
Alexandru Codrean
Paula Raica

UTPRESS
Cluj-Napoca, 2024

ISBN 978-606-737-721-7

Systems 
theory
Exercise handbook



Alexandru CODREAN Paula RAICA

Systems Theory
Exercise Handbook

UTPRESS
Cluj-Napoca, 2024

ISBN 978-606-737-721-7



Editura U.T.PRESS
Str. Observatorului, nr. 34
400775 Cluj-Napoca
Tel: 0264-401 999
e-mail: utpress@biblio.utcluj.ro
biblioteca.utcluj.ro/editura

Recenzia: Prof.dr.ing. Zsófia Lendek
Prof.dr.ing. Petru Dobra

Pregătire format electronic on-line: Gabriela Groza

Copyright © 2024 Editura U.T.PRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această 
carte este posibilă numai cu acordul prealabil scris al editurii U.T.PRESS.

 ISBN 978-606-737-721-7



Contents

1 Modeling with differential and difference equations 1
1.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Input-Output models 14
2.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 State-space models 23
3.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Time response 31
4.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Stability analysis 43
5.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Root Locus 49
6.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Frequency Response 61
7.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Output feedback control 75
8.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 State Feedback 91
9.1 Solved exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.2 Proposed exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Laplace and Z-transform 104
A.1 Table of Laplace and Z-transforms . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 Properties of the Laplace transform . . . . . . . . . . . . . . . . . . . . . . . 105
A.3 Properties of the Z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ii



iii

B Rules for sketching Bode plots 106

Bibliography 107



1 Modeling with differential
and difference equations

Topics: mathematical modeling, systems linearization, numerical simulation.

1.1 Solved exercises
SE 1.1 Consider the nonlinear model of the Van der Pol oscillator:

d2x(t)
dt2 + (1 − x(t)2)dx(t)

dt
+ x(t) = 0 (1.1)

or

ẍ(t) + (1 − x(t)2)ẋ(t) + x(t) = 0 (1.2)

(a) Determine a linear approximation of the Van der Pol equation around the equilibrium
point x0 = 0, ẋ0 = 0, ẍ0 = 0.

(b) Compare the numerical solution of the linearized system with that of the original
nonlinear system for a time interval of t ∈ [0, 14]. Start with the initial conditions
x(0) = 0.001 and ẋ(0) = 0.

Solution:
(a) According to the nonlinear Van der Pol equation, for ẋ0 = 0 and ẍ0 = 0 we obtain

x0 = 0.
Use the first-order truncated Taylor series approximation for a function of n variables:
y = g(x1, x2, ..., xn) around a point x0 = (x10, x20, ..., xn0):

y = g(x10, x20, ..., xn0) + ∂g

∂x1
|x0 · (x1 − x10) + ... + ∂g

∂xn
|x0 · (xn − xn0)

For the Taylor series approximation in case of a differential equation, consider
x1 = x(t), x2 = ẋ(t) and x3 = ẍ(t) and the nonlinear function g is the left hand side
of the nonlinear Van der Pol equation. We obtain:

g(x, ẋ, ẍ) = g(0, 0, 0)+ ∂g

∂x
|(0,0,0)(x(t)−0)+ ∂g

∂ẋ
|(0,0,0)(ẋ(t)−0)+ ∂g

∂ẍ
|(0,0,0)(ẍ(t)−0)

or

g(x, ẋ, ẍ) = 0 + (−2xẋ + 1)|(0,0,0)(x − 0) + (1 − x2)|(0,0,0)(ẋ − 0) + 1 · (ẍ − 0)

g(x, ẋ, ẍ) = 0 + ∆x + ∆ẋ + ∆ẍ = 0
where:

∆x = x(t) − x0 = x(t) − 0
∆ẋ = ẋ(t) − ẋ0 = ẋ(t) − 0
∆ẍ = ẍ(t) − ẍ0 = ẍ(t) − 0

1



2 Chapter 1. Modeling with differential and difference equations

The equation:

∆x + ∆ẋ + ∆ẍ = 0 or x(t) + ẋ(t) + ẍ(t) = 0 (1.3)

is linear and homogeneous.
(b) We will now obtain the numerical solution using MATLAB1 and compare it with the

solution of the nonlinear Van der Pol equation. Consider the nonlinear Van der Pol
equation (1.2). We will bring the nonlinear second order differential equation to a
state space form by defining the state variables: x1(t) = x(t) and x2(t) = ẋ(t) = ẋ1(t).
Therefore, ẋ2(t) = ẍ(t), and we obtain the nonlinear state space model:

{
ẋ1(t) = x2(t)
ẋ2(t) = −(1 − x1(t)2)x2(t) − x1(t) (1.4)

With the same procedure, the linear approximation (1.3) will be written as:{
ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) − x2(t) (1.5)

The initial conditions in both cases are: x1(0) = 0.001 and x2(0) = 0.
MATLAB will compute the numerical solution of a system of first-order differential
equations with the functions ode23, ode45, ode15s and others (see MATLAB help for
details). The solver will use a user-defined function that describes the right hand side
of the system. For example, the system (1.4) will be written as a MATLAB function
fnonlin.m:

Listing 1.1: fnonlin.m
1 function f=fnonlin(t,x)
2 f=[x(2); =(1=x(1)^2)*x(2)=x(1)];

The system (1.5) will be written as a MATLAB function flin.m:

Listing 1.2: flin.m
1 function f=flin(t,x)
2 f=[x(2); =x(1)=x(2)];

A main program that solves and compares the solution of (1.4) and (1.5) may look
like:

Listing 1.3: VDP_main_script.m
1 close all %close all graphic windows
2 clear all %clear all variables
3
4 x0=[0.001;0]; % set the initial conditions
5
6 [tn,xn]=ode23(@fnonlin,[0 14], x0); %solve the nonlinear equation
7 [tl,xl]=ode23(@flin,[0 14], x0); %solve the linear equation
8
9 plot(tn, xn(:,1), 'b=', tl, xl(:,1), 'r*'), grid on % solution x_1(t)

10 xlabel('t'), ylabel('x_1'), title('Solution x_1(t)')
11 legend('x_1 in VDP nonlinear', 'x_1 in VDP linear')
12
13 figure, plot(tn, xn(:,2), 'b=', tl, xl(:,2), 'r*'), grid on % solution x_2(t)
14 xlabel('t'), ylabel('x_2'), title('Solution x_2(t)')
15 legend('x_2 in VDP nonlinear', 'x_2 in VDP linear')

1MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
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The ode23 function has at least three input arguments:
@fnonlin: function handle that evaluates the right side of the differential
equation
[0 14]: A vector specifying the interval of integration: [initial_time final_time]
x0: a vector of initial conditions

The function will return the output arguments:
tn: a column vector of time points between the initial time and final time
xn: the solution array. Each column in xn corresponds to the solution at a time
returned in the corresponding row of tn.

The initial conditions chosen in this example are very close to 0, thus the approxima-
tion should be very accurate.
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Figure 1.1: Solutions of the linearized and nonlinear VDP equation

+ Modify the initial conditions to x1(0) = 0.5 or x1(0) = 1 and comment
the results.

SE 1.2 Magnetic levitation (MagLev), trains are nowadays a promising solution for transportation.
They get propulsion force from linear motors and use electromagnets for the suspension
system. Two main types of levitation technologies ([22]) will be discussed in this problem:
(I) electromagnetic suspension (EMS), that uses magnetic attractive force to levitate

(Figure 1.2),
(II) electrodynamic suspension (EDS), that uses magnetic repulsive force for levitation

(Figure 1.3).
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G=mg
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Figure 1.2: Electromagnetic suspension
(magnetic attraction)
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Guideway
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Figure 1.3: Electrodynamic suspension
(magnetic repulsion)
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The levitation force FL depends on the current i(t) in the levitation coils and the air
gap z(t) and may be approximated by, [9]:

FL(t) = k · i2(t)
z2(t)

where k is a constant. This force is opposed by the gravitational force G = mg, where m
is the mass of the train and g - the acceleration of gravity.

At equilibrium, the train levitates on an air gap of 1 cm.
Consider the following constants for the model:

Operating air gap z0 = 10−2 m

Mass of the train m = 104 kg

Levitatation force constant k = 10−3 Nm2/A2

Acceleration of gravity g = 10 m/s2

(a) Determine the nonlinear models of the systems for the levitation system, i.e. the
nonlinear relationship between the input current i(t) and the air gap z(t) in both
cases.

(b) Obtain a linear approximation of the models around the equilibrium condition, in
both cases.

Solution:
(a) In both cases, the dynamical levitation system has the input i(t) - the current

through the levitation coils and the output z(t) - the air gap between the train and
the guideway (see Figure 1.4).

Levitation system
i(t) z(t)

air gapcurrent

Figure 1.4: The levitation system: input - current, output - air gap

A model for this system, or a relationship between i(t) and z(t), can be obtained
from the differential equations describing the vertical movement of the train as:

mass × acceleration =
∑

forces

where acceleration refers to the acceleration of the vertical movement obtained as the
second derivative of z(t). Considering the orientation of forces and the coordinate
system for each case as presented in Figures 1.2 and 1.3, we obtain the following
nonlinear models:
(I) EMS:

mz̈(t) = mg − k
i2(t)
z2(t) (1.6)

(II) EDS:

mz̈(t) = k
i2(t)
z2(t) − mg (1.7)

(b) In order to obtain a linear approximation of the models, we have to obtain first
the equilibrium conditions. If the train is at equilibrium for the nominal levitation
distance z0 = 10−2m, the acceleration is zero z̈0 = 0. The equilibrium current i0 can
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be determined by replacing z0 and z̈0 into (1.6) or (1.7):

mg − k
i2
0

z2
0

= 0

and we obtain:

i0 = z0

√
mg

k
(1.8)

We will determine a linear approximation of (1.6) and (1.7) around the operating
point (z0, z̈0, i0) using Taylor series.
(I) EMS. Write the truncated Taylor series for the nonlinear function:

f1(z, z̈, i) = mz̈(t) − mg + k
i2(t)
z2(t) = 0

as:
f1(z, z̈, i) = f1(z0, z̈0, i0) + ∂f1

∂z
|(z0,z̈0,i0) · (z(t) − z0) + ∂f1

∂z̈
|(z0,z̈0,i0) · (z̈(t) − z0)

+ ∂f1
∂i

|(z0,z̈0,i0) · (i(t) − i0) = 0
We compute now the partial derivatives of f1 with respect to z, z̈ and i, define
a set of variables ∆z(t) = z(t) − z0, ∆i(t) = i(t) − i0, ∆z̈(t) = z̈(t) − z̈0 and
obtain:

0 − 2ki2

z3 |(z0,z̈0,i0)∆z(t) + m∆z̈(t) + 2ki

z2 |(z0,z̈0,i0)∆i(t) = 0

or

−2ki2
0

z3
0

∆z(t) + m∆z̈(t) + 2ki0
z2

0
∆i(t) = 0

By replacing i0 from (1.8) and rearranging the terms we obtain:

m∆z̈(t) − 2mg

z0
∆z(t) + 2

√
mgk

z0
∆i(t) = 0 (1.9)

(II) EDS. Proceeding in a similar manner for the second case the linearized model
is:

m∆z̈(t) + 2mg

z0
∆z(t) − 2

√
mgk

z0
∆i(t) = 0 (1.10)

SE 1.3 Epidemiological models are used for predicting the evolution of a disease for a specific
population dynamics. An example of a simple model used for this purpose is the following,
[18]: 

S(k + 1) = µ + S(k)e−βI(k)

E(k + 1) = S(k) − S(k)e−βI(k)

I(k + 1) = E(k).
(1.11)

where S represents the population of individuals susceptible to an infection (in number of
individuals), E - the number of individuals exposed to the infection, and I - the number
of individuals infected. The discrete time k is the index of the current week of the year.
The exponential term is the probability of not contracting the infection. The parameter µ
denotes the weekly number of births per person.

Consider the parameter values: µ = 0.01 and β = 0.1.

(a) Determine the equilibrium values.
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(b) Simulate the system’s unforced response for initial conditions S(0) = 50, E(0) = 10,
I(0) = 0.

Solution:
(a) The equilibrium values are found by setting S(k +1) = S(k) = Se, E(k +1) = E(k) =

Ee and I(k + 1) = I(k) = Ie and replacing into (1.11):
Se = µ + See−βIe

Ee = Se − See−βIe

Ie = Ee.
(1.12)

After some calculations we arrive at:

Se = µ

1 − e−βµ
, Ee = µ, Ie = µ (1.13)

(b) In order to obtain the systems unforced response to the given initial conditions, we
must solve the difference equations iteratively in MATLAB using a simple for loop.
The script is presented in Listing 1.4 and the results are shown in Figure 1.5.

Listing 1.4: epidemiological_model.m
1 close all
2 clear all
3 clc
4 % simulation of the discrete epidemiological model
5
6 mu = 0.01; % constant mu
7 beta = 0.1; % constant beta
8
9 S0=50; E0=10; I0=0; % initial conditions for the variables

10 number_of_weeks = 15; % final discrete time
11 time = 1:number_of_weeks; % discrete time vector required for plotting the solutions
12
13 % first elements in solution vectors are the initial conditions
14 S(1)=S0;
15 E(1)=E0;
16 I(1)=I0;
17
18 % iterate to compute the next solutions
19 for k = 1:number_of_weeks=1
20 S(k+1) = mu+S(k)*exp(=beta*I(k));
21 E(k+1) = S(k)=S(k)*exp(=beta*I(k));
22 I(k+1) = E(k);
23 end;
24 %plot the solution
25 plot(time, S, time, E, time, I, 'LineWidth', 2), grid on
26 xlabel('time (weeks)'), ylabel('population (number of individuals)')
27 legend('S (susceptible)', 'E (exposed)', 'I (infected)')

+ Interpret the results: are we dealing with an epidemic or is the disease
constrained?

1.2 Proposed exercises
PE 1.1 Consider a mechanical pendulum as shown in Figure 1.6.

The pendulum consists of a small-diameter ball with mass m suspended on a massless
rigid rod of length l. The rod can rotate only in two dimensions, thus the ball will trace
an arc of a circle in the vertical plane. The position of the ball is determined only by the
pendulum angle from vertical, denoted as x in Figure 1.6.
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Figure 1.5: Disease evolution

x

mgsinx

mg

m

M

mgcosx
Ff

Pendulum
M(t) x(t)

AngleTorque

Figure 1.6: A simple pendulum

The forces acting on the ball are: the gravity mg, the viscous friction Ff , and the
moment of external forces applied to the axis of rotation M(t).

A differential equation describing the motion of the ball can be derived from Newton’s
second law for rotational systems:

moment_of_inertia × angular_acceleration =
∑

moments

For the simple pendulum, the moment of inertia is I = ml2, the angular acceleration is the
second derivative of the angle position ẍ(t), the gravity component in the direction of the
movement is Gx(t) = mg sin x(t) and the viscous friction is proportional to the angular
velocity Ff (t) = bẋ(t). Then we obtain:

ml2ẍ(t) = M(t) − mgl sin x(t) − blẋ(t) (1.14)

where
m is the mass of the ball, m = 0.5 kg
l is the length of the rod, l = 1 m
g is the acceleration of gravity, g = 9.8 m/s2

b is the viscous friction coefficient, b = 0.5
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Consider the pendulum as a system with the input M(t) and the output x(t) and solve
the following problems:
(a) Obtain a linear approximation of the equation (1.14) around x0 = 0, ẋ0 = 0, ẍ0 = 0

and for M0 = 0.
(b) Use the same procedure as in exercise SE 1.1 to obtain and plot the numerical solution

for the nonlinear equation and the linear approximation, for M(t) = 0 and the initial
conditions:
(a) x(0) = π/4, ẋ(0) = 0
(b) x(0) = π/2, ẋ(0) = 0

Analyze and comment the results.
(c) Obtain and plot the numerical solution for the nonlinear and linear equations, when

the initial conditions are zero and M(t) = 1.

PE 1.2 Consider a liquid-level tank system [24], where the input is the flow rate q(t) and the
output - the liquid level h(t), as shown in Figure 1.7. The differential equation describing

q(t)

h(t)

Liquid-level

system

q(t) h(t)

Liquid levelFlow-rate

Figure 1.7: Liquid level tank system

the systems dynamics in terms of change in liquid level (derived from mass conservation)
is:

ḣ(t) = 1
C

q(t) − k

C

√
h(t). (1.15)

where C (the capacitance of the tank) and k (a flow constant) are constants.
Find a linear approximation of (1.15) around the equilibrium point (q0, h0) , with

q0 = 10ml/sec.
Hint. The equilibrium point can be obtained for a constant value q0 by solving

0 = 1
C

q0 − k

C

√
h0. (1.16)

in respect with h0.

PE 1.3 Consider a thermal system composed of an isolated vessel that contains a specific liquid
and a heater element as in Figure 1.8 ([7]). The presence of a mixer ensures a uniform
temperature of the liquid. The system is also referred in the literature as a batch process.
In the design of a batch process it is important to know how long it takes for the liquid to
reach a desired temperature.

As input signal, we have the energy rate of the heating element Qi(t). As outputs we
have the temperature of the heater Th(t) and the temperature of the liquid Tl(t). We will
consider the following parameters:

heater capacitance : Ch = 20 · 103J/K
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Th h,C

Tl l,C

Qi

Mixer

Rhl

Rla

Ta

Liquid-level

system

Qi(t)
Th(t)

Tl(t)

Figure 1.8: Thermal systems (vessel with heater). Adapted from [7]

liquid capacitance: Cl = 1 · 106J/K

heater-liquid resistance: Rhl = 1 · 10−3sK/J

liquid-ambient resistance: Rla = 5 · 10−3sK/J

ambient temperature Ta = 300K

desired temperature of the liquid: Tld = 365K

The energy stored in the system is characterized by the following equations:
Ṫh(t) = 1

Ch

[
Qi(t) − Th(t) − Tl(t)

Rhl

]
Ṫl(t) = 1

Cl

[
Th(t) − Tl(t)

Rhl
− Tl(t) − Ta

Rla

] (1.17)

with the initial conditions Th(0) = Tl(0) = Ta.

(a) Explain why the system is not linear and obtain a linear approximation of the model.
(b) For a step variation of Qi with amplitude 1.3 · 104W (t > 0) determine the response

of the system through simulation and identify on the plots the time needed to reach
the desired temperature.

(c) Simulate the response of the linearized system and compare it with that of the original
nonlinear system.

PE 1.4 A thermistor is a resistor with a temperature (T ) dependent resistance (R). The depen-
dence is usually expressed as an exponential function:

R(T ) = R0e−bT . (1.18)

However, most often the thermistor is used in the context of a small range of temperature
variation, and thus a linear approximation is used in practice.

(a) Determine the linear model for a temperature operating point of 20 degrees Celsius,
and the parameters: R0 = 10 Ω and b = 0.2.

(b) Analyze graphically the error of approximation on the temperature domain (10, 30)
degrees Celsius.



10 Chapter 1. Modeling with differential and difference equations

PE 1.5 Consider a simplified model for tumor growth [10]:
ẋ1(t) = −λ1x1(t) ln

(
x1(t)
x2(t)

)
ẋ2(t) = bx1(t) − dx1(t)2/3x2(t) − ex2(t)x3(t)
ẋ3(t) = −λ3x3(t) + u(t)

(1.19)

where x1(t) is the tumor volume, x2(t) is the endothelial cell volume, x3(t) is the adminis-
trated inhibitor concentration, u(t) is the inhibitor administration rate. The parameters
are, [10]:

tumor growth rate λ1 = 0.192/ln 10 (1/day)
vascular birth rate b = 5.85 (1/day)
vascular death rate d = 0.00873 (1/(mm2/3 · day))
drug killing parameter e = 0.66 (kg/(mg · day))
drug clearance λ3 = 1.7 (1/day)

(a) Simulate the system response (evolutions of x1 and x2) to initial conditions x1(0) =
100 mm3, x2(0) = 100 mm3, x3(0) = 0 mg/kg/day, and input u = 0. Consider a
time period of 120 days. How much does the tumor volume increases? Does it reach
a steady state?

(b) Determine a linear approximation of the model for the working (operating) point
x10 = 100 mm3, x20 = 100 mm3 and x30 = 0 mg/kg/day and u = 0. Compare and
discuss the simulation results of the linear and nonlinear models.

PE 1.6 Consider the electrical circuits from Figure 1.9. For each electrical system, a mathematical
model in the form of differential equations can be derived using the Kirchhoff’s laws.

a) b)

c) d)

e)

Figure 1.9: Passive electrical circuits

(a) Determine the mathematical model for the circuits in Figure 1.9 a) and b) in the
general form:

ẋ(t) = a · x(t) + b · u(t)
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where the state variable x(t) is the inductor current iL, for figure a) and the capacitor
voltage uC for figure b). The input u(t) is the voltage u1.

(b) Determine the mathematical model for the circuits in Figure 1.9 c) and d) in the
general form:

ẋ1(t) = a11 · x1(t) + a12 · x2(t) + b1 · u(t)
ẋ2(t) = a21 · x1(t) + a22 · x2(t) + b2 · u(t)

where the state variables x1(t), x2(t) are the inductor current iL and the capacitor
voltage uC , respectively. The input u(t) is the voltage u1.

(c) Determine the mathematical model for the circuit in Figure 1.9 e) in the general
form:

ẋ1(t) = a11 · x1(t) + a12 · x2(t) + a13 · x3(t) + b1 · u(t)
ẋ2(t) = a21 · x1(t) + a22 · x2(t) + a23 · x3(t) + b2 · u(t)
ẋ3(t) = a31 · x1(t) + a32 · x2(t) + a33 · x3(t) + b3 · u(t)

where the state variables x1(t), x2(t) and x3(t) are the inductor currents iL1, iL2 and
the capacitor voltage uC , respectively. The input u(t) is the voltage u1.

(d) Simulate the electrical system from Figure 1.9 d), for the parameter values R1 =
R2 = 1 Ω, C = 0.01 F , L = 0.02 H, on a time interval t ∈ [0, 0.2] seconds, in the
following scenarios:

(i) Input u = 0 and initial conditions: x1(0) = 0.2, x2(0) = 0.3.
(ii) Input u = 2 and initial conditions: x1(0) = x2(0) = 0.
(iii) Input u = sin(100 t) and initial conditions: x1(0) = x2(0) = 0.
Plot and interpret the results for each scenario.

PE 1.7 Consider the spring-mass damper and the car suspension mechanical systems from Figure
1.10 a) and b).

a) Spring-mass-damper b) Car suspension

Figure 1.10: Mechanical systems

(a) Determine the mathematical model of the spring mass damper system based on
Newton’s laws with the force F (t) as the input signal and the displacement of the
mass x(t) as the output. The variables and constants in Figure 1.10 a) are:
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mass 1

m1 F

kx

bx
.

x

mc

k1(xc-xw)b(xc-xw)
. .

xc

mw

k2(xw-xr)

xw

k1(xc-xw)b(xc-xw)
. .

xr

a) Spring-mass-damper b) Car suspension

Figure 1.11: Free body diagrams of the mechanical systems

F = F (t) - the external input force
x = x(t) - displacement of the mass
k - spring constant
b - damping coefficient

(b) For the spring-mass-damper system, choose the states as x1(t) = x(t) (displacement
of the mass), x2(t) = ẋ(t) (velocity of the mass) and the input u(t) = F (t) and
determine the state equations of the form:

ẋ1(t) = a11 · x1(t) + a12 · x2(t) + b1 · u(t)
ẋ2(t) = a21 · x1(t) + a22 · x2(t) + b2 · u(t)

(c) Determine a mathematical model of the car suspension system based on Newton’s
laws (ignoring gravity). The variables and constants in Figure 1.10 b) are:

xc = xc(t) - the displacement of the car
xw = xw(t) - the displacement of the wheel
xr = xr(t) - a function modeling the shape of the road
b - suspension damping coefficient
mc - the mass of the car
mw - the mass of the wheel and tire (notice that they are modeled as a body of
mass mw and a spring with the constant k2)
k1 - spring constant of suspension
k2 - spring constant of wheel and tire

Consider the input xr(t) and the outputs xc(t) and xw(t).
(d) For the car suspension system, define the states: x1(t) = xc(t), x2(t) = ẋc(t),

x3(t) = xw(t), x4(t) = ẋw(t), and the input u(t) = xr(t) and determine the state
equations of the form:
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ẋ1(t) = a11 · x1(t) + a12 · x2(t) + a13 · x3(t) + a14 · x4(t) + b1 · u(t)
ẋ2(t) = a21 · x1(t) + a22 · x2(t) + a23 · x3(t) + a24 · x4(t) + b2 · u(t)
ẋ3(t) = a31 · x1(t) + a32 · x2(t) + a33 · x3(t) + a34 · x4(t) + b3 · u(t)
ẋ4(t) = a41 · x1(t) + a42 · x2(t) + a43 · x3(t) + a44 · x4(t) + b4 · u(t)

(e) Simulate the car suspension system for the parameter values; mc = 10kg, mw = 0.5kg,
k1 = 3N/m, k2 = 0.5N/m, b = 1Nm/s−1, on the time interval t ∈ [0 50] seconds,
zero initial conditions, and input u(t) = sin(t). Plot the time evolution of x1(t) and
interpret the results. Notice that the gravity is ignored in the model, so the positions
are actually deviations from resting equilibrium positions.

Hint. Use the free body diagrams presented in Figure 1.11 to determine the mathematical
models for these systems.

PE 1.8 Consider a server as a software system used for administrating users’ e-mails, documents
and notes, among other tasks. The central processing unit (CPU) can be overloaded if on a
certain time interval there are to many service requests. In order to prevent this, the system
administrator limits the maximum number of users (u = MaxUsers). We can regard
this entire process as a system with the input MaxUsers and output the total number
of requests being served (y = RIS). A mathematical model that captures the dynamics
behavior of the system can be constructed through system identification techniques.

Consider the model determined in [15], for an operating point (equilibrium point)
ye = 165 and ue = 135, considering averaged values over a sampling period of 60 seconds:

yl(k + 2) − 1.07yl(k + 1) + 0.28yl(k) = 0.08ul(k + 1) − 0.052ul(k), (1.20)

where yl(k) = y(k) − ye and ul(k) = u(k) − ue.
(a) Simulate in MATLAB the response of the system to discrete impulse and step inputs

for k = 1, 20.
(b) Interpret the result for each user request-type scenario.

Hint. Consider, for example, the following values for the discrete impulse input ul=(0, 0,
0, 0, 1, 0, ..., 0) and the step input: ul=(0, 0, 0, 0, 1, 1, ..., 1).



2 Input-Output models

Topics: Laplace transform, Z-transform, transfer functions, poles and zeros,
block diagrams.

2.1 Solved exercises
SE 2.1 Consider the electric circuit from Figure 2.1 with the input voltage u1(t) and output

voltage u2(t).

u1 u2

i R L

C

Figure 2.1: RLC electric circuit

(a) Write the equations describing the system based on Kirchhoff’s circuit laws and
calculate the transfer function for zero initial conditions (i(0) = 0 and u2(0) = 0).

(b) Determine the poles and zeros of the system.

Solution:
(a) First notice that the same current passes through the resistor, inductor and capacitor.

The output voltage u2 is actually the voltage drop on the capacitor. So Kirchhoff
current law (for circuit nodes) is not needed in this case. Kirchhoff voltage law for
the loop of our circuit can be written as:

u1(t) = R · i(t) + uL(t) + u2(t). (2.1)

We also know the current-voltage relation for an inductor:

uL(t) = L · di(t)
dt

,

and a capacitor

i(t) = C · du2(t)
dt

.

By replacing uL(t) and i(t) into (2.1) we obtain:

u1(t) = R · C · du2(t)
dt

+ L · C · d2u2(t)
dt2 + u2(t).

Applying the Laplace transform with zero initial conditions leads to:

U1(s) = RC · s · U2(s) + LC · s2 · U2(s) + U2(s).

14
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The transfer function is:

H(s) = U2(s)
U1(s) = 1

LCs2 + RCs + 1 . (2.2)

(b) The system described by the transfer function (2.2) has no zeros and the poles are
the roots of the denominator polynomial:

s1,2 = −RC ±
√

R2C2 − 4LC

2LC
.

SE 2.2 Many motion control systems use a direct current (DC) motor, which converts electric
power into mechanical power. A schematic drawing of a DC motor is illustrated in Figure
2.2.

u(t) e(t)

i(t) R L

J θ(t)

T(t)

b (t)ω

Figure 2.2: Schematic drawing of a DC motor

The input signal of the system is the voltage source u(t), and the output signal is the
angular position of the shaft θ(t). The other notations in Figure 2.2 are:

e(t) = keω(t) - the back electromotive (emf) voltage,
ke - the electromotive force constant
ω(t) - the angular speed,
T (t) = k · i(t) - the applied torque,
k - the motor torque constant
i(t) - the current
J - the moment of inertia.

Determine the transfer function of the system for zero initial conditions (i(0) = 0,
θ(0) = 0, ω(0) = 0).

Solution:
The equations for the electrical part are given by Kirchhoff voltage law:

u(t) = R · i(t) + uL(t) + e(t), (2.3)

where the inductor voltage can be expressed as:

uL(t) = L · di(t)
dt

,

and the back emf voltage is:

e(t) = keω(t) = ke
dθ(t)

dt
.

By replacing e(t) and uL(t) in equation (2.3) we finally obtain:

u(t) = R · i(t) + L · di(t)
dt

+ ke
dθ(t)

dt
. (2.4)
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The equation for the mechanical part is provided by Netwon’s law

J
d2θ(t)

dt2 = −b
dθ(t)

dt
+ T (t), (2.5)

where the torque T is proportional with the current:

T (t) = k · i(t).

So the mathematical model of our system consists of the following differential equations:


u(t) = R · i(t) + L · di(t)

dt
+ ke

dθ(t)
dt

J
d2θ(t)

dt2 = −b
dθ(t)

dt
+ k · i(t),

(2.6)

We apply the Laplace transform for both equations (2.6):{
U(s) = RI(s) + LsI(s) + kesθ(s)
Js2θ(s) = −bsθ(s) + kI(s).

(2.7)

By extracting I(s) from the second equation and replacing into the first one we obtain:

θ(s) = k

LJs3 + (RJ + Lb)s2 + (kke)sU(s).

Thus, the transfer function of the DC motor from the input voltage to the output
angular position is:

H(s) = θ(s)
U(s) = k

LJs3 + (RJ + Lb)s2 + (kke)s. (2.8)

SE 2.3 The block diagram of a closed-loop accelerometer is given in Figure 2.3, [5].

a
m HS(s) kd ka R

kf

Vixdx

Fe

Fi

acceleration inertial

force

electromagnetic

force

output

voltage

current

Elastic force

sensor

Potentiometer

displacement

sensor Ampli ier Resistor
Seismic

mass

Coil and magnet

Figure 2.3: Closed-loop accelerometer

The transfer function of the elastic force sensor is:

HS(s) =
1
k

1
ω2

n
s2 + 2ζ

ωn
s + 1

From the block diagram determine the transfer function H(s) = V (s)
a(s) that relates the

output voltage V to the input acceleration signal a.

Solution 1: This informational block diagram expresses algebraic relations because all
the blocks refer to transfer functions (in Laplace domain). In order to determine the
transfer function of the overall scheme, one simply has to write down the algebraic
equations that relates different signals of interest from the diagram, be reading in
the opposite sense of that indicated by the arrows.
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For example, the current i depends on the displacement x through the equation

i(s) = ka · xd(s) = ka · kd · x(s). (2.9)

In a similar manner, if we consider the transfer function of the elastic force sensor
as Hs(s) and we use the relation for the summing point, then we can write the
displacement x(s) as:

x(s) = Hs(s) · (Fi(s) − Fe(s)) = Hs(s) · (m · a(s) − kf · i(s)) (2.10)

By replacing x(s) from (2.10) into (2.9):

i(s) = ka · kd · Hs(s) · (m · a(s) − kf · i(s))

which means the current i(s) can be isolated as:

i(s) = ka · kd · Hs(s) · m

1 + Hs(s) · kf · ka · kd
· a(s)

Finally, by adding the output equation

V (s) = R · i(s) = R · ka · kd · Hs(s) · m

1 + Hs(s) · kf · ka · kd
· a(s)

the overall transfer function can be calculated as

H(s) = V (s)
a(s) = R · ka · kd · Hs(s) · m

1 + Hs(s) · kf · ka · kd
(2.11)

Solution 2: Using the block diagram algebra rules, the overall transfer function from the
input a(s) to the output V (s) can be obtained as follows:

The blocks representing the elastic force sensor, the potentiometer displacement
sensor and the amplifier are connected in series. An equivalent transfer function

a
m HS(s) kd ka R

kf

Vixdx

Fe

Fi

acceleration inertial

force

electromagnetic

force

output

voltage

current

Elastic force

sensor

Potentiometer

displacement

sensor Ampli ier Resistor
Seismic

mass

Coil and magnet

H2 H1

Figure 2.4: Closed-loop accelerometer

is obtained by multiplying together the transfer functions of these blocks (see
Figure 2.4) and we obtain:

H1(s) = HS(s) · kd · ka

The new block with the transfer function H1(s) and the coil and magnet block
are in a feedback loop (see Figure 2.4). The equivalent transfer function is then:

H2(s) = H1(s)
1 + H1 · kf

= HS(s) · kd · ka

1 + HS(s) · kd · ka · kf

The seismic mass block, the block with the transfer function H2(s) and the
resistor are in a series connection. The overall transfer function from the input
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a(s) to the output V (s) is then:

H(s) = m · H2(s) · R = m · HS(s) · kd · ka · R

1 + HS(s) · kd · ka · kf
, (2.12)

the same as (2.11).

+ Replace Hs(s) with the transfer function from the block diagram and determine
the poles and zeros of H(s).

2.2 Proposed exercises
PE 2.1 An input r(t) is applied to a system with a transfer function G(s) and the resulting output

is y(t). Determine the transfer function G(s) if the input and the output signals are:
(a) r(t) = t, y(t) = t + e−t − 1, t ≥ 0

(b) r(t) = sin t, y(t) = 1
2

(
e−t − cos t + sin t

)
, t ≥ 0

(c) r(t) = e−t, y(t) = 1 − e−t + e−2t cos t, t ≥ 0

PE 2.2 Consider the following linear differential equations as models for some systems with the
input r(t) and the output y(t):

S1 : d2y(t)
dt2 + 2dy(t)

dt
+ 2y(t) = r(t)

S2 : dy(t)
dt

+ 2y(t) = dr(t)
dt

+ r(t)

S3 : d2y(t)
dt2 + 2dy(t)

dt
= 2dr(t)

dt
+ r(t)

S4 : d3y(t)
dt3 − d2y(t)

dt2 − 6dy(t)
dt

= 10r(t)

For each system:
(a) Determine the transfer function, when all the initial conditions are assumed to be

zero.
(b) Determine the poles and the zeros.

PE 2.3 Consider the electric circuit from Figure 2.5 with the input u1(t) and output u2(t).

u1 u2

L

C

R1i1

R2

Figure 2.5: RLC electric circut

(a) Write the equations of the system based on Kirchhoff’s circuit laws and calculate the
transfer function for zero initial conditions (iL(0) = 0 and uc(0) = 0).

(b) Determine the poles and zeros of the system.

PE 2.4 Consider the systems given by the block diagrams from Figure 2.6. Determine the overall
transfer function for each system from the input R(s) to the output Y (s).
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R(s) Y(s)

s+5
1

s
1

10s+1
1

2 4

3

a)

R(s) Y(s)

s+1
1

s+10
1

s+2
s+11

R(s) Y(s)

s+1
1

10s+1
1

b) c)
R(s) Y(s)

s+1
1

s
1

2 R(s) Y(s)

s+1
1

s+10
1

d) e)

Figure 2.6: Block diagrams

PE 2.5 Consider a control system given by the block diagram from Figure 2.7, with the input
W (s) and the output Y (s). Determine the equivalent transfer function.

W(s) Y(s)

s
Ki

Kp

T1s+1
K1

T2s+1
K2

T3s+1
1

Figure 2.7: Block diagram of a system

PE 2.6 A pneumatic actuator of a control system can be regarded as a subsystem with a pneumatic
part and a mechanical part [21] (see Figure 2.8 for a diagram representation).

The pneumatic part refers to an air capsule with a flexible membrane and a spring.
The force due to the input pressure signal pin(t) pushes on the membrane, which makes the
rod move with the position x(t). The shutter at the end of the rod can further influence
the flow through a pipe (regarded as a part of the controlled process). For the pneumatic
part, the air filling the capsule is described by the first-order equation:

T
dp(t)

dt
+ p(t) = pin(t),

where T is the time constant, and p(t) is the air pressure inside the capsule.
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pipe

capsule

pin

x
rod

Figure 2.8: Diagram of a pneumatic actuator (adapted from [21])

The mechanical part is described by a second-order equation derived from the Newton’s
second law of motion:

m
d2x(t)

dt2 = −b
dx(t)

dt
− kx(t) + Sp(t),

where m is the mass of the moving pieces, b is the coefficient of the viscous friction force, k
is the elastic coefficient of the arc, and S is the area of the membrane (S · p(t) equals the
input force).
(a) Determine the transfer function that relates the input pressure pin to the rod position

x, H(s) = X(s)
Pin(s) .

(b) Calculate the poles and zeros of the system.

PE 2.7 Consider the mathematical model for the motion of the read/write head of a (hard) disk
drive ([4], [12]), where the equations are derived from the equivalent mechanical diagram
from Figure 2.9:

J1
d2θ1(t)

dt2 + b

(
dθ1(t)

dt
− dθ2(t)

dt

)
+ k(θ1(t) − θ2(t)) = T (t),

J2
d2θ2(t)

dt2 + b

(
dθ2(t)

dt
− dθ1(t)

dt

)
+ k(θ2(t) − θ1(t)) = Td(t),

(2.13)

where J1 and J2 are moments of inertia, b is the friction constant, k is the spring constant,
T (t) is the applied torque, Td(t) is the disturbance torque, θ1(t) and θ2(t) represent the
angular positions of the two masses. Notice that this is a MIMO (Multiple-Input Multiple-
Output) system, with two inputs (T (t) and Td(t)) and two outputs (θ1(t) and θ2(t)).

current
motor

T Td
θ1 θ2k

J1 J2

mass 1 mass 2

torsional

spring

!lexible shaft

read/write

head

Figure 2.9: Mechanical diagram for a read/write head of a disk drive
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(a) Determine the two transfer functions that relate the applied input torque T (t) to the
angles θ1(t) and θ2(t).

(b) Determine the two transfer functions that relate the disturbance input torque Td(t)
to the angles θ1(t) and θ2(t).

Hint. For a linear two-input two-output MIMO system the equations are:
θ1(s) =H11(s)T (s) + H12(s)Td(s)
θ2(s) =H21(s)T (s) + H22(s)Td(s)

where T (s), Td(s) are the input signals and θ1(s), θ2(s) are the output signals.

PE 2.8 Consider the thermal system from Figure 2.10.

Heater

Input low at

temperature Ti

Ambient

temperature

of air Ta
Liquid at

temperature T

Output low at

temperature T

Mixer

Figure 2.10: Thermal system (adapted from [25])

H1(s)
Qe(s)

T(s)
H2(s)

H3(s)

Ti(s)

Ta(s)

Figure 2.11: Multiple input sin-
gle output thermal
system

Based on energy conservation, we can write, [25]:

Qe(t) + Qi(t)︸ ︷︷ ︸
heat in

= Ql(t) + Qo(t) + Qs(t)︸ ︷︷ ︸
heat out

, (2.14)

where
Qe is the heat flow from the heater,
Qi - the heat from the liquid entering the tank,
Ql - the heat flow into liquid,
Qo - the heat flow that leaves the thank through the liquid
Qs - the output heat flow through the tank.

We can further express the output heat flows as:

Qi(t) = V · H · Ti(t), (2.15)

Ql(t) = C
dT (t)

dt
, (2.16)

Qo(t) = V · H · T (t), (2.17)

Qs(t) = T (t) − Ta(t)
R

, (2.18)

with the parameters:
C - thermal capacity,
V - flow in and out of the tank (assumed equal),
H - specific heat of the liquid,
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R - thermal resistance.
Replacing (2.15), (2.16), (2.17) and (2.18) into (2.14) we obtain:

Qe(t) + V HTi(t) = C
dT (t)

dt
+ V HT (t) + T (t) − Ta(t)

R
. (2.19)

If we regard the system as having multiple inputs (Qe, Ti, Ta) and a single output (T ),
determine the transfer functions H1(s), H2(s), H3(s) from Figure 2.11 of the blocks that
connect each input to the output.

PE 2.9 Consider a digital FIR (Finite Impulse Response) filter and a digital IIR (Infinite Impulse
Response) filter with the transfer functions H1(z) and H2(z), respectively:

FIR: H1(z) = Y (z)
U(z) = 1 − 2z−1 − 0.1z−2 + 5z−3

IIR: H2(z) = Y (z)
U(z) = 1 + 2z−1

1 − 3z−1 − 2z−2 .

For each filter write the corresponding difference equation in time domain in terms of y(k)
and u(k), with k as the index of the current sampling period:
(a) in standard form (left hand side contains only terms with the output y, right hand

side contains only terms with the input u), used for analysis.
(b) implementation form (the output at current sampling instance y(k) is expressed in

terms of previous values of y, u, and current values of u), used in a programming
language like C.

PE 2.10 Consider the digital filters represented by the block diagrams from Figure 2.12, with input
u(k) and output y(k).

z-1
u(k) y(k)

a0

b0

a1

a) b)

Figure 2.12: Block diagrams of digital filters

(a) Determine the difference equation in time domain.
(b) Determine the transfer functions of the filters.
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Topics: State-space models, transfer function to state-space, state-space to
transfer function

3.1 Solved exercises
SE 3.1 Consider the input-output model of the disk drive read/write head from exercise PE 2.7:

J1
d2θ1(t)

dt2 + b

(
dθ1(t)

dt
− dθ2(t)

dt

)
+ k(θ1(t) − θ2(t)) = T (t), (3.1)

J2
d2θ2(t)

dt2 + b

(
dθ2(t)

dt
− dθ1(t)

dt

)
+ k(θ2(t) − θ1(t)) = Td(t), (3.2)

where the inputs are the torques T (t) and Td(t) and the output is the angle θ2(t).
Determine the state-space model of the disk drive system.
Solution:
The first step is to choose the states. A standard approach (when there are no derivatives

of the input) is:

x1(t) = θ1(t) (3.3)
x2(t) = θ̇1(t) (3.4)
x3(t) = θ2(t) (3.5)
x4(t) = θ̇2(t). (3.6)

Then, the outputs need to be defined in terms of state variables. In this case, the angle θ2
is:

y(t) = θ2(t) = x3(t). (3.7)

For consistency, we also change the notations of the inputs:

u1(t) = T (t),
u2(t) = Td(t).

From (3.4) and (3.6):

x2(t) = θ̇1(t) = ẋ1(t),
x4(t) = θ̇2(t) = ẋ3(t).

So, two of the state equations are:

ẋ1(t) = x2(t),
ẋ3(t) = x4(t).

23
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The other two state equations are derived directly from (3.1) and (3.2) by isolating the
second-order derivatives and replacing θ̈1(t) with ẋ2(t), and θ̈2(t) with ẋ4(t):

ẋ2(t) = 1
J1

[−b(x2(t) − x4(t)) − k(x1(t) − x3(t)) + u1(t)] , (3.8)

ẋ4(t) = 1
J2

[−b(x4(t) − x2(t)) − k(x3(t) − x1(t)) + u2(t)] . (3.9)

The four state equations can be expressed in matrix form as:
ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)


︸ ︷︷ ︸

ẋ(t)

=


0 1 0 0

−k/J1 −b/J1 k/J1 b/J1
0 0 0 1

k/J2 b/J2 −k/J2 −b/J2


︸ ︷︷ ︸

A

·


x1(t)
x2(t)
x3(t)
x4(t)


︸ ︷︷ ︸

x(t)

+


0 0

1/J1 0
0 0
0 1/J2


︸ ︷︷ ︸

B

·
[
u1(t)
u2(t)

]
︸ ︷︷ ︸

u(t)

. (3.10)

Finally, from (3.7), the output equation in matrix form can be written as:

y(t) =
[
0 0 1 0

]
︸ ︷︷ ︸

C

·


x1(t)
x2(t)
x3(t)
x4(t)


︸ ︷︷ ︸

x(t)

+
[
0 0

]
︸ ︷︷ ︸

D

·
[
u1(t)
u2(t)

]
︸ ︷︷ ︸

u(t)

. (3.11)

SE 3.2 Compartment models are widely used in engineering, medicine and environmental sci-
ence for characterizing systems in a more simple manner, as composed out of multiple
compartments (each compartment being characterized by the amount of volume, mass or
concentration of certain substances), with the purpose of analyzing the exchange of sub-
stances between them ([11] - Chapter 7). For biomedical systems, the compartments can be,
for example, different parts of the human body, while the transfer between compartments
is based on diffusion and mass concentration.

As an application, consider the distribution and monitoring of a drug through the
human body (field of pharmacokinetics). As a idealization, consider only two compartments:
Blood compartment (B) and Tissue compartment (T) - Figure 3.1.

kb
Blood

CB

Tissue

CT

kt
ke

Drug elimination

Drug intravenous

infusion

Figure 3.1: Compartment model

For this simplified process we can make the following assumptions:
the volume of substance in each compartment is constant, and the drug passes from
one compartment to another through diffusion;
the drug is removed from a compartment at a rate proportional to the concentration;
any substance entering a compartment (solute) is mixed instantaneously with the
rest of the solution.
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As concerns the inputs and the outputs of the system, consider that:
the drug is initially administrated to the B compartment through intravenous infu-
sion (or Bolus Injection) of a fixed amount (C0 units). This can be characterized
systemically by an impulse input function δ(t) or as a change in the initial conditions.
a part of the drug is also eliminated from the B compartment.

The equations for each compartment can be written based on the mass balance:
B. Blood compartment:

VBĊB(t)︸ ︷︷ ︸
Change in drug quantity in B

= −q · CB(t)︸ ︷︷ ︸
Drug flow from B to T

+ q · CT (t)︸ ︷︷ ︸
Drug flow from T to B

− qe · CB(t),︸ ︷︷ ︸
Drug flow-elimination

(3.12)

T. Tissue compartment:

VT ĊT (t)︸ ︷︷ ︸
Change in drug quantity in T

= −q · CT (t)︸ ︷︷ ︸
Drug flow from T to B

+ q · CB(t),︸ ︷︷ ︸
Drug flow from B to T

(3.13)

where:
VT and VB are the volumes associated with the two compartments,
CB and CT - the concentration of the drug in compartment B and T, respectively,
q - the drug flow between the compartments based on the difference of concentrations
(diffusion),
qe - the elimination drug flow.

By defining the positive coefficients kb = q/VB, ke = qe/VB, kt = q/VT (also called
transfer rates), the equations can be written compactly as state equations:

ĊB(t) = −(kb + ke) · CB(t) + kb · CT (t), (3.14)
ĊT (t) = kt · CB(t) − kt · CT (t), (3.15)

with the initial conditions CB(0) = C0, CT (0) = 0.
(a) Write the state-space model of the system in matrix form.
(b) Consider the parameter values kb = 0.6hr−1, ke = 0.1hr−1, kt = 0.2hr−1. Determine

through simulation the variation of drug concentration in each compartment for an
initial dose of C0 = 500 units. Consider the final simulation time tf1 = 5hr, and then
tf2 = 180 hr.

(c) For the parameter values given at (b) calculate the poles of the system and discuss
how they relate to the system response.

(d) Discuss the effect of the parameters on the system response. Can you determine any
values of the parameters kb, ke, kt so that the system response oscillates?

Solution:
(a) The drug concentration in the compartments are chosen as the states of the system:

x1(t) = CB(t), x2(t) = CT (t). The system (3.14), (3.15) has no inputs and the
outputs can be considered to be also the drug concentrations: y1(t) = x1(t) and
y2(t) = x2(t).
Then, the matrix form of the state space model is:[

ẋ1(t)
ẋ2(t)

]
=

[
−(kb + ke) kb

kt −kt

]
·
[
x1(t)
x2(t)

]
⇔ ẋ(t) = A · x(t) (3.16)
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[
y1(t)
y2(t)

]
=

[
1 0
0 1

]
·
[
x1(t)
x2(t)

]
⇔ y(t) = C · x(t) (3.17)

(b) The simulations results for the two scenarios are obtained with the MATLAB code
from Listing 3.1 and 3.2 and are shown in Figure 3.2.

Listing 3.1: blood_tissue.m
1 close all
2 clear all
3 clc
4 % Simulation of the blood=tissue compartment model
5
6 kb = 0.6; % constant kb
7 ke = 0.1; % constant ke
8 kt = 0.2; % constant kt
9 tf1 = 5; % final time of simulation (first scenario)

10 tf2 = 180; % final time of simulation (second scenario)
11
12 C0 = 500; % initial condition C_B(0)
13
14 global A
15 % system matrix A (global constant to be used in function)
16 A = [=(kb+ke) kb; kt =kt];
17
18 [t1,C1] = ode23(@cprime, [0 tf1], [C0; 0]); % first simulation
19 [t2,C2] = ode23(@cprime, [0 tf2], [C0; 0]); % second simulation
20
21 subplot(211), plot(t1,C1, 'LineWidth', 2), grid on
22 xlabel('time [hr]'), ylabel('Drug concentration [units]')
23 legend('C_B', 'C_T'), title('Simulation on a short time')
24 subplot(212), plot(t2,C2, 'LineWidth', 2), grid on
25 xlabel('time [hr]'), ylabel('Drug concentration [units]')
26 legend('C_B', 'C_T'), title('Simulation on a long time')

Listing 3.2: cprime.m
1 function cp = cprime(t,X)
2 global A
3 cp = A*X;

One can notice that, in the first hours of simulation, as the drug passes in time from
the blood compartment to the tissue compartment, the concentration CB decreases,
while CT increases. However, the simulation on a longer period of time shows that
both concentrations will approach zero as the drug will be (almost) eliminated from
the system.

(c) The poles of the system are the eigenvalues of the system matrix A. For the parameter
values defined in the problem, the matrix A is constant:

A =
[
−(kb + ke) kb

kt −kt

]
=

[
−0.7 0.6
0.2 −0.2

]
Through calculation we obtain the system poles or eigenvalues as negative real
numbers, equal to: λ1 = −0.87, λ2 = −0.02.
In this case, the solution of the linear homogeneous system of differential equations
(3.16) is a linear combination of exponential functions of the form eλ1·t or eλ2·t. Since
λ1 < 0 and λ2 < 0, all exponential functions will approach zero and the system
response decays exponentially towards zero as time approaches infinity.

(d) The system response, or the solution of (3.16), is oscillatory only when the eigenvalues
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Figure 3.2: Systems response to initial conditions, for a final simulation time of 5 and 180 hours

of matrix A are complex. The eigenvalues of matrix A are obtained from:

det(sI − A) = det
[
s + (kb + ke) −kb

−kt s + kt

]
= 0

or

s2 + (kb + ke + kt)s + kekt = 0 (3.18)

The discriminant of the quadratic equation (3.18) is computed as:

∆ = (kb + ke + kt)2 − 4kekt = k2
b + 2kb(ke + kt) + (ke + kt)2 − 4kekt︸ ︷︷ ︸

(ke−kt)2

∆ = k2
b + 2kb(ke + kt) + (ke − kt)2 (3.19)

Because the parameters kb, ke, kt are always positive (due to their physical meaning),
the discriminant (3.19) is always positive, i.e. the roots (3.18) are real numbers.
Since the eigenvalues cannot have complex values, the system response cannot exhibit
oscillatory behavior.

3.2 Proposed exercises

PE 3.1 Consider the following linear differential equations describing two systems with the input
u(t) and the output y(t):

4d3y(t)
dt3 + 3d2y(t)

dt2 − 2dy(t)
dt

= 10u(t) (3.20)

d2y(t)
dt2 − 2dy(t)

dt
+ y(t) = du(t)

dt
+ u(t) (3.21)
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(a) Choose the state variables as phase variables: x1(t) = y(t), x2(t) = ẏ(t), x3(t) = ÿ(t)
and determine the state-space model for the system described by the differential
equation (3.20).

(b) Choose the state variables as phase variables: x1(t) = y(t), x2(t) = ẏ(t) and determine
the state-space model for the system described by the differential equation (3.21).
Hint. One approach can be to obtain first the transfer function and then to convert it
into a spate-space model.

(c) For equation (3.21) choose the state variables as x1(t) = y(t) and x2(t) = ẏ(t) − u(t)
and determine a new state-space model. Compare this new model with the one
obtained at (b).

PE 3.2 Determine a state space model for each of the following transfer function:

(a) H1(s) = 2
s2 + 2s + 3

(b) H2(s) = s + 2
2s2 + s + 1

(c) H3(s) = 5
s3 + 2s2 + 4s + 7

PE 3.3 Determine a transfer function for each of the following state space models:

(a) ẋ =
[
1 2
3 1

]
x +

[
0
1

]
u

y =
[
1 1

]
x +

[
0
]

u

(b) ẋ =

 0 1 1
4 8 4

−5 −8 −2

 x +

0
1
0

 u

y =
[
1 0 0

]
x +

[
0
]

u

(c) ẋ =

−2.5 −2 −0.5
1 0 0
0 1 0

 x +

1
0
0

 u

y =
[
0 0.5 0.5

]
x +

[
0
]

u

PE 3.4 Determine the state-space models for the systems given in Figure 3.3.

R(s) Y(s)

s+1
1

s
1

2 R(s) Y(s)

s+1
1

s+10
1

a) b)

Figure 3.3: Block diagrams
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PE 3.5 Determine a state space-model for the system given in Figure 3.4.

Figure 3.4: Block diagram

PE 3.6 For the electric RLC circuit from Figure 3.5.

u1 u2

i R L

C

Figure 3.5: RLC circuit

(a) Determine the state space model starting from the equations written based on
Kirchhoff’s circuit laws. Choose the states as the inductor current x1(t) = iL(t), and
the capacitor voltage x2(t) = uC(t).

(b) Determine the state space model starting from the transfer function of the circuit
determined in SE 2.1:

H(s) = U2(s)
U1(s) = 1

LCs2 + RCs + 1 .

PE 3.7 For the linearized model of the pendulum from exercise PE 1.1 determine a state space
model when the state variables are: x1(t) = x(t), x2(t) = ẋ(t), the input is u(t) = M(t)
and the output is y(t) = x1(t). Write the state-space model in the standard form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Create the state-space model in MATLAB and plot the impulse response of the system.
Use the MATLAB functions ss and impulse.

PE 3.8 Using the linear approximations (1.9) and (1.10) describing the dynamics of the MagLev
train from SE 1.2, write the state space models for both cases in the standard form:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

The state variables are: x1(t) = ∆z(t), x2(t) = ∆ż(t), the input in the system is the current
u(t) = ∆i(t) and the output is the vertical position y(t) = ∆z(t). Create the state-space
models in MATLAB using ss and plot the impulse response.

PE 3.9 Consider a nonlinear compartment model that describes the metabolism of alcohol in
the body, [4]. We have two compartments: body and liver. The body compartment is
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described by the equation

Vb
Cb(t)

dt
= q · Cl(t) − q · Cb(t) + qiv(t), (3.22)

while the equation for the liver compartment is:

Vl
Cl(t)

dt
= q · Cb(t) − q · Cl(t) − qmax · Cl(t)

C0 + Cl(t)
+ qgi(t). (3.23)

Cb and Cl are the alcohol concentrations in the two compartments,
Vb and Vl are the water volumes,
q is the total hepatic flow,
qiv and qgi are the injection rates for intravenous and gastrointestinal intake (system
inputs).

(a) Determine through simulation the evolution of the concentrations Cb and Cl for
the following numerical values: Vb = 48 l, Vl = 0.6 l, q = 1.5 l/min, qmax =
2.75 mmol/min, C0 = 0.1 mmol · l, for a total simulation time tfin = 3 min and the
input signals (in grams):

qiv(t) =
{

10, 0 ≤ t ≤ 0.1 min
0, 0.1 < t ≤ tfin

, qgi(t) =
{

5, 0 ≤ t ≤ 0.1 min
0, 0.1 < t ≤ tfin

(3.24)

(b) Determine the linear approximation of the state-space model in the equilibrium point
obtained for zero inputs. Compare through simulation the response of the linear
and nonlinear models for the inputs (3.24). Assess if the linear model is a good
approximation for the nonlinear system.



4 Time response

Topics: System response, transient response, steady state analysis, standard
input signals, inverse Laplace transform

4.1 Solved exercises
SE 4.1 Consider the RLC circuit from Figure 4.1, described by the differential equation:

L · C · d2y(t)
dt2 + R · C

dy(t)
dt

+ y(t) = r(t),

with the input r(t) = u1(t) and the output y(t) = u2(t).

u1 u2

i R L

C

Figure 4.1: RLC electrical circuit

The initial conditions are considered to be zero and the transfer function of the system
is:

H(s) = Y (s)
R(s) = 1

LCs2 + RCs + 1 .

For the parameter values R = 50Ω, L = 5mH, C = 2µF :
(a) Determine the impulse response of the system yi(t).
(b) Determine the unit step response of the system ys(t).
(c) Use the MATLAB functions impulse and step to plot the impulse and step response

for this system. Compare the results to the plot of yi(t) and ys(t), over a time interval
t ∈ [0, 1.4 · 10−3] sec.

(d) Use the MATLAB function lsim to compute and plot the system response for a
sinusoidal input signal u1(t) = sin(5000t), for a time interval t ∈ [0, 0.01]sec.

Solution:
(a) For the values of the parameters given in the problem: R = 50Ω, L = 5mH =

5 · 10−3H, C = 2µF = 2 · 10−6F , the transfer function is:

H(s) = 1
LCs2 + RCs + 1 = 1

10−8s2 + 10−4s + 1 = 108

s2 + 104s + 108 .

The impulse response can be found by using the inverse Laplace transform:

yi(t) = L −1{H(s)R(s)}

31
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with R(s) = L {δ(t)} = 1.
By replacing the transfer function we obtain:

yi(t) = L −1
{

108

s2 + 104s + 108

}
.

From the Laplace transform table of Appendix A we use the transformation:

L −1
{

b

(s + a)2 + b2

}
= e−at sin bt (4.1)

and then, we write the impulse response as:

yi(t) = L −1

 108(
s + 104

2

)2
+ 108 −

(
104

2

)2

 = L −1

 108(
s + 104

2

)2
+ 3

4 · 108


yi(t) = L −1

 108 ·
√

3·104

2(
s + 104

2

)2
+

(√
3·104

2

)2 · 1
√

3·104

2

 = L −1

2 · 104
√

3

√
3·104

2(
s + 104

2

)2
+

(√
3·104

2

)2


or:

yi(t) = 2 · 104
√

3
L −1

 5000
√

3

(s + 5000)2 +
(
5000

√
3
)2

 = 2 · 104
√

3
e−5000t sin

(
5000

√
3t

)
.

(b) If the input is a unit step, R(s) = L {1} = 1
s

and the step response can be found by
using the inverse Laplace transform:

ys(t) = L −1{H(s)R(s)} = L −1
{

108

s(s2 + 104s + 108)

}
Thorough partial fraction expansion we further obtain:

ys(t) = L −1
{

1
s

− s + 104

s2 + 104s + 108

}
= L −1

1
s

−
s + 104

2 + 104

2(
s + 104

2

)2
+

(√
3·104

2

)2


= L −1

1
s

−
s + 104

2(
s + 104

2

)2
+

(√
3·104

2

)2 − 1√
3

√
3·104

2(
s + 104

2

)2
+

(√
3·104

2

)2

 .

We use now the transformation (4.1) and also, extract from the Laplace transform
table of Appendix A:

L −1
{

s + a

(s + a)2 + b2

}
= e−at cos bt (4.2)

The step response of the system will be:

ys(t) = 1 − e−5000t cos
(
5000

√
3t

)
− 1√

3
e−5000t sin

(
5000

√
3t

)
.

(c) Using the MATLAB functions tf, along with impulse and step (see, for example the
code from Listing 4.1), one can obtain the results from Figure 4.2.
The figure illustrates the transient response the the output voltage of the circuit
(u2(t)) to an impulse, respectively a step, input voltage (u1(t)).
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Listing 4.1: RLC_response.m
1 close all
2 clear all
3 clc
4 % plot the impulse and step response of a system
5
6 % input transfer function of the system
7 RLC_system = tf(1e8, [1 1e4 1e8]); % transfer function H(s) = 10^8/(s^2+10^4s+10^8)
8
9 tfinal = 1.4e=3; % final time

10 t=0:tfinal/50:tfinal; % create the time vector for plotting y_i and y_s
11
12 % define anonymous functions for y_i and y_s:
13 y_i = @(t) 2e4/sqrt(3)*exp(=5000*t).*sin(5000*sqrt(3)*t);
14 y_s = @(t) 1=exp(=5000*t).*cos(5000*sqrt(3)*t)=1/sqrt(3)*exp(=5000*t).*sin(5000*sqrt(3)*t);
15
16 subplot(211)
17 impulse(RLC_system, tfinal), grid on % compute and plot the impulse response for t =[0, tfinal]
18 hold on, plot(t, y_i(t), 'r.') % plot y_i(t) on the same axes
19 legend('Matlab impulse response', 'y_i(t)')
20
21 subplot(212)
22 step(RLC_system, tfinal), grid on % compute and plot the step response for t =[0, tfinal]
23 hold on, plot(t, y_s(t), 'r.') % plot y_s(t) on the same axes
24 legend('Matlab step response', 'y_s(t)')
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Figure 4.2: Response of the RLC electrical circuit to impulse and step inputs

(d) The simulation of the system response for any input signal can be obtained in
MATLAB with the function lsim. The RLC response to a sinusoidal input u1(t) =
sin(5000t) can be obtained, for example, with the code from Listing 4.2 and the
results are shown in Figure 4.3.

Listing 4.2: RLC_sin_response.m
1 close all
2 clear all
3 clc
4 % plot the impulse and step response of a system
5
6 % input transfer function of the system
7 RLC_system = tf(1e8, [1 1e4 1e8]); % transfer function H(s) = 10^8/(s^2+10^4s+10^8)
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8
9 tfinal = 0.01; % final time

10 t=0:tfinal/150:tfinal; % create the time vector for plotting y_i and y_s
11
12 % create input vector u1(t) = sin(5000*t)
13 u1 = sin(5000*t);
14
15 % compute the system response to the input u1, over the time t
16 y_sin=lsim(RLC_system, u1, t);
17
18 % plot the input signal and the system response on the same axes
19 plot(t, u1, t, y_sin, 'LineWidth', 2), grid on
20 xlabel('time (sec)'), ylabel('Amplitude'), title('System response to a sinusoidal input')
21 legend('input: sin(5000t)', 'system response')
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Figure 4.3: Response of the RLC electrical circuit to a sinusoidal input

SE 4.2 Consider the control of a hard disk drive using a PD (proportional-derivative) controller,
as shown in the block diagram from Figure 4.4 ([9]-p.958). The inputs are the desired
position of the disk drive head r(t) and a disturbance d(t) while the output is the actual
disk drive head position y(t).

Kp

Kd

r(t)

s
s
1

s+20
1

s+1000
5000 y(t)u(t)

d(t)

e(t)

PD controller Motor coil Motor load

a(t)

x(t)

Figure 4.4: PD control of a HDD

Perform a steady-state analysis of the control system, for a step reference input
r(t) = 10, t ≥ 0 and a constant disturbance d(t) = 5, t ≥ 0. Determine the steady-state
value of the output (yss), the steady-state error (ess), and the steady-state value of the
control signal (uss).

Solution:
We will show two methods for doing steady state analysis: one that uses the equations

derived from the block diagram, and one that uses directly the block diagram to perform
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the analysis.
Method 1 - Equation based steady-state analysis

Using the rules of block diagram algebra, the block diagram of the control system
can be simplified to the one presented in Figure 4.5. The Laplace transforms of the
signals of interest are denoted on the block diagram as E(s), U(s) and Y (s) and the
inputs are R(s) and D(s). The equivalent transfer function of the PD controller and

R(s)
H2(s)

Y(s)U(s)

D(s)

E(s)

PD controller

and motor coil
Motor load

H1(s)

Figure 4.5: PD control of a HDD. Simplified block diagram

motor coil resulted as:

H1(s) = 5000(Kp + Kds)
s + 1000 (4.3)

and for the motor load the equivalent transfer function is:

H2(s) = 1
s(s + 20) . (4.4)

The steady-state values of the signals will be computed using the final value theorem
(see Appendix A). For example, the final value of the output is:

yss= = lim
t→∞

y(t) = lim
s→0

sY (s)

The first step is to determine the expression of Y (s) as a function of H1(s), H2(s)
and also the inputs R(s) and D(s). From the block diagram in Figure 4.5, we know
that:

Y (s) = H2(s) (D(s) + U(s)) = H2(s) (D(s) + H1(s)E(s))
= H2(s) (D(s) + H1(s)(R(s) − Y (s))) .

If we further extract Y (s), we obtain:

Y (s) = H1(s)H2(s)
1 + H1(s)H2(s)R(s) + H2(s)

1 + H1(s)H2(s)D(s) (4.5)

By replacing (4.3) and (4.4), the relation (4.5) becomes:

Y (s) = 5000(Kp + Kds)
s(s + 20)(s + 1000) + 5000(Kp + Kds)R(s) +

+ s + 1000
s(s + 20)(s + 1000) + 5000(Kp + Kds)D(s)

Next, we replace R(s) = L {10} = 10
s

and D(s) = L {5} = 5
s

and use the final value
theorem to determine the steady-state value of the output:

yss = lim
s→0

sY (s) = 10 + 1
Kp

We determine now the steady-state error ess, starting with the expression of E(s).
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From the block diagram, the Laplace transform of the error signal is:

E(s) = R(s)−Y (s) = R(s)−H2(s)(D(s)+U(s)) = R(s)−H2(s)(D(s)+H1(s)E(s)).

Hence

E(s) = 1
1 + H1(s)H2(s)R(s) − H2(s)

1 + H1(s)H2(s)D(s). (4.6)

We replace now H1(s), H2(s), R(s) = 10
s

and D(s) = 5
s

into (4.6) and compute ess

with the final value theorem:

ess = lim
s→0

sE(s) = − 1
Kp

.

So due to a persistent disturbance, the steady-state error is not zero, but it can still
be made very small by designing the Kp parameter of the controller.
In order to obtain the steady-state value of the signal u, we compute U(s) from the
block diagram:

U(s) = H1(s)E(s) = H1(s)
1 + H1(s)H2(s)R(s) − H1(s)H2(s)

1 + H1(s)H2(s)D(s), (4.7)

replace H1(s), H2(s), R(s) and D(s) into (4.7), apply the final value theorem and
obtain:

uss = lim
s→0

sU(s) = −5.

Method 2 - Block diagram based steady-state analysis
Steady-state analysis if often done in engineering directly on the block diagram,
which is more intuitive and permits to determine simultaneously the steady-state
values of all the signals of interest in the system.

1. The first step is to decompose each block into simple/elementary transfer func-
tions (like pure gain, integrator, derivative, first-order element-real poles/zeros,
second order element-pair of complex poles/zeros). In our particular case, the
system from Figure 4.4 is already decomposed into elementary transfer functions.

2. The second step is to replace each transfer element with its steady-state equiva-
lent:

the integrator block becomes an "open-circuit" with zero steady-state input,
the derivative block becomes an "open-circuit" with zero steady-state output,
all other blocks become simple gains (all "s" are set to zero).

The rules listed above are derived from the fact that in steady-state, for constant
inputs, all signals on the block diagram should be constant. In particular, for an
integrator block this means that the input is zero while for a derivative block -
the output is zero (see Figure 4.6).

Figure 4.6: Steady-state of an integrator block and a derivative block

Figure 4.7 shows the resulting steady-state block diagram.
The steady state values of all the signals involved can be determined directly on the
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Kp

Kd

1

20
5

y(t)uss

dss=5

essrss=10

ass=0

xss=0

Figure 4.7: Steady-state diagram of PD control of a HDD

block diagram:
xss = 0 =⇒ uss + dss = 0 =⇒ uss = −5,

uss = 5kpess =⇒ ess = − 1
kp

,

rss − yss = ess =⇒ yss = 10 + 1
kp

,

The power of this analysis method comes from the fact that one can change the steady
state values of the reference inputs and disturbance inputs, and tune the controller
parameter Kp and Kd such that some steady-state performance requirements are
met for an entire range of values (operating regime).

4.2 Proposed exercises
PE 4.1 Calculate the system response to a unit step input signal, when the transfer function is:

(a) H(s) = s

s2 − 1

(b) H(s) = 1
s2 + 2s + 2

PE 4.2 Calculate the systems response to an ideal impulse signal, when the transfer function is:
(a) H(s) = s

s2 − 1

(b) H(s) = s + 1
s2 + 1

PE 4.3 Consider a first-order system with the transfer function:

H(s) = K

Ts + 1
(a) Use the MATLAB functions tf and step or Simulink to plot the step response of the

system when:
(i) K = 1, T = 1
(ii) K = 3, T = 1
(iii) K = 1, T = 3
(iv) K = 1, T = 6

(b) Compare the plots and discuss the influence of the gain K and the time constant T
on the system response.

(c) Determine the settling time for all cases.
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PE 4.4 Consider a second-order system with the transfer function:

H(s) = K
1

ω2
n

s2 + 2ζ

ωn
s + 1

= Kω2
n

s2 + 2ζωns + ω2
n

(a) Use the MATLAB functions tf and step or Simulink to plot the step response of the
system when:

(i) K = 1, ωn = 1, ζ = 0
(ii) K = 1, ωn = 3, ζ = 0
(iii) K = 1, ωn = 1, ζ = 0.1
(iv) K = 1, ωn = 1, ζ = 0.6
(v) K = 1, ωn = 1, ζ = 1
(vi) K = 1, ωn = 1, ζ = 2
(vii) K = 3, ωn = 1, ζ = 0.6

(b) Compare the plots (i) and (ii) and discuss the influence of the natural frequency ωn

on the system response.
(c) Compare the plots (iii), (iv), (v) and (vi) and discuss the influence of the damping

factor ζ on the system response.
(d) Compare the plots (iv) and (vii) and discuss the influence of the gain K on the

system response. Determine the settling time from the plot.

PE 4.5 Consider the plots in Figure 4.8 representing the unit step responses of eight systems.
Match the step response plots to the following transfer functions:

H1(s) = 0.5
s + 0.5 , H2(s) = 2

s + 2 , H3(s) = 4
s + 2

H4(s) = 1
s2 + 1 , H5(s) = 9

s2 + 9

H6(s) = 9
s2 + 0.9s + 9 , H7(s) = 9

s2 + 3s + 9 , H8(s) = 18
s2 + 3s + 9

PE 4.6 Consider the the linearized model of the pendulum from PE 1.1 (see Figure 1.6), obtained
for small variations of the angle x(t) around the equilibrium point x0 = 0:

ml2ẍ(t) = M(t) − mglx(t) − blẋ(t) (4.8)

where:

x(t) is the angle position of the pendulum (output signal)
M(t) is the moment of force (torque) at the pivot point (input signal)
m is the mass of the ball, m = 0.5 kg
l is the length of the rod, l = 1 m
g is the acceleration of gravity, g = 9.8 m/s2

b is the viscous friction coefficient, b = 0.5
(a) Obtain the transfer function between the input M(t) and the output x(t).
(b) Plot the step response of the system using the MATLAB function step.

PE 4.7 Consider the linearized models of the MagLev train from SE 1.2:
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Figure 4.8: Step responses

(I) Electromagnetic suspension (EMS):

m∆z̈(t) − 2mg

z0
∆z(t) + 2

√
mgk

z0
∆i(t) = 0 (4.9)

(II) Electrodynamic suspension (EDS):

m∆z̈(t) + 2mg

z0
∆z(t) − 2

√
mgk

z0
∆i(t) = 0 (4.10)

where:

∆i(t) is the variation of the current around the equilibrium value (the input signal),
∆z(t) - the variation of the vertical position of the train around the equilibrium value
z0 (the output signal),
m = 104 kg (the mass of the train),
g = 10 m/s2 (the acceleration of gravity),
k = 10−3 Nm2/A2 (the levitation force constant),
z0 = 10−2 m (the operating air-gap).

(a) Determine the transfer function from the input current ∆i(t) to the output position
∆z(t), for both cases.

(b) Plot the impulse response of the open-loop systems for a period of time of 0.1 seconds
(case I) and 1 second (case II). Use the MATLAB function impulse.

(c) Analyze and explain the results.
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PE 4.8 For the feedback control systems shown in Figure 4.9 and a unit step input r(t) = 1, t ≥ 0:

R(s) 2

s+10

Y(s)E(s)
10

P-controller plant

R(s) 2

s+10

Y(s)E(s) 3s+1

s
PI-controller plant

a) b)

Figure 4.9: Closed-loop control systems

(a) Compute the steady-state value of the output.
(b) Compute the steady-state error.
(c) Plot the unit step response and determine the steady-state error from the plot.

PE 4.9 For the systems represented by the block diagrams shown in Figure 4.10.

R(s) 1

s(s+4)

Y(s)
k

R(s) 100

s2
Y(s)

ks

a) b)

Figure 4.10: Closed-loop systems

(a) Calculate the steady-state error for a ramp input, r(t) = t, t ≥ 0
(b) Determine the range of values for k, (k > 0) for which the step response is overdamped

(with no overshoot).

PE 4.10 Consider the control system shown in the Figure 4.11, with k > 0.

R(s) 1

s+2

Y(s)k

s

Figure 4.11: Block diagram of a feedback system

(a) Determine the steady state error for a step signal r(t) = 3, t ≥ 0.
(b) Determine the steady state error for a ramp signal r(t) = t, t ≥ 0.
(c) Determine the values of k so that the step response of the closed-loop system is

overdamped.

PE 4.11 A position control system is described by the block diagram shown in Figure 4.12, where
Kp > 0.
(a) Determine the steady-state error for a step input r(t) = 2, t ≥ 0.
(b) Determine the value of Kp that will result in a steady-state error ess = 0.1 for a

ramp input r(t) = 100t, t ≥ 0.
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R(s) 1

s(0.001s+1)

Y(s)
KP

Figure 4.12: Block diagram of a feedback system

PE 4.12 Consider a general second-order system with the transfer function:

H(s) = ω2
n

s2 + 2ζωns + ω2
n

.

Show the area where the poles can be located in the complex plane, if the specifications
for a step input are:

(a) Damping factor ζ ≥
√

3
2 .

(b) Damping factor ζ ≥
√

2
2 and settling time ts < 4 sec.

(c) Damping factor ζ ≤
√

2
2 , settling time ts < 4 sec and peak time tp = π

3 sec.

PE 4.13 The predator-prey problem, [4], refers to an ecological system in which we have two
species, one of which feeds on the other. This type of system has been studied for decades
and is known to exhibit interesting dynamics. A simple model for this situation can
be constructed by keeping track of the rate of births and deaths of each species. Let
H(t) represent the number of hares (prey) and let L(t) represent the number of lynxes
(predator). The input u corresponds to the growth rate for hares, which we might modulate
by controlling a food source for the hares. The dynamics of the system are modeled as:

dH(t)
dt

= (1.6 + u(t))H(t)
(

1 − H(t)
125

)
− 3.2H(t)L(t)

50 + H(t) , H ≥ 0,

dL(t)
dt

= 0.63.2H(t)L(t)
50 + H(t) − 0.56L(t), L ≥ 0

We first linearize the system around the equilibrium point of the system (He, Le, ue)
which can be determined numerically to be He = 20.6, Le = 29.5 for ue = 0. This yields a
linear dynamical system:

dz1(t)
dt

= 0.13z1(t) − 0.93z2(t) + 17.2u(t) (4.11)

dz2(t)
dt

= 0.57z1(t) (4.12)

where z1(t) = H(t) − He and z2(t) = L(t) − Le (i.e. the variation of the number of hares
and lynxes around the equilibrium values).

The block diagram for this system is shown in Figure 4.13, where Z1(s) = L {z1(t)},
Z2(s) = L {z2(t)}, U(s) = L {u(t)}.
(a) Apply the Laplace transform of relations (4.11) and (4.12) and determine the transfer

functions G1(s), G2(s) and G3(s), as shown in Figure 4.13.
(b) Build the block diagram in Simulink.
(c) Simulate the system for a step input, plot the evolution of z1(t) and z2(t) and explain

the result.
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G2(s)

G3(s)

G1(s)
U(s) Z2(s)Z1(s)

Figure 4.13: Block diagram of the predator-prey system

PE 4.14 Consider the electrical circuit from Figure 4.14, representing an RC filter, with parameter
values R = 100Ω, C = 100µF .

Figure 4.14: RC filter

(a) Determine the transfer function H(s) = U2(s)
U1(s) .

(b) Using the inverse Laplace transform, calculate the response of the system u2(t), to a
sinusoidal input u1(t) = sin(ωt), with ω = 100rad sec−1.

(c) Simulate in MATLAB the system’s response for u1(t) = sin(ωt) on the interval 0-0.5
seconds using the lsim function.

(d) Plot and compare the results from points (b) and (c).
(e) Plot the input u1(t) and output u2(t) on the same figure. Analyze the difference

between the input and output signals in terms of amplitude (peak-to-peak) and peak
time moments (phase shift).



5 Stability analysis

Topics: Stability, Routh-Hurwitz method

5.1 Solved exercises

SE 5.1 Consider the problem of Pogo vibrations for powerful liquid rocket vehicles, [30, 31]. These
self-excited vibrations are caused by instabilities arising from the interaction between the
vehicle structure and the propulsion system - Figure 5.1 ([31]).

Vehicle

structure

Propulsion

system

S
tru
ctu

ra
l
a
cce

le
ra
tio
n

F
o
rc
e
s

Figure 5.1: Closed loop representation of Pogo vibration dynamics, [31]

Let the parameter k denote the coupling strength between the subsystems. In [30],
a linear model is developed with different parameter configurations. The characteristic
equation of the system is:

s4 + a3s3 + a2s2 + a1s + a0 = 0

. Consider the following parameter configuration: a3 = 1.212, a2 = 2.014 − k, a1 = 1.212,
a0 = 1.
(a) Analyze the stability of the system for k = 1.
(b) Determine the range of k for which the system is stable.

Solution:
(a) For k = 1 the characteristic equation becomes:

s4 + 1.212s3 + 1.014s2 + 1.212s + 1 = 0. (5.1)

In order to asses the stability we will use the Routh-Hurwitz method. First we check
if all the coefficients are positive and non-zero (necessary condition). For (5.1) this
holds.
Next, we construct the Routh array:

43
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s4 : 1 1.014 1
s3 : 1.212 1.212
s2 : α1 α2
s1 : α3 α4
s0 : α5

The first line is given by the odd coefficients, while the second line by the even ones.
The coefficients of the subsequent lines are calculated as follows:

3rd line: α1 = −

∣∣∣∣∣ 1 1.014
1.212 1.212

∣∣∣∣∣
1.212 = 0.014, α2 = −

∣∣∣∣∣ 1 1
1.212 0

∣∣∣∣∣
1.212 = 1

4th line: α3 = −

∣∣∣∣∣1.212 1.212
α1 α2

∣∣∣∣∣
α1

= −

∣∣∣∣∣1.212 1.212
0.014 1

∣∣∣∣∣
0.014 = −85.35, α4 = −

∣∣∣∣∣1.212 0
α1 0

∣∣∣∣∣
α1

= 0

5th line: α5 = −

∣∣∣∣∣α1 α2
α3 α4

∣∣∣∣∣
α3

= −

∣∣∣∣∣ 0.014 1
−85.35 0

∣∣∣∣∣
−85.35 = 1

After all these calculations the Routh array becomes:

s4 : 1 1.014 1
s3 : 1.212 1.212
s2 : 0.014 1
s1 : -85.35 0
s0 : 1

Finally, in order to determine stability, we look at the signs of the elements from the
first column. For the system to be stable, all elements must have the same sign (or,
in this case, they must be positive). Because we have one negative element −85.35
the system is unstable. Two signs changes on the first column, from the third to the
fourth line, and from the fourth line to the fifth, means that we have two unstable
poles (i.e. two poles in the right half-plane).
Indeed, if we calculate numerically the roots of the polynomial (for example using
the roots function in MATLAB) we obtain: r1,2 = 0.2786 ± 0.9604i, r2,3 = −0.8846 ±
0.4663i. The first pair of complex roots has a positive real part.
The strength of the analytical Routh-Hurwitz method here relies on the fact the
we assessed the stability without having to calculate explicitly all the poles of the
system.

(b) The condition that all coefficients must be positive and non-zero implies that:

2.014 − k > 0 ⇒ k ∈ (−∞, 2.014). (5.2)

We further construct the Routh array:

s4 : 1 2.014-k 1
s3 : 1.212 1.212
s2 : α1 α2
s1 : α3 α4
s0 : α5

The unknown elements are calculated as follows:
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3rd line: α1 = −

∣∣∣∣∣ 1 2.014 − k
1.212 1.212

∣∣∣∣∣
1.212 = 1.014 − k, α2 = −

∣∣∣∣∣ 1 1
1.212 0

∣∣∣∣∣
1.212 = 1.

4th line: α3 = −

∣∣∣∣∣1.212 1.212
α1 α2

∣∣∣∣∣
α1

= 1.212(k − 0.014)
k − 1.014 , α4 = −

∣∣∣∣∣1.212 0
α1 0

∣∣∣∣∣
α1

= 0.

5th line: α5 = −

∣∣∣∣∣α1 α2
α3 α4

∣∣∣∣∣
α3

= 1.

Now the table becomes:

s4 : 1 2.014-k 1
s3 : 1.212 1.212
s2 : 1.014-k 1

s1 : 1.212(k − 0.014)
k − 1.014 0

s0 : 1

Finally, we impose that all the elements of the first column (marked in a rectangle)
are strictly positive:

1.014 − k > 0 ⇒ k ∈ (−∞, 1.014), (5.3)

1.212(k − 0.014)
k − 1.014 > 0 ⇒ k ∈ (−∞, 0.014) ∪ (1.014, ∞). (5.4)

The range of k for which the system is stable is given by the set that respects all three
conditions (5.2), (5.3) and (5.4) simultaneously (intersection) ⇒ k ∈ (−∞, 0.014).
The strength of the Routh-Hurwitz method lies in the possibility to determine
analytically the range of a parameter that preserves stability. The alternative method
to compute the roots of a fourth-order polynomial with k as a parameter, would
require very complicated calculations. Numerically, this could be done by computing
the roots exhaustively for every possible value of k.

5.2 Proposed exercises
PE 5.1 Determine the poles, plot the impulse response and the step response and comment on

the stability of the systems with the following transfer functions:

H1(s) = 4
s2 + 5s + 4 , H2(s) = 4

s2 + s + 4 , H3(s) = 4
s2 − 4 , H4(s) = 4

s2 − s + 4 ,

H5(s) = 4
s2 + 4 , H6(s) = 4

s(s + 4) , H7(s) = 4
(s2 + 4)2

Hint. Use the MATLAB functions impulse and step and place both responses for each
transfer function in the same figure (use subplot). For H5(s) and H7(s) set the final time
of simulation at 30 sec.

PE 5.2 Determine the stability of the following characteristic polynomials using the Routh-Hurwitz
criterion:
(a) s2 + 4s + 1
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(b) s3 + 2s2 + 5s + 8
(c) s3 + 2s2 − 5s + 8
(d) s4 + 2s3 + 3s2 + 4s + 5
(e) s5 + 2s4 + 3s3 + 4s2 + 6

PE 5.3 Use the Routh-Hurwitz criterion to determine the range of k for a stable system, if the
characteristic polynomial is:

(a) s3 + s2 + s + k

(b) s4 + 2s3 + 3s2 + 4s + k

PE 5.4 Consider the closed-loop system shown in Figure 5.2.

R(s) 1

(s+1)(s2+2s+2)

Y(s)
k

Figure 5.2: Closed-loop system

(a) Using the Routh-Hurwitz criterion find the range of k to ensure stability of the
closed-loop system.

(b) Plot the roots of the characteristic equation for k ∈ [0, 15] and discuss the location
of the closed-loop poles and system stability.

(c) Find the value of k that makes the system’s step response oscillate and determine
the frequency and period of oscillation. Plot the step response of the closed-loop
system for this value of k and compare the period of oscillation from the plot with
the one calculated.

PE 5.5 Consider the simple pendulum system modeled as in PE 1.1. The nonlinear differential
equation describing this system (when all constants have been replaced) is:

ẍ(t) = 2M(t) − 9.8 sin x(t) − ẋ(t)

where M(t) is the torque at the pivot point and x(t) is the angular position of the pendulum.
Prove that the systems has two equilibrium points, one stable and one unstable: (0, 0)

and (π, 0).
Hint. Linearize the system in each equilibrium point and asses the stability by calculating

the poles. A stable/unstable linearized system means a stable/unstable equilibrium point.

PE 5.6 Consider the linearized models of the Maglev trains from SE 1.2 built based on magnetic
attraction (EMS) or magnetic repulsion (EDS). If all parameters in the model are replaced
by their constant values, the transfer functions from the input (current) to the output
(vertical position) are:

HEMS(s) = − 0.2
s2 − 2000 , HEDS(s) = 0.2

s2 + 2000
(a) Plot the impulse response for each case and comment on the system stability.
(b) Compute the poles of the transfer functions and analyze the stability.
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PE 5.7 Consider the linearized predator-prey model from PE 4.13:

dz1(t)
dt

= 0.13z1(t) − 0.93z2(t) + 17.2u(t) (5.5)

dz2(t)
dt

= 0.57z1(t) (5.6)

where z1(t) and z2(t) are the variation of the number of hares and lynxes, respectively,
around the equilibrium values. The input u(t) is the growth rate for hares, which may be
considered proportional with the food source for the hares.
(a) Prove that the system is unstable.
(b) Consider a feedback law of the form u(t) = −k · z1(t). Find a gain k for which the

system is stable.

PE 5.8 Consider the control loop for a simplified model of an aircraft as in Figure 5.3, [9]. The
setpoint r(t) is the desired orientation and the output y(t) is the actual orientation. The
controller has a positive gain k (k > 0), a negative zero at −1 and a negative pole (p > 0).

r(t) y(t)
k

s+1

s+p

1

s(s-1)

controller process

Figure 5.3: Simplified aircraft control loop

Use the Routh-Hurwitz criterion to determine the stability conditions for the parameters
k and p of the controller.

PE 5.9 Consider the closed-loop system from Figure 5.4.

R(s) Y(s)s+a

s3+as2+(a-1)s+a-1

1

s+a

Figure 5.4: Closed-loop system

(a) Determine the range of the parameter a such that the closed-loop system is stable.
(b) Determine the location of the closed-loop poles when the system is marginally stable.

PE 5.10 Consider the pupillary light reflex as an example of a biological feedback system. A block
diagram of the linearized dynamics is shown in Figure 5.5, [20]. The input is the (change
in) intensity of ambient light (I(t)) and the output is the (change in) pupil area (A(t)).
An increase of light received by the retina is sensed and fed back through a neural pathway
and, in the end, the iris muscle is commanded to contract/relax, thus reducing the pupil
area.

Consider the following power series approximation for the time delay:

e−sD = 1 − Ds + D2s2

2 − D3s3

6 . (5.7)
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I(s) A(s)K1e-sD

(1+Ts)3

Iref

Pupil area

Iris muscles

Intensity of

ambient light

Retina + Neural activity

Figure 5.5: Block diagram for the linearized dynamics of the pupillary control system

The characteristic equation of the system can be calculated as:

(T 3 − KD3

6 )s3 + (3T 3 + KD2

2 )s2 + (3T − KD)s + (1 + K) = 0, (5.8)

with K = K1Iref .
For the parameter values D = 0.18s and T = 0.1s, determine the range of K for which

the system is stable using the Routh-Hurwitz method.



6 Root Locus

Topics: Root locus analysis, open/closed-loop poles, stability analysis, transient
response

6.1 Solved exercises
SE 6.1 Phase-locked loops are widely used in computers, telecommunications and electronic

applications, but are encountered also in biology as synchronization mechanisms. Consider
the application to a precision motor speed control system - Figure 6.1, [14].

Figure 6.1: Phase-lock loop for a motor speed control system (adapted from [14])

The digital encoder on the feedback generates a train of impulses, with a frequency
related to the motor speed. The input reference signal is also a sequence of impulses. The
phase detector element has the role of detecting the phase difference between these two
signals. For the analysis presented here, as a simplification, we consider as feedback and
reference signals directly the frequency (in pulses/sec), and the phase detector becomes a
simple gain Kp.

The performance of the phase-locked loop can be imposed through the filter circuit,
which acts as a controller, minimizing the synchronization error e. (For an example of
filter design and discussion see the data sheet from National Semiconductor [19]). Here we
will use the simple filter:

G(s) = 1 + R2Cs

R1Cs
. (6.1)

The transfer function of the motor is:

H(s) = 10
s(1 + 0.05s) . (6.2)
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Consider the following values for the parameters: Kp = 0.06, Ka = 20, Ke = 5.73
pulse/rad, N = 1, R1 = 2 · 106 Ω, C = 1 µF = 10−6F .
(a) Sketch the root locus for all values of the parameter R2 ∈ [0, ∞).
(b) Analyze the closed-loop system stability and transient behavior for R2 ∈ [0, ∞).

Solution:
(a) Root locus

The open loop transfer function of the system from Figure 6.1 is the product of
all transfer functions around the loop:

G0(s) = KpKaKeNG(s)H(s) = 34.38(1 + 10−6R2s)
s2(1 + 0.05s) . (6.3)

The characteristic equation for the system is:

1 + G0(s) = 0, or 1 + 34.38(1 + 10−6R2s)
s2(1 + 0.05s) = 0 (6.4)

We have to rearrange the characteristic equation so that the parameter of interest
appears as a multiplying factor, in the general form:

1 + K · P (s) = 0

Therefore, we rewrite (6.4) as follows (common denominator):

s2(1 + 0.05s) + 34.38(1 + 10−6R2s)
s2(1 + 0.05s) = 0, or s2(1+0.05s)+34.38(1+10−6R2s) = 0

After some calculations, the characteristic equation becomes:

s3 + 20s2 + 678.6 · 10−6R2s + 687.6 = 0.

We further isolate the term that includes R2 (the parameter of interest):

(s3 + 20s2 + 687.6) + 6.786 · 10−4R2s = 0

and divide the entire equation with the term written between parentheses:

1 + R2
678.6 · 10−6s

s3 + 20s2 + 687.6 = 0.

To simplify the procedure, we may introduce the notation K = R2 · 678.6 · 10−6

and the equation becomes:

1 + K
s

s3 + 20s2 + 687.6 = 0. (6.5)

We will sketch the root locus for the new equivalent characteristic equation
(6.5), where the new "open-loop" transfer function is P (s) = s

s3 + 20s2 + 687.6 .

P (s) has:
– one open-loop zero z1 = 0
– three open-loop poles p1 = −21.49, p2 = 0.75 + 5.6i, p3 = 0.75 − 5.6i.

The number of open-loop zeros and open-loop poles are nz = 1 and np = 3,
respectively.
The root locus will have np = 3 branches, starting (when K = 0) from the
open-loop poles. As K increases towards infinity, one branch will approach the
zero z1 and the other two will approach two asymptotes, symmetrically about
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the real axis. Indeed, the number of asymptotes is equal to np − nz = 2.
The center of the asymptotes is:

σ =
∑

poles −
∑

zeros

np − nz
= −21.48 + 0.75 + 5.6i + 0.75 − 5.6i − 0

3 − 1 = −10

The angles of the two asymptotes with respect to positive real axis are:

Φq = 2q + 1
np − nz

· 180◦, q = 0, np − nz − 1

Φ1 = 2 · 0 + 1
2 · 180◦ = 90◦, Φ2 = 2 · 1 + 1

2 · 180◦ = 270◦.

Figure 6.2 shows a sketch with the open-loop poles and zero, the two asymptotes
and the segment on real axis which is part of the root locus.
The root locus lies on the real axis to the left of an odd number of open-loop
poles and zeros: in our case, the segment between the zero z1 and the real pole
p1.

Re

Im

0.75

5.6i

-5.6i

p1=-21.49 �=-10 z1=0

p2

p3

Figure 6.2: Root locus sketch - Open-loop poles, zero and the asymptotes

We can further deduce that as K goes from 0 to ∞, the real pole moves towards
the zero, and the complex conjugate poles will move towards the asymptotes
(symmetrical in respect with the real axis). The new sketch of the root locus is
shown in Figure 6.3.
We see that as K increases (that is R2 increases), the closed-loop complex poles
move from the right half-plane to the left half-plane , which means that the
system is unstable for small values of K. Then, for larger values of K, the
closed-loop system becomes stable.
It is of practical interest to determine the value of K for which the closed-loop
poles are on the imaginary axis (when the system is marginally stable) and the
location of these poles. From the characteristic equation (6.5) written as:

s3 + 20s2 + Ks + 687.6 = 0

we may calculate the value of K that makes the system marginally stable, using
the Routh-Hurwitz method.
We build the Routh array as given below:
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p2
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Figure 6.3: Root locus sketch

s3 : 1 K
s2 : 20 687.6

s1 : 20K − 687.6
20

s0 : 687.6

The system is marginally stable when the first column has a zero element. This
means that

20K − 687.6
20 = 0 ⇒ K = 34.38 (6.6)

The values of the closed-loop poles on the imaginary axis can be found by simply
replacing the value of K in the characteristic equation:

s3 + 20s2 + 34.38s + 687.6 = 0

and computing the roots:
s2(s + 20) + 34.38(s + 20) = 0 ⇒ (s2 + 20)(s + 34.38) = 0

s1,2 = ±5.86i, s3 = −34.38
The complex (imaginary) roots s1,2 are the intersection of the root locus with
the imaginary axis.

(b) The root locus from Figure 6.3 shows the location of the closed-loop poles of the
system as the parameter K is varied between 0 and ∞. For our problem, the

parameter of interest is R2, given by: R2 = K · 106

678.6 . When K increases from 0
to ∞, R2 will increase also between the same limits. If K = 34.38, the parameter

R2 = 34.38 · 106

678.6 = 50 · 103 Ω.
From the root locus plot we may summarize the following observations related to the
closed-loop system stability and transient behavior:

For any value of K ∈ [0, ∞) (or R2 ∈ [0, ∞)), the closed-loop system has three
poles and two of them are always complex conjugate. This means that the
system response is oscillatory, for any positive K (or R2).
As K increases from 0 to 34.38 (or R2 increases from 0 to 50·103), the closed-loop
system is unstable because the complex poles move from the location of the
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open-loop poles p2 and p3 towards the imaginary axis, but the paths are located
in the right half-plane. The third pole (real negative pole) moves in the same
time in the left half-plane, but two out of three poles of the closed-loop system
have positive real parts, which makes the closed-loop system unstable.
The system response will exhibit oscillations growing in amplitude.
For K = 34.38 or R2 = 50 · 103 the closed-loop system is marginally stable
because it has two imaginary roots located at s1,2 = ±5.86i. The system
response will oscillate with constant amplitude.
As K increases over the value 34.38 (or R2 over 50 · 103), the complex conjugate
closed-loop poles move from the imaginary axis towards the asymptotes, along
to their paths located in the left half-plane (they have negative real parts).
The third pole is also on the left half-plane, moving on the negative real axis
between −21.49 and 0. The closed-loop system is stable and, although the
system response is underdamped, the oscillations decrease in amplitude.

SE 6.2 The heart electrical conduction system, which is responsible for commanding the heart’s
pumping action (muscle electrical stimulation leads to contraction), may suffer from different
abnormalities or can be even blocked. For such cardiac problems a device called pacemaker
is implanted in the human body, which transmits the necessary electrical stimulus that
approximates the normal function of the system. Rate responsive pacemakers have control
strategies such that the pacemaker changes the electrical stimulus transmitted to the heart
in non-resting scenarios like exercise. One practical control variable for rate-responsive
pacing is the oxygen saturation in the venous blood (SO2). Consider the simplified (and
linearized) open-loop dynamics of a SO2 pacemaker cardiovascular system, [16]:

G(s) = Measured SO2
Prescribed SO2

= KC · e−Tds · A · OXC

1 + Ts
(6.7)

where KC is the pacemaker controller gain, Td - the time delay, T - the time constant, A
- a parameter depending on the exercise level and OXC - the oxygen consumption rate.
The block diagram of the closed-loop system is presented in Figure 6.5.

Figure 6.4: Pacemaker

SO2
Kc�e-Tds�

reference

SO2A�OXC

1+Ts

G(s)

Figure 6.5: Closed-loop SO2 pacemaker cardiovascular system, [16]

The time delay element can be approximated as (2/1 Padé approximation):

e−Tds ≈
1 − 2

3Tds + 1
6T 2

d s2

1 + 1
3Tds

. (6.8)

For an exercise level of 25W and the parameter values A = 0.00183, Td = 8.79,
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OXC = 0.0841, T = 15, the transfer function (6.7) becomes:

G(s) = KC
0.00183 · 0.0841 · (1 − 5.86s + 12.87s2)

(1 + 2.93s)(1 + 15s) =

= KC · 1.53 · 10−4 12.87s2 − 5.86s + 1
43.95s2 + 17.93s + 1 . (6.9)

(a) Draw the root locus of the closed-loop system for KC ∈ [0, ∞).
(b) Analyze the closed-loop stability and transient behavior for all positive values of K.

Solution:
(a) In order to sketch the root locus we rewrite the equation (6.9) as

G(s) = K
s2 − 0.46s + 0.08
s2 + 0.41s + 0.02 (6.10)

where

K = KC · 1.53 · 10−4 12.87
43.95 = KC · 4.5 · 10−5

The open-loop transfer function from (6.10) can be factored in terms of two poles

and two zeros: G(s) = K
(s − z1)(s − z2)
(s − p1)(s − p2) , since the numerator and denominator are

both second-order polynomials.
The characteristic equation (see Figure 6.5) is:

1 + G(s) = 1 + K · P (s) = 0, or 1 + K
s2 − 0.46s + 0.08
s2 + 0.41s + 0.02 = 0 (6.11)

First, we determine nz = 2 open-loop zeros and np = 2 open-loop poles as the
roots of the numerator and denominator polynomials of G(s):

zeros: z1,2 = 0.23 ± 0.16i, poles: p1 = −0.34, p2 = −0.07

Because the number of poles equals the number of zeros, there are no asymptotes.
Each closed-loop pole will move from one open-loop pole towards an open-loop
zero as the gain K increases from zero to infinity.
Figure 6.6 shows a sketch with the open-loop poles and zeros, and the highlighted
segment on the real axis which is part of the root locus (segment to the left of
an odd number of poles and zeros).
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0.23

0.16i

-0.16i

p1=-0.34

z1

z2

p2=-0.07

K=0

K→∞

K=0

K→∞

Figure 6.6: Root locus sketch - Open-loop poles and zeros
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We can further deduce that as K goes from 0 to ∞, the closed-loop poles
must move from the real negative values p1 and p2 and towards the complex
open-loop zeros z1, z2 located in the right half-plane and the paths must include
the highlighted segment on the real axis. All these are possible only if:

– there is a break-away point between p1 and p2,
– the root locus plot crosses the imaginary axis since it has to pass from the

left to the right half-plane, i.e. there is a value of K for which the system is
marginally stable.

The breakaway point can be calculated starting from the the characteristic
equation (6.11). We write K = − 1

P (s) = p(s). Based on (6.11) we obtain

p(s) = s2 + 0.41s + 0.02
s2 − 0.46s + 0.08 . (6.12)

The break-away point is given by the solution of the equation dp(s)
ds

= 0. Thus,
after calculating the derivative of p(s) from (6.12) and setting the numerator
equal to zero, we obtain:

−0.87s2 + 0.12s + 0.042 = 0, (6.13)

which has the solutions s1 = 0.3 and s2 = −0.16. The first solution is not valid
because is not in our interval of interest (−0.34, −0.07), so the break-away point
is:

sx = s2 = −0.16.

The intersections with the imaginary axis as K increases can be calculated
using the Routh-Hurwitz method. We use the characteristic equation (6.11) and
compute the value of K that makes the closed-loop system marginally stable.
The characteristic equation is written as:

s2 + 0.41s + 0.02 + K(s2 − 0.46s + 0.08) = 0
(K + 1)s2 + (0.41 − 0.46K)s + 0.02 + 0.08K = 0

The Routh array is:
s2 : K + 1 0.02 + 0.08K
s1 : 0.41 − 0.46K
s0 : 0.02 + 0.08K

Since K ≥ 0, the only element from the first column that can become zero so
that the system is marginally stable is the one located on the second row:

0.41 − 0.46K = 0 ⇒ K = 0.89

The intersection with the imaginary axis is obtained by replacing this value in
the characteristic equation, and we have:

1.89s2 + 0.091 = 0, with the roots s1,2 = ±0.22i

The root locus can further be sketched as in Figure 6.7.
We may also compute the value of K at the break-away point, which will be
useful for the analysis of the transient behavior of the closed-loop system. It is
one of the properties of the points located on the root locus that the absolute
value of the open-loop transfer function, computed at a specific point belonging
to the root locus (the break-away point sx in this case), is equal to 1. This
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Figure 6.7: Root locus sketch - Pacemaker Cardiovascular System

condition can be written as:

|G(s)|s=sx = 1 ⇒ Kx = |s − p1||s − p2|
|s − z1||s − z2|

|s=sx or Kx =
∣∣∣∣∣s2 + 0.41s + 0.02
s2 − 0.46s + 0.08

∣∣∣∣∣
s=sx

and the value of K at the break-away point sx = −0.16 is: Kx = 0.11.
(b) From the final plot of the root locus from Figure 6.7 the behavior of the closed-loop

system for K ∈ [0, ∞) will be as follows:
For K ∈ [0, 0.11), the closed-loop poles move on the negative real axis from
the open-loop poles p1 and p2 towards the breakaway point sx = −0.16. In this
range of K, both poles are real and negative, thus the system will be stable
and overdamped. The system response has no oscillations (the damping factor
ζ > 1).
For K = 0.11, the closed-loop poles are equal and also equal to sx (the break-
away point). The system is critically damped - the system response still has no
oscillations.
For K ∈ (0.11, 0.89) the closed-loop poles become complex with negative real
part. They are located in the left half-plane, therefore the closed-loop system is
stable and underdamped. The system response will exhibit decaying oscillations.
For K = 0.89, the closed-loop poles are located on the imaginary axis (±0.22i).
The system is marginally stable and the response will oscillate continuously.
For K > 0.89, the closed-loop poles are complex and move in the right half-plane
towards the open-loop zeros as K increases towards infinity. The real part of
the closed-loop poles is positive so the system is unstable. The response will be
exhibit oscillations growing in amplitude.

6.2 Proposed exercises
PE 6.1 Consider nine closed-loop systems with the open-loop pole-zero configurations as shown

in Figure 6.8 (a-i).
(a) Sketch the root loci using the following rules:

Root locus is symmetric about the real axis.
The number of branches equals the number of open-loop poles.
Root locus lies on the real axis to the left of an odd number of open-loop poles
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and zeros.
Root locus starts at the open-loop poles and ends at the open-loop zeros or
infinity (along the asymptotes).

(b) Assign numerical values to each pole and zero and check the root locus in MATLAB
using the zpk and rlocus functions.
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Figure 6.8: Pole-zero maps

PE 6.2 Consider the closed-loop systems with the following characteristic equations:
(1) 1 + k · s + 2

s2 = 0 (2) 1 + k · s + 4
s(s + 3) = 0

(3) 1 + k · s + 1
s2 − 2s + 2 = 0 (4) 1 + k · s − 1

(s + 1)(s2 + 1) = 0

(5) 1 + k · 1
s(s2 + 2s + 2) = 0 (6) 1 + k · s

s2 + 2s + 2 = 0

(7) 1 + k · s + 4
s(s2 + 4) = 0 (8) 1 + k · s

s(s4 − 16) = 0

(a) Sketch the root locus for k ∈ [0, ∞).
(b) Analyze the closed-loop system stability and transient behavior for all positive values

of k.
(c) Verify the root loci in MATLAB using rlocus or rltool.
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PE 6.3 Consider the closed-loop control system with the characteristic equation:

1 + ks(s + 2)
s2 + 4s + 8 = 0

(a) Sketch the root locus for k ∈ [0, ∞).
(b) Find the gain where the closed-loop poles are equal.
(c) On the root locus plot, place the symbols □ to indicate the complex closed-loop poles

for which the system has a settling time ts = 8/3 = 2.66sec.

PE 6.4 A closed-loop system has an open-loop transfer function:

G(s)H(s) = k

s(s + 1)2 , k ≥ 0

(a) Sketch the root locus for k ∈ [0, ∞).
(b) Analyze the closed-loop system stability for all positive values of k.
(c) On the root locus plot, place the symbols □ to indicate the complex closed-loop poles

for which the system has a damping factor ζ =
√

3
2 .

PE 6.5 A unity feedback system has an open-loop transfer function

G(s) = k(s + 1)
s(s − 1)(s + 6)

(a) Draw the root locus for k ∈ [0, ∞).
(b) Analyze the stability of the closed-loop system for 0 ≤ k < ∞.
(c) On the root locus plot show the closed-loop complex poles with a maximum damping

factor.

PE 6.6 Draw the root locus (including the asymptotes, intersection with imaginary axis, break-
away point) of a system with the following open-loop transfer function :

G(s) = k

s(s + 1)(s2 + 4s + 13) .

PE 6.7 The open-loop transfer function of a missile launching a satellite into space is, [9]:

G(s) = k(s2 + 18)(s + 2)
(s2 − 2)(s + 12) .

Figure 6.9: Rocket launch

(a) Draw the root locus.
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(b) Use the root locus plot to analyze the stability of the closed-loop system for k ∈ [0, ∞).

PE 6.8 Consider the feedback control system shown in Figure 6.10, where the controller has a
variable parameter, z.

R(s) 3

s+5

Y(s)s+z

s
PI-controller plant

Figure 6.10: Closed-loop control system

(a) Sketch the root locus for 0 ≤ z < ∞.
(b) Determine the value of z such that the damping factor of the dominant closed-loop

poles is ζ =
√

2
2 .

(c) Compute the overshoot of the closed-loop step response for ζ =
√

2
2 and use rltool in

MATLAB to plot the step response and check the result.

PE 6.9 Consider a closed-loop control system for a motorcycle as shown in Figure 6.12, [9]. The
motorcycle moves in a straight line at a constant speed and the controller is a robot. The
goal is to maintain the vertical position equal to the setpoint Pd (the angle with respect to
the vertical).

Figure 6.11: Motorcycle Figure 6.12: Robot controlled motorcycle - block dia-
gram, (adapted from [9])

(a) Determine the value of the constant gain K, (K > 0) such that the closed-loop
system is stable.

(b) Draw the root locus using rltool from MATLAB.
(c) Verify the result obtained at (a) using rltool.
(d) Find the gain K for which the settling time for a unit step input is ts = 1 sec, using

rltool.
(e) Analyze how the step response changes when the closed-loop poles move in the

complex plane.

PE 6.10 Consider the closed-loop control for a positioning system, as shown in the block diagram
from Figure 6.13.

The transfer function of the process to be controlled is G(s) = 1
12s2 and the controller

has the transfer function C(s).
The requirements for the closed-loop response are:
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R(s)
G(s)

Y(s)
C(s)

Controller Positioning system

Figure 6.13: Control of a positioning system

Closed-loop system is stable.
Steady-state error equal to zero for a unit step input.
Settling time less than 4 seconds.

Plot the root locus for K > 0 and discuss the requirements if the controller is:
(a) a proportional controller: C(s) = K. Can you find a value for K so that the

requirements are fulfilled? Please argue the answer. Discuss the influence of K on
the system response.

(b) a lead compensator: C(s) = K · (s + 1)
s + 4 . Analyze the location of the closed-loop

poles as K increases from 0 to ∞ and discuss the requirements.
Hint. Use the MATLAB SISO Design tool - rltool. Plot the root locus and the closed-loop
system step response, change the location of the closed-loop poles and analyze the results.



7 Frequency Response

Topics: Bode diagrams, filters, signal processing, phase margin

7.1 Solved exercises
SE 7.1 Consider an audio amplifier [2], connected to a woofer and a tweeter speakers as in Figure

7.1. The corresponding electrical circuit is shown in Figure 7.2, where we have a high pass
RC filter in parallel with a low pass RL filter.

Tweeter

Woofer

One channel

of a stereo

ampli!ier

S
1

S
2

Figure 7.1: Loudspeakers - adapted from [2]

C
L

R2
R1

Vs

V1 V2

S1
S2

Figure 7.2: Loudspeakers equivalent
circuit -adapted from [2]

(a) Determine the transfer function of each filter:
H1(s) - from the input voltage Vs to the output voltage V1,
H2(s) - from the input voltage Vs to the output voltage V2.

(b) Determine the values of the resistors R1 and R2, capacitance C and inductance L,
such that the woofer reproduces sounds with frequencies less than 3kHz, while the
tweeter reproduces sounds with frequencies lager than 3kHz.

Solution:
(a) The transfer functions H1 for the RC circuit branch corresponding to the tweeter

(S1), and H2 for the RL circuit branch corresponding to the woofer (S2), can be
determined using Kirchhoff laws and Laplace transform.

For S1 we can write:
Vs(t) = Vc(t) + V1(t) ⇒ VC(t) = Vs(t) − V1(t)

iC(t) = iR1(t) or C
dVc(t)

dt
= V1(t)

R1

61
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where iC is the current through the capacitor (or resistor R1) and VC is the
voltage drop on the capacitor. Then, we combine these relations, apply the
Laplace transform with the initial condition VC(0) = 0 and obtain:

Cs (Vs(s) − V1(s)) = V1(s)
R1

⇒ R1CsVs(s) = (sR1C + 1) V1(s)

The transfer function for the subsystem S1 is:

H1(s) = V1(s)
Vs(s) = R1Cs

R1Cs + 1 , (7.1)

For S2, we have:

Vs(t) = VL(t) + V2(t) ⇒ Vs(t) = L
diL(t)

dt
+ V2(t)

iL(t) = iR2(t) = V2(t)
R2

where iL and VL are the current and the voltage drop on the inductor, respectively.
Then, we combine the two relations above, apply the Laplace transform with
the initial condition iL(0) = 0 and obtain:

Vs(s) = L

R2
sV2(s) + V2(s).

The resulting transfer function is:

H2(s) = V2(s)
Vs(s) = 1

L

R2
s + 1

, (7.2)

(b) We will determine the combination of values for L, R2 (for S2) and C, R1 (for S1) such
that the cutoff frequency is 3 kHz (ωc = 2π · 3000 rad/sec) in both cases. Also, for S2,
all sinusoidal components with the frequency ω < ωc will have the same magnitude
as the input (low-pass filter), while for S1, the magnitude of all components with the
frequency ω > ωc will be the same as the input (high-pass filter).

The woofer (S2). The transfer function (7.2) has a Bode magnitude plot as
presented in Figure 7.3.

MdB

-20dB/dec

0 �rad/sec

(log scale)

�C2=
1
T2

Figure 7.3: Bode magnitude plot of the low-pass filter

For the low-pass filter given by H2(s) the cutoff frequency is ωc2 = 2π ·
3000rad/sec. This means that the time constant is T2 = 1/ωc2. From the
transfer function we know that T2 = L/R2. So, if we choose a resistance of 1Ω,
then L = 1/(6000π)H.
The Bode magnitude plot of the filter can be drawn directly as in Figure 7.4.
The tweeter (S1). For the Bode plot, we write the transfer function as a
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Figure 7.4: Bode magnitude diagram of the low pass filter H2

product of two factors:

H1(s) = H11(s)·H12(s) where H11(s) = R1Cs = Ks, H12(s) = 1
sR1C + 1 = 1

T1s + 1 .

In general, the Bode magnitude plot for such combination of factors is shown in
Figure 7.5 where:

MdB

-20dB/dec

0dB �rad/sec

(log scale)

�C1=
1
T1

20dB
/dec

K-1

M11

M12

M1

Figure 7.5: Bode magnitude plot of the high-pass filter

– The magnitude of H11 (M11) has a slope of 20 dB/dec and crosses the
ω-axis at K−1.

– The high frequency asymptote of H12 (M12) has a slope of −20 dB/dec and
the corner frequency ωc1 = 1/T1

– On the right of ωc1 the sum of slopes of M11 and M12 will be 0 dB/dec and
the resulting magnitude (M1) will be 0 dB, because M11 crosses the ω-axis
at the corner frequency: ωc1 = K−1 = 1

T1
.

For the high pass filter we have the same cutoff frequency, ωc1 = 2π ·3000rad/sec,
while the time constant of H2(s) is T2 = R1C. So if we take again a 1Ω resistor,
the capacitance will be C = 1/(6000π)F.
The Bode plots of H11 and H12 can be drawn directly as in Figure 7.6 a). By
adding point by point the amplitude-frequency plots we obtain the Bode plot of
the high-pass filter H1 as in Figure 7.6 b).

SE 7.2 Consider the RLC tuner circuit for a FM Radio Receiver from Figure 7.7 [2]. A radio
channel is selected by setting the resonant peak of the Bode magnitude plot at the
corresponding frequency. For a 4µH coil, a 20kΩ resistor, determine the range of the
variable capacitor necessary to cover a frequency range from 88 to 100MHz.

Solution:
Considering the input of the system to be the current and the output - the voltage
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Figure 7.6: a) Bode plots of H11 (green line) and H12 (blue line); b) the resulting Bode diagram
of the high pass filter H1

Tuner

RF Ampli!ier

AC RL

Figure 7.7: Tuner circuit - adapted from [2]

drop on the resistor, then by using Kirchhoff laws we can calculate the transfer function as:

H(s) = s

Cs2 + 1
Rs + 1

L

,

which can also be written as

H(s) = Ls

LCs2 + L
Rs + 1

, or as a product: H(s) = Ls · 1

LCs2 + L

R
s + 1

A sketch of the Bode magnitude plot for H1(s) = Ls, H2(s) = 1
LCs2+ L

R
s+1 as well as

the resultant H(s) = H1(s) · H2(s) is shown in Figure 7.8 (M1, M2 and M , respectively).

MdB

-40dB/dec

0 �rad/sec

(log scale)

20d
B/d

ec

L-1
M1

M2

M

-20dB/dec

Figure 7.8: Bode diagram of a bandpass filter
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Thus, we are dealing with a band-pass filter with the resonant frequency

ωc = ωn = 1√
LC

that can select a specific radio channel.
The goal is to determine the range of C such that the filter can select radio channels

within the specified frequency range: f ∈ [88, 108] Mhz. Because the angular frequency is
ω = 2πf , the range is equivalent to [553 · 106, 679 · 106] rad/sec.

The range of values of C such that:

553 · 106 ≤ 1√
LC

≤ 679 · 106, where L = 4µH = 4 · 10−6H

is 0.541 · 10−12 F ≤ C ≤ 0.817 · 10−12 F , or C ∈ [0.541, 0.817] pF.
The magnitude plot for three values of C = {0.541, 0.65, 0.817} pF are shown in

Figure 7.9.
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Figure 7.9: Bode diagram of Tuner filter

Thus, according to how one tunes the varying capacitor within the given range, a
different radio channel is selected through the resonant peak that amplifies that specific
signal and transmits it forward to the RF amplifier.

SE 7.3 Consider the attitude control system of an aircraft as shown in Figure 7.10 [14]. The
goal is to control the positions of the fins of the aircraft, using DC-motors as actuators.
The measured position θy should track the reference (prescribed) position θr. In order to
achieve this goal, multiple control loops are usually employed besides the position feedback:
velocity feedback and current feedback.

The parameter values are:
Ks = 1, K1 = 10, K2 = 0.5, Kt = 0, Ra = 5, La = 0.003,
Ki = 9, Kb = 0.0636, N = 0.1, Jt = 0.0002, Bt = 0.015,

and consider the following values for the control gain K ∈ {7.248, 14.5, 181.2, 273.57555}.
(a) Determine the phase margin of the overall system and asses the stability of the

closed-loop system for all values of K.
(b) Determine the overshot and the settling time of the closed-loop system in each case

and correlate them to the corresponding phase margin.

Solution:
(a) In order to use the phase margin method for assessing the stability of the closed-loop

system, we need to determine the open-loop transfer function of the system shown in
Figure 7.10. From the block diagram, the open-loop transfer function is calculated
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Figure 7.10: Attitude control system of an aircraft - adapted from [14]

as:

G0(s) = KsK1KiKN

s[LaJts2 + (RaJt + LaBt + K1K2Jt)s + (RaBt + K1K2Bt + KiKb + KK1KtKi)]
(7.3)

and the equivalent representation of the system is given in Figure 7.11.

G0(s)
�r(s) �y(s)

Figure 7.11: Reduced block diagram of the aircraft attitude control system

By substituting the parameter values we further obtain:

G0(s) = 1.5 · 107K

s(s + 400.26)(s + 3008) . (7.4)

The phase margin allows us to determine the stability of the closed-loop system based
on the transfer function of the open-loop system - in our case (7.4).
The bode plot of G0, for different values of K is given in Figure 7.12.
The phase margin criterion states that the closed-loop system is stable if the phase
margin (PM) is positive. The phase margin for each case can be evaluated from the
Bode plot or can be computed using the function margin in MATLAB. We see in
Figure 7.12 that for K = 273.56 the phase margin is zero, which means that the
closed-loop system is marginally stable. For smaller gains the system is stable.

(b) The step response of the closed loop system for each value of K can be computed in
MATLAB using the step function. Figure 7.13 shows the step response of the closed-
loop system for all values of K and Table 7.1 shows comparatively the frequency
domain results (phase margin) and the time domain results (overshoot - σ, settling
time - ts). We see that as the gain decreases, the phase margin increases (the system
becomes "more" stable), the overshoot decreases, and the settling time increases. In
other words, as the gain decreases the system becomes slower and the step response
is more damped.
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K PM(◦) σ(%) tr(s)
7.25 75.9 0 0.03
14.5 64.2 4.7 0.02
181.2 7.8 78.9 0.06

273.57555 0 100 ∞

Table 7.1: Summary of the results for aircraft control system

7.2 Proposed exercises

PE 7.1 Consider four systems with the following transfer functions:

G1(s) = 0.1(s + 10)
s + 1 , G2(s) = 10(s + 1)

s + 10 , G3(s) = 10
s2 + s + 1 , G4(s) = s2 + s + 1

s2 + s + 10
(a) Plot the system response for a sinusoidal input, r(t) = sin(t), using the MATLAB

function lsim for a time interval t ∈ [0, 30] sec.
(b) For each system, analyze the magnitude and phase angle of the output signal and

compare it with the input signal. Determine if the systems have phase lead or phase
lag.

(c) Draw the Bode diagrams, using the MATLAB function bode and read from the
plots the magnitude and the phase angle for each output signal, when the input is
r(t) = sin(t).
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Figure 7.13: Step response of the closed-loop system for all values of K

PE 7.2 (a) Sketch the Bode diagram for the systems with the following transfer functions:

G1(s) = s2

(10s + 1)2 , G2(s) = 10s + 104

s2 + s + 1 , G3(s) = 109s

(s + 1000)(s + 107) ,

G4(s) = s + 10
10s + 1 , G5(s) = 10(s + 10)

s2 + s + 1 , G6(s) = 103s(10−1s + 1)
(s + 1)(102s + 1) .

(b) Determine the frequencies for which the system amplifies or attenuates the sinusoidal
input signals.

(c) For each system, use the Bode diagram to determine the magnitude of the output
signal if the input is:

u1(t) = sin(t),
u2(t) = 0.1sin(10−3t),
u3(t) = 3sin(100t).

PE 7.3 Consider a second-order system having the transfer function:

G(s) = K
1

ω2
n

s2 + 2ζ
ωn

s + 1
(7.5)

Several input signals have been applied to the system and the outputs have been
recorded. The inputs are sinusoidal signals r(t) = sin ωt, where the frequency is ω ∈
{1, 2, 5, 8, 9.5, 10, 20, 100} rad/sec. The outputs, for each input frequency, are shown
in Figure 7.14.

Using the frequency response, determine the system parameters: K, ωn and ζ, by
completing the following steps:
(a) Sketch the Bode diagram for the transfer function given by (7.5).
(b) Obtain an experimental Bode magnitude plot using the output signals from Figure

7.14, as follows:
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Figure 7.14: Output signals for various input frequencies
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Read the magnitude of the output signal at steady-state and divide it to the
magnitude of the input. Save all numbers in an array M = [M1, . . . , M8].
Convert the numbers from the array M into decibels and plot them versus all
values of ω on a logarithmic scale (use the MATLAB function semilogx).

(c) Compare the Bode diagrams obtained at (a) and (b) and determine the system
parameters from the plots.

PE 7.4 ECG signal processing problem.
Consider the ECG measurements from [26] shown in Figure 7.15. The measurements

include low frequency disturbances due to breathing and coughing of the patient, and high
frequency noise due to the (low quality) sensors.
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Figure 7.15: ECG measurements

The ideal ECG measurement, taken on a short time span, should look as in Figure
7.16. The 3 peaks (R, T and P - from the largest to the smallest), along with their timing,
are very important for medical diagnosis. For example, the period between the R peaks is
used for determining the heart rate (reciprocal of the heart period)1.

It is obvious that medical doctors cannot use the ECG measurements from Figure 7.15
for diagnosis purposes. In order to solve this problem, a band-pass filter (see Figure 7.17)

1For details see also: http://www.medicine.mcgill.ca/physio/vlab/cardio/introecg.htm
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Figure 7.16: Ideal ECG measurements (short time span)

must be designed to remove the low and high frequency artifacts. The frequency of interest
for ECG measurements is usually between 0.5 Hz and 100 Hz [26].

Figure 7.17: Magnitude plot of a band-pass filter

The goal of this application is to design a band-pass filter for removing the low and
high frequency components and to compare it with a commonly used filter (Butterworth
filter). The cut-off frequencies of the filters will be f1 = 0.5Hz and f2 = 50Hz.
(a) Read data from ECGdata.txt file. The example code is given in Listing 7.1.

Listing 7.1: readECGdata.m
1 close all
2 clear all
3 clc
4 % read data from ECGdata.txt
5
6 fileID = fopen('ECGdata.txt', 'r'); % open ECGdata.txt for read access
7 A = fscanf(fileID, '%f %f',[2,Inf]); % read data from file in array A
8 fclose(fileID) % close ECGdata.txt
9 time = A(1,:); % save first row of data in variable "time"

10 necg = A(2,:); % save second row of data in variable "necg"

The data is organized now in two row vectors: time with 4000 values of time between
0 and 20 seconds, and necg with the normalized values of the ECG signal for all
moments of time. Plot necg versus time and the figure will be similar to Figure 7.15
(a).

(b) Design a Butterworth filter using the function butter with the following specifications:
Filter type: analog bandpass
Filter order: 8
Filter cutoff frequencies: ω1 = 0.5 ∗ 2 ∗ π rad/s and ω2 = 50 ∗ 2 ∗ π rad/s;
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The code example is:

[num,den]=butter(4, [0.5*2*pi 50*2*pi], ’bandpass’, ’s’);

Obs. The first input argument in function butter is n = 4, but a band-pass filter will
have the order 2n = 8. The function butter returns the numerator and denominator
polynomials of the filter transfer function.

(c) Plot the Bode diagram of the filter using the bode function.
(d) Determine the filtered ECG signal by using the lsim function, with the filter transfer

function and the ECG signal as input (see Figure 7.18).

Filter
necg Filtered signal

Figure 7.18: Filter

Plot the ECG signal and the filtered ECG signal on the same figure and analyze the
results. Can you read the three peaks on the plot? Notice the differences between
the two signals:

on the entire time interval,
on a time interval between 16 and 18 sec,
on a time interval between 2 and 4 sec.

(e) Design an 8-th order bandpass filter using first-order elements, as close as possible to
the previous Butterworth filter.

(i) First try to find the right combination of elements in order to obtain a band-
pass Bode diagram (Figure 7.17) with the same cutoff frequencies as for the
Butterworth filter and the slopes of the lines are +20dB/dec and −20 dB/dec.

(ii) Determine the parameters (gain and time constants of the filter transfer function)
that give the desired cutoff frequencies.

(iii) Multiply the previously obtained filter transfer function by itself iteratively and
notice how the Bode diagram changes (use MATLAB) through each iteration. A
4 time multiplication should provide a Bode diagram similar to the Butterworth
filter. Plot both Bode diagrams on the same figure and compare them.

(f) Plot the ECG signal, the filtered ECG signal with the Butterworth filter, and the
filtered ECG signal with the custom filter (from point (iii)) and compare the results
(zoom in).

PE 7.5 Consider a low pass filter implemented as an analog electrical circuit as in Figure 7.19.

R

C

L

U(s) UC(s)

+ +

--

Figure 7.19: Electrical circuit
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(a) Determine the transfer function between the input voltage U and the output the
voltage UC across the capacitor.

(b) Sketch the Bode diagram of the filter.
(c) Determine the parameters of the electrical circuit such that the filter has a corner

frequency ωc of 0.1rad/sec and a damping factor ζ of 0.7.
Hint. Choose one of the parameters and calculate the other two.

PE 7.6 Consider a Butterworth filter with the electrical circuit from Figure 7.20, where R = 1Ω,
C = 0.2F , L = 0.2H.

CU(s) UR(s)

+ +

--

R L/2 L/2

R

Figure 7.20: Filter

(a) Prove that the transfer function between the input voltage U and the resistor voltage

UR is G(s) = R

(0.5Ls + R)(0.5s2LC + CRs + 2) and for R =
√

L

C
it can be written

as: G(s) = 1
2

(
1

ωc
s + 1

) (
1

ω2
c
s2 + 1

ωc
s + 1

)
(b) Determine the corner frequencies and sketch the Bode diagram of the filter.
(c) Draw the poles of the filter in the complex plane and prove that they are distributed

evenly on the left half-plane semi-circle centered at the origin and with a radius equal
to ωc.

PE 7.7 Determine the transfer functions for the systems having the Bode diagrams (magnitude
plot) shown in Figure 7.21.

PE 7.8 Consider the eye movement control from Figure 7.22 [20], with the parameter values:
G/J = 14400 rad2 · s−2, B/J = 24 rad · s−1. Determine the phase margin for Kv = 0.01
and Kv = −0.002. Analyze the stability of the closed-loop system.

PE 7.9 Consider a control system with negative unity feedback, with the open-loop transfer
function G(s) = a(s + 1)

s2 . Determine the value of the parameter a such that the phase
margin of the system is 45◦. Check the results in MATLAB using the margin function.

PE 7.10 A control system with negative unity feedback has the open-loop transfer function

G(s) = k(s + 3)
s(s + 1)(s + 5) .

Draw the Bode diagram in MATLAB and determine the gain k such that the phase margin
is 40◦.

PE 7.11 Consider the position control system of a Mars rover (terrain vehicles used by NASA,
powered by solar energy and remote controlled from Earth) from Figure 7.23 [9]. Determine
the gain K which maximizes the phase margin.
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Figure 7.21: Bode magnitude diagrams
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Figure 7.22: Block diagram of eye movement control
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Figure 7.23: Position control system of a Mars rover



8 Output feedback control

Topics: Lead-Lag Controllers, PID Controllers, Stabilization, Tracking, Root-
locus design, Tuning methods

8.1 Solved exercises
SE 8.1 Unmanned Aerial Vehicles (UAVs) like Quadcopters can be controlled by using multiple

feedback loops and PID controllers. The control structure usually consists of a feedback
loop for the angular velocities and positions (attitude: pitch, roll, yaw), and a second
feedback loop for linear velocities and positions (altitude, lateral/sideway, forward).

Consider the AR Drone Parrot 2.0 [1] shown in Figure 8.1.

Figure 8.1: AR Drone Parrot 2.0 Quadcopter

The transfer function that relates the sideway velocity to the control input is [8]:

H(s) = 7.081s + 16.82
s3 + 4.728s2 + 14.65s + 5.83 . (8.1)

Design a PD controller (Figure 8.2) such that the closed-loop system has two complex
conjugate poles that will result in an overshoot of 10% and a settling time of about 0.5
seconds for a second-order system.

H(s)C(s)
R(s) Y(s)

PD controller

Sideway

velocity

AR Drone

Figure 8.2: Control system for the sideway velocity

75



76 Chapter 8. Output feedback control

Solution:
The control performance specifications are Mp = 10% and ts = 0.5sec. From these

specifications we can determine the damping ratio and the natural frequency of a pair of
complex poles:

Mp = e−πζ/
√

(1−ζ2) · 100 ⇒ ζ =
√

ln2(Mp/100)
π2 + ln2(Mp/100) = 0.59

ts = 4
ζωn

⇒ ωn = 4
ζts

= 13.53.

Then, the closed-loop poles that we need to impose are:

r1,2 = −ζωn ± ωn

√
1 − ζ2j = −8 ± 10.9j.

The process transfer function can be rewritten as:

H(s) = 7.81 · s + 2.37
(s + 0.46)(s2 + 4.27s + 12.67) = K

(s + z1)
(s + p1)(s + p2)(s + p3) , (8.2)

where the zero and the poles of the system are: −z1 = −2.37, −p1 = −0.46, −p2,3 =
−2.13 ± 2.85j.

The PD controller has the transfer function:

C(s) = Kd(s + zd). (8.3)

The PD controller parameters are calculated so that the root locus of the compensated
system will pass through the desired locations r1,2. The phase angle condition that ensures
that the poles r1,2 are on the root locus of the compensated system is:

∠C(s)H(s)|s=r1 = −180◦, (8.4)

and will give us the zero of the PD controller.
The gain of the PD controller will be computed from the magnitude condition at the

specific pole location r1:

|C(s)H(s)|s=r1 = 1. (8.5)

Figure 8.3 shows the open-loop poles and zeros in the complex plane, as well as their
angle contribution to the condition (8.4).
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10.9j

-p2

-p3

-zd -p1=-0.46-z1=-2.37
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�3

�1
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�2

�3

�1�z1

-2.13

Figure 8.3: Zeros and poles in the complex plane
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The phase condition (8.4) can be written as:

∠C(s)H(s)|s=r1 = (∠(s + z1) + ∠(s + zd) − ∠(s + p1) − ∠(s + p2) − ∠(s + p3)) |s=r1 = −180◦

which becomes (see Figure 8.3):

θz1 + θd − θ1 − θ2 − θ3 = −180◦

or:

(180◦ − α1) + θd − (180◦ − β1) − (180◦ − β2) − (180◦ − β3) = −180◦

The angles α1, β1, β2 and β3 can be determined as follows:
α1 from the right triangle with the vertices r1, (−8, 0), (−z1, 0):

α1 = arctan 10.9
8 − 2.37 = 62.7◦

β1 from the right triangle with the vertices r1, (−8, 0), (−p1, 0):

β1 = arctan 10.9
8 − 0.46 = 55.3◦

β2 from the right triangle with the vertices r1, A, −p2:

β2 = arctan 10.9 − 2.85
8 − 2.13 = 53.9◦

β3 from the right triangle with the vertices r1, B, −p3:

β3 = arctan 10.9 + 2.85
8 − 2.13 = 66.9◦.

It results that θd = 66.6◦. The parameter zd is further calculated from the right triangle
with the vertices at r1, (−zd, 0), (−8, 0):

tan θd = 10.9
zd − 8 = 2.31 ⇒ zd = 12.7.

The zero of the controller is actually −zd = −12.7 and the transfer function is C(s) =
Kd(s + 12.7).

Next, the PD gain Kd is calculated from the magnitude condition (8.5):

|C(s)H(s)|s=r1 =
∣∣∣∣Kd(s + 12.7) · 7.81(s + 2.37)

(s + 0.46)(s2 + 4.27s + 12.67)

∣∣∣∣
s=−8+10.9j

= 1

and we obtain:

Kd = 1.73.

The root locus of the compensated system is shown in Figure 8.4. The complex poles r1
and r2 are on the root locus but the closed-loop system has a third real negative pole,
closer to the origin than the complex ones. The influence of this pole is reduced, in this
case, because it is very close to one of the closed-loop system zeros (the same as the process
zero).

The unit step response of the closed-loop system is shown in Figure 8.5. Notice that
the overshoot and settling time are close to the ones imposed. The differences between
the desired performance specifications and the ones obtained in simulation are due to the
fact that in design we focused only on the complex closed-loop poles. The zero introduced
by the controller has the effect of increasing the overshoot and, in general, influences the
overall performance.

Note: The PD controller can be designed in MATLAB using the SISO Design Tool. One
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Figure 8.4: Root locus of the closed-loop system
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Figure 8.5: Step respone of the closed loop system - sideway velocity control

possible approach is:
Define the transfer function H in MATLAB.
Call the function rltool with H as input argument.
Define the constraints (in the SISO design window - rightclick - Design requirements):
set the settling time and the overshoot to 0.5 sec and 10% respectively. The imposed
poles are at the intersection of the constraint lines in the complex plane.
Add a real zero anywhere on the real axis (this will be the PD zero).
Move the zero until the root locus passes through the intersection point of the
constraint lines
Move the closed-loop poles along the root locus at the point of intersection: through
this action we actually set the closed-loop system gain
The resulting controller is given in the Control and Estimation Tools Manager window.

SE 8.2 Magnetic levitation systems are often used in high speed trains. On a single axis, the
problem is similar - in principle - with the one where a metal ball levitates at a (vertical)
position depended on the magnetic force generated by the electromagnet (Fig. 8.6).

If u is the voltage control signal, and y the ball position measured through a photo
emitter-detector pair, the transfer function of the linearized system is, [6]:

H(s) = Y (s)
U(s) = 3148

s2 − 4551 . (8.6)
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y

photoemitter

photodetectorball

ground

electromagnet

measured y

u

voltage computer

(controller)

Figure 8.6: Single axis magnetic levitation system

(a) Design an ideal PD controller with the transfer function:

C(s) = K(s + zd) (8.7)

that ensures a settling time ts = 0.01 seconds and a damping factor ζ = 0.95 for the
step response of the closed-loop system (Figure 8.7). Calculate K and zd.

H(s)C(s)
R(s) Y(s)

PD controller

Vertical position

of the ball

MagLev system

U(s)

Voltage

Figure 8.7: Block diagram of the position control system

(b) Compute the steady-state error for a unit step input.

Solution:
(a) The closed-loop poles r1,2 that meet the performance specifications are computed as

follows:

ts = 4
ζωn

⇒ ωn = 4
ζts

= 4
0.95 · 0.01 = 421.053

r1,2 = −ζωn ± ωn

√
1 − ζ2j = −400 ± 131.47j.

The process transfer function can be written as:

H(s) = 3148
s2 − 4551 = 3148

(s + 67.46)(s − 67.46) .

By adding the controller, the open-loop transfer function of the control system
becomes:

C(s)H(s) = 3148 · K(s + zd)
(s + 67.46)(s − 67.46)

The controller zero, −zd, can be determined from the phase angle condition:

∠C(s)H(s)|s=r1 = −180◦

which ensures that the poles r1,2 are on the root locus of the compensated system.
The angle of C(s)H(s) measured for s = r1 is:

(∠(s + zd) − ∠(s + 67.46) − ∠(s − 67.46)) |s=r1 = −180◦
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Figure 8.8: Step respone of the closed-loop system

From Figure 8.8 we have:

θd − θ1 − θ2 = θd − (180◦ − β1) − (180◦ − β2) = −180◦

and

θd = 180◦ − β1 − β2 = 180◦ − arctan 131.47
400 − 67.46 − arctan 131.47

400 + 67.46 = 142.72◦

Because the angle to the controller zero is obtuse 90◦ < θd < 180◦, the location
of −zd is actually on the right of −400, or −zd > −400 and the value zd can be
computed from:

tan(180◦ − θd) = 131.47
400 − zd

⇒ zd = 227.29

The PD controller is now: C(s) = K(s + 227.29). The controller gain is obtained
from the magnitude condition:

|C(s)H(s)|s=r1
=

∣∣∣∣ 3148 · K(s + 227.29)
(s + 67.46)(s − 67.46)

∣∣∣∣
s=−400+131.47j

= 1

K =
∣∣∣∣(s + 67.46)(s − 67.46)

3148(s + 227.29)

∣∣∣∣
s=−400+131.47j

= 0.254.

The step response of the closed-loop system is shown in Figure 8.9. Notice that the
real overshoot is larger than the one imposed through design. A damping factor
ζ = 0.95 would give an overshoot Mp = e−πζ/

√
1−ζ2 · 100 = 0.007% for a second-order

system with no zeros. In our case, the closed-loop system has also a zero −zd

introduced by the PD controller which has the effect of increasing the overshoot of
the step response.

+ Do the design in MATLAB using rltool. Try to further lower the
overshoot by moving the closed-loop poles.

(b) The steady-state error for a unit step input is computed from Figure 8.7:

ess = lim
s→0

sE(s) = lim
s→0

s(R(s) − Y (s)) = lim
s→0

sR(s) 1
1 + C(s)H(s)

By replacing the transfer functions of the controller and the process we obtain:

ess = lim
s→0

s
1
s

1

1 + 0.254(s + 227.29) 3148
s2 − 4551

= −0.02



8.1 Solved exercises 81

0 0.005 0.01 0.015 0.02 0.025

time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

P
o

s
it
io

n
 (

m
m

)

Step response

Figure 8.9: Step respone of the closed-loop system

SE 8.3 Consider a four-way-hydraulic-valve that commands a linear actuator (a double-acting
single rod). Such systems can be used to control a robot joint, when high forces/torques are
required. The valve is controlled electronically, while the position of the rod is measured
with a potentiometer. The transfer function of the linearized dynamics is [14]:

G(s) = 1
Tcs + 1 · 2AKq/Kc

Ms2 + (D + 2A2/Kc)s + Kl
, (8.8)

with the parameters:

Kq = 0.359 m2/s (flow gain of the control valve),
Kc = 1.70 · 10−11 m3/Pa/s (pressure-flow coefficient),
Am = 550 · 10−6 m2 (area of the main spool),
M = 4 kg (mass of the load),
D = 1 N · s/m (damping of the load),
Kl = 1 N/m (Load spring stiffness),
A = 1.1 · 10−3 m2 (area of the actuator piston),
Tc = Am/Kq (valve time constant).

Design a PID controller such that the step response of the closed loop system has an
overshoot less than 5% and is as fast as possible.

Solution:

For standard low-order process models, analytical optimization-based methods for
tuning PID controllers have been developed in the literature, which give excellent results
if the model is accurate enough. We will use here the Modulus Optimum (BO) method
described in [3], which is very often used in practice because it usually gives good results
and it is easy to apply. The method imposes a frequency response as close as possible to
0dB, for low frequencies.

First we rewrite the process transfer function (8.8) in order to highlight the time
constants and the process gain:

G(s) = K

(T1s + 1)(T2s + 1)(T3s + 1) , with T1 > T2 > T3 (8.9)
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and

K = (2A · Kq/Kc)/Kl = 4.6459 · 107,

T1 = 1.4235 · 105,

T2 = Tc = 0.001532,

T3 = 2.8099 · 10−5.

The ideal PID controller in parallel form has the transfer function:

Gc(s) = Kp + Ki
1
s

+ Kds. (8.10)

For a third order process with 3 real negative poles and no zeros, the relations that
give the controller parameters with the BO method are [3]:

Kp = T1 + T2
2T3K

,

Ki = Kp

T1 + T2
,

Kd = Kp
T1T2

T1 + T2

In the end, the calculated PID parameter values are:

Kp = 54.52, Ki = 0.00038, Kd = 0.084

The step response of the closed-loop system is shown in Figure 8.10.
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Figure 8.10: Step response of the closed-loop system

The design method used here guarantees an overshoot of the step response of the
closed-loop system of about 4% and a settling time ts = 6/ωn, where ωn = 0.7/T3. Indeed,
the overshoot of the step response from Figure 8.10 is 4.32% and the settling time is
ts = 2.4 sec.

SE 8.4 Automatic mean arterial pressure regulation is crucial in ensuring acceptable quality
of donated organs for heart-beating brain death subjects. Clinical trials were recently
performed for the design of controllers based on pharmacological models, with experiments
on animals.

Consider the dynamic model of nitroglycerin pharmacology identified from experiments
on anesthetized pigs [28]:

G(s) = Ymap(s)
Initro(s) = K

(T1s + 1)(T2s + 1)e−sτ , (8.11)
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where the input Initro represents nitroglycerine infusion rate, while the output Ymap

represents mean arterial pressure.

H(s)C(s)
R(s) Ymap(s)

PID controller

Mean arterial

pressure

Initro(s)

Nitroglycerin

infusion rate

Figure 8.11: Closed-loop control system for mean arterial pressure

This low-order model represents an over-simplification of the actual dynamics, but it is
usually good enough for controller design due to the robustness of the control feedback
loop.

Design a PID controller:

C(s) = kp + ki
1
s

+ kds (8.12)

for the plant G(s), with the parameters [28]:

T1 = 30 sec, T2 = 70 sec, τ = 40 sec, K = 1.06.

The controller must ensure the following performance specifications for the step response
of the closed-loop system:

the overshoot less than 20%
the settling time less than 500 seconds.

Solution:
There are wide range of techniques for designing PID controllers reported in the

literature. For our current design problem, we will limit ourselves to a classical method
proposed by Haalman [3] and a more recent method proposed by Skogestad [27]. Both
methods are model based.

(a) Haalman’s method was derived by imposing the desired open-loop transfer function
(an integrator with delay element), considering also that the process poles are
compensated by the controllers zeros (a detailed discussion can be found in [3] - pp.
190). The PID controller can be calculated based on the following relations:

kp = 2(T1 + T2)
3Kτ

,

ki = 2
3Kτ

,

kd = 2T1T2
3Kτ

.

Thus, for our process G(s), the controller parameters are:

kp = 1.572, ki = 0.0157, kd = 33.019

The step response of the closed loop system is illustrated in Figure 8.12. The input
is a step signal r(t) = 10, t ≥ 0.

(b) Now, we will design the PID controller with Skogestad’s method. The method is
derived by imposing the desired closed-loop transfer function (a first order element
with delay) and approximating the delay using Taylor approximations (for details,
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Figure 8.12: Step respone of the closed loop system - PID designed using Haalman method

see [27]). The PID controller can be calculated based on the following relations:

ki = T1
K(c + τ)α,

kp = ki(α + T2),
kd = ki(αT2),
α = min{T1, 4(c + τ)}.

The design parameter c can be chosen in order ensure a good trade-off between a
fast response and stability (robustness). Usually c = τ gives good results.
For the PID controller C(s) we obtain the parameters:

ki = 0.0118, kp = 1.179, kd = 24.764.

The closed-loop response for a step input r(t) = 10, t ≥ 0, is illustrated in Figure
8.13. The results seem better than those obtained with the Haalman method and we
can improve them by further tuning c (for larger values we can decrease the overshoot
at the price of increasing the settling time).
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Figure 8.13: Step respone of the closed loop system - PID designed using Skogestad method

The performance specifications are fulfilled in both cases: the overshoot is less than 20%
and the settling time is smaller than 500 seconds for the step response of the closed-loop
system.
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8.2 Proposed exercises

PE 8.1 For a system having the transfer function G(s) = 1
s2 determine a lead compensator with

the transfer function Gc(s) = k(s + z)
s + p

, with |z| < |p|, as shown in Figure 8.14, so that the

dominant closed-loop poles are located at r1,2 = −1
2 ±

√
3

2 j.

G(s)Gc(s)
R(s) Y(s)

Controller Plant

Figure 8.14: Closed-loop control system

PE 8.2 Consider a unity negative feedback control system with the transfer function of the plant
G(s) = 1

s(s + 1) .

(a) Design an ideal PD compensator with the transfer function GP D(s) = KP + KDs
so that the closed-loop system has a settling time ts = 4 sec and a damping factor
ζ = 0.5.

(b) Add another compensator Gc(s) = s + z

s + p
with |z| > |p| (see Figure 8.15) so that the

velocity error constant is Kvcomp = 20 and the dominant closed-loop poles are located
in approximately the same position as in case (a).

GPD(s)Gc(s)
R(s) Y(s)

G(s)

Figure 8.15: Closed-loop control system

PE 8.3 For a closed-loop control system (Figure 8.16) with the plant transfer function G(s) =
1

s + 1 determine a compensator with the transfer function Gc(s) = k(s + a)
s

so that the
overshoot of the step response is about Mp = 10% and the settling time is about ts = 1 sec.

G(s)Gc(s)
R(s) Y(s)

Controller Plant

Figure 8.16: Closed-loop control system

(a) Determine the controller analytically and check the result with rltool. Analyze the
step response of the closed-loop system and check the overshoot and the settling time
obtained with this controller.

(b) Move the closed-loop poles on the root locus (this will change the controller gain)
and try to obtain the desired specifications.
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PE 8.4 Consider the control system shown in Figure 8.17. The specifications for a unit step
response are:

the settling time is ts = 2
3 sec

the peak time is about tp = π

2
√

3
sec.

1

s+4
Gc(s)

R(s) Y(s)
Controller Plant

Figure 8.17: Closed-loop control system

(a) Can the criteria be satisfied with a proportional P-controller? Justify your answer.
(b) Design a PI controller to meet the requirements.

PE 8.5 Consider a closed-loop control system from Figure 8.18, where G(s) = 1
(s + 1)(s + 4) is a

plant to be controlled and Gc(s) = k(s + z)
s + p

is a compensator with the parameters k, z

and p.

G(s)Gc(s)
R(s) Y(s)

Controller Plant

Figure 8.18: Closed-loop control system

(a) Determine the pole of the compensator, −p, so that the steady-state error for a unit
step input is zero.

(b) Determine the gain k and the zero, −z, of the compensator so that the dominant
closed-loop poles are located at −1 ±

√
3j.

PE 8.6 Consider a unity feedback control system where the transfer function of the plant is
G(s) = 1

s2 . It is required that for the dominant complex poles of the closed-loop system

the settling time is about ts = 4 seconds and the peak time is about tp = π√
3

.

(a) Can you fulfill the requirement with a proportional (P) controller? Why?

(b) Design a controller with the transfer function Gc(s) = k(s + z)
s + p

with 0 < z < p, so
that the requirement is fulfilled.

PE 8.7 Consider a closed-loop control system as shown in Figure 8.19 where the plant has a
transfer function G(s) = 5

(0.5s + 1)(s + 1)(10s + 1) .

(a) Compute the static position error constant and the steady-state error of the uncom-
pensated system (when Gc(s) = 1) for a unit step input. Plot the step response of
the closed-loop system and check the steady-state error.

(b) Determine the dominant poles of the uncompensated closed-loop system.



8.2 Proposed exercises 87

G(s)Gc(s)
R(s) Y(s)

Controller Plant

Figure 8.19: Closed-loop control system

(c) It is desired to increase the static position error constant 10 times, without changing
to much the location of the dominant closed-loop poles. Design a lag compensator
Gc(s) = s + z

s + p
, with 0 < p < z, to meet this specification.

(d) Compare the step response of the closed-loop system for Gc(s) = 1 and for Gc(s)
designed at point (c) and comment the result.

PE 8.8 For a unity feedback closed-loop control system with a plant G(s) = 5
s2 + 2s + 2 :

(a) Determine the static position error constant Kp and the closed-loop poles, when the
compensator transfer function is Gc(s) = 1.

(b) Design a lag compensator Gc(s) that will increase the position error constant 30
times, while keeping the closed-loop complex poles in approximately the same loca-
tion. Compare the step response of the closed-loop system with, and without the
compensator.

(c) Compute the poles of the closed-loop system with, and without the compensator and
compare their values. Determine also the real zero of the compensated closed-loop
system and compare it with the real pole.

PE 8.9 Consider a closed-loop unity feedback control system with a plant having the transfer
function G(s) = 1

s(s + 3) :

(a) Design a proportional-derivative (PD) controller GP D(s), such that the dominant
closed-loop poles are located at r1,2 = −3 ± 3j.

(b) For the closed-loop system determine the static velocity error constant, Kv.
(c) Add a lag compensator Gc(s) (see Figure 8.20) in order to obtain a static velocity

error constant Kvcomp = 10Kv.

GPD(s)Gc(s)
R(s) Y(s)

G(s)

Figure 8.20: Closed-loop control system

PE 8.10 DC motors are extensively used in control applications, including robotic manipulators
and mobile robots, machine tool industry, electric vehicles, etc. Transfer function models
of DC motors can be determined as presented in SE 2.2 and [9, 14].

If the input signal is the voltage applied to the motor, U and the output is the rotational
speed ω, the transfer function of a DC motor is written as:

G(s) = ω(s)
U(s) = k

(Ls + R)(Js + b) + kke
. (8.13)
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where:
ke is the electromotive force constant, ke = 5 · 10−2 V/rad/sec

k - the motor torque constant, k = 5 · 10−2 Nm/A

R - the armature resistance, R = 3 Ω
L - the armature inductance, L = 0.5H

J - the rotor inertia, J = 9 · 10−3 kgm2

b - coefficient of viscous friction, b = 2 · 10−2 Nms

(a) Plot the open-loop unit step response of G(s) and determine the steady-state error.
(b) Consider a unity-feedback control system as shown in Figure 8.21 with an ideal

PID-controller and the plant G(s). The transfer function of an ideal PID-controller
is:

GP ID = KP + KI

s
+ KDs

G(s)GPID(s)
R(s) �(s)

PID controller

Motor

speed

DC motor

U(s)

Voltage

Figure 8.21: Closed-loop control system

Determine the effect of the PID parameters (KP , KI and KD) on the overshoot, rise
time, settling time and steady-state error.
Fill in the Table 8.1 using the results of the following simulations:

(i) Consider first a proportional (P) controller and determine the influence of KP

on the step response of the closed-loop system. Set the parameters KI and KD

to zero and simulate the step response of the system for KP given in Table 8.1.
(ii) Analyze the influence of the derivative term KD term by taking a proportional-

derivative (PD) controller. Set KI = 0, KP is constant and KD takes the values
from Table 8.1.

(iii) Consider a proportional-integral (PI) controller and determine the effect of KI .
Set KD = 0, KP is constant and KI takes values according to Table 8.1.

Controller Overshoot Rise time Settling time Steady-state error
P KP = 1

KP = 5
KP = 50

PD KP = 50, KD = 0.5
KP = 50, KD = 1
KP = 50, KD = 3

PI KP = 1, KI = 1
KP = 1, KI = 3
KP = 1, KI = 5

Table 8.1: Closed-loop step response. Effect of PID controller parameters
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PE 8.11 Consider a plant described by a transfer function:

G(s) = 1
s3 + 10s2 + 20s

The design specifications for a closed-loop control system are:
The closed-loop system is stable
Zero steady-state error for a step input

(a) Plot the unit step response for the open-loop system.
(b) Tune a PID controller using the Ziegler-Nichols ultimate sensitivity method:

(i) Consider the closed-loop system with the plant G(s) and a proportional controller
with the transfer function GP ID(s) = KP . Determine the value of KP so that
the closed-loop system is critically stable (K0 = KP ).

(ii) Determine the period of oscillations T0 from the equivalent transfer function of
the closed-loop system.

(iii) Simulate the closed-loop system step response for GP ID = K0 and compare the
period of oscillations with the one obtained at point (ii).

(iv) Set the controller parameters KP , Ti and Td according to Ziegler-Nichols table.
If the transfer function of the controller is in the form:

GP ID(s) = KP

(
1 + 1

Tis
+ Tds

)
, (8.14)

then the parameters are computed as:

KP = 0.6K0, Ti = 0.5T0, Td = 0.125T0

Simulate the closed-loop system and verify the closed-loop system specifications.
Note that the Simulink PID block has various controller forms that may be
different than (8.14). If using Simulink, check the controller form before setting
the parameters.

(c) Modify the controller parameters to obtain a smaller overshoot.

PE 8.12 Consider a system with the transfer function G(s) = 1
s(s − 5) for which we want to obtain

a settling time less than 1 second, an overshoot as small as possible and zero steady-state
error for a step reference input.
(a) Analyze the open-loop system stability. Represent graphically the system’s response

to a unit step input.
(b) Consider the closed-loop control system from Figure 8.22. Try to solve the problem

G(s)GPID(s)
R(s) Y(s)

Figure 8.22

with a proportional controller (P), GP ID = KP . Calculate the closed-loop transfer
function and check if the design specifications can be met with a P controller.

(c) Consider a PI controller with the transfer function:

GP ID = KP + KI

s
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Can you achieve the desired specifications with this controller? Calculate the closed-
loop transfer function and justify your answer.

(d) Try to solve the problem using a PD controller with the transfer function:

GP D = KP + KDs (8.15)

Calculate the closed-loop transfer function and determine the constraints on
the system’s parameters such that the closed-loop system is stable.
Simulate the closed-loop system and find a set of suitable parameter values for
the controller such that the design requirements are met. A convenient method
to design the controller may be using rltool: draw the root locus for G(s), then
add and move the zero of the compensator and the location of the closed-loop
poles until the system response meets the requirements. Write the controller in
the form (8.15).

(e) Consider a PID controller with the transfer function

GP ID = KP + KI

s
+ KDs (8.16)

Simulate the closed-loop system step response for different values of the controller
parameters. Use rltool to design the controller: draw the root locus for G(s), add
one pole at the origin and two zeros for the compensator. Change the zeros and
the location of the closed-loop poles until the closed-loop step response meets the
requirements. Write the controller in the form (8.16).

PE 8.13 Consider the linearized model of a hydro-turbine and penstock system ([13] - pp. 211):

H(s) = P (s)
U(s) = 1 − sTw(

1 + sTw

2

)
(1 + sTq)

,

where P is the power generated by the turbine, U is the control signal and the time
constants are Tw = 2 sec and Tq = 0.5 sec.

Design a PID controller that ensures a settling time less than 5 seconds, an overshoot
less than 20% and zero steady-state error for a step input.



9 State Feedback

Topics: State feedback controller, Pole placement, Stabilization, Tracking

9.1 Solved exercises
SE 9.1 Robotic arms are used in a wide range of applications, from manufacturing and automation

industry, to surgical robotics. Consider a simple 2 DOF (Degrees Of Freedom) robot with
two revolute joints as in Figure 9.1. The robot has a base fixed to the table and the gripper
holds a cylindrical weight (load).

q2

q1

x

y

Figure 9.1: 2DOF Robot Arm, [23]

The goal is to design a controller that controls the joints angles (q1, q2) such that the
robot can follow accurately different trajectories in space.

Consider that the state vector x(t) is composed of the angular positions and angular
velocities, the input vector u(t) represents the voltage signals that control the motor for
each joint and the output vector y(t) is given by the joint angles:

x(t) =


q1(t)
q2(t)
q̇1(t)
q̇2(t)

 , u(t) =
[
V1(t)
V2(t)

]
, y(t) =

[
q1(t)
q2(t)

]
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The linearized model of the robot arm in the operation point [0 0 0 0]T correspond-
ing to the upward position of the robot is [23]:

ẋ(t) = Ax(t) + Bu(t) (9.1)
y(t) = Cx(t) + Du(t) (9.2)

with

A =


0 0 1 0
0 0 0 1

10.24 0 −7.82 0
0 7.68 0 −6.77

 , B =


0 0
0 0

32.58 0
0 42.33

 , C =
[
1 0 0 0
0 1 0 0

]
, D =

[
0 0
0 0

]

(a) Analyze the stability of the open-loop system.
(b) Stabilization problem. Design a state-feedback control law

u(t) = −K · x(t), (9.3)

that will return the system states to zero from non-zero initial conditions, for the
imposed closed-loop poles: −3,−33, −43,−3. The block diagram of the state-feedback
control system is presented in Figure 9.2.

-K

x=Ax+Bu
u(t) x(t)

x0

.

Figure 9.2: State-feedback control structure

Test in simulation the closed-loop response for non-zero initial conditions.
(c) Tracking problem. Consider that the robot joint angles q1 and q2 have to follow some

constant reference inputs r1 = 0.5 and r2 = 1, respectively. If the closed-loop poles
of the process are the same as in case (b), design the state-feedback control system
that will make the steady-state error equal to zero using the following strategies:

(i) Add a pre-compensation gain N to scale the reference input as presented in
Figure 9.3. The control law is:

-K

x=Ax+Bu
u(t) x(t).

CN
y(t)r

Robot arm

Figure 9.3: State-feedback with pre-compensation gain

u(t) = −K · x(t) + N · r(t), (9.4)

where r =
[
r1(t) r2(t)

]T
. Compute the gain matrices K and N, then simulate

the closed-loop system to verify the steady-state error.
(ii) Add an integrator in the control loop as shown in Figure 9.4. The control law is
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-Kx

x=Ax+Bu
u(t) x(t).

C-Ki
y(t)r(t)

Robot arm

1
s

z(t)
.

z(t)

Figure 9.4: State-feedback with integral control structure

given by:

u(t) = −Kx · x(t) − Ki · z(t), (9.5)

where

ż(t) = e(t) = r(t) − y(t). (9.6)

Compute the gains Kx and Ki, then simulate the closed-loop response for a
step reference input vector r = [0.5 1]T , t ≥ 0 and check the steady-state error.

Solution:
(a) The open-loop process poles are the eigenvalues of the system matrix A, i.e. the

solutions of the equation:

det(sI4 − A) = 0 ⇒ p1 = 1.14, p2 = −8.96, p2 = 0.98, p4 = −7.75.

Because two poles are positive, the open-loop system is unstable.
(b) Stabilization problem. In order to design the state-feedback controller we need to

check first the controllability of this system. The rank of the controllability matrix:

Pc =
[
B AB A2B A3B

]
can be calculated in MATLAB as:

rank(Pc)

and it is equal to 4, which is the system order (the number of state variables).
Therefore the system is controllable.
Through state-feedback - that is a control structure like in Figure 9.2 - we can impose
the closed-loop poles:

pi1 = −3, pi2 = −33, pi3 = −43, pi4 = −3

for which the closed-loop system is stable and achieves some desired dynamic behavior
(for example: no oscillations, fast response).
We can calculate the gain K using the place function from MATLAB:

K = place(A, B, [pi1 pi2 pi3 pi4]),

which leads to the values:

K =
[
4.27 0 1.17 0

0 2.52 0 0.69

]
. (9.7)

The response of the closed-loop system with the initial conditions [π/2 1.87 0 0]T
is shown in Figure 9.5.

(c) Tracking problem.
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Figure 9.5: Closed-loop system response - stabilization problem - non-zero initial conditions

(i) The feedback gain matrix K is computed in the same manner as in case (b)
and for the same closed-loop poles it is given by (9.7).
The gain matrix N is computed so that the output vector tracks the reference
input r at steady-state (rss) with zero steady-state error (ess = rss − yss = 0).
With the feedback control law (9.4), the closed-loop state equation is:

ẋ(t) = Ax(t)+Bu(t) = Ax(t)+B(Nr−Kx(t)) = (A−BK)x(t)+BNr(t)

At steady-state ẋ = 0 and the steady-state values of the states and outputs are
denoted by xss and yss, respectively. Then:

0 = (A − BK)xss + BNrss ⇒ xss = −(A − BK)−1BNrss

If the output at steady-state is equal to r we obtain:

yss = Cxss = −C(A − BK)−1BNrss = rss

and then, the gain matrix N is given by:

N = −
(
C (A − BK)−1 B

)−1
(9.8)

For the system matrices given in the problem statement and the matrix K from
(9.7) we obtain:

N =
[
3.96 0

0 2.34

]
Notice from the simulation results presented in Figure 9.6 that the robot joint
angles reach the steady-state values equal to the reference inputs r = [0.5 1]T ,
t ≥ 0 in less than 2 seconds, which makes the steady-state error equal to zero.

(ii) When we add the integrator component, the control structure becomes the one
from Figure 9.4. Now we have to design both gains: Kx and Ki. Our approach
here will be to design both gains at once by extending the system (9.1) with
the error dynamics given by (9.6):{

ẋ(t) = Ax(t) + Bu(t)
ż(t) = e(t) = r(t) − y(t) = r(t) − Cx(t) (9.9)
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Figure 9.6: Closed-loop step response

or: [
ẋ(t)
ż(t)

]
︸ ︷︷ ︸

ẋe

=
[

A 04×2
−C 02×2

]
︸ ︷︷ ︸

Ae

[
x(t)
z(t)

]
︸ ︷︷ ︸

xe

+
[

B
02×2

]
︸ ︷︷ ︸

Be

u(t) +
[

0
I2

]
r(t) (9.10)

In equation (9.10), xe(t) =
[
x(t)
z(t)

]
is the extended state vector. Two new states

are introduced, included in the vector z(t) that describe the error dynamics, i.e.
the variation of the error between the reference inputs and the system outputs.
The matrices 0n×m are matrices of zeros and Im is an identity matrix.
The control law is written as:

u(t) = −Kx · x(t) − Ki · z(t) = −
[
Kx Ki

] [
x(t)
z(t)

]
= −Kexe(t) (9.11)

We can now design the gain Ke in a similar manner as at point (b), by imposing
the eigenvalues of the closed-loop system matrix Ae − BeKe.
First, we have to verify whether or not the extended system is controllable. The
controllability matrix is:

Pc =
[
Be AeBe A2

eBe · · · A5
eBe

]
with the rank calculated in MATLAB:

rank(Pc) = 6

which is also the system order. The extended system is thus controllable.
The next step is to obtain a set of poles to be imposed as the eigenvalues of the
closed-loop system matrix. We will keep the same values for the closed-loop
process poles as at point (b) and add two new values corresponding to the
newly introduced states. The closed-loop poles for the extended system will be
placed at:

pi1 = −3, pi2 = −33, pi3 = −43, pi4 = −3, pi5 = −6, pi6 = −8

The matrix Ke, computed using the function place:

Ke = place(Ae, Be, [pi1 pi2 pi3 pi4 pi5 pi6])
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is

Ke =
[
11.73 0.92 1.09 0.03 −23.04 −2.50
1.04 10.22 0.03 1.08 −2.83 −19.60

]
.

We separate the gain matrices Kx and Ki of appropriate sizes from Ke and
obtain:

Kx =
[
11.73 0.92 1.09 0.03
1.04 10.22 0.03 1.08

]
, Ki =

[
−23.04 −2.50
−2.83 −19.60

]
The simulation results of the control structure from Figure 9.4 with the reference
inputs r = [0.5 1]T , t ≥ 0 is shown in Figure 9.7. As in the previous case, the
steady-state error for each output is zero.
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Figure 9.7: Closed-loop step response with integral control component

+ Compare the strategies (i) and (ii) when the process model is slightly changed
(for example, alter the elements of the matrix A by 10%). This would
simulate the situation when the process parameters are uncertain meaning
that a discrepancy is possible between the process model and the real process.
Simulate the closed-loop system for the same values of N and K (in case (i))
and Kx and Ki (in case (ii)). Comment on the results.

+ Simulate the closed-loop system when the reference inputs are: r1 = 0.5 and
r2 given in Figure 9.8. This would simulate the situation when the joint angle
q1 has to reach a constant value of 0.5 rad, while the angle q2 has to reach
successively the positions +1 rad and −1 rad, in less than 2 seconds.
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Figure 9.8: Square wave reference input for joint angle q2
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SE 9.2 pH (potential of hydrogen) neutralization processes are used in wastewater treatement,
electrochemistry and precipitation plants [29]. The process is represented schematically
in Figure 9.9. The control input is the acid stream flow rate (u), while the output is
the measured pH level (y). The control problem is challenging, due to nonlinearities
and sensibility to small perturbations. We will limits our discussion here to the dynamic
behavior of the process near a nominal operating point.

Figure 9.9: pH neutralization process (adapted from [29])

The linearized model in the nominal operation point is [29]:

ẋ(t) = Ax(t) + Bu(t) (9.12)
y(t) = Cx(t) + Du(t)

with

A =

−0.525 −0.01265 −0.000078
1 0 0
0 1 0

 , B =

1
0
0


C = 10−4 ·

[
0 −0.958 −0.01197

]
, D =

[
0
]

(a) Analyze the system stability and controllability.
(b) Design a state-feedback control law:

u(t) = −K · x(t) + N · r(t), (9.13)

where r is the prescribed pH level (reference), that meets the following control
requirements for a step reference r(t) = 2, (t > 0):

no overshoot,
a settling time less than 4 minutes,
a zero steady state error.

Test the result in simulation.

Solution:
(a) In order to determine whether the system is stable or not, we compute the system

poles or the eigenvalues of matrix A from:

det(sI − A) = 0 ⇒ p1 = −0.5, p2 = −0.0128, p3 = −0.0122 (9.14)
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The system is stable because all poles are negative.
When designing a state-feedback controller, we have to check controllability. The
controllability matrix is calculated as:

Pc =
[
B AB A2B

]
=

1 −0.525 0.2630
0 1 −0.525
0 0 1

 .

The rank of Pc is equal to the order of the system, that is 3. This means that the
system is controllable.

(b) We shall design a state-feedback controller that makes the steady-state error equal to
zero for a constant reference input. Notice first that the open-loop system is stable
and the system poles are real and negative, as resulted from (9.14). We shall analyze
the open-loop step response to gain some insight on the process.
The transfer function representation of the system can be determined as:

H(s) = C(sI3 −A)−1B+D = −10−4 0.9580s + 0.01197
s3 + 0.5250s2 + 0.01265s + 0.000078 . (9.15)

The step response of the open-loop system when the input is a step r(t) = 2, t ≥ 0 is
shown in Figure 9.10.
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Figure 9.10: Open-loop step response

For the steady-state requirements we’ll analyze the steady-state error and the settling
time of the open-loop system.
The DC gain of H(s) is:

lim
s→0

H(s) = −10−4 · 0.01197
0.000078 = −0.0153.

So the steady-state error for a step input is zero (ideally) if we add an open-loop gain
K0 = − 1

0.0153 to scale the reference input, as shown in Figure 9.11.

H(s)
u(t)

K0
y(t)r

pH neutralization

process

Figure 9.11: Open-loop system with the gain K0

The step response of the system K0 · H(s) for an input r(t) = 2, t ≥ 0 is shown in
Figure 9.12. The settling time is approximately 400 sec or 6.6 minutes.
One of the design requirements is a shorter settling time. This can be accomplished
is we design a closed-loop control system with the closed-loop poles, imposed in the
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Figure 9.12: Step response of the open-loop system with K0

process of designing a state-feedback controller, are faster than the open-loop poles
of the process. A pole is "faster" if it has a larger absolute value - for real values this
is easy to see as the poles are the negative inverse of time constants pi = −1/Ti.
In our specific case, if the open-loop poles are given by (9.14) then the closed-loop
poles should be to the left in respect with the real axis (see Figure 9.13).

Im

Re

Open-loop

poles

Closed-loop

poles

Figure 9.13: Location of open-loop poles and closed-loop poles: a generic example

We shall design a state feedback controller that stabilizes the system, using the
pole placement method, and then compute a pre-compensation gain N to scale the
reference input so that the steady-state error is zero, according to the block diagram
shown in Figure 9.14.

-K

x=Ax+Bu
u(t) x(t).

CN
y(t)r

pH neutralization process

Figure 9.14: Closed-loop control system with pre-compensation gain

Let’s impose the closed-poles four times "faster" than the open-loop poles:

pi1 = −2, pi2 = −0.0512, pi3 = −0.0487.

This means the characteristic polynomial of the closed-loop system is:

µi(s) = (s − pi1)(s − pi2)(s − pi3) = s3 + 2.1s2 + 0.2024s + 0.005 (9.16)

On the other hand, the closed-loop system given by the state equation (9.12) and
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the control law (9.13) with N = 0, has the characteristic polynomial:
µcl(s) = det(sI3 − (A − BK))
µcl(s) = s3 + (k1 + 0.525)s2 + (k2 + 0.0127)s + (k3 + 0.000078), (9.17)

where K =
[
k1 k2 k3

]
.

By equating term by term (9.16) and (9.17), we obtain a system of three equations
with three unknowns, which has the unique solution:

k1 = 1.5750 k2 = 0.1898 k3 = 0.0049.

The response of the closed loop system when N = −1 is shown in Figure 9.15.
Although now, the settling time is within limits, what stands out is that we have a
big overshoot, although all poles are real.
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Figure 9.15: Closed loop step response with state feedback - when the open loop zero is ignored

This is because, so far, we ignored the process zero - see 9.15, which persists even in
closed-loop (open-loop zeros are the same as the closed-loop zeros). A quick fix is to
impose a closed-loop pole with the same value as the zero: −0.0125. This way, the
closed-loop pole cancels the zero. Consequently, we will try the imposed poles:

pi1 = −2, pi2 = −0.0512, pi3 = −0.0125,

that give the characteristic polynomial:

µi(s) = s3 + 2.0637s2 + 0.128s + 0.0013. (9.18)

The new feedback gains are:

k1 = 1.5387 k2 = 0.1154 k3 = 0.0012.

The response of the closed loop system when N = −1 is shown in Figure 9.16. Now
the response has no overshoot.
Finally, we need to eliminate the steady-state error. This can be achieved by properly
designing the pre-compensation gain N . It can be computed as presented in SE 9.1:

N = −
(
C (A − BK)−1 B

)−1
= −1069.3

The response of the closed-loop system is illustrated in Figure 9.17. We can see that
now all the design constraints are met.
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Figure 9.16: Closed loop step response with state feedback - when the open loop zero is compen-
sated
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Figure 9.17: Closed loop step response with state feedback and pre-compensation: final design

9.2 Proposed exercises
PE 9.1 Consider the process model:

ẋ1(t) = x1(t) + u(t)
ẋ2(t) = −2x2(t) − u(t)
y(t) = x1(t)

(a) Analyze the internal stability of this system.
(b) Determine the transfer function of the system and analyze the external stability.
(c) Determine whether the system is controllable.

PE 9.2 Consider a system with the state equations:

ẋ1(t) = x2(t)
ẋ2(t) = 4x1(t) − u(t)

(a) Analyze the internal stability of this system.
(b) Show that the system is controllable.
(c) Stabilize the system using a state-feedback control law u(t) = −Kx(t) so that the

closed-loop poles are located at r1,2 = −1 ± j.

PE 9.3 Consider the process model

ẋ1(t) = 0.5x1(t) − 2x2(t) + u(t)
ẋ2(t) = −0.5x1(t) − 0.3x2(t)
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(a) Analyze the internal stability of the system.
(b) Show that the system is controllable.
(c) Stabilize the system using a state feedback controller

u(t) = −K · x(t), where K = [k1 k2] and x = [x1 x2]T

Choose a set of poles such that the closed-loop system is stable, compute the feedback
gain matrix K using pole placement and simulate the closed-loop system with a zero
setpoint.

PE 9.4 Consider the process model

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

with

A =

1 −4 4
1 0 0
0 1 0

 , B =

1
0
0

 , C =
[
0 1 −1

]
, D =

[
0
]

.

(a) Determine the internal stability of the system.
(b) Determine the transfer function of the system and the external stability. Interpret

the results in respect with point (a).
(c) Design a state feedback controller

u(t) = −K · x(t),

so that the closed-loop system is stable and the closed-loop poles are real. Simulate
the closed-loop system with a zero setpoint and non-zero initial conditions.

PE 9.5 Consider the process with the state equations:

ẋ1(t) = −5x1(t) − 20x2(t) + u(t)
ẋ2(t) = 8x1(t) − 3x2(t) + x3(t)
ẋ3(t) = x1(t) − 2x2(t) + 4x3(t)

(a) Show the the system is unstable and controllable.
(b) Design a state-feedback controller such that the closed-loop poles of the system are:

p1 = −20 − 4j, p2 = −20 + 4j, p3 = −10.

Check the result with the MATLAB function place.
(c) Consider

y(t) = x1(t)

as the output of the system. Add a gain such that

u(t) = −Kx(t) + Nr

where r is a step reference signal. Design the gain N such that the steady-state error
is zero. Simulate the closed-loop system and check the result.

PE 9.6 Consider the linearized model of the levitation system from SE 8.2, given by the transfer
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function [6]:

H(s) = Y (s)
U(s) = 3148

s2 − 4551 .

where the input u(t) is the voltage control signal and the output y(t) is the ball vertical
position.
(a) Determine a state-space model for this system. Choose the system states as the ball

position x1(t) = y(t) and the ball velocity x2(t) = ẏ(t).
(b) Design a state-feedback controller to stabilize the system for the closed-loop poles:

pi1 = −390 and pi2 = −410. Simulate the closed-loop system from non-zero initial
conditions and a zero reference input.

(c) Design a pre-compensator gain N so that the steady-state error for a unit step input
is zero. Analyze the simulated step response of the closed-loop system, determine
the overshoot and the settling time.

PE 9.7 Consider the stabilization problem for a rotary inverted pendulum - Figure 9.18. The

x1

x2

P
arm

ndulum

Figure 9.18: Rotary Inverted Pendulum

arm of the pendulum rotates around the pivot point P , actuated by a DC motor. The
input signal is the voltage u(t) that drives the motor and the states are chosen as the
angular positions of the arm and the pendulum x1(t) and x2(t), respectively, as well as
their velocities x3(t) = ẋ1(t), x4(t) = ẋ2(t).

The linearized model at the upward position (unstable equilibrium) is [17]:

ẋ(t) = Ax(t) + Bu(t)

with

A =


0 0 1 0
0 0 0 1
0 39.32 −14.52 0
0 81.78 −13.98 0

 , B =


0
0

25.54
24.59

 .

(a) Analyze the system stability.
(b) Design a state-feedback controller the stabilizes the system, for the closed loop poles:

pi1 = −41, pi2 = −6, pi3,4 = −2 ± 2i. Check the results in simulation for non-zero
initial conditions.



A Laplace and Z-transform

A.1 Table of Laplace and Z-transforms

Time domain Laplace transform Z-transform

f(t) F (s) = L [f(t)] =
∫ ∞

−∞
f(t)e−stdt F (z) = Z[f(t)|t=kT ] =

∞∑
k=0

f(kT )z−k

1 δ(t) 1 1

2 1 1
s

z

z − 1

3 t
1
s2

Tz

(z − 1)2

4 e−at 1
s + a

z

z − e−aT

5 sin at
a

s2 + a2
z sin aT

z2 − 2z cos aT + 1

6 cos at
s

s2 + a2
z(z − cos aT )

z2 − 2z cos aT + 1

7 e−at sin bt
b

(s + a)2 + b2
ze−aT sin bT

z2 − 2ze−aT cos bt + e−2aT

8 e−at cos bt
s + a

(s + a)2 + b2
z(z − e−aT cos bT )

z2 − 2ze−aT cos bt + e−2aT

9 te−at 1
(s + a)2

Tze−aT

(z − e−aT )2

10 1
a

(1 − e−at) 1
s(s + a)

z(1 − e−aT )
a(z − 1)(z − e−aT )

11 1
b − a

(e−at − e−bt) 1
(s + a)(s + b)

z(e−aT − e−bT )
(b − a)(z − e−aT )(z − e−bT )

104
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A.2 Properties of the Laplace transform

Property Time domain s-domain
f(t) F (s) = L [f(t)]

1 Linearity af1(t) + bf2(t) aF1(s) + bF2(s)

2 First derivative df(t)
dt

sF (s) − f(0)

3 Second derivative d2f(t)
dt2 s2F (s) − sf(0) − f ′(0)

4 n-th derivative dnf(t)
dtn

snF (s) − sn−1f(0) − · · · − f (n−1)(0)

5 Time integration
∫ t

0
f(τ)dτ

1
s

F (s)

6 Scaling f(at) 1
a

F

(
s

a

)
7 Time shift f(t − T ) e−sT F (s)

8 Initial value theorem f(0+) = lim
t→0

f(t) lim
s→∞

sF (s)

9 Final value theorem f(∞) = lim
t→∞

f(t) lim
s→0

sF (s), if all poles of sF (s) are in
the left half-plane

A.3 Properties of the Z-transform

Property Discrete time domain z-domain
f(kT ) F (z) = Z[f(kT )]

1 Linearity af1(kT ) + bf2(kT ) aF1(z) + bF2(z)

2 Shift right by T f((k − 1)T ) z−1F (z)

3 Shift right by nT f((k − n)T ) z−nF (z)

4 Shift left by T f((k + 1)T ) zF (z) − zf(0)

5 Shift left by nT f((k + n)T ) znF (z) −
n−1∑
i=0

f(iT )zk−i

6 First difference f(kT ) − f((k − 1)T ) (1 − z−1)F (z)

7 Initial value theorem f(0) = lim
k→0

f(kT ) lim
z→∞

F (z)

8 Final value theorem f(∞) = lim
k→∞

f(kT ) lim
z→1

(z−1)F (z) if the poles of (z−1)F (z)
are inside the unit circle



B Rules for sketching Bode
plots

Factor Magnitude, MdB Phase, ϕdeg Sketch
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Factor Magnitude, MdB Phase, ϕdeg Sketch
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