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Preface

The advancement of autonomous vehicles marks one of the most
transformative shifts in modern technology, with visual perception play-
ing a pivotal role in enabling these systems to navigate and interact
with their surroundings. Autonomous driving relies on precise, real-time
understanding of the environment, achieved through a combination of
advanced sensors, artificial intelligence, and state-of-the-art algorithms.

This book delves deeply into the field of visual perception for
autonomous vehicles, presenting both a comprehensive overview of ex-
isting methodologies and novel contributions developed through the au-
thor’s research. Key focus areas include semantic segmentation, instance
segmentation, panoptic segmentation, and depth estimation—all critical
tasks that enable vehicles to build a detailed understanding of their en-
vironment. Each method presented in this book is analyzed in terms
of computational efficiency, accuracy, and real-world applicability, with
special attention to challenges like hardware limitations. The theoretical
foundations and pragmatic solutions discussed are primarily derived from
the author’s extensive research and contributions to the field, including
methods from the author’s Ph.D. thesis titled ”Deep Learning-based Vi-
sual Perception for Autonomous Driving” (2022).

This book is intended for senior undergraduate and graduate
students, as well as early-career researchers seeking to deepen their un-
derstanding of the computational and algorithmic foundations of visual
perception in autonomous driving. A foundational knowledge of image
processing, deep learning, and computer vision will enable readers to
engage with the advanced concepts discussed throughout.

By bridging theory and practice, this book aims not only to
provide knowledge but also to inspire the development of safer, more
efficient, and intelligent transportation systems.
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Chapter 1

Introduction

The evolution of the automotive industry is marked by advance-
ments in driving assistance technologies, beginning with innovations like
anti-lock braking systems (ABS), adaptive cruise control, and lane de-
parture warnings. These technologies transitioned vehicles from purely
passive safety features to active driver assistance systems, creating a
foundation for increasingly intelligent capabilities. Today, the industry
is moving beyond assistance systems toward the development of fully au-
tonomous vehicles. This shift is driven by the potential to drastically
reduce traffic accidents, enhance mobility, and transform transportation
through the integration of advanced sensors, artificial intelligence, and
state-of-the-art software. Autonomous vehicles have emerged as one of
the most transformative research fields of the past decade, fueled by rapid
advancements in hardware and software technologies.

Every year, road traffic accidents claim the lives of over 1.3 mil-
lion people, with children and young adults aged 5 to 29 years being the
most affected demographic [10]. Beyond the tragic loss of life, these ac-
cidents also result in millions of injuries and significant economic costs,
including medical expenses, lost productivity, and infrastructure dam-
age. A staggering 90% of these accidents are attributed to human error,
such as speeding, fatigue, distracted driving, and delayed reactions, un-
derscoring the limitations of human performance in dynamic traffic sce-
narios. This critical statistic has catalyzed efforts within both academia
and industry to conceptualize a future of safer roads, underpinned by
autonomous vehicles capable of faster, more precise reactions in critical
situations and a reduced susceptibility to human mistakes. By leveraging
advanced sensor technology, machine learning, and real-time data pro-
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cessing, autonomous systems promise to address the root causes of human
error, potentially preventing accidents before they occur. As these efforts
converge, the vision of a safer, more reliable transportation ecosystem is
steadily becoming a reality.

As urbanization continues at an unprecedented pace, the United
Nations projects that by 2050, 70% of the global population will reside
in cities [7]. This rapid shift places immense pressure on urban mobility
systems, with increasing vehicle numbers straining road infrastructures
and public transportation networks. The resulting traffic congestion is
not merely an inconvenience but a pervasive issue with profound eco-
logical, economic, and societal implications. Daily traffic congestions in
major cities leads to wasted fuel, lost productivity, and deteriorating air
quality. In 2020, the estimated economic loss due to traffic congestion,
primarily from wasted fuel and delays, exceeded $100 billion [2], high-
lighting the urgent need for innovative solutions. Autonomous electric
vehicles, complemented by services such as robotaxis, offer a transfor-
mative approach to addressing these urbanization-driven challenges. By
optimizing traffic flow, reducing idle times, and enabling coordinated ve-
hicle movements, these technologies can significantly decrease congestion
and its associated costs. Beyond improving efficiency, autonomous vehi-
cles contribute to combating climate change by reducing greenhouse gas
emissions through electrification and smarter route management. For
example, dynamic ride-sharing models powered by artificial intelligence
can match passengers with similar routes, minimizing vehicle usage and
maximizing efficiency.

Furthermore, autonomous mobility solutions promise to enhance
inclusivity in transportation. Car-sharing and ride-hailing services inte-
grated with autonomous technology are poised to become increasingly
attractive, offering affordable and accessible options for individuals who
cannot or choose not to drive. Aging and disabled populations, who of-
ten face mobility challenges, stand to benefit significantly from this shift,
gaining independence and improved quality of life.

The implementation of autonomous vehicles also presents an op-
portunity to rethink urban planning. With fewer privately owned cars,
cities could repurpose parking spaces and road infrastructure for green
spaces, pedestrian zones, and bike lanes, fostering more sustainable and
livable urban environments. Collectively, these advancements are not
just about solving the problems of today but about shaping the cities of
tomorrow—smarter, cleaner, and more connected.
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Figure 1.1: The six levels of autonomy:.!

The Society of Automotive Engineers (SAE) [3] defines 6 lev-
els of vehicle autonomy, ranging from level 0 (no automation) to level
5 (full automation) as seen in Figure 1.1. The significant technological
progress in this domain from the last decade enabled the automotive
industry to reach level 2 automation and the latest models of vehicles
on the market are often equipped with driving assistance systems such
as adaptive cruise control, lane keeping assistance, automatic braking
and parking assistance. Companies such as Waymo, Zoox, Baidu and
Tesla have already tested level 4 automated cars in limited areas of some
cities. However, there are still unsolved challenges and lack of technolog-
ical maturity, which delays the large-scale adoption of self-driving cars to
the next 10 years. Research in this domain for higher levels of automa-
tion is very active, with topics ranging from key base technologies, to
operation in long-tail scenarios, scaling to new locations and new hard-
ware, adaptation to adverse weather and night conditions, and automatic
labeling.

Autonomous vehicles need to see and understand the environ-
ment before navigating the world, just as a human driver would do. The
autonomy stack, as seen in Figure[I.2] enables fully automated vehicles to
safely drive to the desired destination. The stack is usually made of sen-
sors, High-Definition (HD) maps and advanced software for perception,
prediction, planning and control.

Vehicles rely on sensors such as cameras, LiDARs and radars to
see the environment. Usually, they are mounted all around the vehicle to

Thttps://www.nhtsa.gov/
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Figure 1.2: The autonomy stack.

enable 360° perception. Color cameras can be employed for daytime vi-
sion and provide rich appearance information which is useful for semantic
and depth perception. During night, infrared cameras, which measure
the apparent surface temperature of objects, can be used instead. Cam-
era lenses are of several types and determine the field-of-view: standard
lenses offer a horizontal field-of-view of 60° and a natural perspective,
while wide-angle lenses, such as fisheye, can offer a horizontal field-of-
view of 180° and are useful for surround perception. LiDARs (Light
Detection and Ranging) sensors are able to determine the distance to-
wards a target by illuminating the target with a laser light and measuring
the return time. LiDARs provide a highly accurate 3D model of the en-
vironment by generating 3D point clouds. Disadvantages of LiDARs are
the high cost compared to cameras or radars and the sparsity of the 3D
point clouds. The radar uses radio waves to determine the distance, size
and speed of objects. The depth from radar is not as accurate as from
the other sensors, however it is robust in adverse weather conditions. A
robust autonomy system should offer redundancy at the sensorial and
algorithmic level to ensure safe operation of the vehicle on roads. This
can be achieved by having parallel independent processing pipelines for
each sensor (cameras, LiDARs, radars). A multi-modal pipeline which
processes the combined outputs of different sensors could be also added
to the system for increased robustness.

The first software module in the autonomy stack is the percep-
tion, which collects, interprets and understands the sensory information,
with associated tasks such as 3D object detection, classification and
tracking. Next in the stack is the prediction module, which receives
the output from perception, predicts how the actors in a scene will move
in the next few seconds and generates multiple plausible versions of the
future. The planner takes the HD map data, the perception and pre-
diction outputs and determines a safe trajectory and maneuvers for the
autonomous vehicle. And finally, the control module is the software re-
sponsible for controlling the vehicle’s acceleration, braking and steering.

This book explores a series of methods for environment percep-
tion using monocular cameras, including several novel approaches pio-
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neered in our research. In autonomous navigation, vehicles must accu-
rately perceive both the semantics and depth of their surroundings to
make informed decisions. Monocular cameras, despite their simplicity,
can achieve both: the rich visual information captured by images en-
ables semantic understanding, while depth can be inferred either through
stereo vision, multiple views, or motion from video sequences. For safe
and reliable operation, an effective environment perception system must
deliver high accuracy and real-time performance (10-30 frames per sec-
ond) on low-power hardware to ensure timely decision-making and con-
trol. In the chapters that follow, we present a series of solutions ad-
dressing visual environment perception, highlighting both established
techniques and novel approaches that tackle the unique challenges of
autonomous driving. Particular emphasis is placed on methods that
achieve both high accuracy and low processing times, making them suit-
able for integration into the perception software stack of automated vehi-
cles, which demand real-time operation for safe and efficient navigation.
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Chapter 2

Visual Environment
Perception

Visual environment perception is a fundamental element of au-
tonomous driving, enabling vehicles to understand and interact with their
surroundings. This chapter provides an overview of the key tasks in-
volved in visual perception, including semantic segmentation, instance
segmentation, panoptic segmentation, video panoptic segmentation, and
depth-aware video panoptic segmentation (DVPS). Together, these tasks
contribute to constructing a semantic 4D representation of the environ-
ment, where spatial and temporal information is integrated into a cohe-
sive framework for autonomous navigation.

Beyond describing these tasks, the discussion extends to the eval-
uation metrics commonly employed to assess the performance of percep-
tion algorithms, such as accuracy, precision, recall, and computational
efficiency. These metrics offer a standardized way to compare methods
and determine their suitability for real-world applications. The role of
datasets in the development and benchmarking of visual perception al-
gorithms is also emphasized, with high-quality labeled datasets being
essential for training deep learning models. Some of the most influential
datasets in the domain are examined, highlighting their characteristics
and challenges.

The motivation for adopting deep learning is also explored, fo-
cusing on its transformative impact on computer vision and its ability to
handle the complexity of autonomous driving tasks. Key challenges in
visual environment perception are reviewed, including dynamic and di-
verse driving scenarios, the computational demands of deep models, and

13
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the reliance on large, high-quality datasets. Addressing these obstacles
is crucial for designing efficient, real-time perception systems capable of
meeting the demands of autonomous vehicles.

2.1 Tasks

One of the key tasks of visual environment perception is depth-
aware video panoptic segmentation (DVPS), which reconstructs 4D
panoptic point clouds from video sequences. These 4D panoptic point
clouds augment 3D spatial points with semantic class labels and tempo-
rally consistent instance identifiers, offering a holistic, fine-grained repre-
sentation of the environment. An example of DVPS output is illustrated
in Figure 2.1. This representation provides all the essential information
about road infrastructure elements and classified, tracked 3D objects such
as vehicles and pedestrians. In DVPS, the environment is segmented into
two main categories: things and stuff. Things are countable, dynamic ob-
jects in the scene, such as vehicles, pedestrians, and cyclists. Each thing
is assigned a unique instance identifier that remains consistent over time,
enabling object tracking across video frames. The 3D representation of
a thing includes all spatial points belonging to the same semantic class
and instance. Stuff are uncountable, static elements of the scene, such
as road surfaces, sidewalks, vegetation, and sky. Stuff is represented by
its semantic class, without the need for instance-level identification. In
a traffic scenario, static infrastructure elements like the road, sidewalks,
or traffic signs are categorized as stuff, providing a semantic understand-
ing of the surrounding environment. The environment representation
resulted from the DVPS task encapsulates all relevant information about
the environment, including: the spatial structure of the scene in 3D as a
3D point cloud, semantic classifications for both things and stuff pixels
and temporally consistent instance IDs for dynamic objects.

Depth-aware video panoptic segmentation encompasses two vi-
sual recognition sub-tasks: 1. monocular depth estimation, which es-
timates the corresponding 3D point for each pixel in the image 2. video
panoptic segmentation, which aims at extending image-level panoptic
segmentation to the video domain, by tracking instances across frames.
Image panoptic segmentation unifies semantic and instance segmen-
tation into a coherent output, where each pixel in the image is uniquely
assigned a semantic class and an instance identifier. We present in Figure



2.1. TASKS 15

Frame t

Frame t+1

Video sequence 4D Panoptic Point Cloud

Figure 2.1: Depth-aware video panoptic segmentation is the task of
restoring 4D panoptic point clouds from video sequences. On the right,
each vehicle is depicted with a different shade of blue which is consistent
across time.

2.2 an example of panoptic segmentation with the associated sub-tasks.

ek |

- He

o=

(a) Image (b) Instance Segmentation

(c) Semantic Segmentation (d) Panoptic Segmentation

Figure 2.2: Panoptic segmentation unifies the tasks of semantic and in-
stance segmentation.
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2.2 Deep Learning

To achieve the level of accuracy and efficiency required for au-
tonomous navigation, traditional computer vision methods have increas-
ingly given way to more advanced approaches. Among these, deep learn-
ing has emerged as a transformative paradigm, offering unparalleled ca-
pabilities for extracting and understanding complex visual information.
The evolution of deep learning, particularly in computer vision, has been
pivotal in addressing the challenges of environment perception, enabling
robust semantic and spatial understanding from monocular camera data.
By leveraging its ability to process large-scale data and adapt to di-
verse scenarios, deep learning has become the cornerstone of modern
autonomous driving systems, forming the foundation for many of the
methods discussed in this book.

Deep learning is a class of machine learning algorithms that uses
neural networks for representation learning. Neural networks have been
inspired by the human brain and are a collection of connected nodes
called neurons which extract hierarchical features from input data. In
computer vision, convolutional neural networks have been the dominant
approach in the last decade due to their superior performance compared
to the previous algorithms based on hand-crafted features. The success
of deep learning has been attributed to: 1. availability of large datasets
of consistent and high-quality labeled images 2. high-performance GPUs
with parallel architectures that enable training of multi-layer (deep) neu-
ral networks in a short amount of time. Moreover, real-time performance
is supported by the new generation of GPU devices and advanced studies
in neural network optimization, allowing high inference speed on the new
low-power GPUs.

2.3 Challenges

While deep learning has demonstrated exceptional capabilities in
solving complex perception tasks, applying these methods to autonomous
driving introduces significant challenges. The driving environment, par-
ticularly in urban areas, is characterized by its dynamic and diverse na-
ture. Traffic scenes often include a wide range of road users, such as
cars, buses, trucks, pedestrians, and cyclists, interacting unpredictably.
Effective segmentation algorithms must not only manage this complexity
but also address cases of occlusion, where objects are partially visible,
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and still provide accurate predictions for occluded road users.

Although traffic environments exhibit some structured elements,
such as roads, sidewalks, and traffic signs, they also present considerable
variability. Pedestrians, for example, differ greatly in appearance due to
factors like clothing, posture, and body traits. Additionally, the scale
of traffic participants can vary significantly within an image, depending
on their distance from the camera and the perspective of the scene. To
accurately segment large objects, deep learning models require a broad
receptive field, often achieved through downsampling. However, pre-
serving fine details is equally important for segmenting smaller objects,
requiring a careful balance between scale and precision.

Deep learning-based segmentation methods also rely heavily on
large, high-quality datasets for training. The accuracy of these algo-
rithms depends on the quantity, consistency, and completeness of the
labeled data. However, manually annotating images—particularly at the
pixel level in video sequences—is labor-intensive and costly. To address
this limitation, advancements in automatic and semi-automatic annota-
tion, as well as semi-supervised and self-supervised learning techniques,
must be explored.

Another critical challenge lies in achieving real-time performance
on low-power hardware. While state-of-the-art segmentation algorithms
excel on public benchmarks, their high computational cost makes them
unsuitable for real-time applications. The complexity of deep net-
work architectures becomes even more demanding when processing high-
resolution images, large video datasets, or 360-degree surround views. In
the context of autonomous driving, it is vital to develop efficient percep-
tion solutions that maintain a balance between computational efficiency
and high performance, ensuring practical integration into real-world sys-
tems.

2.4 Datasets

Cityscapes. Cityscapes [34] is a dataset of 5000 high resolution
1024 x 2048 images with urban driving scenes, captured in several cities
across Germany. The dataset provides depth maps from stereo [66] and
semantic labels and instance-level annotations for 19 classes, of which 11
stuff and 8 things classes. The training set consists of 2975 images, the
validation set has 500 images, while the test set has 1525 images.
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COCO. COCO [97] is a large-scale dataset with common objects
having panoptic labels for 80 things and 53 stuff classes. The dataset
has 118K training images, 5K and 20K for validation and testing.

KITTI. KITTT [50] is a driving dataset captured in urban, rural
and highway areas. KITTI is employed for training and evaluating depth
estimation networks. The depth ground truth provided by KITTTI is ob-
tained by projecting raw LiDAR scans onto the image. The Figen splits
[41] with the pre-processing of Zhou et al. [I71] remove static frames.
The training set consists of 39810 image triplets, while the validation set
has 4424 images. The reported results for depth are evaluated on 697
test images using Garg’s crop [49]. There is also the improved KITTI
ground truth [145], where the depth ground truth map is densified by
considering 5 consecutive frames and improved by handling occlusions
and object motion.

Cityscapes-DVPS. Cityscapes-DVPS [74] extends
Cityscapes [34] to panoptic video by providing panoptic and depth
annotations to every 5th frame from the 30-frame sequence in the origi-
nal validation set. The annotations in a video snippet are temporally
aligned with consistent instance IDs across frames. The dataset provides
3000, 300 and 300, training, validation and test images.

SemKITTI-DVPS. SemKITTI-DVPS [127] is based on the
odometry split of the KITTI dataset [52][16] and provides annotations for
every frame in a long video sequence. The sparse panoptic annotations
are obtained by projecting 3D point clouds acquired by LiDAR and aug-
mented with semantic and temporally-consistent instance information to
the image plane. The dataset contains 19020 training, 4071 validation
and 4342 test images. Annotations are provided for 8 things classes and
11 stuff classes.

UP-Drive Dataset. This dataset is employed for training and
evaluating deep neural networks for semantic and instance segmentation
on 360° fisheye images and frontal narrow field-of-view images. The UP-
Drive dataset is large and has been designed to capture a wide variety of
outdoor weather and lighting conditions. The data was recorded by driv-
ing the car in several cities in northern Germany but also on highways
and country roads. Recordings were performed in daytime and account
for different lighting conditions, from morning to afternoon. Sequences
were acquired in a time span of several months in three seasons: spring,
summer and autumn. The data was recorded in diverse weather condi-
tions such as sunny or cloudy weather but also in heavy rain. Lens flare,
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but also lens distortions from rain drops have been captured. From all the
recordings, 19562 non-sequential fisheye images were selected for seman-
tic and instance-level annotation. Images cover the surrounding view of
the vehicle: front, left, right and rear. There are 5111 front view images,
4684 left view images, 4800 right view images, 4967 rear view images.
The UP-Drive dataset was labeled using similar methodology with the
Cityscapes dataset [34]. Pixel-level semantic segmentation annotation is
provided for all images into 23 classes, and also instance-level labels for
a subset of 6 classes that represent traffic participants. The dataset has
15782 images in the training set and 3780 images in the test set. The
image dataset of narrow field-of-view images is relatively less diverse and
smaller than the fisheye dataset. It contains 1869 images which are la-
beled with pixel-level instance masks for 6 classes. The training set has
1495 images and the number of test images is 374.

The raw fisheye images are not used in practice since objects
in the image are highly distorted due to the wide-angle lenses. There-
fore, image undistortion and unwarping is applied in order to obtain a
more suitable representation of the scene in the image. Unwarping is
the process of backprojecting the fisheye image onto a virtual projection
surface. In this case, a cylindrical unwarping process [140] is adopted
which generates images with large horizontal field-of-view (HFV) and
small distortions, while also preserving the orientation of vertical lines.
In the image unwarping process, the horizontal field-of-view is reduced
from 185° to 160°. A visual comparison of fisheye and unwarped fisheye
images is provided in Figure [2.3

kot

Figure 2.3: Results of the fisheye images unwarping process. First row:
fisheye images, second row: cylindrical projection of the fisheye images.
From left to right: front view, right view, rear view and left view.
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2.5 Metrics

Semantic Segmentation Metrics. The performance of se-
mantic segmentation models is typically evaluated using metrics such as
Intersection over Union (IoU) and Mean Intersection over Union (mloU).
IoU is calculated for each class as the ratio between the area of overlap
between the predicted and ground truth segments and the area of their
union:

| Prediction N GroundT'ruthl|

IoU =
¢ | Prediction U GroundT ruth/|

(2.1)

The mloU metric averages the IoU values across all classes, pro-
viding a single scalar measure of segmentation performance.

Instance Segmentation. The standard metric used for evalu-
ating instance segmentation is the Mean Average Precision (mAP) [97].
This metric is computed as the average of the Average Precision (AP)
values across all classes and 10 IoU thresholds, ranging from 0.5 to 0.95
with a step size of 0.05.

To calculate mAP, AP is first computed for each class and IoU
threshold. The process begins by matching instance mask predictions to
ground truth masks, with each prediction categorized as a true positive,
false positive, or false negative. Predictions are sorted by confidence,
and starting from the highest confidence score, they are matched to the
ground truth. A prediction is considered a true positive if its IoU with a
ground truth mask exceeds the threshold; otherwise, it is classified as a
false positive. Precision and recall are then computed as follows:

TP
Precision = ————— 2.2
recision = s (2.2)
TP
Recall TPLFN (2.3)

Here, TP + FP represents the total number of predicted ob-
jects, and TP + FN represents the total number of ground truth objects.
The AP is defined as the area under the Precision-Recall curve and is
computed as the mean precision at 101 equally spaced recall levels [97]:

1
AP = m Z pinterp (T) (24)
r€0,0.01,...,1
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The precision at each recall level is interpolated as the maximum
precision for any recall greater than or equal to r:

Pinterp(r) = max p(7) (2:5)
Panoptic Segmentation. Panoptic Quality (PQ) [76] is the
standard metric for evaluating panoptic segmentation performance. PQ
is calculated for each class and then averaged across all classes. The
evaluation process begins with a segment matching step, where each pre-
dicted segment is uniquely matched to a ground truth segment with the
highest ToU, provided the IoU exceeds 0.5. Pixels from matched predicted
segments are classified as true positives, while pixels from unmatched pre-
dicted segments are considered false positives. Unmatched ground truth
segments are categorized as false negatives.
Unknown pixels may be labeled as void in the ground truth or the
predictions. Segments matched to void-labeled ground truth segments
are excluded from the PQ calculation, and unmatched predicted segments

containing void pixels are not counted as false positives.
The PQ metric is defined as:

Zp,gETP IOU(p7 g)
[TP|+ §|FP| + 5|FN|

PQ = (2.6)

PQ can also be expressed as the product of Segmentation Quality
(SQ) and Recognition Quality (RQ), where:

PQ =5Q x RQ (2.7)

The components are defined as follows:

Zp,geTP IOU(p7 g)
7P|

SQ = (2.8)

TP

RO —
= TP+ LFPI+ IFN

(2.9)

In this formulation, RQ is equivalent to the F1 score commonly
used in classification tasks, while SQ represents the average IoU for
matched segments. Panoptic segmentation performance is also evaluated
separately for things (countable objects) and stuff (amorphous regions)
using the PQTh and PQSt metrics.
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Video Panoptic Segmentation. VPQ (Video Panoptic Qual-
ity) [74] is a metric used to evaluate the accuracy of video panoptic
segmentation. Given a video sequence with T frames, a temporal win-
dow of k consecutive frames is selected. For a k-frame video snippet
Ttk = Lt [t TR a tube prediction is defined as the track of
its frame-level segments 4(c, 2) = {p',...,p'™*}, where ¢ represents the
semantic class and z is the instance identifier.

Predicted tubes and ground truth tubes are matched, and the
IoU between them is computed. Each frame-level predicted segment in a
tube is matched to the corresponding frame-level segment in the ground
truth tube. Pixels from a matched frame-level predicted segment are
considered true positives (TP) if they have the same semantic class and
the IoU is greater than 0.5. Pixels from unmatched predicted segments
are considered false positives (FP), while those from unmatched ground
truth segments are treated as false negatives (FN).

The IoU, TP, FP, and FN metrics are computed for each k-frame
window within the video snippet, sampled using a stride s. The stride s
is particularly useful when the ground truth is annotated at intervals of s
frames. The temporal sliding window is applied over the video sequence
0:7T —k: s, aggregating the loU, TP, FP, and FN metrics across all
windows.

The VPQ for a k-frame video snippet and C' classes is calculated
as:

VPQk _ l Z Z(u,a)eTPC [OU(U,&)
C & |TP,|+ 3|FP.| + 3| FN]

(2.10)

The final VPQ for the entire video sequence is computed as the
average over all k-frame windows:

VPQ = % > vre* (2.11)
k

Depth-aware Video Panoptic Segmentation. DVP(Q) is the
primary metric for the task. It represents an extension of VPQ, but also
considers the absolute relative depth errors \. DVPQ¥ is equal to VPQ*
computed for all pixels that have the absolute relative depth error smaller
than A\. We consider n the number of A values, which is usually equal to
3. The final DVPQ metric is computed as:
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11 i
DVPQ = ?E;;DVPQA (2.12)

Monocular Depth Evaluation. The performance of monoc-
ular depth estimation is evaluated using a combination of standard met-
rics, including Absolute Relative Error (absRel), Squared Relative Error
(sqRel), Root Mean Square Error (RMS), Root Mean Square Log Error
(RMSlog), and Depth Inlier Metrics (§ < 1.25,8 < 1.252,§ < 1.25%).
These metrics collectively assess the accuracy and reliability of the pre-
dicted depth values compared to the ground truth. In this context, d
represents the predicted depth, d is the ground truth depth, and N is
the total number of depth values in the dataset.

The metrics are defined as follows:

e Absolute Relative Error (absRel) measures the relative differ-
ence between predicted and ground truth depths, normalized by
the ground truth depth:

. s
absRel = N Z w (2.13)

e Squared Relative Error (sqRel) evaluates the squared differ-
ence between the predicted and ground truth depths, normalized
by the ground truth depth:

1 (d—d)>
sqRel = N Z % (2.14)

e Root Mean Square Error (RMS) calculates the root of the
mean squared difference between predicted and ground truth
depths:

RMS = \/% > (d—d)> (2.15)

e Root Mean Square Log Error (RMSlog) measures the root
of the mean squared logarithmic difference between predicted and
ground truth depths, emphasizing relative differences:

RMSlog = \/% Z(log(d) — log(d))? (2.16)
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e Depth Inlier Metrics (d;) assess the percentage of predicted
depths that fall within a certain threshold ¢ of the ground truth.
These thresholds (1.25, 1.25%, and 1.25%) reflect increasing toler-
ances for prediction errors:

! d d 2 1 ey
8, = NZH(maX(d,d) <t), te{l1.25125%1.25°} (2.17)

Here, I(-) is the indicator function, which evaluates to 1 if the
condition is true and 0 otherwise.



Chapter 3

Semantic Segmentation

This chapter examines key research directions and significant
contributions in semantic segmentation, a foundational deep learning-
based pixel-level recognition task. In addition to providing an overview
of the field, it highlights a selection of influential works for detailed anal-
ysis, focusing on advancements in network architectures, challenges in
handling complex visual environments, and strategies to enhance accu-
racy and computational efficiency for real-world applications.

3.1 Overview

Semantic segmentation partitions an image into meaningful seg-
ments, which share a common representation. Each pixel in the image
receives a semantic class that belongs to either stuff or things categories.
Stuff classes represent amorphous and uncountable elements in the scene
that usually have repetitive texture, but not a fixed shape or size. In the
driving environment, examples of stuff classes include road, sidewalk,
building, nature. On the other hand, things classes define objects that
can be counted and have a specific shape. Road users belong to this cat-
egory: vehicles, pedestrians and cyclists. State-of-the-art semantic seg-
mentation methods use deep learning for dense pixel prediction, which
we review next.

Fully Convolutional Networks. Convolutional neural net-
works (CNN) have been extensively used for the classification task and
Long et al.[100] adapted them for semantic segmentation by introducing
the Fully Convolutional Neural Network (FCN) as seen in Figure 3.1.
One of the major benefits of the FCN is that it removes the fixed input

25
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Figure 3.1: The fully convolutional neural network (FCN) [100].

size precondition by replacing the fully connected layers with convolu-
tional layers. FCN [100] uses skip connections by fusing low-level feature
maps having fine appearance information with high-level feature maps
having coarser information from the deep layers of the network.
Networks with Context Modules. Coarse grained repre-
sentations provide better localization and stronger context information,
while high resolution features provide details of finer scales such as shape
and boundaries. As both aspects are equally important for semantic
segmentation, several mechanisms have been proposed to achieve good
localization and to maintain image details. In order to incorporate con-
text information, the convolutional layers from the deeper levels of the
network have been replaced with atrous (dilated) convolutions [21], 22]
which apply the convolution on sparsified sampling locations. These con-
volutions allow control of the output resolution and enlarge the field of
view of filters by capturing multi-scale context without decimating the
resolution. Therefore, in an atrous (dilated) FCN, the output resolution
is typically 8x or 16x lower than the input size, compared to FCNs
where the output resolution is 32x. Bilinear upsampling is applied on
top of the last layer to obtain the final segmentation map. An alter-
native to atrous convolutions are the scale-adaptive convolutions [166].
The authors overcome the problem of fixed-size receptive fields by in-
troducing adaptive convolutions which are capable of learning dilation
rates. Deformable convolutions [36] generalize the atrous convolution by
learning 2D offsets to the regular grid of sampling locations. Another
line of work proposes context modules such as Pyramid Pooling Module
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[168] or Atrous Spatial Pyramid Pooling (ASPP) [21], 22] on top of the
dilated FCNs. The Pyramid Pooling Module applies four parallel average
pooling operations, which results in feature maps of sizes: [1 x 1], [2 X 2],
[3 x 3] and [6 x 6]. Next, a [1 x 1] convolution operation and upsam-
pling to 1/8 follow at each pyramid level. The input of the module and
its output are concatenated and the multi-scale features are fused with
a pointwise convolution. The Atrous Spatial Pyramid Pooling (ASPP)
as seen in Figure 3.2 [21], 22] captures multi-scale representations with
parallel atrous convolutions with different rates. The resulting feature
maps at different scales are concatenated and then bilinearly upsampled
to the original resolution.

_ Atrous Spatial Pyramid Pooling

2 rate = 12 g =48
fag-e-:ﬁ e a1
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Figure 3.2: Atrous Spatial Pyramid Pooling (ASPP) [21].

Another approach to capture multi-scale information is to resize
the input samples at different resolutions and use a shared feature ex-
tractor [44]. The resulting feature maps at different scales are aggregated
with concatenation [94] or attention models [23].

Encoder-Decoder. Networks using atrous convolutions and
Spatial Pyramids have a large memory footprint due to the fact that
feature maps are generated at higher resolutions. Therefore, a simple
and fast bilinear interpolation operation is used to recover the original
resolution. On the other hand, encoder-decoder networks usually use a
deeper and narrower CNN for feature extraction and a more complex
decoder replaces bilinear interpolation. The encoder network learns hi-
erarchical feature representations, while the decoder network upsamples
feature maps to the input image resolution and recovers spatial infor-
mation. Encoder-decoder models achieve outstanding performance by
learning the upsampling layers in the decoder. The ENet [I12] model
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has a lightweight encoder and deconvolution layers are used to learn the
upsampling of low resolution features. The network runs in real time at
the cost of reduced performance. ERFNet [131] achieves a better trade-off
between accuracy and efficiency by proposing the factorized convolution.
SegNet [14] has a symmetric encoder-decoder architecture and introduces
the unpooling layer for upsampling, which transfers maxpooling indices
from the encoder module to the decoder. The U-net model [132] uses
shortcut connections from the encoder to decoder to help recover object
details and spatial information. RefineNet [93] [149] exploits a multi-path
refinement network with long-range residual connections.

Transformer-based networks. Transformer-based semantic
segmentation networks have emerged as a transformative advancement in
computer vision, leveraging the self-attention mechanism of transformers
to model long-range dependencies and global context in images. Unlike
traditional convolutional neural networks (CNNs), which rely on local re-
ceptive fields, transformer architectures excel at capturing relationships
across the entire image, making them highly effective for dense predic-
tion tasks like semantic segmentation. Models such as MaskFormer [30],
Mask2Former [29], SegFormer [I58] have demonstrated state-of-the-art
performance by combining the strengths of transformers with hierarchical
and adaptive feature extraction.

Next, we discuss a few influential works for semantic segmenta-
tion.

3.2 ERFNet

Method. ERFNet [I31] is a fast and accurate network with
an encoder-decoder architecture. The building block of ERFNet is the
factorized residual layer as seen in Figure 3.3b. This layer represents a
1D non-bottleneck residual module that decomposes a 2D kernel into a
linear combination of 1D kernels. In this design, each 3 x 3 convolution is
transformed into 3 x 1 and 1 x 3 convolutions. The number of parameters
is reduced with 33% when using a kernel size of 3. At the same time,
the network is much more memory efficient and faster while having an
increased capacity which results in a high segmentation accuracy similar
to more complex models. The feature extractor encodes features at three
scales: 1/2, 1/4, 1/8 from the original input resolution by stacking resid-
ual 1D non-bottleneck blocks with dilated convolutions. The lightweight
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decoder is formed of 1D non-bottleneck blocks and recovers spatial and
semantic information from the last layer of the encoder. The detailed
architecture is presented in Figure 3.3a.

[ [ Layer | Type out-F  out-Res |

1 Downsampler block 16 512x256
2 Downsampler block 64 256x128
3-7 5 x Non-bt-1D 64 256x128
8 Downsampler block 128 128x64
% 9 Non-bt-1D (dilated 2) 128 128x64
] 10 Non-bt-1D (dilated 4) 128 128x64
8 11 Non-bt-1D (dilated 8) 128 128x64
% 12 Non-bt-1D (dilated 16) 128 128x64
13 Non-bt-1D (dilated 2) 128 128x64
14 Non-bt-1D (dilated 4) 128 128x64
15 Non-bt-1D (dilated 8) 128 128x64
16 Non-bt-1D (dilated 16) 128 128x64
o 17 Deconvolution (upsampling) 64 256x128
E 18-19 | 2 x Non-bt-1D 64 256x128

§ 20 | Deconvolution (upsampling) 16  512x256 (b) The non-
21-22 | 2 x Non-bt-1D 16 512x256

8 [~ 23 | Deconvolution (upsampling)  C____ 1024x512 bottleneck
block of
(a) ERFNet architecture. ERFNet.

Figure 3.3: The architecture and non-bottleneck block of ERFNet [131].

The cross-entropy loss is commonly used for training semantic
segmentation networks. This loss is designed for classification tasks and
measures the difference between the predicted probability distribution
and the ground truth distribution. For semantic segmentation, the loss
is computed over all pixels in the image, treating each pixel as an inde-
pendent classification problem.

Lee(psy Z Z Yie log (i) (3.1)

i=1 c=1

where N is the total number of pixels in the image, C is the
number of classes, y;. is a one-hot encoded target indicating whether
pixel i belongs to class ¢ and p; . is the predicted probability of pixel i
belonging to class ¢ as output by the segmentation network.

Experiments. The network is trained on all four unwarped
fisheye images of the UP-Drive dataset. The model is developed in the
PyTorch [I13] framework. The network is trained for 150 epochs with
a batch size of 12 images per GPU and a polynomial learning rate de-
cay starting from 0.0025. The cross entropy loss function is optimized
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with the Adam optimizer. The images are cropped from 800 x 1280 to
640 x 1280 and augmentations are applied such as random horizontal
flipping and random left-right translation during training. The network
is initialized with pretrained weights on the Cityscapes dataset [34].
The ERFNet semantic segmentation network was integrated into
a demo autonomous vehicle [120, 45] and deployed within a C++ ADTF
project to support real-time perception tasks. This integration required
optimizing the network for efficient inference while maintaining sufficient
accuracy to meet the demands of the autonomous system. The execution
time is measured on a NVIDIA GTX 1080 GPU with a batch size of 1.
Initially, the lack of integration options between PyTorch mod-
els and C++4 projects necessitated the development of a custom cuDNN-
based framework, leveraging the NVIDIA CUDA Deep Neural Network
library [4]. This framework enabled the seamless deployment of the net-
work and provided equivalent inference performance to the native Py-
Torch framework. The integration process focused on balancing accu-
racy and efficiency to meet the constraints of the autonomous system.
Inference time was measured using this custom framework and found to
be equivalent to the PyTorch framework. The semantic segmentation
network was trained using unwarped fisheye images from all four views.
Employing the same model for all images enables accelerated inference
by processing the batch of four images simultaneously. Using a resolution
of 256 x 512, the model achieved 64.52 mloU with an inference time of 15
ms per image and 60 ms for all four views. While full resolution provided
an accuracy improvement of over 3%, it was computationally expensive
and unsuitable for the system. The system integration utilized the model
trained on 256 x 512 images within the custom cuDNN-based framework,
balancing accuracy and processing speed by lowering the resolution.
The release of the TensorRT [6] library enabled network opti-
mization and reduced inference time while processing full-resolution im-
ages of 640 x 1280. TensorRT also offers routines for calibration for lower
precision (INT8). After network optimization and using FP32 precision,
the network achieves high accuracy of 67.87% with a reduced inference
time of 20 ms per image. Switching to INTS precision reduces accuracy by
2.7% but significantly improves performance, allowing all four unwarped
fisheye images to be semantically segmented in 36 ms. Ultimately, 8-bit
inference with network quantization was adopted, calibrating the net-
work on 300 images, and the INT8-optimized model was integrated into
the perception software. In Figure |3.4] we present a few visual results on
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Resolution | mIoU | Time (ms)
Custom CUDNN-based framework
640 x 1280 67.87 38
256 x 512 64.52 15
TensorRT optimization
640 x 1280 - FP32 67.87 20
640 x 1280 - INTS8 | 65.10 9

Table 3.1: Evaluation of the semantic segmentation network on fisheye
images corresponding to front, left, back, right views on the UPDrive
dataset. 640 x 1280 - INTS is integrated into the demo autonomous
vehicle. Time is measured on a NVIDIA GTX 1080 GPU.

the UP-Drive dataset.

Figure 3.4: Semantic segmentation of unwarped fisheye images. The
system processes four images from the fisheye 160° horizontal field-of-
view cameras which provide 360° coverage around the vehicle. Each
camera views a different direction around the vehicle: front, right, rear
and left.
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Figure 3.5: DeepLabV3+ [24] improves over DeepLabv3 [22], seen in
(a), which employs spatial pyramid pooling module, by using a decoder
similar to architecture in (b). Image from [24].

3.3 DeepLabV3

Method. DeepLabv3+ [24] is an advanced semantic segmenta-
tion model that builds upon its predecessor, DeepLabv3 [22], by introduc-
ing an encoder-decoder architecture designed to enhance the capture of
multi-scale contextual information and refine object boundaries, as seen
in Figure 3.5. This improvement addresses the challenges of achieving ac-
curate segmentation results while maintaining computational efficiency.

The encoder in DeepLabv3+ utilizes an Atrous Spatial Pyramid
Pooling (ASPP) module to extract multi-scale contextual information
from input features. The ASPP employs atrous convolution, also known
as dilated convolution, with varying rates to probe the feature maps
at multiple scales. This approach enables the model to capture both
local and global context effectively. Additionally, image-level features
are incorporated within the ASPP module to further enhance the global
representation, making the encoder robust in handling complex scenes.

The decoder module in DeepLabv3+ plays a critical role in refin-
ing the segmentation outputs, particularly along object boundaries. The
decoder upsamples the output of the encoder and concatenates it with
low-level features extracted from earlier layers of the backbone network.
This concatenation helps recover spatial details that may have been lost
during the encoding process. The combined features are then refined
through a series of 3 x 3 convolutions before being upsampled again to
match the resolution of the input image. The architecture of this model
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Figure 3.6: The architecture of DeepLabV3+. Image from [24].

can be seen in Figure 3.6.

To improve computational efficiency, DeepLabv3+ integrates
depthwise separable convolutions in both the ASPP and decoder mod-
ules, as seen in Figure 3.7. This strategy significantly reduces the com-
putational cost and memory requirements of the model without compro-
mising segmentation accuracy. The architecture also supports flexible
backbones, such as ResNet-101 [64] and the more advanced Xception [33]
model. The Xception backbone is adapted to include atrous separable
convolution, enabling high-resolution feature extraction while maintain-
ing computational efficiency.

DeepLabv3+ excels in its ability to recover fine object bound-
aries and capture multi-scale features, which are essential for semantic
segmentation tasks. By combining the ASPP module and the decoder,
the model achieves improved accuracy and robustness in segmenting com-
plex scenes. Its computational efficiency, achieved through the use of
depthwise separable convolutions, makes it a practical choice for real-
world applications where resource constraints are a concern.

Experiments. DeepLabv3 is trained on the Cityscapes dataset
using a crop size of 513 x 513 pixels, which balances computational ef-
ficiency and segmentation performance. The training process employs
an initial learning rate of 0.007, adjusted using a polynomial decay pol-

icy where the learning rate scales as (1 — —<)%9 gver 90k iterations.
max_iter
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(a) Depthwise conv. (b) Pointwise conv. (c) Atrous depthwise conv.

Figure 3.7: A 3 x 3 depthwise separable convolution splits a standard
convolution operation into two steps: (a) a depthwise convolution, which
applies a single filter to each input channel independently, and (b) a
pointwise convolution, which combines the outputs of the depthwise con-
volution across all channels. In this approach, atrous separable con-
volution is explored, where atrous convolution is incorporated into the
depthwise convolution step, as illustrated with a dilation rate of 2. Image
from [24].

Backbone Decoder ASPP Image-Level mloU

X-65 v v 77.33
X-65 v v v 78.79
X-65 v v 79.14
X-71 v v v 79.55

Table 3.2: Validation set results for DeepLabv3+ [24] on Cityscapes.

The model is optimized using Stochastic Gradient Descent (SGD) with
a momentum of 0.9 and a weight decay of 0.0001. To enhance gener-
alization, standard data augmentation techniques are applied, including
random scaling within a range of [0.5, 2.0], random cropping to the tar-
get size, and random horizontal flipping. The backbone network, typi-
cally ResNet-101 or Xception, incorporates atrous convolutions to cap-
ture multi-scale contextual information effectively. During evaluation,
the model processes the full image resolution of 1024 x 2048 pixels and
often employs multi-scale testing and left-right flipping to further improve
accuracy. These settings enable DeepLabv3+ to achieve state-of-the-art
performance on semantic segmentation tasks while maintaining compu-
tational feasibility. The results on the Cityscapes dataset are displayed
in Tables 3.2 and 3.3.
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Method Coarse mloU
ResNet-38 [157] v 80.6
PSPNet [IG8] v 81.2
Mapillary [133] v 82.0
DeepLabv3 [22] v 81.3
DeepLabv3+ [24] v 82.1

Table 3.3: Test set results for Cityscapes. Coarse indicates the use of the
train_extra set from Cityscapes, with coarsely labeled images.

3.4 MaskFormer

Method.  MaskFormer [30] is a powerful and versatile
transformer-based framework designed to unify multiple segmentation
tasks, including semantic segmentation, instance segmentation, and
panoptic segmentation. Unlike traditional segmentation methods, which
often rely on per-pixel classification, MaskFormer introduces a novel
mask classification paradigm. This approach shifts the focus from pre-
dicting pixel-level labels to predicting a set of binary masks, each associ-
ated with a specific class label, as seen in Figure 3.8. By decoupling seg-
mentation and classification, MaskFormer provides a unified and highly
efficient solution for diverse segmentation tasks.

per-pixel classification loss e T, =

. ar - T ... e
—g prediction 1 . prediction 2 prediction N
=== per-pixel class
predictions $

Figure 3.8: Semantic segmentation using per-pixel classification applies
the same classification loss independently to each pixel in the image. In
contrast, mask classification predicts a set of binary masks, each assigned
a single class label. This approach combines a per-pixel binary mask loss
with a classification loss to supervise the predictions. Matching between
the predicted masks and ground truth segments can be performed in
two ways: either through bipartite matching or fixed matching when the
number of predictions and classes are equal. Image from [30].
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At the core of MaskFormer’s architecture is its ability to handle
all three segmentation tasks without the need for task-specific modifica-
tions. This generalization is achieved through a single model architecture,
loss function, and training pipeline, making MaskFormer adaptable and
efficient for different applications. The mask classification paradigm al-
lows the framework to predict a set of mask-class pairs, where each mask
corresponds to a specific region in the image, and a single class label
is assigned to the entire region. This method eliminates the need for
post-processing steps typically required for task-specific outputs, simpli-
fying the segmentation process and improving overall efficiency. Specif-
ically, the mask classification paradigm clusters pixels into N binary
masks and associates a distribution over K semantic classes to each mask
{(mi, pi)lm; € [0, 1", p; e RFEY .

The MaskFormer architecture consists of three main compo-
nents: a pixel-level module, a transformer module, and a segmentation
module. The pixel-level module begins with a backbone network, such
as ResNet [64], to extract rich, multi-scale feature maps from the input
image. These features are refined and upsampled by a lightweight pixel
decoder to generate per-pixel embeddings, which serve as the foundation
for mask prediction.

The transformer module processes these features using a set of
learnable queries. These queries interact with the image features through
cross-attention layers in a transformer decoder, where each query attends
to specific regions of the image. This process enables the model to capture
complex spatial relationships and global context within the image. The
embeddings generated by the transformer module are then passed to the
segmentation module, where they are used to produce the final mask and
class predictions. Each query generates a binary mask by performing a
dot product with the per-pixel embeddings and assigns a class label to
the mask, completing the segmentation process. An overview of the
architecture is presented in Figure 3.9.

Mask2Former [29] builds upon the foundation laid by Mask-
Former, introducing several significant improvements that enhance its
performance, training efficiency, and flexibility across various segmen-
tation tasks, including panoptic, instance, and semantic segmentation.
One of the most notable advancements is the replacement of the standard
cross-attention mechanism in the transformer decoder with a masked at-
tention mechanism. Unlike traditional attention, which considers the
entire image, masked attention restricts the focus to regions within the
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Figure 3.9: The architecture of MaskFormer with the three main com-

ponents: pixel-level module, transformer module, segmentation module.
Image from [30].

predicted mask. This refinement not only speeds up convergence by re-
ducing the attention search space but also improves segmentation accu-
racy, particularly in complex scenes with overlapping objects or cluttered
backgrounds.

Another improvement in Mask2Former is the introduction of a
more efficient multi-scale processing strategy. While MaskFormer utilizes
multi-scale features from the image, Mask2Former processes features at
different resolutions sequentially, in a round-robin manner, rather than
feeding them all simultaneously into the decoder. This enhancement
enables the model to effectively handle objects of varying sizes without
incurring excessive computational overhead, further contributing to its
versatility.

Several architectural refinements have been incorporated into
Mask2Former’s transformer decoder to improve its overall performance.
One key change is the reordering of the self-attention and cross-attention
layers, where cross-attention is applied before self-attention. This modi-
fication allows the queries to incorporate signals from the image earlier in
the processing pipeline, enriching their representation and leading to bet-
ter mask proposals. Additionally, the decoder employs learnable query
features that are directly supervised, which improves the precision of
the predicted masks. Mask2Former also eliminates the use of dropout
in the decoder, as experiments showed it reduced performance without
significantly improving robustness.

Memory efficiency during training is another critical improve-
ment in Mask2Former. The model calculates mask losses on a randomly
sampled subset of points within the mask instead of using all pixels. This
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approach significantly reduces GPU memory consumption—by approx-
imately three times compared to MaskFormer—making Mask2Former
more accessible for training on hardware with limited memory resources.

Another standout feature of Mask2Former is its faster training
process. The model achieves competitive or superior results within 50
training epochs, compared to the 300 epochs required by MaskFormer for
comparable performance. This efficiency makes it an appealing choice for
applications where training time is a critical factor. An overview of the
Mask2Former architecture is presented in Figure 3.10.
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Figure 3.10: Mask2Former [29] retains the same meta-architecture as
MaskFormer [30)], consisting of a backbone, a pixel decoder, and a Trans-
former decoder. However, it introduces a novel Transformer decoder that
incorporates masked attention in place of the standard cross-attention
mechanism. To effectively address small objects, Mask2Former employs
an efficient approach to utilizing high-resolution features from the pixel
decoder by sequentially feeding one scale of the multi-scale feature maps
to each Transformer decoder layer. Additionally, it reorders the self-
attention and cross-attention layers (masked attention), makes query
features learnable, and eliminates dropout, enhancing computational ef-
ficiency and performance. Image from [29].
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Mask2Former prioritizes achieving strong performance across
various segmentation tasks. For this reason, the more advanced multi-
scale deformable attention Transformer (MSDeformAttn) [I72] is used
as the default pixel decoder. This module comprises six MSDeformAttn
layers applied to feature maps with resolutions of 1/8, 1/16, and 1/32.
Additionally, a simple upsampling layer with lateral connections is ap-
plied to the final 1/8 feature map, generating a per-pixel embedding with
a resolution of 1/4.

In Mask2Former, the Transformer decoder includes L. = 3 Trans-
former decoder layers, resulting in a total of 9 layers. By default, the
decoder uses 100 queries. Auxiliary losses are applied to each intermedi-
ate Transformer decoder layer as well as to the learnable query features
prior to the Transformer decoder.

During training, the final loss function is formulated as:

L S

L= Z Z )\ce‘cce + >\dice£dice + )\clsﬁcls (32)

=1 s=1

Here, L = 3 represents the number of Transformer decoders,
S = 3 denotes the number of layers within each Transformer decoder,
and the loss weights are set to Ace = 5.0, Agice = 5.0, and A\gys = 2.0.
For learning binary panoptic masks, the binary cross-entropy loss L.
and dice loss Lgice [105] are utilized. The classification component of the
model is supervised using the cross-entropy loss L.

This formulation ensures that the contributions of segmentation
and classification tasks are appropriately weighted during training to
optimize overall performance.

Experiments. Training is performed using a crop size of 512 x
1024, a batch size of 16, and a total of 90k iterations. During inference,
the models are applied to the entire image with a resolution of 1024 x
2048. The AdamW [101] optimizer is used. An initial learning rate
of 0.0001 and a weight decay of 0.05 are employed for all backbones.
The backbone learning rate is scaled by a multiplier of 0.1, and the
learning rate is reduced by a factor of 10 at 90% and 95% of the total
training steps. Experiments on the Cityscapes dataset, as seen in Table
showed that Mask2Former achives better results than other state-of-
the-art segmentation methods.

In terms of runtime, the network trades speed for accuracy. It is
expected to reach 9.7 frames per second on a resolution of 800 x 1333 on
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Method Backbone | mIoU (s.s.) mloU (m.s.)
Panoptic-DeepLab [2§] | R50 80.5 -
Segmenter [139) ViT-Lt - 81.3
SETR [170] ViT-L! . 82.2
SegFormer [15§] MiT-B5 - 84.0
MaskFormer [30] R101 78.5 -
Mask2Former [29] R50 79.4 82.2
R101 80.1 81.9
Swin-T 82.1 83.0
Swin-S 82.6 83.6
Swin-Bf 83.3 84.5
Swin-L' 83.3 84.3

Table 3.4: Comparison of semantic segmentation performance (mloU)
across different methods and backbones on the Cityscapes validation set
using single-scale (s.s.) and multi-scale (m.s.) images.

a powerful Tesla V100 GPU. Using techniques such as quantization and
pruning and specialized libraries such as TensorRT, the runtime can be
decreased, increasing the potential to be used on a autonomous vehicle.
At the current speed, the network can be used in an offline manner, to
generate for example, semantic pseudo-labels, in order to extend existing
datasets or create new ones.



Chapter 4

Instance Segmentation

Instance segmentation aims to detect and segment each object in
an image with pixel-level precision, assigning unique masks to individual
instances. This chapter provides an overview of key methods and then
focuses on detailing two significant works.

4.1 Overview

Instance segmentation predicts a semantic mask and an instance
identifier for each object with a thing class. Classification is performed
at instance-level, which means that instance masks could overlap. All
pixels from an instance mask have the same semantic class and the same
instance identifier. Instance segmentation approaches follow in general
two directions: top-down methods perform segmentation of candidate
regions given by object detectors, while bottom-up methods perform se-
mantic segmentation and cluster pixels belonging to the same instance
based on similarity measures.

Top-down methods. These methods are using one-stage or
two-stage object detectors. The most representative solution is Mask-
RCNN [63] based on the two-stage Faster R-CNN object detector [130],
demonstrating outstanding performance on public benchmarks [34] 7).
Cascade R-CNN [18], Non-local Networks [I50], PANet [99] bring im-
provements to Mask R-CNN [63] at different stages of the pipeline and
provide accurate masks, but at high computational costs. Mask R-
CNN addresses the foreground-background imbalance problem with a
two-stage design, where the first stage (Region Proposal Network) filters
out a large portion of the negatives, while in the second stage a fixed
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foreground-background batch sampling ratio solves the issue.

With the introduction of specialized losses such as Focal Loss
in RetinaNet [96] which addresses the foreground-background imbalance
problem by including hard examples in training or by using multi-scale
predictions and anchors in YOLO [129], one-stage object detectors man-
age to obtain on-par accuracy with two-stage detectors while being sig-
nificantly faster. Box2Pix [144] is built on a fully-convolutional one stage
detector with a semantic segmentation head and regresses offsets for every
segmented pixel to the bounding box center. This method runs in real-
time at the cost of reduced accuracy. Yolact [I7] is a real-time network
that learns to localize instances on its own by generating a dictionary of
prototype masks and predicting a set of linear combination coefficients.
A simple and efficient solution for instance segmentation is proposed in
CenterMask [85] which extends the fast one-stage object detector FCOS
[142] with a Mask-RCNN type of mask achieving improved performance.
CenterMask proposes also the efficient VoVNet2 backbone. The building
blocks of the VoVNet2 backbone are the One-Shot Aggregation (OSA)
modules, which consist of several convolutions followed by the concatena-
tion of their resulted feature maps, this way different receptive fields are
captured. An identity mapping is added to the OSA modules in order to
boost the performance and facilitate the flow of the gradient through the
network. A channel attention module named effective Squeeze-Excitation
(eSE) is plugged in the OSA modules and learns a channel specific de-
scriptor with a global average pooling, one convolution operation followed
by the sigmoid activation.

Bottom-up methods. Proposal-free methods perform seman-
tic segmentation and then cluster similar pixels into instances. Kendall
et al.[73] and Neven et al.[109] propose learning an offset vector for each
pixel that points to the instance centroid. PersonLab [I11], CornerNet
[83] introduce keypoint guided instance segmentation, while Deep Poly-
gon Transformer [92] and DeepSnake [I15] formulate instance segmenta-
tion as the problem of fitting a polygon around the object. TensorMask
[26] employs 4D Tensors and demonstrates advantages over 3D Tensors
with increased computational costs. DWT [15] models the energy of the
watershed transform with CNNs, but cannot handle objects separated
into multiple parts. Instance segmentation can be also viewed as a graph
partition problem in which the total score of edges connecting differ-
ent components is maximized, but these types of methods [48] [77] are
currently time-consuming due to the complexity of the graph space.
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4.2 Mask R-CNN

Method. Mask R-CNN [63] is a two-stage instance segmenta-
tion network which extends the two-stage object detector Faster R-CNN
[54] with a mask prediction head. The network performs instance seg-
mentation inside detected 2D bounding boxes. In the first stage of Mask
R-CNN;, a Region Proposal Network (RPN) proposes object candidates.
In the second stage, the RolAlign samples a fixed number of features
inside each candidate box, and thus achieves scale invariance. RolAlign
extracts a small feature map of size 7 x 7 from each Region of Interest
(Rol) by sampling values from the input feature map at four regularly
spaced locations using bilinear interpolation. The Mask R-CNN network
employs a shared convolutional network backbone based on ResNet [64]
and Feature Pyramid Network (FPN) [95] for feature extraction. The
FPN encodes multi-scale representations at output stride from 32x to
4x and is built in a top-down manner by upsampling low resolution
features and merging them with higher level features via lateral connec-
tions. Instance mask predictions are performed at a fixed low resolution
of 28 x 28, which might introduce errors especially for large objects.

| RolAlign|

Figure 4.1: Instance segmentation with the Mask R-CNN framework [63].

The network is trained end-to-end and the final loss is defined
as the weighted sum of five losses:

Emrcnn (p7 y) = 77“pncls£rpncls + F)/rpnboxﬁrpnbox + P)/rcnnclsﬁrcnncls

(4.1)
+ 7rcnnboz£rcnnbo¢ + Wrcnnmaskﬁ’rcnnmask

where L, a5 and Lypnpor are the classification and regression
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losses for the RPN, L, .oneis and L.conpor are the classification and regres-
sion losses for the second stage and L, nmask 1S the mask loss.

During training, Mask R-CNN uses anchor boxes with a prede-
fined size. The network regresses bounding box predictions with respect
to these anchors. Each location in the 5-level FPN is assigned 3 anchors
with different aspect ratios: 1:1, 1:2, 2:1. For the largest scale of the FPN
features (1/4), anchors in the original image are small and sampled with
a stride of 4 (e.g. 32 x 32 for 1:1 ratio and image of size 1024 x 2048).
For the smallest feature map in the FPN (1/64) the largest anchors are
used with a sampling stride of 64 (e.g. in the original image of resolution
1024 x 2048 anchors have the size 512 x 512 at ratio 1:1). Lower levels
in the FPN are responsible for detecting large objects while higher levels
are responsible for detecting small objects.

The objective of the first stage RPN is to regress object bounding
boxes and classify them as objects/non-objects. To train the RPN, the
anchors are first classified as positive or negative. Positive anchors are
represented by: anchors with the highest Intersection-over Union (IoU)
overlap with a ground-truth box and anchors that have the IoU > 0.7
with any ground truth box. A bounding box can assign a positive label
to multiple anchors. Negative anchors have the IoU < 0.3 for all ground
truth boxes. Only the positive and negative anchors contribute to the
loss. The regression targets for the RPN are computed as transformation
deltas for the anchor box relative to the ground truth box:

gx — Qg

dy = 4.2

— (4.2)
Gy — Oy

d =24 Y 4.3

=2 (4.9

dy = log(g—w) (4.4)
Uy

dj, = log(%) (4.5)
ap

where (d,,d,,d,,d,) are the RPN regression targets,
(92, 9ys Gw, gn) is the ground truth box represented by its center
point and width and height, while (a,, ay, a,, ap) are the anchor center
point and size.

In order to balance the positive-negative samples for the RPN
training, a minibatch of 256 samples per image is constructed, where
foreground samples are at most half (e.g. 128). All the samples from the
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minibatch will be used to compute the classification loss, while for the
regression loss only the positive samples will be used. The classification
loss is the binary cross entropy loss:

N
1
Lpneis(p,y) = N E yi - log(ps) + (1 — ;) - log(1 — p;) (4.6)
=1

where p is the predicted probability and y is the label (with a
value of 1 for object and 0 for non-object).

The regression loss is the smooth L1 loss, which is a combination
of the L1 and L2 losses:

L pnbor (P, y) = SmoothL1(p — y) (4.7)

0.5 2, if |z| < 8,

4.8
|z| —0.5- 3, otherwise. (4.8)

SmoothL1(x) = {
where 3 is an adjustable hyperparameter, which marks the point
of transition between L2 and L1 loss.

After the Region of Interest (Rol) predictions are obtained at
each location of the 5-levels FPN by applying the predicted regression
transformations to the anchors, the Rols are collected (concatenated),
NMS (Non-Maxima Suppression) is applied and top N Rols based on the
objectness score (from classification) are kept. Next, a minibatch for the
second stage of the network is constructed. In Mask R-CNN, a minibatch
of 256 Rols is used, where at most 25% are positive. Positive Rols are
the ones that overlap the ground truth boxes with intersection over union
IoU > 0.5, while the negative Rols have an IoU with the ground truth
boxes lower than 0.5. The classification loss for the second stage RCNN
is the multi-class cross entropy loss:

N C
‘Crcnncls (p7 y) = _% Z Z yi,c log(pi,c) (49)

i=1 c=1
where p. is the predicted probability for class ¢ and y. is the

ground truth for class c.

The regression 10ss L, cpnpor 18 the smooth L1 loss, the same as
L, pnbor @S S€€n in equation . The last part of the framework is the mask
head training. Mask targets are prepared by associating one ground truth
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mask to each positive Rol from the RCNN minibatch. The association
is done based on the maximum bounding box overlap. The mask loss is
the binary cross entropy loss, the same as L, ,,qs as seen in equation

Experiments. The training process on the Cityscapes dataset
involves randomly sampling the image scale (shorter side) from the range
[800, 1024] to mitigate overfitting. During inference, a single scale of 1024
pixels is used. The model is trained with a mini-batch size of 1 image per
GPU, resulting in a total of 8 images on 8 GPUs. Training is conducted
for 24k iterations, starting with a learning rate of 0.01, which is reduced
to 0.001 after 18k iterations. The results on the Cityscapes dataset are
presented in Table [4.1]

Method Training Data AP [val] AP AP50 Person Rider Car Truck Bus Train MCycle Bicycle
InstanceCut [77] fine + coarse 15.8 13.0 279 10.0 8.0 23.7 14.0 19.5  15.2 9.3 4.7
DWT [I5] fine 19.8 15.6  30.0 15.1 1.7 329 171 204 150 7.9 49
DIN [1T] fine + coarse - 20.0 38.8 16.5 16.7 25.7 20.6 30.0 234 17.1 10.1
SGN [98] fine + coarse 29.2 25.0 449 21.8 20.1 394 248 332 308 17.7 12.4
Mask R-CNN fine 315 26.2 499 30.5 23.7 469 228 322 186 19.1 16.0
Mask R-CNN fine + COCO 36.4 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7

Table 4.1: Instance segmentation results using Mask R-CNN on
Cityscapes validation dataset.

4.3 RetinaMask

Method. RetinaMask [46] integrates a mask prediction head on
top of the one-stage object detector RetinaNet [96]. It also improves the
ground truth-anchor matching policy and introduces the self-adjusting
smooth L1 loss that increases robustness during training.

One of the problems that object detectors need to address is
foreground-background imbalance. The issue is even more pronounced
for one-stage object detectors, which do not use the Region Proposal Net-
work (RPN) to narrow down the candidate object locations to a smaller
number (e.g. 1000 or 2000). One-stage detectors process a larger number
of candidate object locations (e.g 100k), densely sampled across the im-
age and covering different aspect ratios and scales. RetinaNet proposes
the focal loss to address the foreground-background class imbalance.

The focal loss applies a dynamic scaling factor to the cross en-
tropy loss, which puts more focus on the hard examples. The focal loss
is defined as:
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N C
1
£focal = N Z Z ac 1 - pl c y’i,c log(pi,C) (410)

i=1 c=1

where ) is a parameter that down-weights the contribution of
well-classified examples if it has a positive value, and increases the weight
for the misclassified ones if it has a negative value. The « is a class
specific parameter that is usually used to address class imbalance within
foreground samples and is computed as the inverse class frequency.

The final loss in RetinaNet is:

»Cretinanet = 'Cfocal + £bocc (411)

where Ly, is the smooth L1 loss defined in equation [4.8|

The RetinaMask network has a shared feature extraction back-
bone, a Feature Pyramid Network (FPN) which allows multi-scale object
detection by encoding multi-resolution representations from 1/4 to 1/64.
The FPN follows the original implementation [95] with 256 feature maps
and 5 anchor scales. A bounding box regression and classification head
with four convolutional layers is appended to each level of the pyra-
mid. The bounding box predictions of RetinaNet are segmented in the
next steps by the mask head. First, a post-processing operation takes
place, where the bounding box predictions are aggregated, filtered and
distributed to layers in the FPN. Next, the ROIAlign [63] operation sam-
ples the same number of features (14 x 14) from each predicted bounding
box, which are finally processed by the mask prediction head with four
convolutional layers and one transposed convolution. Finally, a [1 x 1]
convolution generates the final class-wise masks of size 28 x 28. Reti-
naMask introduces the self-adjusting smooth L1 loss for bounding box
regression. A problem with the original smooth L1 loss would be that
the choice of the 8 factor is heuristic. To improve the formulation, the
self-adjusting smooth L1 loss computes the running mean and variance
of the absolute loss and their difference will be assigned to the [ fac-
tor. Another improvement over RetinaNet is the anchor-ground truth
matching policy. While in RetinaNet, positive anchors are considered
those with IoU > 0.5 and negative those with IoU < 0.4, in RetinaMask
for each ground truth a best matching anchor will be assigned without
considering its overlap. The final RetinaMask loss is computed as:

Lretinamask = Efocal + Lbo:p + /:'mask (412)
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The mask loss is implemented as the binary cross entropy loss
defined in equation [4.6|

Experiments. RetinaMask is trained on the UP-Drive dataset.
The deep instance segmentation network is designed to be both accurate
and efficient while ensuring compatibility with deep learning inference
engines such as TensorRT [6]. ResNet-50 [64] with a 5-level Feature
Pyramid Network (FPN) [95] serves as the feature extraction backbone.
The network is pretrained on the Microsoft COCO dataset [97] and the
Cityscapes dataset [34]. The training process uses a batch size of 16
images for 30,000 iterations, starting with a base learning rate of 0.01,
which is reduced by a factor of 10 at 20,000 iterations. Stochastic Gra-
dient Descent (SGD) is used for optimizing the loss function. Fisheye
images are cropped to 640 x 1280 pixels and further scaled during train-
ing, with the shorter edge randomly sampled from the range [480, 640].
Narrow field-of-view images are resized to 416 x 832 ith multi-scale train-
ing performed at scales within [320, 416]. Random horizontal flipping is
applied as a data augmentation technique.

RetinaMask is trained and evaluated for instance segmentation
network on all four unwarped fisheye images (front, left, right, back) and
we present the results in Table[d.2] The experiments are done with three
different resolutions: 640 x 1280, 416 x 832, 320 x 640. The network is
accelerated with the TensorRT library using FP32 precision for increased
quality. Compared to the two-stage Mask R-CNN based network, there
is a slight decrease in accuracy for 640 x 1280 resolution from 31.3% mask
mAP to 30% mask mAP, but the inference time is reduced 2.5 times to
66 ms. Adopting the largest resolution available of 640 x 1280 is critical
for fisheye images, where the apparent size of objects is small.

Visual results for semantic, instance and panoptic segmentation
on the UP-Drive dataset can be seen in Figure 4.2.

Resolution | mAP box | mAP mask | Time (ms)
640 x 1280 - FP32 36.8 30 66
416 x 832 - FP32 30.1 24.8 44
320 x 640 - FP32 26.4 21.6 33

Table 4.2: Evaluation of the instance segmentation network on fisheye
images corresponding to front, left, back, right views. Time is measured
on a NVIDIA GTX 1080 GPU.
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60° HFV CAMERA 160° HFV CAMERA 160° HFV CAMERA 160° HFV CAMERA
INSTANCE INSTANCE SEMANTIC PANOPTIC
SEGMENTATION SEGMENTATION SEGMENTATION SEGMENTATION

Figure 4.2: The front area of the vehicle is covered by two cameras: a
narrow 60° horizontal field-of-view camera which provides instance seg-
mentation at increased depth and a wider 160° horizontal field-of-view
camera, which provides instance, semantic and panoptic segmentation
for the near-range.

The network is also trained on images from the front camera
with a narrow 60° HFV. Results are in Table[4.3l In order to achieve the
trade-off between processing speed and quality, the network is optimized
with FP32 using TensorRT and the resolution of 416 x 832 is adopted,
thus obtaining 21.4% mask mAP and 44 ms inference time on a NVIDIA
GTX 1080 GPU.

As seen in Figure 4.3, pedestrians are visible only in the front un-
warped fisheye image up to a distance of 20 meters. Processing these un-
warped fisheye images allows for robust instance segmentation of pedes-
trians up to 25 meters. At this distance, pedestrians are visible and
detected in both the unwarped fisheye image and the 60° horizontal field-
of-view (HFV) image. Beyond 25 meters, the size of the pedestrian in the
unwarped fisheye image becomes too small for detection; however, detec-
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Resolution | mAP box | mAP mask | Time (ms)
604 x 960 - FP32 30.2 22.8 58
416 x 832 - FP32 28.7 214 44
320 x 640 - FP32 23.4 18.3 33

Table 4.3: Evaluation of the instance segmentation network on narrow
field-of-view images corresponding to front view. Time is measured on a

NVIDIA GTX 1080 GPU.

tion remains possible in the 60° HFV image. By combining the outputs
of both cameras, the pedestrian detection range is effectively extended
to 75 meters.

Deployment. To integrate the instance segmentation network
into a framework such as Automotive Data and Time-Triggered Frame-
work (ADTF) [1], which is typically used in the automotive industry, the
TensorRT library [6] is utilized to generate a high-performance runtime
engine that can be seamlessly loaded into a C++/CUDA project. Ten-
sorRT provides significant advantages, including network optimization
and quantization, which substantially reduce inference time. The library
optimizes the layer graph by removing unused layers, fusing operations
such as convolution, bias, and ReLU, aggregating and merging opera-
tions, and combining concatenation layers. Additionally, quantization
reduces precision from 32-bit floating-point to 8-bit integers for network
weights, resulting in a significantly higher computational throughput.

RetinaMask cannot be directly optimized with TensorRT due to
hand-crafted operations such as ROIAlign, candidate box filtering, and
assignment to specific FPN layers. Additionally, Non-Maxima Suppres-
sion (NMS) is implemented to eliminate overlapping boxes. To address
this, the network is divided into three components: the backbone with
object detection heads, the hand-crafted operations (including filtering
low-confidence boxes, selecting the top 1000 boxes per FPN layer, apply-
ing NMS, selecting the top 50 scoring bounding boxes, and ROIAlign),
and the mask prediction head. The backbone, object detection, and
mask prediction heads, which consist of operations natively supported
in ONNX and TensorRT, are converted to the ONNX format using the
ONNX Parser [5]. Hand-crafted operations are implemented as TensorRT
Plugin layers using native CUDA. An optimized engine for instance seg-
mentation is then generated with FP32 precision, resulting in nearly twice
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Figure 4.3: Comparison between wide and narrow field-of-view instance
segmentation. A pedestrian is marked with a green box in the 3D top
view image and a red bounding box in the wide and narrow field-of-view
images. In the first column, the bird’s eye view of the 3D point cloud
with detected objects is depicted. Best viewed in color and zoom.

the inference speed compared to the unoptimized network.

Discussion. From a practical perspective, a setup based only
on fisheye cameras mounted on the vehicle in all four directions is suit-
able only for robust segmentation and detection within the near range
around the vehicle. For pedestrian detection, segmentation remains ef-
fective up to 25 meters, making it suitable primarily for low-speed driving
and parking maneuvers. While near-range detection for the left, right,
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and rear views offers sufficient information for maneuver prediction and
decision-making, far-range detection is particularly crucial for the front
view, especially at higher driving speeds.

A solution that combines fisheye cameras and narrow field-of-
view cameras for the front view is essential to cover both the near and far
ranges. Additionally, increasing the resolution of processed images fur-
ther extends the detection range, albeit at a higher computational cost.
To maintain efficient processing times when handling high-resolution
front narrow field-of-view images and four fisheye images, network opti-
mization and quantization techniques can be employed. This approach
ensures an effective balance between detection range, accuracy, and com-
putational efficiency.

One-stage networks for instance segmentation bring major ben-
efits in terms of speed compared to two-stage networks. However, opti-
mization of one-stage and two-stage networks is not easily achieved when
there are hand-crafted processing steps between the backbone and net-
work heads that need to be separately implemented and integrated with
the TensorRT optimized network parts. A fully convolutional network for
instance segmentation, free of hand-crafted processing steps, is preferable
as it enables seamless end-to-end optimization with TensorRT.



Chapter 5

Panoptic Segmentation

Panoptic segmentation provides a unified semantic and instance
representation. It performs dense pixel classification into things and stuff
classes and assigns an instance identifier to every things pixel in the
image. This chapter provides a review of the panoptic segmentation
literature and continues with the in-depth description of a few methods.

5.1 Overview

The panoptic segmentation task has gained popularity since in-
troduced by Kirillov et alin [76]. In general, panoptic segmentation
methods follow two directions, they are either proposal-based methods,
also named top-down approaches or proposal-free methods, known as
bottom-up approaches.

Top-down methods. Panoptic segmentation can be achieved
by simultaneously solving two other tasks: semantic and instance seg-
mentation. Top-down methods solve panoptic segmentation by merging
instance predictions and semantic segments. They are built on top of
an object detector and use object proposals for generating overlapping
instance masks. A post-processing step usually follows, which solves the
overlaps and conflicts between semantic and instance predictions. Most
works [76], [75] B5], 159] 00, [126], 137, 116] employ the two-stage instance
segmentation framework Mask R-CNN [63] and extend the shared fea-
ture extractor with a lightweight segmentation head. In [76], the authors
propose a post-processing algorithm to merge instance and semantic seg-
mentation into a unified panoptic output. To solve instance-wise over-
laps, a Non-Maxima Suppression (NMS) step is implemented: predicted

23
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segments are sorted by their confidence scores, low-score instances are
removed and then starting from the most confident instance segment,
the non-overlapping part of the segment will be pasted in the panoptic
segmentation output only if it does not significantly overlap the cur-
rent panoptic segmentation. The next step is to solve the instance-
segmentation conflicts, which is resolved in favor of the instance pre-
diction. UPSNet [I59] introduces a parameter-free panoptic head that
employs the semantic and instance logits and is supervised with an ex-
plicit panoptic segmentation loss. In [90], the authors propose AUNet, a
unified framework on top of Mask R-CNN, that learns the relations be-
tween instance and semantic pixels with an attention module. Seamless
segmentation [126] introduces a lightweight DeepLab-inspired segmenta-
tion head. AdaptIS [I37] takes a point proposal from a semantic segment
of a things class and generates an instance mask corresponding to that
point. All the aforementioned approaches achieve high accuracy at an
increased computational cost due to the complexity of the Mask R-CNN
two-stage detector. Lately, one-shot called also one-stage object detec-
tors, such as RetinaNet [96] or FCOS [142], have achieved great progress
and even surpassed two-stage detectors on public benchmarks. Dense-
Box [67] builds on top of FCOS and introduces a parameter-free mask
prediction head that reuses discarded dense object proposals to generate
instance masks.

Bottom-up methods. The second type of approaches have
not been so exhaustively studied due to their initial inferior performance
compared to proposal-based methods. SSAP [48] models pixel-pair affini-
ties in a hierarchical manner and formulates panoptic segmentation as a
graph partition problem. DeeperLab [162] proposes an encoder-decoder
network with semantic and instance segmentation heads, where instances
have a keypoint-based representation with their four bounding box cor-
ners and object centers. Panoptic-DeepLab [28] predicts semantic seg-
mentation, instance center locations and instance center offsets, and has
been the first bottom-up method to surpass top-down approaches on
public benchmarks.

5.2 Panoptic-DeepLab

Method. Panoptic-DeepLab [28] is a state-of-the-art architec-
ture for panoptic segmentation, which aims to provide a unified solution
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for segmenting both stuff (amorphous regions like sky, road, grass) and
things (distinct objects like cars, pedestrians) in an image. It is designed
to offer simplicity and efficiency compared to previous panoptic segmen-
tation approaches. The network regresses instance offsets and predicts
semantic segmentation and instance centers. Class-agnostic instance seg-
mentation is obtained by grouping foreground pixels to their closest cen-
ter based on the predicted offsets. The final panoptic segmentation is
generated by merging the semantic segmentation with the class-agnostic
instance segmentation results by using a majority voting principle. The
network consists of a shared backbone, dual decoders for semantic and
instance segmentation and three heads for semantic, instance center and
instance offset regression. The network architecture is illustrated in Fig-
ure 5.1. During training, the following loss is minimized:

£pan = ’YSegEseg + Voffsetf'offset + ’Vcenterﬁcenter (51)
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Figure 5.1: Panoptic-DeepLab network architecture [28§].

The segmentation loss is the bootstrapped cross entropy loss
[162]. Pixels are sorted based on the cross entropy loss and only top
K positions will backpropagate the errors. Moreover, the loss of small
instances is weighted. With this loss, the network focuses on hard pixels
and small instances. The weight is set to 3 for instances that have an
area smaller than 64 x 64 and K = 0.15- N, where N is the total number
of pixels.

The offset loss is implemented as the L1 loss only for pixels
belonging to instances:
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'Lnst
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where p and g are the predicted and ground truth offsets and
Ninst is the number of instance pixels.

The instance center is encoded in a heatmap as a 2D Gaussian
with a standard deviation of 8 pixels. The center loss is the Mean Squared
Error (MSE) loss between the predicted and ground truth heatmap:

| N
Ecenter p> N ZO (53)

During inference, the center point is obtained by applying non-
maximum suppression (NMS) over the 2D Gaussian heatmap, which in
practice means applying max pooling and filtering out locations that have
a low confidence score.

Experiments. Panoptic-DeeplLab demonstrates strong perfor-
mance on the Cityscapes dataset, achieving state-of-the-art results across
key evaluation metrics for panoptic segmentation. Without additional
training data, Panoptic-DeepLab achieves a PQ (Panoptic Quality) score
of 63.0%, which improves further to 64.1% when multiscale inputs and
horizontal flipping are applied during inference, as seen in Table
The model also delivers competitive AP (Average Precision) and mloU
(mean Intersection over Union) scores, reaching 38.7% and 81.5%, re-
spectively. With the inclusion of extra data, such as Mapillary Vistas
(MV), Panoptic-DeepLab achieves even higher performance, with a PQ
score of 67.0%, AP of 42.5%, and mIoU of 83.1% when using multiscale
inputs and horizontal flipping. These results highlight the effectiveness of
Panoptic-DeepLab in producing accurate and robust panoptic segmenta-
tion predictions, demonstrating its ability to handle both stuf and thing
classes with high precision and scalability.

5.3 ISS-Fusion

Method. ISSNet (Instance and Semantic Segmentation Net-
work) [35] is a multi-task network designed to perform object detection,
instance segmentation, and semantic segmentation simultaneously. The
network extends the two-stage Mask R-CNN [63] framework, originally
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Table 5.1: Panoptic-DeepLab [28] results on the Cityscapes val set. Flip:
Adding left-right flipped inputs. MS: Multiscale inputs. M'V: Mapillary
Vistas.

Method Extra Data Flip MS PQ (%) AP (%) mloU (%)
w/o Extra Data
TASCNet [87] - - 55.9 - 75.5
Panoptic FPN [75] - - - 58.1 33.0 75.7
AUNet [90] . e 33.3 76.3
UPSNet [159] . - 59.3 33.3 77.0
UPSNet [159] . o/ 603 33.3 778
Seamless [126] - - - 60.2 33.6 78.2
AdaptIS [137] . - 610 34.3 8.6
) - - - 56.5 - 78.7
DeeperLab [162] i v v 611 i 810
SSAP [45] - . 61.1 - 78.5
- - - 63.0 35.3 80.5
Panoptic-DeepLab - v v 63.4 36.1 80.9
- v v 64.1 38.7 81.5
w/ Extra Data

TASCNet [87] COCO - - 593 37.1 78.1
TASCNet [87] COCO v/ 631 39.1 78.7
UPSNet [I59] COCO - 61.8 37.8 79.7
UPSNet [159] COCO VO 39.0 80.5
Seamless [48] COCO - - 63.6 37.7 80.3
MV - - 65.3 38.8 82.5
Panoptic-DeepLab MV v - 65.7 39.4 82.6
MV v v 67.0 42.5 83.1

developed for object detection and instance segmentation, by incorpo-
rating an additional semantic segmentation head. Given the complexity
of the two-stage Mask R-CNN architecture and its relatively high infer-
ence time, using a separate model for semantic segmentation would result
in significant computational and memory overhead, making it unsuitable
for real-time applications. This challenge is addressed through multi-task
learning, employing a single network for both tasks. The inference speed
is improved by reusing visual features through a shared CNN feature ex-
tractor, referred to as the backbone, and multiple task-specific network
heads. ISSNet uses the ResNet-50 [64] backbone for feature extraction,
enhanced with a 5-level Feature Pyramid Network (FPN) [95] for robust
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Figure 5.2: A shared ResNet-FPN network is used for three tasks. The
Faster-RCNN head performs object detection, Mask-RCNN head per-
forms instance segmentation. The semantic segmentation head is based
on Atrous Spatial Pyramid (ASP).

multi-scale feature representation.

A novel semantic segmentation head is introduced, sharing the
same feature representation with the instance segmentation and object
detection heads, as illustrated in Figure 5.2. Given that the size of objects
in a scene varies depending on their distance from the camera, the model
is designed to effectively learn multi-scale features. To address this, the
architecture incorporates several mechanisms: the Feature Pyramid Net-
work (FPN), atrous convolutions, and multi-scale image processing.

The FPN output consists of 256 feature maps at five different
scales: 1/4,1/8,1/16, 1/32, and 1/64. The semantic segmentation head
utilizes FPN feature maps at four scales, ranging from 1/4 to 1/32, with
an individual segmentation head at each scale to capture multi-resolution
features. Atrous (dilated) convolutions are employed to extract context
and long-range information, enhancing the model’s ability to understand
global features. The top pyramid levels (1/32 and 1/16), which provide
stronger semantics and better localization, are further enhanced using an
Atrous Spatial Pyramid (ASP) [22]. The ASP module applies a parallel
combination of 1 x 1 convolution and 3 x 3 dilated convolutions with
dilation rates of 6, 12, and 18, followed by Group Normalization layers
[156], which were found to be more effective than Batch Normalization
[69] in this setup. Group Normalization, unlike Batch Normalization,
normalizes along groups of channels, making it invariant to batch size.
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This approach addresses the issue of inaccurate statistics that arise with
small batch sizes, as the network is trained with a batch size of 2 images
due to GPU memory constraints. Each Group Normalization layer is
followed by a ReLLU activation. The resulting feature maps from the ASP
are concatenated and passed through 128 1 x 1 filters. To incorporate
finer scale features, two 3 X 3 convolutions are applied to the 1/8 and
1/4 levels, following the approach in [75]. Each segmentation head at the
four scales produces 128 feature maps.

For further refinement, the outputs are fused using a refinement
pyramid (RP), which aggregates stronger semantics from higher levels
into the lower levels of the feature pyramid. Starting with the highest
scale layer, the feature maps are upsampled by a factor of two and added
to the outputs of the subsequent layer. The fused outputs are finally
upsampled and concatenated into 512 feature maps at 1/4 scale. A 1 x 1
convolution is applied to generate the final class predictions, completing
the segmentation process.

To obtain the final segmentation predictions, a per-pixel softmax
is applied, and the cross-entropy loss is minimized during training. The
model is optimized using a multi-task loss, defined as the weighted sum
of the bounding box regression loss, object classification loss, instance
segmentation loss, and semantic segmentation loss:

L= )\boxﬁbox + )\cls'ccls + Amask'cmask + Asegm'csegm

The weights for the bounding box regression, object classifica-
tion, and instance segmentation losses follow the settings in Mask R-CNN
[63], with the semantic segmentation loss weight set to Asegm = 1.

An instance segmentation network generates overlapping in-
stances, meaning that a single pixel can be associated with multiple
identifiers. Additionally, since the semantic and instance segmentation
networks process images independently, their outputs may not align per-
fectly, resulting in mismatches in pixel-level semantic labels. An example
of such conflicts between instance and semantic segmentation is shown
in Figure 5.3.

To address this issue, a novel panoptic fusion scheme is intro-
duced to integrate the outputs of instance and semantic segmentation.
This fusion ensures that each pixel is assigned a unique semantic and
instance label while simultaneously improving overall accuracy. The ap-
proach builds on the observation that pixel-level semantic segmentation
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Figure 5.3: Semantic-instance and instance-instance conflicts. A pixel
can receive different semantic classes from the semantic and instance
outputs, as seen on the truck example. Also, a pixel can belong to two
instances, as the instance masks overlap, as seen in the cyclist-bicycle
example.

excels at background classification and foreground-background separa-
tion, while instance segmentation is more effective at recognizing and
classifying objects as a whole. By leveraging the strengths of both meth-
ods, the fusion scheme corrects classification errors in semantic segmen-
tation using the semantic class information provided by instance segmen-
tation.

This approach proves particularly beneficial for large objects,
where instance segmentation masks, due to their lower resolution (28 x
28), are inaccurate at boundaries. In contrast, semantic segmentation
offers more precise boundary delineation between things and stuff classes
(e.g., distinguishing pedestrians from sidewalks) but encounters difficul-
ties differentiating between classes within the same category (e.g., pedes-
trians and cyclists). By combining the complementary strengths of the
two segmentation methods, the fusion scheme enhances both accuracy
and consistency.

The fusion approach leverages the strengths of both methods by
utilizing semantic pixel-level classification for stuff classes and instance-
level classification for things classes. To accomplish this, pixels are first
categorized into stuff and things classes based on semantic segmenta-
tion results. Additionally, the things classes, such as bus, car, truck,
pedestrian, cyclist, bicycle, and motorcycle, are grouped into broader
categories: vehicles, humans, and two-wheeled objects. The detailed al-
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gorithm is presented in Algorithm [I| and illustrated in Figure 5.4.

Stuff. Pixels classified as stuff are those assigned to a stuff class
in the semantic segmentation.

Things. For things classes, the masks provided by instance seg-
mentation and semantic segmentation may not align perfectly, and their
semantic classes can differ. To address this, a new semantic class is as-
signed to each things pixel identified in the semantic segmentation. This
process considers the class provided by the object detector, using the
instance mask to facilitate pixel-to-pixel matching. A pixel’s class la-
bel and instance label from the instance segmentation are retained only
if they are consistent with the pixel’s semantic category in the seman-
tic segmentation. For things pixels in the semantic segmentation that
are not covered by an instance mask but are connected to previously
matched pixels via a semantic path, a breadth-first-search region-growing
algorithm is applied. This algorithm propagates the semantic class and
instance identifier, enabling more accurate object-level classification com-
pared to pixel-level classification. For things pixels that remain without
an instance identifier after the region-growing process, typically due to
isolation, a new instance identifier is generated, while the semantic class
from the semantic segmentation is preserved. If any segments not la-
beled by the matching and region-growing algorithms are smaller than
a predefined threshold, they are assigned an unknown class to minimize
the introduction of false-positive segments.

The output fusion scheme can be applied for any semantic seg-
mentation and instance segmentation output without depending on the
employed approaches. It can be used as a fast post processing step which
provides a unified panoptic output.

Experiments. The multi-task network for instance and seman-
tic segmentation (ISSNet) is evaluated, and the complete solution, which
includes ISSNet along with the semantic and instance segmentation fu-
sion scheme, is referred to as ISS-Fusion. The model is initialized using
Mask R-CNN [63] weights pretrained on the Microsoft COCO dataset
[97] for instance segmentation and object detection. Stochastic Gradient
Descent (SGD) with a momentum of 0.9 is employed, alongside a poly
learning rate policy starting at 5x 1073, The network converges after 32k
iterations on the Cityscapes and UP-Drive datasets. Data augmentation
techniques, including horizontal flipping and multi-scale image training
(scales ranging from 0.8 to 1), are applied during training.

Table presents the results for the ISS-Fusion on the



62 CHAPTER 5. PANOPTIC SEGMENTATION

Algorithm 1 Semantic and Instance Fusion Scheme

Input: Semantic segmentation S, overlapping instance masks M, in-
stance area threshold T’
Output: Panoptic segmentation P
I, < GENERATEINSTANCESEGMENTATION (M, cat = vehicle)
I}, <+ GENERATEINSTANCESEGMENTATION(M, cat = human)
I; + GENERATEINSTANCESEGMENTATION(M, cat = two — wheeled)
P <+ MATCHING(S, I, I, I)
P « FiLLing(P)
P < CREATENEWINSTANCES(P, T)

procedure GENERATEINSTANCESEGMENTATION(M, ¢)
Let masks be an empty instance mask vector;
/] Each mask has a semantic class, instancelD and confidence score
for mask m € M do
if score(m) > 0.5 then
if class(m) € ¢ category then
Add m to masks;
end if
end if
end for
Sort masks with respect to the scores in descending order;
Let I be an empty instance segmentation;
for mask m € masks do
n < no of pixels in m, e «— no of empty locations in I(m);
if e/n > 0.5 then
Paste m in [
end if
end for
return /
end procedure
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procedure MATCHING(S, I, I, I)
Initialize panoptic segmentation P as a copy of S
Set instancelDs of every location in P to 0
for pixel p € S do
for I €1,,1,,1; do
if cat(p) == cat(I) and I(p) > 0 then
P(p) < I(p) // assign class, instancelD and score
end if
end for
end for
return P
end procedure

procedure FILLING(S,])
Let Q be a queue
for p € P do
if instancel D(p) > 0 then
Q.enqueue(p)
end if
end for
while Q) is not empty do
q = Q.dequeue()
for each neighbor n € Ns(q) do
if cat(n) == cat(q) and instancel D(n) == 0 then
P(n) <« class(q), instancelD(q), score(q)
Q.enqueue(n)
end if
end for
end while
return P
end procedure
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procedure CREATENEWINSTANCES(P, T)
for p e P do
if class(p) € things classes and instancel D(p) == 0 then
// Find connected component of pixels with the same semantic class
blob < BFS(p)
if Area(blob) < T then
class(blob) = unknown // Set the class to unknown
instanceID(blob < = 0
else
instancelD(blob) - max(instancelD(P)) + 1
end if
end if
end for
return P
end procedure

Semaatic segmentation S 6 IR

- 2. Matching 3. Filling -
| ~ ) L
1. Input m & “ 4. Output

Inutance segmentation Lestance segmentatzon

Figure 5.4: Fusion process overview. (1) Input: semantic segmentation
(car is partially classified as truck) and instance segmentation (mask for
car is slightly misaligned and cropped, and the pedestrian behind the car
is not detected); (2) Matching: the pixels of the instance segmentation are
matched to the pixels from semantic segmentation only if the object class
is compatible with the semantic category from semantic segmentation;
(3) Filling: semantic region growing is applied to finalize the object shape
and the unmatched object segments receive a new object ID; (4) Output:
refined segmentation.

Cityscapes validation set. The unified baseline model demonstrates an
improvement over the Mask R-CNN framework for instance segmenta-
tion [63]. The unified baseline employs a simplified segmentation head
consisting of two 3 x 3 convolutions after each level of the FPN, followed
by upsampling and concatenation. In comparison to the unified base-
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line, incorporating the Atrous Spatial Pyramid (ASP) and the refinement
pyramid (RP) yields an approximate improvement of 1.5% in mloU for
semantic segmentation. Additionally, the fusion scheme further enhances
the performance, resulting in a 3% increase in mIoU for semantic seg-
mentation. This improvement is attributed to more robust object-level
classification and the assignment of a unique label per instance, which
strengthens the semantic segmentation for foreground classes. Further-
more, the instance masks achieve better alignment with object bound-
aries.

Method | backbone | mAP mask mloU PQ
Mask-RCNN [63] | ResNet-50 | 364 - -
Unified baseline | ResNet50-FPN 37.0 71.6 -
+ ASP and RP ResNetb0-FPN 37.2 72.9 -
+ fusion ResNet50-FPN 37.3 76.0 56.8

Table 5.2: Evaluation of ISS-Fusion on the Cityscapes val set.

Table [5.3| presents the class-wise semantic segmentation evalua-
tion on the Cityscapes dataset. The results show performance improve-
ments across all things classes when using the semantic and instance
fusion scheme. Notably, significant IoU improvements are observed for
large-scale semantic classes, such as truck, bus, and train.

Table 5.4 presents a comparison with other approaches on the
Cityscapes test set. The solution achieves competitive results but is
outperformed by methods that utilize larger backbone networks, such
as ResNet-101, which were trained with large batch sizes. However, the
use of larger backbones comes at the expense of increased computational
costs and memory requirements.

Figure 5.5 shows results for semantic and instance segmenta-
tion on Cityscapes validation images, both before and after the fusion
process. For semantic segmentation, pixel-level classification can pro-
duce erroneous semantic labels for large-scale, challenging objects such
as buses, trams, or trucks. These errors are corrected during the fusion
process by incorporating object-level classification results for foreground
classes. For instance masks, the improvements are particularly notice-
able at object boundaries, where better alignment and preservation of
details are achieved. Additionally, the fusion module generates panoptic
segmentation outputs, as illustrated in Figure 5.6.
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Class | ISSNet | ISS-Fusion
road 97.7 97.7
sidewalk 82.3 82.3
building 91.2 91.2
wall 48.6 48.6
fence 51.3 51.3
pole 56.9 56.9
traffic light | 66.9 66.9
traffic sign 73.1 73.1
vegetation 91.5 91.5
terrain 61.8 61.8
sky 93.1 93.1
person 80.1 81.0
rider 59.8 65.6
car 93.1 94.0
truck 63.0 81.6
bus 77.5 89.8
train 64.1 80.1
motorcycle 59.7 61.9
bicycle 75.3 75.6
mloU \ 72.9 \ 76.0

Table 5.3: Semantic segmentation evaluation for Cityscapes semantic
classes before (ISSNet) and after fusion (ISS-Fusion).

The network is also evaluated on the UP-Drive dataset to assess
whether the it meets the requirements of the 2D perception system on an
autonomous vehicle such as inference speed. The results are presented
in Table 5.5 and the processing time is measured on a NVIDIA GTX
1080 GPU. Using high-resolution images of size 640 x 1280, the network
achieves 31.3% mAP for mask prediction and 66.4% segmentation mIoU.
However, the two-stage network proves computationally expensive, with
inference times of 171 ms for high-resolution images. Although the net-
work achieves accurate results, the computational demand is too high for
practical applications such as autonomous driving. Therefore the input
images are downsampled to 256 x 512 to reduce inference time. However,
processing low-resolution fisheye images further decreases the detection
range, which is particularly problematic given that objects in fisheye im-
ages already appear smaller compared to those in narrow field-of-view
images. End-to-end network optimization with TensorRT is challenging



5.3. ISS-FUSION

67

Method

\ mloU

DeepLabv2-CRF [21]
Deep Layer Cascade [89)
ML-CRNN [43]
Adelaide context [94]
FRRN [125]

LRR-4x [53]
RefineNet [93]
Ladder DenseNet [80]
TuSimple [149]
ResNet-38 [157]
PSPNet [168]
DeepLabV3 [22]
DeepLabV3+ [24]

70.4
71.1
71.2
71.6
71.8
71.8
73.6
74.3
80.1
80.6
81.2
81.3
82.1

ISS-Fusion

72.7

Table 5.4: Cityscapes results on the test set.

-=

Afver Fusion

Before Fusion

Figure 5.5: Demo results for the ISS-Fusion network on Cityscapes im-
ages. The fusion process improves the segmentation quality.

for the two-stage network due to the presence of hand-crafted processing
steps that must be separately implemented, such as those between the
first and second object detection stages and between the second stage and
the mask head. The complexities of the training and inference pipelines,
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Figure 5.6: Panoptic segmentation output from the ISS-Fusion network
on Cityscapes images. The semantic and instance fusion scheme assigns
to each pixel from the panoptic output a unique semantic class and in-
stance identifier.

Resolution | mAP box | mAP mask | mloU | Time (ms)
640 x 1280 37.8 31.3 66.4 171

256 x 512 29.7 25.2 61.8 68

Table 5.5: Evaluation of ISSNet on the UP-Drive fisheye images corre-
sponding to front, left, back, right views. Time is measured on a NVIDIA
GTX 1080 GPU.

coupled with the high inference time even at reduced resolutions, high-
light the need for more efficient one-stage panoptic segmentation net-
works to be implemented in autonomous vehicles.

An example of a 2D perception system. Figure illus-
trates an example of a 2D perception system architecture which processes
input images from five cameras: four fisheye surround-view cameras pro-
viding 360° coverage around the vehicle and one front narrow field-of-view
camera. The Data Flow Manager receives synchronized image samples
from these cameras and selects the best temporally aligned set at the
start of each perception processing cycle. The four fisheye images are
first unwarped and undistorted before undergoing semantic segmenta-
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Figure 5.7: An example of a 2D panoptic perception system.

tion. For the front unwarped fisheye image, instance segmentation is
additionally performed, followed by a fusion of semantic and instance
segmentation outputs to produce the final panoptic output.

The instance segmentation network that is used in this system
is the one-stage network RetinaMask[46] and the ERFNet [I31] seman-
tic segmentation network is selected. Both networks are trained on the
UPDrive dataset, as detailed in earlier chapters. The post-processing
step presented in the previous section is used to fuse the instance and
semantic segmentation outputs into panoptic segmentation.

Table presents the results of ablation studies for each seg-
mentation module on the front unwarped fisheye images at a resolution
of 640 x 1280 on the UP-Drive dataset. Using the INT8 model for se-
mantic segmentation, the mean Intersection over Union (mloU) is 65.1%
when computed across all four view images, and 65.9% for the front view
images alone. Incorporating the unified panoptic segmentation further
improves the semantic segmentation performance by nearly 1%, increas-
ing the mIoU from 65.9% to 66.8%. Additionally, the panoptic module
enhances the instance segmentation mean Average Precision (mAP) by
0.3%. In terms of panoptic quality (PQ), the results show 42.4% PQ for
all classes, with 42.2% for stuff classes and 43.0% for things classes.

The inference time for the complete 2D perception pipeline is
measured and summarized in Table [5.7] The preprocessing step, which
includes image unwarping for the four fisheye images and image undis-
tortion for all five images, is efficient and completes in 5 ms on the GPU.
Semantic segmentation of the four unwarped fisheye images, performed
using an INT8 quantized network, takes 36 ms. The most time-intensive
operation is instance segmentation of the front unwarped fisheye image,
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Model | mIoU | mAP mask | PQ | PQy | PQu | Time (ms)
Semantic segmentation | 65.9 - - - - 9
Instance segmentation - 30 - - - 66
Panoptic fusion 66.8 30.3 42.4 | 42.2 43 5
Panoptic segmentation | 66.8 | 30.3 | 42.4 | 422 | 43 | 80

Table 5.6: Ablation studies of each segmentation module on the front
view unwarped fisheye image on the UP-Drive dataset. Semantic seg-
mentation, instance segmentation and panoptic segmentation is evalu-
ated on 640 x 1280 images. The networks are optimized with TensorRT.
Time is measured on a NVIDIA GTX 1080 GPU.

Module | Time (ms)
Image unwarping and undistort x 5 6
Semantic segmentation x 4 36
Instance segmentation front 160° HFV image 66
Panoptic fusion front 160° HFV image )
Instance segmentation front 60° HFV image 44
Total | 157

Table 5.7: Time evaluation of the entire 2D semantic perception system
on a NVIDIA GTX 1080 GPU.

which requires 66 ms. To reduce inference time, the resolution of the
front 60° horizontal field-of-view (HFV) image is lowered, reducing its
processing time to 44 ms. Overall, the entire pipeline runs in 157 ms. By
omitting the instance segmentation for the front 160° HFV image and
the panoptic fusion step, the pipeline achieves a faster runtime of 86 ms
on a single NVIDIA GTX 1080 GPU. This solution based on a one-stage
instance segmentation network is more suitable for deployment on a au-
tonomous vehicle than a two-stage instance and semantic segmentation
network due to the good trade-off between accuracy and inference time.

5.4 Panoptic Prototype Network
Method. This work [117] introduces an innovative end-to-end

fully convolutional neural network named Panoptic Prototype tailored
for panoptic segmentation, emphasizing fast inference, high accuracy,
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and practical deployment in real-time robotic applications. The cen-
tral strategy for achieving efficient inference lies in adopting a one-stage
object detector framework instead of a more computationally expensive
two-stage approach, coupled with carefully designed lightweight network
heads for panoptic segmentation.

Traditional two-stage instance segmentation models, such as
Mask R-CNN [63], rely on Faster R-CNN [I30] as their backbone. These
models operate sequentially: the first stage generates regions of interest
(Rols), while the second stage uses operations like RoIAlign to localize
features and predict object classes and instance masks. Although effec-
tive, the sequential nature and computational complexity of these two-
stage methods hinder acceleration via inference engines (e.g., TensorRT
[6]) and limit their viability for real-time systems.

To overcome these limitations, Panoptic Prototype builds on the
one-stage FCOS object detector [142], which formulates object detec-
tion as a per-pixel prediction problem. FCOS is selected as the base
architecture due to its impressive speed and accuracy, achieving state-
of-the-art performance on several benchmarks. Its fully convolutional,
proposal-free, and anchor-free design reduces the number of parameters,
simplifying both the training and inference processes. This streamlined
architecture significantly enhances computational efficiency, making it
highly suitable for real-time deployment in robotic applications.

The network architecture, illustrated in Figure 5.8, comprises a
shared backbone, an object detection head based on FCOS [142], and a
panoptic segmentation head. To produce high-quality panoptic predic-
tions, a dual-branch panoptic segmentation head that operates at high
resolution is introduced: one branch is dedicated to generating semantic
stuff masks and the other to producing instance masks. The instance
branch introduces an instance-aware visual codebook for each image,
which comprises a fixed set of prototype feature maps activated at spe-
cific instance locations. Leveraging object proposals, the panoptic head
employs a learned weighting scheme to linearly combine the predicted
instance prototype masks [I7]. These combined instance masks are then
seamlessly integrated with the stuff segments to generate the final panop-
tic output. The network is trained under supervision using an object de-
tection loss, a semantic segmentation loss, and a panoptic segmentation
loss.

Backbone. For feature extraction, the network utilizes the
VoVNet2-39 backbone, chosen for its efficiency [85], in combination with
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Semantic Segmentation - Only During Training  °,

Figure 5.8: The panoptic segmentation network architecture. A shared
backbone and FPN are used for feature detection. A dual-branch panop-
tic head performs stuff and instance mask prediction. Guided by object
proposals, the network learns an instance-wise weighting scheme which
is used for assembling the prototypes into instance masks. The panoptic
head fuses stuff and instance masks into one coherent output.

a Feature Pyramid Network (FPN) [95]. While the original implemen-
tation employs a 5-level FPN with 256 channels per level, this design
reduces the FPN size to 128 channels per level to improve efficiency.

Object Detection Head. The object detection head is based
on the anchor-free, fully convolutional FCOS detector [142]. Built on
top of the shared VoV Net2-39-FPN backbone, each FPN level is extended
with a lightweight object regression branch and a shared branch for object
classification and centerness. Both branches consist of two [3 x 3,128§]
convolutional layers.

Panoptic Segmentation. The panoptic segmentation head is
implemented with a dual-branch design with a lightweight architecture
for stuff and prototype masks predictions.

PanopTiCc STUFF BRANCH.  The panoptic stuff branch
is designed to predict a mask for each stuff class. It begins
with the multi-scale feature representation produced by the Fea-
ture Pyramid Network (FPN), which encodes features at five scales:
1/128,1/64,1/32,1/16, and 1/8 of the original input resolution. Fea-
ture maps from all pyramid levels, each containing 128 channels, are
upsampled to 1/8 and concatenated. To model long-range dependen-
cies, a Pyramid Pooling Module (PSP) [168] is applied on top of the
concatenated features. The PSP module performs four parallel average
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pooling operations at different rates, producing feature maps of sizes
[1 x 1],[2 x 2],[3 x 3], and [6 x 6]. A [1 x 1,128] convolution is then
applied at each level, and the resulting features are upsampled to the
1/8 scale via bilinear interpolation. The output of the PSP module is
generated by fusing the 4-level pyramid features with the input through
concatenation, followed by a [1 x 1,128] convolution. A [3 X 3, Cytus]
convolution, batch normalization, and ReLU activation are applied to
predict the stuff class logits. These logits are further refined using 2x
bilinear interpolation and a [3 x 3, Cyug] convolution to produce the final
stuff masks. The resulting stuff logits, with a size of Cysug X H/4 x W /4,
contribute to the panoptic segmentation logits. To supervise the learn-
ing process, a semantic segmentation loss is introduced during training.
For things logits, a [1 X 1, Cinings| convolution is applied to the prototype
masks. Finally, the stuff and things logits are concatenated to form the
semantic segmentation output, which is optimized using a bootstrapped
cross-entropy loss.

PrOTOTYPE MASKS BRANCH. Inspired by the instance seg-
mentation network Yolact [I7], a panoptic head is designed to generate
a mask for each instance in the image by learning prototype masks and
assembling them using a weighting scheme associated with each detected
object. To produce the prototype masks, the FPN is extended with a
branch similar to the panoptic stuff branch. Consequently, both branches
share the backbone, the FPN, the upsampling operation to 1/8, and the
concatenation step. The network then aggregates contextual informa-
tion by applying a Pyramid Pooling Module (PSP) similar to the one
used earlier. This is followed by a [3 X 3, Npoto] convolution, batch nor-
malization, and ReLU activation, where Nyt represents the number of
prototype masks. After extensive experimentation, Nporo = 32 was se-
lected as the optimal number of prototypes. To capture small objects and
fine details, the resolution is further increased to 1/4. This is achieved
using a 2x bilinear upsampling operation followed by a [3 X 3, Npoto] con-
volution. Notably, no direct supervision is enforced on the prototypes;
instead, they are trained indirectly through the panoptic and semantic
losses. Figure illustrates the masks corresponding to stuff classes
alongside a selection of instance prototype masks. The visualizations
highlight how the network distributes attention across different regions
in the prototype masks—some focus on instance regions, others on edges,
and some on the image background.

PrOTOTYPE WEIGHTS. The FCOS detector [142] predicts, at
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Figure 5.9: Top row: stuff segmentation masks. Bottom row: prototype
instance masks. These masks are assembled into panoptic logits.

each foreground location of the 5-scale FPN, a 4D vector encoding the
offsets from the four sides of the bounding box, a centerness value, and a
semantic class. FCOS employs a shared object detection head across all
FPN levels. This head consists of two branches: one for classification and
centerness prediction, and the other for bounding box regression. In its
original implementation, each branch comprises four [3 x 3, 256] convolu-
tional layers. To improve inference speed, the number of convolutions in
each branch is reduced to 2, and the number of channels is decreased to
128. To enable learning a weighting scheme for prototype assembly, the
detection head is extended with an additional parallel branch that pre-
dicts a vector of Npoto values at each foreground location. Importantly,
no explicit loss is applied to supervise the learning of these weights.
The final loss function is formulated as follows:

L=\ 0:1:£ oz T )\c s‘Cc s T )\cen erness‘ccen erness
b b l 1 t t (54)

+)\semantic£semantic + )\panoptic'cpanoptic

During training, the object detection loss weights for box regres-
sion, classification, and centerness are configured following the settings
of FCOS [142]. The weights for the semantic loss and panoptic loss are
set t0 Asemantic = 1 and Apanoptic = 1, respectively. Both the panoptic and
semantic losses are implemented using the bootstrapped cross-entropy
loss. The panoptic segmentation logits are constructed by combining
stuff logits, taken directly from the panoptic stuff branch, and instance
logits, generated by the prototype mask branch. To remove low-quality
bounding boxes, multi-class Non-Maximum Suppression (NMS) with an
IoU threshold of 0.5 is applied to resolve overlaps, retaining the top 50
scoring boxes. For each ground truth mask in the panoptic target, the
predicted bounding box with the largest intersection-over-union (IoU) is
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assigned. This ensures that each ground truth mask is associated with
only one prediction, and the order of instance masks in the panoptic log-
its matches the order of masks in the panoptic target. During training,
ground truth bounding boxes are utilized to suppress values outside their
regions by setting those locations to zero.

During inference, an additional filtering step is applied to the
predicted bounding boxes. After performing Non-Maximum Suppres-
sion (NMS) and selecting the top 50 scoring boxes, the remaining boxes
are sorted, and only those with confidence scores greater than 0.3 are
retained. The panoptic segmentation logits are then assembled in the
same manner as during training. To generate the final predictions, a
softmax operation is applied over the panoptic segmentation logits to
determine per-class assignments. If the maximum value lies within the
first Cyiu channels, the corresponding pixel is classified as belonging to
a stuff class, with its semantic class given by the index of the maximum
value. Conversely, if the maximum is found within the subsequent N,
channels, the pixel is classified as part of an instance mask, with the
instance ID determined by the index and the semantic class derived from
the bounding box class. For evaluation purposes, stuff masks with areas
smaller than 1024 pixels are discarded. This step addresses the sensi-
tivity of the Panoptic Quality (PQ) metric, particularly its Recognition
Quality (RQ) component, to small and low-quality predictions.

PanoprTIC MASKS ASSEMBLY. For each detected object, an
instance mask is generated by performing a linear combination of the
instance prototypes using the learned instance weights. To enable both
addition and subtraction of prototype masks, the prototype weights are
first remapped to the range [—1, 1] using a tanh activation function. Af-
ter the linear combination, noise outside the detected bounding box is
suppressed by setting those locations to zero. The resulting instance log-
its are high-resolution, with a size of Nj, X H/4 x W /4. In the final step
of the panoptic assembly process, the instance logits are concatenated
with the stuff logits to produce the panoptic logits.

Experiments. The model is implemented using the PyTorch
framework [113] and trained on a system equipped with four Tesla V100
GPUs. For inference, a single GPU is used with a batch size of 1. Ex-
periments are conducted on the Cityscapes dataset [34]. The network is
trained end-to-end with a batch size of one image per GPU. Optimization
is performed using stochastic gradient descent (SGD) with a momentum
of 0.9, weight decay of 107%, and a polynomial learning rate decay start-
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ing at 2 x 1073, The model is trained for 16k iterations. To improve
generalization, data augmentation techniques are applied, including ran-
dom horizontal flipping and scaling, where the shorter side of the image
is randomly selected from {768,896, 1024}.

The experimental results for the Prototype Panoptic network
are presented on the urban driving Cityscapes dataset. Additionally,
ablation studies are conducted to justify and motivate the design choices.
The network is evaluated using the VoVNet2-39 backbone [85].

Ablation Studies. Ablation studies are conducted on the
Cityscapes dataset to analyze the impact of various design choices. The
baseline model employs a single decoder with a Pyramid Pooling Module
(PSP) for contextual information, a [1 x 1] convolution for feature aggre-
gation, and two parallel convolutions to reduce the channel dimensions
for stuff and prototype masks: [3 x 3, Csug] and [3 X 3, 64], respectively.
The output stride is set to 8x, and 64 prototype masks are predicted.
This baseline configuration achieves a Panoptic Quality (PQ) score of
53.2%.

To improve performance, an additional decoder is introduced in
parallel, allowing each branch to specialize in background and foreground
features, respectively. This modification leads to a 1% improvement in
PQ. Recognizing the importance of high-resolution feature learning for
accuracy, an upsampling stage using bilinear interpolation followed by a
[3 x 3] convolution is added. Reducing the output stride from 8x to 4x
further improves PQ by 3.2%.

The effect of the number of prototype masks is also studied.
Reducing the number of prototypes from 64 to 32 does not degrade per-
formance, achieving the same PQ score of 57.3%. However, increasing the
number of prototypes does not yield further improvements and may in-
troduce redundant prototype masks while increasing computational cost.
Conversely, using fewer prototypes leads to a decline in panoptic quality.

In conclusion, the final model adopts 32 prototype masks, which
achieves the best trade-off between accuracy and computational effi-
ciency.

Performance on Cityscapes. Table [5.9| presents a compari-
son of the panoptic and semantic segmentation accuracy and inference
time of the one-stage Panoptic Prototype network against existing two-
stage, proposal-based, and one-stage approaches. The reported results
are based on lightweight backbones, such as ResNet-50 and MobileNet V2.
Inference time includes the forward pass of the network and the Non-
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Dec. x 1| Dec. X 2 | 4% | Npyoto | PQ

v 64 53.2
v 64 54.2
v v 64 57.3
v v 32 57.3
v v 16 26.9

Table 5.8: Ablation study on the Cityscapes validation set for Panoptic
Prototype network: Baseline model has one decoder, 8 x output stride,
64 prototype masks. Dec.x 1: shared decoder for stuff and prototype
masks. Dec.x 2: separate decoders. 4x: output stride = 4. N,,0:
number of prototypes.

Maximum Suppression (NMS) operation on a 1024 x 2048 Cityscapes
image.

Compared to two-stage methods, the Panoptic Prototype net-
work outperforms TASCNet [87], achieving better results while running
twice as fast. It delivers comparable Panoptic Quality (PQ) to MTN
Panoptic [116] and Panoptic-FPN [75]. However, methods like UP-
SNet [159] and Seamless Panoptic [126] achieve higher accuracy at the
expense of significantly longer execution times.

In general, the network demonstrates strong performance in stuff
classification, achieving PQy = 62.4%. However, its instance mask pre-
dictions are less accurate compared to two-stage approaches. This lim-
itation may arise in challenging scenes with dense crowds or significant
occlusions, where the prototype masks struggle to localize individual in-
stances. Additionally, the instance mask quality heavily depends on the
object detector’s accuracy, as masks are retained only within the detected
bounding boxes. Misaligned, misclassified, or incorrectly sized bounding
boxes can introduce artifacts into the panoptic and instance predictions.

When compared to other one-stage methods, this network is both
the fastest, with an inference time of 82 ms, and the most accurate.
It surpasses DeeperLab [162], FPSNet [37], and SSAP [48] in overall
performance.

In Figure [5.10] visual results for panoptic and semantic segmen-
tation are presented. The results demonstrate that the network effec-
tively handles diverse scenarios, including occlusions and objects of vari-
ous sizes. By generating masks from the 5-level Feature Pyramid Network
(FPN) and Pyramid Pooling Module (PSP), the network captures multi-
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Method | Backbone | PQ | PQu | PQy | mIoU | Time (ms)
Two-Stage
TASCNet [87] ResNetb0-FPN | 55.9 | 50.5 | 59.8 - 160
MTN Panoptic [35] ResNet50-FPN | 57.3 | 53.9 | 59.7 | 75.4 145*
Panoptic-FPN [75] ResNet50-FPN | 58.1 | 52.0 | 62.5 | 75.7 -
UPSNet [159] ResNetb0-FPN | 59.3 | 54.6 | 62.7 | 75.2 140
Seamless Panoptic [126] | ResNet50-FPN | 60.3 | 56.1 | 63.3 | 77.5 150
One-stage
DeeperLab [162] Wider MNV2 | 52.3 - - - 303
FPSNet [37] ResNetb0-FPN | 55.1 | 48.3 | 60.1 - 98*
SSAP [48] ResNet-50 56.6 | 49.2 - - 130*
Panoptic Prototype VoVNet2-39 | 57.3 | 50.4 | 62.4 | 76.9 82

Table 5.9: Comparative study with state-of-the-art panoptic segmenta-
tion networks on the Cityscapes validation dataset. Inference time is
measured on a Tesla V100 GPU with batch size of 1. Inference time is
approximated for entries marked with * based on their reported speed
on other GPUs.

scale contextual information, enabling accurate pixel-level classification
even for very large objects, such as the truck in column 4.

Simultaneously, the instance masks are produced at a high res-
olution, ensuring precision and the preservation of fine details. For ex-
ample, in the last column, the pedestrians are well delineated despite
significant occlusions in the scene.

5.5 Soft Attention Mask Network

Method. The Soft Attention Mask Network [119] introduces
AttentionP$S, a simple, fast, and accurate approach for generating co-
herent panoptic segmentation using an end-to-end trainable network.
The key idea behind this method is to extract instance masks from the
semantic segmentation output by leveraging high-resolution approximate
representations for instances, referred to as soft attention masks.

The network utilizes a shared feature extraction backbone and
incorporates three distinct heads: one for object detection, one for seman-
tic segmentation, and one for instance-level attention masks. Inspired by
proposal-free instance segmentation approaches [73], 109, 28], which gen-
erate instance masks by clustering pixels around their centers, the soft
attention mask branch learns a spatial embedding space where pixels
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Figure 5.10: Semantic and panoptic segmentation results with the Panop-
tic Prototype network. From top to bottom: image, panoptic ground
truth, semantic segmentation, panoptic segmentation. In the panoptic
segmentation the color encodes the class and the instance identifier.

belonging to the same instance are attracted toward the bounding box
center. Guided by object detections, these spatial embeddings are used
to generate soft attention maps, which focus on things class segments
derived from the semantic segmentation branch to produce panoptic in-
stance masks. In practice, the semantic segmentation masks and the
instance-aware soft attention masks exhibit pixel-wise coherence, allow-
ing a simple element-wise multiplication operation to produce the final
panoptic segmentation output.

The AttentionPS network is built on top of the anchor-free FCOS
detector [142], which is extended with a novel panoptic segmentation
head. The panoptic head predicts both semantic segmentation and
instance-specific soft attention masks, which are activated at instance
pixel locations. To generate the soft attention masks, the panoptic head
learns the pixel offsets to the corresponding instance centers.

A high-level graphical representation of the pipeline is shown in
Figure [5.11] while the detailed architecture of the network is illustrated
in Figure 5.12.

Backbone. The network utilizes a shared backbone for feature
extraction, paired with a Feature Pyramid Network (FPN) [95] for multi-
scale feature representation. Specifically, a ResNet50-FPN [64] backbone
is employed, where the FPN is designed with a lightweight architecture
comprising 128 channels, as opposed to the default 256 channels used by
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Figure 5.11: The fully convolutional network detects objects and predicts
semantic segmentation and pixel offsets to the instance center. Bounding
box predictions, along with pixels offsets, are used to generate instance
specific soft attention masks. The panoptic output assembles stuff masks
and things masks scaled by the soft attention maps. The final panoptic
segmentation is achieved via per-pixel classification.

other panoptic segmentation networks. For obtaining increased accuracy,
experiments are also conducted using the VoVNet2-39 backbone [85].

Semantic Segmentation. The network comprises of a
lightweight segmentation head, which shares the same feature represen-
tation as the object detector. The semantic head processes the five-level
FPN feature maps by upsampling them to a resolution of 1/8 and con-
catenating the results. To capture long-range contextual information, the
Pyramid Pooling Module (PSP) [16§] is applied on the concatenated fea-
tures, which consist of 640 channels. The PSP module follows its default
design: four parallel average pooling operations are performed, produc-
ing feature maps with sizes [1 x 1], [2 x 2], [3 x 3], and [6 x 6]. These are
followed by a [1 x 1,640] convolution and upsampling back to 1/8 reso-
lution. The outputs of the PSP module and its input are concatenated,
and a [1 x 1,128] convolution fuses the multi-scale features.

An upsampling stage is subsequently applied, comprising a
[3 x 3,128] depthwise separable convolution, Instance Normalization,
ReLU activation, and 2x bilinear interpolation. To further refine the
features, two additional [3 x 3, 128] depthwise separable convolutions are
employed. Finally, a [1 x 1, Nyg| convolution, followed by a per-pixel
softmax operation, generates the class predictions. The semantic seg-
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Figure 5.12: The network employs a shared backbone and FPN, which we
extend with an object detection and classification head, semantic segmen-
tation and panoptic segmentation head. The latter regresses foreground
pixels to their corresponding instance centers. The object predictions
along with the predicted instance center are used to generate instance-
wise soft attention masks that guide the instance mask prediction within
the panoptic head by re-weighting semantic segmentation logits. Panop-
tic segmentation is solved as a dense classification task.

mentation branch is supervised by minimizing the weighted bootstrapped
cross-entropy loss [24], which assigns greater weight to smaller-sized in-
stances.

Panoptic Segmentation. A novel panoptic segmentation head
is proposed, which generates pixel-wise coherent instance-aware soft at-
tention masks alongside the semantic segmentation output. By perform-
ing a simple element-wise multiplication between the semantic segmenta-
tion predictions and the instance-aware attention masks, the final panop-
tic segmentation output is obtained.

Several works [73] 28] formulate instance segmentation as the
task of associating instance pixels P = {py, ps, ..., pn} with their corre-
sponding instance centroids C' = {¢y, ¢o, ..., ¢}, where k is the number
of instances in the image. This association is achieved by predicting
offset vectors O = {01, 09, ...,0,}, which represent the displacement be-
tween a pixel p; and its corresponding instance centroid ¢, such that
cx = p; + 0;. One common approach to identify instances involves clus-
tering pixels based on their predicted centers and the corresponding true
instance centers. However, the true locations of the instance centers are
initially unknown. To address this, Cheng et al. [28] propose a keypoint-
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based representation, while Neven et al. [109] introduce an advanced loss
function that learns these locations based on a seed map.

In AttentionPS, instance mask prediction is formulated as the
task of predicting offset vectors ¢, = p; + 0;, mapping instance pixels
to their respective instance centers. The shared backbone is extended
with a soft attention mask decoder, which adopts the same architecture
as the semantic segmentation decoder (illustrated in Figure 5.12). The
primary modification involves replacing the final convolutional layer with
a [1 x 1,2] convolution to output pixel offsets along the z- and y-axes.

Unlike prior approaches that apply hard clustering to associate
pixels with their nearest centers, this work avoids hard clustering. Since
datasets typically include objects of varying sizes, the distance between
instance pixels and their centers can span a wide range of scales. For large
objects, learning offsets for pixels that are far from the center becomes
particularly challenging. To mitigate this issue, the method introduces
soft attention masks for each instance. These masks are computed using
the true instance center, the predicted pixel offsets, and the object size,
thereby relaxing the constraint of hard clustering and improving accuracy
across objects of different scales.

To compute the soft attention masks, three components are re-
quired: the true instance centers, the pixel offset predictions, and the
object size.

First, the true instance centers are derived from the predicted
bounding boxes. The object detector outputs a set of bounding boxes
B ={by,bs,...,b;}, where each bounding box b is represented as:

b= {('xlyaj?vylay2)7centerness}a ERS {17 Nthings}a

with (z1,y1) as the top-left corner coordinates, (z2,y2) as the bottom-
right corner coordinates, and s denoting the semantic class of the object.
The centerness value, which ranges between 0 and 1, is used during the
Non-Maximum Suppression (NMS) step. Using the top-left and bottom-
right coordinates, the true instance center is calculated as (z, yx).

Second, the soft attention masks are computed using the pixel
offset predictions from the panoptic head. For every pixel location (p;, p;)
in the image that belongs to an instance, the network predicts an offset
to the corresponding instance center. The predicted instance center is
thus given by:

cx = (pi + 0i,pj + 0j),
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where o; and o; are the predicted offsets along the z- and y-axes, respec-
tively.

Third, the object size is incorporated into the computation of
the soft attention masks. The object size is determined from the height
and width of the bounding box, h x w, as provided by the object detector.

A soft attention mask A, is defined for each detected object,
using an instance-wise Gaussian kernel to transform the predicted offsets
from the panoptic head into probabilities indicating pixel membership
to the corresponding instance. Specifically, a 2-dimensional Gaussian
function is employed, where the mean is located at the center of the
bounding box and the standard deviation is determined by the size of
the bounding box. The Gaussian function generates attention maps as
follows:

2 2

Aprop,) = exp (_2(19z +§;2 w)®  2(p +ij Yr) )
where w = 20, and h = 203, with ¢ representing the standard deviation.

The soft attention masks, modeled through this Gaussian func-
tion, indirectly encourage the predicted instance centers to align with
the bounding box center while constraining them to reside within an el-
liptical region surrounding the center. The size of this elliptical region
is determined dynamically by the bounding box dimensions and adapts
to each object’s size. This flexibility alleviates the strict requirement for
offset vectors to point precisely at the instance center, a constraint that
is particularly challenging for large objects where distant pixel locations
are more prone to offset prediction errors.

Although the formulation relaxes the alignment constraint, it
ensures that the predicted centers (p; + 0;,p; + 0;) remain within the
defined elliptical region with high probability at the bounding box center
(g, yr). This probability gradually decreases as the predicted center
deviates from the true center, decaying towards the object’s edges. A
visualization of this concept is provided in Figure [5.13

As illustrated in Figure the soft attention masks assign
high probabilities to instance pixels while assigning low probabilities else-
where. To generate the instance masks, these soft attention masks are
applied as filters on the semantic segmentation output. By performing
an element-wise multiplication between the attention mask and the se-
mantic segmentation, the pixels belonging to the corresponding instance
are enhanced by increasing their values, while the logits of background
pixels or pixels belonging to other instances are suppressed.
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Figure 5.13: The network performs object detection and outputs bound-
ing boxes and classes for each object. The spatial embedding branch
regresses instance center offsets from each foreground pixel. In the in-
stance center regression image, the intensity encodes the magnitude of
the offset vector and the color indicates the orientation of the vector.
By moving each pixel location with the predicted offsets, the predicted
instance centers are obtained. The predicted instance centers are forced
to lie within a region centered at the bounding box center with its size
defined by the object’s size.

Figure 5.14: Using the predicted center offsets and the object proposals,
soft attention masks for each instance are generated (the original image
is in Figure . As the saturation of yellow pixels increases, the prob-
ability of belonging to the instance is larger. Green pixels have a low
probability of belonging to the instance.

The final panoptic logits Lj for instance Cj are computed as
follows:

Li(pi» p;) = S(pi> pj)lsk] - Ae(pi, ps) (5.5)

The semantic class of the box s, is used for selecting the semantic
logits S of a certain class, which are scaled by the attention map A.
Panoptic logits will be computed for each detected instance.

Finally, the instance-wise panoptic logits are combined with the
stuff logits derived from the semantic segmentation branch. A softmax
operation is applied over the concatenated logits, and the weighted boot-
strapped cross-entropy loss is minimized during training. It is important
to note that the supervision of pixel offsets occurs solely through this
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loss.

PANOPTIC SEGMENTATION TRAINING. The panoptic output is
represented as a tensor of size (Cyut + Ninst) ¥ % X %. The first Cyug
channels of the panoptic logits correspond to the semantic segmentation
logits for stuff classes, while the following N, channels represent the
instance logits. During training, N, equals the number of ground truth
bounding boxes.

To generate the soft attention masks, the ground truth bound-
ing boxes and corresponding object classes are utilized. It is essential
to ensure that the order of the instance masks in the panoptic output
matches the order used to construct the panoptic ground truth during
training.

PANOPTIC SEGMENTATION INFERENCE. During inference, the
predicted bounding boxes are utilized to generate the soft attention
masks. First, Non-Maximum Suppression (NMS) is applied to the predic-
tions across all FPN levels, and the top 100 scoring boxes with confidence
scores above 0.3 are selected. The panoptic output is then constructed
similarly to the training phase, but using the filtered object proposals.
A softmax operation is applied over the panoptic logits. The channel
corresponding to the maximum value determines the semantic class for
stuff classes and the instance identifier for instances. The semantic class
of an instance is derived from the predicted object class. For evaluation,
considering the sensitivity of the Panoptic Quality (PQ) metric to stuff
predictions [159], stuff masks with areas smaller than 1024 pixels for the
Cityscapes dataset and 4096 pixels for the COCO dataset are ignored.

PixeL OFFSETS AND BOUNDING BOXES. During training, as
images are resized to multiple scales, pixel offsets are normalized by the
image height for both the x- and y-directions. To ensure bounded off-
set predictions, a tanh activation is applied, constraining the values to
the range [—1,1]. This restriction implies that a location can regress a
maximum offset equal to the height of the image in each direction. Ad-
ditionally, both the bounding box center and the bounding box size are
normalized by the image height.

Experiments. The AttentionPS network is trained end-to-end
on a system equipped with four Tesla V100 GPUs using a single optimiza-
tion step. Inference is performed on a single GPU with a batch size of
1. In all experiments, the backbone is initialized with ImageNet [3§]
pretrained weights [85]. The model is trained and evaluated on the
Cityscapes [34] and COCO [97] datasets. For the Cityscapes dataset,
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the network is trained with a minibatch size of 4 images for 96k iter-
ations, with the initial learning rate reduced by a factor of 0.1 at 76k
and 88k iterations. On the COCO dataset, training is conducted with a
batch size of 16 images for 270k iterations, with learning rate reductions
at 210k and 250k iterations.

The total loss function is defined as the sum of the object de-
tector losses (bounding box regression loss, object classification loss, and
centerness loss), the semantic segmentation loss, and the panoptic seg-
mentation loss. The loss function is optimized using Stochastic Gradient
Descent (SGD) with a momentum of 0.9, weight decay of 1 x 107*, and
a base learning rate of 0.01. A learning rate warm-up is applied for the
first 1500 iterations.

During training, image augmentations are employed, including
random horizontal flipping and scaling. For the Cityscapes dataset, the
shorter side is randomly selected from the interval [768,1024], while for
the COCO dataset, it is chosen from the interval [640, 800].

Ablation Studies. The following section investigates key ar-
chitectural design choices, the impact of different backbones, various loss
functions, and the importance of soft attention masks. All ablation
studies are conducted on the Cityscapes dataset, with inference times
reported for images at a resolution of 1024 x 2048. The results are sum-
marized in Table (.10l

NETWORK BACKBONE ABLATION. As shown in Table|5.11] ex-
periments are conducted with multiple backbones to assess their perfor-
mance. Using the VoVNet2-39-FPNlite backbone, the network achieves
the highest accuracy with a Panoptic Quality (PQ) of 59.7% and an in-
ference time of 92 ms. Here, FPNlite refers to a lightweight version of
the Feature Pyramid Network (FPN) with 128 channels, compared to
the 256 channels in the original FPN.

Additionally, results using the ResNet50-FPNlite backbone are
presented. This configuration achieves a competitive PQ score of 59.3%
while offering a reduced inference time of 88 ms.

NETWORK HEADS ARCHITECTURE ABLATION. The panoptic
segmentation network is built on the FCOS detector [142], sharing the
same backbone. Experiments are conducted to compare the performance
of using one versus two separate heads for semantic segmentation and
instance offset regression, as summarized in Table [5.10]

Using a shared decoder for both semantic segmentation and in-
stance offset regression achieves a Panoptic Quality (PQ) of 58.7%, a
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Dec x 1 | Dec x 2 | Att Mean | Att Scale | Seg Loss | Reg Loss | Th Seg | PQ | mIoU | Time (ms)

v v v 53.1 | 754 92
v v v v 57.2 | 749 92
v v v v 57.6 91
v v v v 58.5 | 744 92
v v v v v 59.7 | 76.4 92
v v v v v v 59.6 | 76.2 92
v v v v v 58.7 | 75.6 87

Table 5.10: Ablation study on the Cityscapes wvalidation set with
VoVNet2-39-FPNlite backbone.  The following settings are used:
Dec x 1: one decoder for both offsets regression and semantic seg-
mentation tasks. Dec x 2: two decoders for each task. Att mean:
attention mask is modeled by a Gaussian with standard deviation equal
to 1. Att scale: use the bounding box size in the Gaussian formulation.
Seg loss: use semantic segmentation loss. Reg loss: use offset center
regression loss. Th seg: the classes in semantic segmentation are the
stuff classes and things classes. Best results in terms of PQ, mloU and
speed are marked in bold. Time is measured on a NVIDIA Tesla V100
GPU.

mean Intersection over Union (mloU) of 75.6%, and an inference time
of 87 ms. However, semantic segmentation and instance offset regression
may require distinct feature representations and contextual information.
To address this, the backbone is extended with an additional decoder.
This architectural change improves performance, increasing the PQ score
by 1% and the mIoU by 0.8%, at the cost of a 5 ms overhead during in-
ference.

In the baseline approach, the semantic segmentation branch clas-
sifies pixels into Ny classes, encompassing both things and stuff classes.
Since the attention masks guide the panoptic segmentation process by
selecting instance-level pixels from the segmentation masks, it is hypoth-
esized that merging all things classes into a single category could suffice.
To test this, a simplified semantic segmentation head is implemented
with Ngeg = Ngus + 1, where the network predicts stuff classes while
merging things classes into one category.

However, results indicate that learning each things class sepa-
rately is crucial. The network achieves a PQ score of 59.7% when using
multiple things classes, compared to 57.6% with a single things category.
This demonstrates that attention masks provide only rough instance cues
for panoptic segmentation and benefit significantly from additional se-
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Backbone | PQ | PQu | PQy | SQ | RQ | mIoU | Time (ms)
Full image size: 1024 x 2048

ResNet50-FPNlite 59.3 | 52.8 | 64.1 | 80.0 | 72.7 | 76.0 88

VoVNet2-39-FPNlite | 59.7 | 52.9 | 64.7 | 80.2 | 73.1 | 76.4 92

VoVNet2-57-FPNlite | 60.4 | 53.6 | 65.4 | 80.3 | 73.9 | 76.8 132
Half image size: 512 x 1024

VoVNet2-39-FPNlite | 48.9 | 41.5 | 54.3 | 76.7 | 61.2 | 69.8 | 42

Table 5.11: Backbone evaluation on the Cityscapes wvalidation set. Best
results are marked in bold. Time is measured on a NVIDIA Tesla V100
GPU.

mantic class information, such as background-foreground separation and
boundary delineation between different things segments.

SOFT ATTENTION MASKS ABLATION. Experiments are con-
ducted to analyze the effect of soft attention masks, as summarized in
Table [5.10, The network predicts both semantic segmentation and in-
stance center offsets for each foreground pixel. In the baseline no atten-
tion model, hard pixel assignments are performed by associating each
pixel with the closest predicted center, based on the offset values. The
panoptic segmentation output is then built using the semantic segmen-
tation logits and bounding box predictions. This baseline configuration
achieves a Panoptic Quality (PQ) score of 53.1%.

Next, two variants of soft attention masks are introduced. Both
approaches utilize a 2-dimensional Gaussian function applied on the in-
stance center regression branch to compute the probability of a pixel
belonging to an instance. A simplified Gaussian function with a fixed
standard deviation of 1, where object size is not considered, achieves a
PQ score of 57.2%, representing an improvement of over 4% compared
to the hard clustering baseline.

However, due to the presence of objects of varying sizes in the
dataset, it is essential to account for scale when creating the soft attention
masks. By incorporating the object size into the Gaussian function, the
constraint that pixel offsets must point exactly to the object center is
relaxed. This design accommodates potential errors for distant pixels in
large objects by defining a region around the bounding box center based
on the object’s size. Experimental results confirm the importance of this
approach, yielding an additional 2.5% improvement in PQ.
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Loss FuncTIONS ABLATION. The baseline network is trained
using object detection losses, as well as panoptic and semantic segmen-
tation losses, with all losses equally weighted in the final loss. A series
of ablation studies on the loss functions are summarized in Table (.10l

First, the impact of the semantic segmentation loss is examined.
Training the network without this loss results in a PQ score of 58.5%
and an mloU of 74.4%. Although the network successfully predicts stuff
classes and instances using only the panoptic segmentation loss, the ab-
sence of direct supervision for semantic segmentation reduces the quality
of boundary delineation between objects of different classes. By includ-
ing the semantic segmentation loss, the network produces more accurate
panoptic and semantic predictions, achieving 59.7% PQ and 76.4% mlIoU.

Additionally, an instance offset regression loss is introduced on
the spatial embedding branch using the L1 loss to pull pixels toward
the bounding box center. However, no significant benefit is observed
from this additional supervision, which may be attributed to the equal
weighting of all losses.

Performance on Cityscapes. Table [5.12] presents a compar-
ison of panoptic and semantic segmentation results on the Cityscapes
validation set with other bottom-up, box-based two-stage, and one-stage
methods. All methods are trained solely on the FINE annotations, and no
test-time augmentation is applied. For a fair comparison, results are re-
ported using a ResNet-50 backbone. Compared to two-stage approaches,
the proposed network achieves results comparable to UPSNet [159] and
Panoptic-FPN [75], while Seamless Panoptic [126] and EfficientPS [106]
achieve higher accuracy. However, the AttentionPS method runs almost
twice as fast as most two-stage networks. When compared to bottom-up
approaches, the network ranks second behind Panoptic DeepLab [2§].
By adopting a more powerful backbone, VoVNet2-39-FPNlite, the At-
tentionPS method matches the accuracy of Panoptic DeepLab.

Among single-stage methods, this network achieves the best re-
sults in terms of accuracy, outperforming FPSNet [37] by 4.2% PQ and
DenseBox [67] by 0.5% PQ. In terms of inference speed, the method is
slightly outperformed by Prototype Panoptic [I17]; however, it achieves
superior accuracy, with a PQ score difference of 2%.

Visual examples of the panoptic and instance segmentation re-
sults are provided in Figure [5.15]

In Table [5.12] the end-to-end inference time of the networks is
reported. The measured time includes the forward pass of the network on
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Method | Backbone | PQ | PQu | PQs | mIoU | Time (ms)
Bottom-up
DeeperLab [162] Xception-71 56.5 - - - -
SSAP [48] ResNet50-FPN | 584 | 50.6 | - - -
AdaptIS [137] ResNet-50 59.0 | 55.8 | 61.3 - -
Panoptic DeepLab [28] ResNet-50 59.7 | - - - 117
Box-based Two-Stage
MTN Panoptic [116] ResNet50-FPN 57.3 | 53.9 | 59.7 - 150
Panoptic-FPN [75] ResNet50-FPN 58.1 | 52.0 | 62,5 | 75.7 -
UPSNet [159] ResNet50-FPN 59.3 | 54.6 | 62.7 | 75.2 140
Seamless Panoptic [126] ResNet50-FPN 60.3 | 56.1 | 63.3 | 77.5 150
EfficientPS [106] ResNet50-FPN 63.9 | 60.7 | 66.2 | 79.3 166
Box-based One-Stage
FPSNet [37] ResNet50-FPN 55.1 | 48.3 | 60.1 - 98
Prototype Panoptic [II7] | VoVNet2-39-FPNlite | 57.3 | 50.4 | 62.4 - 82
DenseBox [67] ResNet50-FPN 58.8 | 52.1 | 63.7 | 77.0 99
AttentionPS (ours) ResNet50-FPNlite | 59.3 | 52.8 | 64.1 | 76.0 88
AttentionPS (ours) VoVNet2-39-FPNlite | 59.7 | 52.8 | 64.7 | 76.4 92

Table 5.12: Comparative study with state-of-the-art two-stage and
one-stage panoptic segmentation networks on the Cityscapes validation
dataset. Inference time is measured on one Tesla V100 GPU with batch
size of 1. Best results are marked in bold.

1024 x 2048 resolution images, as well as the Non-Maximum Suppression
(NMS) step. All execution times are recorded on a Tesla V100 GPU with
a batch size of 1.

The AttentionPS network, when using the ResNet50-FPNlite
backbone, achieves the second fastest inference time of 83 ms. With
the VoV Net2-39-FPNlite backbone, the execution time is 92 ms. While
accurate instance segmentation is critical, achieving a favorable trade-off
between accuracy and inference speed is equally important for practical
applications. This approach strikes an effective balance between accuracy
and speed, as it maintains a minimal accuracy drop compared to other
methods while significantly improving inference speed.

2D Panoptic Perception. The AttentionPS panoptic image
segmentation network can be seamlessly integrated into the 3D percep-
tion system of a self-driving car. In a prior work [146], §], the 2D seman-
tic perception solution served as a key component of the 3D perception
pipeline, enabling the construction of a low-level representation of the en-
vironment by fusing semantic, instance, and geometric information. The
primary objective of the 2D semantic perception system is to detect road



5.5. SOFT ATTENTION MASK NETWORK 91

Figure 5.15: Semantic and panoptic segmentation results on the
Cityscapes dataset for AttentionPS network. From left to right: image,
panoptic segmentation ground truth, object detection, semantic segmen-
tation and panoptic segmentation. In the panoptic segmentation the
color encodes the semantic class and the instance identifier. The Atten-
tionPS network can accurately segment objects of various sizes and can
handle difficult scenarios with occlusions. Best viewed in color and zoom.

infrastructure along with both static and dynamic road users. This can
be effectively achieved using the proposed panoptic image segmentation
network, which delivers pixel-level and instance-level classifications. A
low-level sensor fusion module can be used to associate the panoptic in-
formation from images with 3D point cloud data obtained from LiDAR.
The resulting augmented 3D point cloud can then be further processed for
the detection and classification of 3D objects. Additionally, the panoptic
segmentation network can be extended to process multi-view images from
a multi-camera system, providing full 360° coverage around the vehicle.

The real-time performance of the AttentionPS panoptic image
segmentation network is enabled by advancements in GPU hardware
and neural network optimization, which facilitate high inference speeds
while maintaining low computational costs, even on low-power GPUs. To
achieve this, the TensorRT library [6] is employed for high-performance
deep learning inference. TensorRT performs network optimizations, sig-
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Backbon | Resolution | PQ | Time (ms)
ResNet50-FPNlite 1024 x 2048 | 59.3 70
VoVNet2-39-FPNlite | 1024 x 2048 | 59.7 68
VoVNet2-39-FPNlite | 512 x 1024 | 48.9 31

Table 5.13: Results on the Cityscapes validation set. Evaluation is done
for the optimized network with TensorRT on the NVIDIA GTX 1080
GPU.

nificantly reducing inference time, and generates a high-performance run-
time engine that can be seamlessly integrated into C+-+/CUDA projects
and frameworks for automated driving, such as ADTF [I].

The inference time of the optimized panoptic segmentation net-
work is measured on an NVIDIA GTX 1080 GPU, a less powerful device
suitable for installation in self-driving cars, as demonstrated in previous
work [I46]. The results are presented in Table [5.13] With network op-
timization, real-time performance is achieved on the GTX 1080 GPU,
processing images at 512 x 1024 resolution at over 30 frames per second,
with no degradation in panoptic quality compared to the unoptimized
network. The performance of the AttentionPS network can be further
improved by utilizing more powerful GPUs.



Chapter 6

Video Panoptic Segmentation

Video panoptic segmentation extends the task of static image-
based panoptic segmentation into the temporal domain, addressing the
challenge of consistent pixel-wise classification across consecutive video
frames. In addition to assigning semantic labels to stuff regions and
instance IDs to things objects at each frame, video panoptic segmentation
must ensure temporal coherence—tracking object instances as they move
and evolve over time. In this chapter we review the methods and present
in detail two different approaches.

6.1 Overview

Video panoptic segmentation is the task of predicting panoptic
segmentation with consistent instance identifiers in a video. The task can
be solved with the sub-tasks of panoptic segmentation and instance track-
ing. Kim et al. has recently introduced the task in [74] along with the
baseline VPSNet network. VPSNet is built on top of the proposal-based
two-stage panoptic segmentation network UPSNet [159]. In order to im-
prove the current prediction, a pixel-level fusion module gathers features
from the previous and next five frames, which are further aligned with
optical flow and fused with spatio-temporal attention. For the tracking
functionality, a MaskTrack head [161] is employed. The network in-
curs a high-computational cost and is not suitable for real-time applica-
tions since future frames are also considered for computation. SiamTrack
[155] improves VPSNet by designing novel learning objectives that learn
segment and pixel-wise temporal associations in a contrastive learning
framework.

93
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Figure 6.1: VPSNet [74] architecture.

6.2 VPSNet

Method. VPSNet [74], a method proposed for Video Panop-
tic Segmentation (VPS), extends panoptic segmentation into the video
domain, addressing both spatial and temporal segmentation challenges.
Unlike image panoptic segmentation, VPS requires assigning consistent
semantic and instance labels to all pixels across consecutive video frames
while maintaining temporal coherence of object instances. VPSNet
builds on UPSNet [159], a state-of-the-art panoptic segmentation model,
and incorporates temporal context through two novel modules: Fuse and
Track. The architecture of VPSNet is displayed in Figure 6.1.

The Fuse module enhances pixel-level features by leveraging tem-
poral information from neighboring video frames. Specifically, features
from the target frame and a reference frame are extracted and aligned
using a flow-based feature warping mechanism. The aligned features are
then fused using a spatial-temporal attention mechanism, which selec-
tively integrates useful information across frames. This fused feature
representation improves downstream tasks like semantic segmentation
and instance mask prediction.

The Track module focuses on object-level instance association
across frames. It introduces a tracking branch inspired by MaskTrack
[161], which computes similarity between region-of-interest (Rol) features
of objects in the target and reference frames. To enhance discriminative
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power, the tracking branch operates on temporally fused Rol features,
improving the ability to match and track object instances over time.

VPSNet integrates both modules into a unified framework that
simultaneously performs object detection, semantic segmentation, mask
prediction, and instance tracking. The network processes videos sequen-
tially, generating a coherent sequence of panoptic segmentation outputs.
At inference, the model applies class-agnostic Non-Maximum Suppres-
sion (NMS) to filter redundant detections and associates instance IDs
across frames using the learned tracking affinity matrix.

Experiments. The experimental evaluation of VPSNet on
Cityscapes demonstrates the effectiveness of the method in both image-
level and video-level panoptic segmentation tasks. The evaluation focuses
on two main aspects: per-frame panoptic segmentation and temporal
consistency across frames.

VPSNet variants Temporal window size VPQ
on Cityscapes-VPS k=1 | k=5 | k=10 | k=15

Track 61.6 /549 / 665 | 54.3 / 39.9 / 64.9 | 50.7 / 34.6 / 62.4 | 47.8 / 30.7 / 60.4 | 53.6 / 40.0 / 63.6
FuseTrack (VPSNet) | 62.7 / 56.9 / 66.8 | 56.9 / 44.5 / 65.9 | 53.3 / 40.4 / 62.7 | 51.4 / 36.9 / 61.9 | 56.1 / 44.7 / 64.3

Table 6.1: Video panoptic segmentation results on Cityscapes-VPS val-
idation set with VPSNet variants. Each cell contains VPQ / VPQT® /
VPQ® scores.

For image-level panoptic quality (PQ), VPSNet with the Fuse
module is tested on the Cityscapes validation set, as seen in Table
The Fuse module leverages spatial-temporal features to enhance segmen-
tation accuracy. The results show that VPSNet with Fuse outperforms
existing state-of-the-art methods, such as UPSNet [159], by improving
the PQ score by +1.0%. Specifically, when pretraining on the VIPER
dataset [74], the model achieves further improvements, obtaining a PQ
score of 62.2%. This highlights the complementary benefits of incorpo-
rating VIPER pretraining for image-level panoptic segmentation.

For video-level evaluation, the proposed Cityscapes-VPS dataset
is used to assess temporal consistency through the Video Panoptic Qual-
ity (VPQ) metric. Results can be seen in Table [6.1] The full VPSNet
model, integrating both the Fuse module and Track module, achieves the
best VP(Q performance. The combination of pixel-level feature fusion
and object-level tracking improves VPQ by +1.1% over the Track-only
variant.

Overall, VPSNet is the first method proposed in the literature
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Method | Backbone | PQ | PQ™ | PQSt
UPSNet ResNet-50 | 59.3 | 54.6 62.7
UPSNet+CO ResNet-50 | 60.5 | 57.0 63.0
VPSNet-Base+CO | ResNet-50 | 60.6 | 57.0 63.2
VPSNet-Fuse+CO | ResNet-50 | 61.6 | 57.7 64.4

Table 6.2: Performance comparison of UPSNet and VPSNet variants on
Cityscapes. Results include PQ, PQ™, and PQ5' scores. ”+CO” means
models is pretrained on the COCO [97] dataset.

for this tasks and it offers a robust solution by effectively combining
temporal feature fusion and instance-level tracking mechanisms.

6.3 VPS-Transformer

Method. VPS-Transformer [I21] presents a novel approach
to the task of video panoptic segmentation, which simultaneously pre-
dicts pixel-level semantic and instance segmentation while generating
clip-level instance tracks. Video sequences contain abundant informa-
tion, including temporal cues and motion patterns, that can be leveraged
to achieve more accurate and consistent panoptic segmentation. While
modeling temporal correlations between frames offers clear benefits, it
introduces new challenges when processing video data. Temporal con-
sistency across consecutive frames is generally assumed, but it can be
disrupted by occlusions and the appearance of new objects in rapidly
changing scenes. Therefore, temporal information must be carefully in-
corporated to avoid the inclusion of outdated or irrelevant information
in the predictions [T10, [70]. Moreover, extending single-frame segmenta-
tion methods to handle multiple video frames often leads to a significant
increase in computational cost [74], resulting in overhead during both
training and inference. Since efficiency is crucial for practical applica-
tions, maintaining a balance between performance and speed is essential.

For video panoptic segmentation, this work focuses on the fol-
lowing research directions:

1. Developing methods to model spatio-temporal relationships be-
tween frames for improved segmentation performance.
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2. Enabling effective instance tracking within a multi-task video
panoptic segmentation network.

3. Achieving an optimal trade-off between inference speed and seg-
mentation accuracy.

A novel video panoptic segmentation method, named VPS-
Transformer, is introduced with a focus on both efficiency and accu-
racy. The network employs a hybrid architecture that combines a con-
volutional backbone for single-frame panoptic segmentation with a novel
video module based on an instantiation of the Transformer block [147].
Equipped with attention mechanisms, the Transformer module models
spatio-temporal relationships between backbone output features from the
current and past frames, enabling more accurate and consistent panoptic
predictions. To ensure computational efficiency, a lightweight variant of
the Transformer block is developed, achieving faster performance com-
pared to the original implementation [147].

Several strategies are presented to factorize the attention opera-
tion of the Transformer across spatial and temporal dimensions, and their
accuracy and efficiency are compared through extensive ablation studies.
The enhanced feature representations provided by the Transformer mod-
ule are processed by three convolutional decoders that recover the spatial
resolution of the input image. Multiple prediction heads are employed to
perform tasks such as semantic segmentation, instance center prediction,
instance offset regression, and optical flow estimation.

To ensure consistent instance identifiers for the same objects
across frames, a tracking module is implemented. This module uses mask
propagation with optical flow and associates instance IDs by matching
warped and predicted instance masks based on class labels and inter-
section over union (IoU). The proposed video panoptic segmentation
network achieves a strong balance between speed and accuracy, with
each newly introduced module carefully designed to maintain system ef-
ficiency.

The network can be trained in a weakly supervised regime using
sparsely annotated datasets, as it does not require labels for previous
frames. In comparison to existing methods, such as VPSNet [74] and
ViP-DeepLab [127], which focus on improving panoptic segmentation
quality at a high computational cost, VPS-Transformer achieves greater
efficiency. VPSNet [74] employs a temporal fusion module based on op-
tical flow, aggregating features from five neighboring past and future
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Figure 6.2: High level overview of the VPS-Transformer network, which
processes video frames and outputs panoptic segmentation and consistent
instance identifiers. The network has a Transformer based video module
to model temporal and spatial relations among pixels from the current
frame features and past frames features. Instance tracking is performed
by warping the previous panoptic prediction with optical flow and asso-
ciating the instance IDs with the current instance segmentation.

frames. In contrast, VPS-Transformer operates in an online fashion,
processing only the current frame, while still delivering improved accu-
racy.

ViP-DeepLab [127] models video panoptic segmentation as a
concatenation of image panoptic segmentation tasks. Compared to this
approach, VPS-Transformer explicitly encodes spatio-temporal correla-
tions through its Transformer module, achieving a performance boost
while maintaining a lightweight design.

Baseline. The solution is built upon the bottom-up image
panoptic segmentation network Panoptic-DeepLab [28]. The original im-
plementation is modified by adopting a backbone output stride of 32x
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Figure 6.3: A Transformer video module is introduced between the back-
bone and the decoders for more accurate prediction. There are three
variants of the module with various attention mechanisms: space atten-
tion, global time-space attention and local time-space attention.

and introducing an additional upsampling stage in the decoders. The
network architecture is illustrated in Figure [6.2]

Lightweight Transformer Video Module. The VPS-
Transformer network processes video frames sequentially, incorporating
a video module between the backbone and the decoder to aggregate fea-
tures from past frames and enhance the current feature representation.
The past frames are referred to as memory frames, while the current
frame is termed the query frame. The design of the video module is
inspired by the original Transformer architecture [147], incorporating at-
tention and self-attention mechanisms, along with a multi-layer percep-
tron (MLP).

The computational complexity of the self-attention block scales
quadratically with the size of the input, as previously observed in [141],
138], particularly when processing high-dimensional data. To address
this and reduce the complexity of the Transformer block, the Transformer
is wrapped between two pointwise convolutions. The first convolution
reduces the number of channels, and the second recovers the original di-
mensionality, as illustrated in Figure 6.3. Specifically, a 1 x 1 convolution
is applied to the backbone output features, reducing the channel count
from C' = 2048 to d = 1024, and subsequently restoring it.

The Transformer processes sequences of input tokens of size B x
N x d. To achieve this, the input query features F € RE*HxWxd gp¢
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reshaped into a sequence of flattened tokens f € REXHWxd where B is the
batch size, H and W are the height and width of the feature maps, and d
is the embedding dimension. For the global time-space attention block,
the memory features from the previous 7 frames, M € RBEXT>xHxWxd
are similarly reshaped into a sequence of tokens m € REXTHWxd — Eop
the local time-space attention design, the memory tokens are reshaped
to RET*HWxd.

The spatial Transformer processes only the query frame and con-
sists of a Multi-Head Self-Attention layer, Layer Normalization [13], and
a one-hidden-layer MLP. For the Time-Space Attention design, an ad-
ditional temporal Multi-Head Attention layer is incorporated, operating
along the temporal dimension. Residual connections and Layer Normal-
ization are applied after each attention module [13]. All attention blocks
use the same number of heads, with experiments demonstrating the best
performance using a single-head configuration.

The attention layer takes as input a query and a tuple of
(key,values), returning a weighted sum of the values based on the simi-
larity between the query and key. In the self-attention module, the query,
key, and values are derived from the same input f using linear projec-
tions with learnable weights W€ € R4 WK ¢ R¥*4 and WV e R4,
Since the Transformer architecture does not inherently include positional
information, which is crucial for dense prediction, learned position em-
beddings are injected into both the keys and queries. For the time-space
attention, learned temporal embeddings are also added.

Given the query, keys, and values packed as Q € R"W>d K ¢

RIWxd and V € REW*4 the attention operation is formally defined as:

. QK”
Attention(Q, K, V) = Softmax ( > V. (6.1)

Vd
The Transformer output sequence o € RB*HWxd ig ghtained
through a Multi-Layer Perceptron (MLP) with two fully connected lay-
ers and a GeLU activation [65] between them. The inner layer dimen-
sion of the MLP is set to d. Finally, the output is reshaped back to
m € RBXHXWxd and the dimensionality is expanded using a pointwise
convolution. A refined feature representation is achieved by applying a

residual connection with the input, followed by a ReLLU non-linearity.

Attention Variants. Several attention schemes are introduced
for the Transformer video module, as illustrated in Figure 6.3. An ex-
ample demonstrating how each scheme attends to different temporal and



6.3. VPS-TRANSFORMER 101

Local Time-Space Global Time-Space Space Attention

Figure 6.4: The three attention schemes studied in this work with three
consecutive frames. The query token, shown in orange in frame k, attends
to other tokens in the space and time dimension. When the space-time
attention is factorized, blue is used for space and violet for time.

spatial tokens is provided in Figure 6.4.

SPACE ATTENTION. In this configuration, the panoptic network
processes only the query frame. The Transformer module employs spatial
self-attention to model interactions between all positions within the query
frame features. For each query location, this attention scheme performs
(H - W) comparisons.

GLOBAL TIME-SPACE ATTENTION. This configuration utilizes
features from past frames stored in memory. The attention operation
is factorized across the query space and the memory time-space dimen-
sions. First, a spatial Multi-Head Self-Attention is performed over the
query frame. Following this, a Time-Space Multi-Head Attention module
extracts global temporal correspondences by attending to every position
in the query and the memory features. In this case, the query corre-
sponds to the query frame, while the key and values are derived from the
memory. For a given query spatial position, the Time-Space Multi-Head
Attention requires (H - W - T') comparisons.

LocAL TIME-SPACE ATTENTION. This module also models
spatio-temporal attention but in a more computationally efficient man-
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ner compared to the global variant. After performing spatial Multi-Head
Self-Attention, the Time Multi-Head Attention operates locally on the
temporal dimension by attending only to tokens located at the same spa-
tial position across frames. As a result, the Time Multi-Head Attention
requires (H - W + T') comparisons for each query token.

Instance Tracking. Instance tracking is performed by match-
ing the predicted instance masks with the warped instance masks from
the previous frame. The warping process is achieved using optical flow.
An optical flow decoder is implemented on top of the shared backbone.
The first layer of the optical flow decoder is a correlation layer [40], which
computes the correlation between features of the previous and current
frames. The correlation at each location is calculated at the patch level
within a neighborhood of size d = 9 around the location. The output
of the correlation layer is a cost volume of size H x W x d?, storing the
matching costs. The remainder of the decoder follows a design similar to
that of the instance decoder.

For unsupervised training of the optical flow, a photometric loss
is employed to measure the photometric difference between the warped
image and the actual image.

The instance ID association algorithm follows the approach de-
scribed in [127]. Given the panoptic segmentation at frame ¢ and the
warped panoptic segmentation from frame ¢ — 1 to frame ¢, the inter-
section over union (IoU) is computed between each instance mask in
the current panoptic segmentation and the warped panoptic segmenta-
tion, and vice versa. For each instance, the corresponding instance that
shares the same semantic class and has the maximum IoU is stored. Ad-
ditionally, the IoU must exceed a predefined threshold, set to 0.3. Two
instances are considered matched if they point to each other, meaning
they both have the maximum IoU. In such cases, the instance identifier
from the warped panoptic segmentation is propagated to the matched in-
stance in the current frame. Instances that are not matched are assigned
a new instance identifier.

Experiments. The network is trained and evaluated on the
Cityscapes-VPS dataset [74]. The training process is conducted in three
stages.

In the first stage, the panoptic segmentation network is trained
for image panoptic segmentation. The backbone is initialized with Im-
ageNet pre-trained weights [38]. For Panoptic-DeepLab, the network is
trained with a batch size of 8, following the training settings described
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in [2§].

In the second stage, the backbone and the semantic and instance
decoders are frozen, while the optical flow decoder and the Transformer
module are trained from scratch. The linear layers of the Transformer
module are initialized using Xavier initialization [55]. During this stage,
the network is trained for a few epochs with a minibatch of 8 images
to obtain a rough initialization. The Adam optimizer is employed with
a polynomial learning rate decay, starting with a base learning rate of
1 x 1073, Image augmentation techniques are applied, including random
horizontal flipping and random scaling with a factor in the range [0.5, 2.0],
relative to the original resolution of 1024 x 2048.

In the third stage, the CNN backbone and the Transformer mod-
ule are fine-tuned, while batch normalization layers are fixed. The learn-
ing rate is set to 1 x 1074, and training continues until convergence. The
network typically converges within 30k iterations.

Experimental results for the proposed VPS-Transformer network
are provided on two datasets with pixel-level annotations: Cityscapes [34]
and Cityscapes-VPS [74]. The inference time of the network is reported
by measuring the forward pass and post-processing steps on an NVIDIA
Tesla V100 GPU with a batch size of one.

Decoder OS PQ mloU Time (ms)
Dual + depthwise ASPP 16 60.5 79.6 111
Single 4+ depthwise ASPP 32 59.8 79.0 82
Single + ASPP 32 60.0 79.0 89
Dual + depthwise ASPP 32 60.7 79.3 86

Table 6.3: Ablation study of the baseline panoptic image segmentation
Panoptic-DeepLab [28] network on the Cityscapes wvalidation set. The
following settings are varied: the number of decoders for instance and
semantic segmentation, the type of convolutions in the ASPP context
module and the output stride of the backbone. Time is measured on a
NVIDIA Tesla V100 GPU.

Ablation Studies. Ablation studies are conducted to evaluate
the improved version of the baseline network, attention variants, and
Transformer module configurations.

BASELINE NETWORK. The panoptic image segmentation
network Panoptic-DeepLab [2§] serves as the baseline for the VPS-
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Transformer video panoptic segmentation network. Since additional
modules, such as the optical flow decoder and the Transformer video
module, are incorporated into the network, the overall inference time
increases. To maintain the efficiency of the video network, the infer-
ence time of the baseline image-level network is first reduced. Several
experiments are performed on the Cityscapes dataset, as summarized in
Table 6.3

Throughout the study, the ResNet-50 backbone [64] is used. The
original Panoptic-DeepLab architecture features two ASPP modules with
depthwise convolutions for context aggregation, dual decoders for in-
stance and semantic segmentation, and a backbone output stride of 16.
This configuration achieves a Panoptic Quality (PQ) score of 59.7% with
a forward pass time of 117 ms.

To reduce inference time, the backbone output stride is set to
32, and an additional upsampling stage is introduced in the decoder.
This modification reduces the forward pass time to 86 ms and improves
the PQ score by 1%. In another experiment, the instance segmentation
decoder is removed, and the instance center head and offset regression
head are placed on top of the semantic segmentation decoder, resulting
in a PQ score of 59.8%.

Replacing the depthwise convolutions in the ASPP decoder with
standard convolutions further increases the PQ score by 0.2%, at the cost
of an additional 3 ms in inference time. The final configuration chosen as
the baseline employs dual decoders, depthwise convolutions in the ASPP
module, and a backbone output stride of 32. This configuration achieves
the optimal trade-off between accuracy and efficiency.

ATTENTION VARIANTS. The proposed models with variants of
the Transformer Video Module are compared on the Cityscapes-VPS
dataset in terms of accuracy and efficiency, as summarized in Table (6.4
All models utilize a ResNet-50 backbone, and the runtime is measured
both before and after the tracking step. For tracking, the runtime in-
cludes the optical flow decoder, warping process, and the instance ID
association algorithms.

The baseline network, which excludes the Transformer Video
Module, performs single-frame panoptic segmentation and achieves
63.0% PQ and 52.0% VPQ. Since video panoptic quality (VPQ) re-
quires maintaining consistent instance IDs across video frames, a sig-
nificant accuracy drop is observed when evaluated over larger temporal
windows. By propagating instance IDs across frames, the tracking mod-
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| VPQ,/VPQI" /VPQ}! for temporal window size k | ; ) }
Models ‘ =1 | =5 I =10 ‘ =15 | VPQ Time (ms)
Baseline (B) S =0 63.0 / 52.1 / 70.9 l 1/273 /685|480 /21.2 /675|459 /174 /66.7|52.0 / 29.5 / 68.4 86
B + Tracking 63.0 / 521/ 70.9 | 55.4 / 374/ 68.5 | 51.1 / 30.9 / 67.5 | 49.9 / 27.0 / 66.7 | 55.1 / 36.8 / 68.4 100
Local Time-Space Attention
B + Transformer Video Module S =1 64.8 /54.9 / 72.0 | 52.9 /304 / 69.2 | 49.6 / 24.0 / 68.1 | 47.5 / 204 / 67.1 | 53.7 / 32.5 / 69.1 97
B -+ Transformer Video Module S = 1 + Tracking | 64.8 / 54.9 / 72.0 | 55.4 / 36.5 / 69.2 | 51.8 / 29.4 / 68.1 | 49.8 / 26.0 / 67.1 | 55.5 / 36.7 / 69.1 111
B + Transformer Video Module S = 2 64.7 / 54.7 / 72.0 | 53.1 / 30.8 / 69.3 | 49.8 / 24.5 / 68.2 | 47.7 / 20.8 / 67.2 | 53.8 / 32.7 / 69.1 98
B + Transformer Video Module 2 + Tracking | 64.7 / 54.7 / 72.0 | 56.2 / 38.2 / 69.3 | 52.8 / 31.5 / 68.2 | 50.6 / 27.8 / 67.2 | 56.0 / 38.0 / 69.1 112
B + Transformer Video Module S = 3 64.7 / 54.7 / T1.8 | 53.0 / 30.9 / 69.1 | 49.7 / 24.4 / 68.0 | 47.6 / 20.5 / 67.3 | 53.8 / 32.6 / 69.1 99
B + Transformer Video Module 3 + Tracking | 64.7 / 54.7 / T1.8 | 57.4 / 41.1 / 69.1 | 54.2 / 35.0 / 68.0 | 52.2 / 31.3 /67.3|57.1 / 40.5 / 69.1 113
B -+ Transformer Video Module 4 64.6 / 54.6 / 71.9 | 53.0 / 30.8 / 69.2 | 49.9 / 24.7 / 68.2 | 47.7 / 21.0 / 67.0 | 53.8 / 32.7 / 69.0 100
B -+ Transformer Video Module S = 4 + Tracking | 64.6 / 54.6 / 71.9 | 57.4 / 41.1 / 69.2 | 54.2 / 35.0 / 68.2 | 52.0 / 31.2 / 67.0 | 57.0 / 40.5 / 69.0 114
Global Time-Space Attention
B + Transformer Video Module S = 1 310/ 69.4 [ 49.9 / 24.6 / 68.3 | 47.8 / 20.9 / 67.3 | 54.0 / 32.8 / 69.3 98
B + Transformer Video Module S = 1 + Tracking 414 /694 | 54.4 / 35.2 / 68.3 | 52.2 / 31.5 / 67.3 | 57.3 / 40.7 / 69.3 112
B + Transformer Video Module S = 2 31.0 / 69.3 | 49.9 /247 /682 | 48.0 / 21.2 / 67.3 | 53.9 /33.0 / 69.3 101
B + Transformer Video Module S = 2 + Tracking 41.3 /693 | 54.3 /35.2 / 68.2 | 52.2 / 31.3 / 67.3 | 57.2 /40.6 / 69.3 115
B -+ Transformer Video Module S = 3 30.9 / 69.3 | 50.0 / 24.7 / 684|479 /21.2 /674 | 54.0 / 32.9 / 69.2 105
B + Transformer Video Module S = 3 + Tracking 37.7/69.3 | 52.6 / 31.0 / 684 | 50.5 / 27.2 / 67.4 | 56.0 / 37.7 / 69.2 119
Space Attention
B + Transformer Module S = 0 64.5 /54.3 / 71.9 | 52.8 / 30.0 / 69.3 | 49.5 / 23.9 / 68.2 | 47.4 / 20.2 / 67.2 | 53.6 / 32.1 / 69.2 94
B + Transformer Module S = 0 4 Tracking 64.5 /54.3 / T1.9 | 57.2 / 40.5 / 69.3 | 54.0 / 34.2 / 68.2 | 51.7 / 30.3 /67.3 | 56.8 / 39.8 / 69.2 108

Table 6.4: Video panoptic segmentation results on the Cityscapes-

VPS dataset with various Transformer Video Module variants.

Each

cell shows VPQ,/VPQL"/VPQ}!. VPQ is averaged over window size
k = {1,5,10,15}. VPQ, is equal to PQ. The number of input frames
to the Transformer Video Module is varied from S = 0 to S = 4. With
S = 0 the network processes only the current frame. Time is measured

on a NVIDIA Tesla V100 GPU.

ule addresses this limitation and improves VPQ™ by more than 3% for

all temporal windows k& > 1.

The Space Attention model, which incorporates the Transformer
module with spatial self-attention, increases PQ by 1.5%, VPQ by 1.6%,
and VPQ after tracking by 1.7%. This demonstrates the effectiveness
of the Transformer module in refining the current frame features solely
through spatial self-attention, without leveraging information from past
frames. The computational overhead of this model is moderate, adding
12 ms to the baseline runtime when processing high-resolution images

(1024 x 2048 pixels).

The Global Time-Space Attention model extends attention to
spatio-temporal correlations, capturing interactions between every pair of
pixels in the current frame and past frame features. This model achieves
the highest performance among all variants, improving VPQ by 2.0%
and VPQ after tracking by 2.6% compared to the baseline. The results
confirm that incorporating past information enhances current predictions
and improves instance ID consistency across frames. While the model
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introduces additional computational cost due to an extra Multi-Head At-
tention block and increased input token size, the best-performing variant
uses only one past frame (S = 1) and adds 14 ms to the baseline runtime.

The Local Time-Space Attention model offers a more compu-
tationally efficient configuration of the Transformer Video Module. In
this design, the Time Attention block operates temporally, attending to
tokens from the same spatial position across frames. As a result, in-
ference speed is minimally affected when processing additional frames.
This module performs optimally with a larger memory size. With S = 3,
the Local Time-Space Attention model improves VPQ by 1.8% before
tracking and by 2.0% after tracking compared to the baseline. For both
Time-Attention variants, during inference, past backbone features are
stored in memory to avoid redundant feature re-computation when pro-
cessing frames sequentially.

MEMORY SiZE. The effect of memory size is analyzed for
both the Global Time-Space Attention and Local Time-Space Atten-
tion Transformers by varying the number of past frames from 1 to 4
(S ={1,2,3,4}), as presented in Table For both configurations, all
memory sizes yield VPQ improvements over the baseline, ranging from
1.8% to 2.0% before tracking.

The Local Time-Space Attention module benefits significantly
from long-term memory, achieving its highest score with a memory size
of 3 frames. In this configuration, the tracking module further increases
VPQ by 3.3%, highlighting improved temporal consistency across frames.
With smaller memory sizes of 1 or 2 frames, the tracking module achieves
slightly lower improvements of 2.2%.

In contrast, the Global Time-Space Attention module performs
optimally with short-term memory. It achieves its best results with a
memory size of 1 frame, as it effectively models complex pixel-wise cor-
relations between the query frame and memory frames. With S = 2, the
accuracy remains consistent, but for larger memory sizes, performance
degrades due to the limited capacity of the Transformer module to model
very long-range global correlations.

TRANSFORMER CONFIGURATION. The model equipped with
the original Transformer [147] is compared to the proposed lightweight
variant, as shown in Table [6.5] The original Transformer adheres to the
standard implementation but excludes dropout. The lightweight variant
demonstrates faster runtime and achieves higher video panoptic quality.

In Table[6.6] the results of the Space Attention model with vary-
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Transformer module k=1 k=5 k=10 k=15 VPQ Time (ms)
Original Transformer [147] 64.0 52.8 494 47.0 533 101
Proposed Transformer 64.5 52.8 49.5 47.4 53.6 94

Table 6.5: The proposed lightweight Transformer module versus the orig-
inal Transformer [I47] with spatial self-attention only. It obtains higher
video panoptic quality and inference speed. Time is measured on a
NVIDIA Tesla V100 GPU.

Channels mloU PQ VPQ AT (ms) Time (ms)

512 78.9 63.8 52.7 +4 90
768 79.1  64.0 529 +6 92
1024 79.8 64.5 53.6 +8 94

Table 6.6: The effect of varying the number of channels in the Trans-
former Video Module with Space Attention. The total inference time of
the model and the time overhead over the baseline on the Cityscapes-
VPS wval set without tracking is reported. Time is measured on a NVIDIA
Tesla V100 GPU.

ing numbers of channels in the Transformer module are presented. A 1x1
convolution is applied to the backbone features to reduce the number of
feature maps from 2048 to a lower dimension. The remaining operations
in the Transformer module, including the Attention and MLP blocks,
maintain a constant dimensionality.

The results indicate that projecting to a higher number of chan-
nels improves accuracy. When using d = 2048 channels, a time overhead
of 21 ms is measured. However, the configuration with d = 1024 chan-
nels is selected as it offers a favorable trade-off between accuracy and
efficiency.

Qualitative Results. Figure presents a comparison be-
tween the baseline panoptic image segmentation network and the pro-
posed video counterpart. In the given example, the baseline network fails
to correctly segment the motorcycle in the final frame. By incorporating
the Transformer video module, temporal consistency is significantly im-
proved, resulting in accurate segmentation of the motorcycle across all
frames.

Comparison to the State-of-the-Art. Table [6.7] presents a
comparison of the proposed VPS-Transformer network with state-of-the-
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Figure 6.5: Qualitative results on a sequence of three consecutive frames.
In the second row, the results of the baseline panoptic image segmenta-
tion network are shown, while the third row demonstrates the output of
the Transformer video module using Global Time-Space Attention with
S = 1. The encircled area containing the rider and motorcycle is zoomed
in for improved visualization. Although the image-level panoptic segmen-
tation network (second row) correctly segments the rider and motorcycle
in the first two frames, it fails to segment the motorcycle in the third
frame. In contrast, the Transformer video module ensures better tempo-
ral consistency, successfully segmenting both the rider and the motorcycle
across all three frames (third row).

art methods on the Cityscapes-VPS dataset [74]. Both VPSNet [74] and
the VPS-Transformer network are pretrained on the Cityscapes fine train
dataset [34]. While VPSNet fuses features from 10 neighboring frames,
including both past and future frames, the VPS-Transformer achieves
superior performance with a 1.2% higher VP(Q score when using the
ResNet-50 backbone [64]. Additionally, the VPS-Transformer demon-
strates significantly improved efficiency, running 7x faster.

With a more powerful backbone, HRNet-W48 [14§], the VPS-
Transformer further outperforms VPSNet, achieving a 3.7% higher VPQ
score while remaining 4x faster. ViP-DeepLab [127], which is pretrained
on the larger Mapillary Vistas dataset [108] and Cityscapes [34], uti-
lizes a more complex architecture with a heavy backbone and test-time
augmentations. Although ViP-DeeplLab achieves better overall results,
its inference time is not disclosed. However, it is estimated to exceed
400 ms, which corresponds to the runtime of its baseline panoptic image



6.3. VPS-TRANSFORMER 109

segmentation network, Panoptic-DeepLab with WR-41 [20].

Under comparable conditions, where both networks employ the
ResNet-50 backbone, the VPS-Transformer achieves superior results with
a +4.2% improvement in PQ and +4.5% in VPQ compared to ViP-
DeepLab. Furthermore, the VPS-Transformer equipped with the HRNet-
W48 backbone delivers competitive performance relative to the most
powerful ViP-DeepLab model, while running at least twice as fast with
an inference time of 185 ms.

Method Backbone PQ VPQ Time (ms)
VPSNet [74] ResNet-50 62.7  56.1 770
ViP-DeepLab* [9] ResNet-50 60.6  52.8 -
Baseline - Panoptic DeepLab [28] ResNet-50 63.0 52.0 86
VPS-Transformer ResNet-50 64.8 57.3 112
ViP-DeepLab [127] WR-41 70.4  63.1 -
Baseline - Panoptic DeepLab [28] HRNet-W48  66.1  55.1 168
VPS-Transformer HRNet-W48  67.6  59.8 185

Table 6.7: Comparison to state-of-the-art video panoptic segmenta-
tion networks on the Cityscapes-VPS wval set. VPSNet and the VPS-
Transformer are pretrained on the Cityscapes fine train set. ViP-
DeepLab is pretrained on Mapillary Vistas (MV) and on Cityscapes fine
train set and uses the more complex WR-41 backbone. ViP-DeepLab* is
pretrained on Cityscapes and is evaluated with the author’s code. Time
is measured on a NVIDIA Tesla V100 GPU.

The VPS-Transformer demonstrates a strong balance between
accuracy and efficiency, achieving state-of-the-art performance in video
panoptic segmentation while maintaining real-time inference speeds,
making it highly suitable for real-world applications such as autonomous
driving
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Chapter 7

Monocular Depth Estimation

Monocular depth estimation enables the extraction of spatial
depth information from single 2D images. This problem is inherently
ill-posed, as the same 2D projection can arise from infinitely many 3D
scenes. However, recent advances in deep learning have transformed
the domain, empowering neural networks to leverage large datasets and
learn sophisticated patterns that map image content to depth predictions.
This chapter explores the most prominent methods for monocular depth
estimation, with a detailed focus on two key approaches.

7.1 Overview

Supervised Monocular Depth Estimation. Depth estima-
tion from a single image is an ill-posed problem since a 2D image can
be generated from an infinity of 3D scenes. With the emergence of deep
learning, Eigen et al. [42] formulated depth regression as a supervised
learning problem. Since then, various improvements to network archi-
tectures [82), 41} 107, 154] and loss functions [167, 84] have been made.
Xian et al. [88] models depth estimation as classification and obtains
more robust results. However, the classification increases the complexity
of the network and introduces challenges regarding the depth interval
discretization. DORN [47] and SORD [39] propose improvements over
the uniform discretization technique.

The aforementioned methods require ground truth depth, which
is usually sparse depth from LiDAR scans. The difficulty to acquire
ground truth has led to the development of weakly supervised methods
that rely on weak labels such as relative depth [25], camera pose [165] or

111
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synthetic data [81, 12, [104]. Another line of research [91], [7T9] proposes
the use of conventional structure-from-motion methods [I35], that are
usually computationally intensive, to generate pseudo labels. Knowledge
distillation from stereo depth estimates [152), [62] [123] 114] 31] has also
been recently exploited for improved depth predictions.

Self-Supervised Monocular Depth Estimation. The pro-
hibitively large cost of collecting high-quality ground truth has led to
the emergence of self-supervised monocular depth estimation, which un-
locks the power of large-scale unlabeled datasets. Such approaches learn
both the depth and ego motion, and embed 3D geometric constraints
by using 3D reprojection models to synthesize consecutive images. More
specifically, points from the target frame are back-projected in the cam-
era coordinate system, displaced by the camera motion and reprojected
onto adjacent source frames. In this way, the target image can be recon-
structed from the source images, and the photometric difference between
the target and synthesized image will be minimized during training.

Early approaches on self-supervised monocular depth estimation
[49, 56] were inspired by auto-encoders and employed stereo pairs during
training. The SfmLearner [I71] was the first solution working on monoc-
ular image sequences by jointly training a depth and pose estimation
network.

Current approaches address some of the issues of self-supervised
monocular learning. Monodepth2 [57] handles the lack of ego motion
with an auto-masking of stationary pixels and the occlusion problem
with a minimum reprojection loss. Low-texture areas are often problem-
atic when using the photometric loss, therefore feature-based reconstruc-
tion losses [136], [165] have been proved more robust. Formulating self-
supervised depth estimation as a depth classification problem has been
tackled in [58 [7T]. Other works improve the network architecture [60] or
include test-time refinement procedures [27, [19]. Feature representation
learning is guided with semantic networks or single-view reconstruction
auto-encoder networks in several approaches [61], [72, [140]. Guizilini et
al. [61] enhances the feature representation with semantic guidance from
a fixed teacher segmentation network using pixel-adaptive convolutions
[140]. ManyDepth [153] uses multi-frame input at test-time for improved
results.

For extracting potentially moving objects some methods [59,[102]
27, [128], 163] employ external optical-flow networks and design selective
masking techniques to avoid propagating large errors in the training sig-
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nal. Semantic and instance information can be used as well. Casser
et al. [19] introduces a 3D object motion network that processes im-
ages filtered by instance masks. SGDepth [78] detects frames with mov-
ing objects based on semantic segmentation and removes them from the
training set. [143] segments the object motion with semantic knowledge
distillation.

7.2 MonoDepth2

Method. MonoDepth2 [57] is a pioneering self-supervised ap-
proach to monocular depth estimation that leverages innovative tech-
niques to predict depth and camera motion using only monocular video
sequences, eliminating the need for ground-truth depth supervision. The
idea of MonoDepth2 is to jointly train a depth and a pose estimation
network simultaneously. While during training sequential triplets from
a video are required, during inference self-supervised monocular depth
estimation methods process only a single frame.

Y
f
_
(0] 1 (Cx Cy) Z\
(Px: Py)
P(Px, Py, Pz)

Figure 7.1: Perspective projection model.

To understand the mechanisms behind MonoDepth2, we first
review the pinhole camera model and the perspective projection which
is used in this work, as seen in Figure 7.1. The 3D camera coordinate
system is defined with the optical center O as its origin. The X-axis is
parallel to the horizontal axis of the image plane, the Y-axis is parallel
to the vertical axis, and the optical axis Z is orthogonal to the image
plane. The distance between the optical center and the image plane is
referred to as the focal length f. The Z-axis intersects the image plane
at the principal point, which has pixel coordinates (¢, ¢,).
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To express the focal length in pixel coordinates, we scale the
metric focal length f by the size of a pixel (s,,s,), obtaining f, and f,,
the focal lengths in pixels. The intrinsic camera matrix K captures the
focal lengths and the principal point as follows:

fz 0 ¢
K=10 f, ¢ (7.1)
0O 0 1

Let p(ps,py) be a 2D point in the image, located at the inter-
section of the line PO and the image plane. The corresponding point
in the camera coordinate system has metric coordinates (Dym, Dym, f)-
By applying the principle of similar triangles, we derive the following
relationship:

[ Pam
Xe
mXc

Similarly, we can derive the projection equation for the y-
coordinate:

o e
Y Zc
Equations and assume the principal point (c,, c,) as the
origin of the pixel coordinates. To move the origin to (0,0), we adjust
the equations as follows:

(7.5)

X,
Y,
py = fyZ + ¢, (7.7)

To represent the projections using matrix operations, homoge-
neous coordinates are introduced. Homogeneous coordinates are ob-
tained by appending a 1 to the original coordinates. In homogeneous
form, the pixel coordinates p can be written as:
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fIZ_);C +CI foc+chc
p= fyZ—CC + Cy | ~ ny; + Cch (78)
1 Z.

Thus, the projection of a 3D point P(X,,Y,, Z.) in the camera
coordinate system to a 2D pixel point p(p,, p,) can now be expressed in
matrix form:

foXe+cZ, fo 0 ¢ | Xe
fYetceyZe | = |0 fy ¢ |Ye (7.9)
Ze 0 0 1 Z.

Consider a target image I; and adjacent source images I, where
s ={t—1,t+ 1}, captured by a moving camera. Let M, ,, represent the
camera pose, which includes the 3D translation 7;_,, and the rotation
R;_,, between consecutive 3D scene positions:

Rt%s Eﬁs:| (7 10)

Mt—)s - |: O 1

The translation matrix 7;_,, from the target to the source coor-
dinate system is defined as:

28
t.

The rotation matrix can be expressed in terms of Euler angles.
Let a, £, be the Euler angles corresponding to the rotations about the
X, Y, and Z-axes, respectively, of the target camera coordinate system
into the source camera coordinate system.

The rotation with o radians about the X-axis is given by:

1 0 0
R.(a) = [0 cos(a) —sin(a) (7.12)
|0 sin(a) cos(a) |

The rotation with § radians about the Y-axis is defined as:

[ cos(B) 0 sin(B)]
R, (B) = 0 1 0 (7.13)

—sin(B) 0 cos(f)
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The rotation with v radians about the Z-axis is defined as:

cos(y) —sin(y) 0
R.(v) = |sin(y) cos(y) O (7.14)
0 0 1

The complete rotation matrix R; s is obtained by sequentially
applying the rotations around the X-, Y-, and Z-axes:

Risss = Ru(@)Ry()R.() (7.15)

Monodepth2 uses the projection model and camera pose to syn-
thesize a target frame from a source frame. Specifically, given a pixel p in
the target frame, its corresponding position in 3D homogeneous coordi-
nates P within the camera coordinate system can be computed through
backprojection using the predicted target depth Z,(p):

p_ [Kl%(p)p} (7.16)

where K is the intrinsic camera matrix.

Assuming a static scene and known camera motion, P can be re-
projected into the source frame I after transforming it using the camera
pose M;_,,:

p = [K|0] M;,.P (7.17)

where M;_,, represents the 3D rotation and translation between
the target and source frames.

The target image I; is synthesized, denoted as I,_,;, by sam-
pling the source image I, at the projected coordinates p’ using bilinear
interpolation, as described in [56, 57]. This process is represented as:

Is—>t - IS <p/>

To train the model, the per-pixel photometric reprojection error
L, between the target image [, and the synthesized image I;_,; is min-
imized. To handle occlusions between views, the minimum reprojection
loss over all source images is computed:

L, =minpe(l;, I5_) (7.18)
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where pe represents a chosen photometric error metric, such as
the L1 loss or Structural Similarity Index (SSIM).

The photometric error pe is defined as the weighted sum of the
structural similarity index (SSIM) [I51] and the L1 error:

1 — SSIM(I,, I)
2

where « is set to 0.85.
The SSIM between two images x and y is given by:

pe(ly, I) = «

+(1—a)||L— L, (7.19)

(2papty + C1)(204y + Cs)
(12 + p2 + Cr)(02 + 02 + Ca)

SSIM(z,y) = (7.20)

where p,, and p,, are the means, o2 and 05 are the variances, and
0., represents the covariance of 2 and y. The constants C; = 0.01% and
Cy = 0.03? avoid division by 0.

To account for cases where the camera is stationary, which may
manifest as "holes” of infinite depth in the predicted depth map, Mon-
oDepth2 filters out pixels where the reprojection error of the synthesized
image I,_.; is lower than that of the original source image I,. The repro-
jection loss is then computed only for the remaining pixels.

An edge-aware smoothness loss is adopted to encourage local
smoothness in regions with low image gradients:

L, = ‘amdt] e~10sl ]aydt o101 (7.21)

where d; = d, /d, is the inverse depth d; normalized by its mean d,
over the image. Normalizing the inverse depth introduces scale-invariance
and avoids very small depth values near zero, which could hinder valid
2D projections during training when using smaller depth scales.

The final depth loss is computed at four scales 1, %, }1, %, and
averaged as follows:

3

1 L, +vsLs
= - E _ .22
/Cde 4 o 9s (7 )

where ~; is set to 0.001.
Experiments. MonoDepth?2 is trained on the KITTI dataset

[51]. The model is implemented in PyTorch and trained for 20 epochs us-
ing the Adam optimizer. The batch size is set to 12, with an input/output



118 CHAPTER 7. MONOCULAR DEPTH ESTIMATION

resolution of 640 x 192. The learning rate is initialized to 10~* for the
first 15 epochs and then reduced to 1075 for the remaining epochs.

Table compares several baseline variants and the Mon-
oDepth2 model for monocular depth estimation, evaluated using multiple
metrics: Absolute Relative Error (Abs Rel), Squared Relative Error (Sq
Rel), Root Mean Squared Error (RMSE), logarithmic RMSE (RMSE
log), and accuracy thresholds § < 1.25, § < 1.25%, and § < 1.253. The
baseline method shows the highest errors, with an absolute relative er-
ror of 0.140 and RMSE of 5.512. Adding minimum reprojection loss
significantly improves performance, reducing the absolute relative error
to 0.122 and RMSE log to 0.199. Introducing automasking further im-
proves results, achieving an absolute relative error of 0.124 and RMSE of
5.010, while incorporating full-resolution multi-scale supervision achieves
similar improvements.

The MonoDepth2 model, which combines auto-masking, min-
imum reprojection loss, and full-resolution multi-scale supervision,
achieves the best overall performance across all metrics. These results
demonstrate that the combination of all three techniques leads to signif-
icant improvements in both error reduction and accuracy compared to
the baseline variants.

Method Auto- Min. Full-tes  Abs Rel SqRel RMSE RMSElog <125 §<1.25°
masking reproj. multi-scale

Baseline 0.140 1.610  5.512 0.223 0.852 0.973

Baseline + min reproj. v 0.122 1.081  5.116 0.199 0.866 0.980

Baseline + automasking v 0.124 0.936  5.010 0.206 0.858 0.977

Baseline + full-res m.s. v 0.124 1.170  5.249 0.203 0.865 0.978

Monodepth2 (full) v v v 0.115 0.903 4.863 0.193 0.877 0.981

Table 7.1: Baseline variants and MonoDepth2 (full) performance on
KITTI.

MonoDepth2 demonstrates the effectiveness of combining self-
supervised techniques for monocular depth estimation. By integrating
auto-masking, minimum reprojection loss, and full-resolution multi-scale
supervision, it achieves significant improvements in both accuracy and
error reduction compared to baseline methods. The model’s ability to
synthesize target images from source views, while accounting for occlu-
sions and enforcing edge-aware smoothness, enables robust depth predic-
tions without requiring ground-truth depth supervision. These results
highlight MonoDepth2 as a state-of-the-art framework for self-supervised
depth estimation, paving the way for practical applications in resource-
constrained scenarios such as autonomous driving and robotics.
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7.3 SD-SSMDE

Method. Self-supervised monocular depth estimation relies on
several assumptions that are not always true and hinder the learning
performance. As a consequence, propagating correct training signals is
still difficult for all pixels, photometric loss can be high in occluded areas
or for moving objects, and low in uniform texture areas or for repetitive
structures. Another problem is that the self-supervised depth estimation
methods suffer from depth scale ambiguity which hinders their applicabil-
ity in real-world systems. Specifically, the depth output of the network is
relative depth, where the depth values in an image are in broad agreement
with each other, however they differ from the real-world depth values by
a scale factor. Also, each depth map requires a different scale factor, as
the depth maps are not inter-frame scale consistent. The SD-SSMDE
work [I18] investigates

1. how to remove ground truth dependency with self-supervised
monocular depth estimation

2. how to design a depth network architecture that improves the per-
formance while being efficient

3. how to improve self-supervised depth training by propagating im-
proved training signal

4. how to solve scale ambiguity

To address the first research question, a two-stage self-distillation
training strategy for monocular depth estimation is introduced, referred
to as SD-SSMDE [I1§]. In the first stage, the network is trained in a
self-supervised regime by minimizing the photometric loss between con-
secutive views. The objective of this stage is to produce high-resolution
pseudo depth labels that will serve as supervision for training a similar
or more lightweight network in the second stage. To enhance the training
signal, a filtering strategy based on 3D consistency between consecutive
views is proposed to eliminate significant errors in pseudo labels.

To further improve performance, a novel depth network archi-
tecture is introduced. As self-supervised methods inherently suffer from
scale ambiguity—providing relative depth rather than absolute depth—a
scale factor is typically required to recover real-world depth values. Al-
though median scaling with ground-truth data is commonly applied
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during testing, this approach contradicts the core motivation of self-
supervised learning, which aims to avoid reliance on ground-truth an-
notations. To address this issue, the method incorporates scale into the
pseudo labels, ensuring that depth predictions in the second stage are au-
tomatically scaled and inter-frame scale-consistent. The scale factor can
be computed directly from depth predictions by estimating the camera
height, as described in [160].

In the context of related works, self-distillation for monocular
depth estimation has been explored in [124], where the student network
is trained to mimic the teacher network’s output distribution by learning
its mean and variance. In contrast, this approach distills the student
network using high-resolution hard pseudo labels, which are further re-
fined through a 3D consistency-based filtering scheme applied between
consecutive views. A significant contribution of this work, which has not
been investigated in prior studies, is the resolution of scale ambiguity:
the student network is trained using inter-frame scale-consistent pseudo
labels that have been scaled to absolute depth values.

Self-Distillation Based Training Pipeline. SD-SSMDE is a
two-stage training pipeline for monocular depth estimation, which relies
solely on video frames and does not require ground-truth depth data.
In the first stage, the camera pose network [57] and the depth teacher
network are trained in a self-supervised manner using high-resolution
images and the photometric loss. The trained depth network is then
used to predict depth maps for the entire training set. As the depth
outputs differ from real-world depth values by a scale factor, a scale
recovery module [I60] is employed to recover absolute depth values.

In the second stage, the camera pose network is fixed, and a
new depth student network is instantiated, which can have the same or
a more lightweight architecture compared to the teacher network. The
student depth network is trained from scratch in a supervised regime
using the generated pseudo labels. During this training phase, a mask is
dynamically generated to filter out depth predictions with large errors,
thereby excluding them from the loss computation. This filtering process
assumes that the same scene captured in three consecutive frames should
exhibit a high degree of 3D consistency when viewed from different per-
spectives. Depth locations with significant deviations between the 3D
points in the camera coordinate system are identified and filtered out.

Depth Network Architecture. The encoder-decoder archi-
tecture for the depth network, utilized by both the teacher and stu-
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Figure 7.2: The two-stage training framework. In the first stage, a depth
estimation network and a camera pose network are trained in a self-
supervised manner. In this setting, the photometric error between the
target image I; and the synthesized images from the adjacent source
images [, is minimized. Using the trained depth network, pseudo-labels
for all the images in the training set are generated. Automatic scale
recovery is performed in order to obtain absolute depth values. In the
second stage, the depth network is trained from scratch to regress depth
maps supervised by the previously generated pseudo-labels. In order
to remove erroneous depth estimates from pseudo-labels, a consistency
check is performed, for the same 3D point computed from different views.

dent networks, is based on the design of the Panoptic-DeepLab net-
work [28 [127], with several modifications. The backbone operates with
an output stride of 32 instead of 16. Context information is extracted
from the backbone output using an Atrous Spatial Pyramid Pooling
(ASPP) module [24], which employs parallel dilated depthwise separable
convolutions [68]. The decoder comprises five upsampling stages, where
the spatial resolution is progressively increased by a factor of two at each
stage. Each upsampling stage consists of an upsampling operation, con-
catenation with low-level features from the backbone, and a [5 x 5, 256]
depthwise separable convolution for feature fusion. The low-level fea-
tures, from scales 1/16 to 1/2, are projected to channel dimensions of
{128,64,32,16} before concatenation. Following the final upsampling
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stage, a [5 X 5,64] depthwise separable convolution and a 2x bilinear
upsampling operation restore the spatial resolution to the original input
size. Two additional convolutional layers, with kernel sizes [5 x 5, 32] and
[1 x 1,1], produce the final depth map.

During training, multi-scale depth predictions are employed at
four scales, {1/8,1/4,1/2,1}, with a [1 x 1, 1] convolution applied after
feature fusion at each scale. The loss is computed using the multi-scale
depth predictions, as described in [49, (56, [57]. A depiction of the network
architecture is shown in Figure 7.3.

~ Multi-scale Depth Prediction
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Figure 7.3: The depth network architecture

Self-Supervised Monocular Depth Estimation. In the first
stage of training, the teacher network is trained in a self-supervised man-
ner. The objective of self-supervised monocular depth estimation is to
predict a depth map aligned to the input image without requiring ground-
truth depth data during training. The approach leverages geometric
projections to synthesize adjacent views based on the predicted depth.
During inference, the network predicts depth from a single input image.
However, during training, three consecutive frames are utilized: the tar-
get frame and its two adjacent source frames. Two separate networks—a
depth estimation network and a camera pose estimation network—are
jointly trained. The depth estimation network predicts the inverse of
depth, which has been shown to be more robust for learning [49] 7).
To train the self-supervised teacher network, the photometric loss and
smoothness loss, as employed by Monodepth2 [57], are adopted.

Scale Recovery in Pseudo Labels. The output of the self-
supervised depth estimation network provides relative, up-to-scale depth.
This means that while the depth values within an image are relative to
one another, they differ from real-world measurements by an unknown
scale factor. To address this issue, the scale recovery technique from [160]
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is employed to compute the scale factor. The scale recovery module
determines the scale by estimating the relationship between the predicted
camera height and the actual camera height. The first step involves
identifying ground points in the scene. This is achieved by computing the
surface normal for each 3D point and selecting points whose normalized
normals are close to the ideal ground normal n = (0,1,0)", based on a
similarity function. Once the ground points are identified, a set of camera
heights is estimated for each corresponding 3D point. The depth scale
factor is then calculated as the ratio between the real camera height and
the median of the estimated camera heights. Finally, each pseudo label is
scaled using the computed scale factor, resulting in absolute depth values
and scale-consistent pseudo labels across frames.

Supervised Monocular Depth Estimation. In the second
stage, the depth estimation task for training the student network is for-
mulated as a supervised regression problem. The scale-invariant log loss,
as introduced in [42] [84], is adopted:

2
1
Lo =7 % Z a2 — % (Z di> (7.23)

where d; = logy; — log 4;, y; is the predicted depth and y; is the
pseudo ground-truth depth. NN represents the number of pixels with valid
values and ) is a weighting factor. The range of the loss is scaled with ~
in order to improve convergence.

During inference, depth values are directly predicted using the
logits from the depth regression head. A sigmoid activation function is
applied to the logits, and the resulting values are scaled by a constant
factor, set to 80. This scaling is consistent for both the KITTI [51] and
Cityscapes [34] datasets, where the typical depth range is [0, 80] meters.

Filtering Errors in Pseudo Labels. To ensure the reliability
of high-resolution pseudo depth labels, a 3D consistency check between
consecutive views is performed, as illustrated in Figure 7.4. This check is
valid because the pseudo labels become inter-frame consistent once scaled
to absolute depth values. Reliable depth estimates are retained only for
pixels with similar 3D coordinates across different views. This masking
process is conducted on-the-fly during the second stage of training.

Assume the intrinsic matrix K and the camera pose M between
the target and source coordinate systems are known, as provided by the
pose network trained in the previous stage. Let p represent a pixel in the
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target image. The corresponding 3D point P can be obtained through
backprojection using Equation [7.16] The 2D coordinates p’ of this point
in the source image are subsequently calculated using Equation [7.17]
Since p’ has real-valued coordinates, the source depth Z, is sampled via
bilinear interpolation as Z4(p) and backprojected into the source camera
coordinate system as P’.

Next, the 3D point P’ is displaced into the target camera’s coor-
dinate system using the camera pose transformation M, _,;. The absolute
difference between the z-axis coordinates of the two 3D points, P and
P’ is computed. If this difference is smaller than a predefined threshold
T, the point is considered valid; otherwise, it is filtered out.

To account for potential occlusions in one of the source views, the
minimum 3D consistency error between the target and adjacent source
views is adopted. The resulting mask F' is computed as the Iverson
bracket:

F= [msin | M 2 (Y K1 — Zy(p) K p)|, < T} (7.24)

pal

Occluded pixel p't.

Figure 7.4: 3D consistency check which enables filtering out large errors
in pseudo-labels.

For the depth prediction network, the backbone pretrained on
Imagenet [38] is utilized, as introduced in [64]. In the self-supervised
network, the inverse depth, which is the output of the sigmoid layer, is
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converted into depth within the interval [0.1, 100] using

The pose estimation network adopts a lightweight architecture [57] fea-
turing a ResNet-18 backbone [64]. This network processes pairs of color
images, namely the target and source, to predict the 6DOF camera pose,
consisting of the translation vector and the rotation matrix expressed
in terms of three Euler angles. During inference, the pose network is
discarded.

Experiments. On KITTI [50], the networks are trained in both
training stages with a minibatch of 12 images for 66k iterations, using
the Adam optimizer and a base learning rate of 10~%. In the first stage,
step learning rate decay is applied, reducing the learning rate by a factor
of 10 at 50k iterations. In the second stage, polynomial learning rate
decay is employed, and the networks are trained for the same number
of iterations. On Cityscapes, training is performed with a minibatch of
12 images for 12k iterations in the first stage and 30k iterations in the
second.

During training, image augmentation techniques are applied, in-
cluding random horizontal flipping and random color augmentation with
settings from [57]. In the self-supervised training stage, the smoothness
loss is weighted by 0.001, and « is set to 0.85 in the photometric loss. For
the supervised loss, A is set to 0.85, and 7 is set to 10 [84]. The threshold
T for 3D consistency masking is set to 1. Both the self-supervised and
supervised losses are computed at four scales.

On the Cityscapes dataset [34], during evaluation, the original
images with a resolution of 1024 x 2048 are center-cropped to 512 x
1664, as described in [153], 19]. During the training of the self-supervised
teacher network, the images are center-cropped to 768 x 2048, and high-
resolution pseudo-labels of the same size 768 x 2048 are generated. In
the second stage of training, the cropping scheme used for evaluation is
applied, and the images are further scaled to 128 x 416.

Ablation Study on KITTI. Ablation experiments are con-
ducted to analyze the benefits of the self-distillation learning framework,
filtering scheme, and scale recovery.

SELF-DISTILLATION BASED LEARNING FRAMEWORK. Ta-
ble presents ablation experiments focusing on the self-supervised
learning framework. The networks are trained on two image resolutions:
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medium resolution 192 x 640 and high resolution 320 x 1024. In the first
experiment, the depth network is trained in a supervised regime using
the improved KITTI ground truth [145]. The depth network, equipped
with a ResNet-50 backbone and the proposed decoder, is optimized using
the scale-invariant logarithm loss [84] for depth regression. The training
conditions and hyperparameters remain identical to those used for the
self-supervised method. Next, the teacher network is trained in the self-
supervised regime. Self-supervised methods inherently suffer from scale
ambiguity, meaning that the output is not scaled to real-world values.
Experiments are conducted with both ground truth median scaling [57],
a common practice, and an automatic scale recovery method [160] dur-
ing inference. The results show that adopting automatic scaling leads
to increased error due to inaccuracies in the scale computed from the
predicted depth maps. Using the best-performing model with a ResNet-
50 backbone, trained on high-resolution images and automatic scaling,
pseudo-labels are generated for the entire training set. In the second
stage, the student depth network is supervised using these pseudo-labels.
A 3D consistency check is applied to remove noisy estimates, resulting
in sparser yet more accurate labels. The second-stage training yields im-
proved results for both image resolutions. During inference, a fixed scale
factor is applied to map the depth values into the range [0, 80m)].

| GT Scaling  Auto Scaling Fixed Scaling | Resolution |/AbsRely SqRel . RMS ¥ RMSlog §[ 6 <1254 5 < 12521 0 < 1.25° ¢
v 192 x 640 | 0097 0645 4206 0.180 0.802 0.964 0.983
v 192 640 | 0104 0768 4513 0.180 0.802 0.964 0.983
v 192 x 640 0.108 0.795 4.655 0.192 0.878 0.959 0.981

v 192 x 640 0.100 0.661  4.264 0.172 0.896 0.967 0.985

v 320 x 1024 | 0.091 0.567 4.137 0.177 0.902 0.966 0.983

v 320 x 1024 | 0.101 0.720 4.339 0.176 0.898 0.967 0.984
320 x 1024 | 0.104 0.747 4.453 0.185 0.885 0.963 0.983

x 1024 | 0.098 0.674  4.187 0.170 0.902 0.968 0.985

v 32

Table 7.2: Ablation study for the self-distillation based two-stage self-
supervised learning framework. Experiments are conducted using a
ResNet-50 backbone, two image resolutions, and three scale recovery
methods during inference. In the second stage, training is consistently
performed on scaled pseudo-labels generated from the high-resolution
self-supervised model, with 3D consistency check filtering applied.

DeEpTH DECODER. Table[7.3| presents the results of the baseline
Monodepth2 [57] and the SD-SSMDE teacher network, trained in a self-
supervised regime using the photometric loss. The same loss functions as
in [57] are employed; however, a different decoder for the depth network
is proposed.

With both the lightweight ResNet-18 and the deeper ResNet-50
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backbones [64], the SD-SSMDE approach achieves lower error compared
to [57]. This improvement can be attributed to the proposed decoder,
which better captures context due to the ASPP module [28] and the
increased number of channels in each convolutional layer.

Model ‘ Backbone ‘ AbsRel | SqRel ] RMS | RMSlog| §<1.251
Monodepth?2 [57] | ResNet-18 0.115 0.903 4.863 0.193 0.877
SD-SSMDE ResNet-18 | 0.112 0.854  4.839 0.190 0.876
Monodepth2 [57] | ResNet-50 0.110 0.831 4.642 0.187 0.883
SD-SSMDE ResNet-50 0.104 0.768 4.513 0.180 0.892

Table 7.3: Ablation study for the depth decoder of the self-supervised
teacher network. By changing the decoder significant improvements are
obtained compared to the Monodepth2 baseline [57] especially for the
ResNet-50 backbone. The network is trained on medium resolution im-
ages.

SCALE RECOVERY AND FILTERING. Table presents abla-
tion studies for the second part of the training pipeline, conducted us-
ing medium-resolution images. The goal is to evaluate the impact of
training with scaled pseudo-labels. In the first experiment, the student
depth network is trained with high-resolution pseudo-labels scaled using
ground-truth median scaling. In this setting, where no error filtering is
applied, the results improve over the self-supervised counterpart. This
improvement is attributed to the self-supervised learning stage, where
the network may become stuck in a local minimum due to the use of the
reprojection loss. In contrast, training with labels, even noisy ones, en-
ables the regression loss to guide the network toward a better minimum.
In the second experiment, the network is trained using pseudo-labels
scaled by an off-the-shelf scale recovery module [160], without using any
ground-truth data. Interestingly, the results are comparable to those
achieved with ground-truth scaled depth maps. Eliminating the reliance
on ground-truth data is a significant advantage. Therefore, in the fi-
nal experiment, the automatically-scaled pseudo-labels are filtered using
a 3D consistency check to provide a more accurate training signal. As
expected, training with higher-quality labels further improves the results.

Ablation Study on Filtering Threshold. Table presents
an ablation study on the threshold used in the filtering scheme, evaluating
the depth error on pseudo-labels both before and after filtering. The
filtering scheme results in pseudo-labels that are more accurate but also
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Gt Scaled PS Auto Scaled PS Filtering | /AbsRel ' SqRel { RMS | RMSlog || 0 < 1.25 F

v 0.102 0.716  4.351 0.177 0.887
v 0.103 0.729  4.457 0.181 0.881
v v 0.100 0.661 4.264 0.172 0.896

Table 7.4: In this stage, the student network is trained using high-
resolution pseudo-labels (PS) generated by the self-supervised teacher
network. The pseudo-labels are scaled either with ground truth or using
an automatic scale recovery method [160]. Performing a 3D consistency
check to filter out errors from the pseudo-labels proves to be beneficial.

sparser. A threshold of T" = 1 provides the best balance between accuracy
and density.

‘ Depth estimation error ‘ Pseudo labels error
Threshold (m) ‘ AbsRel | RMS | ‘ % Filtered | AbsRel | RMS |
no filtering 0.103 4.457 0 0.082 3.995
1.0 0.100 4.264 18 0.069 3.245
1.5 0.101 4.364 12 0.072 3.416

Table 7.5: Filtering scheme ablation. Comparison between student net-
work training with or without pseudo label filtering on the KITTTI test
set. The error of pseudo labels is measured on the training set and the
amount of 3D points that are filtered.

Effect of Scaled Pseudo-Labels. Table [7.6] demonstrates the
advantage of using scaled pseudo-labels during training. By scaling the
pseudo-labels with an automatic scale recovery method, absolute depth
values as well as inter-frame scale-consistent depth labels are obtained.
The experiments indicate that training with scaled pseudo-labels is es-
sential for improved performance. Additionally, a scale variance analysis
is conducted on the depth outputs of the student network. The scale is
defined as the median of all individual ratios between the ground-truth
depth and the medians of the predicted depth maps. The standard de-
viation of these individual scales, denoted as o4.ae, is reported, where a
lower value signifies increased scale-consistent depth predictions across
frames. The best results, including the most scale-consistent predictions,
are achieved using the SD-SSMDE model with a ResNet-50 backbone
trained on scaled pseudo-labels.
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Model | PS | uwan | AbsRel | SqRel | RMS | RMSlog || 6 < 1.25 1
Monodepth2 [57] (R18)| - ]0.093| 0.109  0.623 4136  0.154 | 0873
SD-SSMDE (R50) unscaled| 0.100 | 0.109  0.494  3.591  0.141 0.888
SD-SSMDE (R18) scaled |0.061| 0.084 0436  3.550  0.128 0.918
SD-SSMDE (R50) scaled [0.040| 0.076  0.377 3.304  0.117 0.933

Table 7.6: Scale variance analysis. Comparison on KITTI Eigen test split
with improved ground truth [I145] on 192 x 640 resolution. The student
network learns from unscaled or automatically scaled [I60] pseudo labels
(PS). During inference, the standard deviation 0.y of individual ground
truth median scales is computed. All depth predictions are scaled with
a fixed scale factor.

Results on KITTI. Table compares the results of the SD-
SSMDE approach with state-of-the-art methods that perform inference
on a single image. When trained with medium-resolution images, the
network with a ResNet-50 backbone outperforms all other methods and
achieves a significant improvement over the baseline. With a ResNet-
18 backbone on medium-resolution images, the results are comparable
to those of FSRE-Depth [72]. Approaches such as [61, [78, [72] incorpo-
rate semantic segmentation guidance and rely on pre-trained semantic
networks and pixel-level semantic annotations, which can be costly and
challenging to acquire. In contrast, the SD-SSMDE network achieves the
best results while being trained solely on monocular sequences without
additional data. Another notable advantage of the method is the ability
to eliminate the dependence on ground-truth data during inference by us-
ing a fixed scaling factor, with minimal or no loss in accuracy. However, a
drawback of the two-stage training framework is the longer training time.
Despite this, there is no additional computational cost during inference,
which is crucial from a practical perspective. For high-resolution images,
the method achieves the best overall scores.

Qualitative Comparison. Figure 7.5 presents a qualitative
comparison between Monodepth2 [57] and the results from the SD-
SSMDE student network. The observations indicate that the SD-SSMDE
network produces more accurate depth maps, particularly on surfaces
such as the ground and vehicles.

Results on Improved KITTI. Table presents the results
on the KITTI Eigen set using the improved ground truth [145]. Exper-
iments are conducted with both a fixed scaling factor and ground truth
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Method ‘ Backbone ‘ Sem ‘ Resolution ‘ AbsRel | SqRel |  RMS | RMSlog | ‘ §<1251% 6<125%1 4§<1.25%1
GeoNet [163] ResNet-50 192 x 640 0.153 1.328 5.737 0.23 0.802 0.934 0.972
DF-Net [I73] ResNet-50 192x 640 0.146 1.182 5.215 0.213 0.818 0.943 0.978
Guizilini et al. [61] | ResNet-50 | v 192 x 640 0.113 0.831 4.663 0.189 0.878 0.971 0.983
SGDepth [78] ResNet-50 | v 192 x 640 0.112 0.833 4.688 0.190 0.884 0.961 0.981
Monodepth2 |57 ResNet-50 192 x 640 0.110 0.831 4.642 0.187 0.883 0.962 0.982
FSRE-Depth [72] ResNet-50 | v 192 x 640 0.102 0.675 4.393 0.178 0.893 0.966 0.984
SD-SSMDE ResNet-50 192 x 640 0.100 0.661 4.264 0.172 0.896 0.967 0.985
Shu et al. [1306] ResNet-50 | v | 320 x 1024 0.104 0.729 4.481 0.179 0.893 0.965 0.984
SD-SSMDE ‘ ResNet-50 ‘ ‘ 320 x 1024 ‘ 0.098 0.674 4.187 0.170 0.902 0.968 0.985
Guizilini et al. [61] | ResNet-18 | v 192 x 640 0.117 0.854 4.714 0.191 0.873 0.963 0.981
Monodepth2 [57] ResNet-18 192 x 640 0.115 0.903 4.863 0.1F93 0.877 0.959 0.981
SGDepth [78] ResNet-18 | v 192 x 640 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Poggi et al. [124] ResNet-18 192 x 640 0.111 0.863 4.756 0.188 0.881 0.961 0.982
HR-Depth [103] ResNet-18 192 x 640 0.109 0.792 4.632 0.185 0.884 0.962 0.983
FSRE-Depth [72] ResNet-18 | v 192 x 640 0.105 0.722 4.547 0.182 0.886 0.964 0.984
SD-SSMDE ResNet-18 192 x 640 0.106 0.751 4.485 0.180 0.885 0.964 0.984
Monodepth2 [57] ResNet-18 320 x 1024 0.115 0.882 4.701 0.190 0.879 0.961 0.982
SGDepth [78] ResNet-18 | v | 384 x 1280 0.107 0.768 4.468 0.186 0.891 0.963 0.982
HR-Depth [103] ResNet-18 320 x 1024 0.106 0.755 4.472 0.181 0.892 0.966 0.984
FSRE-Depth [72] ResNet-18 | v | 320 x 1024 0.102 0.687 4.366 0.178 0.895 0.967 0.984
SD-SSMDE ResNet-18 320 x 1024 0.101 0.700 4.332 0.174 0.895 0.966 0.985

Table 7.7: Comparison with the state-of-the-art on KITTI Eigen test set
[41]. Methods in the table use only a single image during inference. Sem
denotes the use of semantic segmentation. Best results are in bold.

median scaling. The SD-SSMDE approach outperforms the Monodepth2
baseline [57] across both scaling methods, with ResNet-18 and ResNet-50
backbones, and on both medium and high resolutions. The largest per-
formance difference is observed when using a fixed scaling factor. Mon-
odepth2 does not enforce scale consistency between depth predictions,
resulting in significant scale variance across frames. Consequently, the
error increases when applying a single scale factor to all predictions. In
contrast, the SD-SSMDE model achieves better performance by learn-
ing from scale-consistent pseudo-labels, which ensures inter-frame scale-
consistent depth predictions. This property enables the use of a single
scaling factor for all depth predictions with minimal accuracy loss com-
pared to ground truth median scaling.

Results on Cityscapes. Table presents the evaluation of
the SD-SSMDE models with a ResNet-50 backbone on the Cityscapes
dataset, comparing the results with state-of-the-art methods. Addition-
ally, the generalization capability of the model trained on KITTI, without
any fine-tuning, is assessed. Compared to Monodepth2 and other com-
peting methods, this approach achieves superior performance across all
metrics.

Inference Time. Table [7.10| reports the inference time mea-
sured on an NVIDIA Tesla V100 GPU and the number of multiply-
add computations (MACs), computed using the PyTorch 1.7.1 frame-
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Figure 7.5: Qualitative Results on KITTI Eigen Test Set. The
qualitative results on the KITTI Eigen test set with improved ground
truth are compared against [57, [78, 61]. Both [78] and [61] incorporate
external data, such as semantic segmentation, and use medium-resolution
images. Monodepth2 [57] with a ResNet-50 backbone serves as the base-
line for high-resolution images (HR). HR-SF represents the output from
the first stage of training, i.e., the self-supervised teacher network trained
on high-resolution images 320 x 1024, which is subsequently used for
generating pseudo-labels. MR-PS and HR-PS correspond to the outputs
from the second stage of training of the student network, supervised using
pseudo-labels on medium-resolution and high-resolution images, respec-
tively. The HR-PS network produces the highest-quality depth maps, as
reflected in Table [7.7]

work and the THOP library!. Comparisons are made against the Mon-
odepth2 baseline [57] and FSRE-Depth [72]. The SD-SSMDE model
achieves higher accuracy than Monodepth2 but is slightly more compu-

Thttps://github.com/Lyken17 /pytorch-OpCounter
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Method ‘ Scaling | Backbone ‘ Resolution ‘ AbsRel | SqRel | RMS | RMSlog | ‘ 0<1251 0<125%1 §<125 ¢
Monodepth2 [57) GT ResNet-18 | 192 x 640 0.084 0.481 3.757 0.129 0.923 0.985 0.996
SD-SSMDE GT ResNet-18 | 192 x 640 0.079 0.399 3.442 0.121 0.929 0.986 0.997
SD-SSMDE GT ResNet-50 | 192 x 640 0.072 0.347 3.219 0.111 0.941 0.990 0.998
Monodepth2 [57] | Fixed | ResNet-18 | 192 x 640 0.104 0.561 3.961 0.147 0.882 0.980 0.995
SD-SSMDE Fixed | ResNet-18 | 192 x 640 0.084 0.436 3.550 0.128 0.918 0.985 0.997
SD-SSMDE Fixed | ResNet-50 | 192 x 640 0.076 0.377 3.304 0.117 0.933 0.988 0.997
Monodepth2 [57) GT | ResNet-18 | 320 x 1024 0.085 0.450 3.542 0.126 0.925 0.987 0.996
SD-SSMDE GT | ResNet-18 | 320 x 1024 0.072 0.344 3.255 0.112 0.940 0.989 0.998
SD-SSMDE GT ResNet-50 | 320 x 1024 0.068 0.311 3.077 0.106 0.947 0.991 0.998
Monodepth2 [57] | Fixed | ResNet-18 | 320 x 1024 0.096 0.504 3.691 0.137 0.903 0.984 0.996
SD-SSMDE Fixed | ResNet-18 | 320 x 1024 0.077 0.370 3.338 0.118 0.931 0.988 0.997
SD-SSMDE Fixed | ResNet-50 | 320 x 1024 0.074 0.338 3.144 0.112 0.939 0.990 0.998

Table 7.8: The evaluation is conducted on the KITTI Eigen set using the
improved ground truth [145]. During inference, the depth predictions
are scaled either using the ground truth median (GT) or a fixed scale
factor. For comparison, Monodepth2 [57] is evaluated using the authors’
provided code.

Model | Train  Test | AbsRel ] SqRel | RMS| RMSlogl|d<1251 4§<125°1 §<1.25°1
Struct2Depth 2 [19] C C 0.145 1.737 7.280 0.205 0.813 0.942 0.976
Monodepth2 [57] C C 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Videos in the Wild [59] C C 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Li et al. [8C] C C 0.119 1.290 6.980 0.190 0.846 0.952 0.982
Choi et al. [32] C C 0.115 1.125 6.584 0.195 0.857 0.963 0.986
SD-SSMDE (teacher - GT scaling) C C 0.117 1.090 6.468 0.176 0.856 0.964 0.990
SD-SSMDE (student - fixed scaling) C C 0.114 1.017 5.949 0.169 0.870 0.967 0.990
SD-SSMDE (student - GT scaling) C C 0.110 0.988 5.953 0.165 0.876 0.970 0.991
Monodepth2 [57] K C 0.153 1.785 8.590 0.234 0.774 0.926 0.976
SD-SSMDE (student - fixed scaling) K C ‘ 0.143 1.635 8.441 0.221 ‘ 0.789 0.931 0.980

Table 7.9: Evaluation on Cityscapes. Evaluation of models on the
Cityscapes dataset, trained on Cityscapes (C) or on KITTI (K).

tationally intensive. In contrast, the model is significantly more efficient
than FSRE-Depth, which provides a comparable absolute relative error.
FSRE-Depth is slower due to its reliance on a semantic segmentation
network for cross-task feature refinement.

The self-distillation concept is worth exploring in the context of
self-supervision. As demonstrated by SD-SSMDE, a two-stage training
framework that generates high-resolution pseudo-labels, which are fur-
ther used to supervise a lightweight depth network, brings significant
improvements. Improving the accuracy of pseudo-labels through filter-
ing and the use of metric-scaled pseudo labels are also important from a
practical perspective.

Such a monocular depth estimation network could be used in
autonomous vehicles in scenarios where cost, hardware constraints, or
environmental conditions limit the use of more expensive and complex



7.3. SD-SSMDE 133
Model | Backbone Resolution MACs Time (ms) AbsRel |
Monodepth2 [57] | ResNet-18 192 x 640 8.0 11 0.115
FSRE-Depth [72] | ResNet-18 192 x 640  20.4 18 0.105
SD-SSMDE ResNet-18 192 x 640 10.8 12 0.106
Monodepth2 [57] | ResNet-18 320 x 1024 21.4 12 0.115
FSRE-Depth [72] | ResNet-18 320 x 1024  54.5 29 0.102
SD-SSMDE ResNet-18 320 x 1024  28.8 15 0.101
Monodepth2 [57] | ResNet-50 192 x 640  16.6 15 0.110
FSRE-Depth [72] | ResNet-50 192 x 640 32.0 29 0.102
SD-SSMDE ResNet-50 192 x 640 18.6 17 0.100
SD-SSMDE ‘ ResNet-50 320 x 1024  44.3 22 0.098

Table 7.10: Inference time and MACs for the SD-SSMDE depth network.

Time is measured on a NVIDIA Tesla V100 GPU.

depth-sensing systems such as LiDAR or stereo cameras. Additionally,
monocular depth networks can complement other sensors by providing
Their lightweight and scalable architectures make
them ideal for real-time deployment on resource-constrained platforms,

depth predictions.

enhancing overall perception systems in autonomous vehicles.
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Chapter 8

Depth-aware Video Panoptic
Segmentation

Depth-aware video panoptic segmentation is an emerging task
in computer vision that extends traditional panoptic segmentation by
incorporating spatial depth information to enhance scene understanding.
While conventional video panoptic segmentation focuses on classifying all
pixels into semantic and instance categories across temporal sequences,
the depth-aware variant introduces the third dimension—depth—to pro-
vide richer geometric context. This enables a more comprehensive per-
ception of dynamic environments, particularly in applications like au-
tonomous driving. Given the novelty of this task, the existing literature
remains limited. In this chapter two works will be discussed in detail.

8.1 ViP-DeepLab

Method. ViP-DeepLab [127] has recently introduced the task,
the metrics, as well as the baseline network. ViP-DeepLab processes
concatenated image pairs and extends Panoptic DeepLab [28] with a
next-frame instance center offsets decoder and a monocular depth esti-
mation decoder. For instance tracking, a stitching algorithm is proposed,
which temporally propagates instance identifiers across instances with
significant overlap. Monocular depth estimation is implemented as dense
regression [42] and trained in a fully-supervised regime.

The Video Panoptic Segmentation Network in ViP-DeepLab is
an extension of Panoptic-DeepLab, originally developed for image-level
panoptic segmentation. The network performs semantic segmentation,

135
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instance center prediction, and center regression simultaneously. For
video sequences, ViP-DeepLab processes two consecutive frames at a
time, denoted as frame t and ¢t + 1. The method predicts the instance
center offsets for both frames relative to the object centers in the first
frame. This design allows the model to associate pixels belonging to the
same object across frames, ensuring temporally consistent segmentation
and object tracking. By leveraging center regression to propagate in-
stance information, ViP-DeepLab efficiently handles dynamic scenes in
video data. A depiction of the method can be found in Figure 8.1.

The stitching algorithm in ViP-DeepLab plays a crucial role in
maintaining temporal consistency of instance IDs across entire video se-
quences. For each pair of consecutive frames, the outputs are split into
left (P,) and right (R;) panoptic predictions, corresponding to frame ¢
and t+ 1. To propagate IDs, the algorithm matches instance regions be-
tween the two frames based on their mask Intersection over Union (IoU).
If regions have the same semantic class and the highest IoU with each
other, the instance ID is transferred. Any unmatched regions are treated
as new instances. This simple IoU-based stitching approach is robust
to object motion and occlusions, enabling ViP-DeepLab to track objects
consistently, even when they undergo significant displacement between
frames.

| .

Center regrossion with the l:oﬂlﬂf‘-lﬂ image [ '
a8 the target for both image ! and image 1+1 ¢

Image Panoptic Seamentation Video Panoptic Seamentation

Figure 8.1: Comparing image panoptic segmentation with video panoptic
segmentation, ViP-DeepLab builds on the insight that video panoptic
segmentation can be effectively represented as a sequence of concatenated
image panoptic segmentations. In this approach, center regression serves
as an offset map, linking each pixel to its corresponding object center.

Image from [127].

The monocular depth estimation task in ViP-DeepLab is framed
as a dense regression problem. A depth prediction head is added on top
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of the semantic segmentation decoder to predict per-pixel depth val-
ues. The network learns to estimate depth using a combination of scale-
invariant loss and relative squared error, ensuring accurate predictions
across varying distances and scales. The depth loss function Lgeptn is
defined as follows:

~ 1 AN 2 1 N 2
Ligpn(dyd) = =3 (logds —logdi) — — (3 ilogd; — log di)

7
0.5

+ %Zz (di;id’) (8.1)

where d; is the ground-truth depth, d; is the predicted depth,
and n is the total number of pixels. The loss combines scale-invariant
logarithmic error and relative squared error, encouraging precise and con-
sistent depth predictions.

Experiments. The experiments are conducted on two datasets:
Cityscapes-DVPS and SemKITTI-DVPS, as seen in Table 8.1} In the
case of Cityscapes-DVPS, the evaluation uses four values of k, namely
k = {1,2,3,4}, as the dataset provides 6 annotated frames per video
sequence. For the SemKITTI-DVPS dataset, the evaluation employs
larger k values: k = {1,5,10,20}, which is possible due to the longer
video sequences available in this dataset. These larger values allow the
evaluation of longer-term temporal consistency. The results show that
as the clip length k increases, performance drops are more pronounced
on Cityscapes-DVPS compared to SemKITTI-DVPS. For example, the
drop in DVPQ for Cityscapes-DVPS from k& = 1 to k = 2 is 7%, whereas
the corresponding drop for SemKITTI-DVPS from £k = 1 to &k = 5 is
only 3.2%. This difference is likely due to the higher annotation frame
rate in SemKITTI-DVPS, which simplifies the task of predicting offsets
for subsequent frames. Despite the evaluation using larger £ values in
SemKITTI-DVPS, the temporal consistency of predictions remains rela-
tively stable.

8.2 MonoDVPS

Method. MonoDVPS [122] is a novel network proposed for the
DVPS task. To utilize large amounts of unlabeled data, the network em-
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DVPQ} on Cityscapes-DVPS ‘ k=1 k=2 k=3 ‘ k=4 ‘ Average

A =0.50 68.761.4]74.0 | 61.7 | 48.5 | 71.3 | 58.4 | 42.1 | 70.2 | 56.3 | 38.0 | 69.5 | 61.3 | 47.5 | 71.2

A =025 66.5 [ 60.4 | 71.0 | 59.5 | 47.6 | 68.2 | 56.2 | 41.3 | 67.1 | 54.2 | 37.3 | 66.5 | 59.1 | 46.7 | 68.2

A=0.10 50.5 | 45.8 | 53.9 | 45.6 | 36.9 | 51.9 | 42.6 | 31.7 | 50.6 | 40.8 | 28.4 | 49.8 | 44.9 | 35.7 | 51.5

Average 61.9 | 55.9 | 66.3 | 55.6 | 44.3 | 63.8 | 52.4 | 38.4 | 62.6 | 50.4 | 34.6 | 61.9 | 55.1 | 43.3 | 63.6
DVPQ} on SemKITTI-DVPS | k=1 k=5 k=10 | k=20 | Average

A =0.50 54.7 [ 46.4 [ 60.6 | 51.5 | 41.0 | 59.1 | 50.1 | 38.5 | 58.5 | 49.2 | 36.9 | 58.2 | 51.4 | 40.7 | 59.1

A =025 52.0 | 44.8 | 57.3 | 48.8 | 39.4 | 55.7 | 47.4 | 37.0 | 55.1 | 46.6 | 35.6 | 54.7 | 48.7 | 39.2 | 55.7

A=0.10 40.0 | 34.7 | 43.8 | 37.1(30.3 [ 42.0 | 35.8 | 28.3 | 41.2 | 34.5 | 26.5 | 40.4 | 36.8 | 30.0 | 41.9

Average 48.942.0 | 53.9 | 45.8 | 36.9 | 52.3 | 44.4 | 34.6 | 51.6 | 43.4 | 33.0 | 51.1 | 45.6 | 36.6 | 52.2

Table 8.1: Results of ViP-DeepLab [127]. DVPQ} on Cityscapes-DVPS
and SemKITTI-DVPS. Each cell shows DVPQ} — DVPQ}-Thing —
DVPQ5-Stuff. X is the threshold of relative depth error, and k is the
number of frames.

ploys self-supervised training for depth estimation and semi-supervised
learning for video panoptic segmentation. In the semi-supervised set-
ting, both labeled and unlabeled data are leveraged to train a better-
performing model. Within the complex multi-task training framework,
various techniques are introduced to enhance performance across all sub-
tasks. Loss balancing is explored to ensure accuracy improvements for all
tasks, while panoptic guidance is utilized to minimize depth estimation
erTors.

Since self-supervised depth estimation assumes a static scene,
moving objects can introduce photometric errors and corrupt the training
signal. To overcome this limitation, the proposed approach introduces
a novel moving object masking strategy, which relies on panoptic seg-
mentation maps from consecutive frames to identify and exclude moving
object pixels from the photometric loss computation. Additionally, three
loss terms are introduced to further refine depth prediction by address-
ing depth discontinuities at panoptic edges. The first is a panoptic-guided
smoothness loss [134], which enforces depth smoothness for neighboring
pixels within panoptic segments. The second is a panoptic-guided edge
discontinuity loss, designed to enforce significant depth changes at panop-
tic edges. Finally, the semantic-guided triplet loss [72] is adapted to the
panoptic domain for improved depth refinement. The training framework
is illustrated in Figure 8.2.

BASELINE NETWORK. The MonoDVPs network is built on top
of the panoptic image segmentation network Panoptic DeepLab [2§],
which is extended to handle video data. The network incorporates a
shared backbone and dual decoders for semantic and instance segmen-
tation, along with three heads for semantic prediction, instance center
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Figure 8.2: The MonoDVPS depth-aware video panoptic segmentation
network employs a mixed training regime, where depth, optical flow, and
ego motion are trained in a self-supervised manner. Panoptic segmenta-
tion is semi-supervised using a combination of ground truth and pseudo-
labels. Several loss functions are introduced, including the panoptic-
guided triplet loss (PGT), panoptic-guided smoothness loss (PGS), and
panoptic-guided edge discontinuity loss (PED), to enhance depth train-
ing. Additionally, a novel moving objects mask, computed using panoptic
labels, is utilized to mask the photometric loss.

prediction, and instance offset regression. The final panoptic prediction
is achieved by grouping class-agnostic foreground pixels to the nearest
center based on the predicted offsets to form instances, which are then
merged with the semantic segmentation.

The network is further extended with an optical flow decoder,
similar to the one used in the VPSTransformer network [121], to facili-
tate instance tracking. Instance tracking is performed by matching the
current instance predictions with warped instance masks from the previ-
ous frame using the predicted optical flow. The optical flow decoder is
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trained in a self-supervised manner by minimizing the photometric loss
between the current frame and the warped previous frame. The overall
network architecture is illustrated in Figure 8.3.

SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION. The se-
mantic decoder is extended with a depth prediction head, which includes
a [5 x5, 64] depthwise separable convolution, followed by bilinear interpo-
lation, concatenation with low-level features, and [5 x 5,32] and [1 x 1, 1]
convolutions. The approach utilizes multi-scale depth prediction and im-
age reconstruction across four scales with output strides of 2, 4, 8, and
16 relative to the original image resolution. In practice, the network
learns the inverse of depth, as it has been shown to be more robust [57].
The minimum reprojection loss and stationary pixels masking techniques
from MonoDepth2 [57] are adopted to further enhance the self-supervised
depth estimation.
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Figure 8.3: The MonoDVPS network architecture.
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SEMI-SUPERVISED PANOPTIC SEGMENTATION. The Panoptic
DeepLab [28] image panoptic segmentation network with HRNet-W48
[148] is utilized to generate pseudo-labels for the unlabeled data in the
Cityscapes-DVPS [127] train set. The initial train set includes human-
annotated labels for every fifth frame in a 30-frame video sequence. Fol-
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lowing the approach of Naive-Student [20], test-time augmentations, such
as horizontal flips and multi-scale inputs with scales ranging from 0.5 to
2.0 at intervals of 0.25, are applied to enhance the quality of pseudo-
label predictions. For Cityscapes-DVPS images, pixels belonging to the
ego-car are labeled as void and ignored during training.

IMPROVING DEPTH WITH PANOPTIC GUIDANCE. Two pri-
mary mechanisms are proposed to enhance the performance of depth
estimation with panoptic guidance. First, based on the observation that
panoptic segmentation edges align strongly with depth map edges, three
panoptic-guided losses are introduced. Second, motion masks are gen-
erated using consecutive panoptic labels and applied to the photometric
loss to refine the training signal. Figure 8.4 presents visual results of the
proposed panoptic-guided mechanisms.

Image Depth #logetlon  tlogetlpntloer Panoptic

Photometric error Moving objects mask

Panopti ided Moving Objects Masking of Pt ric Loss

Panoptic-guided Depth Losses

Figure 8.4: Moving objects masking and panoptic-guided losses. On the
left is illustrated the high photometric loss for moving objects which
corrupts the training signal and the moving objects mask. On the right,
panoptic-guided depth losses improve the depth prediction.

PANOPTIC-GUIDED SMOOTHNESS LoOsS. A smoothness loss
term [134] is adopted to enforce similar depth values for adjacent pixels
within a panoptic segment. This loss is derived from L, as defined in
equation [7.21}, which assumes depth smoothness unless an image edge is
present. However, many image edges do not correspond to depth edges,
leading to potential misalignment. In contrast, depth and panoptic edges
exhibit strong alignment. A panoptic edge is identified where a change
in the panoptic identifier occurs between adjacent locations. Based on
this observation, the depth differences for adjacent locations within a
panoptic segment are minimized. The panoptic-guided smoothness loss
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is defined as follows:

Lpgs = |0:di] (1 = 0, P) +|0,di| (1 = 0, F) (8.2)

where P, represents the panoptic ground truth label, OF; are the
panoptic edges, d, is the mean normalized inverse depth and Oyd, is the
depth gradient. The latter is computed as the depth difference on the
x and y axis for adjacent pixels. For two adjacent pixels (pg,p1), the
0. Pi(po, p1) is defined as the Iverson bracket, which is equal to 1 when
the adjacent pixels have different panoptic identifiers and 0 otherwise:

9:Py(po, p1) = [P(po) # P(p1)] (8.3)

PANOPTIC-GUIDED EDGE DISCONTINUITY LOSS. Based on the
observation that adjacent pixels across the panoptic edge may have large
depth discontinuities, the following panoptic-guided edge discontinuity
term is introduced:

*Cped = axpte_wxdt' + aypte—\aydﬂ (84)

This loss enforces a gradient peak in the depth map at panop-
tic edges, where different panoptic identifiers exist for adjacent pixels.
The exponential function is minimized to ensure large depth differences
between adjacent pixels along the panoptic edge. The panoptic-guided
edge discontinuity loss extends the work of [164] from the semantic do-
main to the panoptic domain. While this loss shares similarities with the
panoptic-guided alignment approach proposed by [134], the latter is de-
signed for single-task depth networks and does not operate in the context
of a multi-task panoptic and depth network.

PanopTiC-GUIDED TRIPLET LOSS.  The semantic-guided
triplet loss [72] is extended to the panoptic domain. This loss is based
on the idea that pixels across panoptic edges should exhibit large depth
differences. The original formulation using semantic edges [72] has limi-
tations, as instances with the same semantic class are grouped into one
segment, causing the absence of edges between instances. In contrast,
panoptic maps contain instance edges, which are better aligned with
depth edges.

The triplet loss is formulated as follows: the panoptic segmenta-
tion map is divided into 5 x 5 patches, and patches that do not intersect
panoptic edges are discarded. For the remaining patches, a triplet loss
is defined and applied in the feature representation space on normalized
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depth feature maps at four scales before the final [1 x 1, 1] convolution.
Features within each patch are categorized into three classes: anchor,
positive (P;"), and negative (P;). The anchor is located at the center of
the patch, while positive features share the same panoptic label as the
anchor, and negative features have a different panoptic label. The triplet
loss increases the L2 distance d; between the anchor and the negative
features while reducing the L2 distance d;” between the anchor and the
positive features within a patch. The triplet loss, with a margin m, is
defined as follows:

Ly = max(0,m +d} —d;) (8.5)
= SVED RGP e o) (59

where Fy(1) is the depth feature of the anchor, Fy(j) is the depth
feature of positive or negative depth features inside a patch.

By minimizing the triplet margin loss, the distance between pos-
itive and negative features is ensured to be larger than the margin m.

PANOPTIC-GUIDED MOTION MASKING. Self-supervised depth
estimation assumes a static scene, modeling only the ego motion. How-
ever, this assumption does not account for object motion, which corrupts
the training signal with artificially high photometric loss on moving ob-
jects. To address this issue, a novel scheme is proposed to detect moving
objects using the panoptic labels of consecutive frames, where instance
identifiers are temporally consistent. The goal is to define a moving ob-
ject mask, which assigns a value of 0 to regions containing potentially
moving objects in the target frame I; or the geometrically warped source
frames I,_,;, and 1 otherwise.

To compute the moving object mask, the panoptic segmentation
pseudo ground truth for the target frame is utilized. Since the panoptic
pseudo-labels are not temporally consistent, panoptic labels for adjacent
source frames are synthesized from the target panoptic label to ensure
consistent instance identifiers across frames. This is achieved by employ-
ing an external pre-trained optical flow network [169] to warp the target
panoptic map P; to the source P,_,,. The use of optical flow provides the
advantage of modeling both ego and object motion.

An occlusion mask O, = [exp(—|[5 — IAHSD > 7] is intro-
duced to remove occluded pixels, where [-] represents the Iverson bracket.
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Subsequently, the predicted depth and geometric projection model from
equation are employed to reconstruct the target panoptic map Ps_;
using nearest neighbor interpolation. The reconstructed panoptic map is
formulated as follows:

Ps—)t = (Ot—mpt—)s)<p/> (87)

where p’ is the location in the source frame of pixel p in the
target frame.

Next, the consistency between the reconstructed panoptic map
P, ,; and the true target panoptic map P, is measured, filtered by the
instance masks corresponding to potentially moving object classes. Since
the geometric projection model accounts only for ego-motion, a high
level of consistency between P,_,; and P, is expected in static scenes,
while reduced consistency is expected for moving objects. Consistency
is measured as the intersection over union (IoU) between instance masks
with the same panoptic identifier in P,_,; and P;.

A threshold T is defined for the IoU, such that if the IoU is
lower than T, the instance is considered a moving object. Pixel locations
corresponding to moving objects are excluded from the photometric loss
computation. In practice, optimal results are achieved using a linear
scheduling for the threshold T'. Instead of a fixed value, an initial thresh-
old of T = 0.7 is set, which linearly decreases with each iteration. The
intuition behind this approach is that, at the beginning of training, the
network focuses on learning from static pixels, but as training progresses,
it incorporates more potentially noisy samples to account for potential
warping errors.

Two masks are obtained, corresponding to the left and right
source images, indicating locations in the target frame and one of the ge-
ometrically warped source frames that contain potential moving objects.
The steps of this process are described in Algorithm

LosseEs. During training, the optimization involves nine loss
functions. Instead of simply summing the loss terms, which is subop-
timal, each loss term is balanced with a weighting factor to control its
scale in the final objective:

£tota1 - ’ydepthﬁdepth + ’Ysem‘csem

+ ’Yinstanceﬁinstance + /yopticalﬁoptical

(8.8)

The depth loss is defined as a combination of the photometric
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Algorithm 2 Panoptic-guided Motion Masking

Input: Panoptic segmentation P,, Target image [;, Source image I,
iteration 7, total number of iterations e, threshold T'
Output: Moving object mask M,
Compute optical flow V' < Optical Flow(I;, ;)
Warp P, using optical flow V' to source P,
Backproject depth using z < K~1D;(p)p
Displace x using the ego motion to x' + M;_,x
Project z’ to the source image p’ < Ka'
Compute occlusion mask O, ¢ < [exp(—|I5 — ft_>8|) > 7]
Geometrically synthesize the target P_; < (OHSIA%_W)(p’ )
for id € instancel Ds(P;) do
if IoU(P;(id), Ps—i(id) <T % (1 —i/e) then
Paste P;(id) and Py_,;(id) in M,
end if
end for

loss Lynoto from equation [7.18], smoothness loss Ly from equation [7.21]
panoptic-guided smoothness loss L4, panoptic-guided edge discontinu-
ity loss Lyed, and panoptic-guided triplet loss Lpq4:

Edepth = P)/photof'photo + f)/s['s + P)/pgs['pgs

8.9
+ 'Vpedﬁped + ngtﬁpgt ( )

Following [28], the instance loss Linstance is defined as the
weighted sum of mean squared error (MSE) for the instance center pre-
diction head and L1 loss for the center offset head. Instance weights are
set as in [2§].

The weighting factors are set as follows: Ysem = 1, Vdepth = 90,
“Vinstance = 1, “Yoptical = 10, “Yphoto = 1, Vs = 0.001, Ypgs = 0.01, Vped =
0.0001, and 7pe; = 0.1. These weights are chosen to ensure that the main
losses have similar magnitudes.

PanoprTiCc 4D PoOINT CLOUD. The depth output of the net-
work represents relative up-to-scale depth. While depth values within
an image are broadly consistent with each other, obtaining metric-scale
depth requires multiplying by a scale factor. Additionally, each depth
map necessitates a unique scale factor, as the depth maps are not inter-
frame scale consistent. To recover the true depth, a common practice
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[57] is to perform per-image median scaling: each predicted depth map
is scaled using the ratio between the median of the ground truth and the
predicted depth values.

Once the depth maps are scaled to real-world values, a panoptic
3D point cloud is generated. To compute the 3D point in the camera
coordinate system for each pixel in the image, the depth map is back-
projected. Since the panoptic segmentation output is aligned with the
depth map, each 3D point is augmented with the panoptic identifier of
its corresponding pixel, resulting in the panoptic 4D point cloud.

To eliminate the dependency on ground truth, the scale factor
can be computed directly from the predicted depth map. For instance,
the scale factor can be determined as the ratio between a known camera
height and a computed camera height, where the camera height is derived
as the median or average height of all 3D points labeled as road. For
network evaluation, the ground truth median scaling method is adopted.

Experiments. The ResNet-50 [64] backbone is adopted for the
depth-aware video panoptic segmentation network. The network is pre-
trained on the Cityscapes dataset [34] for image panoptic segmentation.

To compute the final depth values, the inverse depth at the high-
est resolution, corresponding to 1/2 of the original image resolution, is
activated by a sigmoid layer ¢ and converted to depth using the formula
Z = 1/(ac + b), where a and b map the depth values to the interval
(0.1, 100].

The pose estimation network follows the design in [57], utilizing
a ResNet-18 backbone and a decoder to predict the 6DOF camera pose,
including the translation vector and rotation matrix represented as Euler
angles. The input to the camera pose network consists of pairs of source
and target images, and the network is supervised exclusively through
the photometric loss. During inference, the pose estimation network is
discarded.

Training is conducted with a minibatch size of 4 images for 30k
iterations, using the Adam optimizer with a base learning rate of le-3 for
decoders and heads, and 1le-4 for the backbone, employing a polynomial
learning rate decay schedule. Image augmentation techniques, including
random horizontal flipping and random color augmentation (brightness,
contrast, saturation, and hue jitter), are applied. For Cityscapes-DVPS,
an image resolution of 1025 x 2049 is used, while for SemKITTI-DVPS,
the resolution is 385 x 1281.

MULTI-TASK LEARNING ABLATION. Table presents the re-
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sults of single-task baselines for panoptic segmentation and depth estima-
tion, as well as the performance of the MonoDVPS multi-task network.
In the baseline multi-task learning setup, where the depth loss weight
Vdepth = 1, a decrease in accuracy is observed for both panoptic segmen-
tation and depth estimation compared to the single-task baselines. To
address this, the loss magnitudes are balanced by setting Ygepth = 50,
which achieves the best PQ and absRel metrics.

To further enhance depth prediction, panoptic-guided losses are
incorporated during training, enabling the multi-task network to match
the performance of the single-task depth baseline. Since self-supervised
depth estimation does not rely on depth ground truth, it can be trained
on large-scale unlabeled datasets. In contrast, panoptic segmentation is
formulated as a supervised learning problem and requires labeled images.

For the Cityscapes-DVPS dataset, which consists of 30-frame
video snippets with only every fifth frame annotated for video panoptic
segmentation, the training set is expanded from 2400 to 14100 image-
annotation pairs. This is achieved by generating panoptic pseudo-labels
for all previously unlabeled frames. Training the network on the ex-
tended dataset results in significant performance improvements for both
panoptic segmentation and depth estimation.

Model | PQ 1 | absRel |
Panoptic only 63.5 -
Depth only - 0.098
MTL Baseline vgeptn, = 1 62.9 0.151
+ Loss Balancing 7geptn, = 100 | 63.2 0.102
+ Loss Balancing 7geptn, = 50 63.6 0.102
+ Panoptic-guided depth | 63.6 | 0.098
+ Extended train set | 66.5 | 0.082

Table 8.2: Multi-task Learning (MTL). Comparison between single task
and several multi-task training settings.

PANOPTIC-GUIDED DEPTH ABLATION. Table [8.3] presents an
extensive ablation study on depth estimation. The study first compares
depth estimation trained in a supervised versus self-supervised regime
within a multi-task learning setting. For supervised training, depth esti-
mation is formulated as a regression problem, utilizing the scale-invariant
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log loss from [42]. As anticipated, supervised depth estimation outper-
forms self-supervised depth estimation across all metrics.

To narrow this performance gap, several enhancements to the
self-supervised training process are proposed. The multi-task loss is bal-
anced by increasing the depth loss weight, and panoptic-guided losses
Lpas, Lpep, and Lpgr are introduced to reduce depth error. Addition-
ally, a moving object masking scheme is designed to avoid corrupting the
training signal in regions containing moving objects, further improving
performance.

Finally, the training set is expanded from 2400 to 14410 frames
by incorporating additional data. This extension significantly reduces
the depth error, demonstrating the critical importance of a large dataset
for effective self-supervised depth training.

Model | absRel | | sqRel | | RMS |
Self-Supervised Depth Only | 0.098 | 0.731 | 4.919
MTL Supervised Depth | 0.070 | 0.368 | 3.675
MTL Self-Supervised Depth | 0.106 0.841 5.270
+ Loss Balancing 0.102 0.767 5.034
+ Lpas + Lpep + Lpar 0.099 0.747 4.988
+ Moving Objects Masking 0.098 0.701 4.864
+ Extended dataset 0.082 0.515 | 4.198

Table 8.3: Panoptic-guided depth evaluation in a multi-task setting. Ab-
lation study for loss balancing, panoptic-guided depth losses and moving
objects masking.

MoVING OBJECT MASKING FOR IMPROVED DEPTH ABLA-
TION. For each instance in frame ¢, the IoU is calculated between its
mask in the reconstructed panoptic label P,_,; and its mask in P;. The
geometric projection model used to generate P,_,; assumes a static scene
and accounts only for ego-motion. Consequently, a high overlap is ob-
served between instance masks for static objects, whereas moving objects
exhibit low overlap due to unmodeled object motion.

A threshold T is defined such that instances with an IoU be-
low this threshold are classified as moving objects, and the correspond-
ing pixels are excluded from the photometric loss computation. Table
reports experimental results using 7' = {0.3,0.5,0.7} and a linear
scheduling approach. Errors arising from optical flow warping, geomet-
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ric reconstruction, or occlusions can affect the IoU computation. As a
result, a high threshold (7" = 0.7) removes too many instances, while a
low threshold (7" = 0.3) is overly permissive. Linear scheduling achieves
the best balance between panoptic and depth performance, with 7" = 0.5
providing comparable results.

IoU threshold | PQ 1 | absRel |

0.3 63.2 0.099
0.5 63.5 0.098
0.7 63.9 0.102
linear 63.6 0.098

Table 8.4: Ablation study on the IoU threshold used to determine if an
object is moving. Linear means that the IoU is decreased linearly from
0.7 with each training iteration.

DEPTH-AWARE VIDEO PANOPTIC SEGMENTATION. Depth-
aware video panoptic segmentation (DVPQ) results on Cityscapes-DVPS
are reported in Table[8.5] As expected, DVPQ decreases with larger tem-
poral window sizes k due to reduced temporal consistency, and with lower
thresholds A for depth absRel. A greater performance drop is observed
in DVPQ-Things compared to DVPQ-Stuff when decreasing \ across all
k, suggesting that depth errors are more pronounced on instance pixels
than on stuff pixels.

MonoDVPS is also trained in a fully supervised regime for both
depth and video panoptic segmentation (MonoDVPS S-MDE), resulting
in higher DVPQ compared to the multi-task network trained under a self-
supervised depth regime (MonoDVPS Average). Relative to MonoDVPS
S-MDE, depth errors are higher for instance pixels and lower for stuff
pixels, as indicated by the lower DVPQ-Things and higher DVPQ-Stuft
metrics.

In Table 8.6, a comparison is presented between the MonoD-
VPS network trained on the original and extended training sets, and the
concurrent ViP-DeepLab [9] on the DVPS task. When trained on the
original Cityscapes-DVPS training set, the MonoDVPS network achieves
a DVPQ score of 43.4. By utilizing the extended dataset with panoptic
pseudo-labels, the DVPQ score improves to 48.8. The MonoDVPS net-
work surpasses ViP-DeepLab [9] with the ResNet-50 backbone in terms
of DVPQ, while also demonstrating faster performance.
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DVPQ} on Cityscapes-DVPS ‘ =1 ‘ k=2 ‘ k=3 ‘ k=4 ‘ DVPQ Average
MonoDVPS X\ = 0.50 65.9 | 55.7 | 73.3 | 59.0 | 43.0 | 70.6 | 55.8 | 36.9 | 69.5 | 53.5 | 32.5 | 68.8 | 58.6 | 42.0 | 70.6
MonoDVPS A = 0.25 59.3 | 45.4 [ 69.4 | 53.0 | 34.2 | 66.7 | 50.2 | 28.9 | 65.7 | 48.5 | 26.1 | 64.7 | 52.8 | 33.7 | 66.7
MonoDVPS A = 0.10 39.0 | 23.7(50.0 | 35.1 [ 17.5 | 47.9 | 33.4 | 14.5| 47.1 | 32.5| 13.1 | 46.6 | 35.0 | 17.2 | 48.0
MonoDVPS Average 54.7 | 41.6 | 64.2 | 49.0 | 31.6 | 61.7 | 46.5 | 26.8 | 60.8 | 44.8 | 23.9 | 60.0 | 48.8 | 31.0 | 61.7
MonoDVPS S-MDE | 57.2 1 48.4 | 63.6 | 51.0 | 37.0 | 61.0 | 47.9 | 31.0 | 60.0 | 45.7 ]| 27.0 | 59.3 | 50.4 | 35.9 | 61.0
ViP-DeepLab (WR-41) [127] 61.9]55.9|66.3 | 55.6 | 44.3 | 63.8 | 52.4 | 38.4 | 62.6 | 50.4 | 34.6 | 61.9 | 55.1 | 43.3 | 63.6
ViP-DeepLab* (ResNet-50) [0] | 47.4 | 38.8 | 53.7 | 44.0 [ 28.1 | 51.6 | 39.0 | 23.3 | 50.5 | 37.5| 20.2 | 50.0 | 42.0 | 27.6 | 51.5

DVPQ]; on SemKITTI-DVPS ‘ k=1 ‘ k=5 ‘ k=10 ‘ k=20 ‘ DVPQ Average

MonoDVPS A = 0.50 48.7 | 44.7 | 51.7 | 43.0 | 33.3 | 50.0 | 41.6 [ 30.7 | 49.6 | 40.4 | 28.4 [ 49.2 | 434 |34.2|50.1
MonoDVPS A = 0.25 453 [39.7 | 49.4 | 39.8 | 28.9 | 47.8 | 38.5 | 26.7 | 47.2 | 37.6 | 25.0 | 46.8 | 40.3 | 30.0 | 47.8
MonoDVPS A = 0.10 35.9 | 28.0 | 41.6 | 31.6 | 20.0 | 40.0 | 30.6 | 18.4 | 39.4 | 29.8 | 17.3 [ 39.0 | 32.0 | 21.0 | 40.0
MonoDVPS Average 43.3[37.5|47.5 | 38.1 | 27.4 | 46.0 | 36.9 | 25.2 | 45.4 | 36.0 | 23.6 | 45.0 | 38.6 | 28.4 | 46.0

ViP-DeepLab [127] (WR-41) | 48.9 | 42.0 | 53.9 | 45.8 | 36.9 | 52.3 | 44.4 | 34.6 | 51.6 | 43.4 | 33.0 | 51.1 | 45.6 | 36.6 | 52.2

Table 8.5: Depth-aware video panoptic segmentation on Cityscapes-
DVPS and SemKITTI-DVPS. Each cell shows DVPQ%| DVPQ%-Things |
DVPQ5-Stuff. & is the number of frames and  is the threshold of relative
depth error. MonoDVPS S-MDE is the network trained in a fully super-
vised regime for both panoptic and depth. All networks use the ResNet-
50 backbone. ViP-DeepLab uses the heavier WR-41 backbone, Mapillary
Vistas pretraining and test-time augmentations. ViP-DeepLab* with the
ResNet-50 backbone is evaluated using the author’s code and pretrained
model.

Model | Backbone | DVPQ | DVPQ-Things | DVPQ-Stuff | Time (s)
MonoDVPS ResNet-50
MonoDVPS* ResNet-50 | 43.4 26.2 55.9 0.11

48.8 31.0 61.7 0.11

ViP-DeepLab [9] | ResNet-50 | 42.0 27.6 51.5 0.18

Table 8.6: DVPS evaluation on Cityscapes-DVPS. MonoDVPS* is the
network trained on the reduced training set (without extension). ViP-
DeepLab with ResNet-50 was evaluated with the author’s code [9]. Time
is measured on a NVIDIA Tesla V100 GPU.

VIDEO PANOPTIC SEGMENTATION. Table 8.7 compares the
MonoDVPS network with state-of-the-art methods for video panoptic
segmentation. ViP-DeepLab [127], utilizing the WR-41 [20] backbone
and pretrained on Mapillary Vistas [108], is designed for accuracy and
achieves state-of-the-art performance across all metrics. However, ViP-
DeepLab’s reliance on costly test-time augmentations results in a slow
inference speed of 54 seconds per frame on a NVIDIA Tesla V100 GPU.
When evaluated with the same ResNet-50 backbone, the proposed Mon-
oDVPS network surpasses all other methods, including ViP-DeepLab, in
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terms of both VPQ and inference time.

Model | Backbone |k=1|k=2|k=3|k=4|VPQ1| Time (s)
VPSNet [74] ResNet-50 | 62.7 | 56.9 53.3 51.3 56.1 0.77
Siam-Track [155] ResNet-50 | 64.6 | 57.6 | 54.2 | 52.7 57.3 0.22
VPS-Transformer [I21] | ResNet-50 | 64.8 | 57.6 | 54.4 | 52.2 57.3 0.11
ViP-DeepLab* [9] ResNet-50 | 60.6 | 53.1 | 49.9 | 47.7 52.8 0.17
ViP-DeepLab [127] WR-41 70.4 | 63.6 | 60.1 | 58.1 63.1 54*
MonoDVPS (ours) | ResNet-50 | 66.5 | 59.6 | 56.3 | 54.0 | 59.1 | 0.10

Table 8.7: Video panoptic segmentation on Cityscapes-DVPS. £ is the
window size used for evaluation. In this paper k = {1,2, 3,4} is equiva-
lent to k = {1,5,10,15} from [74, 155, 121]. ViP-DeepLab* is evaluated
with the author’s code. Inference time is measured on a Tesla V100.

QUALITATIVE RESULTS. Figure 8.5 presents panoptic and
depth visualizations for two consecutive frames. The proposed approach

demonstrates overall strong qualitative results on both the Cityscapes-
DVPS and SemKITTI-DVPS datasets.

Frame t Frame t+1 Frame t Frame t+1

Depth Panoptic  Image

SemKITTI-DVPS Clt\rscapes -DVPS

Figure 8.5: Qualitative Results. Video panoptic and depth predictions
on SemKITTI-DVPS and Cityscapes-DVPS.

SemKITTI-DVPS Results. Table reports the evaluation
of the MonoDVPS network with self-supervised depth on the SemKITTI-
DVPS dataset. While ViP-DeepLab, utilizing the WR-41 backbone and
test-time augmentations, achieves superior results, the proposed network
would similarly benefit from a heavier backbone and these computation-
ally expensive operations.

Compared to the results on the Cityscapes-DVPS dataset,
smaller drops in DVPQ); are observed as the absolute relative depth
threshold A decreases on SemKITTI-DVPS. For instance, the difference
DVPQ{5— DVPQ{? is 6.6% on Cityscapes-DVPS, while it is 3.4% on
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SemKITTI-DVPS. This effect is even more pronounced for smaller values
of A. A possible explanation for Cityscapes-DVPS being more sensitive
to A is its increased complexity, with a larger number of instances per
image and more challenging scenarios, resulting in higher depth errors
on instances compared to the background.
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Conclusions

Creating an advanced system for autonomous driving requires
development and research of key technologies: robust surround view en-
vironment perception, accurate life-long metric localization and mapping,
scene understanding, motion prediction, planning and navigation. This
book has explored the critical role of visual perception in enabling au-
tonomous vehicles to navigate complex environments. Deep learning has
revolutionized visual environment perception, enabling robust and ac-
curate identification of objects, semantic regions, and measuring depth
from a single image. Tasks like semantic segmentation, instance seg-
mentation, panoptic image and video segmentation and depth estima-
tion have demonstrated their effectiveness in extracting contextual and
spatial details essential for building a 3D or even 4D environment rep-
resentation, across space and time, which is further used for navigation.
We have also discussed the challenges that arrise with these tasks re-
lated to the integration of such algorithms in an autonomous vehicle. As
such, the perception system of the automated vehicle needs to be robust
and accurate and should run in real-time on the limited hardware re-
sources available on the vehicle. For each individual task, we review the
literature and describe in more detail important methods, with a focus
on methods proposed in the author’s PhD thesis ”Deep Learning-based
Visual Perception for Autonomous Driving”.

In Chapter 3, semantic segmentation is explored comprehen-
sively, emphasizing its role as a foundational task in visual perception
for autonomous vehicles. The chapter delves into various approaches,
including traditional fully convolutional networks and more advanced ar-
chitectures such as ERFNet [131] and DeepLabV3+ [24], which excel in
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balancing computational efficiency with accuracy. Additionally, it in-
troduces transformer-based networks, which represent a significant leap
in the field by leveraging self-attention mechanisms to model long-range
dependencies and global context.

In Chapter 4, we explore instance segmentation, an advanced
perception task that assigns unique identifiers to objects within an image
while also assigning pixel-level semantic masks. We highlight the two
dominant approaches: top-down methods, which rely on object detection
frameworks, and bottom-up methods, which segment and cluster pixels
based on similarities. Two top-down methods are discussed in detail:
Mask R-CNN [63] which is a two-stage, very accurate but slower instance
segmentation network and RetinaMask [46] which is a one-stage network
with faster inference speed, but slightly lower accuracy. The RetinaMask
network has been also trained and tested on fisheye images from a 360°
camera system. From our findings, the detection range for pedestrians
on fisheye images is up to 20 meters due to the distortions introduced
by the lens. That is why it is important to implement a solution that
combines fisheye cameras and narrow field-of-view cameras especially for
the front area, in order to extend the detection range.

In Chapter 5, we discuss panoptic segmentation, a task that in-
tegrates semantic segmentation and instance segmentation into a unified
framework. This task enhances the ability of perception systems to si-
multaneously classify amorphous regions (e.g., roads, sky) and individual
objects (e.g., vehicles, pedestrians) while also identifying them. Panoptic
segmentation can be solved using two separate tasks: semantic segmen-
tation and instance segmentation. Since the semantic and instance seg-
mentation networks process the images on separate paths, their results
are independent and might be mismatched in terms of pixel-level seman-
tic labels. A solution to this problem is a fusion scheme [35] between the
instance and semantic output, which ensures a unique semantic and in-
stance label per pixel and increases the accuracy of the results at the same
time. Moreover, end-to-end one-stage panoptic segmentation networks
are the most suitable for deployment in autonomous vehicles, because
they meet the requirements of fast inference speed and high accuracy.
Also, it is important from a deployment point of view, to enable the use of
acceleration engines such as TensorRT and to design fully-convolutional
networks. Two one-stage networks are discussed, Panoptic Prototype
[117], which proposes the automatic learning of prototype masks guided
by object detections and AttentionPS [119] in which a novel panoptic
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head is introduced: object detections along with the instance center off-
sets are used for generating instance-specific soft attention maps. The
panoptic output is obtained by applying the attention maps to the se-
mantic segmentation. From a practical point of view, both networks are
fast and can be further optimized to run in more than 30 frames per
second on less powerful GPUs, which can be installed on a vehicle. We
also discuss a fast bottom-up panoptic segmentation network, Panoptic-
DeepLab [28], which formulates the task as semantic segmentation and
instance segmentation as offset regression to predicted object centers.
A more accurate but slow alternative represents the ISS-Fusion [35] net-
work which extends the instance segmentation network Mask R-CNN [63]
with a semantic segmentation branch, and proposes a fusion algorithm
between the two ouputs as a post-processing step.

In Chapter 6, we start with an overview of video panoptic seg-
mentation networks, which extend the panoptic segmentation task with
instance ID tracking across frames. Two networks are discussed: VPSNet
[74] and VPS-Transformer [121], the latter introducing a spatio-temporal
transformer module inside a convolutional network and a optical-flow
based instance ID tracking branch for improved performance, while keep-
ing the processing time low.

In Chapter 7, we discuss monocular depth estimation methods.
In the overview section, both supervised and self-supervised approaches
are reviewed. Self-supervised methods jointly learn depth and camera
pose from three consecutive frames. Based on geometric assumptions,
the current frame can be synthesized from the adjacent frames, and a
photometric loss is minimized. The major advantage of self-supervised
methods is that they do not need ground truth data, only the raw im-
ages. The focus in this chapter is on self-supervision and the method
MonoDepth2 [57] and the self-distillation framework SD-SSMDE [I1§]
are discussed in detail.

In Chapter 8, we present two methods for depth-aware video
panoptic segmentation: ViP-DeepLab [9] and MonoDVPS [122]. This
task extends video panoptic segmentation by incorporating depth esti-
mation. While ViP-DeepLab integrates a supervised depth estimation
branch, MonoDVPS employs self-supervised depth estimation.

This work highlights how individual components like segmenta-
tion, depth estimation, and video analysis coalesce into a unified frame-
work for perception. Together, these tasks contribute to a semantic 4D
understanding of the environment, laying the foundation for more intel-
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ligent planning, navigation, and interaction capabilities for autonomous
driving.

While significant progress has been achieved, the field of au-
tonomous driving is far from reaching its pinnacle. Future research should
explore the integration of multi-modal perception systems, leveraging
data from LiDAR, radar, and cameras to achieve redundancy and ro-
bustness under adverse conditions. Additionally, advancements in unsu-
pervised and semi-supervised learning could reduce dependency on large
labeled datasets, enabling faster adoption in diverse scenarios.
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