
U.T.PRESS
Cluj-Napoca, 2025

ISBN 978-606-737-786-6

Mihnea-Bogdan JURCA Ion GIOSAN

MACHINE LEARNING I

Lab Guide

U.T.PRESS
Cluj - Napoca, 2025

ISBN 978-606-737-786-6

 Recenzia: Prof.dr.ing. Camelia Lemnaru
 Conf.dr.ing. Raluca Brehar

 Pregătire format electronic on-line: Gabriela Groza

Copyright © 2025 Editura U.T.PRESS
Reproducerea integrală sau parţială a textului sau ilustraţiilor din această carte
este posibilă numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-786-6

 Editura U.T.PRESS
 Str. Observatorului nr. 34
 400775 Cluj-Napoca
 Tel.: 0264-401.999
 e-mail: utpress@biblio.utcluj.ro
 www.utcluj.ro/editura

Preface

This book aims to serve as the laboratory guide for the first-year master’s
students in the Data Science program at the Technical University of Cluj-
Napoca. It provides a gentle introduction to fundamental concepts in shallow
machine learning. The chapters are structured in such a way that students
can enjoy an interactive experience, alternating between theory and hands-on
practice.

We would like to express our gratitude to the course by [?], which served as
the primary inspiration for this work. Our hope is that this guide will help the
new generation of AI engineers and scientists develop a solid understanding
of the fundamental concepts while ensuring that the implementation details
of the topics discussed are clearly explained in the accompanying notebooks.

Below is a table listing the links to the notebook resources:

Lab Number GitHub Repository URL
Lab 1 https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_1

Lab 2 https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_2

Lab 3 https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_3

Lab 4 https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_4

Lab 5 https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_5

Lab 6 https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_6

Table 1: List of Lab Notebooks and GitHub Repositories

4

https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_1
https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_2
https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_3
https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_4
https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_5
https://github.com/mbjurca/UTCN_DS_ML_1/tree/main/Lab_6

Introduction to Python

Overview

This chapter introduces the Python programming language along with some
important libraries like NumPy, Pandas, Matplotlib, Seaborn, and Scikit-
learn, which are often used for Machine Learning applications. Several envi-
ronments for developing Python-based applications are also discussed.

The main objective is to set up a development environment, get familiar
with Python, and conduct some simple experiments with the aforementioned
libraries.

Python Programming Language

Python is one of the most popular programming languages. Although it is a
general-purpose language, it is used in various areas of applications such as
Machine Learning, Artificial Intelligence, web development, IoT, and more.
https://www.tutorialspoint.com/python/index.htm

Development Environments

There are several Integrated Development Environments (IDEs) that are
popular for working with Python and Machine Learning due to their support
for scientific computing, data analysis, and machine learning libraries:

• Jupyter Notebook, PyCharm, Spyder, etc. For data science and
machine learning, Jupyter Notebook is highly recommended for explo-
ration and prototyping, while PyCharm, Spyder or similar IDEs are
better for more extensive development work.

• Google Colab: https://colab.research.google.com/ (requires Google
Drive account) - best for cloud computing with free GPU/TPU access
and ease of use.

5

https://www.tutorialspoint.com/python/index.htm
https://colab.research.google.com/

• JupyterLab and Spyder / PyCharm Professional IDE via Ana-
conda: https://www.anaconda.com/products/individual - recom-
mended for offline work (with both Python notebooks and Python
code) and complete control over the local environment.

Libraries

• NumPy: An open-source Python library consisting of multidimen-
sional and single-dimensional array elements. NumPy is a standard
library for numerical computations and is utilized in various domains
including Pandas, SciPy, Matplotlib, and Scikit-learn.
https://numpy.org/doc/stable/user/absolute_beginners.html

https://www.tutorialspoint.com/numpy/index.htm

• Pandas: An open-source library providing high-performance data struc-
tures and data analysis tools for Python.
https://www.tutorialspoint.com/python_pandas/index.htm

• Matplotlib: A library that offers various data visualization tools such
as line plots, histograms, scatter plots, and more.
https://www.tutorialspoint.com/matplotlib/index.htm

• Seaborn: A library for data visualization based on Matplotlib, pro-
viding high-level interfaces for drawing attractive and informative sta-
tistical graphics.
https://www.tutorialspoint.com/seaborn/index.htm

• Scikit-learn: The most useful and robust library for machine learning
in Python, providing tools for classification, regression, clustering, and
dimensionality reduction.
https://www.tutorialspoint.com/scikit_learn/index.htm

Note: We recommend checking out the resources mentioned above and
visiting https://cs231n.github.io/python-numpy-tutorial/ to run the
Colab version of the tutorial. Many of the notions described here will be fur-
ther used in this and subsequent works. Although you are probably familiar
with many of the concepts, please make sure you understand concepts like
defining numpy arrays of different types, reduction operations, and broad-
casting after completing the readings.

Note: All labs code templates can be found here: https://github.com/

mbjurca/UTCN_DS_ML_1

6

https://www.anaconda.com/products/individual
https://numpy.org/doc/stable/user/absolute_beginners.html
https://www.tutorialspoint.com/numpy/index.htm
https://www.tutorialspoint.com/python_pandas/index.htm
https://www.tutorialspoint.com/matplotlib/index.htm
https://www.tutorialspoint.com/seaborn/index.htm
https://www.tutorialspoint.com/scikit_learn/index.htm
https://cs231n.github.io/python-numpy-tutorial/
https://github.com/mbjurca/UTCN_DS_ML_1
https://github.com/mbjurca/UTCN_DS_ML_1

.

Implementation 1: Solve the notebook introduction.ipynb using the
learned concepts from the tutorials.

7

A brief introduction of Linear
Models

Overview

Before exploring different linear models, let’s take a broader look at the gen-
eral concepts of learning and linear approaches. Over the next four chapters,
we will introduce various algorithms and methods for mapping data in a
linear fashion.

The main objective is to develop a solid understanding of this broader
family of linear methods, which will serve as a strong foundation for the
practical work that follows.

A Brief Fundamental Recap

In 1998, Tom Mitchell defined machine learning as follows: a computer pro-
gram is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E.

Since we will focus only on the supervised and unsupervised tax-
onomies of machine learning, the experience typically refers to the amount of
data provided to the model, and the performance is measured by evaluation
metrics specific to a given task.

All algorithms and models presented in this work fall under the supervised
learning taxonomy.

Consider a dataset represented as a set of pairs (xi, yi), where each xi is
an input example or input features and yi is the corresponding target
variable. The subscript i indexes each individual pair in the dataset. In
supervised learning, the objective is to learn a function h, called the hy-
pothesis, that approximates the true underlying function, by mapping the
input space X to the target space Y . This means finding h : X → Y that

8

best represents the relationship between the examples and their targets in
the training data.

The term training data/set refers to the collection of examples used by
models during the learning or training phase. The goal is for the model
to generalize well(have good performance) to new, unseen data drawn from
the same distribution, which is usually referred to as the test data/set.
For further reading, [1] provides an excellent resource for understanding why
learning from data is possible, which lies at the core of machine learning.

Supervised learning is so named because the target variable yi that the
hypothesis function predicts is provided in the training set. The goal is to
use this information to optimize the parameters of the hypothesis function.

The linearity of the models discussed in this work refers to the fact that
the hypothesis function is linear with respect to the learned parameters. As
a general guideline, it is often advisable to begin by applying linear models
before progressing to more complex, nonlinear approaches such as neural net-
works. In many practical applications, data may exhibit linear relationships,
yielding effective results even with simpler models.

From an implementation perspective, it is usually not beneficial to use sets.
We prefer using linear algebra-based representations such as matrices and
vectors. The training set is usually represented as a matrix X with M rows
(the number of examples in the dataset) and D columns (the number of
features). There is also a vector Y with M rows, representing the target
variable for each input example. The matrix X is also called the design
matrix.

9

PLA - Perceptron Learning
Algorithm

Overview

The Perceptron Learning Algorithm (PLA) is one of the most fundamental
linear classification algorithms and is considered by some as a foundational
building block for modern deep learning models. In simple terms, the percep-
tron algorithm classifies an input example xi as either a positive or negative
example (binary classification problem). Developed by Frank Rosenblatt in
the 1960s, the perceptron sparked significant debate in the field. In response
to Rosenblatt’s achievement, Marvin Minsky and Seymour Papert quickly
countered by demonstrating that, although the perceptron is an intuitive
and powerful algorithm, its linear nature limits its ability to represent cer-
tain types of functions.

The main objective is to implement PLA for a simple binary classification
problem, following all steps: generating and analyzing the data, training,
testing, and visualizing the results.

Approach

Say we aim to classify whether an email is spam or not. At first glance, a
seemingly simple solution would be to feed the entire email to an algorithm,
which would then predict if the email is spam or not. However, this approach
is not as straightforward due to the many variables an email contains, such as
varying lengths, content, and formats. Moreover, processing an entire email
in its raw format can be computationally expensive and may not scale well
with a large volume of emails.

To make the inference process more efficient, it is crucial to extract only
the most meaningful information, thereby reducing the amount of data per
email. This allows the algorithm to focus only on the relevant aspects of the

10

email with respect to the task at hand. Each piece of information that is
passed to the model is referred to as a feature or property of the input exam-
ple. Depending on the nature of the data, these features can be transformed
and represented in different ways for the final mathematical representation.

Question 1: What properties can be extracted from an email to perform
spam detection? Provide three examples and explain why each might indicate
whether an email is spam or not.

Mathematical data representation

Let X, Y compose the training set, where (x0, y0), (x1, y1), . . . represent the
individual training instances. Each pair (xi, yi), xi denotes the input exam-
ple, and yi is the label attributed to it. Returning to the email classification
problem, we can imagine X as the set of all emails we want to classify in
order to train the model, with each xi representing an individual email.

Each xi is a vector of dimension D, containing D features of the corre-
sponding email. Each dimension of the vector represents a specific feature,
for instance, one feature might be the number of words in the email’s sub-
ject line. By convention, we refer to the d-th feature of the i-th training
example as x

(d)
i . At this stage, we will not focus on how these features are

transformed or represented in the final feature vector. The main idea is that
each xi encapsulates all the meaningful modeled features for each email, and
this is referred to as the feature vector.

For this first model, we will generate our own data and assign fictional
meaning to the features for didactic purposes.

Implementation 1: Implement section 1 of the perceptron.ipynb file
where you will have to generate and analyze the data.

Learning Algorithm

To choose a hypothesis function h(x) that will decide whether an email is
classified as spam or not, we can intuitively assign a weight to each feature
of the email. Each feature of an email x

(d)
i will be associated with a learned

weight parameter w(d). The summation of the products between each feature
and its corresponding weight parameter gives us a scalar value, which is then
compared to a threshold.

The email is classified as spam if
∑D

d=1 w
(d)x

(d)
i > threshold,

11

and not spam if
∑D

d=1 w
(d)x

(d)
i < threshold.

This formula can be written more compactly as

h(xi) = sign

((
D∑

d=1

w(d)x
(d)
i

)
+ b

)
,

In order to facilitate the implementation, we will rewrite this in vector
form. To do so, we will use the bias trick, meaning that the term b will be
encapsulated in the parameter vector w. Now, the problem is that w ∈ D+1
and xi ∈ D in order to write it in vector form, xi and w must have the same
dimension so that we can compute the dot product. In order to do so an
extra dimension x0

i = 1 will be added. Mathematically, this can be rewritten
as follows:

X = {1} × Rd = {[x(0), x(1), · · · , x(d)]T | x(0) = 1, x(1) ∈ R, · · · , x(d) ∈ R}

With this convention, wTxi =
∑D

d=0w
(d)x

(d)
i , and the hypothesis be-

comes:

h(xi) = sign(wTxi).

To learn the w parameters, the Perceptron Learning Algorithm (PLA) is
an iterative process that updates the weight vector based on each misclassified
example. Geometrically, it can be seen as adjusting the decision boundary
to better separate the two classes.

For each misclassified xi in X:

w := w + yixi

Implementation 2: Implement sections 2 and 3 of the perceptron.ipynb
file to train, test, and visualize the perceptron algorithm.

Question 2: The perceptron is guaranteed to converge (i.e., find a solution
that perfectly classifies both categories) in certain cases. What are these
cases, and why does the algorithm converge?

12

Linear Regression

Overview

In the previous chapter, we have described the Perceptron Learning Algo-
rithm (PLA), which is designed for binary classification. Now, we will explore
a different model—Linear Regression. Instead of categorizing data points into
different classes, our goal is to predict a continuous variable yi ∈ R.

We aim to define a hypothesis function that will map any data point
from the input space xi ∈ Rd to the target space Y ∈ R. In this section, we
will analyze the Linear Regression model and optimize it using two different
methods based on LMS (Least Mean Squares). One solution will be an
iterative one also known as gradient descent and the other an analytical
solution where we can compute the solution directly.

The main objective is to implement linear regression for a simple re-
gression problem, following all steps: loading and preprocessing the data,
implementing both gradient-based and closed-form solutions, defining the
prediction and loss functions, optimizing, training, and visualizing the ob-
tained weights.

Approach

For the linear regression model, we will work with the California housing
dataset [2]. This dataset contains information about houses in California
and their values, based on various features such as the number of rooms,
number of bedrooms, or proximity to the ocean. The task is to accurately
predict the value of a house given these features.

13

A common issue with real-world data is that different features often have
varying ranges of values. This will also be explored in Section 1 of the
practical work on linear regression. To ensure that each feature contributes
equally to the model, a normalization step is usually required. This step
helps making the training process more stable and improves convergence.

Implementation 1: Implement Section 1 from the linear regression.ipynb
file in order to load and preprocess the dataset.

Let’s draw a comparison with the previously discussed PLA algorithm
and see how we can adapt it for this task. As before, multiple features are
provided, and each feature may have a different impact on the final value
of the house. For instance, the number of bedrooms is likely to be directly
proportional to the value of the house, while the age of the building could
be a depreciating factor, the newer the building, the more amenities it will
likely offer. This reasoning leads us to a similar idea as before: we assign
each feature a weight w(d), forming a weighted sum to compute a score. This
is exactly what we will do. Furthermore, we no longer need the sign function,
as the output is now a continuous value that we aim to predict directly.

The only remaining question is: how do we optimize the weights of the
model?

Before delving into the optimization, let’s summarize the parts we already
know. Our chosen hypothesis function is:

h(xi) =

(
D∑

d=1

w(d)x
(d)
i

)
+ b,

In vector form, using the bias trick (where the bias term is incorporated
into the weight vector), this can be written as:

h(xi) = wTxi,

where w ∈ RD+1 is the weight vector and xi ∈ RD+1 is the input vector
augmented with a bias term.

Gradient descent optimization

The first optimization algorithm starts with the observation that, to achieve
good performance, the predicted values by the hypothesis h(xi) should be as
close as possible to the true labels yi, for all the m examples. To compare
these two values, we define a cost function L as follows:

14

L(w) =
1

2

m∑
i=1

(h (xi)− yi)
2

The goal is to choose w such that we minimize this cost function, which
is also known as the loss function.

We begin with a random set of weights w and iteratively take the partial
derivatives of the loss function with respect to the weights, so that we step in
the direction of the minimum. This iterative optimization process is known as
gradient descent. We continue this process until we converge to the minimum
or a value very close to it. Gradient descent can be written as follows:

w(d) := w(d) − α
∂

∂w(d)
L(w),

where the formula is written with respect to one dimension of the weight
vector w ∈ RD + 1.

Here, α is a fixed parameter, such as 0.001, called the learning rate.
These kinds of parameters, which are set initially and not learned through
the optimization process, are referred to as hyperparameters.

An interesting property of this particular loss function is that it is convex,
meaning it has only one local minimum, which coincides with the global
minimum.

Question 1: What happens if we set α to a high value? What happens if we
set α to be too small? Why did we say that gradient descent will converge
to the minimum of the function or a value close to the minimum?

Now, let’s compute the partial derivatives:

∂

∂w(d)
L(w) =

∂

∂w(d)

1

2
(hw(x)− y)2

= (hw(x)− y) · ∂

∂w(d)
(hw(x)− y)

= (hw(x)− y) · ∂

∂w(d)

(
D∑
j=0

w(j)x(j) − y

)
= (hw(x)− y)x(d).

So far, we have seen how to update the weights with respect to one
training example. Let’s now see how we can update them for an entire
training set:

15

Repeat until convergence:

w(d) := w(d) − α
m∑
i=1

(hw(xi)− yi)x
(d)
i for every d.

This is known as batch gradient descent because one update step is
performed after the entire dataset has been processed. In many cases, the
dataset is too large to handle efficiently using batch gradient descent, which
is why another popular method is often used: stochastic gradient de-
scent. In this algorithm, we update the weights after each training example
is processed. Here, m is the number of training examples in the dataset.

Loop {
for i = 1 to m, {
w(d) := w(d) − α (hw(xi)− yi)x

(d)
i , (for every d)

}
}

Implementation 2: In the provided linear regression.ipynb notebook
(Sections 2 and 3), implement the gradient-based solution for linear regres-
sion. Section 2 will guide you through creating the prediction and loss func-
tions, while Section 3 will walk you through the optimization process and
training.

Closed-form Solution

Due to the quadratic nature of the loss function and its positive coefficient,
the function is convex, as previously mentioned. This implies that the func-
tion has only one local (and global) minimum. Consequently, we can solve
the problem analytically in a straightforward manner. In order to do so we
write the data in vectorial form, with the help of the design matrix and target
variables represented as a vector.

X =

(x1)

T

(x2)
T

...
(xm)

T

 y⃗ =

y1
y2
...
ym

16

We can now rewrite the hypothesis function in vector form as follows:
Since hw(xi) = (xi)

Tw, we can represent the prediction error for all ex-
amples as:

Xw − y⃗ =

 (x1)
Tw
...

(xm)
Tw

−
y1...
ym

 =

 hw(x1)− y1
...

hw(xm)− ym

Using the fact that for a vector z, zTz =

∑
i z

2
i , we can rewrite the loss

function as:

L(w) =
1

2
(Xw − y⃗)T (Xw − y⃗) =

1

2

m∑
i=1

(hw(xi)− yi)
2

which is the same loss function we saw before, now expressed in matrix
form.

To find the weights w that minimize the cost function, we take the deriva-
tive of L(w) with respect to w and set it to zero, yielding the point of the
local minimum. This gives us the following closed-form solution:

w =
(
XTX

)−1
XT y⃗.

For further details on this process, please refer to [3].

Implementation 3: In the provided linear regression.ipynb notebook
(Section 5), implement the closed-form solution for linear regression. Then,
proceed to Section 6 for the weight analysis visualization.

Question 2: When do you think is recommended to use each of the presented
solutions. Briefly , explain the obtained results from all the optimization
methods (stochastic gradient descent, batch gradient descent, closed form).

17

Logistic Regression

Overview

Despite its name, logistic regression is actually a binary classification algo-
rithm that applies a threshold to a probability obtained from a linear model
combined with the sigmoid function.

The main objective is to implement logistic regression for a simple binary
classification problem, following all steps: data preprocessing, implementing
the prediction and loss functions, training, and testing the model.

Approach

We will work with the breast cancer dataset [4], where the task is to classify
whether a person has breast cancer based on a set of symptoms and patient
features. For this model, we will approach the problem from a probabilistic
perspective, which will help us in formulating the optimization process.

Since the labels in our classification problem are 0 or 1, we can interpret
the output of the model as the probability that a person has breast cancer.
Therefore, our model should return a value between 0 and 1. Unlike the PLA,
which uses a hard threshold, we need a function that outputs continuous
values between 0 and 1. Fortunately, there is a function that does exactly
this, known as the sigmoid function 1.

The sigmoid function is defined as:

g(x) =
1

1 + e−x

Next, we need to choose a hypothesis function. Recall that the hypoth-
esis function takes as input a feature vector of dimension D and outputs a
continuous value between 0 and 1. By combining a linear model with the sig-
moid function, and ensuring that the output lies between 0 and 1, we obtain
the final hypothesis:

18

Figure 1: The sigmoid function and its derivative.

h(x) = g(wTx),

where h(x) represents the probability that the label is 1 (i.e., the person
has breast cancer) given the input features x.

Maximum Likelihood Estimation

As with other models, we aim to optimize the parameters w to achieve the
best performance of our logistic regression model given the data. As already
mentioned, let’s approach this problem probabilistically. The probability of
the data is as follows:

P (y = 0 | x,w) = 1− h(x), P (y = 1 | x,w) = h(x),

where h(x) is the hypothesis function (the sigmoid function in this case).
We can rewrite the probability for a given data point (x, y) as follows:

p(y | x;w) = (hw(x))
y (1− hw(x))

1−y .

Note that w is a fixed parameter to be optimized, and we treat this
expression as a function of the target variable y. Since our goal is to optimize
w, we focus on the likelihood function, which is the probability of the
entire dataset given w:

L(w) = L(w;X, y⃗) = p(y⃗ | X;w).

19

The likelihood function is what we aim to maximize. Assuming all exam-
ples in X are IID (Independent and Identically Distributed), we can express
the likelihood as:

L(w) = p(y⃗ | X;w) =
m∏
i=1

p(yi | xi;w) =
m∏
i=1

(hw(xi))
yi (1− hw(xi))

1−yi .

Since dealing with products can be cumbersome, it is common to maxi-
mize the **log-likelihood** instead:

ℓ(w) = logL(w) =
m∑
i=1

(yi log h(xi) + (1− yi) log (1− h(xi))) .

At this point, we need to choose an optimization method. A simple
solution that we’ve already seen is gradient descent. Maximizing the log-
likelihood via gradient descent is equivalent to minimizing the negative log-
likelihood, also known as the Binary Cross Entropy Loss (BCE Loss).
Thus, the formula we wish to minimize is:

ℓ(w) = − logL(w) = −
m∑
i=1

(yi log h(xi) + (1− yi) log (1− h(xi))) .

Finally, to complete the gradient descent process, we need to compute
the update rule by deriving the BCE Loss with respect to the parameters.
The update rule is given by:

w(d) := w(d) − α
m∑
i=1

(hw(xi)− yi)x
(d)
i).

In the current setup, there is a mismatch between the hypothesis function
and the target variables. The hypothesis predicts a real value in the range
[0, 1], while the target labels are discrete values of 0 or 1. To address this,
we introduce a hyperparameter called a threshold, typically set to 0.5.

If the model predicts a value less than 0.5, the final prediction is con-
sidered to be 0. If the predicted value is greater than or equal to 0.5, the
prediction is considered to be 1.

Note: This thresholding is only applied during test time. During train-
ing, we work with the predicted probabilities directly so we can apply the
appropriate loss function.

20

Interestingly, this update rule is very similar to the one for linear re-
gression. This is not a coincidence—both models belong to the family of
Generalized Linear Models (GLMs). For more details, see [3].

Implementation 1: Implement the logistic regression model in the provided
file logistic regression.ipynb. The following tasks will be necessary to
complete this assignment:

• Preprocess the data

• Implement the prediction and loss function

• Create the training pipeline

• Test the obtained model

21

Polynomial Regression

Overview

Polynomial regression is part of the family of linear regression models, be-
cause the linearity of the learned parameters is considered.

The main objective is to implement polynomial regression for a simple
problem and adjust the hyperparameters (regularization strength and poly-
nomial degree) to prevent both overfitting and underfitting.

Approach

We define the hypothesis as follows:

ŷ = w0 + w1x+ w2x
2 + · · ·+ wnx

n =
D∑

d=0

wdx
d

where D represents the maximum degree of the polynomial. Although
linearity is retained at the level of parameters, the features themselves exhibit
a nonlinear behavior. For this model, we have adjusted the notation for
clarity. The subscript now refers to the dimensionality as well as to the
instance in the training set, so please be mindful of the context in which it
is used.

Note: The formulas and examples in this model are presented for single-
feature data.

Question 1: How can we generalize to multi-feature data? What modifica-
tions are necessary?

To optimize the model, we will minimize the Mean Squared Error
(MSE) loss using the Stochastic Gradient Descent algorithm covered in the
Linear Regression chapter.

22

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 + λ

n∑
k=0

w2
k

wherem is the number of samples, yi is the true output for the i-th sample,
ŷi is the predicted output for the i-th sample, and λ is the regularization
strength, a hyperparameter that controls the level of regularization applied.

Before discussing regularization and its associated hyperparameter, let
us address the phenomena of overfitting and underfitting. These concepts
are closely related to the bias-variance trade-off, which is covered in greater
theoretical detail in [1], Chapter 2.3. However, here we will focus on practical
aspects.

Underfitting occurs when our hypothesis is too simple to adequately ap-
proximate the underlying distribution represented by f(x). This typically
results in high in-sample error (or high training loss in practical terms), in-
dicating that the model lacks the complexity needed to capture the data’s
structure.

Overfitting, on the other hand, refers to the model’s inability to generalize
to unseen data. While the model may be optimized to minimize in-sample
error, it performs poorly on out-of-sample data (test loss in practice). This
issue often arises when the model is excessively complex, leading it to fit
noise or outliers within the training data, or when certain features dominate
the training set, causing the model to focus narrowly on minimizing training
error rather than achieving broader generalization.

Practical Solutions for Dealing with Overfit-

ting and Underfitting

In practice, addressing overfitting and underfitting is a delicate process that
should be handled progressively. First, we must resolve the underfitting issue
by ensuring that the hypothesis set chosen is sufficiently complex to model
the underlying data.

Step 1: Ensure that the training error is sufficiently low and that the hy-
pothesis accurately predicts the training data; for now, the test loss can be
ignored.

Step 2: Once the training loss and performance metrics on the training set
are satisfactory, proceed to the next step, considering the test loss. However,
there’s a catch: remember the hyperparameters that need tuning? What

23

Figure 2: Illustration of the bias-variance trade-off. High bias leads to under-
fitting, while high variance leads to overfitting. Achieving a balance between
bias and variance is crucial for model generalization. Source: [5].

happens if we tune these hyperparameters using the test set? This intro-
duces a bias (not to be confused with the bias in the bias-variance trade-off)
based on those observations, meaning we don’t truly know how the model
will perform on unseen data.

To address this, we define a new set called the validation set, which
is used to tune these hyperparameters and address overfitting. The test set
should remain untouched until all hyperparameters and model parameters
are finalized, serving as a measure of how the final hypothesis generalizes to
unseen data.

Step 3: With the three distinct sets now defined—training, validation, and
test—and underfitting resolved, we can tackle overfitting.

There are several approaches to address overfitting, including weight de-
cay, weight regularization, data augmentation, adding more data. Here, we
will experiment with weight regularization, which adds an extra term to the
loss function. This additional loss term not only penalizes mispredicted val-
ues but also discourages large weights by applying a penalty proportional

24

to a chosen norm. The intuition behind the L2 norm, for example, is that
it discourages any single weight from overpowering others, ensuring that no
feature becomes disproportionately important.

For more guidance on diagnosing and addressing issues when training
machine learning models, see this excellent resource: https://karpathy.

github.io/2019/04/25/recipe/.

Implementation 1: Implement Section 1 of polynomial regression.ipynb
in order to preprocess and analyze the data.

Optimization

Now that we have defined the hypothesis and loss function, we need to com-
pute the gradient with respect to the parameters to obtain the gradient vector
for the optimization steps.

To minimize the MSE loss, we use the gradient descent approach. The
gradient of the MSE loss with respect to each weight wd is computed as
follows.

Define the error term ei for each data point as:

ei = yi − ŷi

The gradient of the MSE loss with respect to wd (for d = 0, 1, . . . , D) is
given by:

∂MSE

∂wd

= − 2

m

m∑
i=1

ei · xd
i + 2λwd

where the term − 2
m

∑m
i=1 ei · xd

i represents the gradient of the MSE loss
without regularization, and 2λwd is the gradient of the regularization term
with respect to wd.

Thus, the gradient vector for all parameters w is:

∇wMSE = − 2

m

m∑
i=1

(yi − ŷi) ·

1
xi

x2
i
...
xn
i

+ 2λw

This gradient vector is then used in gradient descent to iteratively update
w in order to minimize the MSE loss.

25

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

Implementation 2: Implement Section 2 of polynomial regression.ipynb

by defining the hypothesis, loss function, and evaluation metric. Then,
run multiple experiments to observe the impact of different hyperparame-
ter choices (regularization strength and the polynomial degree).

26

Support Vector Machines
(SVM)

Overview

SVM was initially seen as one of the most promising algorithms in machine
learning. It can be extended to regression and can be formulated both ge-
ometrically and analytically. The strength of SVMs lies in their flexibility,
allowing the use of kernel methods which are very powerful and standard
optimization algorithms.

To recap, in the Perceptron Learning Algorithm (PLA), the main idea
was to iteratively adjust the decision boundary until it separated the classes
without errors. This iterative process would stop when all training examples
were classified correctly. No constraints were imposed on the decision bound-
ary. In the Polynomial Regression chapter, we discussed the bias-variance
tradeoff, regularization methods, and their effects on decision boundaries.
Regularizing the model leads to better generalization. For SVMs, the ques-
tion remains: how should we choose the decision boundary? Figure 3 shows
that there are multiple ways to select it. To decide on the optimal boundary,
the notion of margin is introduced. A detailed explanation can be found in
[3] (Chapter 5).

The main objective is to implement Hard-Margin and Soft-Margin SVMs
and select appropriate kernels for handling non-linearly separable data.

Intuition and Margin

In Logistic Regression, we aimed for the absolute value of wTx to be as high
as possible, making the sigmoid g(wTx) function approach either 0 or 1 as
wTx tended to -∞ or +∞. Using binary cross-entropy loss, we had a high
penalty for misclassified points even if they were near the correct label (0 or
1). The idea was that greater confidence in predictions reduced the penalty.

27

Figure 3: Different ways to select the decision boundary.

28

Figure 4: Widest street approach maximizing the distance between the sup-
port vectors.

The SVM extends this idea by defining a margin, and our goal is to select
the decision boundary that maximize this margin. The intuition is that this
margin can be seen as if you would build a street between the points of
different classes such that no point lays on the street and the width of the
street is maximal. You can see the so called street forming in Fig. 4

Let X be a set of training examples with labels Y = {+1,−1}. The
hypothesis is defined as sign(wTx+ b), resembling the perceptron. Here, w is
the weight vector and b is the bias term. Unlike before, we do not incorporate
b into w using a bias trick but keep it separate.

Let’s revisit the mathematical framework to define what we aim to achieve.
Specifically, we want to create a clear separation between positive and neg-
ative samples. This separation can be expressed as:

wTx+ + b ≥ 1 and wTx− + b ≤ −1

29

Here, we choose the value 1 as a threshold, meaning that the dot product
plus the bias not only needs to have the correct sign but must also exceed a
certain distance from the boundary.

This can be rewritten in a more compact form as:

yi(w
Txi + b) ≥ 1

Having defined our decision rule, let’s recall that our objective is to max-
imize the width of the ”street” that separates the two classes. Figure 4
illustrates the boundaries of this margin as dotted lines, representing the
distance we want to maximize. Let’s formulate this mathematically.

For points lying on the dotted lines, the following constraints hold:

wTxs− + b = −1

wTxs+ + b = +1

where the samples xs+ and xs− are called support vectors, as they satisfy
these constraints and are the only points that influence the decision boundary.
Other points do not affect the boundary and can be ignored.

Now, to calculate the width of the ”street,” we take the vector defined
by xs+ and xs− difference as shown in Figure 4. This vector is crossing
the ”street,” but we need a perpendicular distance to measure the width.
Fortunately, we know that w is perpendicular to the decision boundary, so
the magnitude of the projection of this vector onto w is the distance we need.
This gives:

(xs+ − xs−)
w

∥w∥
where w

∥w∥ is the normalized weight vector, ensuring unit magnitude. By

taking the projection of (xs+ − xs−) onto
w

∥w∥ , we obtain exactly the width
of the ”street”.

Expanding (xs+ − xs−)w, we get xT
s+w = 1− b and xT

s−w = b− 1. Thus,
the ”street” width becomes:

2

∥w∥
which we aim to maximize. Maximizing 2

∥w∥ is equivalent to minimizing

∥w∥, or more conveniently, minimizing 1
2
∥w∥2, as this results in a convex

function.

30

In summary, our goal is to maximize the margin by minimizing 1
2
∥w∥2,

subject to the constraint:

yi(w
Txi + b) ≥ 1

This setup leads directly to a Lagrangian formulation, which we will
briefly outline. For further details, please refer to the suggested resources.

min
w,b

1

2
∥w∥2 (1)

s.t. y(i)
(
wTx(i) + b

)
≥ 1, i = 1, . . . ,m (2)

Writing the Lagrangian Formulation

The Lagrangian formulation for the SVM optimization problem is given by:

L(w, b, α) = 1

2
∥w∥2 −

m∑
i=1

αi

[
yi(w

Txi + b)− 1
]

To optimize, we set the derivative to 0 with respect to w and b:

∇wL(w, b, α) = w −
m∑
i=1

αiyixi = 0

This implies that:

w =
m∑
i=1

αiyixi

For the derivative with respect to b, we have:

∂

∂b
L(w, b, α) =

m∑
i=1

αiyi = 0

Substituting these results back, we obtain:

L(w, b, α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj (xi)
T xj − b

m∑
i=1

αiyi

The last term involving b must be zero, so we finally have:

L(w, b, α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

yiyjαiαj(xi)
Txj

31

This leads to the dual optimization problem:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj⟨xi, xj⟩

s.t. αi ≥ 0, i = 1, . . . ,m,
m∑
i=1

αiyi = 0

From here, we can use a convex optimization algorithm to find the La-
grange multipliers. Notice that w depends only on the support vectors, the
points for which the Lagrange multipliers αi are greater than 0.

Since the support vectors satisfy

yi (w · xi + b) = 1,

we can isolate b as:
b = yi −w · xi

In practice, we compute b by averaging across all support vectors to get
a stable estimate:

b =
1

|S|
∑
s∈S

(ys −w · xs) =
1

|S|
∑
s∈S

(
ys −

m∑
i=1

αiyi⟨xi · xs⟩

)
where S is the set of indices of the support vectors.

We know how to compute b and w let’s see how can we compute wTx+ b
leveraging the lagrangians coefficients.

wTx+ b =

(
m∑
i=1

αiyixi

)T

x+ b =
m∑
i=1

αiyi⟨xi, x⟩+ b.

Now we have all the pieces in order to predict to a new data point we
only need to compute the sign of the above formula to get the desired class.

This is known as the Hard Margin SVM, where the margin is fixed, and
no classification errors are allowed. In the next section, we will introduce the
Soft Margin SVM, which allows for a small margin of error.

Kernels in SVM

So far, the SVM model assumes linearity in the data distribution. For non-
linear data distributions, SVM can be extended using a concept called ker-
nels. Recall from polynomial regression that we could enhance features by

32

raising them to powers, thereby mapping data into a higher-dimensional fea-
ture space. A similar approach can be applied to SVM, where we use a
function ϕ to map original features to a new feature space:

ϕ(x) =

 x
x2

x3

Here, ϕ is called a feature map, transforming data from the original space

to a higher-dimensional space. Instead of passing x to the SVM, we pass
ϕ(x).

Question 1: What happens if we choose a very high degree k for the poly-
nomial mapping, making the feature space excessively large?

This brings us to the concept of kernels. In SVM, we are interested not
in the explicit mapping ϕ(x) itself but in the dot product ϕ(x)Tϕ(z). This
leads to the kernel function K(x, z) = ϕ(x)Tϕ(z), which allows us to compute
the dot product in the new feature space without explicitly computing ϕ(x).
Kernels make SVM efficient and powerful for non-linear problems.

Here are examples of commonly used kernels:
1. Linear Kernel

K(x, z) = xT z

Feature Mapping Vector:
ϕ(x) = x

2. Polynomial Kernel

K(x, z) = (xT z + c)d

where c is a constant and d is the polynomial degree.
Feature Mapping Vector (for d = 2):

ϕ(x) =

x1

x2

x2
1

x2
2

x1x2

3. Radial Basis Function (RBF) Kernel

K(x, z) = exp
(
−γ∥x− z∥2

)
33

where γ controls the width of the Gaussian.
4. Sigmoid Kernel

K(x, z) = tanh(αxT z + c)

where α and c are parameters.
The power of kernel functions relies on the fact that we work with a

multi dimensional features space, even infinite without the need to explicitly
compute the operations in that space. The processing is done entirely in the
initial space but the optimization takes place by projecting the input features
into the feature maps which with the help of Kernel functions can be used
in SVM models.

In practice, a Kernel matrix K will be stored, containing elements equal to
ϕ(xi)

Tϕ(xj), where i, j ∈ m represent training index samples. This matrix is
used to directly look up the results of the inner product computed with the
help of the Kernel function. In the implementation section, you will probably
find it useful when computing b or making the final prediction.

Soft-Margin SVM

In Soft-Margin SVM, we introduce a penalty term C to allow some margin
violations. In the Hard Margin SVM no error ware allowed and in order
to successfully separate the data, kernels that projected the data into new
feature spaces were needed. What if outliers are present and the kernel is
not powerful enough? We would like to be a little more permissive with the
model. C is a hyper parameter that will specify the degree of permittivity
of the model.

min
w,b,ξ

1

2
∥w∥2 + C

m∑
i=1

ξi (3)

s.t. yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0 (4)

The Lagrangian for this problem is:

L(w, b, ξ, α, r) = 1

2
wTw +C

m∑
i=1

ξi −
m∑
i=1

αi

[
yi
(
wTxi + b

)
− 1 + ξi

]
−

m∑
i=1

riξi

34

where αi and ri are the Lagrange multipliers constrained to ≥ 0. Without
going through the full derivation, setting derivatives to zero and simplifying
leads to the dual formulation:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj⟨xi, xj⟩

s.t. 0 ≤ αi ≤ C,
m∑
i=1

αiyi = 0

Implementation 1: Implement svm.ipynb. In order to complete the as-
signment, you need to:

• Implement the Hard Margin approach by mapping the corresponding
formulas to the cvxopt optimization library.

• Implement the Soft Margin approach by mapping the corresponding
formulas to the cvxopt optimization library.

• Experiment with different settings for both Hard-Margin and Soft-
Margin SVMs to observe in which scenarios each approach works or
fails, and provide explanations as to why these outcomes occur.

35

Decision Trees

Overview

The decision tree algorithm is a straightforward algorithm to understand. It
can be used for both classification and regression tasks. Here, we are primar-
ily focused on the classification task, but it can be extended to regression
tasks quite easily.

The main objective is to implement a decision tree for a simple classifi-
cation task, following these steps: defining the splitting and gain functions,
determining the nodes and corresponding decisions within the tree, and test-
ing the model.

Approach

Let’s consider the task of classifying whether it is feasible to ski based on
the latitude and the time of year. We have generated a dataset, shown
in Figure 5, which you will work with. You can observe that the different
regions cannot be separated linearly; instead, the example given attempts to
divide the space into different regions, with each region corresponding to a
single label. Note that, although it may appear that the central classification
region is one area, it is actually a union of multiple regions producing the
same label.

To formulate this mathematically, we aim to divide our input space into
k different regions, Rk, such that there is no overlap between any of the
regions Ri and Rj. Each region will predict a value ŷk in both classification
and regression tasks.

We start with a parent region Rp and split it into subregions Rl and
Rr, based on a chosen threshold t and a given feature j of the data points.
Mathematically, we can express this as:

Sp(j, t) = ({X | Xj < t,X ∈ Rp} , {X | Xj ≥ t,X ∈ Rp})

36

Figure 5: Ski classification dataset based on latitude and month

where Sp represents the split of the parent region Rp at a threshold t for
the feature j.

Splits and Loss Functions

Now that we’ve introduced the concept of decision trees, let’s discuss how
we determine the splits. The idea is to choose a loss function per region to
measure its performance.

One possible loss function is L(Rk), where we define pc as the proportion
of samples in region Rk with the class yi = c. The misclassification loss
function is then given by:

Lmisclassified(Rk) = 1−max
c

pc

If the region contains samples from only one class, the loss is zero; if the
region has mixed classes, the loss approaches one.

Returning to the original question of determining the best split, we can
now maximize the difference between the loss of the parent region and the
sum of the post-split losses. This approach can be formulated as:

max
j,t

(L(Rp)− (L(Rl) + L(Rr)))

In other words, we aim to minimize the loss achieved by the split relative
to the parent region. This is known as information gain.

Before implementing this, let’s consider alternative loss functions. Figure
6 shows three different loss functions: the misclassification loss (in red, as

37

discussed) and two new ones defined as follows (where C is the total number
of classes):

LEntropy(Rk) = −
C∑
i=1

pi log2(pi)

LGini(Rk) = 1−
C∑
i=1

p2i

Imagine we have split the region into two new regions Rl and Rr. We
already have the loss for Rp, and we can compute the mean loss for the two
subregions. Both the Entropy and Gini functions are concave, meaning that
the mean loss of the new splits will always be less than the parent region’s
loss, maximizing information gain. This may not always be the case for
misclassification loss.

There is a question that may arise because we have defined that we aim to
maximize information gain as the difference between the loss of the parent
region and the sum of the losses in the two regions obtained after the split.
In Figure 6, the information gain is defined as the difference between the loss
of the parent region and the mean loss of the two resulting regions. This
approach applies when the number of samples in the two newly obtained
partitions is equal.

However, if the number of samples differs between these regions, we must
instead use a weighted average. The formula for information gain in this case
becomes:

Information Gain = L(Rp)−
(
Sl

S
· L(Rl) +

Sr

S
· L(Rr)

)
where S is the number of samples in the parent region, Sl is the number

of samples in the left newly obtained region, and Sr is the number of samples
in the right newly obtained region.

Question 1: Under what conditions does the misclassification loss behave
as we desire?

A note on Figure 6: we assume equal sample distribution between Rl and
Rr when taking the mean. If the samples are unevenly split, the mean should
be weighted accordingly. See implementation details in decision trees.ipynb.

38

Figure 6: Information gain with respect to different loss functions

Regularization Techniques and Explainability

Decision trees are widely appreciated for their simplicity and interpretability,
making them a popular choice for many applications. Key advantages include
their high interpretability, robustness to outliers, and ability to handle both
continuous and discrete features. Decision trees can also achieve a reasonably
good fit relatively quickly, even with large datasets.

However, decision trees also come with notable drawbacks. They tend to
overfit to training data, leading to high variance and limited generalization
to new data. Even with regularization, they often generalize poorly and
can be highly sensitive near boundary values, where small changes in the
input may lead to large changes in the model’s predictions. To mitigate
these issues, regularization techniques can be applied, such as limiting the
number of nodes, restricting the tree depth, and setting a minimum sample
size required to split a node. We will explore some of these techniques during
the implementation to improve model stability and predictive performance.

39

Implementation 1: Implement and run the decision trees.ipynb file.
The following tasks must be accomplished:

• Implement the function that handles the splitting process

• Implement the information gain functions: Gini and Entropy

• Run the model

40

Ensemble Methods

Overview

Ensemble learning involves combining the outputs of multiple models to make
a final decision. This approach can be likened to democratic decision-making,
where the majority opinion determines the final outcome. Mathematically,
we can represent this as:

h(x) =
T∑
t=1

αtgt(x),

where αt are the weights assigned to each model gt participating in the
decision-making process. In some ensemble methods, these weights are equal
(e.g., majority voting), while in others, the weights vary depending on model
performance.

From a bias-variance perspective, ensemble methods help reduce vari-
ance by relying on multiple models, which collectively provide a more robust
prediction than a single model setup. This reduces overfitting without sig-
nificantly increasing bias, as the complexity of individual models remains
unchanged.

In summary, ensemble methods involve multiple models (of the same type
or different types) contributing to the final prediction, thereby leveraging
their collective strengths.

The main objective is to implement the Random Forest algorithm, which
uses decision trees, and the AdaBoost algorithm, which uses decision stumps,
for simple classification tasks.

Bagging, Random Forests

The first family of ensemble methods we will examine is bagging. Bagging,
short for bootstrap aggregating, trains multiple models gi on different subsets

41

of the dataset. These subsets are generated through sampling with replace-
ment, ensuring diversity in training data for each model. The predictions of
these models are then aggregated, for example, by averaging for regression
or majority voting for classification.

Question 1: Why not train n different models on the entire dataset?

Random Forests. Previously, we studied decision trees and noted their
susceptibility to overfitting. Random forests address this limitation by using
bagging combined with additional randomness. The steps for creating a
random forest are:

1. From a dataset X = {x1, x2, ..., xm}, generate n datasets X1, X2, ..., Xn

by sampling with replacement.
2. Train a decision tree on each sampled dataset.
3. To further reduce correlation among trees, at each node in a tree,

randomly select k features (out of D) to determine the best split. This
ensures that different trees focus on different features.

This added randomness enhances model diversity, leading to improved
generalization.

The prediction for an instance is determined by the majority vote of all
the trees within the random forest.

Implementation 1: Implement the Random Forest algorithm in RandomForests.ipynb.
Since this implementation builds on Decision Trees, ensure you have a solid
understanding of them. You will need to implement the required functions
to fit (train) the model and to make predictions for any given input.

Boosting, AdaBoost

Boosting is another ensemble technique, where models are trained sequen-
tially. Each subsequent model focuses on correcting the errors made by its
predecessor. The idea is to combine multiple weak models into a single strong
model.

Each model gt is assigned a weight αt based on its performance on the
training data. Data points that are misclassified by a model are given higher
weights, ensuring that subsequent models pay more attention to these diffi-
cult cases. This iterative process leads to a combined model that performs
better on the overall dataset.

42

AdaBoost. AdaBoost, short for Adaptive Boosting, is an ensemble learn-
ing method that builds a strong classifier, h(x), from a collection of weak
classifiers gt. The key intuition behind AdaBoost is to focus the learning
process on the data points that are harder to classify by sequentially train-
ing weak models and assigning higher importance to previously misclassified
examples.

In each iteration, a weak learner is trained on the dataset, where every
data point is assigned a weight. Initially, all data points are weighted equally.
After the weak learner makes predictions, the algorithm calculates its error
rate. If the weak learner performs poorly, it still contributes to the final
model, but with lower importance. Conversely, if it performs well, its influ-
ence on the final model increases. This is achieved by assigning a weight (α)
to the weak learner based on its error rate.

Next, the data points that were misclassified are given higher weights,
making them more significant in the next round of training. By iteratively
reweighting the data and combining multiple weak learners, AdaBoost creates
a final strong classifier that focuses on the most challenging examples, leading
to improved accuracy.

Note: For clarity we would like to mention that there are two types of
weights. One that represent the importance of the model in the final decision
h(x), denoted with αt, and the data weights wi for each data point that are
used to represent how difficult is to correctly map the specific example to the
correct label.

Mathematically, the final classifier aggregates the predictions of all weak
learners, weighted by their importance (α):

h(x) = sign

(
T∑
t=1

αtgt(x)

)
,

where T is the number of weak learners, gt(x) is the prediction of the t-th
weak learner, and αt is its weight.

43

Pseudocode for AdaBoost Algorithm

Algorithm 1 AdaBoost

Input: Training data (X, y), number of weak learners T .
Output: Final strong classifier h(x).

1: Initialize sample weights wi =
1
n
,∀i = 1, ..., n.

2: for each round t = 1, ..., T do
3: Train a weak learner gt(x) using weights wi.
4: Compute the weighted error:

errt =

∑n
i=1wi1[gt(xi) ̸= yi]∑n

i=1wi

.

5: Compute the weight of the weak learner:

αt =
1

2
log

(
1− errt
errt

)
.

6: Update the sample weights:

wi ← wi exp
(
− αtyigt(xi)

)
, ∀i.

7: Normalize the sample weights:

wi ←
wi∑n
j=1 wj

, ∀i.

8: end for
9: Combine weak learners into the final strong classifier:

h(x) = sign

(
T∑
t=1

αtgt(x)

)
.

44

Figure 7: Differences between Boosting and Bagging methods compared to
the naive model training approach. Image source [6]

In the implementation of the AdaBoost classifier:
1. The class labels are yi ∈ {−1, 1}. If the dataset does not use these

label values, ensure they are converted to the correct format.
2. Decision stumps can be used as weak learners gt(x). A decision stump

is a decision tree with a depth of 1 (a threshold applied to a single feature).
When computing the decision tree’s loss functions (e.g., Gini impurity or
entropy) for splits, the class probabilities should be calculated as the sum
of the sample weights wi for each class normalized by the total sum of all
weights.

Implementation 2: Implement the AdaBoost method in AdaBoost.ipynb,
make sure you also add your RandomForest solution in order to make a side
by side comparison

Conclusions To conclude this chapter, we would like to clarify the differ-
ence between the two ensemble techniques by illustrating them in Fig. 7.
Additionally, we want to emphasize once again that ensemble methods are
largely agnostic to the models that form the final decision. The complexity
constraints are a hyperparameter determined by the user.

45

Question 2: Should ensemble techniques always be used? Justify your
answer.

46

Naive Bayes Classifier

Overview

Naive Bayes is a probabilistic classifier based on applying Bayes’ theorem
with strong (naive) independence assumptions between the features. In this
chapter, we will delve into the intuition and mathematics behind the Naive
Bayes classifier.

The main objective is to implement the Näıve Bayes classifier for classify-
ing handwritten digits from the MNIST dataset [7], following these steps: im-
age preprocessing, probability computation, training and testing the model,
and computing accuracy.

Approach

The fundamental idea of Naive Bayes is to calculate the probability of each
class C = c given a feature vector x ∈ Rd:

x =

x1

x2
...
xd

 , (5)

where xi represents the i-th feature of the instance. The goal is to assign
the class label c ∈ {1, 2, . . . , K} that maximizes the posterior probability
P (C = c | x).

Using Bayes’ theorem, the probability of class C = c given the instance
x is:

P (C = c | x) = P (x | C = c)P (C = c)

P (x)
.

47

Since P (x) is constant for all classes during classification, we can focus
on maximizing the numerator P (x | C = c)P (C = c). The naive assumption
is that all features xi are conditionally independent given the class label C:

P (x | C = c) =
d∏

i=1

P (xi | C = c).

This assumption simplifies computation significantly and allows the model
to handle high-dimensional data efficiently.

Bernoulli Naive Bayes

In the Bernoulli Naive Bayes model, we assume that all features are binary
random variables, taking values 0 or 1. This model is appropriate for data
where features represent the presence or absence of a particular attribute,
such as word occurrence in text documents or pixel activation in binary
images.

For each feature xi, the likelihood given the class C = c is:

P (xi | C = c) = [P (xi = 1 | C = c)]xi [P (xi = 0 | C = c)]1−xi .

Thus, the joint likelihood is:

P (x | C = c) =
d∏

i=1

[
P (xi = 1 | C = c)xiP (xi = 0 | C = c)1−xi

]
.

Mathematical Formulation

To predict the class of a new instance x, we compute the posterior probability
for each class C = c:

P (C = c | x) ∝ P (C = c)
d∏

i=1

P (xi | C = c).

Taking the logarithm to prevent numerical underflow and to simplify
multiplication into addition:

logP (C = c | x) = logP (C = c)+
d∑

i=1

[xi logP (xi = 1 | C = c) + (1− xi) logP (xi = 0 | C = c)] .

48

We then choose the class with the highest logP (C = c | x):

ĉ = arg max
c∈{1,2,...,K}

logP (C = c)+
d∑

i=1

[xi logP (xi = 1 | C = c) + (1− xi) logP (xi = 0 | C = c)] .

49

Implementation Details with MNIST

In our implementation of the Bernoulli Naive Bayes classifier using the MNIST
dataset, we model the problem as follows:

1. MNIST images are grayscale with pixel values ranging from 0 to 255.
We binarize the pixel values such that:

xi =

{
1, if pixel intensity ≥ th,

0, otherwise,

where th is a threshold (e.g., 128).
2. Compute Class Priors P (C = c) these are estimated from the training

data:

P (C = c) =
Number of samples where C = c

Total number of samples
.

3. Compute Feature Likelihoods P (xi = 1 | C = c) of each feature given
the class using Laplace smoothing (with smoothing parameter α) to handle
zero probabilities:

P (xi = 1 | C = c) =
Number of samples where xi = 1 and C = c+ α

Total samples where C = c+ 2α
.

The denominator 2α accounts for the binary nature of the features (0 or 1).
We set α = 1. For more details about Laplace smoothing you can check
Chapter 4 of [3].

4. Log-Probability Computation, we compute the log-probabilities for
numerical stability:

logP (C = c | x) = logP (C = c) +
d∑

i=1

[xi logP (xi = 1 | C = c)

+ (1− xi) log(1− P (xi = 1 | C = c))] .

5. We compute the class Prediction by assigning the class label with the
highest log-probability:

ĉ = arg max
c∈{0,1,...,9}

logP (C = c | x).

By modeling the MNIST dataset in this way, we treat each pixel as a
binary feature indicating whether the pixel is active (xi = 1) or inactive
(xi = 0). This allows the Bernoulli Naive Bayes classifier to efficiently handle
the high-dimensional data of the MNIST images.

50

Implementation 1: Implement the Naive Bayes classifier in NaiveBayes.ipynb.
The following tasks must be accomplished:

• Preprocess the data by image thresholding

• Compute the necessary probabilities

• Implement the training stage

• Test the classifier and compute the accuracy

51

Unsupervised Learning,
Clustering

Overview

Up to this point, we have seen a couple of supervised algorithms. We will
briefly recap that supervised methods take as input multiple tuples of the
form (xi, yi), where xi is the input instance and yi is the associated label. We
train the algorithms using a training set in order to hopefully obtain good
predictions on unseen data. To test generalization capabilities, we evaluate
the model on a so-called test set, using different evaluation metrics depending
on the task at hand.

In this chapter, we will introduce the concept of unsupervised learning,
and we will explain and implement two types of clustering algorithms: namely
K-means and DBSCAN.

The main objective is to implement the K-means and DBSCAN algo-
rithms and evaluate the results by applying two evaluation metrics: the
Silhouette index and the Dunn coefficient.

Clustering

Clustering is one of the most important unsupervised learning tasks. In
simple terms, it deals with the problem of grouping together closely related
instances based on their associated features, without knowing the final clus-
ter to which each instance should be assigned during the training stage.
According to [8], the following criteria describe the clustering task:

• Instances within the same cluster must be as similar as possible.

• Instances in different clusters must be as different as possible.

• The measurement for similarity and dissimilarity must be clear and
have practical meaning.

52

Clustering algorithms can be divided into multiple categories. Here, we
will focus on two of them, with one example each: partition-based algorithms
and density-based algorithms. For further reading on other categories and
algorithms associated with each, you can refer to [8].

K-Means

One of the most well-known clustering algorithms is K-means. It belongs to
the category of partition-based clustering algorithms. The intuition behind
K-means is quite straightforward: we select a number k of clusters that we
want to divide our data into, prior to training. Each cluster is represented
by a centroid ci ∈ Rd, where i ∈ {1, . . . , k} and d is the dimensionality of the
training instances. The algorithm works iteratively:

1. First, randomly initialize the centroids of each cluster.

2. Iteratively assign each instance to the closest centroid, update the cen-
troids based on the formed clusters, and repeat this process until con-
vergence.

Before writing the pseudocode for this first clustering algorithm, let’s
clarify some terms used in the steps outlined above. We refer to a cluster as
a set of instances Ci = {x1, x2, . . . , xl}, where x1, x2, . . . , xl are instances from
the training set that belong to the same cluster. In the case of K-means, they
belong to the same cluster because the centroid ci associated with cluster Ci

is the closest to them. It is also important to emphasize that the centroids
are not fixed; they are initially chosen as random vectors and then iteratively
updated to move closer to the mean of the instances in the cluster. Centroids
can be viewed as representing the mean of each cluster.

53

Pseudocode

Algorithm 2 K-Means Clustering Algorithm

Input: Training data X = {x1, x2, . . . , xn}, number of clusters k.
Output: Final cluster assignments and centroids.

1: Randomly initialize centroids C = {c1, c2, . . . , ck}.
2: repeat
3: for each instance xi ∈ X do
4: Assign xi to the closest centroid cj, based on a distance metric

(e.g., Euclidean distance).
5: end for
6: for each cluster Cj do
7: Update centroid cj as the mean of all instances assigned to it:

cj =
1

|Cj|
∑
xi∈Cj

xi.

8: end for
9: Check for convergence: If centroids do not change significantly, stop.
10: until convergence is reached
11: Return: Updated centroids C = {c1, c2, . . . , ck} and cluster assignments.

Limitations

K-means is guaranted to converge in a finite number of steps but not to a
global minima. For the proof check out [9].

Question 1: What is the main downside of K-Means?

Evaluation metrics

Before jumping to the next algorithm an important aspect has to be elabo-
rated namely how do we evaluate the performance of an unsupervised learn-
ing algorithm since we do not have any labels attributed to them?

Silhouette Index

To calculate silhouette coefficient, cluster cohesion (a) and cluster separa-
tion (b) must be calculated. Cluster cohesion refers to the average distance

54

between an instance and all other data points within the same cluster while
cluster separation refers to the average distance between an instance and
all other data points in the nearest cluster. Silhouette coefficient can be
calculated as shown below. Silhouette coefficient is essentially the difference
between cluster separation and cohesion divided by the maximum of the
two.[10]

• A value close to +1 indicates that the instance is well-clustered and far
from other clusters.

• A value close to −1 indicates that the instance might belong to another
cluster.

• A value close to 0 indicates that the instance is on the boundary be-
tween two clusters.

For each instance xi, the silhouette value s(xi) is defined as:

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
,

where:
a(xi) is the average distance between xi and all other instances in the

same cluster Cj to which xi belongs:

a(xi) =
1

|Cj| − 1

∑
xk∈Cj ,xk ̸=xi

d(xi, xk),

where d(xi, xk) represents the distance between two instances xi and xk.
b(xi) is the minimum average distance between xi and all instances in any

other cluster Cl:

b(xi) = min
l ̸=j

1

|Cl|
∑
xk∈Cl

d(xi, xk).

The overall Silhouette Score for the entire clustering solution is the
average of silhouette values over all instances:

S =
1

n

n∑
i=1

s(xi).

A higher value of S indicates better-defined clusters.

55

Dunn Coefficient

The Dunn Coefficient is another clustering evaluation metric that focuses
on two key aspects:

1. The minimum inter-cluster distance (i.e., the distance between the
closest instances of different clusters).

2. The maximum intra-cluster distance (i.e., the distance between the
farthest instances within the same cluster).

The Dunn Coefficient is defined as:

D =
mini ̸=j minxi∈Ci,xj∈Cj

d(xi, xj)

maxk maxxk,xl∈Ck
d(xk, xl)

,

where:
mini ̸=j minxi∈Ci,xj∈Cj

d(xi, xj) represents the minimum distance between
any two instances from different clusters Ci and Cj.

maxk maxxk,xl∈Ck
d(xk, xl) represents the maximum distance between any

two instances within the same cluster Ck.
The Dunn Coefficient is designed such that a higher value of D indi-

cates better clustering, where clusters are well-separated, and intra-cluster
distances are small. In practice, maximizing D often leads to better-defined
and more compact clusters.

Implementation 1: Implement kmeans.ipynb. The following tasks must
be accomplished:

• Initialize the centroids

• Iteratively update the centroids

• Ensure the solution converges

• Implement Dunn Index and Silhouette Score.

• Test the solution

DBSCAN (Density-Based Spatial Clustering

of Applications with Noise)

In the previous section we saw one of the most famous clustering algorithms
based on partition based techniques. A big downside of K-Means is that the
number of clusters has to be specified. We will now talk about a density

56

based algorithm where the number of clusters do not need to be specified
beforehand. DBSCAN is a density-based clustering algorithm that groups
together instances that are closely packed together (groups together denser
regions), marking as outliers those instances that lie alone in low-density
regions. It is particularly useful for handling data with noise and outliers.

The intuition behind DBSCAN is simple: it identifies dense regions of
data points separated by sparse regions. The algorithm requires two param-
eters:

• ϵ: the radius of the neighborhood around a point.

• MinPts : the minimum number of points required to form a dense region
(i.e., a cluster).

The algorithm proceeds as follows:
1. Core Points: A point is considered a core point if at least MinPts

points are within a distance ϵ of it.
2. Border Points: A point is considered a border point if it is within

ϵ of a core point but does not have enough neighbors to be considered a core
point itself.

3. Noise Points: A point is considered noise if it is not a core point or
a border point.

4. Clustering: Starting from a random unvisited core point, the algo-
rithm expands the cluster by recursively adding neighboring points that are
either core points or border points. This process continues until all reachable
points have been assigned to the cluster. If a point cannot be reached from
any core point, it is classified as noise.

57

Pseudocode

Algorithm 3 DBSCAN (Density-Based Spatial Clustering of Applications
with Noise)

Input: Dataset D, Epsilon (ϵ), MinPts.
Output: Set of clusters and noise points.

1: C = 0 ▷ Initialize cluster counter.
2: for each unvisited point P in dataset D do
3: Mark P as visited.
4: NeighborPts = regionQuery(P, ϵ)
5: if |NeighborPts| < MinPts then
6: Mark P as NOISE.
7: else
8: C = C + 1 ▷ Create a new cluster.
9: expandCluster(P,NeighborPts, C, ϵ,MinPts)

10: end if
11: end for
12: procedure expandCluster(P, NeighborPts, C, epsilon, MinPts)
13: Add P to cluster C.
14: for each point P ′ ∈ NeighborPts do
15: if P ′ is not visited then
16: Mark P ′ as visited.
17: NeighborPts′ = regionQuery(P ′, ϵ)
18: if |NeighborPts′| ≥ MinPts then
19: NeighborPts = NeighborPts ∪ NeighborPts′

20: end if
21: end if
22: if P ′ is not yet a member of any cluster then
23: Add P ′ to cluster C.
24: end if
25: end for
26: end procedure
27: function regionQuery(P, epsilon)
28: return all points within P ’s ϵ-neighborhood (including P).
29: end function

58

Implementation 2: Implement dbscan.ipynb. In order to complete the
assignment, the following tasks must be accomplished:

• Implement the region query and expand functions.

• Implement the DBSCAN algorithm.

• Implement Dunn Index and Silhouette Score.

• Test the solution.

Question 2: What can you say about the evaluation metrics results for both
clustering algorithms?

59

Bibliography

[1] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from
data. AMLBook New York, 2012, vol. 4.

[2] R. K. Pace and R. Barry, “California housing dataset,” https://
www.dcc.fc.up.pt/∼ltorgo/Regression/cal housing.html, 1997, dataset
derived from the 1990 U.S. Census. See also: Pace, R. Kelley and Barry,
Ronald, ”Sparse Spatial Autoregressions,” Statistics and Probability Let-
ters, 33:291–297, 1997.

[3] A. Ng, “Cs229 lecture notes,” CS229 Lecture notes, vol. 1, no. 1, pp.
1–3, 2000.

[4] W. Wolberg, O. Mangasarian, N. Street, and W. Street, “Breast Cancer
Wisconsin (Diagnostic),” UCI Machine Learning Repository, 1993, DOI:
https://doi.org/10.24432/C5DW2B.

[5] V. Tassopoulou, “An exploration of deep learning architectures
for handwritten text recognition,” Master’s thesis, School of
Electrical and Computer Engineering (ECE), Division of Signal,
Control and Robotics, Computer Vision, Speech Communication
and Signal Processing Group, November 2019. [Online]. Available:
https://www.researchgate.net/publication/337368016 An Exploration
of Deep Learning Architectures for Handwritten Text Recognition

[6] A. Senozan, “Ensemble: Boosting, bagging, and stack-
ing machine learning,” 2023, accessed: 2024-11-23.
[Online]. Available: https://medium.com/@senozanAleyna/
ensemble-boosting-bagging-and-stacking-machine-learning-6a09c31df778

[7] Y. LeCun, C. Cortes, and C. J. C. Burges, “The mnist database of hand-
written digits,” http://yann.lecun.com/exdb/mnist/, 1998, accessed:
2025-02-25.

60

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.researchgate.net/publication/337368016_An_Exploration_of_Deep_Learning_Architectures_for_Handwritten_Text_Recognition
https://www.researchgate.net/publication/337368016_An_Exploration_of_Deep_Learning_Architectures_for_Handwritten_Text_Recognition
https://medium.com/@senozanAleyna/ensemble-boosting-bagging-and-stacking-machine-learning-6a09c31df778
https://medium.com/@senozanAleyna/ensemble-boosting-bagging-and-stacking-machine-learning-6a09c31df778
http://yann.lecun.com/exdb/mnist/

[8] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”
Annals of data science, vol. 2, pp. 165–193, 2015.

[9] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized
convergence theorem and characterization of local optimality,” IEEE
Transactions on pattern analysis and machine intelligence, no. 1, pp.
81–87, 1984.

[10] H. Belyadi and A. Haghighat, Machine learning guide for oil and gas
using Python: A step-by-step breakdown with data, algorithms, codes,
and applications. Gulf Professional Publishing, 2021.

61

	Machine learning I
	Introduction to Python
	Overview
	Python Programming Language
	Development Environments
	Libraries

	A brief introduction of Linear Models
	Overview
	A Brief Fundamental Recap

	PLA - Perceptron Learning Algorithm
	Overview
	Approach
	Mathematical data representation
	Learning Algorithm

	Linear Regression
	Overview
	Approach
	Gradient descent optimization
	Closed-form Solution

	Logistic Regression
	Overview
	Approach
	Maximum Likelihood Estimation

	Polynomial Regression
	Overview
	Approach
	Practical Solutions for Dealing with Overfitting and Underfitting
	Optimization

	Support Vector Machines (SVM)
	Overview
	Intuition and Margin
	Writing the Lagrangian Formulation
	Kernels in SVM
	Soft-Margin SVM

	Decision Trees
	Overview
	Approach
	Splits and Loss Functions
	Regularization Techniques and Explainability

	Ensemble Methods
	Overview
	Bagging and Random Forests
	Boosting, AdaBoost
	Pseudocode for AdaBoost Algorithms

	Naive Bayes Classifier
	Overview
	Approach
	Bernoulli Naive Bayes
	Mathematical Formulation
	Implementation Details with MNIST

	Unsupervised Learning, Clustering
	Overview
	Clustering
	K-Means
	Pseudocode
	Limitations

	Evaluation metrics
	Silhouette Index
	Dunn Coefficient

	DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
	Pseudocode

