Alexandra FODOR lonel Horea BACIU

VIRTUAL
INSTRUMENTATION

- applications -

U.T.PRESS
Cluj-Napoca, 2025
ISBN 978-606-737-768-2

Alexandra FODOR Ionel Horea BACIU

VIRTUAL
INSTRUMENTATION

-applications -

i

\

U.T.PRESS
Cluj - Napoca, 2025
ISBN 978-606-737-768-2

Editura U.T.PRESS

Str. Observatorului nr. 34
400775 Cluj-Napoca

Tel.: 0264-401.999

e-mail: utpress@biblio.utcluj.ro
www.utcluj.ro/editura

Recenzia: Conf.dr.ing. Gabriel Chindris
Conf.dr.ing. Liviu Viman

Pregatire format electronic on-line: Gabriela Groza

Copyright © 2025 Editura U.T.PRESS
Reproducerea integrala sau partiala a textului sau ilustratiilor din aceasta carte este
posibila numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-768-2

LabVIEW Introduction

Contents

PrEIACE .ttt ettt s R R 6

1 LabVIEW INtrOAUCHION ... eeeeeseeectreesesseiseeseessss s ssss s s sssssssssssssesssessssanes 7
1.1 DEfINITIONS weeereereerresseeseerseerse s sees s s ss s ss bbb sasneas 7
1.2 Front Panel...... ettt ssss s sees 8
1.3 BlOCK DIia@ram.......cocucereeecereeseeseeeceseesessessesesssessssssssesssssssssssssssssssssssesssens 10
1.4 Graphic representation (icon) for the virtual instrument............. 14
1.5 Creating @ VI s ssssssssssssesssessenas 14
1.6 APPLICALIONS vt sssanes 15

1.6.1 Example 1 - implementing an application using Boolean
elements and fUNCHONS ... sssseeas 15

1.6.2 Example 2 - implementing an application using elements and

NUMETICA] fUNCLIONS ovuveeeeeeeereeeeese et ss s sssesssesssesens 16
1.6.3 Example 3 - using and representing different data types........ 17

1.7 Questions and EXEICISES ... eneninessinesssssssssessssssssssssssssssssssseens 18

2 Programmable Structures in LabVIEW: For and While.........cccoecorinnennee. 19
2.1 D] 500) U (o) 4 PP 19
2.2 WHhiLE SEIUCTUTE...co ettt er s 19
2.3 200D g o (1 10 0 P 20
2.4 WX 0] 0] 1 ToF: U (o) o 100N PP 22
2.4.1 Example 1 — While Structureoeconenreneenseeneeseeseeseseeesessesseens 22
2.4.2 Example 2 — FOI StIUCTUTEccevereereesreerseceseeesesssessseesssesssesssessseeseeens 23
2.4.3 Example 3 - transmitting data through local variables 23

2.5 QUESHIONS AN EXEITISES .eveurerreererrerresresserrsssss s sssessssessesssseasessens 25

3 Programming Structures in LabVIEW: Case and Flat Sequence............. 26
3.1 CaSE STIUCTUTLE ... nssens 26
3.2 Flat SEQUENCE ...ttt s bbb ss e 29

3.3 WX 0] 0] 1 ToF: U (o) o 130NN TP 30

3.3.1 Example 1 — Case StIUCTUTE . ..cuuomrrrrnsesmsensesssssesssesssssssssssssssssssssssns 30

3.3.2 Example 2 — Flat SEQUENCEoucreerrereenecereenserseeseeseessesssessesssssesssesseens 30
3.1 QUESTIONS ANA EXEICISES ..cureuerreererrerrerressesrssssssesssssssssssssssssssesssssessessessessens 31
Arrays, Matrices and CIUSTET'S ... sssssssssssssssesnes 32
4.1 DEfiNItIONS ettt sns s 32
4.2 Creating INPUL arTays ... 32
4.2.1 Control and indiCator arrays ... 32
T30 010 4 TS 7= 14 LU=V 0 | 35
4.3 Creating ClUSTETS .. essesessses s s s essssssessenas 36
4.4 WX 0] 0] 1 ToF: U (o) o 100N PP 37
4.4.1 Example 1 - build array.....coeeeeeeeneeeesssesssessseesseesseeens 37
4.4.2 Example 2 — array Operationsceeneeensesseesesssessesseesseenns 38
4.4.3 Example 3 - cluster Operationseeeneemeesseesseesssessseesseeens 39
4.5 QuEeStionSs and EXEICISES ... et ssess s sessses 40
SErings and I/0 FIles ... sssssessseseens 41
51 SEFIIIES 1ot 41
5.2 0 LN 42
53 WX 0] 0] 1 ToF: U (o) o 100N PP 44
5.3.1 Example 1 - generating Stringsccoeesmeeseesseesseesnsesessseessseenees 44
5.3.2 Example 2 - writing a string in an ASCII file......cc.couereereerneennees 46

5.3.3 Example 3 - reading and writing data from/to a binary file...47

5.3.4 Example 4 - saving and viewing data in TDMS format

(Technical Data Management Streaming)oeeeseeneesserseesseessessessesees 48
5.4 QuUEStiONS AN EXEICISES .vvvrrrrerrnersrssessesssessssssesss s ssssssssssssesns 48
Waveforms, Filters and NOISE. ... sssssssssssssssanns 49
6.1 Measuring waveforms Parameters ... eeeeseeseesessesssessesseens 50
6.2 NOISE SIGNALS ...vveererrrisrrrsr s —————— 51
6.3 DiIGItal fIlEETS oeuveeeeeeeeeeeerecr et ce et sss s 53

(S TS 700 SR 50w =) a0 470 o 0 U5 1 <) (O 53

LabVIEW Introduction

6.3.2 Chebyshev filter ... 53
6.3.3 EIlPHC fIlLer ettt sna s 54
6.4 SUDVIS and eXPpress VISeeeeesessesssesssessessssssseesssessesssessnes 54
6.4.1 SUDVIS e 54
6.4.2 EXPIess VIS sssssssssssssssnns 55
6.5 FV'0) 0] ¥ Cor= T) o 130 PN 56
6.5.1 Example 1 - signal generationenenseeneessesseesseeens 56
6.5.2 Example 2 - n0iSe GeNeration ... eemeeneesseessmessmesssessseesseeens 57
6.5.3 Example 3 - digital filter implementationcreeeneceneeen. 58
6.6 QUEStIONS AN EXEITISES ..vvvueerererreererseessereessesssesss s sssassssessssssssesns 59
Debugging and Optimizing VISccceerneemeeneemneeenseenseeseesseesssesssesssesseesseeens 60
7.1 |20) o0 i (=T od 1 0) o PO 60
7.2 Debug teChNIQUES ..o sses s ssesnnas 61
7.3 Error handling ... ssesssessessesssesesssssssessenns 63
7.3.1 Automatic error handling ... 63
7.3.2 Manual error handlingceeenenerneeseesseessseensessesssessssessees 64
7.4 APPLICALIONS oottt s s 65
7.4.1 Example 1 — debug methods.....ccoemenmernmeeneeneeenseensenseesseesssesnens 65
7.4.2 Example 2 - manual error handling.....coeveeoveenseenseenseeseesneeennees 66
7.4.3 Example 3 - sound card data acquiSition.......coceeeeereereenecereesseenenns 67
7.5 QUEStIONS AN EXEITISES ..vvureerrreereererseesseessessesssssss s ssesssssssssens 68
DeSign Patterns. ..o sssssessessesessenses 69
8.1 INErOAUCTION. ..ottt 69
8.2 State Programming ... seesssesessenns 70
8.3 State MAChINES. ... s 71
8.4 Event programming.......ssssssssssssssssss 72
8.5 WX 0] 0] 1 ToF: U [0} o 100N PP 74

8.5.1 Example 1 - state machine examplecceereenrereesrerneereeseeeneens 74

8.5.2 Example 2 - implementing the pooling methodc.ccooerueunncen. 75

8.5.3 Example 3 - implementing an application using triggering

events 76
8.6 QUESTIONS AN EXEICISES .oueeeereererrerrerresrerrssrsssssss st ssssssssssssssssssasssseas 78
9 Asynchronous Data Transmission and Data Synchronization................ 79
9.1 Asynchronous COMMUNICALIONuveeereenmeuseeseeseesseessessessessesssessesasessees 79
9.2 QUEUES.... e s e b 80
9.3 Data SYNCAroNIZationcoeereereeseineeseeeessessesss s ssessssesssaseens 81
9.3.1 Execution SyNChronization.........eecnensenseseeseessesssesseens 81
9.3.2 Software Synchronization.......cneeeeseenseesseeseessessseeens 82
9.4 WX 0] 0] 1 ToF: U o) o 13 00N PP 84
9.4.1 Example 1 - implementing an application using the
producer/consumer loop MOdeL ... 84
9.4.2 Example 2 - using timing functions.....cc.oceemeeneereersmeeseeeseesseesseeens 85
9.5 QueStions and EXEICISES ...t sessses 86
10 Frequency APPlICAtiONS ... eeeeernnereessees s seesssessssesseeens 87
10.1 FOUTIET ANAlYSIS . ieresrerreersrersressseesseessesssesssesssessssesssssssessssssssssssssssessssssses 87
10.2 Discrete Fourier Transform ... 89
BIOTR TV o) o] U=V o) o 0N TP 89
10.3.1 Example 1 - phase and amplitude representation 89
10.3.2 Example 2 - Discrete Fourier Transform ... 90
10.4 Questions and EXEICISESomenernereeneereensesssisesssessssssssssssssssssssssssssessees 91
11 User Interface CONLIol ...t ssessssesssessessss s 92
11.1 VI Server arChiteCtUre. .. neinsnsnesssisesssessssssssssssessssssssssssesses 92
B O 5 o] 0 T=) g 4 (6 (=T PP 94
11.3 INVOKE NOAES oottt sessesses et sessse s sassssees 95
114 CONIOl FEfEIENCE. ..ot s s saes 95
T11.5 APPLCALIONS ettt s s 96

11.5.1 Example 1- property nodes USAGe.......ccuenreereerrerreemrereessesssessenns 96

LabVIEW Introduction

11.5.2 Example 2 - using invoke Nodes.......coeeeneeneeenneenseeseeeseeennens 97
11.5.3 Example 3 - control reference........eoeneenseneeseesseeneens 98
11.6 Questions and EXEICISES . sessessssssesssssessessesesessessenns 99
12 Creating an EXecutable VIceesessessessseessessssssesanes 100
12.1 Files Preparation. .. cessesssiseeseessessssssesssssssssssssssessssssssssssssns 100
12.2 Specifications Creation ... ——— 101
12.3 Creating and debugging the applicationcocenenseenseeneeereeennees 103
12.4 Creating an installation file ... 105
BT Vo) o) § UoF: U (o) o U3 0N OO PPTPTTON 106
12.6 QuUEStiONS aNd EXETCISES ...oerrereerirnmerserserssessesssessesssss e ssssssesssssssssssesns 108
13 LSS =) (=) 0 Lol 109

Preface

This book represents an applied handbook for the Virtual Instrumentation
laboratory, edited and held by the authors at the Faculty of Electronics,
Telecommunications, and Information Technology. The handbook is meant
for the fourth-year students of the Applied Electronics specialization but is
appropriate also for anyone who wants to learn about graphical
programming language.

The content is structured in 12 chapters, the applications being grouped
according to the main functions surrounded by the code. The applications
have been developed and refined through years of classroom experience and
are closely aligned with the learning objectives of engineering programs in
electronics and even automation. This handbook aims to build both
competence and confidence in using graphical programming language as a
tool for modern engineering solutions.

Our most sincere thanks go to all colleagues, the professors who helped us
in editing this handbook, especially to the reviewers who took part of their
valuable time to share their opinions, and last but not least, to the students
whose curiosity and feedback shaped the content of these pages.

Cluj-Napoca, 2025
The authors

LabVIEW Introduction

1 LabVIEW Introduction

1.1 Definitions

LabVIEW is a graphical programming environment used for
developing measurement, test, and control systems. The applications
developed in LabVIEW are called virtual instruments, or VIs. These are
composed of three basic elements: Front Panel, Block Diagram and the

icon.

LabVIEW follows a Dataflow model for running Vis, which is based
on the idea that modifying a variable implies recalculating the value for

another variable dependent on the first one.

A virtual instrument can contain one or multiple subVlIs. These can

be structured as a project, observed below.

EnglishLabs.lvproj -... == o X
File Edit View Project Operate Tools Wind
hed D N R
Items Files
P3N Project: EnglishLabs.ivproj
% W My Computer
= Figl_2vi
4 %' Dependencies
‘®. Build Specifications

Figure 1.1 Project structure.

LabVIEW uses three types of files, one for its projects, *.lvproj, one

for the VIs *.vi and one for the personalized control elements, *.ctl.

The folders that appear in the project structure do not necessarily

appear as folders on disk, but rather subgroups of the used subVls.

1.2 Front Panel

The Front Panel, like the interface of a physical instrument,

represents the user interface, and can be seen in Figure 1.2.

Fig1_2.vi Front Panel on EnghishLaboratories.lvproj/My Comp... — O X
| File Edit View Project Operate Tools Window Help u :”@"
D ® 11 | 15pt Application Font ~ | 3o~ oy ¥~ @b~ 0 2
amplitude
i 5 signal out Plot 0 “ I
\ /
2- -8
) 4 0.5-
() 10 U
o b=
i a
frequency E
4 6
3 , -0.5-
2- ’ -8
O‘/ ¥
;

[EnghishLaboratories.lvproj/My Computer]|

Figure 1.2 VI Front Panel.

The Front Panel is comprised of a combination of control and
indicator elements. The control elements simulate input devices and give
data to the Block Diagram of a VI. The indicators simulate output
instruments used for displaying acquired or generated data from the VI

diagram.

The controls and indicators can be selected and inserted in the Front
Panel from the Control Functions Palette. This can be made visible through
two methods: the first is by accessing the optional menu delivered by right
clicking anywhere in the workspace of the Front Panel and the second is by

selecting the main menu View -> Controls Palette.

LabVIEW Introduction

Controls Q Search
Modem »
1 n [
J;’. 3} L [Fath)
Numeric Boolean String & Path
AN o
50) =
168 | s ,
Data Containers List, Table & Tree Graph
[=x] ‘ = 8,
fel) [ii]
Ring & Enum Layout Vo
o oA Y
o ‘ =1=] @

Variant & Class Decorations Refnum

Fuse Design System
Sitver

System

Classic

Express

{NET & ActiveX

I Select a Control...

| ¥

vvvvwvvww

Figure 1.3 Controls and indicators palette.

The controls and indicators are grouped as follows: numerical
elements, Boolean (logic) elements, arrays, matrix and cluster elements, list
and table elements, graph elements, input/output elements, dialog elements,
etc. These elements can be personalized by changing their shape or label,
using tools instruments, presented in Figure 1.4. For making the Tools
palette visible, select View -> Tools Palette. This allows the automated
selection of an instrument. In case manual selection is needed, the available
buttons are: a cursor for selecting and modifying position, a button for

modifying elements text and labels, a button for selecting colors, etc.

Figure 1.4 Tools Palette

The instruments palette has also control elements for the Block
Diagram. These allow connecting elements through wiring, adding

breakpoints for functions and structures, or viewing data on the wires.

1.3 Block Diagram

Each element on the Front Panel has a corresponding terminal in the
Block Diagram. The Block Diagram is the environment where the algorithm
is inserted, through graphical blocks for the virtual instrument to be created.

An example of such an algorithm can be seen in Figure 1.5.

Fig1_2.vi Block Diagram on EnglishLab... — O X
File Edit View Project Operate Tools Window Help i
D @N G 2% v 2 [15pt Applicatiof]

frequency signal out
[] 3

4l S
S (B[
U O

»1

' |

[EnglishLabs.lvproj/My Computer

Figure 1.5 Block Diagram.

Except for the terminals, which are the connection between the Front
Panel and Block Diagram, the latter can contain constants, nodes (which can
be functions) subVIs and structures, connection wires and free labels for

documenting code parts.

LabVIEW offers a wide range of functions. These can be accessed via
two methods: Firstly, by right clicking anywhere in the Block Diagram, and

secondly, by selecting from the main menu View->Functions Palette.

LabVIEW Introduction

4 Functions Q Search

Programming »
Ed b 2
Structures Amay Cluster, Class, &
Variant
6z 0]
[> ® |)
Numeric Boolean String
s
Comparison Waveform Collection
@ e &
File /0 Timing Dislog & User
Interface
® <,
e i3
Synchronization Graphics & Application
Sound Control
04 L =
o |y
Report VI Analyzer
Generation Execution Trac...
Unit Test
Framework
Measurement I/O »
Instrument 1/O »
Mathematics »
Signal Processing »
Data Communication »
Connectivity »
Control & Simulation »
Express »
Addons »
Select a V...

Figure 1.6 Functions Palette.

The functions palette contains structures, numeric functions,
Boolean functions, array handling functions, comparison functions,
waveforms functions, file handling functions, etc. LabVIEW allows searching
for functions with known names.

Q, Search SIS
> QRetum tomize¥

| sine wavd
=

| Functions Controls

Sine Wave [NI_AALBase.viib]
Sine Wave PtByPt [NI_PtbyPt.lviib]
Sine Waveform [NI_MABase.Ivlib]
3] Simulate Signal < <Waveform >
) Simulate Signal <<Input>>
| Simulate Signal <<Signal Analysis>>
3] Simulate Arbitrary Signal [NI_ExpressFullvlib] <<Waveforn
) Simulate Arbitrary Signal [NI_ExpressFullMib] <<Input>>

Figure 1.7. Searching for functions.

LabVIEW also allows searching for already implemented examples
for certain functions.

Fig1_2.vi Block Diagram on EnglishLab... S] X
File Edit View Project Operate Tools Window
| S® @ G 22w Show Context Help Ctrl+H
= 4 “

frequency signal out LabVIEW Help... Ctrl+?
(Explain Error...

Find Examples...

Find Instrument Drivers...
Web Resources...

NI-Sync VI Reference Help...
dagproject...
Ivdetthelp...

Activate LabVIEW Components...

Activate Add-ons...

Check for Updates

Customer Experience Improvement Program...

Patents...
About LabVIEW...

Figure 1.8 Searching for examples.

The window below will be opened when selecting the ,Find

Examples” menu item.

[l NI Example Finder _ X
Browse Search Double-click an example to open it. Information
iy A 8 examples match your search criteria » ~ | [Description:
e eyword(s) Continuous Serial Wiite and Read.vi CYMl This example. while not
Detect Serial Break Event.vi mm" ik for the ;
(search) RS-435 Transceiver Control.vi B mmmm{'.‘ “ e
Double-click keyword(s) Serial Port Monitorvi 23
Serial Write and Read on Two Ports.vi B This example performs writes and
~ | Set Serial Break Event.vi B reads on a serial port, as dlrehcted
by the user. You can press the
I 1. Y P
’:°: Sinpje Seristyi % Wiite and Read buttons, and
aborting Asynchronous Call and Collect (Using Option 0x40). change the Read Count, while the
absolute example is running.
academic
accdb The parameters set for the serial
acceleration port must match the parameters
Access of the connected instrument or
accumulator device. In this example, the Read
acquire Count parameter specifies the
acquisition bkt A At
action Requirements
actions [
activation
active
Visit ni.com
for more examples
Hardware
Find hardware |
() Limit results to hardware Add to Favorites Setup... Help Close

Figure 1.9 Examples.

In the Block Diagram, apart from the regular functions, there are also
controls, indicators, and constant elements.

Control and constant elements are similar because they give
certain information to the output. The difference between them relates to

LabVIEW Introduction

the fact that controls can be modified while a VI is running, and constants are

not modifiable.

Amplitudine Amplitudine
| [
3 T
1000
Amplitudine Amplitudine
¥ »
a). b). c).

Figure 1.10 a) Control element; b) indicator element; c) constant.

The default appearance mode for a control or indicator element can
be modified by right-clicking on an element and selecting the option View

As Icon.

In the Block Diagram, different data types are represented with

different colors.

I . W i Numeric float values (double)
Jisy [Numeric integer values

@ e Boolean values

ey G Strings

» A cluster of numeric values

=0 =3 Mixed elements cluster

=) File Paths
@ References

Figure 1.11 Data type representation.

Scalar
Vector 1-D
Vector 2-D (matrix)
Signal
e Reference
File path.

Figure 1.12 Wire data types.

1.4 Graphic representation (icon) for the virtual

instrument
A VI'sicon is the graphic image which represents a VI in another VI. It
is recommended to be as explicit as possible, to reflect the function the VI

has.
Fig1_2.vi Front Panel on EnghishLaboratories.lvproj/My Comp... — [m] X
| File Edit View Project Operate Tools Window Help H:]:]
D & n [15pt Application Font v | $ov ov i) -
amplitude 7
': 6 signal out ,PL"LO ,g
\ /
2- ’ -8
9\ 1 10 g
v 3
frequency E
4 6
\ /
2- ’ -8
0 "10
=P p—
g2

[EnghishLaboratories.lvproj/My Computer|
Figure 1.13 Viewing the icon of the current VI.

In the above image, the icon is seen in the red box, and in the blue
one, the shape the connector terminal has, which shows us how we can

connect the elements in the Front Panel. Using left double click, the icon

editor is opened, and it can be personalized.

1.5 Creatinga VI

LabVIEW = o X

File Operate Tools Heip

LabVIEW™ 2024 Q1
< 1/8 > »
Create Project Open Existing
Get Started With LabVIEW
Recent Project Templates All Recent Files ¥
Blank Project EnglishLabs Ivproj

Find Drivers and Add-ons Community and Support

ission forums

s and expand the Participate in the di
w or request technical support

Figure 1.14 Creating a project.

LabVIEW Introduction

The first step in developing a LabVIEW application is to create a
project that will be saved under a particular name, the next being the
creation of a new VL.

Englishlabsivproj-.. — O X

File Edit View Project Operate Tools Win
prl=1< IR oL R
Items Files

+ (8 Project: EnglishLabs.vproj
A J] g Proj
- e

f Trace Execution... RN OO
Export » | Type Definition
Import » | Library
I

o Class
Interface

Find Project ltems... Actor

T XControl
Vanable

Expand All Vs

Collapse All .
NI-DAGmx Task

Properties

st NI-DAQmx Channel
NI-DAGmX Scale
Unit Test
Test Vectors
_ New.-

Figure 1.15 Creating a new VL.

on Englsnlate
Fle Edt View Projsct Opeste Tooks Window Help
D @M G, 02 wam 3, pthpphcationfort ~ | lov Gav GO Uah

A,
[EngiihLabs vproy My Computer]

Figure 1.16 Front Panel and Block Diagram for a new VL.
1.6 Applications

1.6.1 Example 1 - implementing an application using Boolean
elements and functions

result = (a-b) @ (c +d) 1.1

In the Block Diagram, from functions palette, select Boolean
functions. From there, with drag & drop, select AND, OR, XOR and NOT
blocks.

Using the wiring tool from tools palette, connect the blocks as seen in
Figure 1.17.

I
Figure 1.17. Wiring the first example.

result b D!

0600
-
ol &

Figure 1.18 Front Panel and Block Diagram of the first example.

In the Front Panel, from the control palette, select Boolean elements
subpalette. Then, add, using drag & drop, four Push Buttons and Round LED
indicator. The values for the push buttons will be set by pressing each button,
for the variables a, b, ¢, d (a lit push button has a true value).

The application can be run by pressing the Run button, to see the
result.

1.6.2 Example 2 - implementing an application using elements and
numerical functions

result = (x +y) - (z/w) 1.2

In the Block Diagram, select Numeric Functions Palette. From the
functions, using drag & drop, we select the following blocks: Add, Divide and
Multiply. Using the Wiring Tool from Tools palette, connect the three blocks,

LabVIEW Introduction

as seen in Figure 1.19. In the Front Panel, select numerical controls sub
palette, which will place four Numeric Control elements for setting numerical
values for the 4 variables (X, y, z, w) and a numeric indicator for the output.
In the Block Diagram, connect them appropriately.

) = .
5 Jizsh
i 2 |
y Y
A 5 result fizay result
/z 12.25) >
9'7 Jizsh
w w
2
o 4 Jizsp

Figure 1.19 Front Panel and Block Diagram for the second example.

1.6.3 Example 3 - using and representing different data types

In this example, a warning generation application will be
implemented, for exceeding the maximum or the minimum supply voltage
value. This application needs: three Numeric Control elements, for selecting
the minimum, maximum and current value thresholds, a String Indicator,

for a text message and a Round LED for indicating the error state.

Upper Limit Voltage ~ Operating status.

A

o 15

Input voltage

o 12 T
Lower limit voltage Warning!
A
o 10

[If Input voltage >= Upper Limit, Voltage over upper limit.]

ICaut\cn!
Upper Limit Voltage Voltage over upper limit

DBL N Less Or Equal? | Select Operating status,
1>@. Fibe]
Input voltage
[¢ Greater Or Equal? Select Not Equal?
> Warning!

3 f |
I> % --TF
Lower limit voltage Caution!
DoL N 9 Voltage under lower limit

[if Inputveltage <= Lower limit, Voltage under lower limit.]

Figure 1.20 Front Panel and Block Diagram for the third example.

In the Block Diagram, add from the Comparison functions palette the
following elements: Less Or Equal?, Greater Or Equal?, Not Equal and two
Select.

Text messages that will be displayed by the Functioning state
Indicator, are given by three string constants (Functions Palette, String
Subpalette).

1.7 Questions and Exercises

1. Fill in the truth table for equation 1.1 and check, according to this
table, the results obtained by the first example.

NI

x=a'b|y=c+d | z=xBy

ol Ll Ll Ll Ll Ll Ll Ll =R k=2 [==} [e} [en } en } Fan i e i §H]
el Ll Ll laad =2 (== =R N I S I Y (el el lelle] joy

R ORIOIRIOIFROFR|IOC|IR|IO|IR IOk |O|

R OICOIR|IRICIC(RIFRIC|IC|IR|IkRICo|n

2. Inthe first example, as well as in the second one, determine which
operation will be executed first.

3. Implement the function result = [(x/y) * (z-w)] + q.

4. What can be noticed when representing different data types?

Programmable Structures in LabVIEW: For and While

2 Programmable Structures in LabVIEW: For and
While

2.1 Definitions

In LabVIEW, the programmable structures contain sections of
graphical code and control how and when the code inside them is executed.
The most common programmable structures are While, For and Case. They
are used for running code sections several times or running them based on
certain conditions. In LabVIEW, the structures can be found in Functions -

Structures palette.

2.2 While structure

Like DO or REPEAT - UNTIL loops from the usual programming
languages, While structure repeats the code (subdiagram) inside it until a
specific condition is fulfilled. This subdiagram is executed at least once.

Figure 2.1 shows the components of a While structure. The While
structure executes the code subdiagram until the condition terminal
(bottom-right) which is an input terminal, receives a certain boolean value.
The states of the condition terminal can be Stop if True or Continue if True.
When the condition terminal is in Continue if True state, the While loop is
executed until it receives a False condition. The iterations terminal (bottom-
left) contains the number of iterations that have passed. The iterations

counter starts from 0.

Iteration termina
Condition termina
Boodean control button

s1or 3
o @

Figure 2.21 While structure components.

Changing the state of the condition terminal is done by left clicking

on its surface.

Transmitting data from one iteration to another is done with shift
registers. These shift registers are similar to static variables from C/C++.
They are added with a right-click on the edge of the While loop and selecting
Add Shift Register-.

5] =
Visible Items >
Help
Description and Tip...
Breakpoint »
m Structures Palette »
v Auto Grow

Exclude from Diagram Cleanup
Mark as Probe Sampling Source
Replace with For Loop

Replace with Timed Loop
Remove While Loop

Add Shift Register

v Stop if True
Continue if True

Properties

Figure 2.22 Adding a shift register.

Because the VI checks the condition terminal at the end of each
iteration, the While loop gets executed at least once. The VI is not functional

if the condition terminal is not connected.

2.3 For structure

A For structure executes the code inside it, for a known number of

iterations. For structure has as main components:

e The count terminal - input terminal - specifies the number
of executions for the code inside the structure. Routing a
constant with negative or zero value prevents code

execution.

Programmable Structures in LabVIEW: For and While

o The iteration terminal - output terminal - indicates the
number of executed iterations. For the first iteration, its

value is 0.

Initial elements of a For structure can be observed in Figure 2.3.

N

Counting termina

Iteration terming

m/ >

Figure 2.23 Main elements of a For structure.

For passing data from one iteration to the next, one must add shift
registers, like the one described in Section 2.2.

Apart from its functionality of repeating code, a For structure can
also be used for creating arrays, with its indexing properties. In Figure 2.4,
the difference between the tunnels that leave the For loop is given by the

indexing mode.

FHE

Auto indexing mode

Array
FOEL

Last Value
FOEIL

Last valuve made

Figure 2.24 Indexing properties.

Selecting the output mode of the data is done with a right click on the
tunnel terminal (shown with the two arrows in Figure 2.4) and selecting
Tunnel mode field.

2.4 Applications

2.4.1 Example 1 - While structure

The first example is creating an array with the help of the iteration
terminal of a While structure, creating a sum result for the elements in each
iteration, and displaying the result of the last iteration. The Block Diagram
and the Front Panel are presented in the next figures.

While Loop

Wait (ms)

Last Result

L odlarray

Figure 2.25 Block Diagram of the first example.

N N-1 N-2 N-3 N-4
15 10 6 3 1
L Array
«9 0 ' E G J10 J1s
stop
Last result Sum result
15 15 STOP

Figure 2.26 Front Panel of the first example.

Position the mouse above the first created Shift register until the
Resize option is activated and expand it for creating multiple entities of the
Shift Register at the input of the While loop.

Question: Notice the fields “Sum Result” and “Last Result”. When are
they populated?

Programmable Structures in LabVIEW: For and While

2.4.2 Example 2 - For structure
The second example repeats the functionality of the first example but
using a For loop instead of the While Loop.

MNumeric For Loop

R

Wait (ms)

Last Result

N-1 Sum Result

e
[

L e d—fEsalaray

Increment

%

l[ddadd

Figure 2.27 Block Diagram of the second example.

Numeric
;} 5
N N-1 N-2 N-3 N-4
15 10 6 3 1
Array

90 J1 3 3 jo s

Last result Sum result
15 15

Figure 2.28 Front Panel of the second example.

Question: What are the differences between the first and second
example, specific to this application?

2.4.3 Example 3 - transmitting data through local variables

In this example the execution of two while loops is shown, in parallel,
using local variables. Their purpose is to read/write data in the controls or
indicators placed in the front panel. The final Block Diagram is shown in
Figure 2.9.

Numeric

Multiply

[H=—

[N]
e e

7

=,

=

Figure 2.29 Block diagram for the third example.

It can be observed that for the Numeric and Stop controls, local
variables were created for transmitting the value from the first structure to
the second one. The steps for creating the local variables are shown in Figure
2.10.a).and b).

Multiply
Numeric
" Create Constant Muktiply
Create Control
Create Indicator
»ANumeric
Visible items » Create Constant
Find Control Create Control Add
op
E Make Type Def. % E Create Indicator —
Hide Control Visible Rems 4
Change to Indicator Find 4
Mo Change to Amay Select tem » E
B CragetoComion [T
Description and Tip... Help
Numeric Palette » Description and Tip.-
. o Breakpoint »
Data Operations »| Control
Advanced » | Indicator Numeric Palette »
Create »
i
Reference Replace »
Representation »
e D Open Front Panel
Properties Invoke Node »
T Channel Wiiter... Remove and Rewire
Cluster from Selection ot

Figure 2.30 Creating local variables for “Numeric” and “stop”.

When creating a local variable, its implicit state is in writing mode,
thus, for reading the data, we must select “Change to Read” (Figure 2.10. b).

Programmable Structures in LabVIEW: For and While

2.5 Questions and exercises

1. Which is the minimum number of iterations for a While structure?

2. Which is the value of the For Structure iteration terminal, if N = 5?

3. What is the execution order of the loops in example 3?

4. Design an application for generating the factorial value of a natural
number N.

3 Programming Structures in LabVIEW: Case and Flat
Sequence

3.1 Case structure

In LabVIEW, a Case structure contains two or more subdiagrams
(cases), of which only one is executed at a time, depending on the value the

structure has at its input terminal.

This structure is the equivalent of the ,if/then/else” statement or a

»switch/case” instruction in C++ programming.

The tag of the Case selector structure is located on the top of the
block and contains the name of the currently selected case. On both sides of
the tag, increment/decrement arrows can be found. With the help of these
tags, the defined cases can be viewed. In the next figure a generic Case

structure is presented.

case selector

Figure 3.31 The components of a Case structure.

The Case structure can be found in Functions Palette -> Structures
-> Case Structure. When placing a Case structure on the Block Diagram of a
VI, the case selector will have the default data type of Boolean and the
number of available cases will be two, corresponding to True and False. To
create a control for this terminal, right click it and then select ,Create
Control”. At this moment, on the Front Panel of the VI a button will appear,
which will have two states, True or False, corresponding to the tags of the
Case structure. The mechanical action of the Boolean control can be

modified with the help of a right click, as seen in the Figure below.

Programmable Structures in LabVIEW: Case and Flat Sequence

Boolean

Qo Visible tems b

Find Terminal
Change to Indicator

Make Type Def,
Description and Tip...

Create

Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

Mechanical Action » | Switch When Pressed

. M3 _F| |m_F|
Properties E v | [
o — | |

m3E_£| [mEF—| [mI_F|

[N i [v

ko —td| [roe—td| |ro—t 1|

Figure 3.32 Modifying the mechanical action of a Boolean control.

v vy wvw

The available mechanical actions are as follows:

e “Switch When Pressed”,
e “Switch When Released”,
e “Switch Until Released”,
e “Latch When Pressed”,

e “Latch When Released”,
e “Latch Until Released”.

The difference between these states is intuitive, as seen in Figure 3.2.
The state “Switch when Pressed” will change the state of the button to False
from True when the button is pressed, “Switch when Released” will cause a

state change then the button is released.

The Case selector determines which of its subdiagrams will be
executed, depending on its entry value. The date type for the entry variable
can be Boolean, string, int, enum or an error cluster. Additional cases can be
added, depending on the data type, by right clicking the structure and
selecting ,Add Case...”.

To define a case selector with type Enum, place an Enum by right

clicking on the Front Panel and then selecting Ring & Enum -> Enum before

routing anything to the selector terminal. Defining of the Enum states can
be done on the Front Panel by right clicking the control and selecting ,Edit

Items”. The properties window shown in Figure 3.3 will appear.

[Enum Properties: Enum EJl_=
Appearance Dota Type | Disploy Format | Editltems | Documentation [[«
Trems Values - Insert
Red 0
Green 1
Blui 2

Move Up
Move Down
- Disable ltem
Allow undefined values at run time

Figure 3.33 Modifying the properties of an Enum type controller.

After defining the states that the Enum control can take, it can be
routed to the Case selector. At this moment the Case selector tags will
automatically take the states defined in the enum but will not automatically
create all the states. Using the option ,Add Case..” (accessible by right
clicking on the edge of the case structure) all the necessary cases can be

created to equal the number of cases defined in the Enum.

After adding the necessary graphical code to the subdiagram of the
Case structure, it is necessary to connect all the output terminals in all
subdiagrams. If one of the terminals remains unrouted, this will look like
the one in Figure 3.4. a). and it will cause an error when running the VI.

Figure 3.4. b). shows a terminal that is routed for all cases.

4 "Blue" M2 4 "Blue" 't

unrouted terminal

Display Number

routed terminal

Display Number

Color Color

Figure 3.34 States of an output terminal for a Case structure.

Programmable Structures in LabVIEW: Case and Flat Sequence

3.2 Flat sequence

A Flat Sequence structure contains one of more subdiagrams or
frames which are executed in a sequential order. This is used to ensure the
execution of one piece of code before the other. The data flow in case of a flat
sequence differs from the data flow of other structures. The frames of a flat
sequence are executed in order, from left to right when all the data routed to
the frame is available. The input data of one frame is dependent on the

output data of the previous frame.

The Flat Sequence can be placed on a Block Diagram of a VI by
selecting Functions Palette -> Structures -> Flat Sequence Structure. By
default, the Flat Sequence structure contains one frame, however, but
additional frames can be added by right clicking on the edge of the frame and
selecting ,Add Frame...". A generic Flat Sequence structure as well as the

adding of frames can be seen in Figure 3.5.

subdiagram

Visible ltems »
structure Help
Description and Tip...
Breakpoint »
0000000000000 0000 Structures Palette »
J Auto Grow

Exclude from Diagram Cleanup
Replace with Stacked Sequence
Replace with Timed Sequence
Remove Sequence

Add Frame After

Remove and Rewire

Properties

Figure 3.35 The Flat Sequence.

A Flat Sequence structure is executed starting with frame 0 (leftmost
one), frame 1, frame 2 until the last frame (rightmost one) is executed. This
structure does not finish its execution and does not return data until the last

frame is executed.

3.3 Applications

3.3.1 Example 1 - Case structure

The first example shows the display of a constant specific to a certain
case. The Case Structure contains 7 cases, corresponding to the colors of the
rainbow (ROYGBIV) (0-6). For each case a different constant is displayed.
The Block Diagram for this first example can be seen in Figure 3.6.

While Loop
CaseStructure
S 4 "Red”, Default ~pf™
Wait (ms)
Enum 1000 Numeric
T 'ﬁ'l_] Wait (ms)
Items i
Red %
Orange message One Button Dialog #
= = »
Blue -
Pink
Wait (ms)
Index stop
¥
n o=
=
a). b).

Figure 3.36 a) Block Diagram for Example 1 and b) the content of next cases of the
Case Structure.

The Block Diagram shown in Figure 3.6 a). represents a Case structure
inside a While loop. This implementation was chosen to ensure the
continuous running of the application when pressing the ,Run” button and
is the equivalent of a state machine.

3.3.2 Example 2 - Flat sequence

The second example shows the operation of a Flat Sequence structure.
The execution order of the frames will be from left to right and the value of
the LED 1 variable will be modified with the help of a local variable.

Programmable Structures in LabVIEW: Case and Flat Sequence

While Loop

Flat Sequence Structure
10 0o0o0oon0oonoo oooogooon ooooooo ooo0o0o0ooo

- LED 1
Local Variable
+ lon LED 1 £} [vaie0 1] || @} haeo] || E- @
| g
& pALED 1
LED 2

D0 0000000000000 0000000000000 00000000
Index

i |—{irsz]]

Figure 3.37 Block Diagram for the second example.

3.4 Questions and exercises

1. What is the information displayed on the Front Panel of the first
example? What about the second example?

2. What is the effect of the Wait block inside the While structure in
the case of the first example?

3. When is the LED 2 variable updated in the case of the second
example?

4 Arrays, Matrices and Clusters

4.1 Definitions

Arrays are collections of data of the same type. They can have one or
more dimensions forming arrays or matrices. In LabVIEW, arrays can have

all data types. The only limitation is that arrays of arrays cannot exist.

Each element of an array can be accessed through its index. The
index is between 0 and N-1, where N, is the total number of elements. A 1D

array is shown in Figure 4.1.

index 0 1 2 3 4 5 6 7 8 9
vector 10 elements | 1.2 | 1.7 | 1.1 | 1 | 1.2 | 3.1 | 2.5 | 2.4 I 1.2 I 1.6 |

Figure 4.1 Array of 10 elements.

Arrays in LabVIEW are 0-based indexed.

Unlike arrays, clusters are elements that can contain different data
types. They are similar with structures from the usual programming

languages.

4.2 C(Creating input arrays

Input arrays are of two types - those that can be accessed from the
Front Panel and constant vectors, which only have a correspondent in the

Block Diagram.

4.2.1 Control and indicator arrays

4.2.1.1 Manual mode

From the controls palette of the Front Panel Array & Cluster group

can be selected.

Arrays, Matrices and Clusters

<431 Controls @ search
Medemn »
) B =k
k=] &]
Numeric Boolean String & Path
arald Ll i

tad {1 Array, Matrix & Cluster

| g

mmmmm

wvzy ’g ’? \a i}

p— ErrorIn3D.ctl Error Out3D...

Figure 4.2 Controls palette for vectors, matrices, and structures available in the
Front Panel.

From this palette, with drag & drop, we can select Array block. Inside
the created field, any type of element can be added, for example numeric
controls, boolean controls or string controls. Also, an indicator array can be
built in the same manner, by replacing the controls with indicators. The first
dragged element decides the data type for the whole array.

Array 1 0 1 2 3 4 5 6 7 8 9 —» index
:ijo _:10 Ir)o JD ;JO JO ‘:JO :JO }JO Jo JD 10 elements
Array 2
Array 3
{—;’0 la Iab Iabc labcd lb lba Ibb Ibc lc ch
a).
?E =]
: &
EL

Figure 4.3 a). Array 1 is numeric, Array 2 is Boolean, and Array 3 is a string.
b). Correspondent for each array on the Block Diagram.

The default appearance mode for an array in the Block Diagram can

be changed, by right clicking on the icon and selecting View as Icon.

In the Front Panel, the element on the left (highlighted in Figure 4.4)
indicates the index of the first visible element of the array. This is useful for

viewing a certain element from a certain index, when the array is large.

Modifying this first element does not lead to modifying the array size

(number of elements).

0 1 2 3 4 5 6 7 8 9 —» index

:';) 0 "33 _:JM ’J 55 _1166 _:177 }Jaa }199 - PA :Jn _1)123 10 elements
: 3 4 5 6 7 8 9 — index
3 ° I O EE P O 10 elements
6 7 8 9 —> index

-") 6 : B 22 gn [10 elements

Figure 4.4 Red box: array index.

Sometimes it is necessary to use matrices. A matrix is a
multidimensional array, which requires the existence of two indexes: an
index corresponding to the number of lines and another index

corresponding to the number of columns. Both indexes are zero-based.

PR T
o
g 1 :
|
__________ Visible ltems 3
Find Terminal
Change to Indicator
Change to Element
Make Type Def.
Description and Tip...
Create »
Replace »
Data Operations »
Advanced »
Fit Control to Pane
Scale Object with Pane
Array
Add Element Gap A
Export 3 3 -
. |0
Properties \d

Figure 4.5 Adding a new dimension to obtain a matrix.

4.2.1.2 Automatic mode

The loops studied in Chapter 2 can index and accumulate arrays

automatically, this feature being called self-indexing. However, there is a

Arrays, Matrices and Clusters

difference between the two, the While loop and the For loop, which consists
in the number of elements allocated by the processor to create that array. In
the case of the While loop, the processor will allocate a maximum number
of elements, the limit being the available memory. In the case of the For loop,
the number of elements is given directly by N, thus for the automatic
generation of arrays the For loop is used, the While loop being used only in

situations when memory allocation is not an issue.

Lines

EHR

Columns

N 1D-Array
= ~ PDBI _

(1) ‘ 2D-Array e

— -Array
fio} > > g————q-ed IO o o

2 2D-Array
El 74 %}0 [|4 |7 |2 Is
0 8 TN PR N N

7 |10 it} |4 Ja Jo

Figure 4.6 Automatic generation of a 2D array using self-indexing.

The inverse operation is valid as well, in which at the input of a For
loop we connect an array with a certain number of elements, X. In this
situation it is necessary to know that if N is greater or equal to X, the
number of iterations of the For loop will be set to the number X. If N is
less than X, then the number of iterations will be N.

4.2.2 Constant arrays

These arrays can be defined and modified only in the Block Diagram.
Creating arrays of constant elements is similar to creating the array of

control elements, only they will be generated in the Block Diagram.

-1 Functions Q search
v

Programming

.

]

41 Array
Structures Array
=" " Bl
2 g ;
Numeric Beolean Array Size Index Array .. InsertInto Ar... Delete
»| » [2-, & B
TH]| A E
% 0] B EE CERCY
Comparison Timing Initislize Array Build Array ~ Array Subset Max&Min Reshape Array
|] ~ g
)
3 7 E
File /O Waveferm Sort 1D Array Search1D Ar.. SplitlD Array Reverse1D A.. Rotate 1D Ar.
° ; = i
P b = = [FET]
+ e El z

5

g
5L

7

o

Synchronizat... Graphics & S... Interpol

v Thr

i

shold L., Inter

eave 1D... Deci

i
8
g
g

imat;

Measurement /0
Instrument /O
Mathematics Array Consta... Amay To Clu... Cluster To Ar... Array to Matrix Matrixto Array

Signal Processing

Data Communication

s

Connectivity

Express »
Addons 4
Select a V...

FPGA Interface »

Figure 4.7 Array functions subpalette.

@] [[e] B] index

|4.5 2.7 J13 J42 |53 J25 | 10-element array

Figure 4.8 Types of arrays of constant elements.
4.3 Creating clusters

Clusters are used to organize data. Their use facilitates reading

diagrams of complex applications by reducing the number of existing
connectors.

The method of creating clusters is like the creation of arrays. From
the controls palette in Figure 4.2, using drag & drop the Cluster element can
be selected. Within the Cluster object, using drag & drop, all the necessary
elements can be inserted, regardless of the datatype. They can be numerical

controls, boolean, string control, indicators, etc., all placed in the same
Cluster.

Arrays, Matrices and Clusters

Cluster
First Name

Cra—

Last Name

Popescu Unbundle By Name

Cluster =
Pibe] |First Name

Age E First Name
4 1 ast Name bibc]|Last Name
2 Gl
)o der Numbe! TJ Cluster » Age
o e = [Order Number} 2 Order Number
9" = recod] FrElrecord

T“’"’ » Birthday

~ Place of birth [~~—kabc]|Place of birth

Birthday
;j 23/11/1979
Place of birth

a). b).).

Figure 4.9 Cluster a). Front Panel; b). Block Diagram equivalent; c). accessing each
cluster element.

Both in the arrays and clusters cases, we cannot have, inside the
same object controls, indicators and constants. Different objects must be

created for each type.

4.4 Applications

4.4.1 Example 1 - build array

The example presented below uses the Build Array function to create
arrays from various input types. Build Array function has two options: a
default one, which concatenates the inputs (adding an element at the end of
another, resulting in a 1D array), and one for creating a 2D array, obtained
by right clicking on the Build Array function, and de-selecting the option
Concatenate Inputs. When placing the function on the Block Diagram, it has
only one input available. Inputs are to the node by right clicking an input and

selecting Add Input from the menu or by resizing the node.

array
element
element
element

appended array

When creating control and indicator elements in the Block Diagram for the
Build Array function terminals, by default, they have only one element in the
Front Panel. The array can be increased to the number of elements needed

by resizing it, using the resize handle found on the edge of the array shell
border.

Inputs Outputs
/ ?’"YA 'V_‘Wﬂ'*‘“’"y
30 ‘ﬂ: ﬂz .‘ﬂi ﬂa ﬂs] a‘o l' lz l3 I‘ l’ l”
x
e
Aray B appended array 2
Ll .| A
O - - - o S O T -
Lt EEUNERRRRRRNE LI I TR T T O
"IN’ e’ e o T | O O CO O
AmayD
90 B,‘ I O T . wpended amoy 3 i
£ 31" P B e 5 I a2 s 1o

Array
o= SN EsER NN EERE T aEEn e, "
30 H’ 21 d(2 3, 23 ;'a’ 24
— Index
. 2

While Loop

Array A

DBLY Build Array 2appended array
[DBL K o

Array B
[osiy} Build Array appended array 2
An’ay G ﬂ]_

[oBL);

Array D

[0BL) Build Array appended array 3
oyt T

Index stop
7] 1000} i DO
<]

Figure 4.10 Front Panel and Block Diagram of the first example.

4.4.2 Example 2 - array operations

In this example, two array creation methods are implemented, one
using the Index Array function and one using the For structure. By running
this example, you can see the difference between the two creation methods
as well as what happens when performing simple mathematical operations

(add, subtract, multiply, divide) with them.

Arrays, Matrices and Clusters

nearest integer value
0
array A

9._.0. o Jo Jo Jo Jo Jo o

I wiEy s T T T T T T T]
o]5 |4 |1o |4 0 0 0

Result Array

Fo B |4 |10 |4 0 0 0

subarray
T . e e e e R e e e e e e e
3.0 |4 Im 0 0 0 0 0
Siop Index While

STOP s

Figure 4.11. Front Panel for the second example.

While Loop
Random Number (0-1)
iﬁg Round To Mearest
nearest integer value
{E] Case Stucture
Initialize Array ‘Divide", Default ¥
’_arrayA
iy = Result Array
= —]
N Al Sub
ey S Barray
%ﬂ Armray B [
[s g—ne]
m LG ‘Wait (ms)
Index While o0 wop
@ B

Figure 4.12. Block Diagram for the second example.

4.4.3 Example 3 - cluster operations

In this example, an operation for modifying the value of an element
embedded in a cluster is presented. In Figure 4.13 an array of clusters can be
seen, in which an array cell is identical with the cluster presented in Figure
4.9. The method for creating the input array is presented in paragraph
4.2.1.1, the first step is creating the cluster and after that, the cluster is
dragged into an array field.

¢ -

e
J

¢ e

Figure 4.13 Front Panel for the third example.

Input Array

Index Array

A — output cluster
- 2 modified item
e

Figure 4.14 Block Diagram for the third example.

4.5 Questions and exercises

1. Develop an application in which, by using the Index Array block,
extract:
a. 1 element chosen by the user from a 1D array,
b. 1 row chosen by the user from a 2D array,
¢. 1 column chosen by the user from a 2D array.
2. What is the purpose of the Array Subset block in example 2?
3. Whatis the difference between array A and array B in example 2?

Strings and 1/0 Files

5 Strings and I/0 Files

5.1 Strings

A printable sequence of characters represents a string. They can be
used for more than just writing text. For example, in the case of control
instruments, numerical data is represented through string characters, which
afterwards are converted to numerical values. In many situations, saving
numerical data implies using strings, which means that those numerical

values need to be converted to strings before writing them to a file.

Like for the other data types, for example Numerical or Boolean,
LabVIEW provides a subpalette in the Front Panel for strings, with control
and indicator elements. The subpalette is called String & Path.

Numeric
GIETE) b
0
[
Amay, Matri -
=g 5.,
Ring BEnum Containers 10 File Path Co... File Path Indi..
o ¥ o W
o ‘ od @
Variant &Cl.. Decorations Refnum

[+]

NET & ActiveX
Select a Control...

Figure 5.1 String control and indicator subpalette.

Unlike the Numerical elements and Boolean, for String elements we
have the possibility to configure the display of data. The types available are
Password Display, '\' Codes Display, Hex Display and Normal Display.

Biigr i 7
| 1

;
"""" Visible Items »
Find Terminal

Change to Indicator
Make Type Def.
Description and Tip...

Create
Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

vy vrwsw

+ Normal Display
' Codes Display
Password Display

Hex Display

Limit to Single Line
Update Value while Typing
o Enable Wrapping

Properties

Figure 5.2 Choosing data display type.

In the Block Diagram, LabVIEW provides us with a functions

subpalette just for strings.

3
o

LI
i

0E=0

... String Subset Trim Whites... MNormalize E...

g iy
k. a

String Length Cor

E
o
'El

g8

(3
3

Replace Subs... Searchand R.. Match Pattern Match Regul... Path/Array/S...
= [F = 13 x| 3 Y
i i
o iz = &) L
Sca St.. Formatinto.. FormatDate.. Build Tet —Number/Stri..
o, @
ERE b"},
Spreadsheet .. Array To Spr.. To Upper Case To Lower Case Flatten/Unfla...
M
| =]
String Const... Empty String... Space Const.. Tab Constant Additional St...
&

Carriage Ret... Line Feed Co.. End of Line ..

Figure 5.3 String functions subpalette.

There we find certain functions that perform a series of operations
on strings and certain common constants. In addition, a subpalette for

conversion between Number / String is available.

5.2 FileI/O

Input and output files (I/ O) are used to read and save data on the
storage media. LabVIEW provides us with a range of functions for these

operations.

<31 Functions

@, Search]
»

Programming

String
L
n

Dialog &

&
7

Strings and 1/0 Files

E-L
File /O
L
ie E [(&
- [
Synchronizat... Read Spread... Write Meas F... Read Meas File
] Fg
Instrument /0] E
Mathematics | OPen/Create.. CloseFile Formatlnto... Scan From File
Signal Processi
Data Communt - Tt File Read Text File Wite Binary ... Read Binary ..
Connectivity T =k W o
Express =]
Addons Build Path Strip Path File Constants Config File VIs
Selecta VL. v
o

e T

TDM Streami... Storage/Data... Zip XML

§§
Waveform Fi.. Adv File Funcs

Figure 5.4 Functions subpalette for file operations.

Files are one of the types of resources available and can be accessed
using the functions above. Resources are the addressable files, hardware, or
network connection of that system. LabVIEW includes several features that
allow access to these resources. The resources are recognized by the

system’s access routes to them (path) name, port, or another identifier.

One such application, in which we use resources, has a structure

similar to the one shown below.

I R

Error checking

Termination
process

Figure 5.5 Basic structure for a resource application.

Initialization Operations

The initialization stage comprises specifying a path to a used

resource (path) or name of the used device. Following this stage, LabVIEW

creates a reference number (refnum), which is a unique identifier for each

resource. Basically, refnum is a temporary pointer to the resource.

The termination process block releases the used resources. LabVIEW
allocates memory for each object that is assigned to a refnum. When the

process is finished, the memory is freed.

Access and 1/0 file operations are performed using applications that

have a similar basic structure to the one presented in Figure 5.5.
LabVIEW can use or create the following file formats:

Binary - efficient, compact, allows reading random elements, but not
eye-readable. It is used to read and write data with an increased speed, for

example in DAQ applications.

ASCII - text is readable to the naked eye, the data is represented as

strings.

LVM - LabVIEW measurement data file is based on ASCII code; it is a
text file delimited by Tab character. These files can be read by spreadsheet
applications, LabVIEW default and applications like Excel.

TDMS - is a binary format specifically to NI and comprises both data

and properties of such data.

5.3 Applications

5.3.1 Example 1 - generating strings

In this application, several methods of generating strings and string
constants are implemented, using default TAB or End of Line, or created by

the user.

Strings and 1/0 Files

Last Mame First Mame before substring
Muresan Ylad lenut Mame: Muresan Viad lenut
Birthday:
Birthday (yyyy/mm/dd)
1599/08/21 match substring
Year:

resulting string

Marme: Muresan Vlad lonut
Birthday: Year: 1999 Month: 08 Day: 21 after substring

1999 Month: 08 Day: 21
length
76

array
30 f1999 s J21

stop 3
0
| J Index

=]

STOP

Figure 5.6 Front Panel of the first example.

IName:i
Tab Constant
=l

Format Into String resulting string
String Length length
B bI527]

o] I®@ Wait (ms)
Index A stop
o - B=HE =
]

Figure 5.7 Block Diagram of the first example.

5.3.2 Example 2 - writing a string in an ASCII file

Several operations with arrays are demonstrated in this application,
as well as writing all data to an ASCII file.

X A
9.‘0' '_;,-'-'-" 90) -8___' spreadsheet string
— — 78
7 7 77
— — 010
0 10 25
3 3 09
f — 06
3o 9
i 6
1o 0
appended array
A=
70 7 7 0 3 0 0 0
90 8 7 10 6 9 6 0

transposed array

Ar——
3-0 7 8
A=

Ho

ENEE D E R
HEEE E E B

Figure 5.8 Front Panel of the second example.

Write to Text File

=

Spreadsheet String

For Loop

appended array

FoBL]

Trans

spreadsheet string

transposed array

FDBL]

Figure 5.9 Block Diagram of the second example.

Strings and 1/0 Files

5.3.3 Example 3 - reading and writing data from/to a binary file

Binary file writing example. This application involves generating a

vector of 10 elements which are then saved in a binary file.

Array While Loop Index
7

stop
STOP a 0

o| ~.‘| w| m| U‘l m| \‘| 4| ml Al

Figure 5.10 Front Panel of the third example, writing example.

While Loop
For Loop Wait (ms)
Array
b1
prepend array or string size? (T)
Open/Create/Replace File L Mto Binary File o Close File
oY - — 3]

operation While Loop Index stop

[@l.

+ replace or create]

Figure 5.11 Block Diagram of the third example, writing example.

Binary file reading example. This application involves reading data

from the previously created binary file.

data graph pioto FENG

10+

Amplitude

L e S Y Y
0 25 50 75 100 125 150 175 200 225
Time

Bty
-
7° lo

Figure 5.12 Front Panel of the third example, reading example.

DBL constant data graph

on data type r
BED) 0 data array
" VF LT k
.) |+ >1132)
Open/Create/Replace File - Close File
] Py X
operation (0:open) 0 @ﬁr‘w’.l oiot [
“+open | Get File Size Read from Binary File

Figure 5.13. Block Diagram of the third example, reading example.

5.3.4 Example 4 - saving and viewing data in TDMS format
(Technical Data Management Streaming)

This file format contains two types of data: data on the saved name

and properties, and measurement data, saved in binary format.

Sine Sine N

Amplitude

Time

Figure 5.14 Front Panel of the fourth example.

prompt group name in (Untitled)

Choose the file path! |~ Simulate Signal [~

default name File Dialog TDMS Open | TDMS Write TDMS Close | TDMS - File Viewer (NXG Style).vi
; s B TOMs

Simulate Signal Simple Error Handler.vi
operation (0:open) |

................... e fandler
o L — =

Figure 5.15 Block Diagram of the fourth example.

5.4 Questions and exercises

1. Improve the functionality of the second example, so it matches the

structure in Figure 5.5.

2. What can be seen when looking at the data in the new file created in
Example 3, situation 1?

3. How can the data saved in TDMS format be viewed?

Waveforms, Filters and Noise

6 Waveforms, Filters and Noise

LabVIEW provides us with a subpalette function in the Block
Diagram called Waveform.

Functions [=]
Q search | & Customize~,
~ Programming
» »
CRE 2
= 2o
Structures Array Cluster, Clas...
(i & i
Numeric Boolean String
B C =
5 O b
Comparison Timing Dialeg & Use.
G G
'
File VO Waveform| Waveform (5]
@)’ | | [[S sesrch] & Customizer

L

Synchronizat... Graphics &

Measurement /O

Instrument VO Get Wim Co... Build Wavef...

Mathematics

»
»
»
: Signal Processing s
»
»
»

B y
Data Communication
S,

Express ScaleDeftat GetXY Value Get Time Arr..

Addons

e oo
et o
» FPGAInterface Analog Wfm Digital Wfm Wfm File /O

]

Figure 6.1 Functions subpalette for generating waveforms.

The items found in the subpalette are used to perform certain

functions such as:

- generating analog, periodic (sine, rectangle, etc.), random (noise),
and digital waveforms,

- extracting individual data elements of a waveform,

- editing individual data elements of a waveform,

- writing or reading a waveform in or from a file.

These waveforms can also be defined using models. Basically, we
generate wave signals by their duration. We can control the signal’s
amplitude, phase, number of cycles, and number of samples. The palette used
to define the generation functions, filtering, measuring, etc.,, is found in

Functions >> Signal Processing.

41 Functions
Programming

Q, Search||
»

» ¥
B | e
Structures Array Cluster, Clas...

C ¥ ¥
[

Numeric Boolean String
[" O -}
ﬁ @ “
Comparison Timing Dialog & Use...
| B &
]
File /O Waveform Application ...
(D C & O B
“m» J
Synchronizat... Graphics & 5... Report Gener...
Measurement /O L4
Instrument I/0 3
Mathematics L3
Data Communication L
Connectivity L
Express)
Addons L
Selecta V...

FPGA Interface

] Signal Processing

e

i

H
g

Wfm Genera... Wfm Condi

LI~

—} |

Sig Generation Sig Operation

in]

Filters

]

Spectral

iti... Wfm Measure

G

Transforms Point By Point

Figure 6.2 Signal Processing functions subpalette.

6.1 Measuring waveforms parameters

LabVIEW provides us with a subpalette function within a Block

Diagram that helps in making measurements of signals in both time domain

and frequency domain. You can perform:

- measurements of average values of signals (DC-Direct Current),

- measurements of effective values (Root Mean Square RMS),

- measurement of signals’ amplitude and level,

- FFT spectrum (it returns phase and amplitude),

- FFT power spectrum, rise and fall times, the growth rate.

To access the measurement functions subpalette, select Functions

>> Signal Processing >> Measure WFM.

Waveforms, Filters and Noise

Waveform Measurements @
[4t | & search | @, Customize~ |
T B ¥
b
Basic DC-RMS Avg DC-RI Wfm Monito...
Ty = =
i Fu
Transition M... Pulse Meas Ampl & Level
ral= E
B JFnlyz [Fnayz.
Extract Tone Extract Tones Harmonic Dist SINAD Analy...
i E
fp=iesol FrT [T
FFT Power S... FFT Mag Pha... FFT Real Imag
o Grom 2
FRF Mag Pha... FRFReallmag Cross MagP.. Cross Reall.
=] =] " o = =]
IS X
Spectral 2 Chan Spect... Distortion Tone Timing-Trans Amp & Level

Figure 6.3 Waveform Measurements functions subpalette.

We can use the DC value to define the value of a static signal, or which
varies slowly. DC measurements can have positive or negative values. The
continuous DC level of a signal v(t) over the time interval from t; to t; is given
by the equation:

t;

1
tr —t1 J;

1
, Where tz-t; is the integration time or measurement time. Therefore,

DC value is the average of a signal value, calculated over a range of time.

The RMS level measurement is used when a representation of the
energy is needed. Its value is always positive. RMS level of a continuous

signal on a time interval (ty, t2) is given by the equation:

ta

1
VRMS = —_ f Vz(t) : dt 6.2
t, =t Jg

1

, Where t;-t; is the level of integration or measurement time. So, the RMS is

the effective value of a signal measured at a time.

6.2 Noise signals

Uniform white noise - a noise signal, which is not repeated, and for
which the spectral energy/Hz is independent of frequency. Its spectrum

looks flat on the display of a spectrum analyzer.

Gaussian white noise - a noise signal with a Gaussian distribution
of its instantaneous amplitude values. The frequency spectrum of such a

signal is flat and has equal values at all frequencies.

Pseudorandom noise - the signal spectrum is flat. The noise is
generated using a digital feedback shift register, so the noise sequence is
repeated after a given number of samples. Also, since the signal is repeated,
it is a discrete frequency spectrum, with a spectral component at the
frequency N*F, where F = 1/T, T being the length in seconds of the sequence.
Because the signal is repeated, it is called pseudorandom noise. True random

noise does not repeat and has a continuous spectrum.

Noise signals can be used to perform frequency response

measurements or to simulate certain processes.

a. The term White - ideal white noise has equal power per unit of
bandwidth, resulting in a flat power spectrum. Thus, the power in the
frequency range of 100Hz to 110Hz is the same as in the range of
1000Hz to 1010Hz. In practical measurements, achieving a flat power
density spectrum would require an infinite number of samples. Thus,
when we measure the power spectrum of the white noise, the values
are usually mediated.

b. The terms Uniform and Gaussian refer to the probability density
function of the amplitudes corresponding to the time domain noise
samples. For the white noise, the probability density function is uniform
within a specified interval. So, all values of the amplitudes within

certain limits are equally probable.

Pseudorandom noise is a sum of sinusoidal signals with the same
amplitude but with random phases. This noise does not have power at all
frequencies, only at discrete frequencies corresponding to the harmonics of
the fundamental frequencies. However, the noise level at each discrete

frequency is the same.

Waveforms, Filters and Noise

6.3 Digital filters

Signal filtering is a basic operation in processing information
transmission through noisy environments. Digital signal filtering means the
signal spectrum processing represented by sequences of numbers at
discrete time intervals by means of software implementations of algorithms.
Signal filtering in the presence of noise can be done using the filters

described below.

6.3.1 Butterworth filter

This filter has a monotonic attenuation characteristic of type

maximum flat. The transfer characteristic of such a filter is shown

below:
F(jw)|* = :
IF(jw)|* = W 6.3
Wc
The graph of the transfer function for several values of n is shown
below:
|F(jw)|2 Filtru Butterworth
—n=1
—n=2
—n=3
—n=8
We w

Figure 6.4. Butterworth filter transfer characteristic.

6.3.2 Chebyshev filter

This type of filter is specified by the equation:

IF(jw)I? =

1+€2'Vnz'(wﬂc) o4

where € is the ripple and V,(x) is a Chebyshev polynomial of order n

that can be generated by the recurrence formula:

Vn(x) =2x Vn—l(x) - Vn—z(x);
6.5

Vi) = x
Vo(x) =1

0 0.5 1 L5 2
w/mg

Figure 6.5. Chebyshev filter transfer characteristic.

6.3.3 Elliptic filter

Elliptic filter is based on the properties of Jakobi elliptic function.
This function, denoted with sy(w), is a periodic double function of complex
variable w and analytical in the plan u except for simple poles. Since the
function is double periodic, the base pair of the two zeros and poles is
repeated infinitely along the axes x and y.

1
F(jw)|? = ————+—— 6.6
IF (o) 1+ ¢e2-sn?(w)

 H(w)|

X

Figure 6.6 Elliptic filter characteristic.
6.4 SubVlIs and express VIs

6.4.1 SubVIs

All VIs that we create ca be called from other virtual instruments.
These contain Block Diagram, as well as the Front Panel. The appearance of
a subVl is given by its icon. After creating the Block Diagram and the Front

Panel of a VI, we will create an icon and its associated connector panel so

Waveforms, Filters and Noise

that we can use this created VI as a sub-VI within other Block Diagrams.
Every VI displays in the right corner of the Front Panel and Block Diagram
an icon. For individualization or its editing double-click is used with the left

mouse on the icon in question.

coniiecto’s
\.~ N J
¥ | N
icon

Figure 6.7 Connectors panel and icon.

To use the VI as a subV]I, building a connector panel is also required.
Connector Panel is a set of terminals that correspond to the control elements
and indicators of that VI and can be seen in the right corner of the Front Panel
next to the icon. This connector panel defines the inputs and outputs that you
can use for the subVI.

Each rectangle represents a connector panel terminal. We will use
these rectangles to assign the terminal input or output. We select the desired
control element or indicator from the Front Panel, then click on one of the

rectangles in the connector panel to associate a terminal.

6.4.2 Express VIs

Express VIs are designed to complement the joint operations
commonly used in the acquisition, analysis and presentation of data. The
difference between an Express VI and a subVI is that the user does not have
access to the Block Diagram. The configuration of an Express VI is done hen
placing it on the Block Diagram, when a configuration window is opened

automatically.

£ Configure Simulate Signal [Simulate Signal]

Signal
Signal type
Sine
Frequency (Hz)
101
Amplitude
1

Add noise

Moise type

»

Simulate Signal

Uniform White Noise

Noise amplitude
06

L3
Timing

Samples per second (Hz)
1000

Figure 6.8 The appearance of an Express VI and its configuration window.

Number of samples

Actual frequenc
101

Phase (deg)
Offset Duty cycle (%
50
Seed number Trials

-1 1

Simulate acquisition timing

@ Run as fast as pessible

100] Automatic

Integer number of cycles

Actual number of samples

Result Preview

14

Amplitude

Time

Time Stamps

© Relative to start of measurement

Absolute (date and time)

Reset Signal

Reset phase, seed, and time stamps

@ Use continuous generation

Signal Name
| Use signal type name
Signal name

Sine

[ox

Cancel

6.5 Applications

6.5.1 Example 1 - signal generation

In this application, a method for generating a sinusoidal waveform is

implemented.

amplitude

45555
3% 1T Fes

3 -
2501]
2~ -8
157! B8
1 -9
0-50/ .

frequency

signal out

Amplitude

T
01 02 03 04 05 06 07 08 09 1
Time

pioto ER¥E

7
W
errorin (no error)
status code
21 g

source

[]

sampling info
Fs

21000
e

error out
status code
4| o

source

|

Figure 6.9 Front Panel of the first example.

Waveforms, Filters and Noise

offset
frequency 2
b signal out
b o
error in (no error) B error out
[Sack =5

sampling info

Figure 6.10 Block Diagram of the first example.

After making the Block Diagram and Front Panel, follow the steps

for creating the subVI, shown in paragraph 6.4.

6.5.2 Example 2 - noise generation

For noise signal generation, the application below is proposed. The
Block Diagram uses the CASE structure to be able to select different types of

noise.
signal out (70 m
Enum 10
;,' Uniform
o
=
2
o
E
<L
-10- i i
80 100
Time
error in (no error) error out
status ‘code sampling info status code
A
I Yo s 7| o
SOUrCE gll‘GGk SElER

] i I

Figure 6.11 Front Panel for the second example

["Uniform”, Default w "Uniform", Default

"Gausian”

"Periodic”

Unifarm White Moise Waveform.vi
f=T ¢

error in (no errer) |2

. error out

sampling info

Figure 6.12 Block Diagram for the second example

After making the Block Diagram and Front Panel, follow the steps for
creating the subVI, shown in paragraph 6.4.
6.5.3 Example 3 - digital filter implementation

The Block Diagram uses the CASE structure to be able to select
different types of filters.

Filter Type Filtered X

Jeuteworth g
X

9.0. ...:J:.G. p——

error in (no error) error out

e code I

o1 P Wi

source source

- -~
L - L -

Figure 6.13 Front Panel for the third example.

Waveforms, Filters and Noise

Case Structure
"""""""""" 4 "Butterworth", Default

filter type

Default

Enum
v

"Chebyshev"
Inverse Cheshev Filtered X

X

[DBLN

sampling freq: fs

oBL]

erworth Filter.vi

high cutoff freq: fh

Simple Error Handler.vi

low cutoff freq: fl

[}

Figure 6.14 Block Diagram for the third example.

After making the Block Diagram and Front Panel, follow the steps
for creating the subVI, shown in paragraph 6.4.

6.6 Questions and exercises

1. Improve the functionality of the first example, by using an enum
button to select between different types of signal generation: sine/

rectangular/saw tooth/ triangular.
2. Develop amain VI which integrates all the previously created subVls.

Signal

Generation

+ Filter

A

Noise
Generation

Figure 6.15 main.vi structure.

7 Debugging and Optimizing VIs

Very often, when creating Vis, at the end of the design phase, we may
encounter issues and errors.
7.1 Error correction

VI Debugging is carried out automatically by the integrated compiler,
which, during the application building, checks constantly for semantic and
syntax errors.

When the Run button is not broken, the VI can be compiled and
executed. If an error in the program exists, the VI cannot be run.

" al

S Untitled 1 Block Diagram on Untitkeid. | = | B | 5

File Edit View Project Operate Tools Window

@[1][@][e5] [valm ot | [

Boolean String

Untitled Project 1/My Computer < | 1 | »

Figure 7.1 A broken Run VI button.

To run the application, the errors found in the Errors List need to be
corrected.

B Error list (=) =] =

Tterns with errors

[unttedr |8

1 errors and wamings Show Wamnings [

® Block Disgram Errors o

You have connected two terminals of different types.

1

Details

These cannot be wired together because their data types (numeric, string, array,
cluster, etc) do not match. Show the Centext Help window to see what data type is
required.

The type of the source is boolean (TRUE or FALSE].

The fime nf the cink ic chrinn

« [

[closs || showEmer | [Help |

Figure 7.2 Error List Window

Debugging and Optimizing VIs

The most usual causes of a broke Run button are:

- Broken connections in the diagram, for example:

e Connecting a Boolean control to a string indicator,
e Connecting two numeric controls together.

— Aterminal required to be connected is not connected. These types of
terminals, for LabVIEW predefined functions, are represented in
BOLD in the Help Window. Such an example is present in Figure 7.3.

— Anerror exists in a subVI.

£ LabVIEW Help =] oo

& -
Hde Locale Back Options

Conterts | ingex | Somvch | Tavertes Actor:Launch Root Actor VI

Owning Palette: Actor Framework Vis

@ Unit Test Framework

0 Measuremert 10 Vls anc Requires: Base Development System
Q Instrumert 140 Vs and Fu (Filename: Actor Framework.Ivlib:Actor.lvclass:Launch Root Actor.vi)
@ Vathematics Vis Launches an asynchronously running VI that performs tasks and handles
@ Signal Procsssing Vis messages for the Actor. This VI returns a reference to an enqueuer that
= ([Data Communication Vis you can use to send messages to the newly launched actor.
[2] Gobal Variable The Launch Root Actor VI launches the Actor without a caller. Use this VI to
@ Local Variable launch the root actor of the actor tree. Use the Launch Nested Actor VI to
@ Sharsd Variable Nod| launch all other actors.
@ Network Streams Fur| Details

@ DataSocket Viand F
@ Protocols Vis and Ful
@ Queue Operations Fu
Q Synchronization Vis
= () Acter Framewark Vis
[7] Read Caller Eng.
[7] Read Seff Enque
(7] Launch Nested
[3] Launch Root Act
[7] Read Actor
[2] Read CallerTo- Open Actor Core front panel? specifies whether, on
[2] Read Emor Repo ™ launching the actor, the front panel of the Actor Core method

r opens. The default is FALSE. The TRUE setting causes this VI to

ratirn an arrar in tha rin-time annina

Actor's Enqueuer
e Tl e e e error out
Open Actor Core front panel...

Actor specifies the initial state of the actor.

m| »

error in describes error conditions that occur before this node
runs. This input provides standard error in functionality.

EHEE

Figure 7.3 Help Window, with required terminals.

7.2 Debug techniques

Debug techniques are used when there are unexpected results at the
output of a VI and NOT when the run button is broken (which indicates error
presence).

In case of unexpected results or behavior, the following situations

must be verified:

— Ifunconnected subVIs exist,

— Ifinitial data are correct,

— If undefined data appears,

— If data representation is correct,

— Ifnodes are executed in the correct order.

There are four ways of debugging, discussed next.

Execution Highlighting - tool used for following or visualizing
values of the data flow on each wire. This does not execute the application in
real time, it slows down significantly the running of the application, to

highlight the data values on all wires.

Edit View Project Operate Tools Windo

_ RE@MIE]fsbele - [

Figure 7.4 Execution Highlighting.

Single-Stepping - used for seeing the action of each function or
subVI. These functions allow suspending the execution of a subVI and

controlling execution time or returning to the initial state.

Edit View Project Opergte Tools Windo

> [@] @[|[][eq [val= o2 [fset.

Figure 7.5 Single-Stepping.

Probes - used for immediate viewing of the values that are passing
through wires and error checking.

I MainVLvi Block Diagram =) =@ =

File Edit View Project Operate Tools Window Hel
. ’

]

L6.lvproj/My Computer < [I v

Figure 7.6 Probe.

Specific to this function is retaining values on the selected wires to

allow viewing them at the end of the application.

Debugging and Optimizing VIs

3 Probe Watch Window

@ Probe Display
gube(;iainwmi Gh Value Last Update - Graph Table Attributes

<Waveform(DBL) 6/8/2015 11:24:57 AM
{1/1/1904 2:28:50 AM,
Lol 1>

[2] Probe <Waveform(DBL) 6,/8/2015 11:24:57 AM
{1/1/1904 2:28:50 AM,
ek b

[3] Filtered » [-855.178E-9, -8.437E- 6/8/2015 11:24:57 AM

Amplitude

]
; 0 |||||||||| |
7 A

Figure 7.7 Probe watch window.

Breakpoints - When the block to which a breakpoint was set is
reached, the VI will pause, the Pause button will become red. The following

actions can be performed:
— Single-Stepping,
- Probes,

— Modifying controls in the Front Panel,

— Pressing Pause for continuing the application.

7.3 Error handling

It is well known that every problem that may appear cannot be
predicted. Without a mechanism to check the errors, we will know only that

the VI does not work properly.

Error handling methods tell us how and why the errors occur. In

LabVIEW there are two methods implemented:

— Automatic error handling method,
— Manual error handling method.

7.3.1 Automatic error handling

LabVIEW does automatic error checking. It takes the following

actions when an error occurs:

— Suspends the execution of the program,

- Highlights the subVI or function that generated the error,
— Generates a list of errors.

This function can be disabled in the Tools >> Options, as can be seen

in the figure below, marked by unchecking the two highlighted fields.

I Options =) =] O bl
| Category [~ Block Diagram
Front Panel
Block Diagram| Wiring B
Controls/Functions Palettes
Envirenment Enable automatic wire routing
Search
Paths [] Enable auto wiring
Printing

Minimum distance (pixels)

Source Control n

Menu Shortcuts

Revision History Masimum distance (pixels)

Security = B

Shared Variable Engine

\IServer Show red Xs on broken wires

Web Server Show dots at wire junctions E

j

MathScript

Statechart =

FPGA Module FE T |_
Enable automatic error handling in new Vs
7] Enable automatic error handling dialogs

N Constant Folding

[7] Show censtant folding of wires

[7] Show censtant folding of structures.

Block Diagram Grid

[T Shrss hlnrk dizarzee arid

[ok][cancel |[Hep

Figure 7.8 Disabling automatic error handling.

This is acceptable in the case of prototype applications, but it is not
recommended for professional applications. This automatic error checking

is not included in executable applications.

7.3.2 Manual error handling

This method allows the user to control the timing of appearance for
error dialogs, errors propagate from the error out terminal of a function to
the error in terminal of the next, ending at the Simple Error Handler VI

function.

IDEL) Eldata graph
8] b 132 @ v05L] |data array

Open/Create/Replace File Close File Simple Error Handler.vi

Io open "— -:-D @wJ ’ % - Dx

Get File Size Read from Binary File

Figure 7.9 Manual error handling.

Debugging and Optimizing VIs

This method of routing the error path involves the appearance of a
new error generation function for the situation where we have many parallel
lines. This function is called Merge Errors, and it is important to know that
it does not concatenate the errors. It will return an error when the first

error is encountered. If it finds no errors, it will return the first warning.

To create error in and error out pins in a subVI, use error cluster
controls and indicators. The error cluster, regardless of its type (control or

indicator) has the following components:

— Status - returns TRUE when an error occurs. In case of
warning or no error, it returns FALSE,

— Code - is the LabVIEW numerical identifier of the error or
warning,

— Source - ID of the function in which the error occurs.

error out

status code
g

source

Figure 7.10 Error cluster with FALSE status (no error).
7.4 Applications

7.4.1 Example 1 - debug methods

This example proposes testing the four debugging methods, as well

as introducing an error to observe the behavior in the error situations.

Index 1

P

Index 2
347

Warning MAX

Warning MIN

Figure 7.11 Front Panel of the first example.

To Double Precision Float
E} *

|Detection of upper limit| Warning MAX

2

[Detection of lower limit| Warning MIN

[J+—==]]index 2

Figure 7.12 Block Diagram of the first example.
7.4.2 Example 2 - manual error handling

This application highlights an example of manual error handling.

Debugging and Optimizing VIs

signal 1 Plot0 m I

amplitude
0.00
v high state level
E 0.00) multiple tone information
E low state level ’;) 0 detected frequency
(e 0.00000
detected amplitude
0.00000
detected phase (deg)
Time 0.00000

detected frequency

signal 2 Plotd BB | 7o rus) Poto M 0.00000

50 detected amplitude
5 0.00000
detected phase (deg)
2 N 0.00000
:E- E‘— detected frequency
= T 0.00000
detected amplitude
0.00000
I I I I detected phase (deg)
200 300 400 500
Time Time LS
Figure 7.13 Front Panel of the second example.
E =
FiMs
100
5 Sing Waveform.vi Spectral
5 Measurements
signal 1 oocey Signals FFT - (RMS)
1000 FFT - (RMS) vp=
1000 Phase " Simple Error Handlervi
error in (no errol Merge Errors
error out i 4 |
0 signal 2
315 ultiple Tone Information.vi
1|multiple tone infor]
2 i
Merge Errors o
50 E » amplitude
- » high state level
1000
: b low state level
1000

Amplitude and Levelsvi

Figure 7.14 Block Diagram of the second example.

7.4.3 Example 3 - sound card data acquisition

With this application we highlight an example of manual error
handling for the acquisition of a beep sound on the sound card of your

computer.

deviceD FFT- (RMS) Piot0 Y |

y
3’0

error out
status code
| Fo

source

stop . “LJJI]ML;;@O 1050] 1 A
STOP v

Time

Figure 7.15 Front Panel of the third example.

device ID

Sound Input Configurevi Sound Input Read.vi Sound Input Stop.vi Simple Error Handler.vi
= — = Bl
| 7 | ‘z @ error out
&] = L J & =)
Sound Input Start.vi — Sound Input Clear.vi
Spectral
Measurements
» Signals FFT - (RMS)
[FFT- (RMS) spi=ss]
Phase
—=
] I

Figure 7.16 Block Diagram of the third example.

7.5 Questions and exercises

1. In Example 1, insert an error and run the error handling both
enabled and disabled. What do you notice?

2. Inthe case of Example 2, what can you say about the function Merge
Errors? Which module executes first between: Spectral
Measurements, Extract Multiple Tone Information and Amplitude
and Levels. Change the application so that the order of execution is
the user’s choice.

Design Patterns

8 Design Patterns

This chapter covers code implementations and techniques that are
solutions to specific problems in LabVIEW design.

8.1 Introduction

Many of the VIs we build perform sequential tasks. By default,
LabVIEW is set so that no sequential programming is performed.

Sine
s ,,, Enter the value of the] stop running
b variable X1 and X2. X1 Formula the application
.

> One Button Dialog (D5 0—p Result One Button Dialog)
Simulate Signal x2 | Simple Error Handler.
T B o =1 I 5
error out) Perror in (no erro

error out M

Figure 8.1 LabVIEW application without setting the execution order of the
modules.

In the example above we can see the lack of sequential programming.
If we run the application, the functions will be executed randomly, without a
specific execution order, any of which can be executed first.

To impose an order execution of operations, it is recommended to
use error clusters and refnums, which are references numbers of specific
data types.

Not all features available in LabVIEW have error clusters available,

such as the One Button Dialog function, also used in the example above.

Sine

[Enter the value of the L] IWI
! X1 Formula the application
One Button Dialog [Eed—p Result One Button Dialog
Simulate Signal X2 t W—)| Simple Error Handler
Sine Mol =2 = [error out

error out L error in (no erro! j |

error out L

Figure 8.2 LabVIEW application and the use of existing error clusters.

One of the methods of choosing and fixing the execution order, in the
absence of error clusters, is the use of the sequential structure. This has
already been studied in Chapter 3.

The best way to create this VI is, however, to use error structures for
modules that do not include error clusters. This structure is not directly
available in LabVIEW but is created using the Case Structure, by routing an

error cluster to the Case Selector.

Case Structure Case Structure

T[o Error ~H] = [{No Error vP]
— e
Enter the value of the sdeee stop running
variable X1 and X2. X1 Formula the application
b One Button Dialog DELE— Result One Button Dialog
Simulate Signal = X2 Result ¥ ¥OBL Simple Error Handler.vi
7k -
errorout ¥ i errorin (no Evrmj -
= errorout ¥

Figure 8.3 LabVIEW application using Error Case Structure.

Another problem is that this application will run once, the program

stops running at the end of the last block execution.

Basically, this is the simple structure of a VI. It can perform a simple
measurement, calculation or even display a result and does not require a

user start or stop action.

A general VI has a more complex structure. As mentioned in a
previous chapter, a general VI has three components:

- A startoran initialization,

- The code itself, which is typically contained in a While loop which
helps to run continuously the same portion of code (multiple
executions),

- One stop, used to free up resources.

Such a deployment technique is also used for systems that use state
diagrams, but in their case, within the While loop, several actions can be
implemented - during one iteration, only one action can run.

8.2 State programming

State programming helps us solve the following issues, which cannot

be solved in sequential programming:

— [Ifitis necessary to change the sequence execution order,

Design Patterns

— Ifrepetition of a sequence is necessary, more times than of another
sequence,

— If some elements in a sequence are executed only when a certain
condition is encountered,

— Ifitis necessary to stop the program immediately before the end of
the sequence execution.

The State Transition Diagram is a flowchart that indicates the state

of the program and transitions between states.

State - part of the program that meets a certain condition, performs

an action, or awaits an event.

Transition - condition, action, or event that causes the transition

from one sequence to another.

sTaRT]

SETUP SERIAL PORT
!
WRITE <ENTER>
TO SERIAL PORT

Bytes at
Serial port?

\Inu
STOP

Figure 8.4 State Transition Diagram example.
8.3 State machines

State machine diagrams are physically implemented through state

machines.
The most common uses are:

— For creating interfaces, where different user actions cause program
sequence changes,

— For the testing process, where a state represents each segment of the
process.

The state machine consists of a set of states and transition functions.

Each state can lead to one or more states, or to the end of the process.

While Loop

[‘Start”, Default *pf*

State Code transition to
vl—1 the next state [

=

Figure 8.5 The basic structure of a state machine.

8.4 Event programming

Event - an asynchronous notification of an action that has taken

place.

Asynchronous refers to the fact that a function starts an operation
and may be recalled before the operation execution is complete. Events come
from the user interface, externally, or from other parts of the program.

Interface events can be mouse actions, pressing a key, etc. External

events can be timers or triggers that signal the end of a signal acquisition.

It is good to know that a control element on the Front Panel is a
source of events. An event is the action on the event source. For example,

changing the value (Value Change type) of the control element is an event.

Do not confuse the event with what it can do, or the role that control

plays. The action of the control element is called a method.

Event programming - a programming method in which the

program expects an event to occur before performing one or more functions.

By comparing classical programming with event programming, the

following conclusions can be drawn:

Design Patterns

The classic method involves running a continuous code snippet to
check for any changes. This requires holding busy the CPU resource. They

may not detect successive changes if they are running very fast.

Through the event programming method, we have the following
benefits:

— the successive inspection is deleted,

— processor demand is reduced,

— the Block Diagram is simplified,

— the detection of all occurring events is guaranteed.

event selection
Event Structure

Timeout b 0] " Mumenc ™ Mouse Down? ""H—
Sowrce
Type
event Time event
data ~_ggief U filter
Loarnds
Button
lad
Plathdods

Figure 8.6 Event Detection structure.

Timeout - Specifies the waiting time of an event (ms). If a value is

specified, then Timeout case has to be created.

Event Data - Identifies data provided by LabVIEW when an event
occurs. Similar to Unbundle by Name.

Event Filter - Identifies the data subgroup available in the Event
Data that the structure can modify.

As functionality, it is recommended to place the Case structure in a
While loop. Each event will be executed in an iteration of the While loop. The

event structure is put into Sleep Mode when no events occur.

To set up each event, use the right mouse button and select Edit
Events Handled by This Case.

"B £dit Events - »5e =] e | B s

Event case

[1] Timeout E|
[Event Specifiers
EventSource Event =
<Application> Event Sources Events
<Application> 2| = Application Instance Close -
Lo <ThisVl» \-= Application Instance Close?
= BookmarkInfo Change
Panes = NI Security User Change
: Pane Timeout
1 &, Controls 2 3
‘e Numeric

< il

—_— » 4 1 +
< I | » | L I

[+ Addbent |[5X_Remove Lock panel (defer processing of user actions) until the case for this event completes

Limit maximum instances of this event in event queue

1 Instances

Click OK to accept your changes. Click the Add or Remove button to define another event
specifier to be handled by this case or remove the currently selected event.

ok | [cancel | [Help

Figure 8.7 Event Configuration Window.

In pane 1, a list of events is presented where the current case can be
dealt with, in pane 2 the user can choose the source of the event, and in pane

3 the individual events of each source of event generation are presented.

The green arrow indicates that the event occurred, and LabVIEW

processed it, and the red arrow indicates that the event occurred, but
LabVIEW has not yet processed it.

8.5 Applications

8.5.1 Example 1 - state machine example

The first example refers to the creation of a State Machine. It starts
from the Start state and continues, generating, in turn, the sinusoidal,
rectangular and triangular signals each corresponding to cases 1, 2 and 3
respectively. From the last case, the sinusoidal case state will be called (case
1), without passing through the start state.

Design Patterns

signal out Plot0 - l

1

0.5

Amplitude

Iterations
1

. 1
04 06
STOP Time

stop

Figure 8.8 Front Panel of example 1.

While Loop
frequency Case Structure
al o

ampiitude | £
Ring \=a -
Bt ~1 l E}I =

sampling info L

L1000} \ }
Iteratio =" stop
n =

Figure 8.9 Block Diagram of example 1.

8.5.2 Example 2 - implementing the pooling method

current time

00:00:00.000 PM
Time Check MM/DD/YYYY

I,

Tteration Stop

Figure 8.10 Front Panel of example 2.

1| True 't
Time Check Get Date/Time In & econime
Tteration Stop
[1] G

Figure 8.11 Block Diagram of example 2.

8.5.3 Example 3 - implementing an application using triggering
events

An Event structure can be found in the Structure Palette -> Event
Structure. To configure the event, after placing the structure in the Block

Diagram, right-click and select Edit Events Handled by This Case.

In the window of the Figure 8.7, the Source (in Event Sources) and
Event Type (in Events) will be selected. These will always appear at the top
of the structure. To add a new event, use the right mouse button on the edge

of the structure and select Add Event Case.

Visible ltems »
Help

Description and Tip...
Breakpoint 3
Event Inspector Window

Structures Palette 4
+ Auto Grow
: Exclude from Diagram Cleanup
Iteration
Remove Event Structure

Edit Evepts Handled by This Case...

Add Event Case...

Duplicate Event Cae...
Delete This Event Case

Show Dynamic Event Terminals
Show Case »
Rearrange Cases..

Find Control

Properties

Figure 8.12 Adding a new event.

The event structure will be created so that it can process 5 events.

= [[0] "Stop": Value Change T
Stop

ieava]

Tteration

n

Figure 8.13 Case of event 0.

E [1] "Time Check': Value Change =
I[Type] Time Check
=

Get Date/Time In Secends

current time

=
Tteration
......
Figure 8.14 Case of event 1.
= [2] "Pane": Mouse Down h
Coords
=
Tteration
Figure 8.15 Case of event 2.
= (2] Panel Close? h
Are you sure you want to
close the window?|
utton Dialog
&>
Not
5o .
Tteration
Figure 8.16 Case of event 3.
= [4] "Step": Mouse Enter hd
R
=
Leration

Figure 8.17 Case of event 4.

Design Patterns

current time:

; 00:00:00.000 PM
«f Time Check et

Coords
Herizontal

Tteration Iu Stop
0 B sop

Figure 8.18 The Front Panel of example 3.

8.6 Questions and exercises

1. What s the advantage of using Events, compared to the
application in example 2?

2. What is the functionality of each event in example 3?

Asynchronous Data Transmission and Data Synchronization

9 Asynchronous Data Transmission and Data
Synchronization

LabVIEW is a graphical programming language based on data
sequence transmission (numerical values, strings, etc.). It is a dataflow

language. This means that:

- Functions depend on data transmitted by other functions,

- Dependent functions do not execute until dependencies finish
executing,

- Data is transmitted from one function to another via transmission
lines.

However, in some cases, this method of transmission needs to be

interrupted using asynchronous communication.

9.1 Asynchronous communication

Asynchronous communication refers to information transfer
without using transmission lines. This communication method is used

between:

- Parallel loops,

- Front panel and block diagram,

- Vs,

- Application instances (LabVIEW projects, executable files, etc.).

Information transmitted through this type of data communication is

the actual data and notifications that an event has occurred.

This category includes local variables, already studied in previous
applications, notifiers, user events, but also queues. One thing to know
about local variables is that they are mostly used to update the value of a
control or indicator and occasionally when reading a control or indicator

variable. Notifiers and user events are not part of the current study.

9.2 Queues

Queues are used for data communication between parallel loops.
They can hold a significant amount of data, based on the FIFO (first in, first
out) method of data handling. They have the advantage of being able to hold
any type of data.

The use of local variables to transmit data between parallel loops has

some disadvantages:

- Duplicate reading of data is possible,
- Losing data is a possibility,
- One should create data write and read priorities (race conditions).

All the above-mentioned disadvantages can be avoided by using
queues. The advantage of using a queue is that the producer and consumer
will run as parallel processes, and their rates do not have to be identical.
LabVIEW provides us with a whole palette of functions for the use of queues,
and it is recommended to use this type of communication for the following

types of applications:

- Communication between different sections of the same VI,
- Communication between different VlIs.

Queue Cperations @
| 4 I C%Search I @gCustamize' |
i E. E. ? e
1Tk k[0 il 1Tk 1Tk
Obtain Queue Enqueue Ele.. Preview Que.. Get Queue 5t.. Release Queue
. E—--(E, . It
0| g =0 -

Lossy Enque.. Enqueue Ele.. Dequeue Ele.. Flush Queue

Figure 9.1 The functions palette implemented in LabVIEW for queues.

When using queues a design must be followed. The design implies
using at least two parallel loops: one loop for creating the stack, adding one
element at each iteration, and one loop for retrieving elements from the

stack.

Asynchronous Data Transmission and Data Synchronization

Initialisation Create Save
Block >+« {33 Item Data

Shut
T jeem{DOWN

.

B

Consumer Loop

Read Data
Item Processing

Tm

=
Figure 9.2 Producer/Consumer design.

Basically, this procedure separates the tasks of producing and

consuming data with different speeds.

The stack is a temporary memory where data communicated
between two devices or multiple loops is saved.

9.3 Data synchronization

Through execution synchronization, we provide the application with

a function by which we give time to the processor to complete other tasks.

9.3.1 Execution synchronization

When we have a design where timing is based on the occurrence of
an event, we don't need to determine exactly how often the executions are
synchronized because the portion of the design executes when an event

occurs.

One can see the example in Figure 9.3 is not using any timing function
because it is directly integrated by the existence of the event structure and
the Dequeue element function. The Event Structure, placed in the
Producer loop, controls the execution of this loop. Dequeue element
function within the Consumer loop, waits until an element appears in the
stack, thereby controlling the execution of this loop. In conclusion, this
application does not require synchronization because this is done via event

triggering.

While Loop

EH[§] "Boclean: Value Ch =]
-1 lean
Obtain Queue Enqueue Element Release Queue
0 4 E. =.)
I ligdun| = |-|I}>IIEI| = e mill gl @
Enqueue Elemest | 2 Simple Error Handler
]
]

Default Timeout = -1
Wait Indefinitely

Figure 9.3 Highlighting the timeout.

9.3.2 Software synchronization

This type of synchronization must allow the continuous running of
the design. Wait and Wait Until Next ms Multiple functions are used more

for execution synchronization than for software synchronization.

Wait (ms) Wait Until Mext ms Multiple
(N,

Figure 9.4 Wait and Wait Until Next ms Multiple functions.

We have already used these functions in a few applications made so
far to achieve software synchronization, but while they are suitable for

execution synchronization they are not preferred in this case.

An alternative is to use the timeout functionality associated with
event structures and the use of stacks (Queues). This can be seen in Figure
9.5.In this example, even if no event is triggered or the stack has no elements,

the loops continue to execute at regular time intervals.

Producer Loop executes every 100ms even if no event occurs. The
existence of this constant causes the event structure to wake up from sleep

mode and execute the implemented code in case of Timeout.

Asynchronous Data Transmission and Data Synchronization

While Loop

100 HEHH 1] Timeout ~}]

-1

Obtain Queue Release Queue

o] . : b4
-1k liduni] = 5 =] w1

Enqueue Eleme Simple Error Handler.vi

=3

|| Source

Figure 9.5 Setting the Timeout to real values in ms.

Consumer Loop is executed every 50ms even if there are no elements

in the stack.

Synchronization, in this case, implies the execution of the

implemented code, in the two loops, at specified time intervals.

Get Date/Time In Seconds Tick Count (ms)

Figure 9.6 Get Date/Time In Seconds and Tick Count (ms) functions.

Get Date/Time In Seconds function returns a pattern for current
date and time. Generally, it is used for comparing execution times. Also, it is
useful for periodic measurements or actions for which function Wait (ms)

can introduce delays.

LabVIEW provides the Tick Count (ms) function as well, which can
be used for obtaining the relative time. This function is used for
benchmarking code while Get Date/Time In Seconds is used for indefinite
runs. This is because the Tick Count (ms) function can return values

between 232-1 and 0.

9.4 Applications

9.4.1 Example 1 - implementing an application using the
producer/consumer loop model.

Producer Loop
Obtain Queue Enqueue Element Get Queue Status Release Queue

EHE (] 2| X

= Simple Error Handlervi

Sine Wave PtByPtvi

Index Producer
Wait (ms)

s1op [23

Consumer Loop
Wait <ms>

Loop Speed for

Result in
Consumer Loop

[

Loop Speed for Queue Consumer Loop
Queue Consumer Loop Wait <ms>

= 100> oy

Dequeue Element
1 B EA

Resultin
Queue Consumer Logp Samples in queue

0 B

Figure 9.7 Block Diagram of the first example.

Within Producer Loop, a point-by-point sine signal is generated. The
signal is comprised of 20 points per period. Each point is generated every
500 ms and saved on the stack.

In the "Consumer loop", using a local variable, the result of the signal

generated in the "Producer loop" is displayed.

Within the "Queue Consumer Loop" data is extracted from the stack

element by element and displayed on a graphic indicator.

Asynchronous Data Transmission and Data Synchronization

Result L m |
10+ Index Producer
75| 0
58
b 25-
2
s 0
E o
5|
STOP =
-10-7
STOP 0
Time
Result in
Consumer Loop [z 0 m |
10+ Index Consumer
75| 0
5
g Missing Points
o 0
Loop Speed for _:E:
Consumer Loop
B
Consumer Loop
Wait <ms>
0 Time
Result in
Queue Consumer Loop Plotd m |
10
7.5
w
o
2
=)
Loop Speed for £
Queue Consumer Loop <
@
Queue Consumer Loop
Wait <ms> Samples in queue
0 Time o

Figure 9.8 Front Panel of the first example.

9.4.2 Example 2 - using timing functions

This example shows two methods of measuring the time elapsed
from the start to the end of the program.

motnn|
I

'|
\||
|H

current START time signal out

2:12:50.483 PM \ |
3/18/2016 \l l\ ”
| H|‘|
|\|

current END time

2:13:59.983 PM
3/18/2016

Amplitude

Time <seconds> = ' 04 05 0‘8 1'
0.500029 Time
Anay
e
70 Joa312 |6ous2 757048 137283 [9.47589 |1.28985

Time <ms>
1900

Figure 9.9 Front Panel of the second example.

OOoo0o00O00O000D0O0DO0O0000O0O0O0000O000000O0O00Ooo00o0o0oooon

current END time

signal out
B

Time <seconds>

iz

10@

Tick Count (ms) Time <ms>

Figure 9.10 Block Diagram of the second example.

9.5 Questions and exercises

1. Inthe first example, what happens when the value of the "Loop Speed
for Consumer Loop" control element is changed? But in the case of
changing the value of the "Loop Speed for Queue Consumer Loop"
control element?

2. Inthe first example, what do you notice when you run the application
with the values of the control elements "Loop Speed for Queue
Consumer Loop" and "Loop Speed for Consumer Loop" set to a high
value (Ex: 20), and at some point, you want to stop running by
pressing the STOP button?

3. Create an application to find the execution time of example 1.

User Interface Control

10 Frequency Applications

10.1 Fourier analysis

The Fourier analysis consists in determining the coefficients of the

Fourier series for a known x(t) signal.

Fourier synthesis consists in building an x(t) signal from a function

sum {xx(t)}x pondered weighted with ax coefficients.

Harmonic Fourier series emphasizes the amplitude and phase of
one component, having the order k. We consider the following trigonometric

Fourier series:

x(£) = C, + Z[ck ccos(k - wy *) + S sin(k - w, - £)] 10.1
k=1

If we consider a k-order term from the above sum, and apply it to the

equations:
Cr = Ay " cos(py); Sk = —Ay - sin(@y). 10.2
We obtain:

Cr - cos(k - w, - t) + Sg sin(k - w, - t)

10.3
= A -cos(k-w, t+ @)
So, we can write the trigonometric Fourier series:
x(t) = Z Ay - cos(k-w, -t + @) 10.4

k=0

Equation 9.4 represents the Harmonic Fourier series. The term of
order k = 1 is the fundamental component, and the k-order is the harmonic

k in the harmonic Fourier representation. The connection between

coefficients of the Harmonic Fourier series and Trigonometric Fourier series

results from equation 9.2:

A, =C,
S
Ap= [C2+SE o = —arcth—k 105
k

Where Ax is the amplitude of k-order harmonic and @k is the k-order

harmonic phase.

The Harmonic Fourier series emphasizes the amplitude and phase of

a k-order harmonic.

The periodic signal - A signal is periodic if the function x(t), which

describes it, is periodic. In this case:
x(t) =x(t+k-Tg),k EN 10.6

Ts being the smallest time interval which satisfies the above equation,
interval named the periodic signal’s period (referring to the harmonic

Fourier series).

Periodic signals are used in medical equipment, in
telecommunication systems (voice and data compression, filtering, signal

multiplexing), in industry (monitor and control processes).

Fourier analysis of periodic signals is called also harmonic analysis.
Through the equations that describe the harmonic Fourier series, a
connection is established between the time function and the harmonic
group, of frequency f = k*f, kEN.

In signals study, it is necessary to represent them in time domain (the

waveform), as well as in frequency domain, which is the spectrum diagram.

If we start from a component with frequency f = k*fy, this component

will be defined with the appropriate amplitude:

A -cos(k-w, t+ @) k€ENA, ER @, ER 10.7

User Interface Control

10.2 Discrete Fourier Transform

As seenin Figure 9.1, Discrete Fourier Transform (DFT) transforms an
input signal formed from N samples in two output signals formed from
N/2+1 samples.

Time Domain Frequency Domain

X | E: o ‘>' Re X[| ImX[]

|ENEEENENEEEEEEEE) | IIEEEEEEE R EEEEEEE NN
0 N/2

0 NI 0 N/2
N samples N/2+1 samples N/2+1 samples
Inverse DET (cosine wave amplitudes) (sine wave amplitudes)

Figure 9.1 DFT

10.3 Applications

10.3.1 Example 1 - phase and amplitude representation
This example shows the representation of phase and amplitude for two sine
signals.

’ Plot0
amplitude 1 frequency 1 Amplitude 1 _ploto I |

G

4. % 5 400 5% 600
3 7 300 ! 700

w
|

_N
S
3 %
L/\
=
P
S
g 8
15
. .
,L{
ey
Amplitude

. i dr 1000
95 g 10
amplitude 2 frequency 2
4 3§ 400 500 600
i g L7 w0 g !0
2 -8 200~ 800
(= =9 100- =900
e o o S
93 /80

Phase 2 _Ploto FAY

e
error out

v 2
status code E

£ o]
4| fo =

< -
source

<l

stoj
e Ind v T T v ' |
Doex 0 200 400 600 800 1000
STOP m T
ime

Figure 9.2 Front Panel of the first example.

For better viewing the spectrum, right click on the Waveform Graph and choose
Visible Items -> Graph Palette.

While Loop

frequency 1
[
litude 1
[}

ampl

Merge Errors

Y] — s

frequency 2

==

amplitude 2
»

E

FFT Spectrum (Real-Im).vi
T E Unbundle By Name

~E Tmsomey ooty
L

i
. [;\

x> Amplitude 1
- .

Inverse Tangent
= Phase 1

Index

{>— 2
H - Simple Error Handler.vi
H R n Eze) error out
Spectral
Measurements

sty Signals |

FFT- (RMS) vh=diiis |Amplitude 2

| Phase Veeahe)|Phase 2

- !
1 stop
]

Figure 9.3 Block Diagram of the first example.

10.3.2 Example 2 - Discrete Fourier Transform

amplitude 1 frequency 1 Amplitude 1
4 5| 6 400 5?0 600
\ ’ \ /
3. o7 300\ /700
2~ -8 200~ -800
15 9 100° ~900
o 10 o 200
95 7100
amplitude 2 frequency 2
1 400 300 60
\ 4 \ /
3% i 300\ ’700
Phase 1
2.4 -8 200~ ~800
5 =9 100” ~900
o 10 o’ 000
7 25
3 7800
FFT{X}
error out
status code
| l.‘o
source
stop
Index
STOP 3

piot0 NG |

52

a
|

Amplitude

0-
-1E-10-|
-2E-10-|
-3E-10-|

Amplitude

-4E-10-|

~SE-10-1 :
0 500

1000 1500
Time

Figure 9.4 Front Panel of the second example.

User Interface Control

Because the spectrum will be mirrored, we will display the data only
for half the samples. It can be noticed that if the input signal has N samples,
then the frequency spectrum will be in half. For that purpose, we will place,
from the Array Functions Palette, Split 1D Array. At the index terminal we
will route half the number of samples and we will extract the first subarray
for the real part, and for imaginary part, respectively.

The resulted arrays after the split will be divided to the number of
samples and multiplied by 2. After this operation, we will obtain the real part
and imaginary part for the signal to which we applied DFT.

With two waveform graphs we will display the frequency and phase
spectrums.

While Loop

frequency 1

Complex To Re/Im
b 1 Split 1D A
- m | p4. : [r«!.y\) I:f\l) Amplitude 1
FFT{X) B > D —
L B — ‘\r :

2[4
H - g« - 1 L Inverse Tangent
; A > —8) —b_;}—*g/ :;,;v:é-—L‘:h‘a‘“‘l Simple Error Handler.vi

error out
Sl W[5

- -

Figure 9.5 Block Diagram of the second example.

10.4 Questions and exercises

4. Modify the values of the input signals and observe what happens at
the output.
5. Compare the spectrums obtained in the first and second example.

11 User Interface Control

User Interface Control can be done through several functions
implemented in LabVIEW, such as:

e VI Server Architecture,
e Property Nodes,

e Invoke Nodes,

e Control Reference.

11.1 VI Server architecture

VI Server architecture is a collection of functions, properties and
methods that allow programmable access to objects and functionalities in
LabVIEW. Calling into LabVIEW and the VIs on a computer can be done
remotely. Afterwards, they can be controlled by the implemented code. This
architecture allows us to load and run the VIs dynamically.

Class Control

Property: Visible
Method:
Reinitialize to Default

Sub-Class

Boolean String Numeric

Property:

Property:
Boolean Text

Property:
Enable Wrapping Representation

Stop B Property Values
. gL Label Text: Stop Button
Object

=
\.i] Visible: Yes
Boolean Text: Stop

Figure 11.1 VI Server Hierarchy.

An object is an entity existent in the current application instance.

Properties are object attributes that can have the following
functions: read/write, only read, or only write. Examples of the properties

are color, position, dimensions, visibility, name, etc.

User Interface Control

Methods are functions that operate on objects. The methods include

reinitialization of the default values and the export of the graphical images.

VI Server has object-oriented architecture. Each object of the VI
server is part of a class. The class determines which property, and method
can be applied to the object. Also, subclasses of the control classes exist,
subclasses in which objects are defined depending on their type, as seen in
Figure 11.1.

iPush Button,

E Visible lems »
T

= Find Control
Make Type Def.

Hide Control
Change to Indicator
Change to Array

Change to Constant
Description and Tip...

Boolean Palette >
Data Operations »| Control
13

Advanced Indicator

 View AsIcon Local Variable Class ID

Reference
- Class Name i
B N ety Node » [PV senene
InvokeNode b | guningvi
_ fwokeNode ¥ | ——
Bounds >
Position 4

Eu%ln Mouse Wheel Support

Caption »
Control Index

Data Binding 3
DataSocket »
Description

Disabled

Focus Key Binding

GObject

Indicator
Key Focus Control
Label »
Owning Pane

Skip When Tabbing

Synchronous Display

Tip Strip

Value

Value (Signaling)

Visible

XControl »

Boolean Text 3
Button Size »
Colors [4]

Lock Boolean Text In Center
Strings [4]

Toggle Key Binding

Boolean

Figure 11.2 Front Panel of a VL.

In Figure 1.2, the VI Server hierarchy can be observed. The groups
Generic, GObject, Control and Boolean are classes. The Control class is a

GODbject subclass, which, in turn, is a subclass of the Generic class.

11.2 Property nodes

These types of functions offer the possibility of reading and writing
(modifying) the properties of an object. Through property nodes, one can:

o Change the color of different (graphical),
e Disable and enable controls,

e (Getthe location of a control or indicator.

Property nodes allow the changing operations to be performed
programmatically, and due to the existence of various properties for each
object, it is recommended to obtain information about existing properties

from the LabVIEW Context Help, before using property nodes.

Boolean Ctl Reference
HL___JI0 @7 B =2 Bool (strict) &
| Enabled ~|-Disabled N [* Enabied vl_.-- T
Visible ¥ Visible Visble |- [EEE]]visible
Value K- Boolean Value e Value
a). b).

Figure 11.3 Property Nodes: a). Implicit, b). Explicit.

The execution is done from the properties on top to the ones on the
bottom in the list. If an error appears, the property node execution will stop,
returning the error. To overwrite the default behavior, it is recommended to

access the optional menu via right click and select Ignore Errors Inside
Node.

Among the most used properties are:

e Position: the position of the element on the panel, expressed
in pixels horizontally and vertically,

¢ Bounds: the dimensions of the element, expressed in pixels,

o Visible: if this property has the value False, the element is no
longer displayed in the panel (although it continues to exist

and has a terminal in the diagram),

User Interface Control

e Disabled: the value 0 means that the user can act on that
element, the value 1 means that the element cannot be acted
on (it is disabled), the value 2 means that the element is
disabled and displayed in "clear"” colors,

e Blinking: when this property has the value True, the element
is displayed "blinking",

e Label: properties for formatting the text in the label.

11.3 Invoke nodes

Invoke nodes are used to access methods and actions performed on
objects. Through Invoke nodes, one can obtain: VI version, printing,

reinitialization to default values.

Most of the methods have several parameters, as is the case with
property nodes; to obtain supplementary information about the methods,

the usage of Context Help is recommended.

Boolean Reference
Boolean

[—1] = Bt Bool (strict)
Get Image - GetImage -
Hmage Depth » Image Depth
v BG Color + BG Color
Image Data » Image Data ¥
a). b).

Figure 11.4 Invoke Nodes: a). Implicit, b). Explicit.

If the background of a parameter is grey, it is set as optional.
The creation method for Property nodes and Invoke nodes is the same:
accessing the menu via right click on the object one wishes to create this type
of function and selecting Create->Property Nodes or Create->Invoke
Nodes.

11.4 Control reference

A Property Node element created for a Front Panel object is an
implicit property node, which is directly tied to the existent object. A generic

property node, with a connected reference is an explicit property node. The

latter is used especially when a generic property node is needed, which is
part of a subVL

Control reference is a reference to an object from the Front Panel.
Control references connect the object to a generic property node and are

used when passing references from the main VI to subVls.
Control reference is created via right click on the object for which

the reference is needed, selecting Create->Reference.

11.5 Applications

11.5.1 Example 1- property nodes usage

The example proposes programmatical modification of a level

indicator color and setting the minimum and maximum limits of a knob.

Knob
date format (0) L

DBL)]
30}—- DBL}]

]

Get Date/Time String
Match Pattern

Em fESY Match Pattem To Double Property Node
regular expression | ls* &% Decima String precision Float Age lon Knob element
=2] | To Nungber >t L1
Knob
>
&
&
Index i) Color Box :
Constant Stop —
- B0 2

Figure 11.5 Block Diagram of the first example.

Knob Age

2

R 028 0 A S TR X G R0 5

3
Pt

Figure 11.6 Front Panel of the first example.

User Interface Control

11.5.2 Example 2 - using invoke nodes

The example proposes the creation of an 8-bit digital to analog
converter. Using Digital Value control element, the input values to the
converter are modified and when the Start button is pressed, the conversion is
done, the result being displayed both numerically and graphically. Through

invoke nodes, a .bmp file will be exported, containing the graphical
representation of the conversion result.

Export Image
Path

% C:\Users\lonelBaciu\Desktop\Dosar\L11 FoldeAL11_Ex2.bmp =

Manually created array

Digital Value Chart oo A% |
y 250
7o 00000000
Ms8 It 200
Anal %150
alog Value 2
0 5
En
Start Stop 50
START | sTop ‘
Time

Figure 11.7 Front Panel of the second example.

While Loop

[Reference on
Start button

Event Structure
=]

Start

Start
7| |PrOperty Node
yinking||on Start button o

For Loop
Add Array Elements

Digital value 5] Boolean To (0,1) H Analog Value
m E'_x\—-

>
Romtoe char
=
A

() (N EESN N N I N O

a @
While Loop
Start
Reference on Property Node
start button_|[2-221<2}—{8 < goor §

@) Sinking_
(1] "Export Image”: Value Change YP———

Invoke Node
lon Waveform Chart
Source [+BMP 7]

Event Structure

Type Export Image \‘I‘v/aveiorm Chaf‘. I
Time | oFile v [Export Image | Analog Value
CtiRef ; . FileType Bz
OldVal Path '\ Target
NewVal = Path

\ HideGrid

' AlwaysOverwrite

While Loop

Reference on Start Property Node
start button } = Bool 3

[} Blinking
[12] "Stop": Value Change P

Event Structure

Source

Type Stop
Time Analog Value
CHiRet @
Oldval
Newval

[

Figure 11.8 Block Diagram of the second example.

In this example, the creation of a control reference for the start
button is noticed. The reference is needed to set a property node for the Start

button, outside of the Event Structure.

11.5.3 Example 3 - control reference

st
Blinking
=28 pBlinking 1000

Waveform Chart]
Value

E_E
=

Figure 11.9 Block Diagram of the third example.

In this example, the usage of two property nodes can be seen. In this
case, the usage of control references is not needed, the property nodes being
implicitly used. If, for the red-marked zone, a subVI would be created, then
they would become explicit property nodes, and the connection of a control

reference would be mandatory.
The subVI for the red-marked zone is created as follows:

- The area is selected using the mouse pointer,
- From the top menu ribbon select Edit -> Create SubVI.

User Interface Control

stop 1000 12

Waveform Chart

& WaveformChart

Value
||E r
Blinking
Waveform Chart
- FDEL |
ode
stop

Figure 11.10 SubVI Block Diagram of the third example.

In the created subVIl, for a correct execution, the type of

automatically generated references cannot be changed.

11.6 Questions and exercises

1. Based on the examples above, create an application to familiarize
yourselves with property nodes, invoke nodes and control
references, which were not used in the example above (i.e.
Numeric Control, etc.).

2. In the third example, what is the role of the Feedback Node block?

12 Creating an Executable VI

To complete an entire process of creating a VI, the following

requirements must be met:

e Preparing the files,

e C(Creating the specifications,

e Creating and debugging the executable file,
e Creating an installation file.

12.1 Files preparation

To have the most professional format, the application must have,

firstly, all the files prepared, as follows:

e Recompile and save the latest changes,
e Check the desired property settings,
e Ensure the correctness of the paths,

e Check if the conditional output is active.

Files preparation begins with setting the general properties. This can
be done using two methods: one manual, by editing the VI Properties dialog,

and one automatic by using Property Nodes (VI Server method).

B ViProperties ===

Category General

VerificatorCNP.vi

13

150

Current revision

Location

E:\Work!\ Carte_Lsbview\Aplicatii\L11 - test\VerificatorCNP.vi

Source version
Separate compiled code from source file

List Unsaved Changes...

Revision History..

Lok Concel || Help

Figure 12.1 VI Properties dialog box.

Paths must be set to the application directory path. If the VI is
accessed through a stand-alone application, the VI will return the path to the
folder containing the executable. If the V1 is called through a project, then the
VI will return the path to the project folder.

Creating an Executable VI

n= Pane]

|+ Off While Running vltiHorizScrollhar‘u‘isibiIity
F WertScrollbarVisibility

Figure 12.2 Using property nodes for programmable property modification (Server
VI Method).

To generate the appropriate path, LabVIEW provides already
implemented functions. One of them is Get System Directory. The path

differs from one user to another depending on the existing operating system.

[2HE

2000

Get Systern Directory.vi

ﬂJserAppIicatiDn Data Vl—D .
e
Build Path appended path
[=E] :
| = ﬁ

[l o

Murnber; To Decimal String

#

H"2
L]

Figure 12.3 Automatic path creation.

Another important step is the exit method from running the
application. This can be done automatically using an already implemented
function, Quit LabVIEW.

12.2 Specifications creation

The file Build Specifications, found in the project structure,
contains the setting for application creation, along with the included files,

directories and VI settings. To use it, Application Builder must be installed.

E} VerCNP.Ivproj - Project Explorer lﬁj E@i—’hj

File Edit View Project Operate Tools Window Help

el . IECTER S

Items | Files |

=3 |T_:£. Project: VerCNP.hvproj

B § My Computer

b lmgl, An Bisect (SubVI).vi

gl;l, Verif_Zile_30 (SubVI).vi
gﬂ Verif_Zile_31 (SubVI).vi
gﬂ. Verif_Zile_Februarie (SubVT).vi
; gﬂ. VerificatorCMP.vi
5 Dependencies

T Application (EXE)

Installer
.MET Interop Assembly
Help... Packed Library
T | Shared Library (DLL)
Source Distribution
Zip File

Arrange By »

Figure 12.4 Content of the Build Specifications file.

Build Specifications is used for creating:

Standalone applications (Application (EXE)) - useful when
the user wants to run the application without having
LabVIEW installed,

Installer - used for sharing standalone applications,

Source Distributions - used for porting the source code
from one developer to another,

Zip File - porting the project as a whole,

Shared libraries - in the case of calling VIs using text
programming languages, done through DLLs,

Packed Library - represents a single package containing
several files with the extension .lvlib,

.NET Interop Assemblies - used when packaging the VI for
the Microsoft .NET Framework.

Creating an Executable VI

12.3 Creating and debugging the application

Usually, the application created through Build Specifications has the
same version as the LabVIEW version in which it was created. Memory

requirements may vary depending on the content of the application.

B} My Application Properties =]
OUTCEFIES IEmaipe:al:a\\un name
Destinations My Arcation
Source file Settings Ll
Teon Irarget filenzme.

Advanced

Apphcation o
Additional Exclusicns o0
p n

on Informatios Destination directory
dows Securty
bl

et omtte Deployment EAWerk\Carte_Labview\Aplicatiibuilds\VerCNPAMy Application =)
Run-Time Languages

Web Senvices

Pre/Post Build Actions Build specification description

Preview

Build 0K][Concel Fielp

Figure 12.5 Application Properties - information.

To configure the executable in the Application Properties window,
several properties must be specified: the name of the executable, the known
destination of the generated executable, the selection of the start file, the

inclusion of files, if intervention in the source code is allowed, etc.

B My Appiication Properties (=
DesHT =N sl VenfcatorCNP v
Source File Settings s} An Bisect (SubV.vi
Jeon 8] Veri Zle 30 (SubVD i
Advanced . 1 Verif_Zile 31 (SubVi)vi
Additionl Sxclusions .

Verson Informetion Eﬂ

||| Windaws Security -

| | Shersd VarableDeploymen
Run-Time Langusges

{ | Web Services

| | Prepos Bld ctons
Preven

Aoy Included

Build o] [_cnca Help

Figure 12.6 Application Properties - Source files.

As can be seen in Figure 12.6 the executable needs at least one
startup file. Any files, which are statically linked to the main VI (subVI placed
in the Block Diagram), will be included directly in the package, without the

need to include them in the executable.

Unlike static ones, dynamic files are not loaded until called by the
Open VI Reference. This is why dynamic files must be included in Always
Included.

B CNP_verificator Properties . SawEa =)
Genene w1
Cenertes Fies
1510 EA\Work! Carte_Labview'\Aplicatin builds\VerCNP\CNP _verificator
& P _verificator.aliz
8] CNP_verificator
[CNP vesificator.ini
.

Figure 12.7 Application Properties - Preview.

There is also a Preview menu through which we can check the files
created. After this step comes the final step of saving all the modules and

generating the executable by selecting Build.

B VercNPhvpre; +- Project bxplorer | 12 L | 5 [
File E e TProject Opente Tools Window Help
hol= 17 X[B W | m- e o5
heme | Fies
= Bl Project: VerCNP.lvproj
=) oo
The build is complete. You can locate the build at
E\Work\Carte_LabviewhApicatinbuildsiVerCNIVCNP verificator.
Remeve from Preject hwamep g 2

Figure 12.8 Generation of the executable file.

After generating the executable, the stage of verifying the running of

the application follows and, in case of errors, the debugging stage.

Creating an Executable VI

12.4 Creating an installation file

The installation file creation is mandatory because:

e Asimple executable file needs LabVIEW Run-Time Engine for
its execution,

e [fan application needs drivers, they must be installed on the
system it is running on,

e Through the installer the precise destination and location of
the files is ensured,

e Professional applications use installers.

B} My Insaller Properies 2

Deseription

Required by some Nations! Instruments

products. Refer to the deseriptians of your
ctcrmine whether y

shoukd include Siveslightin your instaler.

Web Services [NEmor Reparting 2015

Windews Secuity) NIL2bVIEW Real-Time NEFifo 2015

Advanced 4! NI LGbVIEW Runtime 2015 Non-English Supg
1 NI LabVIEW Web Server 2015
7 MLogos 150 Distribution ttie
) NISystem Web Server 150 LT
31 NITOM Strearming 150

) NI mDNS Responder 140 Installer souree location
=71 Nl LabWindows/CV1 2
[NI Launcher

2 Download\LabVIEW
| |15

¥ Ony display runtime installers

7] Ta minien g ;, copy the selected
to this computer.

[_Buid 0k | [Coneel Hp |
Figure 12.9 Installer properties - Additional Installers.

As in the case of creating executables, when accessing the optional
menu provided by right-clicking on Build Specifications and selecting New
>> Installer, a dialog window will open in which the properties of the
installer must be selected.

In the window in Figure 12.9, selecting Additional Installers, we
can see that NI LabVIEW Run-Time Engine is selected by default.

B} Verchp Propertie: i

Figure 12.10 Installer properties - Source Files.

12.5 Applications

[13 Cancel

| [Help

Implementation of a user-entered Personal Numeric Code (PNC)

verification application.

A PNC has the format 1930114152084 (G YY MM DD CC NNN ().

First number represents the Gender (G):

1/2 —born between 1 January 1900 and 31 December 1999
3/ 4 - born between 1 January 1800 and 31 December 1899
5/6 - born between 1 January 2000 and 31 December 2099

71 8 - for foreigners living in Romania.
Additionally, 9 — for foreigners.

The group consisting of the following six digits represents the year,
month and day of birth (YY MM DD),

The next two digits represent the county of birth (CC),

Code | County Code | County Code | County Code | County
01 Alba 15 Dambovita | 29 Prahova 43 Bucur. S.3
02 Arad 16 Dolj 30 Satu Mare | 44 Bucur. S.4
03 Arges 17 Galati 31 Salaj 45 Bucur. S.5
04 Bacdu 18 Gorj 32 Sibiu 46 Bucur. S.6
05 Bihor 19 Harghita 33 Suceava 51 Calarasi
06 Bistrita 20 Hunedoara | 34 Teleorman | 52 Giurgiu
07 Botosani | 21 Ialomita 35 Timis

08 Brasov 22 lasi 36 Tulcea

09 Braila 23 Iifov 37 Vaslui

Creating an Executable VI

10 Buzau 24 Maramures | 38 Vilcea

11 Caras 25 Mehedinti 39 Vrancea
12 Cluj 26 Mures 40 Bucuresti
13 Constanta | 27 Neamt 41 Bucur. S.1
14 Covasna 28 Olt 42 Bucur. S.2

The next three digits represent the registration number (NNN),

The last number (C) is a control digit (a self-detecting code) in
relation to all the other 12 digits of the C.N.P. The check digit is
calculated as follows: each digit in the C.N.P. is multiplied by the digit
in the same position in the number 279146358279; the results are
summed, and the result is divided by the remainder of 11. If the
remainder is 10, then the check digit is 1, otherwise the check digit is

equal to the remainder.

The PNC will be entered as a string. Using the String Subset function

we can extract each group of strings to be able to interpret them.

Introduceti CNP
1930114152084

Sexul
Masculin

ZiNastere Luna Nasterii Anul Nasterii Eroare in data nasterii
14 lanuarie 1993

Judet/Sector Eroare Judet

Dambovita
Verificator CRC

CRC Corect

stop

STOP

Figure 12.11 PNC Verifier.

In the case of the date of birth, for each month, the exact number of

existing days is known (Ex: March - 31 days). For this step, a subVI will be

created to check each situation:

- Months: January, March, May, July, August, October, December -
the days corresponding to these months must be in the interval
[1,31],

- Months: April, June, September, November - the days
corresponding to these months must be in the interval [1, 30],

- The exception is the month of February, which in a leap year
mustbe in the interval [1, 29], otherwise it must be in the interval
[1,28].

In this situation, four subVIs will be implemented, three for checking

the number of days in a month and one for checking the leap year.

A leap year must be divisible by 4 apart from those divisible by 100.
Century years like 300, 700, 1900, 2000 need to be divided by 400 to check
whether they are leap years or not. In pseudo-code, the implementation
looks like this:

if((year % 4 == 0 && year % 100!=0) || year % 400==0)
Leap_Year = TRUE;
else
Leap_Year = FALSE;

This function can be implemented using the Formula Node function
to which we must add an input pin corresponding to the year and an output
pin corresponding to the year type (Leap_Year).

12.6 Questions and exercises

1. Design an automatic path generation application.

2. Design the PNC verification application explained in this chapter.

3. Generate an executable file for the PNC verification application.
Check its functionality by installing it on another station.

4. Generate an installer for the PNC verification application. Check its
functionality by installing it on another station.

Creating an Executable VI

13 References

1.

v W

o

www.ni.com-National Instruments Certified LabVIEW Associate
Developer Preparation Guide using LabVIEW

LabVIEW® Basics Course Manual

G Programming Reference Manual

Lucrari de laborator - Instrumentatie Virtuala

Instrumentatie virtuala in ingineria electrica - Ciprian Sordndaru,
Editura Orizonturi Universitare, Timisoara, 2003.

The Scientist and Engineer's Guide to Digital Signal Processing, Steven
W. Smith, Ph.D.

Gabriel Chindris, Horia Hedesiu - Proiectarea Grafica a Sistemelor de
Control Pentru Aplicatii Industriale - Editura Mediamira, ISBN 978-973-
713-242-0, Cluj-Napoca, 2009.

	VIRTUALINSTRUMENTATION
	Contents
	Preface
	1 LabVIEW Introduction
	1.1 Definitions
	1.2 Front Panel
	1.3 Block Diagram
	1.4 Graphic representation (icon) for the virtual instrument
	1.5 Creating a VI
	1.6 Applications
	1.7 Questions and Exercises

	2 Programmable Structures in LabVIEW: For and While
	2.1 Definitions
	2.2 While structure
	2.3 For structure
	2.4 Applications
	2.5 Questions and exercises

	3 Programming Structures in LabVIEW: Case and Flat Sequence
	3.1 Case structure
	3.2 Flat sequence
	3.3 Applications
	3.4 Questions and exercises

	4 Arrays, Matrices and Clusters
	4.1 Definitions
	4.2 Creating input arrays
	4.3 Creating clusters
	4.4 Applications
	4.5 Questions and exercises

	5 Strings and I/O Files
	5.1 Strings
	5.2 File I/O
	5.3 Applications
	5.4 Questions and exercises

	6 Waveforms, Filters and Noise
	6.1 Measuring waveforms parameters
	6.2 Noise signals
	6.3 Digital filters
	6.4 SubVIs and express VIs
	6.5 Applications

	7 Debugging and Optimizing VIs
	7.1 Error correction
	7.2 Debug techniques
	7.3 Error handling
	7.4 Applications

	8 Design Patterns
	8.1 Introduction
	8.2 State programming
	8.3 State machines
	8.4 Event programming
	8.5 Applications
	8.6 Questions and exercises

	9 Asynchronous Data Transmission and Data Synchronization
	9.1 Asynchronous communication
	9.2 Queues
	9.3 Data synchronization
	9.4 Applications
	9.5 Questions and exercises

	10 Frequency Applications
	10.1 Fourier analysis
	10.2 Discrete Fourier Transform
	10.3 Applications
	10.4 Questions and exercises

	11 User Interface Control
	11.1 VI Server architecture
	11.2 Property nodes
	11.3 Invoke nodes
	11.4 Control reference
	11.5 Applications
	11.6 Questions and exercises

	12 Creating an Executable VI
	12.1 Files preparation
	12.2 Specifications creation
	12.3 Creating and debugging the application
	12.4 Creating an installation file
	12.5 Applications
	12.6 Questions and exercises

	13 References

