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Foreword 

Creating a program on a computer makes sense only in the situation where the amount of calculations 
would exceed manual possibilities. Such situations can arise when many similar problems need to be 
solved, complex and laborious calculations need to be performed, or large amounts of data need to be 
processed. Creating a computer program requires some specific knowledge. The efficiency and 
performance of the program will depend not only on the platform on which it will run, but also on the 
knowledge and experience of those who collaborate to create it. In the following, we will refer to the 
creation of simple applications, using a high-level programming language (close to natural language), 
namely Fortran. The programming stages are generally summarised by 3 phases: conception (the logical 
level of problem solving with the development or choice of the appropriate algorithm), coding 
(transcription of the algorithm into a machine-accessible programming language, to create the program), 
testing and implementation (verifying correctness with test data and fine-tuning the program). These 
stages can be covered by the following steps: 

- recognise and define the problem (to know the initial data); 
- selection and description of the proposed method (how to obtain the results); 
- translate the description of the method into a programming language (create the source file); 
- making the program by compiling (translating the source file into machine code, generating the 

object image) and link-editing (filling the object image with parts from the language library, 
generating the executable file); 

- running and testing the created software. 
The contents of this handbook have been written to guide first year Civil Engineering students in the 
subject of "Computer Programming and Programming Languages", but it can also be useful for beginners 
who want to get started with the Fortran language. The first part illustrates some concepts regarding the 
use of structured flowcharts to describe certain methods, followed by a brief overview of the Fortran 
language and mention of some freely available development environments. Information on writing source 
files is followed by a more detailed presentation of the basic aspects of the Fortran 95 language syntax 
(using the G95 compiler) for writing simple programs. Finally, there are some illustrative exercises (with 
transcriptions of flowcharts and source files). 

Structured flowcharts 

A flowchart (logic scheme) is a graphical tool that can be used to represent the steps of an algorithm in the 
form of blocks (symbols) connected by lines. In order to use this tool in a structured way, some principles 
should be known, such as: 

- Flowcharts are drawn and read from top to bottom (exceptions are marked with arrows). 
- Blocks can have only one entry point (except for the start block, which has only one exit), and the 

number of exit points depends on the type of block: modules and those representing input / output 
operations or attribution have only one exit, conditional ones depending on the type of expression 
(logical ones have 2, for true or false; arithmetic ones have 3, for negative, zero or positive), and 
the ending block has no exit point. 

- In the construction of structured flowchart, sequentially chained module-like parts (with a single 
entry point and a single exit point) are used as far as possible. 

A module can contain anything, provided it has only one entry and one exit. The contents of a module must 
be detailed separately, where appropriate. The symbols used in the composition of flowcharts are shown in 
the following table:  
 

Use Symbol Variants (examples) 

Start block (marked START) or end block 
(marked STOP) 

  
START 

STOP 
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Input block (marked with the elements to 
be read) 

  

Output block (marked with elements to 
be written) 

  

Alternative to input/output block (note 
whether input or output) 

  

Attribution block (contains a single 
expression, whose value is attributed to 
the variable on the left) 

  

Decision blocks (output is branched 
according to the type of expression 
evaluated, conditions are also marked) 

  

Module or procedure block (marked with 
module name) 

  

Inner connector (for interrupt or 
continuation within the same page, 
marked correspondingly) 

  

External connector (for interrupt or 
continuation between different pages, 
with matching mark) 

  

 
The principles of structured programming were published by Edsger W. Dijkstra[1], exemplifying the 
following 3 levels in order of complexity: 
 

1. Sequential chaining (the exit from one module will be the entry to the next module): 
 
 
 
 
 
 
 
 
 
 

2. Decision-making structures (only one branch is used when traversing): 

2.1.  Simple logical decision with void branch, the false case branch being empty. 
 
 
 
 
 
 
 

                                                           
1
 E. W. Dijkstra: “Notes on Structured Programming” (Report) 70-WSK-03, Technical University of Eindhoven, The 

Netherlands, 1970. via E.W. Dijkstra Archive. Center for American History, University of Texas at Austin, USA. 
https://www.cs.utexas.edu/~EWD/ewd02xx/EWD249.PDF 

I a,b 
O ”a= ”,a 

a,b 

”a: ”,a 

a := 2x + 1 

a > b F T 
<0 

=0 

>0 
a+b 

M1 M2 

A 

1 
1 

A 

M1 

M2 

M3 

? F T 

MT 
”if ? do MT” 

https://www.cs.utexas.edu/~EWD/ewd02xx/EWD249.PDF
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2.2.  Common logical decision.  
 
 
 
 
 

 
 

2.3.  Generalized decision or choice.  
 
 
 
 
 
 
 

 

3. Repeating structures (loops):  

3.1.  Preconditioned loop. 
 
 
 
 
 

 

 
3.2.  Postconditioned loop. 

 
 
 
 
 
 

 
 
In most programming languages, there are statements (instructions) corresponding to these basic 
structures.  To make it easier to understand (verify) the content of source files and to reduce the execution 
time of statements, it is recommended to use structures starting from the simplest to the most complicated 
ones. Applying the principle of structuring, the algorithm of a program can be described by a generic 
flowchart consisting of 3 modules: 
 
 
 
 
 
 
 
 
 
 
 
 

? F T 

MT MF 

i 

M1 M2 Mn 

? F T 

M 

? F T 

M 

Post-processing 
(providing results) 

Processing 
(data processing) 

START 

Pre-processing 
(data input and validation) 

STOP 

”if ? then MT else MF” 

”case i of (M1; M2; …; Mn)” 

”while ? do M” 

”repeat M until ?” 
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This makes it easier to split up and test applications across development teams, and in case of updates or 
changes to source files, the separate approach to modules makes tasks easier. Here is an example for 
displaying the maximum value from the contents of two variables: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As can be seen, if this algorithm is to be modified to compare multiple values, the data input part will be 
slightly modified, the processing part will be completed by replicating the simple logical decision structure 
with a void branch, and the result output part will remain unchanged. Here is a variant for 3 values (the 
modifications are marked in bold): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

”Put in 2 values:” 

V1,V2 

MAX:=V1 

”the greatest is:”,MAX 

START 

STOP 

MAX<V2 F T 

MAX:=V2 

Data input part 

Data processing part 

Result output part 

”Put in 3 values:” 

V1,V2,V3 

MAX:=V1 

”the greatest is:”,MAX 

START 

STOP 

F T MAX<V2 

MAX:=V2 

Data input part 
 

Data processing part 
 

Result output part 
 

F T MAX<V3 

MAX:=V3 
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Briefly about Fortran 

The first version of this programming language was created by a team from IBM under the leadership of 
John W. Backus, being released in 1957 under the name "IBM Mathematical Formula Translating System" 
(in short: FORTRAN, from the combination of FORmula TRANslation words), this being the first high-level 
programming language (close to natural language). In 1958 IBM published a revised version, called 
FORTRAN II, which provided support for procedural programming by introducing specifications for 
subroutines and functions. Because of its popularity, IBM decided to remove the features that limited the 
use of the language on IBM systems, and in 1964 released a variant called FORTRAN IV that could run on 
any computer. The FORTRAN 66 version appeared in 1966, as a result of the standardization carried out by 
the American Standards Association (ASA, the precursor of ANSI), being the first programming language 
defined by a standard. The “ANSI FORTRAN” committee (known as "X3J3") began developing a new version 
in 1969, and the result was FORTRAN 77, the most widely used version of the language.  
The next version was expected to be released in the 1980s (Fortran 8X), but it was released only in 1991, 
introducing the free form and became known as Fortran 90, opening a path for HPF (High Performance 
Fortran). In 1997, the standard for Fortran 95, the first object-oriented version, was published. 
Compared to C++ (an object-oriented language that supports polymorphism and inheritance), Fortran has 
introduced some similar features (through modules and derived types), but has no automatic inheritance. 
On the other hand, Fortran is easier to learn and use for scientific computing than C++, having native 
support for complex values, multidimensional arrays, etc., which C++ lacks. Fortran 2003 represents a 
significant turn in object-oriented features, also ensuring interoperability with C/C++, and in 2010 Fortran 
2008 was released with new provisions (sub-modules, co-arrays, the contiguous attribute, etc.) and having 
implemented parallel processing with distributed memory. After Fortran 2018, which was a revision of the 
previous version with additional support for parallel processing, Fortran 2023 is the latest standardized 
version with even more features. 
Here is a quoted fragment from the FAQ section of https://fortran-lang.org/, for those interested in the 
usefulness of this language: ”What is Fortran used for? Fortran is mostly used in domains that adopted 
computation early–science and engineering. These include numerical weather and ocean prediction, 
computational fluid dynamics, applied math, statistics, and finance. Fortran is the dominant language of 
High Performance Computing and is used to benchmark the fastest supercomputers in the world.” 

Creating programs 

In order to create a Fortran program, you need a text editor (preferably ASCII) and a suitable package 
containing a compiler plus link editor (builder). The G95 compiler includes some features of Fortran 2003 in 
addition to Fortran 95 and can be installed on Windows with MinGW (by running the g95-MinGW.exe file), 
although its development was discontinued in 2013. After the installation, you can create a source file in 
the C:\MinGW folder (such as test.f95), containing the following two lines:  
 
 
 
Make sure to save the file with the ”.f95” extension. To test the functionality of G95, open a console 
window and type: 
 
 
 
If nothing is displayed, then the object image (test.o file) was created without errors after compiling, from 
which the executable file can be created by the following command: 
 
 

To run the created program (the test.exe file) type test and the OK letters should appear on the screen. 
If you want to learn more about the options of the G95 compiler and the facilities it provides, take a look at 
the G95Manual.pdf file in the C:\\MinGW\doc folder.  
For other operating systems, you can use GNU Fortran (GFortran 95), which is included in the GCC package.  

print *,”OK” 

end 

cd C:\MinGW 

g95 -c test.f95 

g95 test.f95 -o test.exe 

https://fortran-lang.org/
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However, it is more convenient to use an integrated development environment (IDE), and for Windows, our 
choice is the Force package with the G95 compiler included. To get it, go to the project's web site[2] and in 
the "Downloads" section select the version marked in the figure below.  

 

 
 
After installation, the G95Manual.pdf file will be located in the C:\Program Files (x86)\Force 2.0\doc folder. 
Before the first run on Windows 10 and 11, the properties of the C:\Program Files (x86)\Force 2.0 folder 
must be changed to give full control to the administrator (and possibly the current user), otherwise the 
initial settings will not be saved. To be able to use the free form of the source file in Force, after installation 
you will need to add the ”-ffree-form” option (as illustrated) in the Compilation Options and 
experiment with the convenient running mode (through batch command file, run directly the executable, 
or in a console window). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Of course it is possible to choose other variants, such as Code::Blocks with Fortran[3], Geany[4] (no Fortran 
compiler included, but you can install G95 separately on Windows, or GFortran on other operating 
systems), etc. There are even variants that run online through a browser (such as GDB online[5], 
myCompiler[6], Ideone[7], Jdoodle[8], and many more). You can also visit https://fortranwiki.org/ and 
https://fortran-lang.org/ for additional options and resources. 

                                                           
2
 Force Fortran - The Force Project. https://force.lepsch.com/ 

3
 Code::Blocks IDE for Fortran | CBFortran. https://cbfortran.sourceforge.io/ 

4
 Geany - The Flyweight IDE. https://www.geany.org/ 

5
 GDB Online Fortran Compiler. https://www.onlinegdb.com/online_fortran_compiler  

6
 myCompiler – Create a new Fortran program. https://www.mycompiler.io/new/fortran  

7
 Online Compiler and IDE. https://ideone.com/ 

8
 Online Fortran Compiler. https://www.jdoodle.com/execute-fortran-online/ 

https://fortranwiki.org/
https://fortran-lang.org/
https://force.lepsch.com/
https://cbfortran.sourceforge.io/
https://www.geany.org/
https://www.onlinegdb.com/online_fortran_compiler
https://www.mycompiler.io/new/fortran
https://ideone.com/
https://www.jdoodle.com/execute-fortran-online/
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Source file structure 

A source file can contain one or more program units (these will be presented later), or fragments of them 
(in the form of sections). The source file can be created with any text editor, provided that it results in 
character content (aka ASCII file).  
The character set usable in the Fortran language contains the alphanumeric characters (the 26 upper and 
lower case letters of the English alphabet: a–z, A–Z, and the digits: 0–9), plus 4 symbols for arithmetic 
operations (+, -, *, /) and a set of special characters (blank or space, horizontal tab, comma, period, 
apostrophe, open and closed parentheses, as well as the following characters: =, $, &). The Fortran 90 
language extended this list with the following allowed special characters: _, !, :, ;, ", %, <, >, ?, ^  and #. 
The comma has the role of separating elements within a list, while the period (dot) is the decimal 
separator. 
Symbolic names are used to name variables, different program parts, and to identify functions. If the 
conventions of older versions of the language allowed the use of only 8 characters (consisting of 

alphanumeric characters and the special character ”$”), Fortran 95 allows the use of 31 characters 
(consisting of alphanumeric characters, the special character ”$” and the special character ”_”), but the 
first character must always be a letter. Program unit and section names are considered global and must be 
unique throughout the source, and entity names must be unique within the same program unit. The 
Fortran language is not case sensitive for symbolic names. The editing mode of the source file can be in 
fixed form (Fortran 77), tabular form or free form (the latter being introduced by Fortran 90 and allowed by 
following versions of the language). 
 
Regardless of the horizontal structure (fixed, free or tabular form), the vertical structure of a source file 
must respect the following sequence of specifications: declarations (concerning the program unit, the 
entities used), body (containing the statements to be executed at runtime) and final marker. If the source 
file contains only a segment of a program unit, any of the three parts (declarations, body, final marker) may 
be missing, but the order must be respected. In such cases, the contents of such a source file shall be 
included (using the INCLUDE specification) in the source file corresponding to the program to be built 
before compilation. 

Fixed form 

This corresponds to the editing structure based on punched cards and old template sheets (like the one in 
the image), considering 80 characters as the maximum length of a line (record), having the following 
structure (below the image of the template sheet, the relevant column numbers and the content allowed 
for each field are marked): 

 
 
 
 
 
 
 
 
The labels are integers of at most 5 digits, with a reference role within the program section, marking the 
statements before which they appear (in the respective line). Their use is optional and subject to some 
restrictions (only lines with executable statements can be labelled and labels cannot exceed the range of 

Statements (1 declaration or 1 
instruction or one fragment per line) 

Continuation mark (in case of fragmented statements 1–9, +, -, *) 

Labels (1–99999) 

Comment mark (C, *, !) or for debugging (D) 

Comment (by default) 

1 …    5 6 7 … 72 73  …      80 
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columns 1–5). For a label to be valid, its value must be in the range 1–99999. If a line should be marked as 
a comment, the letter ”C” or the character ”*” (respectively ”!” starting with Fortran 90) should be written 
in the first column, which will cause the structure and content of the line to be ignored during compilation. 

Some compilers also allow the use of the character ”D”  to mark the current line in the first column as a 
comment, thus allowing the optional compilation (interpretation) of these lines in case of debugging the 
source. 
In Fortran 77 and earlier, only one statement was written per line, but since Fortran 90 it is allowed to write 
more than one statement on a line (using the character ”;” to separate them).  
If the space between columns 7 and 72 of the current row is not enough to write the desired statement, it 
can be extended by marking in column 6 on the following rows the continuation of the previous ones, by 

numbers (only from the range 1–9), letters or by one of the characters: +, -, * (starting with Fortran 90, 
any character except the 0 digit can be used). The number of continuation lines allowed also depends on 
the compiler chosen. Fortran 77 allowed 99 fragments (1 initial line and 98 continuation lines), but the 
Fortran 90 standard allows only 19 fragments in fixed form (and 39 fragments in free form), while Fortran 
95 allows up to 90 continuation lines in fixed form (and only 31 continuation lines in free form). Some 
compilers allow the line interpretation range to be extended up to column 80 (even 132, starting with 
Fortran 90), but as standard any content in the range of columns 72-80 is considered comment by default 
and as such is ignored by the compiler. 

Free form 

Does not have the restrictions described above, the statements are not limited to any particular fitting on 
the line columns, each line can contain up to 132 characters. Instead, spaces are significant, and in some 
cases act as separators (for names, constants, keywords, or as spacers between labels and statements). 
This form has only been introduced since Fortran 90 (but Fortran 90 also supports fixed and tabular 

formats). In the free form, the comment is indicated by the character ”!” (starting from any column) or by 

the letter ”C” written in the first column (beware of specifications and names starting with this letter, do 
not write them from the first column), while the ”&” character marks the break of a statement (at the end) 
which will be continued on the next line. It is allowed to write more than one statement on a line if they are 
separated by the ”;” character (which is ignored at the end of a line, of course). 

Tabular form 

It is actually a variant of both fixed and free form, and is so called because of the use of the horizontal tab 
character at the beginning of lines. If this <Tab> character is the first on a line, then the line contains a 
statement (declaration or instruction, or maybe a marker). If this first character is followed by a non-zero 
digit, the digit marks a continuation fragment of the previous line and must be followed by a space to 
separate it from the continuation content. The <Tab> character may be preceded only by a comment mark 
or a label. Line lengths must not exceed column 72 for fixed form and column 132 for free form. 
 

Notice: In the following chapters, syntax (writing rules) and examples are given where other 
characters are used. The square brackets are not part of the syntax, but mark the optionality of 
the included content, and the consecutive dots (...) mark repeatable elements. Italic sequences 
mark elements that replace content in the positions in which they appear. Given that the G95 
Fortran compiler will be used in the classes, the specifications and statements presented will 
be for this variant and old ones, not part of the standard, will be marked grey. 
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Entity types 

In Fortran, every entity has a type, either implicit, or explicitly declared. There are intrinsic types and 
derived types (defined by the programmer using intrinsic types or previously defined derived types). 
Intrinsic types are INTEGER (integer numbers), REAL (real numbers, with a decimal part), COMPLEX 
(complex numbers, viewed as pairs of numbers with a decimal part), LOGICAL (logical values, there are 
only two, the constants .TRUE. and .FALSE. constants), CHARACTER (character or string), and BYTE 
(8-bit value, used in older versions of the language). Explicit type declaration of entities can be done 
according to the following syntax: 

type[(kind)][[,attribute]... ::] entity_list 
The keywords for type are INTEGER, REAL, COMPLEX, LOGICAL and CHARACTER (in some versions of 
Fortran there is also BYTE), or TYPE(name), where name refers to a type previously defined by the 
programmer. The kind specifies the number of bytes used for storage, optionally preceded by the keyword 
KIND=, in the case of CHARACTER type LEN= (or * in older syntax, without parentheses). This value 
depends on the type of entities, but there are also compiler dependent default values (usually 4 bytes for 

REAL type entities and 2 or 4 bytes for INTEGER type entities). Explicit values can be: 1, 2 or 4, eventually 
8 for the INTEGER and LOGICAL types; 4 or 8, (eventually 16) for the REAL and COMPLEX types. Single 
characters and BYTE type entities are stored on 1 byte, so their storage length cannot be changed explicitly 
(if the kind is specified for CHARACTER type, it defaults to the number of characters in the string). 
INTEGER(1) and LOGICAL(1) type entities will also be stored on 1 byte. 
The following can be specified as an attribute:  

- ALLOCATABLE for arrays with dynamically allocated memory or DIMENSION(limits) for arrays 
with statically allocated memory (will be presented later),  

- EXTERNAL for entities redefined by the programmer or INTRINSIC for entities predefined in 
Fortran,  

- INTENT(direction) for input/output purpose (where direction can be IN for input, OUT for 
output, default INOUT),  

- PARAMETER for constant values,  
- PUBLIC for visible entities, PRIVATE for local entities (only accessible in the current program 

unit),  
- POINTER for indicators or TARGET for targets,  

- OPTIONAL for temporary entities, SAVE for stored entities. 
If no attribute is specified, the :: separator can be omitted (it only serves to delimit the list of keywords on 
the left, from the entity_list on the right of the specification). 

For numeric entities there is an implicit rule regarding their type, which (of course) can be changed or 

cancelled with the following syntax of the IMPLICIT statement: 
IMPLICIT type(c[,c]…)[,type(c[,c]…)]… 

where type must be an intrinsic type specifier (or previously defined derived type) and c stands for a letter 
or range of letters in alphabetical order. To cancel any implicit rule, write: 

IMPLICIT NONE 

When cancelling the implicit rule, the types of all entities must be explicitly declared. According to the 
predefined implicit rule in Fortran, entities whose name starts with one of the letters I, J, K, L, M, or N will 

be of type INTEGER, and the rest will be of type REAL. Consequently, unless this rule is changed or 
cancelled, type declarations can be omitted while respecting the rule.  
 

Examples: Explanations: 
IMPLICIT INTEGER(B,f-H,k) All entities whose name begins with one of the letters B, F, 

G, H or K will be of type INTEGER (regardless of whether 
they are written in uppercase or lowercase). 

IMPLICIT REAL(n),COMPLEX(A-C) All entities whose name begins with the letter N will be of 
type REAL, and those whose name begins with one of the 

letters A, B, or C will be of type COMPLEX. 
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IMPLICIT NONE 

INTEGER I,j,K 

REAL X,Y 

The implicit rule has been cancelled and the types of all 
entities must be explicitly defined. The one named I, J and 
K will be of type INTEGER, and the ones named X and Y 
will be of type REAL. As no attributes were specified, the 
:: separator was omitted (only the right is list). 

REAL(KIND=8) Di,e33 

! Equivalent to: 

REAL(8) dI,E33 

The entities (variables) named DI and E33 are of type 
REAL and are stored on 8 bytes each (in older versions of 

Fortran, the type DOUBLE PRECISION was used in such 
a case). As you can see, it doesn't matter if the names of 
the entities are written in lower or upper case. 

COMPLEX(KIND=8) xC,Y1 

! Equivalent to: 

COMPLEX(8) Xc,y1 

The entities (variables) named XC and Y1 are of type 
COMPLEX and are stored on 8 bytes each (in older 
versions of Fortran, the DOUBLE COMPLEX type was used 
in such case). Since we are dealing with complex values 
consisting of pairs of values (the "real" part and the 
"imaginary" part), 16 bytes will actually be used for each 
entity.  

INTEGER(2),INTENT(IN) :: Q The Q entity is of type INTEGER, stored on 2 bytes and 
used only for input values. Since an attribute (INTENT) is 
also specified, it is mandatory to use the :: characters to 
separate the left list from the one right list, even if there is 
only one element on the right. 

REAL,PARAMETER :: pi=3.14159 The entity named PI is of type REAL and with a constant 
(unchangeable) value of 3.14159. 

EXTERNAL :: SIN The entity named SIN is declared as a variable with the 

default type REAL (because the name starts with the 
letter S). In this situation the SIN name will not be usable 
for the intrinsic trigonometric function in Fortran. 

REAL,POINTER,PRIVATE :: p,Q1 The entities named P and Q1 will be pointers of type 

REAL, accessible only in the current program unit. 

 
The definition of a derived type is done according to the syntax: 

TYPE name 
  specifications 

END TYPE[ name] 
Once defined, such derived types can be used to specify the type of entities by replacing the type keyword 
with  TYPE(name) in the explicit type declaration. Reference to a component in such a derived type can 

be made using the % selector, in the form parent%component[%subcomponent...], as will be illustrated in 
an example below. 
 
When the entity type is explicitly declared, initial values can also be attributed. The attribution can be done 
within the entity_list or separately, through the DATA statement. The syntax of this statement is as follows: 

DATA variable_list/value_list/[[,]variable_list/value_list/ …] 
where for each entity from the variable_list there must be a corresponding value from the value_list 
(enclosed between ”/” characters), in order of succession from left to right.  
 

Examples: Explanations: 
TYPE comp 

  CHARACTER(LEN=24) name 

  INTEGER day 

  CHARACTER(3) month 

  INTEGER :: year=2023 

END TYPE 

The derived type named COMP is defined as consisting of 
two character strings (NAME having 24 positions and 
MONTH 3) and two integers (DAY and YEAR, the latter 
being also initialized with value 2023). Note the 
optionality of the LEN= keyword, as it is not used for the 
MONTH string. 
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TYPE(comp) r23,r24 Entities named R23 and R24 will have the type defined 
above. 

CHARACTER at,stars*3 

INTEGER m1,m2,m3 

 

Declaration of CHARACTER type entities: AT will contain 
1 character and STARS will contain 3 characters (an old 
syntax was used instead of LEN=3), followed by the 
declaration of INTEGER type entities M1, M2 and M3. 

DATA at,m1,m2,m3/”@”,2*1,5/ 

DATA stars/”***”/,r24%year/2024/ 

DATA r24%month,r24%day/”AUG”,12/ 

The variable named AT gets character @, the variables 
M1 and M2 get the value 1 (2 pieces, for the 2 entities), 
and M3 gets the value 5, after which the STARS string is 

also initialised with the *** characters. The YEAR, 
MONTH and DAY components of entity R24 will be given 
the values 2024, AUG and 12. 

Expressions 

Expressions can be arithmetic (numeric), string (character), logical, or initialisation and specification (from 
Fortran 90), and consist of operators, operands, and parentheses. An operand is a value represented by a 
constant, variable, array or array element, or resulting from the evaluation of a function. Operators can be 
intrinsic (implicitly recognised by the compiler and of global in nature, so always available to all sequences 
of code) or user-defined (when an operator is explicitly described as a function by the programmer). 
Depending on how they work, we can talk about unary operators (acting on a single operand) and binary 
operators (acting on a pair of operands). Unary operators take precedence over binary operators. 
Evaluating an expression always produces a single result, which can be used for attribution or as a 
reference. The type of value resulting from the evaluation of a numeric expression depends on the type of 
operands and their rank. If the operands within the expression have different ranks, the resulting value will 
be of the type of the operand with the highest rank (unless an operation involves a complex value and one 
in double precision, the result in such situations being of double complex type). When checking the 
correctness of a combined numerical expression, it is recommended to take into account the type of partial 
values resulting during the evaluation. Expressions can be arithmetic (numeric), string (character), logical, 
or initialization and specification (starting with Fortran 90). 
There are homogeneous expressions (where the operators and operands are of the same type) and non-
homogeneous expressions (where the operators and operands are of several types). The evaluation priority 
of operators within non-homogeneous expressions is as follows (in descending order): 

- defined unary operators and functions; 
- numeric operators (in the following order: **, * or /, + or –); 
- concatenation operator for strings (characters); 
- relational operators (with equal priority); 

- logical operators (in order: .NOT., .AND., .OR., .EQV. or .NEQV. or .XOR.). 

Arithmetic expressions 

As their name suggests, represent numerical calculations, made up of arithmetic operators and operands, 
giving a numerical result that must be defined mathematically (division by zero, raising a base of zero value 
to a zero or negative power, or raising a base of negative value to a real power are invalid operations). The 
term numeric operand can also include logical values, since they can be treated as integers in a numerical 
context (the logical value .FALSE. corresponds to the INTEGER value 0). The numeric operators are: 

** (exponentiation), * (multiplication), / (division), + (addition), - (subtraction). In an arithmetic 
expression with several operators, the parts enclosed in parentheses (from the inside to the outside) and 
the functions are always evaluated first, with the evaluation priority of the intrinsic operators being as 
follows: exponentiation, multiplication and division, unary plus and minus, addition and subtraction. 
Operators with the same priority are evaluated from left to right. By local effect, unary operators can affect 
this rule, generating exceptions in the case of compilers that accept such expressions. 
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Fortran expression Math. formula  Fortran expression Math. formula 
(3*X**2+1)/(2*Y)-1 

(3*X**2+1)/2/Y-1 

     

  
   

 
(3*X**2+1)/2*Y-1 

     

 
    

X/(-5)*Y 
 

  
   X/(-5*Y) 

X/(-5)/Y 

 

   
 

X**(–Y)*3       X**(–Y*3)      

String (character) expressions 

They can be composed using the // concatenation operator (in older versions of Fortran using the + 
intrinsic operator) or using programmer-defined functions, applied to CHARACTER type constants or 
variables. Evaluating such an expression produces a single string value. Concatenation is performed by 
joining the character contents from left to right, without parentheses affecting the result. Blanks (spaces) 
contained in the operands are also included in the result. 

Logical expressions 

They consist of logical or numeric operands combined with logical and/or relational operators. The result of 
a logical expression is normally a logical value (equivalent to one of the logical literal constants .TRUE. or 

.FALSE.), but logical operations applied to integer numeric values will still result in integer values, being 
performed bit by bit in order corresponding to the internal representation of those values. Logical 
operations cannot be performed directly on values of type of REAL, COMPLEX or CHARACTER, but these 
types of values can be handled using relational operands within logical expressions. The relational and 
logical operators are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The relational operators have equal priority (they are executed from left to right, but before the logical and 
after the numerical), and the logical operators are executed in the order of their evaluation priority. 
Relational operators are binary (they act on two operands), as are logical operators, except for the logical 
negation operator (.NOT.), which is unary. 

Relational operators 

Syntax Meaning 
Older 

syntax*  
< Less Then .LT. 

<= Less or Equal to .LE. 

== Equal .EQ. 

/= Not Equal .NE. 

> Greater Than .GT. 

>= Greater or Equal to .GE. 

* Older versions (marked with dots in 
the last column) are also allowed to be 
used. 

Logical operators 

Syntax Meaning 

.NOT. Logical negation (logical complement) returns 

.TRUE. if the operand has the value .FALSE. and 
returns .FALSE. if the operand has the value 
.TRUE.. 

.AND. Logical conjunction returns .TRUE. only if both 

operands have the .TRUE. value, otherwise returns 
.FALSE.. 

.OR. Logical disjunction returns .TRUE. if one of the 
operands has the .TRUE. value, otherwise returns 
.FALSE.. 

.EQV. Logical equivalence, results true if both operands 
have the same value, if they have different values 
then results .FALSE.. 

.NEQV. Logical inequality returns .TRUE. if the operands 

are different, and .FALSE. if they are the same. 
.XOR. Exclusive logical disjunction (eXclusive OR), similar 

effect to logical inequality (.NEQV.). 
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Specification and initialisation expressions 

These can be considered those that contain intrinsic operations and constant parts, or a whole scalar 
expression. As their name suggests, they are used to initialise values (for example, the index to control an 
implicit cycle) or to specify properties (for example, to declare array bounds or string lengths). 

Constants used in expressions 

Operands can be variables (only named entities can have variable values) or constant values. Constant 
values are specified according to their type, as shown in the following table: 

Constant type Examples: Explanations: 

Character string ”Bla 3-1a” 

”anii ’80” 

’anii ’’80’ 

Printable characters are quoted. If there are apostrophes 
or quotation marks within a character string, either the 
inner apostrophe can be doubled (see the third string), or 
the other character is used for as a delimiter. 

Decimal number 231 

50.66 

-.13e2 

256. 

The decimal separator is the dot, negative values are 
indicated by the minus sign. Non-significant digits can be 
omitted (the first value is an integer and the last three 
values are real). The third value is -13.0 (e2 means ×102) 

Binary number B”1001” 

b”1011” 

B’1100’ 

When quoting the value after the B mark, only the digits 0 
or 1 are allowed (max. 256 positions).  

The minus sign before the B mark has no effect and is not 
accepted in the quoted content (there are no such 
negative values). Quotations can be made either with 
quotation marks or with apostrophes (without combining 
them). 

Octal number O”152” 

O’223’ 

o”107” 

Only the digits 0 to 7 can be used (max. 86 positions) in 

the value that is quoted after the O mark. As before, the 
minus sign in front has no effect and is not allowed inside. 

Hex number Z”15F” X”15f” 

Z’1B0’ x’1B0’ 

z”A28” x”a28” 

The digits 0 to 9 and letters A to F can be used (max. 64 
positions) by quoting the value after the Z or X mark. As 
before, the minus sign in front has no effect and is not 
accepted inside. 

Hollerith 1H& 

3H123 

12Hla ”Taverna” 

12Hab”1 x’+#.%@ 

They are constants that can contain any printable 
character. Their syntax is: nHstring, where n is the number 

of characters (positions in the string), H is the Hollerith 
mark and string stands for the content. 
Although these constants were originally defined to 
contain up to 2000 characters, the number of characters 
can be between 1 and 32767 (215

-1) on 32-bit platforms, 
or between 1 and 2147483647 (231

-1) on 64-bit platforms.  
Cannot be used as Format descriptor starting from Fortran 
90. 

Intrinsic functions (for expressions) 

Intrinsic functions are specific to the libraries used, and have predefined (reserved) symbolic names. Some 
of them are not part of the standard kit of the programming environment, since they are not found in all 
variants of the Fortran language. The fact that the names of these functions are reserved means that there 
should be no entities with names that coincide with those of the intrinsic functions. Also, the names of 
these functions are not recommended to appear in a list of an EXTERNAL statement, which leads to the 

cancellation of their intrinsic definition. In such cases, by including their names in lists of the INTRINSIC 
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statement, they can be used in procedures defined as program units (user-defined subroutines or 
functions). The general syntax of functions is as follows: 

function_name(a,[a]…) 
where function_name is the symbolic name of the function and a represents the argument(s). Some 
intrinsic functions are given in the following table: 
 

Function: function_name: Result: 

|x| ABS(x) The absolute value (modulus) of the specified X argument. 

A×B MATMUL(A,B) Matrix resulting from the multiplication of matrices A and B. 

AT TRANSPOSE(A) Returns the transpose of matrix A. 

Amax MAXVAL(A) Returns the maximum value in array A. 

Amax(pos) MAXLOC(A) Returns the first position of the maximum value in array A. 

Amin MINVAL(A) Returns the minimum value in array A. 

Amin(pos) MINLOC(A) Returns the first position of the minimum value in array A. 

arccos(x) ACOS(x) The arccosine of the X argument expressed in radians. 

arcsin(x) ASIN(x) The arcsine of the X argument expressed in radians. 

arctg(x) ATAN(x) The arctangent of the X argument expressed in radians. 

character ACHAR(x) Returns the character at position X in the code table. 

complex-i AIMAG(x) The imaginary part of a complex number X. 

complex-r REAL(x) The real part of a complex number X. 

cos(x) COS(x) The cosine value of the X argument expressed in radians. 

cosh(x) COSH(x) The hyperbolic cosine of the X argument. 

ex EXP(x) The exponential value of the Euler constant (e=2.71828...). 

ln(x) LOG(x) The value of the natural logarithm of the X argument. 

log(x) LOG10(x) The logarithm with base 10 of the X argument. 

length LEN(string) The number of characters in the STRING considered argument. 

max(x,y,...) MAX(value_list) The maximum value among the items contained in the argument list. 

min(x,y,...) MIN(value_list) The minimum value among the items contained in the argument list. 

random RAN(x) Returns a pseudorandom number between 0 and 1. 

rest of div. MOD(x1,x2) The remainder of the argument division (X1/X2, with the sign of X1). 

round  NINT(x) The value of the X argument rounded to the nearest integer. 

 ANINT(x) The rounded value of the X argument to zero decimal places. 

sin(x) SIN(x) The value of the sine of the X argument expressed in radians. 

sinh(x) SINH(x) The hyperbolic sine of the X argument. 

size SIZE(array[,ri]) Returns the size of the array (by RI rank, if specified). 

√  SQRT(x) The square root (radical) of the X argument. 

substring INDEX(string,ss) The starting position of the SS substring in the first argument STRING. 

ƩA SUM(array[,ni]) Returns the sum of the values in the array (by RI rank, if specified). 

tg(x) TAN(x) The tangent of the X argument expressed in radians. 

tgh(x) TANH(x) The hyperbolic tangent of the X argument. 

truncate INT(x) The truncated value of the argument X to the nearest integer. 
 AINT(x) Truncated value of argument X with zero decimals. 

Input and output (I/O) statements  

Read operations are called inputs (I) and write or display operations are called outputs (O). For sequential 
inputs, the READ statement can be used, with the following syntax variants: 

READ f[,input_list] 
when reading from the default logical unit (usually the console, so the keyboard), where f is the format 
specifier (shown later). A more general variant has the following sintax: 

READ([UNIT=]u[,[FMT=]f][,ERR=e1][,END=e2][,IOSTAT=var][,ADVANCE=opt])[input_list] 
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where the UNIT= keyword can be omitted if it is the first parameter and u is the value of the logical unit 
number (the value is * for the default logical unit, i.e. console), the FMT= keyword can be omitted if it is 
the second parameter or if it is you do not want to use a format specifier f (the case of reading without 

format), e1 is the label of an executable statement to jump to if the end of file (EOF) is encountered or if 
there are no values to read, e2 is the label of an executable statement to jump to if a read error is 
encountered, and var is the name of an INTEGER variable in which the success / failure of the read 
operation would be recorded (successful reads result in 0, unsuccessful reads result in higher values 
marking error codes, -1 means EOF while -2 means EOR). When using ADVANCE=, opt can be ”YES” 
(advance to next line after reading, default) or ”NO” (means no advance to the next line). The entities in 
which the read values are to be stored form the input_list. If there is no input_list, the only effect of the 
statement is to temporarily stop the execution of the program (until the <Enter> key is pressed). 
There are also other variants, such as internal reading (to convert characters into integers corresponding to 
the positions in the character table), direct reading (to jump to the position number of a record in a fixed 
formatted logical unit), or keyed reading (in the case of indexed files). 

The following statements can be used for sequential output operations: 
PRINT f[,output_list] 

when writing to the default logical unit (usually the console, hence the monitor display), where f is the 
format specifier, or 

WRITE([UNIT=]u[,[FMT=]f][,ERR=e1][,IOSTAT=var][,ADVANCE=opt])[output_list] 
where the notation is the same as for reading (without END=e2, as it makes no sense for writing). The 
entities whose values are to be written make up the output_list. If output_list is missing, an empty line is 
written. 
There are also other variants, such as internal writing (to convert integers to characters, according to the 
positions in the character table), direct writing (jumping to the position number of a record in a fixed 
formatted logical unit), or rewriting a record. Writing to indexed files uses sequential writing with format 
specifier, where key fields are among the entities in output_list. 
When the * symbol is used as a format specifier (i.e. default format), the value type in the entity list is 

usually taken into account. For so-called long values, such as REAL(8) or DOUBLE PRECISION, 
REAL(16), COMPLEX(8) or DOUBLE COMPLEX, COMPLEX(16), the default format cannot be used, so 
a format specification appropriate to the type must be used. 
 

Examples: Explanations: 
READ * 

! Equivalent to: 

READ(*,*) 

Apparent reading (no input). Waiting for the <Enter> (carriage 
return) key to be pressed to continue. 

READ *,I,j 

! Equivalent to: 

READ(*,*)i,J 

Two numerical values (of type INTEGER) entered from the 
keyboard are read and stored in variables I and J respectively. 
The two values can be entered separately (the program will 
continue only after both values have been entered) or on the 
same line, separated by a comma (or a blank). 

PRINT *  

! Equivalent to: 

WRITE(*,*) 

A blank line will be displayed on the screen (similar to the 
effect of the <LF> character). 

PRINT *,”Max= ”,max 

! Equivalent to: 

WRITE(*,*)”Max= ”,MAX 

The quoted string will be displayed (without the quotation 
marks), followed by the content (value) of the MAX variable. 

Format specification and descriptors 

Format descriptors are like templates applied to input or output data. They are usually used through the 
format specification, which has the following syntax: 
  label   FORMAT(descriptor_list) 
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however, descriptors can also appear in quoted form within read or write statements. There are two 
categories of descriptors: for data editing and for controlling formatting. They will be presented below in 
separate tables, with examples, using the following notations:  

n – number of pieces; 
w – descriptor length (total number of positions in the respective field); 
m – minimum number of positions requested (of the total number), has effect on output only; 
d – number of positions for the decimal part (of the total number); 
e – number of positions for the exponent (of the total number); 
c – character, respectively [c...] other optional characters; 
□ – space (blank character) displayed in the examples. 

 
Table of descriptors used for data editing (in alphabetical order): 
 

Syntax: Destination: Examples and comments: 

[n]A[w] Alphanumeric data 
(CHARACTER) 

Input: 
ABC_D 

ABC_D 

ABC_D 

Format: 
A5 

A5 

A5 

Entity type:       Value: 
CHARACTER(1):  D 
CHARACTER(3):  C_D 
CHARACTER(6):  ABC_D□ 

Value: 
ABC 
ABCDE 
ABCDEFG 

Format: 
A5 

A5 

A5 

Output (5 positions): 
□□ABC 

ABCDE 

ABCDE 

[n]Bw[.m] Binary numeric data Input: 
1001 

1001 

1001 

Format: 
B4 

B2 

2B2 

Value (in decimal form): 
9 (all 4 positions read) 
2 (only the first 2 positions read) 
2 și 1 (2 distinct values) 

Value: 
13 
0 
0 

Format: 
B5 

B2 

B2.2 

Output: 
□1101 

□0 

00 

If w=0, as many positions as required to display the value will be 
used at the output (w=0 is not allowed at the input). 

[n]Dw.d Numerical data in 
double precision: 

REAL(8) i.e. DOUBLE 
PRECISION, or 

COMPLEX(8), i.e. 
DOUBLE COMPLEX  

Input: 
123.456E3 

12345678 

123.45678 

Format: 
D9.3 

D6.2 

D7.3 

Value (double precision): 
123456.0D+0 
1234.56D+0 
123.456D+0 

As can be observed, w positions are read from the input, of which 
d positions for the decimal part (from the decimal separator to the 
right – if there is no decimal separator at the input, then the 
decimal part will result considering d positions at the end of the w 
read). The ”D+0” mark at the end only indicates that the values will 
be obtained in double precision. 

Value: 
123456.789 
0.0363 
-0.5555 

Format: 
D11.2 

D10.3 

D10.3 

Output: 
□□□0.12D+06 

□0.363D-01 

-0.556D+00 

The display will result in w positions, of which d positions for the 
decimal part, but it should be noticed that 1 position will be 
consumed for the sign of the value, 1 more for the decimal 
separator (dot), 1 position for the letter of the descriptor (D), the 
last 3 positions for the sign and value of the exponent. 
If we consider that the first significant digit will be the first decimal 
place, it follows that it is advisable that w-d > 6. If this condition is 
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not met, format overflow will occur (asterisks will be displayed on 
the w positions). 

[n]Ew.d[Ee] Numeric data in 
exponential format 
(REAL or COMPLEX) 

Input: 
□□123.45□□ 

123456789 

123.456D3 

Format: 
E10.2 

E9.3 

E9.3 

Value: 
123.45 
123456.789 
123456.0 (simple precision!) 

As with the previous descriptor, w positions are read from the 
input, of which d positions for the decimal part (from the decimal 
separator to the right – if there is no decimal separator at the 
input, the decimal part will result considering d positions at the 
end of the w read). In case of reading double precision values with 
this descriptor (or with other usable descriptors except D), a value 
converted to single precision will be obtained. 

Value: 
123456.789 
-0.5555 
0.0363 

Format: 
E11.5 

E12.3E3 

E5.2 

Output: 
0.12345E+06 

□-0.556E+000 

***** (format overflow!) 

The display will result in w positions, of which d positions for the 
decimal part, but it should be noticed that 1 position will be 
consumed for the sign of the value, 1 more for the decimal 
separator (dot), 1 position for the letter of the descriptor (E), the 
last 3 positions for the sign and value of the exponent.  
If we consider that the first significant digit will be the first decimal, 
it turns out that w-d > 6 [+(e-2)] (where e is the number of digits 
of the exponent). If this condition is not met, format overflow will 
occur (asterisks will be displayed on the w positions).  

[n]ENw.d[Ee] Numeric data in 
exponential 
”engineering” format 
(REAL or COMPLEX) 

Input: 
123.45E+03 

-12345678 

123.456D3 

Format: 
EN10.2 

EN9.3 

EN9.3 

Value: 
12345.0 
-12345.678 
123456.0 (simple precision!) 

Value: 
123456.789 
-0.5555 
0.0363 

Format: 
EN11.2 

EN7.1 

EN12.3 

Output: 
□123.46E+03 

******* (format overflow!) 
□363.000E-04 

When displayed, the decimal point will be after the first 3 digits. 

[n]ESw.d[Ee] Numeric data in 
exponential 
”scientific” format 
(REAL or COMPLEX) 

Input: 
□□□1.234E+03 

-10.234E-03 

Format: 
ES12.3 

ES11.3 

Value: 
1234.0 
-0.010234 

Value: 
123456.789 
-0.5555 
0.0363 

Format: 
ES11.2 

ES10.3 

ES12.3 

Output: 
□□□1.23E+05 

-5.555E-01 

□□□3.630E-02 

On display the decimal point will be after the first significant digit. 

[n]Fw.d Numeric data 

(REAL, F stands for 
”Float”) 

Input: 
12345678 

-12345678 

24.77E+2 

Format: 
F8.5 

F8.2 

F8.2 

Value: 
123.45678 
-1234.56 
2477.0 

Value: 
2.3547188 
325.03 
-0.2 

Format: 
F8.5 

F5.2 

F5.2 

Output: 
□2.35472 

***** (format overflow!) 
-0.20 

[n]Gw.d[Ee] Intrinsic type data (G Input: 
-0.05566 

Format: 
G10.3 

Value: 
-0.05566 
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stands for ”Generic”) 123456 

123456.789 
G10.3 

G10.3 
123.456 
123456.79 

Value: 
-45.66 
123456 
123456.78 

Format: 
G11.3 

G10.3 

G10.3 

Output: 
□-4.566E+01 

□□□□123456 

□0.123E+06 

Remarks: It can be used for any of the intrinsic type values. If 0 is 
specified for w, the actual value of w will be chosen by the 
processor (in such cases only G0 or G0.d may be specified). If w is 
different from 0, then the value for d must also be specified. In the 

case of INTEGER, CHARACTER and LOGICAL values the value 
specified by d will be ignored, the descriptor will behave as the one 
corresponding to these values (I, A and L). 

[n]Iw[.m] Integer numeric data 
(INTEGER) 

Input: 
-1234 

□□□123 

1234.6 

Format: 
I4 

I6 

I6 

Value: 
-123 
123 
Error! (not INTEGER) 
 

Value: 
0 
0 
1 
-123 
1.2 

Format: 
I3 

I3.0 

I3.2 

I3 

I4 

Output: 
□□0 

□□□ 

□01 

*** (format overflow!) 
Error! (not INTEGER) 

[n]Lw Logical data Input – logical values written in the following forms are accepted, 
including lowercase (not just uppercase): 

.TRUE. or .T or T , or if the first characters in the input are .T or 
T (for true); respectively .FALSE. or .F or F, or if the first 
characters in the input are .F or F, or the content is from space/ 
blanks (for false). 

Value: 
.TRUE. 
.FALSE. 
□□□ 

Format: 
L7 

L1 

L3 

Output: 
□□□□□□T 

F 

□□F 

Only 1 character (T or F) will be output regardless of the length w 
specified. 

[n]Ow[.m] Integer octal numeric 
data (with base in 8) 

Input: 
1111 

1111 

□11□ 

191 

12 

Format: 
O2 

O4 

O4 

O3 

O0 

Value (decimal): 
9 
585 
9 
Error! (9 is not octal) 
Error! (w must be positive) 

Value (decimal): 
11 
-11 
-11 
1.5 
81 

Format: 
O6.4 

O6 

O12 

O11 

O0 

Output: 
□□0013 

****** (format overflow!) 
□37777777765 

□7760000000 

121 

If w=0, as many positions as required to display the value will be 

used at the output (w=0 is not allowed at the input). 

[n]Zw[.m] Integer hexadecimal 
numeric data (with 
base in 16) 

Input: 
A2F 

-A2F□ 

Format: 
Z3 

Z5 

Value (decimal): 
2607 
-2607 
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3.A2F Z5 Error! (invalid decimal point) 

Value (decimal): 
3033 
16 
-10 
1.1 
2.5 

Format: 
Z5 

Z5.4 

Z8 

Z8 

Z0 

Output: 
□□BD9 

□0010 

FFFFFFF6 

3F8CCCCD 

40200000 

If w=0, as many positions as required to display the value will be 
used at the output (w=0 is not allowed at the input). 

’c[c...]’ or 
”c[c...]” 

Quoted alphanumeric 
constants 
(CHARACTER) 

Input: – (cannot be used for input). 

Format: 
’aBc’’DD:’ (double apostrophe inside) 
”aBc””DD:” (double quote mark inside) 

’aBc”DD:’     (quote mark inside) 
”abcD’#”  (apostrophe inside) 
”ab’cD’#”    (quote within quote!) 

Output: 
aBc’DD: 

aBc”DD: 

aBc”DD: 

abcD’# 

Error! 

Table with control descriptors: 
 

Syntax: Meaning: Examples and comments: 
BN 

BZ 

BLANK NULL 

BLANK ZERO 

BN will have the effect of ignoring the spaces in the number fields. 
BZ will have the effect of ”replacing” the spaces in the numeric 

fields with 0 digits. 
Input: Format: Value: 

□1□□ BN,I4 1 

□1□□ BZ,I4 100 

1□23 BZ,I4 1023 

kP Power  
k is a scaling factor, 
with value in the range 
[-128, +127] 

Allows the interpretation of numeric values with decimals, using the 

scale factor k for descriptors D, E, F and G when these values do not 
explicitly contain an exponent. On inputs, a positive k value will 
have the effect of moving the decimal separator to the left, and a 
negative value to the right (on outputs, the effect will be the 

reverse). The descriptor P need not necessarily be separated by a 
comma from the descriptor to which it refers, but must precede it. 
For example, the following specifications will have the same effect, 
the scale factor being associated with the first real number 

descriptor following it in the list (E10.3): 
 (2P,I4,E10.3,F8.2) 

 (I4,2P,E10.3,F8.2) 

 (I4,2PE10.3,F8.2) 

Input: Format: Value: 

□□□37.614□ 3PE10.5 0.037614 

□□□37.614□ -3PE10.5 37614.0 
123.45 2PF8.3 1.2345 
123.45 -2P,F8.3 12345.0 
Value:  Format: Output: 
-170.139 1P,E10.3 -1.701E+02 

-170.139 -1PE10.3 □-0.02E+04 
S 

SP 

SS 

Sign 
Sign Positive 
Sign Suppress 

SP will cause the + sign to be displayed in front of positive values 

and SS will inhibit it. S acts as a switch between SP and SS. 

Tn 
TLn 

Tab 
Tab Left 

With descriptor T, the position n in a line is indicated, from which 
reading (or to which writing) is desired. 



 

20 
 

TRn Tab Right 
n – tab position 

Assuming that the following string will be typed from the keyboard: 
123456789ABC 

to be read with the sequence: 
 CHARACTER(3) C1,C2 

 READ(*,5) NR,C1,C2 

 5 FORMAT(T7,I3,T1,A3,T10,A3) 

the values will result:  NR=789; C1=”123” și C2=”ABC”. 
TRn allows specifying the nth position to the right from the current 
position and TLn to the left (n being a positive number). When 
using TL, if n is greater than or equal to the current position, then 
positioning will be done on the first character in the row. 

[n]X Determine the jump 
over n positions in the 
current line 

On input it will cause n positions to be ignored, and on output it will 
have the effect of printing n spaces (if it appears at the end of the 
descriptor list, then it has no effect. In the example the effect is 

highlighted by marking □ on display): 

Source code: 
 PRINT 4 

 READ 3,nr 

 PRINT 4,nr 

 3 FORMAT(2X,I2) 

 4 FORMAT(”number:”,1X,I2) 

Display: 
number: 

Input: 
1234 

Display: 
number:□34 

$ 

\ 
Suppress the jump to a 
new line (suppress 
<LF>).  

It will cause the cursor to remain at the last current position (<LF> is 
short for Line_Feed).  
The $ variant is newer, but not part of the standard, and the \ 
variant is the older one (the G95 compiler supports both). 
Whichever variant is used, the descriptor must be the last in the list 
to which it belongs.  

  Source code: 
 PRINT 5,”nr:” 

 READ *,nr 

 PRINT 4,nr 

 5 FORMAT(A,$) 

 4 FORMAT(”number:”,1X,I2) 

Display+Input (12): 

nr:12 
Display: 
number:□12 

 

[n]/ Induces n new line 
jumps (induces n 
pieces of <LF>) 

It can also be used without n, e.g. (3/) is equivalent to (///), 
without the need for separating commas. In the following example 
it will insert a new line feed before displaying ”number”, then insert 
2 more new line feeds: 

Source code: 
  PRINT 5,”nr:” 

  READ *,nr 

  PRINT 4,nr 

5 FORMAT(A,$) 

4 FORMAT(/”number:”,2/,3X,I2) 

Display+Input (12): 

nr:12 
Display: 
□ 

number: 

□ 

□□□12 

: Ends descriptor control 
in the absence of 
input/output list items 

In the following example, in the absence of items to display, the 
descriptor will cause the ”j2” part to be ignored: 

Source code: 
  PRINT 1,3 

  PRINT 2,14 

1 FORMAT(”i”,I2,1X,”i2”,I2) 

2 FORMAT(”j”,I2,:,1X,”j2”,I2) 

Display: 
i□3i2□□ 

j14 

 

 
The format specification may also be composed by using string (character) expressions. The following 
example shows how it might apply for N pairs of descriptors of the form (I2,1X), assuming 1< N <9: 
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Example: Explanations: 
CHARACTER fm(10) 

 
INTEGER j(9) 

Declare the FM string with 10 positions (to be used as format 
specification).  
The variable J will have 9 positions (will be a vector) and will 
contain the values to be displayed with I2 type descriptors. 

PRINT *,”nr. (1-9): ” 

READ(*,*)n 

The quoted string is displayed and on reading the number 
entered (of desired pieces) is stored in variable N. 

k=48+n  

 

The position number in the code table is composed of the 
digit corresponding to the quantity (from variable N), 
obtaining the character of the digit representing this value. 

fm=”(”//ACHAR(k)//”(i2,1x))” An alphanumeric string is constructed by concatenation and 
using the intrinsic function ACHAR (which returns the 
character at position K in the code table), which is assigned to 
the variable FM, which is the format descriptor with N pairs of 

I2 (two-byte integer) and 1X (space) fields for the N values. 
PRINT *,”the ”,n,” values: ” 

READ *,(j(i),i=1,n) 

 

The quoted string (including the value of N) is displayed, then 
the values corresponding to the N positions of the vector J are 
read (by implicit loop). 

WRITE(*,fm)(j(i),i=1,n) 

 

END 

The N positions of the vector J are displayed (also by implicit 
loop) using the format specification stored in the FM variable 
as an alphanumeric string. 

Arrays 

The declaration of arrays can be done by the type specification, or by the specifying DIMENSION, COMMON 
(eliminated starting with Fortran 90), ALLOCATABLE, respectively POINTER or TARGET (starting only 
from Fortran 95, while in Fortran 90 there is the possibility to define them as "derived" type). The 
characteristics of any array are: 

- Type (any intrinsic or derived type), 
- Rank (the number of "dimensions", e.g. a vector has rank 1, a matrix has rank 2, etc. – the 

maximum rank is 7 in Fortran), 
- Extents (”lower” and ”upper” limits for each "dimension" separately, the "lower" means the initial 

value of the respective index, and the "upper" means the final value of the respective index), 
- Size (results from the total number of elements), 
- Shape (results from rank and extents). 

Arrays of identical shape are "conformable" (meaning that certain operations can be performed on their 
elements, without explicitly specifying each element's positional indices). A scalar conforms to any array, 
regardless of the array’s shape. 
Declaring an array involves either allocating memory areas for each array element at the time of program 
creation (static allocation method), or allocating memory areas only for the array rank at the time of 
program creation, with the actual memory allocation for the array elements occurring during program 
execution (dynamic allocation method). 
If memory usage is to be optimised (less space means fewer addresses, resulting in faster execution), then 
it would be desirable not to allocate unused space for arrays. This can be achieved by dynamically allocating 
memory at runtime, specifying only the really needed size of the arrays. 

Static allocated memory 

A known (and unchangeable during the execution of the program) size in computer memory is allocated to 

an array by the type specification alone, or by using DIMENSION with the bounds set corresponding to 
each extent (rank) of an array. This size is a maximum size and need not be used in full (fewer positions in 
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the table can be used). The syntax for declaring an array by the DIMENSION attribute (static memory 
allocation): 

 [Type,]DIMENSION(extents)[,attribute] :: array_list 
or 

 Type[,attribute] :: array_name_1(extents)[,array_name_i(extents)…] 
 

Examples: Explanations: 
DIMENSION A(10,2,3),L(8) The array named A has rank 3 (3 "dimensions", in total 

10x2x3=60 positions for elements) and will be implicitly of type 
REAL. The array named L has rank 1 (8 positions) and implicitly 
of type INTEGER (due to the first letter of the name).  

REAL,DIMENSION(3,3) :: D,E Arrays D and E will be of type REAL with rank 2 and conform to 
each other (having identical shape). 

INTEGER MAT(2:11,3) The MAT array is of type INTEGER, with rank 2, having a total 
of 30 element positions. At the first rank the lower limit is 2 
and the upper limit is 11 (position indices being incremented 
from 2 to 11), and at the second rank the lower limit is 1 
(default) and the upper limit is 3. 

 

Storing arrays in memory is done by positioning the elements in a row, incrementing the position indices 
successively in their order. Here is an example for array D (mentioned above, with rank 2 and size 3x3=9 
positions): 

D 
(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3) 

 
As can be seen, the index on the first position is incremented (from the initial value, which is the lower 
limit, to the upper limit), then the next index, and so on... 

 
Exemplifying with a matrix like:  

 

a11 a12 … a1n 
a21 a22 … a2n 
… … … … 
am1 am2 … amn 

 
, we could say that the storage of elements in 
memory is done according to the columns. 

 

 
Initializing the elements of an array by using the DATA specification: 
 

Examples: Explanations: 
DIMENSION A10(10,10) 

 

Declaring an array named A10 (default type 

REAL), having a total of 10x10=100 element 
positions. 

DATA A10/100*1.0/ Initialization by name: all 100 elements in array 
A10 will be given the value 1.0. 

DATA A(1,1),A(10,2),A(5,5)/2*3.3,2.0/ Initialisation by elements: the elements at 
positions (1,1) and (10,2) are given the value 3.3, 
and the element at position (5,5) is given the 
value 2.0. 

DATA ((A(i,j),i=1,5,2),j=1,3)/9*3.5/ Initialisation by cycle: the elements in positions 
(1,1), (3,1), (5,1), (1,2), (3,2), (5,2), (1,3), (3,3) and 
(5,3) are each given a value of 3.5. The index i 
start with a value of 1 and reach a final value of 5 
with increments of 2. 

 
Note: the DATA specification is a declarative statement, so it must be passed before any executable 
statement. The following are some examples of executable statements (attribution statement). 
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Examples: Explanations: 
L=10 

! Equivalent to: 

L(1)=10;L(2)=10;L(3)=10;L(4)=10 

L(5)=10;L(6)=10;L(7)=10;L(8)=10  

L is the 8-position array, and the number 10 is a 
scalar value. Since a scalar conforms to any array, 
all 8 positions in the array L will be given the 
value 10. 

L=L*2 

! Equivalent to: 

L(1)=L(1)*2;L(2)=L(2)*2;L(3)=L(3)*2 

L(4)=L(4)*2;L(5)=L(5)*2;L(6)=L(6)*2 

L(7)=L(7)*2;L(8)=L(8)*2 

All 8 elements in the array L will have the value 
multiplied by 2 (since the scalar 2 is "conform" to 
the array L). 
 

D=-1.2 

E=2.*D 

 

Each element in array D will be assigned the 
value -1.2. Arrays D and E are conform (they have 
the identical 2x3 shape), therefore each element 
in array E will receive the value -2.4 (resulting 
from multiplying -1.2 by 2). 

 
String sections 
The syntax for referencing a string section (i.e a part of an array with rank 1):  
 string_name([start]:[stop][:increment]) 

Examples: Explanations: 
REAL,DIMENSION(6) :: VA 

INTEGER,DIMENSION(0:5) :: VB 

 

 

 

VA(3:5)=1.0 

 

VB(1:5:2)=1 

The VA and VB arrays declared with 6 positions each 
(the position index in the case of the VA array can 
take values from 1 to 6 inclusive, with an increment 
of +1, and in the case of the VB array from 0 to 5, 
also 6 positions ). 
The elements at positions 3, 4, and 5 of the VA 
vector are given a value of 1.0. 
The elements at positions 1, 3, and 5 (the index 
starts at 1 and goes up to 5 with step 2) of the VB 
vector are given a value of 1. 

CHARACTER(LEN=8) :: TIT=”ALanDALa” 

 

 

The string named TIT will have 8 positions and will 
be initialized with the quoted characters (one 
character for each position). 

The following references to sections of the entity named TIT (from the previous example) mean the 
(quoted) characters in the right column: 
  TIT(2:4) 

 TIT(5:5) 

 TIT(:5) 

 TIT(5:) 

 TIT(:) 

 TIT(10:) 

 TIT(5:10) 

”Lan” - the characters in positions 2-4 (including), 
”D” - the character at position 5, 
”ALanD”  - characters up to position 5, 
”DALa” - characters from the 5th position, 
”ALanDALa”  - equivalent to the reference of TIT, 
String of null length (no characters from position 10), 
The last position in the string is 7 (LEN=7), and 10 > LEN. Such a reference is not 
allowed, it will generate error! 

 
Some intrinsic functions for character strings: 

LEN(string) - returns the length (number of characters) of the specified string. 
INDEX(substring,string)  - returns the (start of) position of the substring in the string, or 0 if not. 
TRIM(string) - returns the string without the trailing blank characters. 
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Dynamic allocated memory  

By dynamic memory allocation, when the program is written, only the number of extents (or rank) of the 
array is reserved into memory (creating the possibility of generating addresses for possible locations), and 
the actual allocation of memory space to the array takes place only when the statements that require this 
have been reached. Of course, the programmer has to bear in mind that in this way it is not the operating 
system that manages the memory allocated to the array, but the program, so the release of this memory 
must also be controlled by statements. If this aspect is ignored, then after each execution of the program, 
areas of memory will remain occupied and uncontrolled (this phenomenon is called ”memory leakage”), 
which, after repeated executions, can lead to the working memory being filled up, making it difficult or 
even blocking the operation of the computer. Dynamically allocated memory can be achieved in one of 
three ways: 

- Allocatable arrays (using the ALLOCATABLE specification), 
- Pointer or target arrays (via the POINTER or TARGET specification – since Fortran 95), 
- Automatically allocated arrays (by passing data to procedures). 

 
Allocatable arrays 

When using the ALLOCATABLE specification, the rank (number of extents) of the array must be reserved 
accordingly, and the lower and upper bounds (limits) of the array can be set at any time within the program 

(if they have not already been set). The ALLOCATABLE specification cannot be combined with the 
COMMON, DATA, EQUIVALENCE or NAMELIST specifications. Allocatable arrays can only be used 
between procedures if memory has been allocated for them beforehand (limits have been set for each 
rank), but to avoid ”memory leaks” the space allocated for them must be freed (deallocated) before the 
end of the procedure in which memory has been allocated. Multiple simultaneous allocations of memory 

for an array are not allowed (to test the allocation status, the intrinsic ALLOCATED function can be used, 
which returns the logical value .TRUE. if the array already has allocated space). The DEALLOCATE intrinsic 
function can be used to free the allocated memory of an array, and the ALLOCATE intrinsic function can 
be used to allocate memory. The syntax for declaring an array by the ALLOCATABLE statement (dynamic 
memory allocation): 

 [Type,]ALLOCATABLE [,attribute… ::] array_name_1(:[,:]…)[,array_name_i(:[,:]…)…] 
Note: for each rank, a position marked by the ":" character in the round bracket after the array_name is 
reserved. For dynamic memory allocation the POINTER or TARGET attributes can also be used, the syntax 

of the declaration by POINTER or TARGET being similar to the syntax for ALLOCATABLE, only the 
keyword used differs (POINTER or TARGET will be written instead of ALLOCATABLE). 
When dynamic memory allocation is used via ALLOCATABLE, POINTER or TARGET, the ALLOCATE 
function will be used in the source file to actually allocate the required space to the arrays:  
 ALLOCATE(array_name_1(extents)[,array_name_i(extents_i)…])  
In such situations, it must be taken into account that at the end of the program run, the control over the 
memory blocks allocated for arrays (within the program) will also end, so that successive runs can lead to a 
situation where the working memory is completely occupied by areas allocated to arrays that can no longer 
be controlled. To avoid these situations, memory allocated dynamically within a program must be freed 
within the same program (before losing control of the memory area) using the function:  

DEALLOCATE(array_list) 
It may also be necessary to free allocated memory blocks in order to allocate different memory blocks (of 
different sizes) to the same arrays within a program. The allocation status can be tested using the 
ALLOCATED(array_list) function, e.g. within a simple logical IF (the syntax is shown in the control 
statements) used to free up the memory allocated to specific arrays:  

IF(ALLOCATED(array_list)) DEALLOCATE(array_list) 
 

Examples: Explanations: 
ALLOCATABLE X12(:,:),B(:) The array named X12 has rank 2 (the reservation 

of each “dimension” is marked with the ”: ” 
character), and the array B will be a vector of rank 
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1. Both arrays are of type REAL by default. The 
actual number of positions in each array will be 
specified later. 

REAL,ALLOCATABLE,DIMENSION(:) :: n,m Arrays N and M will have the same rank (1). In this 
case the type of the entities (REAL) must also be 
specified. 

REAL,ALLOCATABLE :: v(:),m(:,:) 

  … 

 

ALLOCATE(v(10),m(0:9,-2:7)) 

  … 

Two allocatable arrays have been declared, the 
vector V with rank 1 (reserved by the ”:” 
character) and the matrix M with rank 2 (i.e. 2 
dimensions). 
10 positions have been allocated for the vector V 
and 10x10=100 positions for the matrix M (from 0 
to 9 inclusive for the first extent and from -2 to 7 
inclusive for the second extent). Remember to 

close the brackets for the ALLOCATE function! 
DEALLOCATE(v,m) 

  … 

IF(ALLOCATED(m)) THEN 

     DEALLOCATE(m) 

ENDIF 

  … 

Freeing the memory spaces allocated to the 
previous 2 arrays. 
Use a logical expression to check the state of array 
M to avoid double allocation (not allowed). The 
memory space is released (by DEALLOCATE) only 
if the intrinsic function ALLOCATED indicates (by 
returning the logical value .TRUE.) that there is 
already previously allocated memory space. If the 

intrinsic function ALLOCATED returns the logical 
value .FALSE., it means that no memory space is 
allocated to the specified array and therefore 
there is no need to release the memory (the 
intrinsic function DEALLOCATE is ignored). 

ALLOCATE(m(3,3)) 

  … 

Allocate a new size of memory to the M array, this 
time 3x3=9 positions. 

DEALLOCATE(m) 

  … 

Release the memory allocated to the M array 
before the end of the program unit. 

 
Pointer/Target arrays 

A POINTER does not contain data, but points to a scalar or array where data can be stored. The scalar or 
array to which a POINTER points must have the TARGET attribute. Unlike allocatable arrays, a POINTER 
(or TARGET) array can be passed to a procedure even without prior allocation of memory space. The space 
in memory for such an array is not actually allocated until the program is executed. The syntax for 

specifying these arrays is similar to that of allocatable arrays, with the exception that POINTER arrays 
usually require an explicit interface (for internal procedures, the interface is known). Since the specification 

of POINTER and TARGET arrays is only possible starting from Fortran 95 (similar to the use of the 
ALLOCATABLE specification already presented), in the case of Fortran 90 such arrays can be created by 
the derived type specification (exemplified in the following). 
 

Example: Explanations: 
POINTER C(:,:,:) 

REAL,TARGET :: kt(:) 

The array named C has rank 3 (the reservation of 
each "dimension" is marked with a ”:” character) 

and will be of type REAL (by default), POINTER. 
The array named KT has rank 1 (like a vector) and is 

declared explicitly as type REAL (because the name 
starts with letter K). 
The actual number of positions (the extents) in 
these arrays will be specified later. 
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TYPE p_array 

 REAL,DIMENSION(:),POINTER :: tp 

END TYPE 

  … 

 

TYPE(p_array),ALLOCATABLE :: vp(:) 

 

  … 

 

 

A derived type named P_ARRAY has been declared, 
containing a component of type REAL with the 
attribute POINTER as a vector (array of rank 1) 
named TP.  
This derived type P_ARRAY is used to declare 
another allocatable array called VP, also in vector 
form (array of rank 1). This means that each 
element of VP will have in its composition an array 
of type REAL with the attribute POINTER in the 
form of a vector (array of rank 1) called TP. 

READ(*,*)n,m 

  … 

 

ALLOCATE(vp(n)) 

DO i=1,n 

 ALLOCATE(vp%tp(m)) 

ENDDO 

  … 

 

 

Assuming that the values of the scalar entities of 
type INTEGER N and M are known (in the adjacent 
example by reading), the desired storage space (in 
the adjacent example N positions) for the array VP, 
respectively the desired storage space (in the 
adjacent example M positions) for each component 
of type TP in VP. Thus, each element of the 
POINTER VP array will have M positions, which 
means that the VP array will have a total of NxM 
positions. 

DEALLOCATE(vp) 

  … 

Release allocated space, as with allocatable arrays. 

 
Automatically allocated arrays 
Automatically allocated arrays are variables allowed only within procedures (subroutines and functions), 
and the lower and upper bounds for each pre-reserved extent (reserved rank) are set at the time of the 
procedure call. These arrays cannot be initialised (their elements cannot contain initial values) and values 
cannot be passed through such arrays between procedures. 

Examples: Explanations: 
SUBROUTINE points(nr,pos) 

INTEGER,INTENT(IN) :: nr 

REAL,INTENT(OUT) :: pos 

REAL :: zone(nr),zone_2(2*nr) 

  … 

 

 

A subroutine named POINTS has been specified with 
arguments NR and POS (whose value is known at the time 
the subroutine is entered). The argument NR is of type 
INTEGER and is only used as a value to pass to the POINTS 
subroutine. POS is of type REAL and is only used to pass a 
value from the POINTS subroutine to the program unit 
calling the subroutine. 
When the POINTS subroutine is activated (and the known 

NR value is passed to the subroutine), the REAL arrays 
named ZONE and ZONE_2 are automatically allocated 
memory space (defined size). 

PROGRAM array_function 

ALLOCATABLE X(:) 

PRINT *,”n: ” 

READ *,n 

ALLOCATE(X(n)) 

PRINT *,”the ”,n,” values: ” 

READ *,(X(i),i=1,n) 

PRINT *,func(n,X) 

DEALLOCATE(X) 

CONTAINS 

 FUNCTION func(k,X) 

 DIMENSION func(k),X(k) 

 DO i=1,k 

 func(i)=X(i) 

A more complex example with a function defined as an 
internal procedure and as an automatic array (extending an 
earlier example from the function walkthrough). The array X 
passed to the FUNC function (along with the size of N) 
benefits from dynamic memory allocation. The memory 
allocated to the array X is freed before the program ends. 
When the function is called, the arguments are passed and 
the result is obtained by the function name (in this case, N 
different values). 
The function (as array) will automatically have K positions 
(corresponding to the N values passed at the time of the 
call). Each element in the FUNC array receives the value of 
the corresponding position in the X array. 
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 ENDDO 

 END FUNCTION 

END 

Flow control statements 

This category includes conditional statements, jump and loop (repetition) statements, as well as those for 
stopping or suspending the execution of a program. 

Conditional statements 

There are several types, some of which also have structured variants (introduced with Fortran 90), their 
syntax being as follows:  

IF(arithmetic_expression)e1,e2,e3 Arithmetic decision (arithmetic IF) involves testing the value of 
the result of arithmetic_expression against zero, specifying 3 
labels (not necessarily different). If the result from 
arithmetic_expression is strictly negative, a jump will be made to 
label e1, if the result is null (the value 0) to label e2, and in case of 
a strictly positive result to label e3. 

IF(logical_expression) statement Unstructured logical decision (simple logical IF), with empty 
branch, allows a single statement to be specified. This statement 
will only be executed if logical_expression evaluates to true (with 
the value .TRUE.). Otherwise (resulting in .FALSE. for 
logical_expression) the statement will be ignored. 

IF(logical_expression_1) THEN 
statements_1 

[ELSE IF(logical_expression_i) THEN 
statements_i] 
[ELSE 
statements_x] 
ENDIF 

The structured logical decision (structured logical IF) can be 
empty-branched (the variant in which only the IF, THEN and 
ENDIF keywords appear), or not. The ELSE IF keywords can 

also be written as ELSEIF in many variants of the Fortran 
language. If several ELSE IF sequences are specified, the 
logical_expression_i must be distinct for each sequence, without 
the possibility of simultaneous fulfillment of several expressed 
conditions (the mention is also valid for logical_expression_1). 

If logical_expression_1 results with the value .TRUE., those 
specified in the statements_1 block will be executed.  

Otherwise, if logical_expression_1 returns .FALSE., the first 

logical_expression_i (if specified) that returns the value .TRUE. 
will be considered, leading to the execution of what is specified 
in the corresponding statements_i block. Only if all preceding 

logical expressions returned .FALSE. those specified in the 
statements_x block will be executed. 

SELECT CASE(expression) 
[CASE(criteria_ set_i) 
statements_i] 
[CASE DEFAULT 
statements_x] 
END SELECT 

The generalized condition testing allows the value of any 
expression to be tested. Care must be taken that each criteria_ 
set_i specified is clear, and without overlaps between them! The 
CASE DEFAULT branch will only be considered (performing 
statements_x) if the conditions specified in all previous criteria_ 
set_i are not met. 

 
Structured variants can contain other structured statements (structures), but without intersecting them. 
The contained structured statements must begin and end within the same block (marked in the preceding 
syntaxes with statements_1, statements_i, and statements_x). 
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Examples: Explanations: 
  CHARACTER r 

 … 

1 WRITE(*,*)’Enter the values: ’ 

 … 

  WRITE(*,*)’Restart? (Y/N): ’ 

  READ(*,*)r 

  IF(r.EQ.’y’.OR.r.EQ.’Y’) GOTO 1 

… 

Declare an entity of type character (1 position) 
 
An executable statement with label 1 
 

Reading a character and storing it in R, then 

testing the value by a simple logical IF and 
perhaps an unconditional jump to the statement 
with label 1. 

  CHARACTER r 

 … 

1 WRITE(*,*)’Enter the values: ’ 

 … 

  WRITE(*,*)’Restart? (Y/N): ’ 

  READ(*,*)r 

  IF(r==’y’.OR.r==’Y’) THEN 

    GOTO 1 

  ENDIF 

The previous example, using a structured logical 
IF (without the ELSE branch) instead of a simple 
logical IF, and .EQ. replaced by ==. 

   IF(x+1)3,1,6 

3  WRITE(*,*)”negative result” 

   GOTO 2 

1  WRITE(*,*)”null result” 

   GOTO 2 

6  WRITE(*,*)”positive result” 

2  CONTINUE 

Test the result of the numerical expression x+1, 
using an arithmetic IF, and depending on the 
result, display whether it is negative, zero or 
positive. 
 

IF(x+1<0) THEN 

   WRITE(*,*)”negative result” 

   ELSE IF(x+1==0) THEN 

   WRITE(*,*)”null result” 

  ELSE 

    WRITE(*,*)”positive result” 

ENDIF 

The previous example, using a structured logical 

IF instead of an arithmetic IF. 

 IF(x/2)3,3,6 

3 WRITE(*,*)”result <=0” 

 GOTO 2 

6 WRITE(*,*)”result >0” 

2 CONTINUE 

Testing the value resulting from the evaluation of 

the numerical expression x/2, with an arithmetic 
IF, then display it depending on the result, if it is 
less than or equal to zero or strictly positive. 
 

SELECT CASE(x/2) 

    CASE(:0) 

 WRITE(*,*)”result <=0” 

    CASE DEFAULT 

 WRITE(*,*)”result >0” 

END SELECT 

The previous example, but using a SELECT CASE 
structure with an arithmetic expression instead of 

an arithmetic IF. The criteria specified by (:0) 
means all numeric values up to and including zero. 

SELECT CASE(x/2<=0) 

    CASE(.TRUE.) 

 WRITE(*,*)”result <=0” 

    CASE(.FALSE.) 

 WRITE(*,*)”result >0” 

END SELECT 

The previous example, using a SELECT CASE 
structure with a logical expression. The value 
following the evaluation of a logical expression can 

be .TRUE. or .FALSE. (just one of the two logical 
values). 

Jump statements 

The variants of jump statements (using the keywords GO TO or as GOTO) have the following syntax: 

GOTO label 
GO TO label 

The unconditional jump, label is where to jump to when this 
statement is executed. The label must mark an executable statement 
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 (it must be written in front of the statement to be jumped to during 
execution). 

GOTO (label_list)[,]expression 
GO TO (label_list)[,]expression 

The computed jump. Evaluating the expression will give the position 
of the label in the label_list that will be used to perform the jump. 
Obviously, the resulting value of the expression must be a strictly 
positive integer value. If this value is negative, zero or greater than 
the number of elements in the label_list, the jump will not be 
performed. 

Loop statements 

The statements for making loops are structured in Fortran 95 (those where the end of the structure is 
marked instead of the label with END_name being introduced with Fortran 90). Being structured 
statements (structures), they can contain other structures (for example, loop within loop, or structured 
decision within loop, or loop within decision structure, etc.), but they cannot be intersected. Structured 
statements must begin and end within the same (statement-marked) block in the syntaxes below. Variants 
marked with a label at the end are inherited from previous versions of Fortran. 
 
DO label [[,]loop_control] 
statements 
label last_executable_statement 

It would correspond to a post-conditional loop, with the caveat that if 
loop_control was specified, it would be evaluated first (as noted 
below). With this structured statement, if other loops are included in 
the loop having the same body, it is allowed to use a single label to 
mark the end of the structures (no intersection is considered). 
If the last specification in the loop body is not an executable 

statement (like an ENDIF, or something similar), the neutral 

CONTINUE statement (shown below) can be used. 

DO  [loop_control] 
statements 
ENDDO 

The difference from the previous variant consists in the end marking 

ENDDO (many variants of Fortran also accept END DO). 

 
The syntax for loop_control is as follows: 
 loop_counter=initial_value,end_value[,increment_step] 
Interpreting this is done by assigning initial_value to the loop_counter and checking if it is below end_value 
(if it is not, the loop will be ignored without executing any statement from the body of the loop). After a 
first step through the statements in the loop body, the loop_counter is changed by the value specified at 
increment_step. If increment_step is not specified, it will be taken as +1 by default. It checks that the value 
in the loop_counter has not exceeded the end_value, in order to resume the execution of the statements in 
the body of the loop again. The exit from the loop will be made when the loop_counter will get a value 
above the end_value. Explicit modification (by statements) in the loop body of any loop_control component 
is not allowed. 

If loop_control is not specified, the exit can be done with the EXIT statement or an "infinite" loop can be 
made (it can be stopped by pressing the <Ctrl> and <C> keys simultaneously, causing the program to stop  
by forced interruption). 
 

DO label [,] WHILE(logical_expression) 
statements  
label last_executable_statement 

It would correspond to a preconditioned loop. The statements 
in the loop body will be executed only if logical_expression 
evaluates to .TRUE. (and the loop will only run as long as this 
value exists). When logical_expression becomes .FALSE., the 
loop will be exited. If the last specification in the loop body is 
not an executable statement (like an ENDIF tag, or something 

similar), the neutral CONTINUE statement (shown in an 
example) can be used. 
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DO WHILE(logical_expression) 
statements  
ENDDO 

The difference from the previous variant consists in the end 

marking ENDDO (some variants of Fortran also accept END DO). 

 
In addition to these statements, there are also some control statements that can be used to repeat or exit 
the above described loops. 

CYCLE Causes execution of previous statements in a loop to resume, 
without going through all the statements in the loop body. 

EXIT Allows leaving the body of a loop (loop exit). 

[label] CONTINUE It is an executable statement with no effect. The meaning of 
use is only to wear the label. 

 

Examples: Explanations: 
   DO i=1,10 

 WRITE(*,*)i 

   ENDDO 

   WRITE(*,*)i 

! Equivalent to: 

   DO 8 i=1,10 

8  WRITE(*,*)i 

   WRITE(*,*)i 

Cycle for displaying the loop_counter value (i), in the 
version with ENDDO,  
 
or, 
 
using label 8 to mark the end of the loop body. 

   DO i=1,n 

DO j=i+1,n 

  REZ(i,j)=1.0/(i+j) 

ENDDO 

   ENDDO 

! Equivalent to: 

   DO 20 i=1,n 

   DO 20 j=i+1,n 

20 REZ(i,j)=1.0/(i+j) 

! Equivalent to: 

   DO 11 i=1,n 

   DO 20 j=i+1,n 

20 REZ(i,j)=1.0/(i+j) 

11 CONTINUE 

Loop inside a loop, in the variant with ENDDO (the first 

ENDDO is for the loop with counter j, considered 
internal) and in the variant of using a label (20) to mark 
the end of the loop body. It can be observed that in the 
second variant only one label was used (it is not 
considered a structure intersection in such situations). 
It can also be observed that using the value of the 
loop_counters is allowed, but it is forbidden to explicitly 
change their value. 
 Of course, the CONTINUE statement (mentioned 
above) can also be used in such situations. The inner 
loop will be the one with label 20 (the last open 
structure must be the first closed one). 

DO 

  READ *,N 

  IF(N==0) EXIT 

ENDDO 

A loop variant without control will exit the cycle due to 

the EXIT statement (if a null value has been entered 
for N). 

DO i=1,4 

  PRINT *,i 

  IF(i > 2) CYCLE 

  PRINT *,i 

ENDDO 

PRINT *,’finished...’ 

The following will be displayed on the screen: 
1 

1 

2 

2 

3 

4 

finished... 
The CYCLE statement will cause the loop to resume 
(without executing the statements that follow it) from 
the moment the value of i exceeds 2. 

CHARACTER*132 LINE 

READ (’A’),LINE 

i=1 

 

 

A character string (named LINE) is defined with 132 
positions (the old Fortran 77 syntax was used) and the 
characters are read in a single statement (using the 
descriptor for alphanumeric values). 
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DO WHILE (LINE(i:i)==” ”) 

  i=i+1 

ENDDO 

As long as spaces (blank characters) are encountered 
starting from the beginning of the string, the value i will 
be incremented, which is also used to specify the 
position of the characters in the string (see substrings). 
Finally, i will contain the position of the first non-blank 
character in the LINE string (total number of blanks +1). 

 

For input/output operations, implicit loops can be used (similar to the examples for the DATA 
specification), as shown below: 

Examples: Explanations: 
DIMENSION A(10,10) 

READ *,”no. of lines in matrix A: ”,nl 

READ *,” no. of columns in matrix A:  ”,nc 

DO i=1,nl 

PRINT *,”elements on line  ”,nl,” :” 

READ *,(A(i,j),j=1,nc) 

ENDDO 

 

  … 

 

 

 

PRINT *,”matrix A:” 

PRINT *, ((A(i,j),”, ”,j=1,nc),i=1,nl) 

Declaration of an array with 10x10=100 
positions 
 
 
Using an implicit loop inside an explicit 
loop to read elements from a row of an 
array.  
Interpretation: read A(i,j) while the 
position index j starts from the value 1 and 
reaches (incremented at each step by +1) 
the value of NC. 
 
Display the elements of array A, one by 
one, followed by the ”,” character.  
The loop with counter j is inside the loop 
with counter i. In this example the display 
of the values will be in line. 

Statements to stop execution  

STOP [stop_code] Terminates execution, stopping the program from running. If stop_code is 
specified, then it will be displayed (stop_code can be an integer, or a quoted 
string, it is used in case of more than one stop possibility, to identify the 
branch being run). 

PAUSE [pause_code] It can be used up to Fortran 90, being removed from the Fortran 95 standard 
(it can be replaced by an empty read statement), but is supported by G95. 
Stops the execution of the program temporarily and displays (if specified) the 
pause_code (can be an integer, or a quoted string). The <Enter> key must be 
pressed to resume execution. In all cases, it will cause the display of the 
message: 
PAUSE statement executed. Hit Return to continue. 

If a pause_code has also been specified, it will be displayed between the 
words "PAUSE" and "statement" in the above message. 

Using logical units (peripherals and files) 

The internal or external parts of a computing system used for input (reads) and output (writes) operations, 
respectively for data storage, are considered physical units. These are accessible in the Fortran language as 
logical units (default or explicit) corresponding to those physical units. Input (reads) and output (writes) 

statements are performed through logical units. The default logical unit (marked with the value * in 
statements that require specification) is the console, i.e. the assembly consisting of the keyboard and 
display (monitor screen) – for inputs the keyboard is considered, and for outputs the display. The logical 
units that must be explicitly specified are files, respectively peripherals (printer, magnetic tape drive, etc.), 
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with an integer value assigned to them. The indication of the logical unit to which an input / output 
statement refers is done by this numerical value. Some values also have predefined logical units in older 

Fortran, such as 1, 2, 3 and 4 for files named FOR00n.DAT (where the corresponding digit from 1 to 4 will 
appear instead of the character n in the file name), or 5 for input devices (card reader, keyboard, etc.) and 6 
for output devices (printer, display, etc.). Allocating these references (numbers) to logical units can be done 
explicitly by the OPEN statement. The syntax of this executable statement is as follows: 

  OPEN(parameter[,parameter]… ) 
where parameter can be a keyword, or of the form keyword=value (each parameter may be specified only 
once within the list in parentheses). 
 

Table with the parameters of the OPEN statement in alphabetical order: 
 

keyword value Explanations Default value 
ACCESS= ”SEQUENTIAL” 

”DIRECT” 

”APPEND” 

”STREAM” 

 

Setting how to access the 
logical unit:  
- sequential,  
- direct,  
- adding records at the end, 
- stream access (access by 
position). 

”SEQUENTIAL” 
(row by row). 

ACTION= 

 
”READ” 

”WRITE” 

”READWRITE” 

How to use the logical unit: 
- only to read from it, 
- only to write in it, 
- reading and writing. 

”READWRITE” 
(read and write) 

BLANK= ”NULL” 

”ZERO” 

Interpretation of blanks:  
- spaces (no conversion),  

- 0 (conversion to digits for 
numbers). 

”NULL” (no 
conversion). 

CONVERT= ”NATIVE” 

”SWAP” 

”LITTLE_ENDIAN” 

”BIG_ENDIAN” 

 

Allows specifying a numeric 
format (for conversion / 
interpretation) for 
unformatted data: 
- native (no conversion), 
- switch (between 
LITTLE_ENDIAN and 

BIG_ENDIAN), 
- the last two explicitly 
specify the encodings. 

”NATIVE” (no 
conversion). 
 

DECIMAL= ”COMMA” 

”POINT” 

Decimal separator character ”POINT”. 

DELIM= ”NONE” 

”APOSTROPHE” 

”QUOTE” 

Specifying the delimiter 
character (for CHARACTER 
type constants) for I/O 
operations: 
- without delimiter, 
- the apostrophe character, 
- the quotation mark 
character. 

”NONE” (no 
delimiter). 

ERR= label Statement label to jump to 
in case of error when 
opening the logical unit. 

Not implicit, no 
jump by default. 

FILE= 

 
string Specify the file to be used as 

the logical unit. The file 
It depends on the 
logical unit and the 
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specifier is considered a 
string, so it is delimited by 
apostrophe or quotation 
marks if quoted, and if 
contained by a CHARACTER, 
entity, the name of that 
entity should be specified. 

operating system. 

FORM= ”FORMATTED” 

”UNFORMATTED” 

 

Format of the logical unit 
(file) accessed:  
- with format,  
- without format. 

Depends on the 
value of the 
ACCESS keyword.  
If it is ”DIRECT” 
then 
”FORMATTED”  will 
be considered, 
otherwise 
”UNFORMATTED” 
will be considered. 

IOSTAT= variable Returns a scalar INTEGER 
value in the variable, 
indicating the success (or 
failure) of accessing the 
logical drive. If the logical 
unit is opened successfully, 
the value of the variable is 0. 

No default value. 

PAD= ”YES” 

”NO” 
Specifies whether a record is 
filled with spaces (blank 
characters) when the format 
requires more positions than 
the value entered, or not 
filled. 

”YES” (blanks are 
used when 
necessary). 
 

POSITION= ”ASIS” 

”REWIND” 

”APPEND” 

Specifies the positioning in a 
file: 
- as is, 
- back to the beginning, 
- add at the end. 

”ASIS” (current 
position). 

RECL= 

 
number Record length in bytes for 

the logical unit in case of 
direct access, or maximum 
length in the case of 
sequential access (number 
should be a positive integer 
value). 

Depends on the 
value specified for 

the ACCESS 
keyword. 

SHARE= ”COMPAT” 

”DENYNONE” 

”DENYWR” 

”DENYRD” 

”DENYRW” 

Controls how other 
processes can access the 
logical unit simultaneously: 
- compatible (not shared), 
- without restrictions, 
- no writing from other 
program, 
- no reading from other 
program, 
- exclusive, no access from 
other program. 

”DENYNONE” (no 
restrictions). 
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STATUS= ”OLD” 

”NEW” 

”REPLACE” 

”SCRATCH” 

”UNKNOWN” 

 

State of the logical unit (of 
the file) when opened: 
- existing (if it does not exist, 
an error is obtained), 
- new (if already exists, 
generate error), 
- overwriting a file, 
- temporary (deleted after 
closing), cannot be used with 
FILE=, 
- unknown (opened if exists, 
created if does not). 

”UNKNOWN” 
(opened if exists, 
created if does not). 
 

UNIT= number The logical unit number 
(associated with the desired 
file or device) being accessed 
(number is a positive 
integer). The logical unit 
number can be specified 
without the UNIT= keyword 
if it is the first parameter in 
the parentheses. 

No default value.  

 

Disconnection of the logical unit (in the case of files it means closing them) can be specified by the CLOSE 
executable statement, the syntax of which is as follows: 
 CLOSE(parameter[,parameter]… ) 
where parameter is of the form keyword=value (each parameter can be specified only once within the list 
in parentheses).  

The CLOSE statement will also cause the <EOF> (end-of-file) to be recorded (written) when the unit is 
disconnected (file is closed). 
 

Table of parameters in the CLOSE statement (in alphabetical order): 
 

keyword value Explanation Default value 
ERR= label The label of the statement to 

jump to in case of an error 
when disconnecting the logical 
unit (label is a positive 
integer). 

Not implicit, no default 
jump. 

IOSTAT= variable Returns a scalar INTEGER 
value in the variable, which 
indicates the success (or 
failure) of closing the logical 
unit. If the logical unit was 
successfully closed, the value 
of the variable is 0. 

No default value. 

STATUS= ”KEEP” 

”DELETE” 
Option to keep (save) or 
delete the file. 

”KEEP” (save the file) 
if STATUS= was not 

”SCRATCH”. 
UNIT= number The logical unit number 

(associated with the desired 
file or device) to disconnect 
(number is a positive integer). 
The logical unit number can be 

No default value. 
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specified without the UNIT= 
keyword if it is the first 
parameter in the parentheses. 

Caution: A file opened with the STATUS=”SCRATCH” specification cannot be saved or printed 
(displayed), such an attempt will generate an error at runtime, and if ACTION=”READ” was specified 
when opening, the file cannot be deleted on disconnection (close). A read-only file does not necessarily 
need to be closed, but a file whose contents have been changed (written to) must be closed using the 
CLOSE statement, otherwise it may be stuck with inaccessible contents when the program finishes. 

Writing through a buffer, if it has not been explicitly emptied (by the effect of the CLOSE statement), then 
it is not certain that all records have been transferred, and at the end of the program run there will be no 
one to manage the contents of the buffer (resulting in the computer's memory being filled with 
unnecessary data). 
 

Example: Explanations: 
OPEN(3,FILE=”TEST.DAT”,STATUS=”OLD”) 

READ(3,*)n,m 

CLOSE(3) 

Open the existing TEST.DAT file associated with 
logical unit  number 3, then read the values of 
variables N and M from this file and disconnect 
the logical unit (close the file). 

DIMENSION A(10,10) 

   CHARACTER(12) name 

 

PRINT *,”data file name: ” 

Declare an array of 10x10=100 positions and the 
NAME entity with 12 positions (characters). Note 
CHARACTER, the letter C in the first column 
marks comment! 

3  READ(*,”(A)”)name 

OPEN(1,FILE=name,STATUS=”OLD”,ERR=9) 

 

! get the number of rows for A 

   READ(1,*) nl 

! get the number of columns for A 

   READ(1,*) nc 

! read the elements, one row at a time 

   DO i=1,nl 

    READ(1,*)(A(i,j),j=1,nc) 

   ENDDO 

… 

OPEN(2,FILE=”R.DAT”,STATUS=”UNKNOWN”) 

 

 

Read the file name into the NAME variable. 
Open the (existing) file associated with logical 
unit 1, from which the data will be read (see the 
comments in the adjacent column marked with 
an exclamation mark). If the file does not exist, it 
jumps to the statement labelled 9. 
 
 
Use an implicit loop (J=1,NC) inside an explicit 
loop (I=1,NL) to read elements from an array.  
 
Opening the R.DAT file associated with logical 
unit 2 (if the file does not exist, it is created, and 
if it exists, it is opened and its contents are 
overwritten). 

! Write a title to the R.DAT file 

   WRITE(2,*)”Array A:” 

! Write the elements, line by line: 

   DO i=1,nl 

    WRITE(2,*)(A(i,j),”,”,j=1,nc) 

   ENDDO 

 
Write the elements of the array A, line by line, 
with a comma after each element. 
 

CLOSE(2) 

… 

 

STOP 

Close the R.DAT file (disconnect logical unit 
number 2). Logical unit number 1 has not been 
modified and will be automatically disconnected 
when the program ends. 

9 PRINT *,”file not found!” 

GOTO 3 

… 

If the data file is not found, after displaying the 
specified message, an attempt will be made to 
read its name again (jumping to the statement 
labelled 3). 
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There are other additional statements for handling files, such as: 
 

Syntax: Explanations: 

BACKSPACE([UNIT=]u[,ERR=label][,IOSTAT=var])  
 or 
BACKSPACE u 

Repositions the file on the previous record in 
case of sequential access. 

ENDFILE([UNIT=]u[,ERR=label][,IOSTAT=var]) 
 or 

ENDFILE u 

Write the end of file marker in the current 
position to the file associated with logical unit 
number u (accessed via a previous OPEN 
statement, the rest of the file being truncated). 

REWIND([UNIT=]u[,ERR=label]) 
 or 
REWIND u 

Repositioning to the beginning of the file 
associated (previously by the OPEN statement) 
with logical unit number u. 

Program units 

All programs written in the Fortran language can be organized into program units. A program unit is 
considered a sequence of specifications and statements that can be written to a separate source file and 
compiled. Of course, several program units can also be written to a source file, and the order in which they 
are written is not important, except for modules (modules must be compiled before the program units that 
use them, so they must appear before them in the source file, so that by the time the unit that uses the 
module is compiled, the module is already compiled).  
Usually each program unit starts with a definition and ends with the END mark followed by the specification 
of the corresponding program unit type. Program unit names must be unique and must comply with the 
criteria for symbolic names (cannot contain spaces or non-permitted characters, must start with a letter 
and cannot be longer than 32 characters, and for older versions of Fortran it is recommended to limit it to 6 
characters).  
Not all program units can contain executable statements, there are program units that can only contain 
specifications relating to entities used by other program units. There are 4 types of program units in 
Fortran: 

- Main program (required in any application and may contain executable statements), 
- External procedures (subroutines, functions – may contain executable statements), 
- Modules (may not contain executable statements, only possibly in embedded module procedures) 
- Data blocks (cannot contain executable statements, only specifications). 

Each application (Fortran program) must contain a single main program (this will be launched at the start of 
the run). External procedures are subroutines and functions that are defined separately. There are several 
types of procedures, but only external ones are considered program units. Modules are pre-compiled units 
(must be compiled before the program units that use them), usually containing only entity specifications. 
Data blocks contain specifications about entities and may also contain data initializations. The difference 
between data blocks and data files is the content of the specifications that require compilation (data files 
contain only values, no specifications in Fortran, so do not require compilation). The main program and 
procedures can contain executable statements, but data blocks and modules can only contain entity 
specifications (with the exception that modules can also contain executable statements if these statements 
are part of module procedures). 

Main program  

Cannot be missing from any application and no application can contain more than 1 main program. This is 
the only program unit where specifying the type of program unit is optional. A main program cannot self-
reference (directly or indirectly). The syntax of a main program is as follows (with comments): 

[PROGRAM name] If the keyword PROGRAM is used, then the name must also be specified 
(which must be unique and will be considered global - meaning it will be 



 

37 

 

"seen" from all program units). Without the keyword PROGRAM no name 
can be specified, in such cases the default MAIN name for the program 
will be considered. Any program unit that starts with specifications or 
comments (or compilation directives via the OPTIONS keyword) will be 
considered main program. 

[specifications] The keywords INTENT, OPTIONAL, PUBLIC and PRIVATE may not 
be used in specifications. The entity specifications in all program units 
must precede the executable statements. 

[executable statements] ENTRY and RETURN keywords may not be used. 
[CONTAINS 
internal procedures] 

 
Several internal procedures (subroutines and functions) may be defined 
successively. 

END [PROGRAM [name]] The final marking must be at least the END keyword. It may also be 
followed by the keyword PROGRAM, but the name may only be specified 
if explicitly defined at the beginning of the program unit. 
 

Example: Explanations: 
 

END 

An empty main program unit with default name MAIN. 
 

PRINT *,”Hello!” 

END PROGRAM 
Main program that will only display the text Hello! on the 
monitor. 

PROGRAM test 

INTEGER C, D 

  … 

CALL sub1 

  … 

 

CONTAINS 

 SUBROUTINE sub1 

 … 

 PRINT *, func(X,Y) 

 … 

 END SUBROUTINE sub1 

 FUNCTION func(X,Y) 

 … 

 END FUNCTION func 

END PROGRAM test 

Main program named TEST, which will call the subroutine SUB1 
(included as an internal procedure along with the FUNC function). 
 
Calling the subroutine named SUB1. 
 

Marking the contained procedures. 
Defining subroutine SUB1 as an internal procedure. 
 
Printing the result of the FUNC function for the current values of 
arguments X and Y. 
End mark for the  internal procedure SUB1. 
Defining the FUNC function as an internal procedure. 

Marking the end of the internal procedure FUNC. 
The end mark for the main program TEST (with the name specified,  
although an END would have sufficed). 

Procedures 

These may be subroutines or functions, but only those defined as external procedures are program units. 
Procedures can be self-referencing (directly or indirectly) and have implicit interfaces (but interfaces can 
also be explicitly specified, via interface blocks). The types of procedures existing in Fortran are as follows: 

- External procedures (subroutines and functions that are not part of another program unit); 
- Internal procedures (subroutines and functions that are part of a main program or another 

procedure); 
- Module procedures (procedures defined within modules); 
- Intrinsic procedures (subroutines and functions predefined in the Fortran language); 
- Dummy procedures (usually a dummy argument specified as a procedure, or listed as a procedure 

reference); 
- Statement function (a computational procedure defined by a single statement, which may be 

referred to by its symbolic name). 
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All procedures have an interface, which is usually defined by default. A procedure interface refers to the 
properties of a procedure with which it interacts, or to the calling program unit. The interface may also be 
explicitly defined, through interface blocks. With the exception of data blocks, all program units may 
contain interface blocks.  
External procedures may contain internal procedures, but internal and module procedures cannot contain 
internal procedures. Internal procedures are in the section preceded by the CONTAINS keyword and have 
access to all entities in the containing program unit (HOST). Their name cannot be used as an argument to 
another procedure (there are variants of Fortran that allow this, e.g. Intel Visual Fortran) and they cannot 
contain separate entry points (via the ENTRY specification). 
Subroutines are invoked by the CALL statement or by a defined assigned statement. Subroutines do not 
return a value directly, but values may be transferred by known arguments or variables between the calling 
program unit and the subroutine. The return from a subroutine to the calling program unit is done by the 
RETURN statement, whose syntax is as follows: 

RETURN [number] The RETURN keyword may be followed by a number or numeric expression 
whose value must be of type INTEGER (signifying the reserved position in the 
list of arguments by which the calling program unit will be returned). 

 
Functions are invoked by name or by a defined operator. Normally they return a single result value 
(through the function name) after evaluation. The return from a function will default to the program unit in 

which the function reference was used, but the RETURN statement (shown above) can also be used to 
specify different return points from the function endpoint. 
 

Entering a procedure (by CALL statement in case of subroutines, or by name in case of a function) can also 
be done at a position other than the start of the procedure, using the ENTRY specification, whose syntax is: 

ENTRY name [(arguments)] The statement may be specified in the content of external procedures (it 
cannot be used in internal procedures), being part of the body of the 
procedure, and the name is the name of the entry point in the procedure 
(different from the name of the procedure) by which that part of the 
procedure will be invoked. In such cases the statements preceding the 
ENTRY specification in the procedure definition will be ignored when 
the procedure is activated (execution of the statements in the procedure 
will start from the first statement following the specified entry point). 

 
It is generally recommended to avoid the use of entry points in procedures, for clarity of source files. 
Arguments that are specified when defining a procedure (or an entry point in an external procedure) are 
considered notional, in the sense that at the time of procedure definition their values are not known, only 
their type. Arguments that are specified when invoking a procedure are considered effective, because in 
addition to knowing their type, their actual values are usually known. The order and type of the actual 
arguments (used at the call) must coincide with the order and type of the notional arguments (used when 
defining the procedure), but the name of the notional arguments may differ from the name of the effective 
arguments. 
 
When defining procedures, in front of the keyword specifying the type of procedure, some characteristics 
can also be specified, such as: 

ELEMENTAL When it is desired to apply the procedure to only one element in an array at a time. 
PURE  To avoid possible side effects (on the value of the entities used). In the case of functions 

that are declared PURE, the INTENT options should not be used for arguments and 
function names (there is no such restriction in subroutines). In addition, a procedure which 
is declared as PURE will only be able to use other PURE procedures. 

RECURSIVE As mentioned, direct or indirect recursion (self-reference) is allowed for functions and 
subroutines. If this feature is specified, when defining the procedure, the line declaring the 
type of the procedure (after the list of dummy arguments) may be completed with 



 

39 

 

RESULT(name_r) to specify a different name (name_r) from the original name of the 
procedure, this different name being used for recursion. 

MODULE To specify a module procedure (can only be used within modules). 
 
Subroutines 
In addition to the intrinsic subroutines existing in the Fortran language, other subroutines may be defined 
as needed. The syntax for defining a subroutine is as follows: 

SUBROUTINE name [(arguments)] Before the SUBROUTINE keyword, a procedure characteristic 
(ELEMENTAL, PURE, RECURSIVE) can be specified and the 
arguments are optional (they are only specified if value transfer 
between the calling program unit and the subprogram is desired). 
Arguments are considered notional in the sense that at the time of 
subprogram definition their values are not known, only their type. 
Reserved placeholders can also be used as arguments (see 
RETURN examples). 

[specifications] In all program units, entity specifications must precede executable 
statements. 

[executable statements] They may contain ENTRY specifications (for defining entry points) 
and RETURN statements (for returning to the program unit from 
which the subroutine was called). 

[CONTAINS 
Internal_procedures] 

 
Several internal procedures (subroutines and functions) can be 
defined in succession, but only in the case of a subroutine defined 
as an external procedure.  
For internal procedures this section cannot appear. 

END [SUBROUTINE [name]] The final marking must be at least the END keyword for 
subroutines defined as an external procedure. It may also be 
followed by the keyword SUBROUTINE, possibly also by name.  
In the case of internal procedures the end marker must contain at 
least both keywords END SUBROUTINE. 

Calling a subroutine is done by the CALL statement, whose syntax is as follows: 

CALL name [(arguments)] Arguments are specified if they exist in the subroutine definition. 
On call these arguments are considered effective, in the sense that 
at the time the subroutine is called, along with their type and their 
values, they are usually known. The order of the effective 
arguments (from the subprogram call) must match the order of 
the notional arguments (from the subroutine definition) as type, 
but different names may be used. 

 

Examples: Explanations: 
! main program 

CALL hi 

END PROGRAM 

 

! subroutine 

SUBROUTINE hi 

 PRINT *,”Hello!” 

END SUBROUTINE hi 

Main program that will only call the HI subroutine 
defined as an external procedure, and the subroutine 
will only display the text Hello! on the screen. 
In the example below the run will stop in the 
subprogram. 
It can also be seen that at the end of the main 
program mark (END PROGRAM) it was not possible to 
specify the name of the main program as it was not 
defined. 

! main program 

CALL hi 

END 

The previous example modified by inserting the 
RETURN statement in the definition of the subroutine 
HI. In this case, after calling the subroutine and 
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! subroutine 

SUBROUTINE hi 

 PRINT *,”Hello!” 

 RETURN 

END 

displaying the text Hello! on the screen, it will 
return to the main program and the run will stop at 
the end of the main program. 
It can also be seen that the END marking for the 
subroutine defined as an external procedure is 
sufficient. 

! subroutine with entry point 

SUBROUTINE sign 

PRINT *,”positive or null value” 

 RETURN 

ENTRY negative 

PRINT *,”strictly negative value” 

 RETURN 

END 

 

! calling program unit 

… 

IF(N < 0) THEN 

 CALL negative 

ELSE 

 CALL sign 

ENDIF 

… 

END 

Example with an entry point named NEGATIVE in the 
subprogram named SIGN.  
If the value of scalar N is negative, then NEGATIVE is 
called, which is not a subroutine, but an entry point in 
the subroutine SIGN. As an effect, the executable 
statements preceding the specification of the 
NEGATIVE entry point in the SIGN subroutine shall be 
ignored and the message strictly negative 

value shall be printed on the display, after which it 
shall return to the calling program unit. If the value of 
scalar N is not negative, then the SEMN subroutine is 
called and the statements are executed until the first 

RETURN is encountered (the message positive 
value is displayed and then the control returns to 
the calling program unit). Of course, the specification 
of an entry point only conditions the start from which 

the statements are executed, not the end (if RETURN 
had not been specified before the NEGATIVE entry 
point, when calling the SIGN subroutine after the 
positive value message was displayed, the 
strictly negative value message would 
also be displayed). 

! calling program unit 

 … 

 CALL verif(A,B,*10,*20,C) 

 PRINT *,”negative value” 

 GOTO 30 

10 PRINT *,”null value” 

 GOTO 30 

20  PRINT *,”positive value” 

30 CONTINUE 

 … 

 END 

 

! subroutine as external procedure 

 SUBROUTINE verif(X,Y,*,*,Z) 

 … 

 IF(X*Y-Z) 50,54,55 

50 RETURN 

54 RETURN 1 

55 RETURN 2 

 END 

 

In the program unit from which the VERIF subroutine 
is called, in the list of effective arguments appear the 
scalar entities of type REAL (due to the implicit rule) 

A, B, then the reserved positions (by the * mark) with 
labels 10 and 20, respectively the scalar entity C (also 
of type REAL due to the implicit rule). These 
arguments correspond in order (and type) to the 
notional arguments that were specified when defining 

the subroutine: X and Y (of type REAL by default), 
then 2 reserved positions (each marked by *) and Z 

(of type REAL by default).  
When the VERIF subroutine is called, the value from A 
will be transferred to X, the value from B to Y, and the 
value from C to Z in the subroutine. When the 
subroutine comes to test the value resulting from the 
arithmetic expression, the appropriate label is chosen 
from the list (in the case of a strictly negative result it 
jumps to label 50, in the case of a null result to label 
54, and in the case of a strictly positive result to label 
55). If jumping to the statement with label 50, the 
return to the calling unit will be made to the actual 
arguments of the CALL statement (the value in A will 
be updated from the value of X, B from Y, and C from 
Z) and the first statement that follows will be 
executed (displaying the negative value text) 
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and then jumping to the statement with label 30. So 
the value transfer will also be from the subroutine to 
the calling program unit (no other options being 
specified by INTENT) and RETURN means ”normal” 
return.  
If the arithmetic condition in the subroutine results in 
jumping to the statement with label 54, the return to 
the calling unit will be done by activating the first 
reserved position in the list of notional arguments, 
which in the list of actual arguments corresponds to 
*10, consequently the first statement executed after 
the return will be the one with label 10 (the text 

null value will be displayed after which it will 
jump to the statement with label 30). So RETURN 1 
means turning back through the first reserved 
position. 
If the arithmetic condition in the subroutine results in 
jumping to the statement with label 55, the return to 
the calling unit will be done by activating the second 
reserved position (due to the value 2 specified in 
RETURN) in the list of notional arguments, which in 

the list of actual arguments corresponds to *20, 
consequently the first statement executed after the 
return will be the one with label 20 (the text 

positive value will be displayed after which the 
statement with label 30 will continue). So RETURN 2 
means turning back through the second reserved 
position. 

 
User defined functions 
In addition to the intrinsic functions existing in the Fortran language, it is possible to define different 
functions. There are several categories of functions: defined as external procedures (program units), 
defined as internal or module procedures (contained by other program units), defined as a statement (in a 
single specification expression). The use of functions is done by specifying the name and arguments (if a 
function has no arguments, then the name will be followed by empty brackets) within statements. You can 
pass values to functions via arguments (as with subroutines, except that unlike subroutines, with functions 
the parentheses enclosing the arguments are mandatory, even if they are not arguments), but functions 
will return a result via their name, not their arguments! With this in mind, an expression calculating the 
result of the function must be mandatory in the definition of a function.  
When defining a function, in addition to keywords specifying characteristics (ELEMENTAL, PURE, 
RECURSIVE, MODULE), the type of the function can also be specified (in the case of those defined as 
external procedures, only intrinsic types can be used). The syntax for defining a function as a procedure is 
as follows: 

[type] FUNCTION name([arguments]) Before the FUNCTION keyword, a function characteristic 
(ELEMENTAL, PURE, RECURSIVE) and a type (INTEGER, 
REAL, COMPLEX, LOGICAL, CHARACTER, BYTE) can be 
specified, and the arguments are optional (they are specified 
only if value transfer between the calling program unit and the 
function is desired), but the argument delimiting parentheses are 
mandatory. Arguments are considered notional in the sense that 
at the time of function definition their actual values are not 
known, only their type.  
In the case of self-reference (RECURSIVE), the definition must 
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be completed at the end of this line with RESULT(name_r), 
where name_r is the entity through which the result will be used 
in the function. 

[specifications] In all program units, entity specifications must precede 
executable statements. 

[executable statements] They may contain ENTRY specifications (for defining entry 

points) and RETURN statements (for returning to the program 
unit from which the function was called). 
Attention: it must also contain an expression that results in the 
value of the function! 

[CONTAINS 
Internal procedures] 

 
Several internal procedures (subroutines and functions) can be 
defined in succession, but only in the case of a function defined 
as an external procedure.  
For internal procedures this section cannot appear. 

END [FUNCTION [name]] The final marking must be at least the END keyword for functions 
defined as an external procedure. It may also be followed by the 
keyword FUNCTION, possibly also by name.  
In the case of internal procedures the end marker must contain 
at least both keywords END FUNCTION. 

 
The syntax for defining a function statement is as follows: 

[type] name([arguments])=expression Before the FUNCTION keyword, a type (intrinsic or derived) can 
also be specified, and specifying the arguments is optional (they 
are specified only if value transfer is desired between the calling 
program unit and the function), but the parentheses in which the 
arguments would be are mandatory. The arguments are 
considered notional, in the sense that at the time of function 
definition, their actual values are not known, only their type.  

 
Calling a function is done by its name and specifying the effective arguments (if any) within a statement, in 
the form: 

 … name([arguments]) Arguments are specified if they exist in the function definition (if 
they do not, then the parentheses will be empty). On call these 
arguments are considered effective, in the sense that at the time 
the function is invoked, along with their type and values, they are 
usually known. The order of the effective arguments (at function 
invoking) must match the order of the notional arguments (from 
function definition) as type, but different names may be used. 

 

Examples: Explanations: 
! main program 

 INTEGER on2 

10 PRINT *,”number: ” 

 READ *,i 

 IF(i==0) STOP 

 PRINT *,on2(i) 

 GOTO 10 

END 

! on2 function definition 

INTEGER FUNCTION on2(nr) 

on2=nr/2 

END  

Main program that will invoke the ON2 function 
defined as an external procedure, and display the 
result of this function for the value of the effective 
argument i (on the monitor). The program will stop 
only if the value read for i is null. 
When the function is invoked (to print the result) it 
will transfer the value of i to NR (from the function 
definition), and the returned result will be obtained 
by the name of the ON2 function. 

It can also be seen that the END marking for the 
function defined as an external procedure is 
sufficient. 
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! main program 

 INTEGER on2 

10 PRINT *,”number: ” 

 READ *,i 

 IF(i == 0) STOP 

 PRINT *,on2(i) 

 GOTO 10 

CONTAINS 

! on2 function definition 

FUNCTION on2(nr) 

INTEGER on2 

on2=nr/2 

END FUNCTION on2 

END 

Previous example modified by making the function 
definition an internal procedure. Although it was 
possible to define the function by specifying the type 
INTEGER as in the previous case, it was chosen to 
specify the type separately. 
In this case the function end marking must also 

contain the keyword FUNCTION (next to END), the 
mention of the function name being optional there. 
 

! main program 

 INTEGER on2,nr 

! on2 function definition 

on2(nr)=nr/2 

! executable statements 

10 PRINT *,”number: ” 

 READ *, i 

 IF(i==0) STOP 

 PRINT *,on2(i) 

 GOTO 10 

END PROGRAM 

The previous example modified by transforming the 
function definition into a statement. It can be seen 
that in this variant the function name is followed by 
the notional argument in the definition line. The 
statement function definition is not an executable 
statement, so it must appear in the specification area. 
 

PROGRAM factorial 

INTEGER f,i 

PRINT *,”i: ” 

READ *,i 

PRINT *,”factorial of ”,i,”:”,f(i) 

END  

! recursive function definition 

RECURSIVE FUNCTION f(i) RESULT(fa) 

INTEGER f,fa 

IF(i==1) THEN 

 fa=1 

ELSE 

 fa=i*f(i-1) 

ENDIF 

END 

 

A ”classic” example of a function defined as a self-
referring (recursive) procedure for calculating the 
factorial value of a number. 
 
 
 
Note that in this case, since RECURSIVE is specified, 
the specification RESULT(name_r) is also 
mandatory, name_r being the name of the function 
used for self-referencing (recursion) in the 
description. Although the function is named F, the 
name FA (the one specified for RESULT) is used for 
the calculation of the result of the function in its 
definition. 

PROGRAM array_function 

PRINT *,'a,b,c: ' 

READ *,a,b,c 

PRINT *,func(a,b,c) 

CONTAINS 

! internal procedure 

 FUNCTION func(x1,x2,x3) 

 DIMENSION func(3) 

 func(1)=x1 

 func(2)=x2 

 func(3)=x3 

 END FUNCTION 

END  

A quick example of a function defined as an internal 
procedure and as an array. Although a function 
normally returns a single result (a single scalar value), 
in the case of defining it as an internal procedure, you 
can also create an array function (which will return a 
result as an array). 
When the function is called, the arguments are 
passed in the specified order (X1 corresponds to the 
value in A, X2 corresponds to B, X3 corresponds to C) 
and the result is obtained by the name of the function 
(in this case, 3 different values). For each position in 
the function FUNC - array with 3 positions: FUNC(1), 
FUNC(2) AND FUNC(3) - the results are calculated. The 
first item in the FUNC array will take the value from 
X1, the second will take the value from X2 and the 
third will take the value from X3. Thus, when the 
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result of FUNC(A,B,C) is printed, 3 consecutive 
different values will be displayed on the monitor. 

Modules 

These are program units that usually contain specifications and definitions that can be made accessible to 
other program units. They may also contain explicit interfaces (via interface blocks) to an external 
procedure or DUMMY procedure. The syntax of a module definition is as follows: 

MODULE name It is obligatory to give a name, it is global and it is unique!! 
[specifications] Cannot contain: AUTOMATIC, ENTRY, FORMAT, INTENT, OPTIONAL 

and no defined or intrinsic functions. 
[CONTAINS 
Module procedures] 

Executable statements can only occur within module (internal) 
procedures. 

END [MODULE [name]] It is sufficient to specify only the END keyword (if the module has not been 
named, there is no name to specify). 

 
A module can only be used after compilation, by specifying its use in the target program unit with the: 
 USE name  (where name is the name by which the module was defined). 
 

Examples: Explanations: 
MODULE prim 

 INTEGER,PARAMETER :: A,B 

 REAL E22(5,5) 

END  

! using it in program units 

SUBROUTINE P21 

 USE prim 

  … 

END 

FUNCTION FU33(A,X) 

 USE prim 

  … 

END 

A module defined as PRIM that contains only a few data 
specifications. 
 
 
If it is written in the same source file as the program unit 
that will use it (e.g. subroutine P21 and function FU33), 
the module must be placed before the program unit, so 
that when the contents of the source file are compiled, by 
the time USE PRIM is reached, the module has already 
been compiled! 
  

MODULE cal_M 

TYPE element 

 PRIVATE 

 INTEGER C,D 

END TYPE 

  … 

INTERFACE 

 FUNCTION calculate(R) 

 REAL :: calculate 

 REAL,INTENT(IN) :: R(:) 

 END FUCTION 

END INTERFACE 

END MODULE cal_M 

A module called CAL_M, in which a derived type called 
ELEMENT (default PUBLIC, so visible from all program 
units) has been defined, with the C and D components 
declared PRIVATE (visible only from the module). 
 
 
After specifying the derived type, there follows an 
interface block for the CALCULATE function, where the 
argument R is a vector used only for input (passing values 
to the CALCULATE function), both the CALCULATE function 
(the value resulting from the expression specified 
elsewhere in the function definition) and R being of type 
REAL. 

 

An older and more complex example (adapted after https://www.star.le.ac.uk/~cgp/f90course/f90.html 
#tth_sEc6) with a module that could be used to simulate the operation of a console window (VT100 or X-
TERM window) controlled by ESC (ASCII) sequences, similar to ANSI.SYS in DOS, also containing module 
procedures: 

MODULE vt_mod 

 IMPLICIT NONE 

https://www.star.le.ac.uk/~cgp/f90course/f90.html#tth_sEc6
https://www.star.le.ac.uk/~cgp/f90course/f90.html#tth_sEc6
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! specifying the code for <ESC> as a constant value named ESC 

 CHARACTER(1),PARAMETER :: esc=ACHAR(27) 

! initializing variables for 80 columns and 24 rows on the screen 

 INTEGER,SAVE :: nr_c=80,nr_r=24 

  CONTAINS 

! clear the display and move the cursor to the top left 

 SUBROUTINE clear_disp 

  CALL write_str(esc//”[H”//esc//”[2J”) 

 END SUBROUTINE clear_disp 

! set the new width to 80 or 132 columns  

 SUBROUTINE set_width(col) 

  INTEGER, INTENT(IN) :: col 

  IF (col>80) THEN 

  ! switch to 132 columns 

  CALL write_str(esc//”[?3h”) 

  nr_c=132 

 ELSE 

  ! switch to 80 columns 

  CALL write_str(esc//”[?3l”) 

  nr_c=80 

  ENDIF 

 END SUBROUTINE set_width 

! get the actual width 

 SUBROUTINE get_width(col) 

  INTEGER,INTENT(OUT) :: col 

  col=nr_c 

 END SUBROUTINE get_width 

! for internal use only 

 SUBROUTINE write_str(string) 

  CHARACTER,INTENT(IN) :: string 

  WRITE(*,”(1X,A)”,ADVANCE=”NO”)string 

 END SUBROUTINE write_str 

END MODULE vt_mod 

 
This module can be used with the following specification variants (examples): 

USE vt_mod Use the entire contents of the module. 

USE vt_mod,ONLY:clear_disp Use only the module procedure CLEAR_DISP from 
procedures. 

USE vt_mod,columns=>get_width Use the whole module, but temporarily replacing the 
name of the module procedure GET_WIDTH with the 
new name COLUMNS. 

Block Data units 

These program units are intended to provide the possibility of initialising entities in common blocks (shared 
memory areas), but are considered obsolete because the COMMON specification has been removed since 
the Fortran 90 standard (but the G95 compiler supports it and in the absence of this specification will issue 
a warning message). Blocks contain entity specifications, possibly with initialization of some data (not in the 
case of POINTER and TARGET), but cannot contain executable statements. The syntax of a data block 
definition is as follows: 

BLOCK DATA [name] Giving a name is optional, mostly for the clarity of the source files. If 
more than one block is defined, only one can be unnamed. 

[specifications] May contain: COMMON (depending on the compiler), INTRINSIC, 
STATIC, USE (only for named constants), DATA (for data 
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initialisations), PARAMETER (for constants), TARGET and POINTER 
(but no initialisations), DIMENSION (for arrays), type (keywords for 

intrinsic data types), TYPE (with user-defined type names and 
definitions), RECORD and STRUCTURE (for records), EQUIVALENCE, 
IMPLICIT, SAVE. 

END [BLOCK DATA [name]] It is enough to use only the END keyword (if the data block has not been 
named then there is no name to specify). 

 

Example: Explanations: 
! main program  

  CHARACTER(6) Actor 

  COMMON /zone1/a,b,c,d,Actor 

  INTEGER :: s1=2 

  PRINT *,"s1:",s1 

  PRINT *, a,b,c,d 

  PRINT 2,Actor 

   … 

2 format("Actor: ",A) 

   … 

END 

! data block for initialisation 

BLOCK DATA  

 DIMENSION x(4) 

 COMMON /zone1/x,name 

 DATA x/3*1.,5/ 

 CHARACTER(6) :: name="Adrian" 

END 

The COMMON specification is used to designate by 
name and composition a common memory area, 
addressable from any program unit (by specifying 
the common block name). The syntax for specifying 
a common block is: 
     COMMON /name/components_list[[,]…] 
 
 
 
 
Definition of a data block by specifying and 

initialising some data. Due to the COMMON 
specification, the entities X (4-digit vector) and 
NAME, which are part of the common block called 
ZONE1, will occupy the same memory area as A, B, 
C, D and ACTOR  (containing the string Adrian), 
provided that the storage size of the corresponding 
entities is identical. 
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Exercises 

Transcribing some logical schemes (flowcharts) into Fortran 

1. The highest value from a, b and c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. The ascending ordering of values 
a) Pivot method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

”Put in 3 values:” 

a,b,c 

x:=a 

”the highest is: ”,x 

START 

STOP 

F T max<b 

x:=b 

F T x<c 

x:=c 

! 2nd variant, structured 

PRINT *,”Put in 3 values:” 

READ *,a,b,c 

x=a 

IF(x<b) x=b 

IF(x<c) x=c 

PRINT *,”the highest is: ”,x 

END 

! 1st variant, elementary translated 

PRINT *,”Put in 3 values:” 

 

READ *,a,b,c 

 

x=a 

 

 

IF(x<b) THEN 

  x=b 

ENDIF 

 

 

IF(x<c) THEN 

   x=c 

ENDIF 

 

PRINT *,”the highest is: ”,x 

! marking the end of the program unit 

END 

”Number of values:” 

n 

”The ”,n,”values:” 

i:=1 

START 

v(i) 

i:=i+1 

F T i≤n 

A 

! 1st variant using static allocation and jumps 

DIMENSION v(30) 

! the instructions from the logic scheme 

PRINT *,”Number of values:” 

 

READ *,n 

 

PRINT *,”The ”,n,”values:” 

 

i=1 

 

 

2  READ *,v(i) 

 

i=i+1 

 

 

IF(i<=n) GOTO 2 

 

! continued on the next page 
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!2nd variant, with dynamic allocation and loops 

ALLOCATABLE v(:) 

PRINT *,”Number of values:” 

READ *,n 

ALLOCATE(v(n)) 

PRINT *,”The ”,n,”values:” 

READ *,(v(i),i=1,n) 

DO ip=1,n-1 

 DO i=ip+1,n 

  IF(v(ip)>v(i)) THEN 

t=v(ip) 

v(ip)=v(i) 

v(i)=t 

  ENDIF 

 ENDDO 

ENDDO 

PRINT *,”ascending order:” 

PRINT *,(v(i),i=1,n) 

DEALLOCATE(v) 

END 

! continued from the previous page 

 

 

ip=1 

 

21  i=ip+1 

 

 

22  IF(v(ip)>v(i)) THEN 

 

  t=v(ip) 

 

  v(ip)=v(i) 

 

  v(i)=t 

ENDIF 

 

i=i+1 

 

IF(i<=n) GOTO 22 

 

 

ip=ip+1 

 

 

IF(ip<=n-1) GOTO 21 

 

PRINT *,”ascending order:” 

 

i=1 

 

23  PRINT *,v(i) 

 

i=i+1 

 

IF(i<=n) GOTO 23 

! marking the end of the program unit 

END 

ip:=1 

A 

F T v(ip)>v(i) 

t:=v(ip) 

v(ip):= v(i) 

v(i):=t 

i:=i+1 

F T i≤n 

i:=ip+1 

F T ip<n-1 

ip:=ip+1 

”ascending order: ” 

i:=1 

v(i) 

i:=i+1 

F T i≤n 

STOP 
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 - variant with a modul transcribed as procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

! 3rd variant, with internal procedure  

  DIMENSION v(30) 

! the statements from the logic scheme 

  PRINT *,”Number of values:” 

 

  READ *,n 

 

  PRINT *,”The ”,n,”values:” 

 

 

 

 

  READ *,(v(i),i=1,n) 

 

  i=i+1 

 

 

 

 

  DO ip=1,n-1 

 

 

    DO i=ip,n 

 

 

 IF(v(ip)>v(i)) THEN 

 

  CALL change(v(ip),v(i)) 

 

ENDIF 

 

 

 

    ENDDO 

 

 

 

 

  ENDDO 

 

  PRINT *,”ascending order: ” 

 

 

 

  PRINT *,(v(i),i=1,n) 

 

  CONTAINS 

! the internal procedure -> 

SUBROUTINE change(a,b) 

t=a 

a=b 

b=t 

RETURN 

END SUBROUTINE 

 

 END 

a ↔ b 

t:=a 

a:= b 

b:=a 

RETURN 

”Number of values:” 

n 

”The ”,n,”values:” 

i:=1 

START 

v(i) 

i:=i+1 

F T i≤n 

ip:=1 

F T v(ip)>v(i) 

a ↔ b 
 

i:=i+1 

F T i≤n 

i:=ip+1 

F T ip<n-1 

ip:=ip+1 

”ascending order: ” 

i:=1 

v(i) 

i:=i+1 

F T i≤n 

STOP 
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a) Marking method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

! 1st variant using static allocation and jumps 

DIMENSION v(30) 

! the statements from the logic scheme 

PRINT *,”Number of values:” 

 

READ *,n 

 

PRINT *,”The ”,n,”values:” 

 

i=1 

 

 

2  READ *,v(i) 

 

i=i+1 

 

IF(i<=n) GOTO 2 

 

 

23  m=0 

 

 

i=0 

 

 

22  IF(v(ip)>v(i)) THEN 

 

  t=v(ip) 

 

  v(ip)=v(i) 

 

  v(i)=t 

 

  m=1 

ENDIF 

 

i=i+1 

 

IF(i<=n-1) GOTO 22 

 

 

IF(m/=n) GOTO 23 

 

 

PRINT *,”ascending order:” 

 

i=1 

 

23  PRINT *,v(i) 

 

i=i+1 

 

IF(i<=n) GOTO 23 

 

 

! marking the end of the program unit 

END 

”ascending order: “ 

i:=1 

v(i) 

i:=i+1 

F T i≤n 

”Number of values:” 

n 

”The ”,n,”values:” 

i:=1 

START 

v(i) 

i:=i+1 

F T i≤n 

m:=0 

i:=i+1 

F T i≤n-1 

i:= 1 

F T m≠0 

F T v(i)>v(i+1) 

t:=v(i) 

v(i):= v(i+1) 

v(i+1):=t 

m:= 1 

STOP 
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Source file examples 

1. Multiplying the terms of a matrix by a scalar value 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variant reading the matrix from the A.TXT file: 
 
 
 
 
 
 
 
 
 
 
 
 
 

The structure of the A.TXT file: number_of_lines, number_of_columns 
  terms_of_the_matrix 

! 2nd variant using dynamic allocation and loops 

ALLOCATABLE v(:) 

PRINT *,”Number of values:” 

READ *,n 

ALLOCATE(v(n)) 

PRINT *,”The ”,n,”values:” 

READ *,(v(i),i=1,n) 

23  m=0 

DO i=1,n-1 

  IF(v(i)>v(i+1)) THEN 

t=v(i) 

v(i)=v(i+1) 

v(i+1)=t 

  ENDIF 

ENDDO 

IF(m/=0) GOTO 23 

PRINT *,”ascending order:” 

PRINT *,(v(i),i=1,n) 

DEALLOCATE(v) 

END 

REAL  matrix(10,10) 

PRINT 1,”Number of lines and columns of the matrix (max.10x10):” 

READ *,nl,nc 

PRINT 1,”Put in the terms of the matrix:” 

READ *,((matrix(i,j),j=1,nc),i=1,nl) 

PRINT 1,”The scalar value:” 

READ *,s 

matrix=matrix*s 

DO i=1,nl 

  PRINT *,(matrix(i,j),” ”,j=1,nc) 

ENDDO 

1 FORMAT(A,$) 

END 

REAL  matrix(10,10) 

 OPEN(1,FILE=”A.TXT”,STATUS=”OLD”,ERR=9) 

READ(1,*)nl,nc 

READ(1,*)((matrix(i,j),j=1,nc),i=1,nl) 

PRINT ”(A,$)”,”The scalar value:” 

READ *,s 

matrix=matrix*s 

DO i=1,nl 

  PRINT *,(matrix(i,j),” ”,j=1,nc) 

ENDDO 

9 PRINT *,”file A.TXT not found!” 

END 
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For example, for the  matrix the A.TXT file can be created with the following content:  
 
3,3 

1,1,1,2,2,2,3,3,3 

 

or: 
 
3,3 

1,1,1 

2,2,2 

3,3,3 

 
 

2. The sum of the terms in a chosen column of a matrix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variant with dynamic memory allocation and reading the matrix from the A.TXT file: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: the structure of the A.TXT file is like in the previous example. 
 

REAL  matrix(10,10) 

CHARACTER r 

 PRINT *,”Number of lines and columns of the matrix (max.10x10):” 

READ *,nl,nc 

PRINT *,”Put in the terms of the matrix:” 

READ *,((matrix(i,j),j=1,nc),i=1,nl) 

1 PRINT *,”Column number:” 

READ *,ncol 

sum=0. 

DO i=1,nl 

  sum=sum+matrix(i,ncol) 

ENDDO 

PRINT *,”The sum is: ”,sum 

PRINT *,”Choose another column? (Y/N):” 

READ *,r 

IF(r==”Y”.OR.r==”y”) GOTO 1 

END 

|
   
   
   

| 

REAL,ALLOCATABLE :: matrix(:,:) 

CHARACTER r 

 OPEN(1,FILE=”A.TXT”,STATUS=”OLD”,ERR=9) 

READ(1,*)nl,nc 

ALLOCATE(matrix(nl,nc)) 

READ(1,*)((matrix(i,j),j=1,nc),i=1,nl) 

1 PRINT *,”Column number:” 

READ *,ncol 

sum=0. 

DO i=1,nl 

  sum=sum+matrix(i,ncol) 

ENDDO 

PRINT *,”The sum is: ”,sum 

PRINT *,”Choose another column? (Y/N):” 

READ *,r 

IF(r==”Y”.OR.r==”y”) GOTO 1 

DEALLOCATE(matrix) 

9 PRINT *,”file A.TXT not found!” 

END 
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3. Transpose of a matrix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Multiplying two square matrices, using data files 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REAL,ALLOCATABLE :: matrix(:,:),mtransposed(:,:) 

CHARACTER r 

1 PRINT *,”Number of lines:” 

READ *,nl 

PRINT *,”Number of columns:” 

READ *,nc 

ALLOCATE(matrix(nl,nc),mtransposed(nc,nl)) 

DO i=1,nl 

PRINT *,”Terms on line ”,i,”:” 

READ *,(matrix(i,j),j=1,nc) 

ENDDO 

DO i=1,nl 

  DO j=1,nc 

mtransposed(j,i)=matrix(i,j) 

  ENDDO 

ENDDO 

PRINT *,”transposed matrix:” 

DO i=1,nc 

  PRINT *,(mtransposed(i,j),” ”,j=1,nl) 

ENDDO 

DEALLOCATE(matrix,mtransposed)  

PRINT *,”restart? (Y/N):” 

READ *,r 

IF(r==”Y”.OR.r==”y”) GOTO 1 

END 

REAL,ALLOCATABLE :: mat1(:,:),mat2(:,:),matres(:,:) 

CHARACTER r,filename_in(12),filename_out(12) 

1 PRINT *,”Data input file:” 

READ *,filename_in 

OPEN(1,FILE=filename_in,STATUS=’OLD’,ERR=9) 

READ(1,*)n 

ALLOCATE(mat1(n,n),mat2(n,n),matres(n,n)) 

READ(1,*)((mat1(i,j),j=1,n),i=1,n) 

READ(1,*)((mat2(i,j),j=1,n),i=1,n) 

matres=0. 

DO i=1,n 

  DO j=1,n 

    DO k=1,n 

matres(i,j)=matres(i,j)+mat1(i,k)*mat2(k,j) 

    ENDDO 

  ENDDO 

ENDDO 

PRINT *,”Output file:” 

READ *,filename_out 

OPEN(2,FILE=filename_out,STATUS=’UNKNOWN’,POSITION=’APPEND’) 

DO i=1,n 

  WRITE(2,*)(matres(i,j),” ”,j=1,n) 

ENDDO 

CLOSE(2) 

DEALLOCATE(mat1,mat2,matres) 

STOP 

9 PRINT *,”Non-existent file name! Retry? (Y/N):” 

READ *,r ;IF(r==”Y”.OR.r==”y”) GOTO 1 

END 
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The structure of the data file: n  (number of lines= number of columns) 
  terms_of_mat1  (nxn pieces) 

  terms_of _mat1  (nxn pieces) 
 

 

For example, for the  and matrices the data  file can be created with the 
following content: 
 

3 or: 
1,1,1,2,2,2,3,3,3 

1,0,0,0,2,0,0,0,3 

 
 
 
 
 

5. Solving a quadratic equation of the form:               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

|
   
   
   

| |
   
   
   

| 

3 

1,1,1 

2,2,2 

3,3,3 

1,0,0 

0,2,0 

0,0,3 

CHARACTER r 

INTEGER a,b,c 

PRINT *,”solving the equation a.x2+b.x+c=0” 

1 PRINT *,”put in the coefficients a, b, c: ” 

READ *,a,b,c 

SELECT CASE(a) 

 CASE(0) 

  IF(b==0) THEN 

   IF(c==0) THEN  

    PRINT *,”x can have any value” 

   ELSE  

    PRINT *,”mistake, c cannot be different from 0” 

   ENDIF 

  ELSE 

   IF(c==0) THEN 

    PRINT *,”non-quadratic equation, the solution is x=”,0. 

   ELSE 

    PRINT *,”non-quadratic equation, the solution is x=”,-c/b 

   ENDIF 

  ENDIF 

 CASE DEFAULT 

  delta=b**2-4*a*c 

  IF(delta<0) THEN 

   PRINT *,”complex roots” 

   PRINT *,”x1=”,-b/2/a,”+i(”,SQRT(-delta)/2/a,”)” 

   PRINT *,”x2=”,-b/2/a,”-i(”,SQRT(-delta)/2/a,”)” 

  ELSEIF(delta==0.) THEN 

   PRINT *,”identical roots, x1=x2=”,-b/2/a 

  ELSE 

   PRINT *,”x1=”,(-b+SQRT(delta))/2/a 

   PRINT *,”x2=”,(-b-SQRT(delta))/2/a 

  ENDIF 

END SELECT 

PRINT *,”Restart? (Y/N):” 

READ *,r  

IF(r==”Y”.OR.r==”y”) GOTO 1 

END 
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6. Solving a linear system of 2 equations with 2 unknowns (x and y):  {
          
         

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Simulating a lotto draw with pseudorandom numbers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHARACTER r 

1 PRINT 2,’Coefficients a, b and c from equation ”ax+by=c”: ’ 

READ *,a,b,c 

PRINT 2,’Coefficients d, e and f from equation ”dx+ey=f”: ’ 

READ *,d,e,f 

delta=a*e-b*d 

IF(delta==0) THEN 

 IF(b*f==c*e) THEN 

   PRINT *,”indeterminate compatible system” 

 ELSE 

   PRINT *,”incompatible system” 

 ENDIF 

ELSE 

 PRINT *,”x=”,(c*e-b*f)/delta,”y=”,(-c*d+a*f)/delta 

ENDIF 

2 FORMAT(A,\) 

PRINT 2,”Retry? (Y/N):” 

READ *,r  

IF(r==”Y”.OR.r==”y”) GOTO 1 

END 

CHARACTER r 

ALLOCATABLE nr(:) 

1 PRINT 2,” How many numbers are drawn: ” 
READ *,n 

PRINT 2,” from how many: ” 
READ *,nmax 

ALLOCATE(nr(nmax)) 

DO i=1,nmax 

 nr(i)=i 

ENDDO 

man=RAND(TIME()) 

DO i=1,n 

 id=INT(RAND(0)*(nmax-i+1))+i 

 man=nr(i) 

  nr(i)=nr(id) 

  nr(id)=man 

ENDDO 

DO i=1,n 

 DO j=i,n 

  IF(nr(i)>nr(j)) THEN 

   man=nr(i) 

   nr(i)=nr(j) 

   nr(j)=man 

  ENDIF 

 ENDDO 

ENDDO 

PRINT *,(nr(i),i=1,n) 

DEALLOCATE(nr) 

2 FORMAT(A,$) 

PRINT 2,”Retry? (Y/N):” 

READ *,r  

IF(r==”Y”.OR.r==”y”) GOTO 1 

END 
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8. Simulating the simultaneous throwing of a pair of dice 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. Reading strings from the keyboard and displaying them using pointers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

! defining a node type entity (with self-reference) 

TYPE node 

  CHARACTER(60) row 

  TYPE(node),POINTER :: next 

END TYPE 

! defining the pointers that will be used 

TYPE(node),POINTER :: front,back,position 

CHARACTER(60)buffer 

CHARACTER r 

1 NULLIFY(front,back) 

PRINT *,”press <Enter> to finish” 

! recording typed strings 

DO 

  WRITE(*,”(A,$)”)”type anything: ” 

  READ(*,”(A)”)buffer  

! exiting the cycle when only the <Enter> key is pressed 

  IF(buffer==””) EXIT 

  IF(.NOT.ASSOCIATED(front)) THEN 

   ALLOCATE(front) 

   back=>front 

  ELSE 

   ALLOCATE(back%next) 

   back=>back%next 

  ENDIF 

  back%row=buffer 

  NULLIFY(back%next) 

ENDDO 

! displaying the typed strings 

position=>front 

DO WHILE(ASSOCIATED(position)) 

  WRITE(*,*)position%row 

  position=>position%next 

ENDDO 

PRINT *,”Restart? (Y/N):” 

READ *,r  

IF(r==”Y”.OR.r==”y”) GOTO 1 

STOP 

END 

CHARACTER r 

DIMENSION n(2) 

! initializing the pseudorandom number generator 

man=RAND(TIME()) 

1 PRINT 2,” the dice rolled:” 
DO i=1,2 

 n(i)=INT(6*RAND(0))+1 

 WRITE(*,”(1X,I1)”,ADVANCE=”NO”)n(i) 

ENDDO 

! advance to a new row 

PRINT *  

2 FORMAT(A,$) 

PRINT 2,”Retry? (Y/N):” 

READ *,r  

IF(r==”Y”.OR.r==”y”) GOTO 1 

END 
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10. Calculating the area and perimeter of a rectangle, right triangle or semicircle after selecting an 
option (using Hollerith constants, subroutines, entry points, and label returns) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHARACTER op 

1 PRINT *,40HArea and perimeter calculation 

PRINT *,40Hchoose one of the options: 

PRINT *,40H D - for rectangle 

PRINT *,40H T - for right triangle 

PRINT *,40H S - for semicircle 

PRINT *,40H X – to exit the program 

2 PRINT 3,9H option: 

3 FORMAT(A,\) 

READ *,op 

SELECT CASE(op) 

CASE(”D”,”d”) ; CALL d(*2) 

CASE(”T”,”t”) ; CALL t(*2) 

CASE(”S”,”s”) ; CALL s(*2) 

CASE(”X”,”x”)  

 STOP  

CASE DEFAULT  

 PRINT *,”invalid option” 

 GOTO 2 

END SELECT 

GOTO 2 

END 

 

SUBROUTINE d(*) 

PARAMETER (pi= 3.14159) 
3 FORMAT(A,\) 

PRINT 3,”the lengths of the two sides: ” 

READ *,a,b 

CALL test(a,b,*4) 

PRINT *,”Area=”,a*b,”Perimeter=”,(a+b)*2 

RETURN 

ENTRY t 

 PRINT 3,”the lengths of the two perpendicular sides: ” 

 READ *,a,b  

 CALL test(a,b,*4) 

 PRINT *,”Area=”,a*b/2,”Perimeter=”,a+b+SQRT(a**2+b**2) 

 RETURN 

ENTRY s 

 PRINT 3,”base length (diameter): ” 

 READ *,a  

 CALL test(a,1.,*4) 

 PRINT *,”Area=”,pi*(a/4)**2,”Perimeter=”,pi*a/2 

 RETURN 

4 RETURN 1 

CONTAINS 

   SUBROUTINE test(a,b,*) 

    IF(a==0.or.b==0) THEN 

PRINT *,”Cannot calculate with null value” 

 RETURN 1 

    ELSEIF(a<0.or.b<0) THEN 

PRINT *,”negative value?!” 

    ENDIF 

    RETURN 

   END SUBROUTINE test 

END 
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Variant using 2 functions with entry points instead of the 3 subroutines: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHARACTER op 

1 PRINT *,40HArea and perimeter calculation 

PRINT *,40Hchoose one of the options: 

PRINT *,40H D - for rectangle 

PRINT *,40H T - for right triangle 

PRINT *,40H S - for semicircle 

PRINT *,40H X – to exit the program 

2 PRINT 3,9H option: 

3 FORMAT(A,\) 

READ *,op 

SELECT CASE(op) 

CASE(”D”,”d”) ; PRINT 3,”the lengths of the two sides: ” 

 READ *,a,b ; CALL test(a,b,*2) 

 PRINT *,”Area=”,da(a,b),”Perimeter=”,dp(a,b) 

CASE(”T”,”t”)  

 PRINT 3,”the lengths of the two perpendicular sides: ” 

 READ *,a,b ; CALL test(a,b,*2) 

 PRINT *,”Area=”,ta(a,b),”Perimeter =”,tp(a,b) 

CASE(”S”,”s”) ; PRINT 3,”base length (diameter): ” 

 READ *,a ; CALL test(a,1.,*2) 

 PRINT *,”Area=”,sa(a),”Perimeter =”,sp(a) 

CASE(”X”,”x”)  

 STOP  

CASE DEFAULT  

 PRINT *,”invalid option” 

 GOTO 2 

END SELECT 

GOTO 2 

CONTAINS 

   SUBROUTINE test(a,b,*) 

    IF(a==0.or.b==0) THEN 

PRINT *,”Cannot calculate with null value” 

 RETURN 1 

    ELSEIF(a<0.or.b<0) THEN 

PRINT *,”negative value?!” 

    ENDIF 

    RETURN 

   END SUBROUTINE test 

END 

 

FUNCTION da(a,b) 

da=a*b ; RETURN 

ENTRY dp(a,b) 

dp=(a+b)*2 ; RETURN 

ENTRY ta(a,b) 

ta=a*b/2 ; RETURN 

ENTRY tp(a,b) 

tp=a+b+SQRT(a**2+b**2) 

END  

 

FUNCTION sa(a) 

PARAMETER (pi=3.14159) 

sa=pi*(a/4)**2 ; RETURN 

ENTRY sp(a) 

sp=pi*a/2 

END 
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11. Determining the reactions of a simply supported beam subjected to a point load, and calculation of 
the forces in a cross-section on the beam axis: 

 
Sketches with notations: 

 
 
 
 

Formulas used:          ( )  
(   )

 
 ;         ( ) ;    

 

 
 ;      ;     

 

 
 

          ( )  
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P 

HA 

VA 

L 
x L-x 

a 
VB M 

 HA 

VA 

L 
x L-x 

VB 

INCLUDE ”f.txt” 

1 PRINT *,”Calculation of the reactions at the ends of a simply”, & 

 ”supported beam, loaded with a force or moment” 
PRINT * 

3 PRINT *,”for a force load, press P” 

PRINT *,”for a moment load, press M” 

PRINT 2,”load type (P/M): ” 

READ *,t 

PRINT 2,”the length ””L”” of the beam [m]: ” 

READ *,l 

5 PRINT 2,”distance ””x”” [m]: ” 

READ *,x 

IF(x<0.OR.x>l) THEN 

 PRINT *,”the load is not on the beam!” 

 GOTO 5 

ENDIF 

SELECT CASE(t) 

 CASE(”P”,”p”) 

  PRINT 2,”force intensity ””P”” [kN]: ” 

  READ *,p 

  PRINT 2,”angle ””a”” to the beam axis [degrees]: ” 

  READ *,a 

  va=p*SIN(a*pi/180)*(l-x)/l 

  ha=p*COS(a*pi/180) 

  vb=p*SIN(a*pi/180)*x/l 

  ra=SQRT(va**2+ha**2) 

 CASE(”M”,”m”) 

  PRINT 2,”moment intensity ””M”” [kN.m]: ” 

  READ *,m 

  va=m/l ; ha=0. ; vb=-m/l 

 CASE DEFAULT 

  PRINT *,” invalid option! ” 
  GOTO 3 

END SELECT 

PRINT 4,”VA= ”,va,”kN; HA= ”,ha,”kN; VB= ”,vb,”kN” 

IF(.NOT.(a==0.OR.a==90)) PRINT 4,”RA= ”,ra,”kN at”, & 

 ATAN(va/ha)*180/pi,”degrees” 

CALL FINT(l,x,t,va,ha,p,m,vb,a) 

PRINT 2,” Restart? (Y/N): ” 

READ *,r 

IF(r==”Y”.OR.r==”y”) GOTO 1 

END 
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The FINT subroutine for the calculation of the internal forces in a chosen cross-section: 
 
 

Illustration:  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The contents of the F.TXT file included in the program (this file must be in the same folder as the 
source files): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBROUTINE FINT(l,x,t,va,ha,p,m,vb,a) 

INCLUDE ”f.txt” 

PRINT 2,’”xi” for the cross-section:’ 

READ *,xi 

SELECT CASE(t) 

 CASE(”P”,”p”) 

  IF(xi<x) THEN 

   fn=ha 

   fv=va 

   fm=va*xi 

  ELSE 

   fn=0. 

   fv=va-p*SIN(a*pi/180) 

   fm=va*xi-p*SIN(a*pi/180)*(xi-x) 

  ENDIF 

 CASE(”M”,”m”) 

  IF(xi<x) THEN 

   fn=ha 

   fv=va 

   fm=va*xi 

  ELSE 

   fn=0. 

   fv=va 

   fm=va*xi-m 

  ENDIF 

END SELECT 

PRINT 4,”Ni= ”,fn,”kN; Vi= ”,fv,”kN; Mi= ”,fm,”kN.m” 

RETURN 

END 

i 

xi L-xi 

Mi Ni 

Vi xi 

CHARACTER r,t 

REAL l,m 

DATA pi/3.14159/ 

2 FORMAT(1X,A,$) 

4 FORMAT(1X,3(A,F8.2),A) 
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Resources 

The Home of Fortran Standards (JTC1/SC22/WG5): https://wg5-fortran.org/  

The Fortran programming language: https://fortran-lang.org/  

Fortran Wiki: https://fortranwiki.org/ 

Fortranplus | Fortran Information. https://www.fortranplus.co.uk/fortran-information/ 

The G95 Project / Running G95 (options, error codes): https://g95.sourceforge.net/docs.html  

Some online available books and tutorials 

Metcalf M., Reid J. K.: Fortran 90/95 Explained, Oxford University Press, 1996. https://archive.org/details/ 
fortran9095expla0000metc   

Sandu A.: Lecture Notes. Introduction to Fortran 95 and Numerical Computing. A Jump-Start for Scientists 
and Engineers. Michigan Technological University, 2001. https://www-eio.upc.edu/lceio/manuals/Fortran 
95-manual.pdf  

van Mourik T.: Fortran 90/95 Programming Manual. University College London, 2005. https://www-
eio.upc.edu/lceio/manuals/Fortran95-manual.pdf  

Nicholson J. A.: Introduction to Programming using FORTRAN 95, 2011. https://www.fortrantutorial.com/ 
documents/IntroductionToFTN95.pdf 

Learn – Fortran Programming Language. https://fortran-lang.org/en/learn/ 

Fortran Tutorial – Free Guide to Programming Fortran 90/95. https://www.fortrantutorial.com/ 

TutorialsPoint - Fortran Tutorial: https://www.tutorialspoint.com/fortran/index.htm 

The Irish Centre for High-End Computing (ICHEC): Fortran Tutorial. https://www.ichec.ie/academic/ 
national-hpc/documentation/fortran-tutorial 
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