into 100 bins. It is apparent

131

that most of the values are situated in the first percentile. The lower part displays the
upper half of the cumulative distribution of local maxima.

Figure 4.10 - The segmentation algorithms and the ROI matching metric. (A) The TFBM algorithm begins
from the peaks of the TFR, and it expands until a conflict point (grey circle) or a point that satisfies the
border condition (grey squares) is reached. Conflicts are resolved by assigning the conflicting points to one
of the regions of interest (ROIs) or by merging the conflicting ROIs into a larger ROI, represented by dotted
lines. Peaks below the threshold (thin grey line) are not considered as seed points for ROI expansion. (B)
TFPF algorithm, which slices through the TFR from the highest power down to the threshold (grey line).
ROIs, represented by dotted lines, expand as the slice level is lowered. When ROIs merge (thick grey line),
the smaller peak is merged into the larger one. The algorithm stops at the threshold, and points below the
threshold are not considered. (C) the matching metric between two ROIs is illustrated in the left pane. The
right pane shows the best matching ROI (green) overlapping with the target ROI (red). The grey ROI has a
lower match value to the target than the best matching ROI.

Figure 4.11 - Thresholding and rejection of low amplitude peaks of the TFR of a single-trial mouse LFP. (A)
All local maxima of the TFR. (B) Only local maxima that are above the threshold, which is determined
according to the method described in panel C. All power values below the threshold have been set to 0 to
emphasise the low threshold while retaining the dynamic range of the TFR. (C) The power distribution in
the TFR. The top panel shows the highly skewed distribution of the power values of all local maxima. The
cumulative distribution shown in the bottom panel is used to set the threshold, covering 90% of all power
values, which corresponds to less than 10% of the maximum power. The power values in the TFR have
been scaled to the interval 0-100 for easier interpretation.

Similar to SBM, TFBM incorporates a disambiguation step. While in SBM, it was
achieved during the expansion of clusters, in TFBM it is done as a subsequent step after

132

the expansion. Firstly, each peak can expand to its maximum limit before any
modification is made to the layout, and each expansion can be stored as an isolated object
for post-processing. This allows for hierarchical merging, where the merging process can
be done at any required time while still being able to return to the unmerged
segmentation. Secondly, the expansion requirements have been modified to recalculate
the dropoff for each expansion point, delineating more precisely the oscillation packets.
Figure 4.10 provides an example of the expansion process for each of the three local
maxima found, with the extent of each peak delimited by colour. However, the
disambiguation process is still necessary for the first two cases to redistribute the points.
The BFS algorithm tends to spread greedily, and the redistribution of points by the
disambiguation process ensures that every oscillation packet is spread to its maximum.
The disambiguation step has also been separated from the expansion step as an
intermediary between expansion and merging. This allows the expansion of packets to
naturally stop, while points of conflict are recorded. Once all packets have been expanded,
the points of conflict are reevaluated and distributed to the most appropriate packet. The
most appropriate was chosen from the conflicting packets of said point that has the
highest value of the division between its peak power value and the distance to the point
of conflict. Points of conflict between the current cluster and any other are stored during
the expansion process to be used later in the merging process.

The merging process iterates through all the packets in increasing order of their
peak power value and their corresponding conflicting candidates. Two packets are
merged if and only if the difference between their peak power values and the maximum
power across the conflict points is below a threshold. Additionally, the packet with the
higher power value of its peak assimilates the less prominent one. This threshold is
exposed to the user as a parameter, called merge threshold. The merge threshold can be
interpreted as the percentage (power values are normalized in the 0-100 interval) of
difference allowed between conflicting peaks and their common maximum conflict point.
In Figure 4.10, for example, modifying the merging threshold parameter would
determine whether or not to merge the red and yellow peaks. As labels are removed
during merging, a post-processing step can be performed to compact the labels and
improve visualisation.

For each of the found packets TFBM stores the coordinates of the peak, maximum
power, prominence as defined in the topological literature, coordinates of conflicting
points, the contour of the packet, all the point coordinates that form the ROI, and the
parent packet if merged. These characteristics completely define and expose the found
packets for further analysis.

To summarize, TFBM is controlled by three parameters: i) the threshold which
eliminates spurious noisy peaks in the TFR, ii) the aspect ratio which determines the
resolution of the TFR for the calculation of the scaled distance, iii) the merge threshold
that determines whether two packets will be merged into one or not. A summarised
representation of the modifications brought to the SBM algorithm for the birth of the
TFBM algorithm can be viewed in Figure 4.12.

133

Figure 4.12 – A summarised comparation between the SBM and TFBM algorithms.

Performance analysis in oscillation detection
In order to evaluate and compare the performance of the algorithms, it is

necessary to have an error function that can compare the regions of interest (ROIs) of the
oscillation packets detected by the algorithm with the ground truth, which is the known
ROI of the oscillation. To address this, we propose the match measure [175], denoted as
m, which is calculated as the ratio between the intersection and union of the ROIs (as
illustrated in Figure 4.10C on the left), where A and B are two ROIs. The formula can be
written as follows:

𝑚(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 (40)

This equation offers a couple of advantages. It is inherently restricted to the [0,1]
interval, where 1 represents perfect overlap, while no overlap results in 0. Using this
formula, a matching error formula is proposed [175] and can be easily formulated as:

𝑒(𝐴, 𝐵) = 1 − 𝑚(𝐴, 𝐵) (41)
The comparison of the identified packets across the algorithms was performed

first (see Figure 4.13). For the first batch of tests, the data was subjected to the superlet
transform and all algorithms were applied to the superlet TFR. Although OEvents was
originally used with a wavelet TFR, we wanted to eliminate the differences between TFRs
in our evaluations. In principle, any TFR can be used in combination with all three
algorithms, and all algorithms can benefit from the superior spectral representation of
the superlets. In the first experiment, the aim was to assess the ability of the methods to
differentiate between processes that are closely located in the frequency space. To
achieve this, we created clusters of Gaussian atoms (20 cycles) that were equidistant in
time but gradually closer in frequency (Figure 4.13A). The atoms, with an amplitude of 1,
were added to random noise with double the amplitude. The superlet transform (with
base cycles c1 = 3 and order o=10:10) was used to analyse the signals, and all algorithms
were applied to the same TFR. While TFBM and TFPF were able to identify all the atoms,

134

OEvents had difficulty detecting them due to its thresholding method that requires the
power to be four times greater than the median for a peak to be detected [153]. The
amplitude of the atoms and the noise made it difficult for the median to distinguish clear
oscillations from the background. Atoms introduced a lot of power at low frequencies
(20Hz), thus causing clear bursts to be missed as the median was set too high. Conversely,
at higher frequencies where shorter atoms introduced less power, the normalisation
process made even tiny levels of power seem significant, resulting in multiple atoms
being grouped together under the same bounding box as a single event. This problem also
led to many non-existing events being detected as oscillations in areas without atoms. We
also performed the same analysis using OEvents, but the median used for normalisation
was calculated across the entire TFR, and the same value was applied to all frequencies.

TFBM has a finer segmentation to separate packets amongst each other, but it can
also cause over-segmentation. The Time-Frequency Peak Finder (TFPF), another
proposed method, on the other hand, is a threshold-based method that works well when
packets are clear. It performs similar over segmentations but with smaller satellite peaks.
TFBM is more difficult to tune its threshold to detect faint packets and separate
overlapping ones. Despite these challenges, neither method misses any packets, with
some over-segmentations and spurious merges. These packets are faint parts of existing
packets that can be eliminated by thresholding the representation at higher power
values.

A single-trial local field potentials (LFP) recording from mouse visual cortex
during a receptive field mapping trial is shown in Figure 4.13B. The adaptive SLT used
was optimised to cover a wide frequency range (1-100Hz). The LFP reveals a wide array
of frequencies with well-defined bursts of activity, such as the gamma burst at 55 Hz and
the beta burst at 2.5s. Both have a complex shape with decreasing frequency and power
modulations that appear as sub-peaks. TFBM and TFPF are able to delineate the most
important packets of oscillations, with TFBM excelling at isolating both large and small
packets. TFBM detects a larger number of structures that should be separated, while
TFPF performs more aggressive merging. Both TFBM and TFPF present an
unprecedented level of detail with respect to the complexity of the identified structure
and the level of description. To identify such structures, it is important to employ the
appropriate TFR. The comparison of algorithms on three different TFRs reveals that the
crisp details in superlets allow the algorithms to overall separate better the structures.

The human EEG data shown in Figure 4.13C and Figure 4.13D presents a similar
level of detail, in this case OEvents performs better than before in identifying prominent
features of the TFR. Nevertheless, OEvents segmentation is greedier and merges larger
areas in a coarser account of the structures, missing some low-power packets. TFBM is
the algorithm that best delineates structures, although it merges some faint packets.
TFBM identifies more structures than TFPF and OEvents, but only correctly delineates
alpha activity and beta (20Hz) activity around 1.6s and 2.5s. TFBM segmentation is
superior to TFPF but may be overly greedy in faint areas, while OEvents only captures a
rough structure of the oscillations. TFPF finds contours nicely but suffers from a fixed
threshold and poorly delineates smaller peaks.

135

Figure 4.13 - Comparison of the segmentation provided by each algorithm. The algorithms are shown by
columns: TFBM (left), TFPF (middle), and OEvents (right) on various single-trial TFRs computed with
superlets on each row. The boundaries of the detected ROIs are depicted in black, and the bounding boxes
are shown in red. White dots indicate the local maxima, while grey dots indicate the sub-peaks. (A) The
TFR corresponds to a series of generated atoms in the gamma frequency range (20-55Hz) embedded in
uniform noise. (B) The TFR corresponds to a wide frequency range (0-100Hz) from a single-trial LFP
recording in the mouse visual cortex, stimulated with drifting gratings. (C) The TFR corresponds to a single-
trial EEG with a rich spectrum covering the alpha, beta, and low gamma frequency bands. (D) Shows the
segmentations of a zoomed-in area of the data from panel C.

As demonstrated in the examples shown in Figure 4.13B-D, neural oscillations in
single trials are typically found amidst a complex backdrop of noise and background
activity. In the following experiment, the effectiveness of the extraction of known
oscillations that are hidden within a realistic background of these methods is evaluated.
To accomplish this, 200 atoms were created with frequencies ranging between 35 and 95
Hz that lasted for 10 cycles. Each atom was randomly assigned a frequency, insertion

136

time, and a single trial from the available pool of 84 EEG trials to be inserted into. The
creation of the atom also involves the choice of a level of SNR (0.1, 0.25, 0.5, 1, and 2) that
modifies its amplitude. The insertion of atoms was made such that it ensured that the
same configuration of atoms' frequency, time, and trial was repeated for each SNR level.

The measurement statistics for the detection performance of the three algorithms
are presented in Figure 4.14A, based on the rectangular bounding boxes of the detected
packets. An atom was considered detected if its known bounding box intersected with at
least one of the packets detected by the algorithm. The error measurement against the
ground truth atom was performed by considering the best matching packet. Three errors
were calculated, namely the bounding box match error, the time match error, and the
frequency match error. The time and frequency match errors represent the differences
between the location of the atom and that of the highest peak in the bounding box.

In Figure 4.14A, it is evident that TFBM outperforms the other two algorithms in
detecting atoms, as seen from the lower errors in bounding box match, time match, and
frequency match. Subsequently, the time and frequency errors were assessed (shown in
the second and third panels of Figure 4.14A, respectively). The calculation of time and
frequency errors was limited to detected atoms only. Thus, undetected packets did not
contribute to the statistics of time and frequency errors.

TFBM exhibits significantly lower errors in locating atoms compared to the other
two algorithms (Figure 4.14A, top) for all SNRs. This superior performance, especially at
low SNRs, is evident in TFBM having approximately half the misses of TFPF and OEvents
at SNR 0.1 (Figure 4.14A, bottom). TFPF and OEvents collectively fail to detect about 7%
of the atoms at this SNR. TFBM consistently demonstrates lower bounding box errors
than TFPF and OEvents across all SNR levels, with the smallest proportion of missed
packets. Beyond SNR = 1, neither TFBM nor TFPF miss any packets. At low SNRs (≤ 0.25),
TFPF's performance is slightly inferior to OEvents, but at SNRs ≥ 1, TFPF exhibits lower
bounding box errors and no misses.

The evaluation extends to time and frequency errors (Figure 4.14A, second and
third panels). Time and frequency errors are computed only for detected atoms, meaning
undetected atoms do not contribute to these error statistics. At SNR=0.1, TFPF and
OEvents lose twice as many atoms as TFBM (Figure 4.14A, bottom). Although this favours
the time/frequency distributions of TFPF and OEvents since the most challenging-to-
detect packets are not included, TFBM still achieves smaller time and frequency errors.
Overall, errors decrease with increasing SNR, and starting from SNR=1, the time and
frequency errors are extremely low, with the three algorithms performing equally.
However, OEvents continues to miss a small fraction of atoms, while TFPF and TFBM miss
none. For SNR ≤ 0.5, TFPF encounters more difficulty in determining the correct timing
and frequency of atoms compared to TFBM and OEvents. Significance levels were
assessed using a paired t-test, assuming unequal variances, with Bonferroni correction
for multiple comparisons (Figure 4.15).

The same evaluation procedure is applied to measurements shown in Figure
4.15B. However, instead of using rectangular bounding boxes, the assessments are
conducted on the detected Regions of Interest (ROIs) (surface bounded by the detected
packets' contour). Comparison is made only between TFPF and TFBM, as OEvents
provides only bounding boxes. In terms of contour matching, TFBM significantly
outperforms TFPF across all SNRs. At SNR = 0.1, TFBM misses only about 5% of packets,
whereas TFPF fails to find approximately 9% of packets. From SNR 1 and above, when

137

atoms are more distinguishable from the background, TFBM and TFPF demonstrate
nearly identical performance in terms of frequency and time errors, with no missed
packets.

Figure 4.14 - A comparison of the segmentation of the TFBM, TFPF, and OEvents algorithms in terms of
detection performance by SNR. Stars indicate significance levels, highlighting statistical differences. (A)
The match between the ground truth (a generated atom introduced randomly in the data) and the detected
packets is evaluated using the matching error of rectangular bounding boxes. The top panel displays the
bounding-box detection errors, which improve with increasing SNR. The second panel shows the time
errors, while the third panel presents the frequency errors. The bottom panel illustrates the percentage of
missed atoms. (B) These panels have the same arrangement as those of panel A. Here, TFBM and TFPF are
evaluated using fine-grained regions of interest (ROIs) represented by contours, instead of rectangular
bounding boxes.

SLT was used as the preferred TFR, and atoms were embedded in a background of
EEG in the previous evaluations. This raises two inquiries: How would the algorithms
perform on other TFRs, and what is the impact of the background choice? To address
these questions, we conducted the following additional evaluations.

In a second set of comparisons, the detection algorithm was applied to the same
atoms embedded in EEG, but using CWT and STFT, the two most established TFRs. Figure
4.15A presents the comparative performance of TFBM, TFPF, and OEvents on the three
TFRs generated by SLT, CWT, and STFT. As anticipated, across all representations, the
algorithms exhibit improved performance at higher Signal-to-Noise Ratios (SNRs). TFBM
generally has the smallest box errors and performs best in combination with SLT. It also

138

outperforms TFPF and OEvents for CWT. Overall, TFBM and TFPF benefit the most from
the sharper superlet, while OEvents shows comparable performance on SLT and STFT,
with more misses on CWT.

TFPF and TFBM encounter challenges on STFT at SNR ≤ 0.25, where they miss
more atoms than OEvents. This issue might be attributed to the thresholding operation
that eliminates small power values. The thresholds were set based on SLT
representations, and STFT has different spectral characteristics. To test this hypowork,
we lowered the power threshold, allowing more of the low part of the TFRs to contribute
to packet detection. With a lower threshold (80%), the detection performances of TFBM
and TFPF significantly improve, consistently surpassing OEvents. With this threshold
favouring atom detection, TFBM only misses atoms on STFT and less than 2% at SNR =
0.1, while TFPF also minimally loses packets on SLT and CWT. These results suggest that
SLT is the preferred TFR for TFBM and TFPF.

Figure 4.15 - A comparison of the detection algorithms performance for different background types and
time-frequency representations. The detection performance of atoms within an EEG background is
depicted in (A). The upper panes display the box match error, while the bottom panes show the percentage
of missed packets for three TFRs: SLT on the left, CWT in the centre, and STFT on the right. To facilitate
comparison, the left panes in (A) recapitulate the top and bottom panes in Figure 4.15A. In (B) and (C), the
identical evaluation is presented for backgrounds of pink and brown noise, respectively.

Acknowledging that EEG might not be the most suitable background in all
situations, we also tested atom detection with pink noise (Figure 4.15B) and brown noise

139

(Figure 4.15C) backgrounds. Each atom was embedded in a different instantiation (trial)
of the noise, following the same embedding procedure as described for EEG background.
Performance-wise, the algorithms demonstrate similar results on all backgrounds. TFBM
generally performs best, with the exception of brown noise background with STFT.
OEvents and TFPF show competitiveness at small SNRs (≤ 0.25), while at SNRs ≥ 0.5, TFPF
has fewer overall misses than OEvents (except for brown noise with STFT at SNR = 0.5).
Lowering the power threshold significantly enhances packet detection for TFBM and
TFPF, even in the case of brown noise and pink noise backgrounds. TFPF and TFBM miss
fewer packets compared to OEvents, although the box error is typically larger for TFPF
than for OEvents. Similar to the EEG background case, TFPF and TFBM generally perform
better on SLT and worse on STFT, with OEvents demonstrating poorer performance on
CWT.

4.2.4. Conclusions
 Our proposed method, referred to as the Time-Frequency Breakdown Method
(TFBM) [175], employs the core principle of a clustering algorithm called the Space
Breakdown Method (SBM) to identify peaks and expand regions around these peaks until
certain stopping criteria are met. The second method, called the Time-Frequency Peak
Finder (TFPF), is a threshold-based technique that divides the time-frequency landscape
along the power axis, beginning from the power peaks and descending while merging
successive peaks with the more prominent ones. Both methods were designed with the
objective of identifying the precise contour of oscillation packets in time-frequency
representations, rather than just their bounding box. Furthermore, it would be desirable
to have techniques that can determine the hierarchical relationship between different,
neighbouring time-frequency peaks. Requirements that are fulfilled by both TFBM and
TFPF.

When comparing the two proposed methods, TFBM is more complex and
computationally expensive but has better performance than TFPF or OEvents. Overall,
both techniques outperform existing methods that can only extract bounding boxes of
oscillation packets. The ability of the proposed methods to establish hierarchical
relationships between components of the TFR allows for unprecedented analysis of
underlying bursting processes compared with existing detection methods. It should be
noted that there is no perfect method for detecting oscillation packets, but in general,
more complex methods like TFBM tend to perform better. However, such methods come
at a cost of increased complexity and parameters that need to be tuned by the user.

The effectiveness of super-resolution TFRs in detecting oscillation packets in
neural data has been demonstrated, with the superlet transform performing particularly
well. Furthermore, an innovative method for detecting oscillation packets has been
presented, which enables precise isolation of the time-frequency components in the TFR
and the determination of hierarchical relationships between peaks representing
oscillation packets. These powerful tools for characterising oscillation bursts provide an
opportunity for quantitative analysis of the properties of transient oscillations in brain
signals. The true potential of these tools for detecting oscillation packets will be revealed
through complex future studies of transient oscillation processes.

140

5. From brain activity to behaviour
The most natural and appropriate approach to understanding the brain is to

analyse its activity during behaviour. Even though, experiments under anaesthesia have

a role and can offer insights into brain function, they can alter brain states and as such do

not show the brain activity that is found in real-life environments. This chapter dives into

a more engineering type of approach in neuroscience. The first step for any experiment

is the environment of the experiment itself and as such the first subchapter proposes

experimental environments for the evaluation of vision, where the subject is conscious

and able to move. And even more than that, for the second environment, the actions of

the subject have effects in the environment. This approach allows the subject to enter a

more natural state that provides the analysis with a clearer view of brain activity that is

linked to the behaviour of the subject as the subject receives immediate feedback from

the environment.

Having such a natural approach to experimental environments offers many

advantages. Nevertheless, the behaviour of the subject must be monitored during the

experiment to have the capability of linking the behaviour to the brain activity. As such,

the second subchapter proposes a neural network-based approach to tracking behaviour

based on predefined body parts from video recordings. Through the video recording and

tracking of the subjects, their behaviour during the experiment can be detected in real-

time. With these two approaches, the experimental environment and the tracking, the

brain activity and behaviour of subjects can be easily linked while also reducing confound

variables in order to understand how the brain functions in natural environments.

5.1. Experimental environment development for behaviour
quantification

5.1.1. Introduction
 Amblyopia, also known as “lazy eye”, is a malady of the eye that typically occurs
during childhood and involves reduced acuity in one eye unrelated to structural
abnormalities. If, during development, one of the eyes is significantly stronger than the
other, the brain tends to favour that eye leading to amblyopia, a weakness in the other.
 The most common treatment is to cover the stronger eye in order to force the
development of the weaker as it was discovered that visual loss in the healthy eye results
in improved function of the amblyopic eye [176]. The earlier this condition is found, the
more chances of recovery. Left untreated, it may lead to permanent impairment of vision
in the weaker eye. Amblyopia can lead to impairments in balance [177] and its prevalence
only keeps on growing with estimated doubling of occurrence in the next decade [178].
Thus, the study of amblyopia and its effects on function is a valuable endeavour.

Sensory function measurements are critical for the appraisal of ability and its
deterioration in research and in clinical practices. The scientific study of the stimulus-
response dynamic is called Psychophysics. A sub-realm is the identification of a person’s
ability to perceive changes in brightness, called Contrast Sensitivity.

The hypowork of this experiment is that amblyopia may also lead to impairments
in prediction. As objects come towards you or go away from you, the speed and direction
can be easily estimated by the brain. When the visual image does not overlap with the

141

prediction, for example an object suddenly changes direction, it is called a prediction
mismatch, and it creates a significant amount of neuronal activity. It is hypoworked that
this ability to detect mismatches is also impaired in amblyopic patients.

To establish whether this is the case or not, two experimental environments were
developed. The first estimates the central and peripheral visual acuity of each eye, while
only the second actually incorporates the mismatches. The whole setup includes three
monitors for immersion, a device that simulates movement (such as a stationary bike for
humans), an eye tracker to follow the eye movements of the subject and an EEG cap for
the recording of neuronal activity.

For this experiment, multiple species are enrolled as subjects: mice, cats and
humans. Humans are the goal of this study; therefore, it is essential that human subjects
are a part of the experiments. Mice are one of the most prevalent and studied subjects in
neuroscience, as such they are the baseline for this study, while cats have one of the best
visual systems in the animal kingdom qualifying them to be part of this study.

An unambiguous approach to Contrast Sensitivity is to show the complete range
with very small increments in order to assess the threshold at which the intensity is
below visibility. Most commonly, adaptive procedures are used to reduce the testing time
for both the experimenter and the patient. These procedures are called staircases, they
adjust the stimulus dynamically based on previous responses to identify the participant’s
threshold [179].

Other methods, such as Quest [180] or Quest+ [181], have been developed based
on statistics. They use maximum likelihood in order to estimate the probability of
parameter values to be true. Thus, it allows the computation of the best stimulus,
regarding information, for the next trial increasing the evaluation efficiency. Moreover, it
allows for the evaluation of the entire psychometric function, not only the threshold, and
the ability to assess the covariance of different parameters with distinct threshold values.

Traditional methods, such as Staircases, are considered more suitable than newer
methods for children. Multiple factors are taken into consideration in this statement
[182]. As children tend to exhibit a lack of attentiveness, a lack of patience, lapses in
concentration and nonstationary behaviours, the efficiency of more complex methods
decreases. Moreover, trials in Staircase methods can be separated into two categories:
consolidation and motivational trials. Consolidation trials are the incipient trials that
allow the subject to learn the task, while motivational trials are the effortless trials
followed by an erroneous response to the stimulus. Another tendency of children is to
relinquish the task temporarily when approaching the threshold as the difficulty
increases. They stop responding correctly for several trials after such cases, generating
“saw tooth” patterns [183]. Thus, the reversals provided by Staircase methods might
increase the likelihood of children to regain interest in the task.

More complex methods might not be always necessary as the final results can be
congruent with simpler methods, although complex methods have been found to produce
results more quickly [182]. Furthermore, the intricacies of parameter choice increase
with algorithm complexity increasing the possibility of errors being introduced by the
experimenter rendering the measurements biassed or noisy.

5.1.2. Methods
The purpose of the software component is to evaluate the predictive acuity of the

person participating in the experiment. The experiment consists of presenting visual

142

stimuli on a configurable number of monitors and estimating the participants' ability to
identify these stimuli. The software component is divided into two: estimating the
participant's ability to identify stimuli at varying contrast values, referred to as contrast
sensitivity assessment, and estimating the ability to identify stimuli that do not meet
expectations.

The Contrast Sensitivity Evaluation
The first component of the software, Contrast Sensitivity Function (CSF), is a

configurable system that presents stimuli as Gabor filters, shown in Figure 6.2, against a
background containing noise. The goal is to evaluate contrast sensitivity in multiple areas
on the screen corresponding to areas of human frontal, median, and peripheral vision.
Thus, the experiment setup is dependent on multiple monitors at a calculated angle to
capture the field of view. Thus, the visual field represented by the monitors is divided into
multiple zones, chosen by the experimenter. The participant interacts with the keyboard,
the keys are chosen by the experimenter, to declare whether the presented stimulus is
visible or not. The contrast of a stimulus is changed in accordance with the participant's
response. A 'yes' answer reduces the contrast thus reducing the visibility of the stimulus.
An answer of 'no' is considered as the inability of the participant to identify the existence
of the stimulus in a chosen time period. Stimuli are presented in a random area, each area
actually containing a chosen number of stimulus configurations, the presented
configurations being also chosen at random. An example of a stimulus configuration is a
stimulus with a spatial frequency of 2.5 measured in cycles/visual degrees, with an
orientation of 45 degrees and a motion speed of 0.1 measured in visual degrees/second.
The consistency of the presentation of stimuli is given by their contrast, a stimulus of a
certain configuration that has been identified causes the next stimulus of the same
configuration and from the same area to have reduced contrast.

To determine the contrast values, an estimation algorithm was chosen and
implemented. Thus, the algorithm produces a contrast value based on all the participant's
responses at all contrast levels up to that point. The visibility threshold is determined
using the previously mentioned values using curve modelling. Thus, at the end of the
experiment, each stimulus configuration in each area contains an individual visibility
threshold.

Figure 6.1 presents the configuration options of the Contrast Sensitivity Function
experiment. The system allows configuring the following parameters: number of screens,
noise range as pixel values, the distance between the observer and the main screen in
millimetres, the horizontal and vertical lengths of the screen in millimetres, the number
of evaluated zones, which zones may be active at an instant and their size in percentages,
stimulus size measured in visual degrees, stimulus spatial frequency measured in cycles
per visual degrees, stimulus movement speed measured in visual degrees per second,
stimulus orientation in degrees, the duration of the stimulus presentation in seconds and
keyboard interaction keys. The measurement of the distance of the participant to the
monitors and the size of the monitors in millimetres is required for the correct calculation
of the size of the stimuli.

The first task of this study is to measure the CSF using a Gabor detection
procedure. Gabor filters are ideal for the presentation of gratings as a stimulus in visual
tasks. They can be viewed as a sinusoidal regulated by a Gaussian. The Gabor filter allows

143

for a high variability through its parameters thus it is suitable for stimulus presentation
[184].

The stimuli used in this study are randomly oriented Gabor patches of variable
spatial frequency and contrast. The ranges of the spatial frequency and contrast used can
be viewed in Figure 5.1. The experiment was set up to cover the whole field of view with
three monitors at different angles. Thus, even the peripheral view is evaluated. It is
important to note that peripheral vision is acutely weaker than central vision for both
optical and neural reasons [185].

Figure 5.1 - Configuration file for the CSF experiment.

 The Gabor patches are evenly distributed along the field of view and move around
the monitor with no possibility of overlap with another patch. The stimulus is presented
for a given amount of time, 10 seconds, on the screen and traverses a certain section
randomly. The participant must focus on the fixation point at the centre of the middle
screen. At the start of such an experiment, full contrast Gabor patches are presented, as
shown in Figure 5.2. A correct response is regarded as the sighting of the Gabor patch and
the pressing of a key corresponding to that zone of the screen. The Gabor patch has a

144

lifespan of 10 seconds, if the participant is unable to see it and press the correct key
during its lifespan, the patch disappears and is considered as the incorrect response.

The experiment can be configured to contain stimuli with multiple spatial
frequencies, and they are presented randomly. Moreover, the contrast is linked to each
individual stimulus that is determined by the zone it is presented in and its spatial
frequency. Depending on the responses of the subject, the contrast increases or decreases
to estimate the visibility threshold of the subject. A screenshot of the experiment for a
three-monitor setup is shown in Figure 5.3.

Figure 5.2 - Gabor patches with the varying contrasts and spatial frequencies used in the experiment.

Furthermore, because peripheral view is evaluated as well, the field of view has
been divided into sections and each section contains all spatial frequencies. Thus, when

145

the subject has a correct or incorrect response it only affects the contrast of the presented
patch of a certain spatial frequency in a certain zone. Through this outline, the evaluation
of the participants' visual abilities was made.
 Hence, multiple zones are defined with the possibility of multiple spatial
frequencies being presented in each zone, at any time the field of view can contain
anywhere between zero and a number of Gabor patches equivalent to the number of
zones. Naturally, the number of patches present at one time is dependent upon the
participant’s responses. After a response has been attributed, the patch of a zone
disappears, and another is generated within that zone in a pseudo-random amount of
time dependent upon how many Gabor patches are present when the responses were
assigned.

The length of the assessment of a spatial frequency per zone has been limited to a
maximum of 30 trials. Because all zones can present Gabor patches at the same time, it
does not influence the length of the experiment. In the worst case, when the participant
is unable or unwilling to see or interact with the patches, given the lifespan of a Gabor
patch, the experiment can extend only up to 18 minutes. Depending on the wishes of the
experimenter, the distribution of Gabor patches into zones can also be configured, such
that patches can simultaneously appear only on the vertical or horizontal lines.

Figure 5.3 - Contrast sensitivity evaluation system configured for 3 monitors; two Gabor stimuli can be
observed with an orientation of 0 degrees.

The Mismatch Tunnel
The second software component, called the Predictive Ability Assessment, is a

system for evaluating the participant's ability to identify discrepancies in expectations.
This experiment was modelled as a simulated walk through a tunnel where the walls
were made of white or black squares. Passing through the tunnel triggers certain pieces
of the walls to become immobile or to actually change direction, which produces an alarm
signal, the expectation being that during movement the subject sees them pass. This
system as well is configured to have 3 monitors, where the central monitor presents the
frontal vision, and the other two are positioned at a 90-degree angle to the first one to
cover the field of vision. A photo of the screen displays during the experiment is shown
in Figure 5.4. While in Figure 5.5, a first setup for the testing of the environment is shown.
Given that both systems are created for participant interaction through multiple
monitors at preset angles, images are not the most representative to demonstrate
functionality. Nevertheless, for this second experiment, the mismatches cannot be seen
in an image as they are based on the movement of specific sections of the environment.

Just as the CSF system, this system is also configurable by multiple criteria as
shown in Figure 5.6. The environment is composed of a multitude of objects, at the
highest level it is composed of tunnel sections and their number, and the starting position
of the player can be set from the configuration file. Each wall beside the floor is composed
of plates and their numbers are again configurable, and each plate has a texture of black
and white squares that is also configurable from the config file.

146

The experiment comprises two types of mismatches, local and global. The local
mismatches appear as plates from the wall moving in the opposite direction than
expected for a set amount of time. While global mismatches appear as the whole
environment freezing for a set amount of time even though the subject is moving. The
probability of both types of mismatches is configurable. The response to these mismatch
stimuli is given through keys that are also configurable. The subject must specify on
which wall the local mismatch appears and if a global mismatch happened.

Figure 5.4 - Predictive Ability Assessment System.

Figure 5.5 - Example of a feline subject for a first setup for the testing of the environment.

 Due to the high amount of training needed for mice and cats before the actual
experiment can begin. The local mismatches have been made configurable to contain
images of different objects instead for the training period. The mismatches as wall plates
for the actual experiment can be incorporated only after a long training time of the
subject.

147

 Both systems have incorporated an exit and pause option that have configurable
keys for exceptional cases.

Figure 5.6 - Configuration file for the Predictive Ability Assessment experiment.

5.1.3. Conclusions
 Mice have been chosen as they have one of the longest experimental track records

in neuroscience and because of the genetic mutations that can be induced with today's

technology. Within this context, they can be considered as the perfect validation. Cats,

even though they are hard to train, have one of the best visual systems and amblyopia has

been previously induced in the eyes of cats which is why they have been chosen as

subjects. Lastly, humans are the main point of this investigation.

The use of these systems requires the construction of particular physical

environments that have to be approved by various ethics entities. The animal subjects

require a long period of training before the actual experiments can commence.

148

Furthermore, these systems also incorporate eye tracking and the recording of EEG

signals, parts that are yet to be implemented.

These systems are only the first step of a long endeavour attempting to answer the

question of how amblyopia affects normal function. It is an engineering venture, with

fuzzy requirements that may change with new discoveries and as the project advances

forward, to create a new type of experiment in the form of an environment that is more

realistic and natural for the subjects.

149

5.2. Behaviour quantification through tracking

5.2.1. Introduction
The unique biological characteristics of zebrafish make them suitable for study in

the domain of neuroscience. They are transparent allowing for the direct observation of
study of the development of the nervous system. They have a quick development allowing
for the observation of the early neural circuit formation and its relationship to function
and behaviour.

The first movements of zebrafish occur at 17 hours after fertilisation, but the
behaviour remains limited until 3 days post fertilisation. Stable patterns, like active
swimming and increased response to visual and acoustic stimulation, develop between 3
and 5 days. After 5 days, the brain development rate is reduced. By day 6-7, zebrafish
require feeding for normal behaviour and social behaviour starts to develop. And by day
9, zebrafish show a preference to swim alongside similarly pigmented individuals, while
larvae show no such preference. Predation seems to be improved by practice as its
efficiency is increased in zebrafish that reside in environments with excess food [186].

Zebrafish have been found to inhibit environments with water temperature
between 16 and 38C. The most appropriate temperature for development was found to
be at around 28.5 Celsius, with lower temperatures resulting in a slower development.
Besides temperature, the level of oxygen also impacts the development of the zebrafish.
Low oxygen levels thwart normal development and result in abnormal behaviours,
creating high density cultures with remaining unfertilized eggs [186].

The basic movements of the zebrafish can be categorised into 9 unique motor acts
that stabilise between days 5 and 7. More complex movements can be deconstructed into
these basic movements that last less than 50ms with movements being delimited by long
intervals of inactivity. The movements of the adult zebrafish are continuous, increasing
the difficulty of analysis [186]. The 9 basic movements of the zebrafish are: the slow swim
which occurs spontaneously without need of a stimuli, the burst swim that occurs for
looming stimuli as a predator escape, the capture swim and the j-turn are both predation
sequences, the o-bend ensues in response to dark flashes, routine turns of about 40
degrees are used for orientation but can also occur spontaneously, the short (SLC) and
long (LLC) latency C-bends are startle response that occur in response to acoustic or
tactile stimuli after about 15 ms and 20-60 ms respectively, and lastly, the struggle
manoeuvre which is an embedded stimulus [186].

Zebrafish respond to various stimuli: acoustic/vibrational, visual, tactile,
vestibular, lateral line and chemical. Within the context of visual recordings, the acoustic
and vibrational stimuli are not preferable because of the jitter that can appear. Zebrafish
larvae respond with a fast C-bend to sudden stimuli of this type. As mentioned above, LLC
occurs slower after the stimulus than SLC, therefore SLC are considered to be the faithful
startle response, it has been theorised that LLC is a more calculated response that
requires more processing time and may be a response for stimuli perceived as less
threatening. Habituation has been observed to occur if the stimuli is repeated at short
intervals and may be the reason for the loss of startle response, and consistent with this
idea, the responsiveness is regained after no stimulus is presented for several minutes.
Other possibilities might be fatigue or sensory adaptation [186].

The vestibular response has been seen after 4 days post fertilisation, as zebrafish
are able to preserve the dorsal-up position through visual cues such as light. Zebrafish

150

have a high sensitivity to tactile stimuli and respond with escape manoeuvres.
Approaching with a probe through water may also activate vibrational and lateral line
stimuli as well. The lateral line is an organ used to detect changes in motion of the water
and zebrafish can have startle responses with regards to lateral line stimulation [186].

By day 3 post fertilisation, visual stimuli can be used to produce responses in
zebrafish. The looming stimuli produces innate escape responses, while light intensity
variations also produce movements. The red and blue wavelengths have been found to
be the most effective as the zebrafish tend to swim toward the light source. Also, within
3 days, the olfactory system is developed, and zebrafish start to respond to chemical
stimuli acquired through gustation, olfaction or specialised skin cells. Certain stimuli
have been observed to produce aversion through locomotor responses, such as the odour
produced by the damaged skin of kin [186].

The activity of larvae and adults are modulated by light, extended immobility has
been observed mostly at night while swimming occurs during daytime. The circadian
clock can be scheduled, and zebrafish can swim even in darkness if it coincides with the
daylight of the entrainment. New environments yield reduced motility that revert to
normal after accustomization [186].

The hypowork is that through the tracking of the movements of zebrafish across
several days in their development, the impact of pharmaceuticals can be inferred.

This project contains multiple integrated parts. From the recording made through
an optic system including a high-resolution camera and mirrors, the microplate and its
specific design for the pumping of pharmaceuticals to the software. Only the software
design are presented here.

The goal of this application is to survey the zebrafish and their health during a
period of time while pharmaceuticals are being pumped into their microenvironments.
Thus, the zebrafish are constantly monitored including localization, orientation, speed
and acceleration in order to infer the effects of pharmaceuticals. As the resolution of the
images provided by the camera is 2592x1944, the classification is done per well in order
to reduce the workload and allow for parallel processing.

Systems used for the analysis of visual recordings of zebrafish have been
developed [187], even with neural networks (NN) for detection [188]. In general,
Convolutional NNs (CNNs) are used in the identification of objects in videos, with
background subtraction algorithms allowing for prelabelled data generation [188]. The
complexity of the images may drive the architecture of the neural network, while certain
requirements such as processing speed limits the complexity of the architecture. As the
movements of the zebrafish are intertwined with long periods of immobility [186], data
augmentation is recommended in order to increase the dataset size. Data augmentation
can be achieved through translations, rotations and other image processing operations.
Real time processing on the CPU with high accuracy is difficult to achieve with a high
frame rate.

ImageNet [189] is a large-scale database of 3.2 million images that has become
widely used for transfer learning [190]. The current segmentation networks are formed
of two parts: an encoder and a decoder. The encoder is usually a pretrained network, such
as ResNet[191], VGG-Net[192], AlexNet [193], Inception and Xception, sometimes called
the backbone [194]. Transfer learning occurs by pretraining these networks using, for
example, ImageNet. Among the backbones, Xception, which is an optimization of ResNet,
has been found to have the best accuracy on ImageNet [194] with a fast convergence and

151

high accuracy for linear activation. One of the main differences between backbones is the
size of the convolution kernel used. VGG has smaller convolution kernels (3x3) which
result in improved fitting, and it uses the ReLU activation function for non-linearity, while
ResNet (7x7) and AlexNet (11x11) have bigger convolution kernels.

U-Net [195] is a Convolutional Neural Network optimised for segmentation and
composed of the two parts, where the first part extracts the features of the image by
contracting and the second is up-sampling where it is expanded. U-net is based on Fully
Convolutional Networks (FCN) [193]. On the contraction, the spatial information of the
image is reduced while the number of features is increased. On the expansive part, the
opposite happens by up-sampling and concatenating the features from the contractive
part [194]. U-Net is trainable on all layers, whereas other architectures may use
untrainable encoders and only train the decoder.

Increasing the complexity of deep learning models usually requires an increase in
the amount of data used for training in order to avoid overfitting and produce a model
that is able to generalise. Data augmentation has been used in order to increase the
number of training samples and can prevent overfitting [192,196]. Using augmentation,
the model is able to learn robustly. Examples of operations used in data augmentation
are: translation, cropping, scaling, rotations, brightness/contrast change, noise addition,
horizontal/vertical flips and many others [196].

Various toolboxes have implemented deep learning networks for image
segmentation with high accuracy. These toolboxes have been used in current literature
for the processing of videos. One such toolbox is DeepLabCut [197]. DeepLabCut allows
the user to choose a desired network from a list containing ResNet [191], EfficientNet
[198] and others that have been pre-trained using ImageNet [189]. Figure 5.7shows the
result of DeepLabCut for one frame for the labelling of 3 zebrafish each in a separate well.

Figure 5.7 - Inference of a ResNet model through DeepLabCut

 As of this moment, these methods do not allow for the detection of multiple
animals at the same time. As such, a custom implementation of a CNN was chosen.

152

5.2.2. Methods
Several ML approaches have been applied attempting to track the movements of

the zebrafish in real time. Current methods are based on background subtraction where
the median, mean, or mode of a video is subtracted from each frame on the supposition
that this statistic renders an image containing only the wells without any of the zebrafish.
Multiple issues can become apparent, in some cases the fish does not move rendering this
method unable to localise the fish at all. It requires the setting of a manual threshold as
slight vibrations may appear or changes in light that heavily affect the results. Moreover,
the movements of the zebrafish can be so quick that theyare not be detected at all through
this method as it can be seen only as a blur. Even though this method may be one of the
most efficient from the perspective of execution time, it remains lacking in the
department of accuracy.
 The disadvantage of classifiers is the requirement of labels meaning that a tedious
process of manual labelling must be carried out. Depending on the method, thousands of
images may need to be labelled by hand and the results of any method may be only as
good as the labelling. Nevertheless, there are techniques, such as image augmentation,
that can help enlarge the dataset or such as automated labelling, where only a small
subset of the data is labelled and then the model is trained on this subset and used to label
the rest.

Machine learning approaches
Two other machine learning methods that can be used for image segmentation are

Support Vector Machines (SVM) [199] and RandomForest (RF) [200]. These methods can
be taught to learn by generating different features through image processing of the image,
such as Gabor features, edge detection, filtering and others. An example of image
segmentation generated by an SVM model trained on a single image is shown in Figure
5.8, while Figure 5.9 shows the result of a RF model.

Figure 5.8 – Inference of a trained SVM model for image segmentation. The left and middle image are the
input image and mask used to derive new features and to train the model and the right is the segmentation
of SVM.

Figure 5.9 – Inference of a trained RandomForest Classifier for image segmentation. The left and middle
image are the input image and mask used to derive new features and to train the model. The image from
the right is the segmentation of the RandomForest Classifier.

153

 The disadvantages of these methods are the high amount of training needed even
for the training of a single image, while the robustness of its results decreases as more
and more different images are added into the training set.

Pulse Coupled Neural Networks
For image segmentation, based on the iterative process, one possibility would be

to stop once a certain threshold is reached. In the algorithm we used, the iterations stop
when the number of pulses reaches the number of pixels in the image. This algorithm
attempts to synchronise each region and desynchronize adjacent regions. Similar pixel
values tend to fire synchronously and thus pixels of an object become correlated
temporally while pixels of distinct object anti-correlated [81]. Figure 5.10 presents the
image segmentation made by PCNN on a well.

Figure 5.10 – Image segmentation made by PCNN classic model, on the right is the input and on the left the
segmented image. It is able to discern the head of the fish from the rest of the image.

 The disadvantage of this method is that each image needs to be segmented by itself
and it may require more time than is available in real time processing. Moreover, the
method is only capable of distinguishing the head of the fish which limits the ability of
this method to detect the orientation or the position of its body.

Proposed method based on Convolutional Neural Networks
As mentioned previously, the original images provided by the camera are high-

resolution. Thus, the processing was reduced to that of a well and it was applied to all the
wells of the micro-plate. An example of a well, an image of 208x208, is shown in Figure
5.12. Classification requires labels, in order to increase its accuracy, the images were
labelled manually with three points.

As a first step of preprocessing, the labels have been transformed into masks
containing 4 classes. Using the three points provided by the manual labelling, three body
parts were defined in the image as circles of 5 pixels in diameter each with its own class,
while all other points in the mask were given the background class. An example of a mask
can be found in Figure 5.12, where each different colour represents a different class.

The model architecture used is a variation of U-Net. In contrast to the classical U-
Net, this model applies a single convolutional layer before maxpooling in the encoder
part, and a single transposed convolutional layer in the decoder part instead of applying
convolutional layers after the transpose. Thus, the model is formed out of two sub-
models: an encoder and a decoder. Several pre-trained encoder architectures
(MobileNetV2, EfficientNetB2) containing convolutional layers along with batch
normalisation and a ReLU activation have been tested. The encoder is based on transfer
learning and its layers have been frozen. Therefore, the learning of the image features is
done by the decoder. The decoder contains layers of concatenation receiving inputs from
the encoder’s corresponding-by-size layers. It includes layers of transposed convolution,
batch normalisation, dropout and ReLU activation. The architecture is shown in Figure

154

5.11, in order to reduce its size only the main blocks are presented, not all actual layers.
The network is provided with RGB images and the target which is a mask of the same size
with only 1 channel. The output of the network is an image of the same size with 4
channels, each channel containing the network's output for each class.

An essential observation is that the number of pixels for the body part classes are
extremely low when compared to the whole image, each body part class having under 1%
of the total number of pixels. Thus, weighting has to be added for these classes, in order
for the model to not fall into the local minima of predicting all pixels to be of the
background class. An example of a prediction is shown in image Figure 5.12, along with
the image and its true mask, while the loss and accuracy during training can be viewed in
Figure 5.13. It can be seen from this figure, that the loss decreases across epochs, and the
accuracy increases. The testing loss and accuracy values of 0.002 and 0.971, respectively,
indicate that the model is able to generalize and has not been overfitted. As mentioned
above, the network outputs an image with 4 channels. In order to transform it into a
singular output as is presented in the figure, postprocessing has to occur. In this case, for
each pixel in the mask, the class with the highest value of the four classes was chosen.

Figure 5.11 - Modified U-Net model architecture for Zebrafish Image Segmentation.

155

Figure 5.12 - The inputs of the proposed approach are presented in the left and middle images, while the
right is the output obtained.

Figure 5.13 - Loss (bottom) and accuracy (top) of the model throughout both training (left) and validation
(right).

 Although our proposed CNN-based approach was developed for the tracking of

zebrafish, it can also be used in the tracking of subjects for the previous direction

described in Section 5.1, where the subjects’ eyes need to be tracked in order to

determine whether they are able to see the changes in the environment. This is hardest

to do for animal subjects where they move their whole head, and the eyes leave the

traditional eye tracking systems. In cases like these, the proposed approach can be useful

to determine the exact position of parts of the head of subject in order to determine on

which part of the environment the animal subject was focused on. An example of how the

proposed approach would fare in such an endeavour is presented in Figure 5.14.

156

Figure 5.14 - The inputs of the proposed approach are presented in the left and middle images, while the
right is the output obtained.

5.2.3. Conclusions
 A CNN model is the most appropriate choice for a robust detection of zebrafish.
However, there exists no universally accepted method or metric to allow for the
evaluation of the performance of such a method.
 The manual labelling is required for the training of the model which is a tedious
and time-consuming procedure. The training itself takes hours upon hours even on a
high-performance unit. A model can be created to detect multiple zebrafish in the same
image however its robustness decreases and as such, a model for the detection of a single
zebrafish in a well was chosen.
 For the real-time processing of frames during recording, several models must be
created such that the workload is balanced among these. Another approach may be taken,
if there is not enough memory available, to choose when to apply the CNN model. One
possibility is to use the background subtraction method to decide when movement
occurred in one of the wells and only then apply the CNN to localise the zebrafish.

157

REFERENCES

1. Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.;
Anastassiou, C.A.; Andrei, A.; Aydın, Ç.; et al. Fully Integrated Silicon Probes for
High-Density Recording of Neural Activity. Nature 2017, 551, 232–236,
doi:10.1038/nature24636.

2. Rey, H.G.; Pedreira, C.; Quian Quiroga, R. Past, Present and Future of Spike Sorting
Techniques. Brain Res. Bull. 2015, 119, 106–117,
doi:10.1016/j.brainresbull.2015.04.007.

3. Mishra, S.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R.; Panda, S.;
Laishram, M. Principal Component Analysis. Int. J. Livest. Res. 2017, 1,
doi:10.5455/ijlr.20170415115235.

4. MacQueen, J. Some Methods for Classification and Analysis of Multivariate
Observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab. Vol. 1 Stat. 1967, 5.1,
281–298.

5. Diday, E.; Billard, L. Symbolic Data Analysis: Conceptual Statistics and Data Mining.
Symb. Data Anal. Concept. Stat. Data Min. 2006, doi:10.1002/9780470090183.

6. Hernández-Arteaga, E.; Ågmo, A. Seminatural Environments for Rodent Behavioral
Testing: A Representative Design Improving Animal Welfare and Enhancing
Replicability. Front. Behav. Neurosci. 2023, 17.

7. Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite,
R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal Numbers of Neuronal and
Nonneuronal Cells Make the Human Brain an Isometrically Scaled-up Primate
Brain. J. Comp. Neurol. 2009, 513, 532–541, doi:10.1002/cne.21974.

8. Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. Evolving Knowledge of Sex Differences in
Brain Structure, Function and Chemistry. Biol. Psychiatry 2007, 62, 847–855,
doi:10.1016/j.biopsych.2007.03.001.

9. Fundamental Neuroscience for Basic and Clinical Applications - 5th Edition
Available online: https://www.elsevier.com/books/fundamental-neuroscience-
for-basic-and-clinical-applications/9780323396325 (accessed on 2 March 2023).

10. Ej, F.; Cc, I.; L, L. The History of the Development of the Cerebellar Examination.
Semin. Neurol. 2002, 22, doi:10.1055/s-2002-36759.

11. Principles of Neuroanatomy: Angevine, Jay B., Cotman, Carl W.: 9780195028867:
Amazon.Com: Books Available online: https://www.amazon.com/Principles-
Neuroanatomy-Jay-B-Angevine/dp/0195028864 (accessed on 2 March 2023).

12. Saladin, K.S. Human Anatomy; 3rd Revised edition.; McGraw-Hill Medical
Publishing: New York, 2011; ISBN 978-0-07-122207-5.

13. Uhlhaas, P.J.; Haenschel, C.; Nikolić, D.; Singer, W. The Role of Oscillations and
Synchrony in Cortical Networks and Their Putative Relevance for the
Pathophysiology of Schizophrenia. Schizophr. Bull. 2008, 34, 927–943,
doi:10.1093/schbul/sbn062.

14. Herculano-Houzel, S. The Human Brain in Numbers: A Linearly Scaled-up Primate
Brain. Front. Hum. Neurosci. 2009, 3, 31, doi:10.3389/neuro.09.031.2009.

15. Sapolsky, R.M. Behave: The Biology of Humans at Our Best and Worst; Illustrated
edition.; Penguin Press: New York, New York, 2017; ISBN 978-1-59420-507-1.

16. Henson, K.T.; Eller, B.F. Educational Psychology for Effective Teaching; 2nd edition.;
Kendall Hunt Publishing, 2012; ISBN 978-0-7575-9680-3.

158

17. Bear, M.; Connors, B.; Paradiso, M. Neuroscience: Exploring the Brain: Fourth
Edition; 2015; p. 975;.

18. Cajal, S.R.Y. Comparative Study of the Sensory Areas of the Human Cortex; Andesite
Press, 2017; ISBN 978-1-375-77722-3.

19. Tao, H.W.; Poo, M. Retrograde Signaling at Central Synapses. Proc. Natl. Acad. Sci.
2001, 98, 11009–11015, doi:10.1073/pnas.191351698.

20. Carter, M.; Shieh, J. Chapter 4 - Electrophysiology. In Guide to Research Techniques
in Neuroscience (Second Edition); Carter, M., Shieh, J., Eds.; Academic Press: San
Diego, 2015; pp. 89–115 ISBN 978-0-12-800511-8.

21. Pedreira, C.; Martinez, J.; Ison, M.J.; Quian Quiroga, R. How Many Neurons Can We
See with Current Spike Sorting Algorithms? J. Neurosci. Methods 2012, 211, 58–65,
doi:10.1016/j.jneumeth.2012.07.010.

22. The Student’s Guide to Cognitive Neuroscience: 9781138490543: Medicine &
Health Science Books @ Amazon.Com Available online:
https://www.amazon.com/Students-Guide-Cognitive-
Neuroscience/dp/1138490547 (accessed on 25 February 2023).

23. Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Psychology
Press: New York, 2002; ISBN 978-1-4106-1240-3.

24. Langille, J.J.; Brown, R.E. The Synaptic Theory of Memory: A Historical Survey and
Reconciliation of Recent Opposition. Front. Syst. Neurosci. 2018, 12.

25. Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Für Psychiatr.
Nervenkrankh. 1929, 87, 527–570, doi:10.1007/BF01797193.

26. Buzsáki, G. Rhythms of the Brain; Oxford University Press: New York, 2006; ISBN
978-0-19-530106-9.

27. Buzsáki, G.; Draguhn, A. Neuronal Oscillations in Cortical Networks. Science 2004,
304, 1926–1929, doi:10.1126/science.1099745.

28. Mureşan, R.C.; Jurjuţ, O.F.; Moca, V.V.; Singer, W.; Nikolić, D. The Oscillation Score:
An Efficient Method for Estimating Oscillation Strength in Neuronal Activity. J.
Neurophysiol. 2008, 99, 1333–1353, doi:10.1152/jn.00772.2007.

29. Bazhenov, M.; Timofeev, I. Thalamocortical Oscillations. Scholarpedia 2006, 1,
1319, doi:10.4249/scholarpedia.1319.

30. Worden, M.S.; Foxe, J.J.; Wang, N.; Simpson, G.V. Anticipatory Biasing of Visuospatial
Attention Indexed by Retinotopically Specific Alpha-Band Electroencephalography
Increases over Occipital Cortex. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, RC63,
doi:10.1523/JNEUROSCI.20-06-j0002.2000.

31. Rodriguez, E.; George, N.; Lachaux, J.P.; Martinerie, J.; Renault, B.; Varela, F.J.
Perception’s Shadow: Long-Distance Synchronization of Human Brain Activity.
Nature 1999, 397, 430–433, doi:10.1038/17120.

32. Buzsáki, G.; Wang, X.-J. Mechanisms of Gamma Oscillations. Annu. Rev. Neurosci.
2012, 35, 203–225, doi:10.1146/annurev-neuro-062111-150444.

33. R, H. What Can Functional Neuroimaging Tell the Experimental Psychologist? Q. J.
Exp. Psychol. A 2005, 58, doi:10.1080/02724980443000502.

34. de Bock, R.; Mackintosh, A.J.; Maier, F.; Borgwardt, S.; Riecher-Rössler, A.; Andreou,
C. EEG Microstates as Biomarker for Psychosis in Ultra-High-Risk Patients. Transl.
Psychiatry 2020, 10, 1–9, doi:10.1038/s41398-020-00963-7.

159

35. Koenig, T.; Lehmann, D.; Merlo, M.C.G.; Kochi, K.; Hell, D.; Koukkou, M. A Deviant
EEG Brain Microstate in Acute, Neuroleptic-Naive Schizophrenics at Rest. Eur.
Arch. Psychiatry Clin. Neurosci. 1999, 249, 205–211, doi:10.1007/s004060050088.

36. Lalley, P.M.; Moschovakis, A.K.; Windhorst, U. Electrical Activity of Individual
Neurons in Situ: Extra- and Intracellular Recording. In Modern Techniques in
Neuroscience Research; Windhorst, U., Johansson, H., Eds.; Springer: Berlin,
Heidelberg, 1999; pp. 127–172 ISBN 978-3-642-58552-4.

37. Henze, D.A.; Borhegyi, Z.; Csicsvari, J.; Mamiya, A.; Harris, K.D.; Buzsáki, G.
Intracellular Features Predicted by Extracellular Recordings in the Hippocampus
in Vivo. J. Neurophysiol. 2000, 84, 390–400, doi:10.1152/jn.2000.84.1.390.

38. Mazzoni, A.; Logothetis, N.K.; Panzeri, S. The Information Content of Local Field
Potentials: Experiments and Models 2012.

39. Buzsáki, G. Large-Scale Recording of Neuronal Ensembles. Nat. Neurosci. 2004, 7,
446–451, doi:10.1038/nn1233.

40. Herreras, O. Local Field Potentials: Myths and Misunderstandings. Front. Neural
Circuits 2016, 10.

41. Sauer, I.; Doerr, C.; Schanze, T. Spike Sorting: The Overlapping Spikes Challenge.
Curr. Dir. Biomed. Eng. 2015, 1, 42–45, doi:10.1515/cdbme-2015-0011.

42. Gray, C.M.; Maldonado, P.E.; Wilson, M.; McNaughton, B. Tetrodes Markedly
Improve the Reliability and Yield of Multiple Single-Unit Isolation from Multi-Unit
Recordings in Cat Striate Cortex. J. Neurosci. Methods 1995, 63, 43–54,
doi:10.1016/0165-0270(95)00085-2.

43. Mokri, Y.; Salazar, R.F.; Goodell, B.; Baker, J.; Gray, C.M.; Yen, S.-C. Sorting
Overlapping Spike Waveforms from Electrode and Tetrode Recordings. Front.
Neuroinformatics 2017, 11.

44. Doerr, C.; Schanze, T. Are Heptodes Better than Tetrodes for Spike Sorting? IFAC-
Pap. 2015, 48, 94–99, doi:10.1016/j.ifacol.2015.10.121.

45. Pedreira, C.; Martinez, J.; Ison, M.J.; Quian Quiroga, R. How Many Neurons Can We
See with Current Spike Sorting Algorithms? J. Neurosci. Methods 2012, 211, 58–65,
doi:10.1016/j.jneumeth.2012.07.010.

46. Constant, I.; Sabourdin, N. The EEG Signal: A Window on the Cortical Brain Activity.
Paediatr. Anaesth. 2012, 22, 539–552, doi:10.1111/j.1460-9592.2012.03883.x.

47. Nunez, P.L. and Srinivasan, R. (1981) Electric Fields of the Brain The Neurophysics
of EEG. Oxford University Press, Oxford. - References - Scientific Research
Publishing Available online:
https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencesp
apers.aspx?referenceid=2560918 (accessed on 2 March 2023).

48. da Cruz, J.R.; Favrod, O.; Roinishvili, M.; Chkonia, E.; Brand, A.; Mohr, C.; Figueiredo,
P.; Herzog, M.H. EEG Microstates Are a Candidate Endophenotype for
Schizophrenia. Nat. Commun. 2020, 11, 3089, doi:10.1038/s41467-020-16914-1.

49. Baldi, P. Autoencoders, Unsupervised Learning, and Deep Architectures. In
Proceedings of the Proceedings of ICML Workshop on Unsupervised and Transfer
Learning; JMLR Workshop and Conference Proceedings, June 27 2012; pp. 37–49.

50. Pinaya, W.; Vieira, S.; Garcia-Dias, R.; Mechelli, A. Autoencoders. In; 2019; pp. 193–
208 ISBN 978-0-12-815739-8.

51. Wang, W.; Huang, Y.; Wang, Y.; Wang, L. Generalized Autoencoder: A Neural
Network Framework for Dimensionality Reduction. In Proceedings of the 2014

160

IEEE Conference on Computer Vision and Pattern Recognition Workshops; June
2014; pp. 496–503.

52. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural
Networks. Science 2006, 313, 504–507, doi:10.1126/science.1127647.

53. Wang, Y.; Yao, H.; Zhao, S. Auto-Encoder Based Dimensionality Reduction.
Neurocomputing 2016, 184, 232–242, doi:10.1016/j.neucom.2015.08.104.

54. Radmanesh, M.; Rezaei, A.A.; Jalili, M.; Hashemi, A.; Goudarzi, M.M. Online Spike
Sorting via Deep Contractive Autoencoder. Neural Netw. 2022,
doi:10.1016/j.neunet.2022.08.001.

55. Eom, J.; Park, I.Y.; Kim, S.; Jang, H.; Park, S.; Huh, Y.; Hwang, D. Deep-Learned Spike
Representations and Sorting via an Ensemble of Auto-Encoders. Neural Netw.
2021, 134, 131–142, doi:10.1016/j.neunet.2020.11.009.

56. Nguyen, P.-M. Analysis of Feature Learning in Weight-Tied Autoencoders via the
Mean Field Lens 2021.

57. Sagheer, A.; Kotb, M. Unsupervised Pre-Training of a Deep LSTM-Based Stacked
Autoencoder for Multivariate Time Series Forecasting Problems. Sci. Rep. 2019, 9,
19038, doi:10.1038/s41598-019-55320-6.

58. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9,
1735–1780, doi:10.1162/neco.1997.9.8.1735.

59. Wang, W.; Yang, D.; Chen, F.; Pang, Y.; Huang, S.; Ge, Y. Clustering With Orthogonal
AutoEncoder. IEEE Access 2019, 7, 62421–62432,
doi:10.1109/ACCESS.2019.2916030.

60. Rifai, S.; Vincent, P.; Muller, X.; Glorot, X.; Bengio, Y. Contractive Auto-Encoders:
Explicit Invariance During Feature Extraction. 8.

61. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;
Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the
Advances in Neural Information Processing Systems; Curran Associates, Inc., 2014;
Vol. 27.

62. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks 2016.

63. Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks 2017.
64. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Illustrated edition.; The MIT

Press: Cambridge, Massachusetts, 2016; ISBN 978-0-262-03561-3.
65. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets 2014.
66. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional

Adversarial Networks 2018.
67. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second Edition; 2nd edition.; Springer: New York,
NY, 2016; ISBN 978-0-387-84857-0.

68. Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. Unrolled Generative Adversarial
Networks 2017.

69. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN 2017.
70. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training

of Wasserstein GANs 2017.
71. Li, K.; Malik, J. Implicit Maximum Likelihood Estimation 2018.
72. Kohonen, T. Self-Organized Formation of Topologically Correct Feature Maps. Biol.

Cybern. 1982, 43, 59–69, doi:10.1007/BF00337288.

161

73. Kohonen, T.; Honkela, T. Kohonen Network. Scholarpedia 2007, 2, 1568,
doi:10.4249/scholarpedia.1568.

74. Ponmalai, R.; Kamath, C. Self-Organizing Maps and Their Applications to Data
Analysis; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States),
2019;

75. Liu, Y.; Weisberg, R.H.; Mooers, C.N.K. Performance Evaluation of the Self-
Organizing Map for Feature Extraction. J. Geophys. Res. Oceans 2006, 111,
doi:10.1029/2005JC003117.

76. Wendel, J.; Buttenfield, B.P. Formalizing Guidelines for Building Meaningful Self-
Organizing Maps. 6.

77. Akinduko, A.A.; Mirkes, E.M. Initialization of Self-Organizing Maps: Principal
Components Versus Random Initialization. A Case Study 2012.

78. Pölzlbauer, G. Survey and Comparison of Quality Measures for Self-Organizing
Maps. Proc. Fifth Workshop Data Anal. WDA04 2004.

79. Samsonova, E.V.; Bäck, T.; Kok, J.N.; IJzerman, A.P. Reliable Hierarchical Clustering
with the Self-Organizing Map. In Proceedings of the Advances in Intelligent Data
Analysis VI; Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A., Eds.; Springer:
Berlin, Heidelberg, 2005; pp. 385–396.

80. Vesanto, J.; Alhoniemi, E. Clustering of the Self-Organizing Map. IEEE Trans. Neural
Netw. 2000, 11, 586–600, doi:10.1109/72.846731.

81. Zhan, K.; Shi, J.; Wang, H.; Yuange, X.; Li, Q. Computational Mechanisms of Pulse-
Coupled Neural Networks: A Comprehensive Review. Arch. Comput. Methods Eng.
2017, 24, 573–588, doi:10.1007/s11831-016-9182-3.

82. Nie, R.; He, M.; Cao, J.; Zhou, D.; Liang, Z. Pulse Coupled Neural Network Based MRI
Image Enhancement Using Classical Visual Receptive Field for Smarter Mobile
Healthcare. J. Ambient Intell. Humaniz. Comput. 2019, 10, doi:10.1007/s12652-
018-1098-3.

83. Harris, M.A.; Van, A.N.; Malik, B.H.; Jabbour, J.M.; Maitland, K.C. A Pulse Coupled
Neural Network Segmentation Algorithm for Reflectance Confocal Images of
Epithelial Tissue. PLOS ONE 2015, 10, e0122368,
doi:10.1371/journal.pone.0122368.

84. Mureşan, R.C. Pattern Recognition Using Pulse-Coupled Neural Networks and
Discrete Fourier Transforms. Neurocomputing 2003, 51, 487–493,
doi:10.1016/S0925-2312(02)00727-0.

85. Lian, J.; Yang, Z.; Liu, J.; Sun, W.; Zheng, L.; Du, X.; Yi, Z.; Shi, B.; Ma, Y. An Overview
of Image Segmentation Based on Pulse-Coupled Neural Network. Arch. Comput.
Methods Eng. 2019, 28, doi:10.1007/s11831-019-09381-5.

86. Tao, Z.; Tang, X.; Zhang, B.; Tang, P.; Tan, Y. Image Segmentation Based on PCNN
Model. In Proceedings of the 2014 11th International Computer Conference on
Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP);
December 2014; pp. 230–233.

87. Vignesh, T.; Thyagharajan, K.K.; Balaji, L.; Kalaiarasi, G. Implementation and
Performance Analysis of Various Models of PCNN for Medical Image Segmentation.
In Proceedings of the Intelligent Computing and Innovation on Data Science; Peng,
S.-L., Hsieh, S.-Y., Gopalakrishnan, S., Duraisamy, B., Eds.; Springer: Singapore, 2021;
pp. 73–84.

162

88. Lindblad, T.; Kinser, J.M. Image Processing Using Pulse-Coupled Neural Networks;
Perspectives in Neural Computing; Springer: London, 1998; ISBN 978-3-540-
76264-5.

89. Kulkarni, A.; Chong, D.; Batarseh, F.A. 5 - Foundations of Data Imbalance and
Solutions for a Data Democracy. In Data Democracy; Batarseh, F.A., Yang, R., Eds.;
Academic Press, 2020; pp. 83–106 ISBN 978-0-12-818366-3.

90. Weiss, G.M. Mining with Rarity: A Unifying Framework.
91. Wegier, W.; Ksieniewicz, P. Application of Imbalanced Data Classification Quality

Metrics as Weighting Methods of the Ensemble Data Stream Classification
Algorithms. Entropy Basel Switz. 2020, 22, E849, doi:10.3390/e22080849.

92. Sun, Y.; Wong, A.K.C.; Kamel, M.S. Classification of Imbalanced Data: A Review. Int.
J. Pattern Recognit. Artif. Intell. 2009, 23, 687–719,
doi:10.1142/S0218001409007326.

93. Joshi, M.V.; Kumar, V.; Agarwal, R.C. Evaluating Boosting Algorithms to Classify Rare
Classes: Comparison and Improvements. In Proceedings of the Proceedings 2001
IEEE International Conference on Data Mining; November 2001; pp. 257–264.

94. Lyons, R. Understanding Digital Signal Processing; 3rd edition.; Pearson: Upper
Saddle River, NJ, 2010; ISBN 978-0-13-702741-5.

95. Moca, V.V.; Bârzan, H.; Nagy-Dăbâcan, A.; Mureșan, R.C. Time-Frequency Super-
Resolution with Superlets. Nat. Commun. 2021, 12, 337, doi:10.1038/s41467-020-
20539-9.

96. Buzsáki, G.; Anastassiou, C.A.; Koch, C. The Origin of Extracellular Fields and
Currents — EEG, ECoG, LFP and Spikes. Nat. Rev. Neurosci. 2012, 13, 407–420,
doi:10.1038/nrn3241.

97. Toosi, R.; Akhaee, M.A.; Dehaqani, M.-R.A. An Automatic Spike Sorting Algorithm
Based on Adaptive Spike Detection and a Mixture of Skew-t Distributions. Sci. Rep.
2021, 11, 13925, doi:10.1038/s41598-021-93088-w.

98. Yael, D.; Bar-Gad, I. Filter Based Phase Distortions in Extracellular Spikes. PLoS ONE
2017, 12, e0174790, doi:10.1371/journal.pone.0174790.

99. Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised Spike Detection and Sorting
with Wavelets and Superparamagnetic Clustering. Neural Comput. 2004, 16, 1661–
1687, doi:10.1162/089976604774201631.

100. Lewicki, M.S. A Review of Methods for Spike Sorting: The Detection and
Classification of Neural Action Potentials. Netw. Bristol Engl. 1998, 9, R53-78.

101. Quiroga, R.Q. Spike Sorting. Scholarpedia 2007, 2, 3583,
doi:10.4249/scholarpedia.3583.

102. Borsos, Z.; Lemnaru, C.; Potolea, R. Dealing with Overlap and Imbalance: A New
Metric and Approach. Pattern Anal. Appl. 2018, 21, 381–395, doi:10.1007/s10044-
016-0583-6.

103. Laboy-Juárez, K.J.; Ahn, S.; Feldman, D.E. A Normalized Template Matching Method
for Improving Spike Detection in Extracellular Voltage Recordings. Sci. Rep. 2019,
9, 12087, doi:10.1038/s41598-019-48456-y.

104. Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent
Developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202,
doi:10.1098/rsta.2015.0202.

163

105. Glaser, E.M.; Marks, W.B. ON-LINE SEPARATION OF INTERLEAVED NEURONAL
PULSE SEQUENCES. In Data Acquisition and Processing in Biology and Medicine;
Enslein, K., Ed.; Pergamon, 1968; pp. 137–156 ISBN 978-0-08-003543-7.

106. Abeles, M.; Goldstein, M.H. Multispike Train Analysis. Proc. IEEE 1977, 65, 762–773,
doi:10.1109/PROC.1977.10559.

107. Adamos, D.A.; Kosmidis, E.K.; Theophilidis, G. Performance Evaluation of PCA-
Based Spike Sorting Algorithms. Comput. Methods Programs Biomed. 2008, 91,
232–244, doi:10.1016/j.cmpb.2008.04.011.

108. Hyvärinen, A. Independent Component Analysis: Recent Advances. Philos. Transact.
A Math. Phys. Eng. Sci. 2013, 371, 20110534, doi:10.1098/rsta.2011.0534.

109. Lopes, M.V.; Aguiar, E.; Santana, E.; Santana, E.; Barros, A.K. ICA Feature Extraction
for Spike Sorting of Single-Channel Records. In Proceedings of the 2013 ISSNIP
Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and
Safer Living (BRC); February 2013; pp. 1–5.

110. Tiganj, Z.; Mboup, M. Neural Spike Sorting Using Iterative ICA and a Deflation-Based
Approach. J. Neural Eng. 2012, 9, 066002, doi:10.1088/1741-2560/9/6/066002.

111. Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear Discriminant Analysis: A
Detailed Tutorial. Ai Commun. 2017, 30, 169-190, doi:10.3233/AIC-170729.

112. Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science 2000, 290, 2319–2323,
doi:10.1126/science.290.5500.2319.

113. Zhou, H.; Wang, F.; Tao, P. T-Distributed Stochastic Neighbor Embedding Method
with the Least Information Loss for Macromolecular Simulations. J. Chem. Theory
Comput. 2018, 14, 5499–5510, doi:10.1021/acs.jctc.8b00652.

114. Dasgupta, S. The Hardness of K-Means Clustering.
115. Veerabhadrappa, R.; Ul Hassan, M.; Zhang, J.; Bhatti, A. Compatibility Evaluation of

Clustering Algorithms for Contemporary Extracellular Neural Spike Sorting. Front.
Syst. Neurosci. 2020, 14.

116. MacQueen, J. Some Methods for Classification and Analysis of Multivariate
Observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab. Vol. 1 Stat. 1967, 5.1,
281–298.

117. Salganicoff, M.; Sarna, M.; Sax, L.; Gerstein, G.L. Unsupervised Waveform
Classification for Multi-Neuron Recordings: A Real-Time, Software-Based System.
I. Algorithms and Implementation. J. Neurosci. Methods 1988, 25, 181–187,
doi:10.1016/0165-0270(88)90132-x.

118. Caro-Martín, C.R.; Delgado-García, J.M.; Gruart, A.; Sánchez-Campusano, R. Spike
Sorting Based on Shape, Phase, and Distribution Features, and K-TOPS Clustering
with Validity and Error Indices. Sci. Rep. 2018, 8, 17796, doi:10.1038/s41598-018-
35491-4.

119. Pachitariu, M.; Steinmetz, N.; Kadir, S.; Carandini, M.; D, H.K. Kilosort: Realtime
Spike-Sorting for Extracellular Electrophysiology with Hundreds of Channels 2016,
061481.

120. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The Fuzzy c-Means Clustering Algorithm.
Comput. Geosci. 1984, 10, 191–203, doi:10.1016/0098-3004(84)90020-7.

121. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In Proceedings of the Proceedings

164

of the Second International Conference on Knowledge Discovery and Data Mining;
AAAI Press: Portland, Oregon, August 2 1996; pp. 226–231.

122. Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on
Hierarchical Density Estimates. In Proceedings of the Advances in Knowledge
Discovery and Data Mining; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.;
Springer: Berlin, Heidelberg, 2013; pp. 160–172.

123. Ackermann, M.R.; Blömer, J.; Kuntze, D.; Sohler, C. Analysis of Agglomerative
Clustering. Algorithmica 2014, 69, 184–215, doi:10.1007/s00453-012-9717-4.

124. Carreira-Perpiñán, M.Á. A Review of Mean-Shift Algorithms for Clustering 2015.
125. Cheng, Y. Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Anal. Mach.

Intell. 1995, 17, 790–799, doi:10.1109/34.400568.
126. Magland, J.F.; Barnett, A.H. Unimodal Clustering Using Isotonic Regression: ISO-

SPLIT 2016.
127. Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal.

Mach. Intell. 2000, 22, 888–905, doi:10.1109/34.868688.
128. von Luxburg, U. A Tutorial on Spectral Clustering 2007.
129. Steinley, D. Properties of the Hubert-Arable Adjusted Rand Index. Psychol. Methods

2004, 9, 386–396, doi:10.1037/1082-989X.9.3.386.
130. Hubert, L.; Arabie, P. Comparing Partitions. J. Classif. 1985, 2, 193–218,

doi:10.1007/BF01908075.
131. Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings

Comparison: Variants, Properties, Normalization and Correction for Chance. 18.
132. Santos, J.; Embrechts, M. On the Use of the Adjusted Rand Index as a Metric for

Evaluating Supervised Classification.; September 14 2009; Vol. 2009, pp. 175–184.
133. Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings

Comparison: Variants, Properties, Normalization and Correction for Chance. 18.
134. Strehl, A.; Ghosh, J. Cluster Ensembles --- A Knowledge Reuse Framework for

Combining Multiple Partitions. J. Mach. Learn. Res. 2002, 3, 583–617.
135. Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings

Comparison: Is a Correction for Chance Necessary? In Proceedings of the
Proceedings of the 26th Annual International Conference on Machine Learning;
Association for Computing Machinery: New York, NY, USA, June 14 2009; pp. 1073–
1080.

136. Lazarenko, D.; Bonald, T. Pairwise Adjusted Mutual Information 2021.
137. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval;

Illustrated edition.; Cambridge University Press: New York, 2008; ISBN 978-0-521-
86571-5.

138. Rendón, E.; Abundez, I.; Arizmendi, A.; Quiroz, E.M. Internal versus External Cluster
Validation Indexes. 2011, 5, 8.

139. Fowlkes, E.B.; Mallows, C.L. A Method for Comparing Two Hierarchical Clusterings.
J. Am. Stat. Assoc. 1983, 78, 553–569, doi:10.2307/2288117.

140. Rosenberg, A.; Hirschberg, J. V-Measure: A Conditional Entropy-Based External
Cluster Evaluation Measure.; January 1 2007; pp. 410–420.

141. Caliński, T.; JA, H. A Dendrite Method for Cluster Analysis. Commun. Stat. - Theory
Methods 1974, 3, 1–27, doi:10.1080/03610927408827101.

142. Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On Clustering Validation Techniques. J.
Intell. Inf. Syst. 2001, 17, 107–145, doi:10.1023/A:1012801612483.

165

143. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal.
Mach. Intell. 1979, PAMI-1, 224–227, doi:10.1109/TPAMI.1979.4766909.

144. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65, doi:10.1016/0377-
0427(87)90125-7.

145. Yger, P.; Spampinato, G.L.; Esposito, E.; Lefebvre, B.; Deny, S.; Gardella, C.; Stimberg,
M.; Jetter, F.; Zeck, G.; Picaud, S.; et al. A Spike Sorting Toolbox for up to Thousands
of Electrodes Validated with Ground Truth Recordings in Vitro and in Vivo. eLife
2018, 7, e34518, doi:10.7554/eLife.34518.

146. Bakkum, D.; Radivojevic, M.; Frey, U.; Franke, F.; Hierlemann, A.; Takahashi, H.
Parameters for Burst Detection. Front. Comput. Neurosci. 2014, 7.

147. Hennig, M.H.; Grady, J.; van Coppenhagen, J.; Sernagor, E. Age-Dependent
Homeostatic Plasticity of GABAergic Signaling in Developing Retinal Networks. J.
Neurosci. Off. J. Soc. Neurosci. 2011, 31, 12159–12164,
doi:10.1523/JNEUROSCI.3112-11.2011.

148. Kirillov, A. NeuroExplorer Manual.
149. Kapucu, F.E.; Tanskanen, J.; Mikkonen, J.; Ylä-Outinen, L.; Narkilahti, S.; Hyttinen, J.

Burst Analysis Tool for Developing Neuronal Networks Exhibiting Highly Varying
Action Potential Dynamics. Front. Comput. Neurosci. 2012, 6.

150. Gourévitch, B.; Eggermont, J.J. A Nonparametric Approach for Detection of Bursts
in Spike Trains. J. Neurosci. Methods 2007, 160, 349–358,
doi:10.1016/j.jneumeth.2006.09.024.

151. Legéndy, C.R.; Salcman, M. Bursts and Recurrences of Bursts in the Spike Trains of
Spontaneously Active Striate Cortex Neurons. J. Neurophysiol. 1985, 53, 926–939,
doi:10.1152/jn.1985.53.4.926.

152. Jurjuţ, O.F.; Nikolić, D.; Pipa, G.; Singer, W.; Metzler, D.; Mureşan, R.C. A Color-Based
Visualization Technique for Multielectrode Spike Trains. J. Neurophysiol. 2009, 102,
3766–3778, doi:10.1152/jn.00758.2009.

153. Neymotin, S.A.; Tal, I.; Barczak, A.; O’Connell, M.N.; McGinnis, T.; Markowitz, N.;
Espinal, E.; Griffith, E.; Anwar, H.; Dura-Bernal, S.; et al. Detecting Spontaneous
Neural Oscillation Events in Primate Auditory Cortex. eNeuro 2022, 9,
ENEURO.0281-21.2022, doi:10.1523/ENEURO.0281-21.2022.

154. Subakan, C.; Smaragdis, P. Generative Adversarial Source Separation.
ArXiv171010779 Cs Stat 2017.

155. Ardelean, E.-R.; Coporîie, A.; Ichim, A.-M.; Dînșoreanu, M.; Mureșan, R.C. A Study of
Autoencoders as a Feature Extraction Technique for Spike Sorting. PLOS ONE 2023,
18, e0282810, doi:10.1371/journal.pone.0282810.

156. Dwork, C.; Kumar, R.; Naor, M.; Sivakumar, D. Rank Aggregation Methods for the
Web. In Proceedings of the Proceedings of the 10th international conference on
World Wide Web; Association for Computing Machinery: New York, NY, USA, April
1 2001; pp. 613–622.

157. Mureșan, D.B.; Ciure, R.-D.; Ardelean, E.R.; Moca, V.V.; Mureșan, R.C.; Dînș, M. Spike
Sorting Using Superlets: Evaluation of a Novel Feature Space for the Discrimination
of Neuronal Spikes. In Proceedings of the 2022 IEEE 18th International Conference
on Intelligent Computer Communication and Processing (ICCP); September 2022;
pp. 229–235.

166

158. Ardelean, E.-R.; Terec, R.-D.; Marieş, C.-M.; Moca, V.V.; Mureşan, R.C.; Dînşoreanu,
M. Spike Sorting Using Superlets: Identifying Feature Importance through
Perturbation. In Proceedings of the 2023 IEEE 19th International Conference on
Intelligent Computer Communication and Processing (ICCP); October 2023; pp.
357–362.

159. İncetaş, M.O. Image Interpolation Based on Spiking Neural Network Model. Appl.
Sci. 2023, 13, 2438, doi:10.3390/app13042438.

160. Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and
Interpretation. Anesth. Analg. 2018, 126, 1763,
doi:10.1213/ANE.0000000000002864.

161. Mitchell, J.F.; Sundberg, K.A.; Reynolds, J.H. Differential Attention-Dependent
Response Modulation across Cell Classes in Macaque Visual Area V4. Neuron 2007,
55, 131–141, doi:10.1016/j.neuron.2007.06.018.

162. Ardelean, E.-R.; Grosu, G.F.; Terebeş, R.; Dînşoreanu, M. Exploiting the Self-
Organizing Map for Spike Sorting. In Proceedings of the 2023 IEEE 19th
International Conference on Intelligent Computer Communication and Processing
(ICCP); October 2023; pp. 363–369.

163. Ardelean, E.-R.; Stanciu, A.; Dinsoreanu, M.; Potolea, R.; Lemnaru, C.; Moca, V.V.
Space Breakdown Method A New Approach for Density-Based Clustering. In
Proceedings of the 2019 IEEE 15th International Conference on Intelligent
Computer Communication and Processing (ICCP); September 2019; pp. 419–425.

164. Ardelean, E.-R.; Ichim, A.-M.; Dînşoreanu, M.; Mureşan, R.C. Improved Space
Breakdown Method – A Robust Clustering Technique for Spike Sorting. Front.
Comput. Neurosci. 2023, 17.

165. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in
Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

166. Zeldenrust, F.; Wadman, W.J.; Englitz, B. Neural Coding With Bursts—Current State
and Future Perspectives. Front. Comput. Neurosci. 2018, 12.

167. Ardelean, A.-I.; Ardelean, E.-R.; Moca, V.V.; Mureşan, R.C.; Dînşoreanu, M. Burst
Detection in Neuronal Activity. In Proceedings of the 2023 IEEE 19th International
Conference on Intelligent Computer Communication and Processing (ICCP);
October 2023; pp. 349–356.

168. Cotterill, E.; Eglen, S.J. Burst Detection Methods. Adv. Neurobiol. 2019, 22, 185–206,
doi:10.1007/978-3-030-11135-9_8.

169. Moca, V.V.; Ţincaş, I.; Melloni, L.; Mureşan, R.C. Visual Exploration and Object
Recognition by Lattice Deformation. PLOS ONE 2011, 6, e22831,
doi:10.1371/journal.pone.0022831.

170. Moisa, O.M.; Pop, I.; Ardelean, E.-R.; Moca, V.V.; Mureşan, R.C.; Dînşoreanu, M.
Symbolic Analysis Based Pipeline for EEG Data. In Proceedings of the 2023 IEEE
19th International Conference on Intelligent Computer Communication and
Processing (ICCP); October 2023; pp. 371–378.

171. Wang, X.-J. Neurophysiological and Computational Principles of Cortical Rhythms
in Cognition. Physiol. Rev. 2010, 90, 1195–1268, doi:10.1152/physrev.00035.2008.

172. Bârzan, H.; Ichim, A.-M.; Moca, V.V.; Mureşan, R.C. Time-Frequency Representations
of Brain Oscillations: Which One Is Better? Front. Neuroinformatics 2022, 16.

167

173. Tal, I.; Neymotin, S.; Bickel, S.; Lakatos, P.; Schroeder, C.E. Oscillatory Bursting as a
Mechanism for Temporal Coupling and Information Coding. Front. Comput.
Neurosci. 2020, 14.

174. Berger, H. Ueber Das Elektrenkephalogramm Des Menschen. J. Für Psychol. Neurol.
1930, 40, 160–179.

175. Ardelean, E.-R.; Bârzan, H.; Ichim, A.-M.; Mureşan, R.C.; Moca, V.V. Sharp Detection
of Oscillation Packets in Rich Time-Frequency Representations of Neural Signals.
Front. Hum. Neurosci. 2023, 17.

176. Rahi, J.S.; Logan, S.; Borja, M.C.; Timms, C.; Russell-Eggitt, I.; Taylor, D. Prediction of
Improved Vision in the Amblyopic Eye after Visual Loss in the Non-Amblyopic Eye.
Lancet Lond. Engl. 2002, 360, 621–622, doi:10.1016/S0140-6736(02)09775-1.

177. Brin, T.A.; Xu, Z.; Zhou, Y.; Feng, L.; Li, J.; Thompson, B. Amblyopia Is Associated with
Impaired Balance in 3–6-Year-Old Children in China. Front. Neurosci. 2022, 16.

178. Fu, Z.; Hong, H.; Su, Z.; Lou, B.; Pan, C.-W.; Liu, H. Global Prevalence of Amblyopia
and Disease Burden Projections through 2040: A Systematic Review and Meta-
Analysis. Br. J. Ophthalmol. 2020, 104, 1164–1170, doi:10.1136/bjophthalmol-
2019-314759.

179. Leek, M.R. Adaptive Procedures in Psychophysical Research. Percept. Psychophys.
2001, 63, 1279–1292, doi:10.3758/bf03194543.

180. Watson, A.B.; Pelli, D.G. Quest: A Bayesian Adaptive Psychometric Method. Percept.
Psychophys. 1983, 33, 113–120, doi:10.3758/BF03202828.

181. Watson, A.B. QUEST+: A General Multidimensional Bayesian Adaptive
Psychometric Method. J. Vis. 2017, 17, 10, doi:10.1167/17.3.10.

182. Farahbakhsh, M.; Dekker, T.M.; Jones, P.R. Psychophysics with Children: Evaluating
the Use of Maximum Likelihood Estimators in Children Aged 4–15 Years (QUEST+).
J. Vis. 2019, 19, 22, doi:10.1167/19.6.22.

183. Jones, P.R.; Kalwarowsky, S.; Braddick, O.J.; Atkinson, J.; Nardini, M. Optimizing the
Rapid Measurement of Detection Thresholds in Infants. J. Vis. 2015, 15, 2,
doi:10.1167/15.11.2.

184. Mihaylova, M.S.; Hristov, I.; Racheva, K.; Totev, T.; Mitov, D. Effect of Extending
Grating Length and Width on Human Visually Evoked Potentials. Acta Neurobiol.
Exp. (Warsz.) 2015, 75, 293–304.

185. Rosén, R.; Lundström, L.; Venkataraman, A.P.; Winter, S.; Unsbo, P. Quick Contrast
Sensitivity Measurements in the Periphery. J. Vis. 2014, 14, 3, doi:10.1167/14.8.3.

186. Fero, K.; Yokogawa, T.; Burgess, H.A. The Behavioral Repertoire of Larval Zebrafish.
In Zebrafish Models in Neurobehavioral Research; Kalueff, A.V., Cachat, J.M., Eds.;
Neuromethods; Humana Press: Totowa, NJ, 2011; pp. 249–291 ISBN 978-1-60761-
922-2.

187. Joo, W.; Vivian, M.D.; Graham, B.J.; Soucy, E.R.; Thyme, S.B. A Customizable Low-Cost
System for Massively Parallel Zebrafish Behavioral Phenotyping. Front. Behav.
Neurosci. 2021, 14.

188. Sun, M.; Li, W.; Jiao, Z.; Zhao, X. A Multi-Target Tracking Platform for Zebrafish
Based on Deep Neural Network. In Proceedings of the 2019 IEEE 9th Annual
International Conference on CYBER Technology in Automation, Control, and
Intelligent Systems (CYBER); July 2019; pp. 637–642.

168

189. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale
Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition; June 2009; pp. 248–255.

190. Huh, M.; Agrawal, P.; Efros, A.A. What Makes ImageNet Good for Transfer Learning?
ArXiv160808614 Cs 2016.

191. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition.
ArXiv151203385 Cs 2015.

192. Kebir, A.; Taibi, M.; Serradilla, F. Compressed VGG16 Auto-Encoder for Road
Segmentation from Aerial Images with Few Data Training Available online:
https://www.semanticscholar.org/paper/Compressed-VGG16-Auto-Encoder-for-
Road-Segmentation-Kebir-
Taibi/a368f5fe2745e4b854197d0350a8316f82518312 (accessed on 31 January
2022).

193. Zhang, R.; Du, L.; Xiao, Q.; Liu, J. Comparison of Backbones for Semantic
Segmentation Network.; 2020.

194. Sultana, F.; Sufian, A.; Dutta, P. Evolution of Image Segmentation Using Deep
Convolutional Neural Network: A Survey. Knowl.-Based Syst. 2020, 201–202,
106062, doi:10.1016/j.knosys.2020.106062.

195. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical
Image Segmentation. ArXiv150504597 Cs 2015.

196. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep
Learning. J. Big Data 2019, 6, 60, doi:10.1186/s40537-019-0197-0.

197. Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge,
M. DeepLabCut: Markerless Pose Estimation of User-Defined Body Parts with Deep
Learning. Nat. Neurosci. 2018, 21, 1281–1289, doi:10.1038/s41593-018-0209-y.

198. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. ArXiv190511946 Cs Stat 2020.

199. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive
Survey on Support Vector Machine Classification: Applications, Challenges and
Trends. Neurocomputing 2020, 408, 189–215, doi:10.1016/j.neucom.2019.10.118.

200. Schroff, F.; Criminisi, A.; Zisserman, A. Object Class Segmentation Using Random
Forests. In Proceedings of the Procedings of the British Machine Vision Conference
2008; British Machine Vision Association: Leeds, 2008; p. 54.1-54.10.

169

170

APPENDICES

List of figures
Figure 2.1 - The human brain from a lateral perspective presenting the coarse grouping

into lobes. The image was taken from Wikimedia Commons (public domain) and adapted.

 ... 6

Figure 2.2 - One of Cajal’s drawings of neurons using the Golgi staining technique from

1899 [17,18]... 8

Figure 2.3 - The neuron and its main parts. The cell body, or soma, contains the organelles

of the cells, while the axon and dendrites connect the neuron, by forming synapses, to

other neurons. The image was taken from Wikimedia Commons (public domain) and

adapted. ... 9

Figure 2.4 - The action potential and its structure. The time course of the membrane

potential during the spiking of a neuron and various terminology used that determine its

parts. The image was taken and adapted from Wikimedia Commons (public domain). The

left and right panels present synonyms that are used within this domain. 10

Figure 2.5 - Particularities of action potentials on different types of recordings (left,

extracellular from TINS and right, intracellular from [21]). ... 11

Figure 2.6 - The synapse and its inner workings. The image was taken and adapted from

Wikimedia Commons (public domain). ... 13

Figure 2.7 - Neuron circuitry. The image was taken from Wikimedia Commons (public

domain) and adapted. .. 14

Figure 2.8 - Looping in neuron circuitry. The image was taken from Wikimedia Commons

(public domain) and adapted. ... 15

Figure 2.9 - Raw signal filtering resulting in Local Field Potentials and/or Spiking Activity.

 ... 20

Figure 2.10 - A simple diagram of the perceptron, where w indicates the weights, b the

bias, and f the activation function. ... 24

Figure 2.11 - A simple example of an autoencoder architecture. .. 25

Figure 2.12 - A simple diagram of the Generator model inputs and outputs. 27

Figure 2.13 - A simple diagram of the Discriminator model inputs and outputs. 28

Figure 2.14 - The interaction between the Generator and Discriminator models creating

the GAN. ... 28

Figure 2.15 - The flow of the PCNN model. .. 34

Figure 2.16 - Time vs Frequency Domain. The red trace is the sum of the light blue

sinusoidals. The image was taken from Wikimedia Commons (public domain). 37

Figure 2.17 – The spike sorting pipeline [2]. ... 41

Figure 2.18 – An example of feature extraction process. Spikes produced by three distinct

neurons produce separable features in the PCA space. .. 45

Figure 2.19 - An illustration of clustering on simple data. ... 47

Figure 3.1 - (Left) Synthetic spikes of one neuron model show that even though some

variability exists, they are very similar. (Right) Each synthetic spike is from taken

171

randomly from all spikes of a different neuron model showing that there is a high amount

of variability between the spikes of different neuron models. .. 63

Figure 3.2 - The influence of spike alignment on feature extraction through PCA on

synthetic data. Panel A shows the unaligned spikes on the left and the result of feature

extraction on the right, the colours represent the ground truth, it is clearly visible that

unaligned spikes created a feature space in which the white cluster is fragmented. Panel

B shows the aligned spikes on left and the result of PCA on the right, in this case clusters

are not fragmented. ... 64

Figure 3.3 - The proposed architecture. At the top a GAN component is shown having as

input a random vector, called Hash, and an output, the generated signal. The source signal

separation architecture uses two GANs, one that generates each type of source. In this

case, the two sources are spikes and noise. This architecture attempts to generate by

iterative updates, the two sources that estimate as well as possible the original signal. 67

Figure 3.4 - Loss and accuracy of GAN training.. 68

Figure 3.5 - Signals produced by the Generator model trained on the FFT signal of spikes.

 ... 69

Figure 3.6 - The inverse Fourier Transform of the signals produced by the Generator

model shown in Figure 3.5. .. 69

Figure 3.7 - A spike and its Fourier transform. .. 70

Figure 3.8 - Separation of a signal into spike and noise compared with the original signal

with no preprocessing before insertion in the training of the GAN. .. 70

Figure 3.9 - Separation of a signal into spike and noise compared with the original signal

when the signal was preprocessed using Fourier Transform before insertion in the

training of the GAN. ... 70

Figure 3.10 - Generation of drowned signals by changing to the signal-to-noise ratio. ... 71

Figure 3.11 - Performance evaluations of spike detection using GANs with a specifically

designed dataset of half spikes and half noise on training data. Each plot shows the

performance from the perspective of a different metric. Lines in plots indicate the method

used to detect spikes, whether it is the proposed approach, or the threshold based on the

standard deviation. The x-axis indicates the SNR applied to the dataset. 72

Figure 3.12 - Performance evaluations on the training data of spike detection using GANs

on a synthetic dataset with a low percentage of spike windows in comparison with noise

examples. ... 73

Figure 3.13 - Performance evaluations on the training data of Spike Detection using GANs

on a synthetic dataset with a low percentage of spike windows in comparison with noise,

with an increased number of training iterations. .. 73

Figure 3.14 - Training data of the classifier: (A) extracellular spikes, (B) noise. The spikes

and the noise segments were extracted from the M022 real dataset...................................... 75

Figure 3.15 - Loss and accuracy of the classifier during training on the M022 real dataset.

 ... 75

Figure 3.16 - The left side shows histograms of the distributions of spike amplitudes,

while the right side shows the spike shapes. The top represents spikes found by the

amplitude thresholding approach, the middle shows spikes found by the classifier

approach and the bottom shows the sum of the two approaches. ... 76

172

Figure 3.17 - PCA analysis of spikes found by amplitude thresholding (red), new spikes

found by classifier (blue), and noise (white). ... 77

Figure 3.18 - General architecture of an AE. .. 78

Figure 3.19 - Feature extraction of the Sim4 dataset containing 5 clusters, the colour

coding shown represents the ground truth. .. 80

Figure 3.20 - Evaluation of performance for all approaches applied on all 95 synthetic

simulations with regard to each performance metric. .. 81

Figure 3.21 - Feature extraction methods applied on the M045-C17 real dataset; colours

indicate the labels obtained through K-Means. .. 83

Figure 3.22 - Feature extraction using the Superlet Transform and PCA on the Sim8

synthetic dataset with various values for the cycles parameter (c=1.5, left and c=3, right).

 ... 84

Figure 3.23 - Feature extraction using the Superlet Transform and PCA on the Sim8

synthetic dataset with various values for the order parameter (o=5, left and o=15, right).

 ... 85

Figure 3.24 - Spectrogram of a cluster from a simulated dataset (Sim8) with varying

values for the parameters. The left image shows the best precision with c=1.5 and o=2,

the minimum values. The middle image has a high order value resulting in a high

frequency precision, while the right image has a high cycle value resulting in a high

temporal precision. ... 85

Figure 3.25 - Evolution of loss and performance metrics (accuracy and F1 score, they are

overlapped) during training of the Sim79 dataset with 21 clusters. 87

Figure 3.26 - The flow of the correlated feature set perturbation pipeline. 89

Figure 3.27 - Average spikes and their corresponding spectrograms for 3 different

clusters (neurons) of a M045-C4. .. 89

Figure 3.28 - An example of a correlation matrix obtained from M045-C4 real dataset after

the downsampling of spectrograms through bicubic interpolation. 90

Figure 3.29 - Perturbation matrix showing the effect of perturbation on the learning of a

neural network on each feature. .. 90

Figure 3.30 - Bicubic interpolation for upsampling to obtain original size. 91

Figure 3.31 - Superlet parameterization impact on a single cluster of spikes from the

M045-C4 real dataset, where the heatmap values represent the power values of the

spectrogram. .. 92

Figure 3.32 - Superlet parameterization impact on the drop in performance, where the

values of the heatmap represent the change in performance given by the perturbation of

each characteristic at those positions [158]. ... 92

Figure 3.33 - Plot of the quantization and topographic errors during the SOM training

across 1000 iterations on the Sim4 synthetic dataset. .. 94

Figure 3.34 - (Left) Result of SOM on the Sim4 synthetic labelled dataset, each colour

represents a different cluster in the ground truth. (Right) Plot of distance matrix obtained

by the SOM from the training on the Sim4 dataset. .. 95

Figure 3.35 - (Left) The resulted U-matrix from SOM training based on the Sim11

synthetic dataset plotted as an image of higher and lower distances denoted by pixel

intensity levels, marking the spatial structure of the clusters given by the organisation of

173

the SOM network. (Right) A plot of the resulted U-matrix obtained from the SOM training

on the Sim11 synthetic dataset, with the addition of the corresponding ground truth as

overlaid annotations over the U-matrix. Each annotation (the individual combinations of

colour and shape) represents a distinct cluster. .. 95

Figure 3.36 - Example of resulted U-matrix local maxima-based segmentation on the same

data as in Figure 2. (Left) The computed local maxima with binary closing overlaid as red

pixels over the afferent U-matrix. (Right) The label annotations for the resulting clusters

determined by the U-matrix local maxima separation method. .. 96

Figure 3.37 - (Left) The ground truth clusters labels mapped to the corresponding data

projected in a 2D space by the PCA method. (Right) The resulted clusters’ labels mapped

to the same corresponding data projected in the PCA-based 2D space. 97

Figure 3.38 - A comparison of all methods on Sim11, on the left side, each clustering

method with PCA is presented, while on the right side with Isomap, the result of the

proposed approach can be found as the last panel. .. 98

Figure 3.39 - A comparison of the chunkification step of SBM and ISBM, the space

presented is already normalised as the first step of the algorithms in the [0,5) interval.

Every cell in the grid shown contains a number in the lower-left representing the value

of the chunk in both SBM and ISBM chunkification. The difference appears in the final

structure, while SBM saves the whole array, ISBM only retains the values that are

encircled, where circles represent the nodes and the lines the edges of the final graph

structure. .. 102

Figure 3.40 - (a). Simulation 4 (Sim4), a synthetic dataset with its ground truth (b). The

clustering of K-Means on the dataset (c). The clustering of DBSCAN on the dataset (d). The

result of MeanShift on the Sim4 dataset (e). The clustering of Agglomerative Clustering

on the Sim4 dataset (g). The clustering of HDBSCAN on the dataset (f). The clustering of

FCM on the dataset (h). The clustering of ISO-SPLIT on the dataset (i). The clustering of

the original version of SBM on the dataset (j). The clustering of the improved SBM (ISBM)

on the dataset. .. 105

Figure 3.41 – The M045-C1 real dataset that has been cleaned and filtered and recorded

from the brain of a mouse (a). Ground truth generated through K-Means (b). The

clustering of K-Means on the dataset (c). The clustering of DBSCAN on the dataset (d). The

result of MeanShift on the Sim4 dataset (e). The clustering of Agglomerative Clustering

on the Sim4 dataset (g). The clustering of HDBSCAN on the dataset (f). The clustering of

FCM on the dataset (h). The clustering of ISO-SPLIT on the dataset (i). The clustering of

the original version of SBM on the dataset (j). The clustering of the improved SBM (ISBM)

on the dataset. .. 106

Figure 3.42 - Types of bursts, each subplot shows a different type of simulated data [168]

indicated by the label on the left of each subplot. The data is composed of timestamps and

as such 1s indicate activity and 0s no activity. .. 110

Figure 3.43 - Spectrogram of a burst candidate, extracted from the M029-C23 real dataset

by the proposed method, containing three sub-spikes. ... 112

Figure 3.44 - True positive percentage (indicated on the y-axis labels), each subplot

shows the evaluation on the percentage of true positives (ranging from 0 to 1) found in a

174

specified data type (indicated by the subtitle) by each method (indicated on x-axis labels)

on the benchmark synthetic burst data. .. 114

Figure 3.45 - False positive percentage (indicated on the y-axis labels), each subplot

shows the evaluation on the percentage of false positives (ranging from 0 to 1) found in

a specified data type (indicated by the subtitle) by each method (indicated on x-axis

labels) on the benchmark synthetic burst data. .. 114

Figure 3.46 - Burst candidate extracted from the M029-C23 real dataset by the MI [148]

burst detection method (left) and the proposed method (right), the blue line represents

the signal, the red dots show the peaks of spikes, and the dashed red line represents the

amplitude threshold used in the detection of spikes. ... 115

Figure 3.47 - The left panel shows a comparison between the correlation PDF between

intra-burst sub-spikes of a single channel versus the burst sub-spikes and tonic spiking

activity for the proposed method, the right panel shows the same analysis for the MI [148]

method with the suggested parametrization. .. 116

Figure 3.48 - The left panel shows the correlation PDF of intra-burst sub-spikes of a single

channel for each of the methods, the right panel shows the correlation PDF between burst

sub-spikes and the tonic spiking activity of a single channel. ... 116

Figure 3.49 - The left panel shows a comparison between the correlation PDF between

burst sub-spikes of a single channel versus the burst sub-spikes of distant channels for

the proposed method, the right panel shows the same analysis for the MI [148] method

with the suggested parametrization. ... 117

Figure 3.50 - The left panel shows the correlation PDF of all burst sub-spikes against each

other of a single channel for each of the methods, the right panel shows the correlation

PDF between burst sub-spikes of two different distant channels. .. 117

Figure 4.1 - Several ways of visualisation of the distance map: scatter plot (left), voxel plot

(middle), and volume slice plot (right). ... 121

Figure 4.2 - Scatter plot with the clusters obtained from the clustering of the EEG data.

 .. 122

Figure 4.3 - The process of colour assignment of a sample. ... 122

Figure 4.4 - Left-alignment of colour sequences of the "Certain" (left), "Uncertain"

(middle) and "Nothing" (right) responses of subjects. .. 123

Figure 4.5 - Left-alignment of colour sequences of the “Certain” response of subjects. 124

Figure 4.6 - Windowed colour sequences of the “Certain” response of subjects with left-

alignment (on the left) and with right-alignment (on the right). ... 124

Figure 4.7 - Example of PSI with left-alignment for subject’s response: “Certain”,

highlighting the most meaningful patterns. ... 126

Figure 4.8 - PTA for a subset of trial in the subgroup “Certain”, pattern (0.1, 0.9, 0.9) on

channel D23 (left) and the Average PTA for subgroup ‘Certain’, pattern: (0.1, 0.9, 0.9) on

channel D23 (right). ... 127

Figure 4.9 - PSTH of pattern (0.1, 0.0, 0.0) for subject’s response: “Uncertain”. 127

Figure 4.10 - The segmentation algorithms and the ROI matching metric. (A) The TFBM

algorithm begins from the peaks of the TFR, and it expands until a conflict point (grey

circle) or a point that satisfies the border condition (grey squares) is reached. Conflicts

are resolved by assigning the conflicting points to one of the regions of interest (ROIs) or

175

by merging the conflicting ROIs into a larger ROI, represented by dotted lines. Peaks

below the threshold (thin grey line) are not considered as seed points for ROI expansion.

(B) TFPF algorithm, which slices through the TFR from the highest power down to the

threshold (grey line). ROIs, represented by dotted lines, expand as the slice level is

lowered. When ROIs merge (thick grey line), the smaller peak is merged into the larger

one. The algorithm stops at the threshold, and points below the threshold are not

considered. (C) the matching metric between two ROIs is illustrated in the left pane. The

right pane shows the best matching ROI (green) overlapping with the target ROI (red).

The grey ROI has a lower match value to the target than the best matching ROI. 131

Figure 4.11 - Thresholding and rejection of low amplitude peaks of the TFR of a single-

trial mouse LFP. (A) All local maxima of the TFR. (B) Only local maxima that are above

the threshold, which is determined according to the method described in panel C. All

power values below the threshold have been set to 0 to emphasise the low threshold

while retaining the dynamic range of the TFR. (C) The power distribution in the TFR. The

top panel shows the highly skewed distribution of the power values of all local maxima.

The cumulative distribution shown in the bottom panel is used to set the threshold,

covering 90% of all power values, which corresponds to less than 10% of the maximum

power. The power values in the TFR have been scaled to the interval 0-100 for easier

interpretation. .. 131

Figure 4.12 – A summarised comparation between the SBM and TFBM algorithms. 133

Figure 4.13 - Comparison of the segmentation provided by each algorithm. The

algorithms are shown by columns: TFBM (left), TFPF (middle), and OEvents (right) on

various single-trial TFRs computed with superlets on each row. The boundaries of the

detected ROIs are depicted in black, and the bounding boxes are shown in red. White dots

indicate the local maxima, while grey dots indicate the sub-peaks. (A) The TFR

corresponds to a series of generated atoms in the gamma frequency range (20-55Hz)

embedded in uniform noise. (B) The TFR corresponds to a wide frequency range (0-

100Hz) from a single-trial LFP recording in the mouse visual cortex, stimulated with

drifting gratings. (C) The TFR corresponds to a single-trial EEG with a rich spectrum

covering the alpha, beta, and low gamma frequency bands. (D) Shows the segmentations

of a zoomed-in area of the data from panel C. ... 135

Figure 4.14 - A comparison of the segmentation of the TFBM, TFPF, and OEvents

algorithms in terms of detection performance by SNR. Stars indicate significance levels,

highlighting statistical differences. (A) The match between the ground truth (a generated

atom introduced randomly in the data) and the detected packets is evaluated using the

matching error of rectangular bounding boxes. The top panel displays the bounding-box

detection errors, which improve with increasing SNR. The second panel shows the time

errors, while the third panel presents the frequency errors. The bottom panel illustrates

the percentage of missed atoms. (B) These panels have the same arrangement as those

of panel A. Here, TFBM and TFPF are evaluated using fine-grained regions of interest

(ROIs) represented by contours, instead of rectangular bounding boxes. 137

Figure 4.15 - A comparison of the detection algorithms performance for different

background types and time-frequency representations. The detection performance of

atoms within an EEG background is depicted in (A). The upper panes display the box

176

match error, while the bottom panes show the percentage of missed packets for three

TFRs: SLT on the left, CWT in the centre, and STFT on the right. To facilitate comparison,

the left panes in (A) recapitulate the top and bottom panes in Figure 4.15A. In (B) and

(C), the identical evaluation is presented for backgrounds of pink and brown noise,

respectively. .. 138

Figure 5.1 - Configuration file for the CSF experiment. .. 143

Figure 5.2 - Gabor patches with the varying contrasts and spatial frequencies used in the

experiment... 144

Figure 5.3 - Contrast sensitivity evaluation system configured for 3 monitors; two Gabor

stimuli can be observed with an orientation of 0 degrees. ... 145

Figure 5.4 - Predictive Ability Assessment System. ... 146

Figure 5.5 - Example of a feline subject for a first setup for the testing of the environment.

 .. 146

Figure 5.6 - Configuration file for the Predictive Ability Assessment experiment. 147

Figure 5.7 - Inference of a ResNet model through DeepLabCut ... 151

Figure 5.8 – Inference of a trained SVM model for image segmentation. The left and middle

image are the input image and mask used to derive new features and to train the model

and the right is the segmentation of SVM. ... 152

Figure 5.9 – Inference of a trained RandomForest Classifier for image segmentation. The

left and middle image are the input image and mask used to derive new features and to

train the model. The image from the right is the segmentation of the RandomForest

Classifier. .. 152

Figure 5.10 – Image segmentation made by PCNN classic model, on the right is the input

and on the left the segmented image. It is able to discern the head of the fish from the rest

of the image. .. 153

Figure 5.11 - Modified U-Net model architecture for Zebrafish Image Segmentation. .. 154

Figure 5.12 - The inputs of the proposed approach are presented in the left and middle

images, while the right is the output obtained. ... 155

Figure 5.13 - Loss (bottom) and accuracy (top) of the model throughout both training

(left) and validation (right). .. 155

Figure 5.14 - The inputs of the proposed approach are presented in the left and middle

images, while the right is the output obtained. ... 156

177

List of tables
Table 2.1 – A descriptive summary of various brain recording techniques. 19

Table 2.2 - Explanation of the Confusion Matrix [89]. ... 34

Table 2.3 - A descriptive summary of various clustering methods. ... 47

Table 2.4 – A descriptive summary of various clustering performance metrics. 50

Table 3.1 - Architecture of the Generator and Discriminator in the GAN. 68

Table 3.2 - Architecture of the classifier. .. 74

Table 3.3 - Alignment impact on the performance evaluation for PCA and AE on the Sim4

synthetic dataset. ... 79

Table 3.4 - Performance of different values of the number of epochs for the training

process on the Sim4 synthetic dataset. ... 79

Table 3.5 - Performance of different values of learning rates for the training process on

the Sim4 synthetic dataset [155]. .. 79

Table 3.6 - Evaluation of feature extraction methods on Sim4 containing 5 clusters. 80

Table 3.7 - Approaches ranked using the Borda ranking system with regard to each metric

after applying them on all 95 synthetic simulations. ... 81

Table 3.8 - Performance analysis of all feature extraction methods on the M045-C17 real

dataset. ... 82

Table 3.9 - Performance evaluation of Superlets features. .. 85

Table 3.10 - Evaluation of the neural network’s learning from superlet features. 86

Table 3.11 - Comparative analysis between performance metrics applied to multiple

channels with different thresholds on real data. ... 92

Table 3.12 - Comparative analysis between the performance metrics, applied to Superlet

of orders 1, 2 and 5 on the M045-C17 real dataset. .. 93

Table 3.13 - Comparison through multiple metrics of various clustering algorithms

combined with PCA or Isomap against the proposed method on the Sim9 synthetic

dataset. ... 98

Table 3.14 - Comparison through multiple metrics of various clustering algorithms

combined with PCA or Isomap against the proposed method on the Sim10 synthetic

dataset. ... 99

Table 3.15 - Comparison through multiple metrics of various clustering algorithms

combined with PCA or Isomap against the proposed method on the Sim11 synthetic

dataset. ... 99

Table 3.16 - Comparison through multiple metrics of various clustering algorithms

combined with PCA or Isomap against the proposed method on the Sim12 synthetic

dataset. ... 99

Table 3.17 - Evaluation of the number of chunks/nodes by varying the PN parameter on

the Sim4 synthetic dataset. ... 103

Table 3.18 - Evaluation of the execution time (in milliseconds) for 100 runs for the

number of dimensions on the Sim4 dataset using PCA to reduce dimensionality to the

chosen values. ... 103

Table 3.19 - Evaluation of the execution time (in milliseconds) for 100 runs by varying

the number of samples.. 103

178

Table 3.20 - Evaluation of clustering algorithms using various performance metrics on

Sim4. ... 105

Table 3.21 - Evaluation of clustering algorithms using various performance metrics on

M045-C1. .. 107

179

List of abbreviations
AE Autoencoder

AMI Adjusted Mutual Information

ANN Artificial Neural Network

ARI Adjusted Rand Index

BFS Breadth-First Search

BMU Best-Matching Unit

CHS Calinski-Harabasz Score

CMA Cumulative Moving Average

CNN Convolutional Neural Network

CNS Central Nervous System

CSF Contrast Sensitivity Function

DBS Davies-Bouldin Score

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DFT Discrete Fourier Transform

DI Direction Index

DLC DeepLabCut

DOA Depth of Anaesthesia

ED Edging Distance

ETA Event Triggered Average

EEG Electroencephalography

FCM Fuzzy C-Means

FMI Fowlkes-Mallows Index

FE Feature Extraction

FN False Negative

FP False Positive

FT Fourier Transform

GFP Global Field Power

HDBSCAN Hierarchical DBSCAN

IBI Inter-Burst Interval

ICA Independent Component Analysis

IRT ISI Rank Threshold

ISBM Improved Space Breakdown Method

ISI Inter-Spike Interval

LDA Linear Discriminant Analysis

LFP Local Field Potential

LTP Long-Term Potentiation

LSTM Long Short-Term Memory

MEA Multi-Electrode Array

MER Microelectrode Recording

MEG Magnetoencephalography

MI Max Interval

MI Mutual Information

180

ML Machine Learning

MS Mean Shift

MSE Mean Squared Error

MUA Multi-Unit Activity

NN Neural Network

OI Orientation Index

PCA Principal Component Analysis

PCNN Pulse-Coupled Neural Network

PDF Probability Density Function

PS Poisson Surprise

PSI Pattern Specificity Index

PSTH Peri-Stimulus Time Histogram

PTA Pattern Triggered Average

QE Quantization Error

RF Random Forest

RI Rand Index

RNN Recurrent Neural Network

ROI Region of Interest

RS Rank Surprise

SBM Space Breakdown Method

SCS Spike Cluster Score

SD Standard Deviation

SL Superlet

SLT Superlet Transform

SOM Self-Organizing Map

SS Silhouette Score

SVM Support Vector Machine

STFT Short-Time Fourier Transform

TE Topographic Error

TFR Time-Frequency Representation

TMS Transcranial Magnetic Stimulation

TN True Negative

TP True Positive

T-SNE t-Distributed Stochastic Neighbour Embedding

VM V-Measure

181

Glossary

Biology

Axon - Slender projection of a neuron that conducts electrical impulses away from the cell

body as a way to transmit information. It can be interpreted as the output of the system.

Cortex - Outermost layer of the brain shown to have a key role in higher cognitive

functions such as perception, memory, language, and decision-making. It has a thickness

of 1.5 to 4.5 millimetres, and it contains most of the neuronal cell bodies conferring it the

name 'grey matter'.

Dendrite - Branched extension of a neuron that receives information in the form of

electrical impulses from other neurons. It can be interpreted as the input of the system.

Gyrus - Ridge on the surface of the brain, together with the sulci they enhance the surface

area.

Interneuron - A type of neuron that acts as a connector, relaying inhibitory signals within

the nervous system.

Neurotransmitter - A chemical messenger released by neurons that transmits signals

across synapses by binding to the receptors of connected neurons, facilitating

communication between nerve cells by producing changes in the target neuron.

Pyramidal cell - A type of neuron with a pyramid-shaped cell body and an elongated axon

that plays a crucial role in transmitting excitatory signals within the nervous system.

Sulcus - Furrow on the surface of the brain, together with the gyri they enhance the

surface area.

Synapse - Gap between nerve cells through which information is transmitted in the form

of electrical or chemical signals, enabling communication within the nervous system.

Computer science, machine learning

Artificial neural network (ANN/NN) - A biologically-inspired computational model based

on the structure and function of the human brain. It consists of interconnected nodes

(called neurons) organised in layers to process and learn from a set of given examples.

Classification - Data analysis technique that assigns objects to predefined categories

based on their characteristics, enabling organisation and analysis of information.

Clustering - Data analysis technique that groups similar items together based on certain

characteristics, enabling the identification of patterns and structures within the data.

Feature Extraction - Data analysis technique that uses the relevant and informative

characteristics from raw data to transform them, simplifying complex information and

facilitating more efficient analysis or modelling.

Symbolic Analysis - Data analysis technique that converts data into symbols (discrete

representations), allowing for the exploration and extraction of meaningful patterns,

relationships, or structures within the data from a more manageable format.

Electrophysiology

Action potential or spike - A rapid electrical impulse travelling along a neuron's axon,

facilitating the transmission of information between neurons and enabling

182

communication within the nervous system. A spike occurs when the membrane voltage

surpasses a certain threshold (-55 mV) and rapidly rises to positive values (+20 mV)

followed by a return to the resting potential (-65 mV).

Burst - A pattern of rapid and repetitive firing of action potentials by a neuron, followed

by a period of relative quiescence. It can play a role in transmitting information and

synchronising network activity within the nervous system.

Depolarization - A process where the neuron's membrane potential becomes less

negative, thus coming closer to the voltage threshold and increasing the likelihood of

generating an action potential.

Electroencephalography (EEG) - Non-invasive extracranial technique for the recording

and measurement of the electrical activity of the brain through electrodes placed on the

scalp.

Hyperpolarization - A process where the neuron's membrane potential becomes more

negative (typically lower than the resting potential), reducing the likelihood of generating

an action potential and thus temporarily inhibiting the production of other action

potentials.

Local field potential (LFP) - Intracranial measurement of electrical activity generated by

groups of (thousands of) neurons near the recording electrode, giving insights into the

collective behaviour and communication of neurons in a specific brain region.

Refractory period - A short time interval after an action potential during which a neuron

cannot generate another action potential.

Resting membrane potential - The stable electrical charge across a neuron's membrane

when it is not transmitting signals, maintaining its readiness to generate an action

potential. Typically, the resting membrane potential voltage is within -65 to -80 mV.

Signal processing

Spectrogram – a two-dimensional visual representation of the power of a signal over a

time interval and in a certain frequency range. It can be created through various time-

frequency analysis methods such as the Wavelet Transform or the Fourier Transform.

Superlet Transform (SLT) - A time‑frequency analysis method and it has been shown to

provide a better time‑frequency resolution than the Short-Time Fourier Transform or the

Continuous Wavelet Transform.

Miscellaneous

Amblyopia - Vision disorder that occurs in early childhood, commonly known as "lazy

eye". It manifests as reduced vision in one eye that cannot be fully corrected with glasses

or contact lenses, even with no structural damage to the eye.

Brain oscillations - Rhythmic patterns of electrical activity produced by the synchronous

firing of neurons. It plays a fundamental role in communication and coordination among

different brain regions, and it has been shown to have a role in cognitive processes such

as attention, memory, and perception.

Spike sorting - Neuroscientific process where the action potentials recorded from

multiple neurons are separated and grouped into individual units or spikes. It allows

researchers to study the activity of different neurons within a neural population.

	Computational Methods for Brain Signal Analysisduring Perception and Behaviour
	PREFACE
	TABLE OF CONTENTS
	1. Introduction
	2. Domain knowledge
	2.1. Neuroscience domain knowledge
	2.1.1. The brain
	2.1.2. Brain complexity
	2.1.3. Brain oscillations
	2.1.4 Brain recording techniques

	2.2. Computer science domain knowledge
	2.2.1. Architectures of artificial neural networks
	2.2.2. Machine learning approaches
	2.2.3. Signal processing

	2.3. Neuroscience and computer science
	2.3.1. Spike sorting
	2.3.2. Burst detection
	2.3.3. Symbolic Analysis
	2.3.4. Detection of oscillations

	3. Methods for brain activity identification
	3.1. Data analysis in spike sorting
	3.1.1. Introduction
	3.1.2. Data
	3.1.3. Methods
	3.1.3.1. Enhancing spike detection through neural networks
	3.1.3.2. Autoencoders in spike sorting
	3.1.3.3. The Superlet Transform in spike sorting. Evaluation of the superlet features
	3.1.3.4. The Superlet Transform in spike sorting. Identifying superlet feature importance through perturbation
	3.1.3.5. A Self-Organizing Map approach for spike sorting
	3.1.3.6. Space Breakdown Method
	3.1.3.7. Improved Space Breakdown Method

	3.1.4. Conclusions

	3.2 Burst detection
	3.2.1. Introduction
	3.2.2. Data
	3.2.3. Methods
	3.2.4. Conclusions

	4. Methods for brain activity characterisation
	4.1. Symbolic analysis
	4.1.1. Introduction
	4.1.2. Data
	4.1.3. Methods
	4.1.4. Conclusions

	4.2. Detection of oscillation packets
	4.2.1. Introduction
	4.2.2. Data
	4.2.3. Methods
	4.2.4. Conclusions

	5. From brain activity to behaviour
	5.1. Experimental environment development for behaviour quantification
	5.1.1. Introduction
	5.1.2. Methods
	5.1.3. Conclusions

	5.2. Behaviour quantification through tracking
	5.2.1. Introduction
	5.2.2. Methods
	5.2.3. Conclusions

	REFERENCES
	APPENDICES
	List of abbreviations
	Glossary

