F. Zsongor GOBESZ C. Mihai MOCAN

Programming in Fortran G95
for beginners

(Theory for lab works)

¥

U.T.PRESS
Cluj-Napoca, 2025
ISBN 978-606-737-804-7

F. Zsongor GOBESZ C. Mihai MOCAN

Programming in Fortran G95
for beginners

(Theory for lab works)

N

¥

U.T.PRESS
Cluj-Napoca, 2025
ISBN 978-606-737-804-7

Editura U.T.PRESS

Str. Observatorului nr. 34
400775 Cluj-Napoca

Tel.: 0264-401.999

e-mail: utpress@biblio.utcluj.ro
www.utcluj.ro/editura

Recenzia: Conf.dr.ing. Ciprian Pavel Oprisa
Conf.dr.ing. Adrian Colesa

Pregatire format electronic on-line: Gabriela Groza

Copyright © 2025 Editura U.T.PRESS
Reproducerea integrala sau partiala a textului sau ilustratiilor din aceasta carte
este posibila numai cu acordul prealabil scris al editurii U.T.PRESS.

ISBN 978-606-737-804-7

CONTENT

Foreword
Structured flowcharts

Briefly about Fortran
Creating programs

Source file structure
Fixed form
Free form
Tabular form

Entity types

Expressions
Arithmetic expressions
String (character) expressions
Logical expressions
Specification and initialisation expressions
Constants used in expressions
Intrinsic functions (for expressions)

Input and output (I/0) statements
Format specification and descriptors

Arrays
Static allocated memory
String sections
Dynamic allocated memory
Allocatable arrays
Pointer/Target arrays
Automatically allocated arrays

Flow control statements
Conditional statements
Jump statements
Loop statements
Statements to stop execution

Using logical units (peripherals and files)

Program units
Main program
Procedures
Subroutines
User defined functions
Modules
Block Data units

Exercises
Transcribing logic flowcharts into Fortran
Source file examples

Resources
Some online available books and tutorials

O 000NN UV B =

PR R R PR R
W WWNNR R

[
[0 I ~3

N NDNNNNN
U, D WER R

W INNNN
= O 00 N N

w
-

A Db PP WWWW
U bR ONOO

u b~ B
P NN

o o
Pt

Foreword

Creating a program on a computer makes sense only in the situation where the amount of calculations
would exceed manual possibilities. Such situations can arise when many similar problems need to be
solved, complex and laborious calculations need to be performed, or large amounts of data need to be
processed. Creating a computer program requires some specific knowledge. The efficiency and
performance of the program will depend not only on the platform on which it will run, but also on the
knowledge and experience of those who collaborate to create it. In the following, we will refer to the
creation of simple applications, using a high-level programming language (close to natural language),
namely Fortran. The programming stages are generally summarised by 3 phases: conception (the logical
level of problem solving with the development or choice of the appropriate algorithm), coding
(transcription of the algorithm into a machine-accessible programming language, to create the program),
testing and implementation (verifying correctness with test data and fine-tuning the program). These
stages can be covered by the following steps:

- recognise and define the problem (to know the initial data);

- selection and description of the proposed method (how to obtain the results);

- translate the description of the method into a programming language (create the source file);

- making the program by compiling (translating the source file into machine code, generating the
object image) and link-editing (filling the object image with parts from the language library,
generating the executable file);

- running and testing the created software.

The contents of this handbook have been written to guide first year Civil Engineering students in the
subject of "Computer Programming and Programming Languages", but it can also be useful for beginners
who want to get started with the Fortran language. The first part illustrates some concepts regarding the
use of structured flowcharts to describe certain methods, followed by a brief overview of the Fortran
language and mention of some freely available development environments. Information on writing source
files is followed by a more detailed presentation of the basic aspects of the Fortran 95 language syntax
(using the G95 compiler) for writing simple programs. Finally, there are some illustrative exercises (with
transcriptions of flowcharts and source files).

Structured flowcharts

A flowchart (logic scheme) is a graphical tool that can be used to represent the steps of an algorithm in the
form of blocks (symbols) connected by lines. In order to use this tool in a structured way, some principles
should be known, such as:

- Flowcharts are drawn and read from top to bottom (exceptions are marked with arrows).

- Blocks can have only one entry point (except for the start block, which has only one exit), and the
number of exit points depends on the type of block: modules and those representing input / output
operations or attribution have only one exit, conditional ones depending on the type of expression
(logical ones have 2, for true or false; arithmetic ones have 3, for negative, zero or positive), and
the ending block has no exit point.

- In the construction of structured flowchart, sequentially chained module-like parts (with a single
entry point and a single exit point) are used as far as possible.

A module can contain anything, provided it has only one entry and one exit. The contents of a module must
be detailed separately, where appropriate. The symbols used in the composition of flowcharts are shown in
the following table:

Use Symbol Variants (examples)

Start block (marked START) or end block
(marked STOP) C} START STOP

Input block (marked with the elements to

be read) a,b
Output block (marked with elements to
be written) "a:”,a

Alternative to input/output block (note
whether input or output)

Attribution block (contains a single

expression, whose value is attributed to a:=2x+1

the variable on the left) T

Decision blocks (output is branched

according to the type of expression <0 >0

evaluated, conditions are also marked)

Module or procedure block (marked with
module name)

Inner connector (for interrupt or
continuation within the same page,
marked correspondingly)

External connector (for interrupt or
continuation between different pages,
with matching mark)

The principles of structured programming were published by Edsger W. Dijkstra™, exemplifying the

following 3 levels in order of complexity:

1. Sequential chaining (the exit from one module will be the entry to the next module):

2. Decision-making structures (only one branch is used when traversing):

2.1. Simple logical decision with void branch, the false case branch being empty.

"if ? do MT”

YE.W. Dijkstra: “Notes on Structured Programming” (Report) 70-WSK-03, Technical University of Eindhoven, The
Netherlands, 1970. via E.W. Dijkstra Archive. Center for American History, University of Texas at Austin, USA.
https://www.cs.utexas.edu/~EWD/ewd02xx/EWD249.PDF

2

https://www.cs.utexas.edu/~EWD/ewd02xx/EWD249.PDF

2.2. Common logical decision.

”if ? then MT else MF”

"case j of (M1; M2; ...; Mn)”

3. Repeating structures (loops):

3.1. Preconditioned loop.

:' """"""""""" S r""""""‘:
|) |
| ,TA F o "while ? do M”
| M |
L — E
3.2. Postconditioned loop.
....................... [—
|
M

“repeat M until ?”
§ T/ 2 F o

In most programming languages, there are statements (instructions) corresponding to these basic
structures. To make it easier to understand (verify) the content of source files and to reduce the execution
time of statements, it is recommended to use structures starting from the simplest to the most complicated
ones. Applying the principle of structuring, the algorithm of a program can be described by a generic

flowchart consisting of 3 modules:
START

Pre-processing
(data input and validation)
I
Processing
(data processing)
[
Post-processing
(providing results)

This makes it easier to split up and test applications across development teams, and in case of updates or
changes to source files, the separate approach to modules makes tasks easier. Here is an example for
displaying the maximum value from the contents of two variables:

/ "Put in 2 values:” \

| Data input part

MAX:=V1

T ~MAX<V F Data processing part

/’the greatest is:",MAX\ Result output part

As can be seen, if this algorithm is to be modified to compare multiple values, the data input part will be
slightly modified, the processing part will be completed by replicating the simple logical decision structure
with a void branch, and the result output part will remain unchanged. Here is a variant for 3 values (the

modifications are marked in bold):
START

/ "Put in 3 values:”
I Data input part

Data processing part

T /MAX<V3\ F

/’the greatest is:”,MAX\ Result output part

Briefly about Fortran

The first version of this programming language was created by a team from IBM under the leadership of
John W. Backus, being released in 1957 under the name "IBM Mathematical Formula Translating System"
(in short: FORTRAN, from the combination of FORmula TRANslation words), this being the first high-level
programming language (close to natural language). In 1958 IBM published a revised version, called
FORTRAN II, which provided support for procedural programming by introducing specifications for
subroutines and functions. Because of its popularity, IBM decided to remove the features that limited the
use of the language on IBM systems, and in 1964 released a variant called FORTRAN IV that could run on
any computer. The FORTRAN 66 version appeared in 1966, as a result of the standardization carried out by
the American Standards Association (ASA, the precursor of ANSI), being the first programming language
defined by a standard. The “ANSI FORTRAN” committee (known as "X3J3") began developing a new version
in 1969, and the result was FORTRAN 77, the most widely used version of the language.

The next version was expected to be released in the 1980s (Fortran 8X), but it was released only in 1991,
introducing the free form and became known as Fortran 90, opening a path for HPF (High Performance
Fortran). In 1997, the standard for Fortran 95, the first object-oriented version, was published.

Compared to C++ (an object-oriented language that supports polymorphism and inheritance), Fortran has
introduced some similar features (through modules and derived types), but has no automatic inheritance.
On the other hand, Fortran is easier to learn and use for scientific computing than C++, having native
support for complex values, multidimensional arrays, etc., which C++ lacks. Fortran 2003 represents a
significant turn in object-oriented features, also ensuring interoperability with C/C++, and in 2010 Fortran
2008 was released with new provisions (sub-modules, co-arrays, the contiguous attribute, etc.) and having
implemented parallel processing with distributed memory. After Fortran 2018, which was a revision of the
previous version with additional support for parallel processing, Fortran 2023 is the latest standardized
version with even more features.

Here is a quoted fragment from the FAQ section of https://fortran-lang.org/, for those interested in the
usefulness of this language: "What is Fortran used for? Fortran is mostly used in domains that adopted
computation early—science and engineering. These include numerical weather and ocean prediction,
computational fluid dynamics, applied math, statistics, and finance. Fortran is the dominant language of
High Performance Computing and is used to benchmark the fastest supercomputers in the world.”

Creating programs

In order to create a Fortran program, you need a text editor (preferably ASCIl) and a suitable package
containing a compiler plus link editor (builder). The G95 compiler includes some features of Fortran 2003 in
addition to Fortran 95 and can be installed on Windows with MinGW (by running the g95-MinGW.exe file),
although its development was discontinued in 2013. After the installation, you can create a source file in
the C:\MinGW folder (such as test.f95), containing the following two lines:

print *,”0K”

end

Make sure to save the file with the ”.f95” extension. To test the functionality of G95, open a console
window and type:

cd C:\MinGW
g95 -c test.f95

If nothing is displayed, then the object image (test.o file) was created without errors after compiling, from
which the executable file can be created by the following command:

g95 test.f95 -0 test.exe

To run the created program (the test.exe file) type test and the OK letters should appear on the screen.

If you want to learn more about the options of the G95 compiler and the facilities it provides, take a look at

the G95Manual.pdf file in the C:\\MinGW\doc folder.

For other operating systems, you can use GNU Fortran (GFortran 95), which is included in the GCC package.
5

https://fortran-lang.org/

However, it is more convenient to use an integrated development environment (IDE), and for Windows, our
choice is the Force package with the G95 compiler included. To get it, go to the project's web site® and in
the "Downloads" section select the version marked in the figure below.

Filename Size Description
Force209GFortranSetup.exe 10.6 MB Force 2.0.9 plus GNU Fortran (GFortran)
IFDrceEDQGQESetup.exe 3.55 MB Force 2.0.9 plus G895 Fortran (G25) I
Force2089G7 7 Setup.exe 2.03 MB Force 2.0.9 plus GNU Fortran 77 (G77)
Force3beta3Setup.exe 2.18 MB Force 3.0 b3 plus GNU Fortran 77 (G77)

After installation, the G95Manual.pdf file will be located in the C:\Program Files (x86)\Force 2.0\doc folder.
Before the first run on Windows 10 and 11, the properties of the C:\Program Files (x86)\Force 2.0 folder
must be changed to give full control to the administrator (and possibly the current user), otherwise the
initial settings will not be saved. To be able to use the free form of the source file in Force, after installation
you will need to add the "-ffree-form” option (as illustrated) in the Compilation Options and
experiment with the convenient running mode (through batch command file, run directly the executable,
or in a console window).

Force 2.0 - [Sourcel.f] — O =

& File Edit Search View |Run Options Tools Window Help -0 X
Ur-H]H [+ Compile Ctrl+F9

X 1 I

Cptions v

& Sourcel f Analyze F4 | Generall Editor| Fun | Print I Dthers|

Run F9 [Automatically show Output window
Debug 28 [Automatically shov Messages window
E] Finimize an run

[Mirimize on debug

Compilation Options... | [lanare Analyzer emars

Process Priarity

= - s

V

L] Mormal

Idle Mormnal TimeCritical
Additional Pararneters
< Cormpiler [G77.E=E [Optionz] Source -o Dest [Libraries] | >

1: 1 Inzert Options: [—g firee-fom | | v]

Libraries: | -

&nalyzer (ftinchek]: | -|
Diebugger [GOB): | -|

— - Fiun with - i :
Show the campilation options () PIF file (+) BAT file () EE (direct) () Consale

| Ok || Ccancel || Apply |

Of course it is possible to choose other variants, such as Code::Blocks with Fortran®, Geany[‘” (no Fortran

compiler included, but you can install G95 separately on Windows, or GFortran on other operating
systems), etc. There are even variants that run online through a browser (such as GDB online®™,
myCompiIer[S], Ideone!”, Jdoodle®, and many more). You can also visit https://fortranwiki.org/ and

https://fortran-lang.org/ for additional options and resources.

® Force Fortran - The Force Project. https://force.lepsch.com/
* Code::Blocks IDE for Fortran | CBFortran. https://cbfortran.sourceforge.io/
* Geany - The Flyweight IDE. https://www.geany.org/
> GDB Online Fortran Compiler. https://www.onlinegdb.com/online_fortran _compiler
6 . . .
myCompiler — Create a new Fortran program. https://www.mycompiler.io/new/fortran
” Online Compiler and IDE. https://ideone.com/
® Online Fortran Compiler. https://www.jdoodle.com/execute-fortran-online/

6

https://fortranwiki.org/
https://fortran-lang.org/
https://force.lepsch.com/
https://cbfortran.sourceforge.io/
https://www.geany.org/
https://www.onlinegdb.com/online_fortran_compiler
https://www.mycompiler.io/new/fortran
https://ideone.com/
https://www.jdoodle.com/execute-fortran-online/

Source file structure

A source file can contain one or more program units (these will be presented later), or fragments of them
(in the form of sections). The source file can be created with any text editor, provided that it results in
character content (aka ASCII file).

The character set usable in the Fortran language contains the alphanumeric characters (the 26 upper and
lower case letters of the English alphabet: a—z, A-Z, and the digits: 0—9), plus 4 symbols for arithmetic
operations (+, —, *, /) and a set of special characters (blank or space, horizontal tab, comma, period,
apostrophe, open and closed parentheses, as well as the following characters: =, $, &). The Fortran 90
language extended this list with the following allowed special characters: , !, :,;,", %, <, >, 2, and #.
The comma has the role of separating elements within a list, while the period (dot) is the decimal
separator.

Symbolic names are used to name variables, different program parts, and to identify functions. If the
conventions of older versions of the language allowed the use of only 8 characters (consisting of
alphanumeric characters and the special character ”$”), Fortran 95 allows the use of 31 characters
(consisting of alphanumeric characters, the special character ”$” and the special character ” "), but the
first character must always be a letter. Program unit and section names are considered global and must be
unique throughout the source, and entity names must be unique within the same program unit. The
Fortran language is not case sensitive for symbolic names. The editing mode of the source file can be in
fixed form (Fortran 77), tabular form or free form (the latter being introduced by Fortran 90 and allowed by
following versions of the language).

Regardless of the horizontal structure (fixed, free or tabular form), the vertical structure of a source file
must respect the following sequence of specifications: declarations (concerning the program unit, the
entities used), body (containing the statements to be executed at runtime) and final marker. If the source
file contains only a segment of a program unit, any of the three parts (declarations, body, final marker) may
be missing, but the order must be respected. In such cases, the contents of such a source file shall be
included (using the INCLUDE specification) in the source file corresponding to the program to be built
before compilation.

Fixed form

This corresponds to the editing structure based on punched cards and old template sheets (like the one in
the image), considering 80 characters as the maximum length of a line (record), having the following
structure (below the image of the template sheet, the relevant column numbers and the content allowed
for each field are marked):

— Statements (1 declaration or 1

instruction or one fragment per line)

Continuation mark (in case of fragmented statements 1-9, +, —, *)
Labels (1-99999) Comment (by default)
Comment mark (C, *, !) or for debugging (D)

The labels are integers of at most 5 digits, with a reference role within the program section, marking the
statements before which they appear (in the respective line). Their use is optional and subject to some
restrictions (only lines with executable statements can be labelled and labels cannot exceed the range of

7

columns 1-5). For a label to be valid, its value must be in the range 1-99999. If a line should be marked as
a comment, the letter “C” or the character ”*” (respectively starting with Fortran 90) should be written
in the first column, which will cause the structure and content of the line to be ignored during compilation.
Some compilers also allow the use of the character “D” to mark the current line in the first column as a
comment, thus allowing the optional compilation (interpretation) of these lines in case of debugging the
source.

In Fortran 77 and earlier, only one statement was written per line, but since Fortran 90 it is allowed to write
more than one statement on a line (using the character ”;” to separate them).

If the space between columns 7 and 72 of the current row is not enough to write the desired statement, it
can be extended by marking in column 6 on the following rows the continuation of the previous ones, by
numbers (only from the range 1-9), letters or by one of the characters: +, —, * (starting with Fortran 90,
any character except the 0 digit can be used). The number of continuation lines allowed also depends on
the compiler chosen. Fortran 77 allowed 99 fragments (1 initial line and 98 continuation lines), but the
Fortran 90 standard allows only 19 fragments in fixed form (and 39 fragments in free form), while Fortran
95 allows up to 90 continuation lines in fixed form (and only 31 continuation lines in free form). Some
compilers allow the line interpretation range to be extended up to column 80 (even 132, starting with
Fortran 90), but as standard any content in the range of columns 72-80 is considered comment by default
and as such is ignored by the compiler.

”n

Free form

Does not have the restrictions described above, the statements are not limited to any particular fitting on
the line columns, each line can contain up to 132 characters. Instead, spaces are significant, and in some
cases act as separators (for names, constants, keywords, or as spacers between labels and statements).
This form has only been introduced since Fortran 90 (but Fortran 90 also supports fixed and tabular
formats). In the free form, the comment is indicated by the character ”!” (starting from any column) or by
the letter ”C” written in the first column (beware of specifications and names starting with this letter, do
not write them from the first column), while the ”&” character marks the break of a statement (at the end)
which will be continued on the next line. It is allowed to write more than one statement on a line if they are

” . n

separated by the ”; ” character (which is ignored at the end of a line, of course).

Tabular form

It is actually a variant of both fixed and free form, and is so called because of the use of the horizontal tab
character at the beginning of lines. If this <Tab> character is the first on a line, then the line contains a
statement (declaration or instruction, or maybe a marker). If this first character is followed by a non-zero
digit, the digit marks a continuation fragment of the previous line and must be followed by a space to
separate it from the continuation content. The <Tab> character may be preceded only by a comment mark
or a label. Line lengths must not exceed column 72 for fixed form and column 132 for free form.

Notice: In the following chapters, syntax (writing rules) and examples are given where other
characters are used. The square brackets are not part of the syntax, but mark the optionality of
the included content, and the consecutive dots (...) mark repeatable elements. Italic sequences
mark elements that replace content in the positions in which they appear. Given that the G95
Fortran compiler will be used in the classes, the specifications and statements presented will
be for this variant and old ones, not part of the standard, will be marked grey.

Entity types

In Fortran, every entity has a type, either implicit, or explicitly declared. There are intrinsic types and
derived types (defined by the programmer using intrinsic types or previously defined derived types).
Intrinsic types are INTEGER (integer numbers), REAL (real numbers, with a decimal part), COMPLEX
(complex numbers, viewed as pairs of numbers with a decimal part), LOGICAL (logical values, there are
only two, the constants . TRUE. and .FALSE. constants), CHARACTER (character or string), and BYTE
(8-bit value, used in older versions of the language). Explicit type declaration of entities can be done
according to the following syntax:
type[(kind) 1[[, attribute]... : :] entity_list
The keywords for type are INTEGER, REAL, COMPLEX, LOGICAL and CHARACTER (in some versions of
Fortran there is also BYTE), or TYPE (name), where name refers to a type previously defined by the
programmer. The kind specifies the number of bytes used for storage, optionally preceded by the keyword
KIND=, in the case of CHARACTER type LEN= (or * in older syntax, without parentheses). This value
depends on the type of entities, but there are also compiler dependent default values (usually 4 bytes for
REAL type entities and 2 or 4 bytes for INTEGER type entities). Explicit values can be: 1, 2 or 4, eventually
8 for the INTEGER and LOGICAL types; 4 or 8, (eventually 16) for the REAL and COMPLEX types. Single
characters and BYTE type entities are stored on 1 byte, so their storage length cannot be changed explicitly
(if the kind is specified for CHARACTER type, it defaults to the number of characters in the string).
INTEGER (1) and LOGICAL (1) type entities will also be stored on 1 byte.
The following can be specified as an attribute:
- ALLOCATABLE for arrays with dynamically allocated memory or DIMENSION (/imits) for arrays
with statically allocated memory (will be presented later),
- EXTERNAL for entities redefined by the programmer or INTRINSIC for entities predefined in
Fortran,
- INTENT (direction) for input/output purpose (where direction can be IN for input, OUT for
output, default INOUT),
- PARAMETER for constant values,
- PUBLIC for visible entities, PRIVATE for local entities (only accessible in the current program
unit),
- POINTER for indicators or TARGET for targets,
- OPTIONAL for temporary entities, SAVE for stored entities.
If no attribute is specified, the : : separator can be omitted (it only serves to delimit the list of keywords on
the left, from the entity_list on the right of the specification).

For numeric entities there is an implicit rule regarding their type, which (of course) can be changed or
cancelled with the following syntax of the IMPLICIT statement:

IMPLICIT type (c[,c]...) [, type (c[, c]...)]...
where type must be an intrinsic type specifier (or previously defined derived type) and ¢ stands for a letter

or range of letters in alphabetical order. To cancel any implicit rule, write:
IMPLICIT NONE

When cancelling the implicit rule, the types of all entities must be explicitly declared. According to the
predefined implicit rule in Fortran, entities whose name starts with one of the letters |, J, K, L, M, or N will
be of type INTEGER, and the rest will be of type REAL. Consequently, unless this rule is changed or
cancelled, type declarations can be omitted while respecting the rule.

Examples: Explanations:

IMPLICIT INTEGER (B, f-H, k) All entities whose name begins with one of the letters B, F,
G, H or K will be of type INTEGER (regardless of whether
they are written in uppercase or lowercase).

IMPLICIT REAL (n),COMPLEX (A-C) All entities whose name begins with the letter N will be of
type REAL, and those whose name begins with one of the
letters A, B, or C will be of type COMPLEX.

IMPLICIT NONE
INTEGER I,7,K
REAL X,Y

The implicit rule has been cancelled and the types of all
entities must be explicitly defined. The one named |, J and
K will be of type INTEGER, and the ones named X and Y
will be of type REAL. As no attributes were specified, the
: : separator was omitted (only the right is list).

REAL (KIND=8) Di,e33
! Equivalent to:
REAL (8) dI,E33

The entities (variables) named DI and E33 are of type
REAL and are stored on 8 bytes each (in older versions of
Fortran, the type DOUBLE PRECISION was used in such
a case). As you can see, it doesn't matter if the names of
the entities are written in lower or upper case.

COMPLEX (KIND=8) xC,Y1l
! Equivalent to:
COMPLEX (8) Xc,yl

The entities (variables) named XC and Y1 are of type
COMPLEX and are stored on 8 bytes each (in older
versions of Fortran, the DOUBLE COMPLEX type was used
in such case). Since we are dealing with complex values
consisting of pairs of values (the "real" part and the
"imaginary" part), 16 bytes will actually be used for each
entity.

INTEGER (2) , INTENT (IN) :: Q

The Q entity is of type INTEGER, stored on 2 bytes and
used only for input values. Since an attribute (INTENT) is
also specified, it is mandatory to use the : : characters to
separate the left list from the one right list, even if there is
only one element on the right.

REAL, PARAMETER pi=3.14159

The entity named Pl is of type REAL and with a constant
(unchangeable) value of 3.14159.

EXTERNAL :: SIN

The entity named SIN is declared as a variable with the
default type REAL (because the name starts with the
letter S). In this situation the SIN name will not be usable
for the intrinsic trigonometric function in Fortran.

REAL, POINTER, PRIVATE :: p, Q1

The entities named P and Q1 will be pointers of type
REAL, accessible only in the current program unit.

The definition of a derived type is done according to the syntax:

TYPE name
specifications
END TYPE[name]

Once defined, such derived types can be used to specify the type of entities by replacing the type keyword
with TYPE (name) in the explicit type declaration. Reference to a component in such a derived type can
be made using the % selector, in the form parent%component[%subcomponent...], as will be illustrated in

an example below.

When the entity type is explicitly declared, initial values can also be attributed. The attribution can be done

within the entity_list or separately, through the DATA statement. The syntax of this statement is as follows:
DATA variable_list/value_list/[[, lvariable_list/value_list/ ...]

where for each entity from the variable_list there must be a corresponding value from the value_list

(enclosed between ”/” characters), in order of succession from left to right.

Examples:

Explanations:

TYPE comp
CHARACTER (LEN=24) name
INTEGER day
CHARACTER (3) month
INTEGER year=2023
END TYPE

10

The derived type named COMP is defined as consisting of
two character strings (NAME having 24 positions and
MONTH 3) and two integers (DAY and YEAR, the latter
being also initialized with value 2023). Note the
optionality of the LEN= keyword, as it is not used for the
MONTH string.

TYPE (comp) r23,r24 Entities named R23 and R24 will have the type defined

above.
CHARACTER at,stars*3 Declaration of CHARACTER type entities: AT will contain
INTEGER ml,m2,m3 1 character and STARS will contain 3 characters (an old

syntax was used instead of LEN=3), followed by the
declaration of INTEGER type entities M1, M2 and M3.
DATA at,ml,m2,m3/”@”,2*1,5/ The variable named AT gets character @, the variables
DATA stars/”***”/,r24%year/2024/ | M1and M2 get the value 1 (2 pieces, for the 2 entities),
DATA r24%month, r24%day/”AUG”,12/ | and M3 gets the value 5, after which the STARS string is
also initialised with the * ** characters. The YEAR,
MONTH and DAY components of entity R24 will be given
the values 2024, AUG and 12.

Expressions

Expressions can be arithmetic (numeric), string (character), logical, or initialisation and specification (from
Fortran 90), and consist of operators, operands, and parentheses. An operand is a value represented by a
constant, variable, array or array element, or resulting from the evaluation of a function. Operators can be
intrinsic (implicitly recognised by the compiler and of global in nature, so always available to all sequences
of code) or user-defined (when an operator is explicitly described as a function by the programmer).
Depending on how they work, we can talk about unary operators (acting on a single operand) and binary
operators (acting on a pair of operands). Unary operators take precedence over binary operators.
Evaluating an expression always produces a single result, which can be used for attribution or as a
reference. The type of value resulting from the evaluation of a numeric expression depends on the type of
operands and their rank. If the operands within the expression have different ranks, the resulting value will
be of the type of the operand with the highest rank (unless an operation involves a complex value and one
in double precision, the result in such situations being of double complex type). When checking the
correctness of a combined numerical expression, it is recommended to take into account the type of partial
values resulting during the evaluation. Expressions can be arithmetic (numeric), string (character), logical,
or initialization and specification (starting with Fortran 90).
There are homogeneous expressions (where the operators and operands are of the same type) and non-
homogeneous expressions (where the operators and operands are of several types). The evaluation priority
of operators within non-homogeneous expressions is as follows (in descending order):

- defined unary operators and functions;

- numeric operators (in the following order: **, * or /, + or —);

- concatenation operator for strings (characters);

- relational operators (with equal priority);

- logical operators (in order: .NOT., .AND., .OR., .EQV. or .NEQV. or .XOR.).

Arithmetic expressions

As their name suggests, represent numerical calculations, made up of arithmetic operators and operands,
giving a numerical result that must be defined mathematically (division by zero, raising a base of zero value
to a zero or negative power, or raising a base of negative value to a real power are invalid operations). The
term numeric operand can also include logical values, since they can be treated as integers in a numerical
context (the logical value . FALSE. corresponds to the INTEGER value 0). The numeric operators are:
** (exponentiation), * (multiplication), / (division), + (addition), — (subtraction). In an arithmetic
expression with several operators, the parts enclosed in parentheses (from the inside to the outside) and
the functions are always evaluated first, with the evaluation priority of the intrinsic operators being as
follows: exponentiation, multiplication and division, unary plus and minus, addition and subtraction.
Operators with the same priority are evaluated from left to right. By local effect, unary operators can affect
this rule, generating exceptions in the case of compilers that accept such expressions.

11

Fortran expression Math. formula Fortran expression Math. formula
(3*X**2+1) / (2*Y) -1 3x% +1 s o 3x% + 1
(3*x**2+1) /2/Y-1 2y ¢ (3xxxx2+1) /2xY -1 — Y-
X X/(—5*Y) X
— * _ J—
e 5~ X/ (=5) /Y ~5y
X** (=Y) *3 x73 X** (=Y*3) x73

String (character) expressions

They can be composed using the // concatenation operator (in older versions of Fortran using the +
intrinsic operator) or using programmer-defined functions, applied to CHARACTER type constants or
variables. Evaluating such an expression produces a single string value. Concatenation is performed by
joining the character contents from left to right, without parentheses affecting the result. Blanks (spaces)
contained in the operands are also included in the result.

Logical expressions

They consist of logical or numeric operands combined with logical and/or relational operators. The result of
a logical expression is normally a logical value (equivalent to one of the logical literal constants . TRUE. or
.FALSE.), but logical operations applied to integer numeric values will still result in integer values, being
performed bit by bit in order corresponding to the internal representation of those values. Logical
operations cannot be performed directly on values of type of REAL, COMPLEX or CHARACTER, but these
types of values can be handled using relational operands within logical expressions. The relational and
logical operators are as follows:

Relational operators Logical operators
. Older :
Syntax Meaning syntax® Syntax Meaning
< Less Then 1T, .NOT. Logical negation (logical complement) returns
.TRUE. if the operand has the value . FALSE. and
<= lessorEqualto -LE. returns . FALSE . if the operand has the value
== Equal .EQ. .TRUE.

.AND. | Logical conjunction returns . TRUE. only if both

/=" Not Equal .NE. ’
operands have the . TRUE. value, otherwise returns

> Greater Than .GT. .FALSE..

>= Greater or Equal to .GE. -OR. | Logical disjunction returns . TRUE. if one of the

operands has the . TRUE. value, otherwise returns

* Older versions (marked with dots in FALSE

the last column) are also allowed to be EQV.

q Logical equivalence, results true if both operands
used.

have the same value, if they have different values
then results . FALSE..

-NEQV. Logical inequality returns . TRUE. if the operands
are different, and . FALSE. if they are the same.

.XOR. | Exclusive logical disjunction (eXclusive OR), similar
effect to logical inequality (.NEQV.).

The relational operators have equal priority (they are executed from left to right, but before the logical and
after the numerical), and the logical operators are executed in the order of their evaluation priority.
Relational operators are binary (they act on two operands), as are logical operators, except for the logical
negation operator (. NOT.), which is unary.

12

Specification and initialisation expressions

These can be considered those that contain intrinsic operations and constant parts, or a whole scalar
expression. As their name suggests, they are used to initialise values (for example, the index to control an
implicit cycle) or to specify properties (for example, to declare array bounds or string lengths).

Constants used in expressions

Operands can be variables (only named entities can have variable values) or constant values. Constant
values are specified according to their type, as shown in the following table:

Constant type Examples: Explanations:

Character string ”Bla 3-la” Printable characters are quoted. If there are apostrophes
“anii ’80” or quotation marks within a character string, either the
"anii 7’80’ inner apostrophe can be doubled (see the third string), or

the other character is used for as a delimiter.

Decimal number | 231 The decimal separator is the dot, negative values are
50.66 indicated by the minus sign. Non-significant digits can be
-.13e2 omitted (the first value is an integer and the last three
256. values are real). The third value is -13.0 (€2 means x10°)

Binary number B”1001” When quoting the value after the B mark, only the digits 0
b”1011” or 1 are allowed (max. 256 positions).
B"11007 The minus sign before the B mark has no effect and is not

accepted in the quoted content (there are no such
negative values). Quotations can be made either with
quotation marks or with apostrophes (without combining

them).
Octal number 0”152” Only the digits 0 to 7 can be used (max. 86 positions) in
0r223’ the value that is quoted after the O mark. As before, the
0”107 minus sign in front has no effect and is not allowed inside.
Hex number Z"15F” X”15f” The digits 0 to 9 and letters A to F can be used (max. 64
z"1B0" x"1BO’ positions) by quoting the value after the Z or X mark. As
z"A28" x"az8” before, the minus sign in front has no effect and is not
accepted inside.
Hollerith 1H& They are constants that can contain any printable
3H123 character. Their syntax is: nHstring, where n is the number
12Hla "Taverna” of characters (positions in the string), H is the Hollerith

12Hab”1 x’+i#.5%0@ mark and string stands for the content.

Although these constants were originally defined to
contain up to 2000 characters, the number of characters
can be between 1 and 32767 (2'°-1) on 32-bit platforms,
or between 1 and 2147483647 (2*'-1) on 64-bit platforms.
Cannot be used as Format descriptor starting from Fortran
90.

Intrinsic functions (for expressions)

Intrinsic functions are specific to the libraries used, and have predefined (reserved) symbolic names. Some
of them are not part of the standard kit of the programming environment, since they are not found in all
variants of the Fortran language. The fact that the names of these functions are reserved means that there
should be no entities with names that coincide with those of the intrinsic functions. Also, the names of
these functions are not recommended to appear in a list of an EXTERNAL statement, which leads to the
cancellation of their intrinsic definition. In such cases, by including their names in lists of the INTRINSIC

13

statement, they can be used in procedures defined as program units (user-defined subroutines or
functions). The general syntax of functions is as follows:

function_name (a,[d]...)

where function_name is the symbolic name of the function and a represents the argument(s). Some
intrinsic functions are given in the following table:

Function: | function_name: Result:
[x] ABS (x) The absolute value (modulus) of the specified X argument.
AxB MATMUL (A, B) Matrix resulting from the multiplication of matrices A and B.
AT TRANSPOSE (A) Returns the transpose of matrix A.
Anax MAXVAL (A) Returns the maximum value in array A.
Anax(pos) | MAXLOC (A) Returns the first position of the maximum value in array A.
Anin MINVAL (A) Returns the minimum value in array A.
Anin(pos) MINLOC (A) Returns the first position of the minimum value in array A.
arccos(x) ACOS (x) The arccosine of the X argument expressed in radians.
arcsin(x) ASIN (x) The arcsine of the X argument expressed in radians.
arctg(x) ATAN (x) The arctangent of the X argument expressed in radians.
character | ACHAR (x) Returns the character at position X in the code table.
complex-i | AIMAG (x) The imaginary part of a complex number X.
complex-r | REAL (x) The real part of a complex number X.
cos(x) COS (x) The cosine value of the X argument expressed in radians.
cosh(x) COSH (x) The hyperbolic cosine of the X argument.
e’ EXP (x) The exponential value of the Euler constant (e=2.71828...).
In(x) LOG (x) The value of the natural logarithm of the X argument.
log(x) LOG10 (x) The logarithm with base 10 of the X argument.
length LEN (string) The number of characters in the STRING considered argument.
max(x,y,...) | MAX (value_list) The maximum value among the items contained in the argument list.
min(x,y,...) | MIN (value_list) The minimum value among the items contained in the argument list.
random RAN (x) Returns a pseudorandom number between 0 and 1.
rest of div. | MOD (x1, x2) The remainder of the argument division (X1/X2, with the sign of X1).
round NINT (x) The value of the X argument rounded to the nearest integer.
ANINT (x) The rounded value of the X argument to zero decimal places.
sin(x) SIN (x) The value of the sine of the X argument expressed in radians.
sinh(x) SINH (x) The hyperbolic sine of the X argument.
size SIZE (arrayl[, ri]) Returns the size of the array (by Rl rank, if specified).
vx SQORT (x) The square root (radical) of the X argument.
substring INDEX (string,ss) | The starting position of the SS substring in the first argument STRING.
A SUM (arrayl, ni]) Returns the sum of the values in the array (by Rl rank, if specified).
tg(x) TAN (x) The tangent of the X argument expressed in radians.
tgh(x) TANH (x) The hyperbolic tangent of the X argument.
truncate INT (x) The truncated value of the argument X to the nearest integer.
AINT (x) Truncated value of argument X with zero decimals.

Input and output (1/0) statements

Read operations are called inputs (I) and write or display operations are called outputs (O). For sequential
inputs, the READ statement can be used, with the following syntax variants:

READ f, input_list]

when reading from the default logical unit (usually the console, so the keyboard), where f is the format
specifier (shown later). A more general variant has the following sintax:
READ ([UNIT=]u[, [FMT=]Ifl[, ERR=e,][, END=e,][, IOSTAT=var][, ADVANCE=0pt]) [input_list]

14

where the UNIT= keyword can be omitted if it is the first parameter and u is the value of the logical unit
number (the value is * for the default logical unit, i.e. console), the FMT= keyword can be omitted if it is
the second parameter or if it is you do not want to use a format specifier f (the case of reading without
format), e; is the label of an executable statement to jump to if the end of file (EOF) is encountered or if
there are no values to read, e, is the label of an executable statement to jump to if a read error is
encountered, and var is the name of an INTEGER variable in which the success / failure of the read
operation would be recorded (successful reads result in 0, unsuccessful reads result in higher values
marking error codes, -1 means EOF while -2 means EOR). When using ADVANCE=, opt can be "YES”
(advance to next line after reading, default) or “NO” (means no advance to the next line). The entities in
which the read values are to be stored form the input_list. If there is no input_list, the only effect of the
statement is to temporarily stop the execution of the program (until the <Enter> key is pressed).

There are also other variants, such as internal reading (to convert characters into integers corresponding to
the positions in the character table), direct reading (to jump to the position number of a record in a fixed
formatted logical unit), or keyed reading (in the case of indexed files).

The following statements can be used for sequential output operations:
PRINT f[, output_list]

when writing to the default logical unit (usually the console, hence the monitor display), where f is the
format specifier, or

WRITE ([UNIT=]u[, [FEMT=]fl[, ERR=e;][, IOSTAT=var][, ADVANCE=opt]) [output_list]
where the notation is the same as for reading (without END=e,, as it makes no sense for writing). The
entities whose values are to be written make up the output_list. If output_list is missing, an empty line is
written.
There are also other variants, such as internal writing (to convert integers to characters, according to the
positions in the character table), direct writing (jumping to the position number of a record in a fixed
formatted logical unit), or rewriting a record. Writing to indexed files uses sequential writing with format
specifier, where key fields are among the entities in output_list.
When the * symbol is used as a format specifier (i.e. default format), the value type in the entity list is
usually taken into account. For so-called long values, such as REAL (8) or DOUBLE PRECISION,
REAL(16), COMPLEX (8) or DOUBLE COMPLEX, COMPLEX (16), the default format cannot be used, so
a format specification appropriate to the type must be used.

Examples: Explanations:

READ * Apparent reading (no input). Waiting for the <Enter> (carriage
! Equivalent to: return) key to be pressed to continue.

READ (*, *)

READ *, 1,7 Two numerical values (of type INTEGER) entered from the

! Equivalent to: keyboard are read and stored in variables | and J respectively.
READ (*,*)1,J The two values can be entered separately (the program will

continue only after both values have been entered) or on the
same line, separated by a comma (or a blank).

PRINT * A blank line will be displayed on the screen (similar to the

! Equivalent to: effect of the <LF> character).

WRITE (*, *)

PRINT *,”Max= " ,max The quoted string will be displayed (without the quotation

! Equivalent to: marks), followed by the content (value) of the MAX variable.

WRITE (*, *) “Max= " ,MAX

Format specification and descriptors

Format descriptors are like templates applied to input or output data. They are usually used through the
format specification, which has the following syntax:
label FORMAT (descriptor_list)

15

however, descriptors can also appear in quoted form within read or write statements. There are two
categories of descriptors: for data editing and for controlling formatting. They will be presented below in
separate tables, with examples, using the following notations:

n — number of pieces;

w — descriptor length (total number of positions in the respective field);

m — minimum number of positions requested (of the total number), has effect on output only;

d — number of positions for the decimal part (of the total number);

e — number of positions for the exponent (of the total number);

¢ — character, respectively [c...] other optional characters;

- space (blank character) displayed in the examples.

Table of descriptors used for data editing (in alphabetical order):

Syntax: Destination: Examples and comments:
[n]A[w] Alphanumeric data Input: Format: Entity type: Value:
(CHARACTER) ABC D A5 CHARACTER (1): D

ABC_D A5 CHARACTER (3): C_D
ABC_D A5 CHARACTER (6): ABC_DO
Value: Format: Output (5 positions):
ABC A5 [T1ABC
ABCDE A5 ABCDE
ABCDEFG A5 ABCDE

[n1Bw[.m] Binary numeric data Input: Format: Value (in decimal form):
1001 B4 9 (all 4 positions read)
1001 B2 2 (only the first 2 positions read)
1001 2B2 2 si 1 (2 distinct values)
Value: Format: Output:
13 B5 01101
0 B2 0o
0 B2.2 00

If w=0, as many positions as required to display the value will be
used at the output (w=0 is not allowed at the input).

[n]Dw.d Numerical data in Input: Format: Value (double precision):
double precision: 123.456E3 D9.3 123456.0D+0
REAL (8) i.e. DOUBLE| 12345678 D6.2 1234.56D+0
PRECISION, or 123.45678 D7.3 123.456D+0
COMPLEX (8), i.e. As can be observed, w positions are read from the input, of which

DOUBLE COMPLEX d positions for the decimal part (from the decimal separator to the
right — if there is no decimal separator at the input, then the
decimal part will result considering d positions at the end of the w
read). The "D+0” mark at the end only indicates that the values will
be obtained in double precision.

Value: Format: Output:
123456.789 D11.2 [(1130.12D+06
0.0363 D10.3 00.363D-01
-0.5555 D10.3 -0.556D+00

The display will result in w positions, of which d positions for the
decimal part, but it should be noticed that 1 position will be
consumed for the sign of the value, 1 more for the decimal
separator (dot), 1 position for the letter of the descriptor (D), the
last 3 positions for the sign and value of the exponent.

If we consider that the first significant digit will be the first decimal
place, it follows that it is advisable that w—d > 6. If this condition is

16

not met, format overflow will occur (asterisks will be displayed on

the w positions).

[nJEw.d[Ee] | Numeric data in Input: Format: Value:
exponential format 123. 450 E10.2 123.45
(REAL or COMPLEX) | 123456789 ES.3 123456.789
123.456D3 E9.3 123456.0 (simple precision!)
As with the previous descriptor, w positions are read from the
input, of which d positions for the decimal part (from the decimal
separator to the right — if there is no decimal separator at the
input, the decimal part will result considering d positions at the
end of the w read). In case of reading double precision values with
this descriptor (or with other usable descriptors except D), a value
converted to single precision will be obtained.
Value: Format: Qutput:
123456.789 E11.5 0.12345E+06
-0.5555 E12.3E3 [0O-0.556E+000
0.0363 E5.2 ** %% * (format overflow!)
The display will result in w positions, of which d positions for the
decimal part, but it should be noticed that 1 position will be
consumed for the sign of the value, 1 more for the decimal
separator (dot), 1 position for the letter of the descriptor (E), the
last 3 positions for the sign and value of the exponent.
If we consider that the first significant digit will be the first decimal,
it turns out that w-d > 6 [+(e-2)] (where e is the number of digits
of the exponent). If this condition is not met, format overflow will
occur (asterisks will be displayed on the w positions).
[nJENw.d[Ee] | Numeric data in Input: Format: Value:
exponential 123.45E+03 EN10.2 12345.0
"engineering” format | -12345678 EN9.3 -12345.678
(REAL or COMPLEX) | 123.456D3 EN9.3 123456.0 (simple precision!)
Value: Format: Output:
123456.789 EN11.2 0123.46E+03
-0.5555 EN7.1 * %% *** (format overflow!)
0.0363 EN12.3 0363.000E-04
When displayed, the decimal point will be after the first 3 digits.
[nJESw.d[Ee] | Numeric data in Input: Format: Value:
exponential d11.234E+03 ES12.3 1234.0
”scientific” format -10.234E-03 ES11.3 -0.010234
(REAL or COMPLEX) | Value: Format: Output:
123456.789 ES11.2 (I111.23E+05
-0.5555 ES10.3 -5.555E-01
0.0363 ES12.3 [II113.630E-02
On display the decimal point will be after the first significant digit.
[nFw.d Numeric data Input: Format: Value:
(REAL, F stands for 12345678 F8.5 123.45678
”Float”) -12345678 F8.2 -1234.56
24 . 7TTE+2 F8.2 2477.0
Value: Format: Output:
2.3547188 F8.5 02.35472
325.03 F5.2 ***xx* (format overflow!)
-0.2 F5.2 -0.20
[n]Gw.d[Ee] Intrinsic type data (G | Input: Format: Value:
-0.05566 G10.3 -0.05566

17

stands for "Generic”)

123456 G10.3 123.456

123456.789 G10.3 123456.79
Value: Format: Output:

-45.66 G11.3 0-4.566E+01
123456 G10.3 (1111123456
123456.78 G10.3 00.123E+06

Remarks: It can be used for any of the intrinsic type values. If 0 is
specified for w, the actual value of w will be chosen by the
processor (in such cases only GO or GO . d may be specified). If w is
different from 0, then the value for d must also be specified. In the
case of INTEGER, CHARACTER and LOGICAL values the value
specified by d will be ignored, the descriptor will behave as the one
corresponding to these values (I, A and L).

[n]Iw[.m] Integer numeric data | Input: Format: Value:
(INTEGER) -1234 I4 -123
111123 I6 123
1234.6 I6 Error! (not INTEGER)
Value: Format: Output:
0 I3 110
0 I3.0 11
1 I3.2 o1
-123 I3 *** (format overflow!)
1.2 14 Error! (not INTEGER)
[nlLw Logical data Input — logical values written in the following forms are accepted,
including lowercase (not just uppercase):
.TRUE. or .Tor T, or if the first characters in the input are . T or
T (for true); respectively . FALSE. or .F or F, or if the first
characters in the input are . F or F, or the content is from space/
blanks (for false).
Value: Format: Output:
.TRUE. L7 (I T11T
.FALSE. Ll F
111 L3 LTI
Only 1 character (T or F) will be output regardless of the length w
specified.
[nJow[.m] Integer octal numeric | Input: Format: Value (decimal):
data (with base in 8) 1111 02 9
1111 04 585
O110d 04 9
191 03 Error! (9 is not octal)
12 00 Error! (w must be positive)
Value (decimal): Format: Output:
11 06.4 (110013
-11 06 *x % xx* (format overflow!)
-11 0l2 037777777765
1.5 01l1 07760000000
81 00 121
If w=0, as many positions as required to display the value will be
used at the output (w=0 is not allowed at the input).
[nzw[.m] Integer hexadecimal | Input: Format: Value (decimal):
numeric data (with A2F Z3 2607
base in 16) -A2F0O Z5 -2607

18

3.A2F Z5 Error! (invalid decimal point)

Value (decimal): Format: Output:
3033 Z5 IIBDY
16 7Z5.4 00010
-10 Z8 FFEFFFFEFFO
1.1 Z8 3F8CCCCD
2.5 z0 40200000

If w=0, as many positions as required to display the value will be
used at the output (w=0 is not allowed at the input).

"clc...]” or
”cle...]”

Quoted alphanumeric
constants
(CHARACTER)

Input: — (cannot be used for input).

Format: Output:
"aBc’ ' DD:’ (double apostrophe inside) aBc’DD:
”aBc””DD:” (double quote mark inside) aBc”DD:
"aBc”DD:’ (quote mark inside) aBc”DD:
"abcD’ #” (apostrophe inside) abceD’ #
”ab’ cD’#” (quote within quote!) Error!

Table with control descriptors:

Syntax: Meaning: Examples and comments:
BN BLANK NULL BN will have the effect of ignoring the spaces in the number fields.
BZ BLANK ZERO BZ will have the effect of “replacing” the spaces in the numeric
fields with 0 digits.
Input: Format: Value:
01 BN, I4 1
01 BZ, 14 100
1023 BZ, 14 1023
kP Power Allows the interpretation of numeric values with decimals, using the
k is a scaling factor, scale factor k for descriptors D, E, F and G when these values do not
with value in the range | explicitly contain an exponent. On inputs, a positive k value will
[-128, +127] have the effect of moving the decimal separator to the left, and a
negative value to the right (on outputs, the effect will be the
reverse). The descriptor P need not necessarily be separated by a
comma from the descriptor to which it refers, but must precede it.
For example, the following specifications will have the same effect,
the scale factor being associated with the first real number
descriptor following it in the list (E10 . 3):
(2P, I4,E10.3,F8.2)
(I4,2P,E10.3,F8.2)
(I4,2PE10.3,F8.2)
Input: Format: Value:
(11137 .6140 3PE10.5 0.037614
(11137 .6140 -3PE10.5 37614.0
123.45 2PF8.3 1.2345
123.45 -2P,F8.3 12345.0
Value: Format: Output:
-170.139 1P,E10.3 -1.701E+02
-170.139 -1PE10.3 0-0.02E+04
S Sign SP will cause the + sign to be displayed in front of positive values
SP Sign Positive and SS will inhibit it. S acts as a switch between SP and SS.
SS Sign Suppress
Tn Tab With descriptor T, the position n in a line is indicated, from which
TLn Tab Left reading (or to which writing) is desired.

19

TRNn Tab Right Assuming that the following string will be typed from the keyboard:
n —tab position 123456789ABC
to be read with the sequence:
CHARACTER (3) C1,C2
READ(*,5) NR,C1,C2
5 FORMAT (T7,1I3,T1,A3,T10,A3)
the values will result: NR=789; C1="123" si C2="ABC".
TRn allows specifying the n'" position to the right from the current
position and TLn to the left (n being a positive number). When
using TL, if n is greater than or equal to the current position, then
positioning will be done on the first character in the row.

[n]x Determine the jump On input it will cause n positions to be ignored, and on output it will
over n positions in the | have the effect of printing n spaces (if it appears at the end of the
current line descriptor list, then it has no effect. In the example the effect is

highlighted by marking [0 on display):
Source code: Display:
PRINT 4 number:
READ 3,nr Input:
PRINT 4,nr 1234
3 FORMAT (2X,12) Display:
4 FORMAT (“number:”,1X,12) number :[034

$ Suppress the jump to a | It will cause the cursor to remain at the last current position (<LF> is

\ new line (suppress short for Line_Feed).
<LF>). The $ variant is newer, but not part of the standard, and the \

variant is the older one (the G95 compiler supports both).
Whichever variant is used, the descriptor must be the last in the list
to which it belongs.
Source code: Display+Input (12):
PRINT 5,”nr:” nr:12
READ *,nr Display:
PRINT 4,nr number (012
5 FORMAT (A, $)
4 FORMAT ("number:”,1X,12)
[n]/ Induces n new line It can also be used without n, e.g. (3/) is equivalentto (///),

jumps (induces n
pieces of <LF>)

without the need for separating commas. In the following example
it will insert a new line feed before displaying “number”, then insert
2 more new line feeds:

Source code: Display+Input (12):

PRINT 5,”nr:” nr:12
READ *,nr Display:
PRINT 4,nr O

5 FORMAT (A, $) number:

4 FORMAT (/”number:”,2/,3X,I2) O
1112

Ends descriptor control
in the absence of
input/output list items

In the following example, in the absence of items to display, the
descriptor will cause the ”j2” part to be ignored:

Source code: Display:
PRINT 1,3 10312011
PRINT 2,14 14

1 FORMAT (”i”,12,1X,”i2",12)
2 FORMAT (”j”,12,:,1X,”32",12)

The format specification may also be composed by using string (character) expressions. The following
example shows how it might apply for N pairs of descriptors of the form (I2, 1X), assuming 1< N <9:

20

Example: Explanations:

CHARACTER fm(10) Declare the FM string with 10 positions (to be used as format
specification).

INTEGER J (9) The variable J will have 9 positions (will be a vector) and will
contain the values to be displayed with I2 type descriptors.

PRINT *,”nr. (1-9): ” The quoted string is displayed and on reading the number

READ (*, *)n entered (of desired pieces) is stored in variable N.

k=48+n The position number in the code table is composed of the

digit corresponding to the quantity (from variable N),
obtaining the character of the digit representing this value.
fm="("//ACHAR (k) //" (12,1x))" An alphanumeric string is constructed by concatenation and
using the intrinsic function ACHAR (which returns the
character at position K in the code table), which is assigned to
the variable FM, which is the format descriptor with N pairs of
I2 (two-byte integer) and 1X (space) fields for the N values.
PRINT *,”the ”,n,” values: ” The quoted string (including the value of N) is displayed, then

READ *, (j(i),i=1,n) the values corresponding to the N positions of the vector J are
read (by implicit loop).

WRITE (*, fm) (J (i) ,1i=1,n) The N positions of the vector J are displayed (also by implicit
loop) using the format specification stored in the FM variable

END as an alphanumeric string.

Arrays

The declaration of arrays can be done by the type specification, or by the specifying DIMENSION, COMMON
(eliminated starting with Fortran 90), ALLOCATABLE, respectively POINTER or TARGET (starting only
from Fortran 95, while in Fortran 90 there is the possibility to define them as "derived" type). The
characteristics of any array are:

- Type (any intrinsic or derived type),

- Rank (the number of "dimensions", e.g. a vector has rank 1, a matrix has rank 2, etc. — the

maximum rank is 7 in Fortran),
- Extents ("lower” and "upper” limits for each "dimension" separately, the "lower" means the initial
value of the respective index, and the "upper" means the final value of the respective index),

- Size (results from the total number of elements),

- Shape (results from rank and extents).
Arrays of identical shape are "conformable" (meaning that certain operations can be performed on their
elements, without explicitly specifying each element's positional indices). A scalar conforms to any array,
regardless of the array’s shape.
Declaring an array involves either allocating memory areas for each array element at the time of program
creation (static allocation method), or allocating memory areas only for the array rank at the time of
program creation, with the actual memory allocation for the array elements occurring during program
execution (dynamic allocation method).
If memory usage is to be optimised (less space means fewer addresses, resulting in faster execution), then
it would be desirable not to allocate unused space for arrays. This can be achieved by dynamically allocating
memory at runtime, specifying only the really needed size of the arrays.

Static allocated memory

A known (and unchangeable during the execution of the program) size in computer memory is allocated to
an array by the type specification alone, or by using DIMENSION with the bounds set corresponding to
each extent (rank) of an array. This size is a maximum size and need not be used in full (fewer positions in

21

the table can be used). The syntax for declaring an array by the DIMENSION attribute (static memory
allocation):

[Type, IDIMENSION (extents) [, attribute] :: array_list

or

Typel, attribute] : : array_name_1 (extents) [, array_name_i (extents) ...]

Examples: Explanations:

DIMENSION A(10,2,3),L(8) The array named A has rank 3 (3 "dimensions", in total
10x2x3=60 positions for elements) and will be implicitly of type
REAL. The array named L has rank 1 (8 positions) and implicitly
of type INTEGER (due to the first letter of the name).

REAL, DIMENSION (3,3) :: D,E Arrays D and E will be of type REAL with rank 2 and conform to
each other (having identical shape).
INTEGER MAT (2:11, 3) The MAT array is of type INTEGER, with rank 2, having a total

of 30 element positions. At the first rank the lower limit is 2
and the upper limit is 11 (position indices being incremented
from 2 to 11), and at the second rank the lower limit is 1
(default) and the upper limit is 3.

Storing arrays in memory is done by positioning the elements in a row, incrementing the position indices
successively in their order. Here is an example for array D (mentioned above, with rank 2 and size 3x3=9
positions):

D
L) | 21 | G | @2 | 22 | 632 | 13) | 23) | 33

As can be seen, the index on the first position is incremented (from the initial value, which is the lower
limit, to the upper limit), then the next index, and so on...

011 012 aes aln
Exemplifying with a matrix like: G,y 0y .. G, | »Wwecouldsay thatthe storage of elements in
memory is done according to the columns.
Om1 Om2 Omn

Initializing the elements of an array by using the DATA specification:

Examples: Explanations:

DIMENSION A10(10,10) Declaring an array named A10 (default type
REAL), having a total of 10x10=100 element
positions.

DATA A10/100*1.0/ Initialization by name: all 100 elements in array

A10 will be given the value 1.0.

DATA A(1,1),A(10,2),A(5,5)/2*3.3,2.0/ Initialisation by elements: the elements at
positions (1,1) and (10,2) are given the value 3.3,
and the element at position (5,5) is given the
value 2.0.

DATA ((A(i,7J),i=1,5,2),3=1,3)/9*3.5/ Initialisation by cycle: the elements in positions
(1,1), (3,1), (5,1), (1,2), (3,2), (5,2), (1,3), (3,3) and
(5,3) are each given a value of 3.5. The index i
start with a value of 1 and reach a final value of 5
with increments of 2.

Note: the DATA specification is a declarative statement, so it must be passed before any executable
statement. The following are some examples of executable statements (attribution statement).

22

Examples:

Explanations:

L=10

! Equivalent to:
L(1)=10;L(2)=10;L(3)=10;L(4)=10
L(5)=10;L(6)=10;L(7)=10;L(8)=10

L is the 8-position array, and the number 10 is a
scalar value. Since a scalar conforms to any array,
all 8 positions in the array L will be given the
value 10.

L=L*2

! Equivalent to:
L(L)=L(1)*2;L(2)=L(2)*2;L(3)=L(3)*2
L(4)=L(4)*2;L(5)=L(5)*2;L(6)=L(6)*2
L(7)=L(7)*2;L(8)=L(8)*2

All 8 elements in the array L will have the value
multiplied by 2 (since the scalar 2 is "conform" to
the array L).

D=-1.2
E=2.*D

Each element in array D will be assigned the
value -1.2. Arrays D and E are conform (they have
the identical 2x3 shape), therefore each element
in array E will receive the value -2.4 (resulting
from multiplying -1.2 by 2).

String sections

The syntax for referencing a string section (i.e a part of an array with rank 1):

string_name ([start] : [stop][: increment])

Examples: Explanations:
REAL, DIMENSION (6) :: VA The VA and VB arrays declared with 6 positions each
INTEGER, DIMENSION (0:5) :: VB (the position index in the case of the VA array can

VA(3:5)=1.0

VB(1:5:2)=1

take values from 1 to 6 inclusive, with an increment
of +1, and in the case of the VB array from 0 to 5,
also 6 positions).

The elements at positions 3, 4, and 5 of the VA
vector are given a value of 1.0.

The elements at positions 1, 3, and 5 (the index
starts at 1 and goes up to 5 with step 2) of the VB
vector are given a value of 1.

CHARACTER (LEN=8) TIT="ALanDALa”

The string named TIT will have 8 positions and will
be initialized with the quoted characters (one
character for each position).

The following references to sections of the entity named TIT (from the previous example) mean the

(quoted) characters in the right column:

TIT(2:4) ”Lan”
TIT (5:5) ”D”
TIT(:5) ”AlLanD”
TIT(5:) "DALa"”
TIT(:) ”AlLanDALa"”
TIT(10:)
TIT(5:10)
allowed, it will generate error!

- the characters in positions 2-4 (including),

- the character at position 5,

- characters up to position 5,

- characters from the 5™ position,

- equivalent to the reference of TIT,

String of null length (no characters from position 10),

The last position in the string is 7 (LEN=7), and 10 > LEN. Such a reference is not

Some intrinsic functions for character strings:
LEN (string)

INDEX (substring,string)
TRIM (string)

- returns the length (number of characters) of the specified string.
- returns the (start of) position of the substring in the string, or 0 if not.
- returns the string without the trailing blank characters.

23

Dynamic allocated memory

By dynamic memory allocation, when the program is written, only the number of extents (or rank) of the
array is reserved into memory (creating the possibility of generating addresses for possible locations), and
the actual allocation of memory space to the array takes place only when the statements that require this
have been reached. Of course, the programmer has to bear in mind that in this way it is not the operating
system that manages the memory allocated to the array, but the program, so the release of this memory
must also be controlled by statements. If this aspect is ignored, then after each execution of the program,
areas of memory will remain occupied and uncontrolled (this phenomenon is called “memory leakage”),
which, after repeated executions, can lead to the working memory being filled up, making it difficult or
even blocking the operation of the computer. Dynamically allocated memory can be achieved in one of
three ways:

- Allocatable arrays (using the ALLOCATABLE specification),

- Pointer or target arrays (via the POINTER or TARGET specification — since Fortran 95),

- Automatically allocated arrays (by passing data to procedures).

Allocatable arrays
When using the ALLOCATABLE specification, the rank (number of extents) of the array must be reserved
accordingly, and the lower and upper bounds (limits) of the array can be set at any time within the program
(if they have not already been set). The ALLOCATABLE specification cannot be combined with the
COMMON, DATA, EQUIVALENCE or NAMELIST specifications. Allocatable arrays can only be used
between procedures if memory has been allocated for them beforehand (limits have been set for each
rank), but to avoid “memory leaks” the space allocated for them must be freed (deallocated) before the
end of the procedure in which memory has been allocated. Multiple simultaneous allocations of memory
for an array are not allowed (to test the allocation status, the intrinsic ALLOCATED function can be used,
which returns the logical value .TRUE. if the array already has allocated space). The DEALLOCATE intrinsic
function can be used to free the allocated memory of an array, and the ALLOCATE intrinsic function can
be used to allocate memory. The syntax for declaring an array by the ALLOCATABLE statement (dynamic
memory allocation):

[Type,]ALLOCATABLE [, attribute... ::]array_ name_1 (:[, :1..)[,array_name_i (:[, :1...)...]
Note: for each rank, a position marked by the ":" character in the round bracket after the array_name is
reserved. For dynamic memory allocation the POINTER or TARGET attributes can also be used, the syntax
of the declaration by POINTER or TARGET being similar to the syntax for ALLOCATABLE, only the
keyword used differs (POINTER or TARGET will be written instead of ALLOCATABLE).
When dynamic memory allocation is used via ALLOCATABLE, POINTER or TARGET, the ALLOCATE
function will be used in the source file to actually allocate the required space to the arrays:

ALLOCATE (array_name_1 (extents) [, array_name_i (extents_i) ...])
In such situations, it must be taken into account that at the end of the program run, the control over the
memory blocks allocated for arrays (within the program) will also end, so that successive runs can lead to a
situation where the working memory is completely occupied by areas allocated to arrays that can no longer
be controlled. To avoid these situations, memory allocated dynamically within a program must be freed
within the same program (before losing control of the memory area) using the function:

DEALLOCATE (array_list)
It may also be necessary to free allocated memory blocks in order to allocate different memory blocks (of
different sizes) to the same arrays within a program. The allocation status can be tested using the
ALLOCATED (array_list) function, e.g. within a simple logical IF (the syntax is shown in the control
statements) used to free up the memory allocated to specific arrays:

IF (ALLOCATED (array_list)) DEALLOCATE (array_list)

Examples: Explanations:

ALLOCATABLE X12(:,:),B(:) The array named X12 has rank 2 (the reservation
of each “dimension” is marked with the ”: ”
character), and the array B will be a vector of rank

24

1. Both arrays are of type REAL by default. The
actual number of positions in each array will be
specified later.

REAL, ALLOCATABLE, DIMENSION (:)

Arrays N and M will have the same rank (1). In this
case the type of the entities (REAL) must also be
specified.

REAL, ALLOCATABLE :: v (:),m(:,:

ALLOCATE (v (10),m(0:9,-2:7))

DEALLOCATE (v, m)

IF (ALLOCATED (m)) THEN
DEALLOCATE (m)
ENDIF

ALLOCATE (m (3, 3))

DEALLOCATE (m)

Two allocatable arrays have been declared, the
vector V with rank 1 (reserved by the ” :”
character) and the matrix M with rank 2 (i.e. 2
dimensions).

10 positions have been allocated for the vector V
and 10x10=100 positions for the matrix M (from O
to 9 inclusive for the first extent and from -2 to 7
inclusive for the second extent). Remember to
close the brackets for the ALLOCATE function!
Freeing the memory spaces allocated to the
previous 2 arrays.

Use a logical expression to check the state of array
M to avoid double allocation (not allowed). The
memory space is released (by DEALLOCATE) only
if the intrinsic function ALLOCATED indicates (by
returning the logical value .TRUE.) that there is
already previously allocated memory space. If the
intrinsic function ALLOCATED returns the logical
value .FALSE., it means that no memory space is
allocated to the specified array and therefore
there is no need to release the memory (the
intrinsic function DEALLOCATE is ignored).
Allocate a new size of memory to the M array, this
time 3x3=9 positions.

Release the memory allocated to the M array
before the end of the program unit.

Pointer/Target arrays

A POINTER does not contain data, but points to a scalar or array where data can be stored. The scalar or
array to which a POINTER points must have the TARGET attribute. Unlike allocatable arrays, a POINTER
(or TARGET) array can be passed to a procedure even without prior allocation of memory space. The space
in memory for such an array is not actually allocated until the program is executed. The syntax for
specifying these arrays is similar to that of allocatable arrays, with the exception that POINTER arrays
usually require an explicit interface (for internal procedures, the interface is known). Since the specification
of POINTER and TARGET arrays is only possible starting from Fortran 95 (similar to the use of the
ALLOCATABLE specification already presented), in the case of Fortran 90 such arrays can be created by
the derived type specification (exemplified in the following).

Example:

Explanations:

POINTER C(:, :,)
REAL, TARGET :: kt(:)

The array named C has rank 3 (the reservation of
each "dimension" is marked with a ” : ” character)
and will be of type REAL (by default), POINTER.
The array named KT has rank 1 (like a vector) and is
declared explicitly as type REAL (because the name
starts with letter K).

The actual number of positions (the extents) in

these arrays will be specified later.

25

TYPE p array
REAL, DIMENSION(:) , POINTER
END TYPE

TYPE (p_array) ,ALLOCATABLE

READ(*,*)n,m

ALLOCATE (vp (n))
DO i=1,n

ALLOCATE (vpS%tp (m))
ENDDO

DEALLOCATE (vp)

tp

vp (:

A derived type named P_ARRAY has been declared,
containing a component of type REAL with the
attribute POINTER as a vector (array of rank 1)
named TP.

This derived type P_ARRAY is used to declare
another allocatable array called VP, also in vector
form (array of rank 1). This means that each
element of VP will have in its composition an array
of type REAL with the attribute POINTER in the
form of a vector (array of rank 1) called TP.
Assuming that the values of the scalar entities of
type INTEGER N and M are known (in the adjacent
example by reading), the desired storage space (in
the adjacent example N positions) for the array VP,
respectively the desired storage space (in the
adjacent example M positions) for each component
of type TP in VP. Thus, each element of the
POINTER VP array will have M positions, which
means that the VP array will have a total of NxM
positions.

Release allocated space, as with allocatable arrays.

)

Automatically allocated arrays

Automatically allocated arrays are variables allowed only within procedures (subroutines and functions),
and the lower and upper bounds for each pre-reserved extent (reserved rank) are set at the time of the
procedure call. These arrays cannot be initialised (their elements cannot contain initial values) and values
cannot be passed through such arrays between procedures.

Explanations:

Examples:

SUBROUTINE points (nr,pos)
INTEGER, INTENT (IN) nr
REAL, INTENT (OUT) pos

REAL

zone (nr) , zone_ 2 (2*nr)

A subroutine named POINTS has been specified with
arguments NR and POS (whose value is known at the time
the subroutine is entered). The argument NR is of type
INTEGER and is only used as a value to pass to the POINTS
subroutine. POS is of type REAL and is only used to pass a
value from the POINTS subroutine to the program unit
calling the subroutine.

When the POINTS subroutine is activated (and the known
NR value is passed to the subroutine), the REAL arrays
named ZONE and ZONE_2 are automatically allocated
memory space (defined size).

PROGRAM array function
ALLOCATABLE X (:)
PRINT *,”n: ”
READ *,n
ALLOCATE (X (n))
PRINT *,”the ”,n,
READ *, (X(i),i=1,n)
PRINT *, func (n, X)
DEALLOCATE (X)
CONTAINS
FUNCTION func (k, X)
DIMENSION func (k),X (k)
DO i=1,k
func (1)=X (1)

”

values:

”

A more complex example with a function defined as an
internal procedure and as an automatic array (extending an
earlier example from the function walkthrough). The array X
passed to the FUNC function (along with the size of N)
benefits from dynamic memory allocation. The memory
allocated to the array X is freed before the program ends.
When the function is called, the arguments are passed and
the result is obtained by the function name (in this case, N
different values).

The function (as array) will automatically have K positions
(corresponding to the N values passed at the time of the
call). Each element in the FUNC array receives the value of
the corresponding position in the X array.

26

ENDDO
END FUNCTION
END

Flow control statements

This category includes conditional statements, jump and loop (repetition) statements, as well as those for
stopping or suspending the execution of a program.

Conditional statements

There are several types, some of which also have structured variants (introduced with Fortran 90), their

syntax being as follows:

IF (arithmetic_expression) e;, €5, €3

IF (logical_expression) statement

IF (logical _expression 1) THEN
statements_1

[ELSE IF (logical_expression_i) THEN
statements_i]

[ELSE

statements_x]

ENDIF

SELECT CASE (expression)
[CASE (criteria_ set_i)
statements_i]

[CASE DEFAULT

statements_x]
END SELECT

Arithmetic decision (arithmetic IF) involves testing the value of
the result of arithmetic_expression against zero, specifying 3
labels (not necessarily different). If the result from
arithmetic_expression is strictly negative, a jump will be made to
label e;, if the result is null (the value 0) to label e,, and in case of
a strictly positive result to label e;.

Unstructured logical decision (simple logical IF), with empty
branch, allows a single statement to be specified. This statement
will only be executed if logical _expression evaluates to true (with
the value .TRUE.). Otherwise (resulting in .FALSE. for
logical_expression) the statement will be ignored.

The structured logical decision (structured logical IF) can be
empty-branched (the variant in which only the IF, THEN and
ENDIF keywords appear), or not. The ELSE IF keywords can
also be written as ELSEIF in many variants of the Fortran
language. If several ELSE IF sequences are specified, the
logical_expression_i must be distinct for each sequence, without
the possibility of simultaneous fulfillment of several expressed
conditions (the mention is also valid for logical _expression_1).

If logical_expression_1 results with the value .TRUE., those
specified in the statements_1 block will be executed.

Otherwise, if logical_expression_1 returns .FALSE., the first
logical_expression_i (if specified) that returns the value .TRUE.
will be considered, leading to the execution of what is specified
in the corresponding statements i block. Only if all preceding
logical expressions returned .FALSE. those specified in the
statements_x block will be executed.

The generalized condition testing allows the value of any
expression to be tested. Care must be taken that each criteria_
set_j specified is clear, and without overlaps between them! The
CASE DEFAULT branch will only be considered (performing
statements_x) if the conditions specified in all previous criteria_
set_ij are not met.

Structured variants can contain other structured statements (structures), but without intersecting them.
The contained structured statements must begin and end within the same block (marked in the preceding
syntaxes with statements_1, statements_i, and statements_x).

27

Examples:

Explanations:

CHARACTER r
1 WRITE(*,*)’Enter the values: '’
WRITE (*,*)’Restart? (Y/N): '/

READ (*, *) r
IF(r.EQ.’y’ .OR.r.EQ.’Y’) GOTO 1

Declare an entity of type character (1 position)

An executable statement with label 1

Reading a character and storing it in R, then
testing the value by a simple logical IF and
perhaps an unconditional jump to the statement
with label 1.

CHARACTER r
1 WRITE(*,*)’Enter the values: ’

WRITE (*, *) "Restart? (Y/N): '/

READ (*, *) r

IF(r=="y" .OR.r=="Y’) THEN
GOTO 1

ENDIF

The previous example, using a structured logical
IF (without the ELSE branch) instead of a simple
logical IF, and .EQ. replaced by ==.

IF(x+1)3,1,6

3 WRITE(*,*)”negative result”
GOTO 2

1 WRITE(*,*)”null result”
GOTO 2

6 WRITE(*,*)”positive result”

2 CONTINUE

Test the result of the numerical expression x+1,
using an arithmetic IF, and depending on the
result, display whether it is negative, zero or
positive.

IF (x+1<0) THEN
WRITE (*, *) “negative result”

ELSE IF(xt+1==0) THEN
WRITE (*,*)”null result”
ELSE

WRITE (*, *) “positive result”
ENDIF

The previous example, using a structured logical
IF instead of an arithmetic IF.

IF(x/2)3,3,6
3 WRITE (*,*) “result <=0”
GOTO 2
6 WRITE (*,*) “result >0”
2 CONTINUE

Testing the value resulting from the evaluation of
the numerical expression x/ 2, with an arithmetic
IF, then display it depending on the result, if it is
less than or equal to zero or strictly positive.

SELECT CASE (x/2)
CASE (:0)
WRITE (*, *) “result <=0"
CASE DEFAULT
WRITE (*, *) “result >0"
END SELECT

The previous example, but usinga SELECT CASE
structure with an arithmetic expression instead of
an arithmetic IF. The criteria specified by (:0)

means all numeric values up to and including zero.

SELECT CASE (x/2<=0)
CASE (.TRUE.)
WRITE (*, *) "result <=0"
CASE (.FALSE.)
WRITE (*, *) “result >0"
END SELECT

The previous example, usinga SELECT CASE
structure with a logical expression. The value
following the evaluation of a logical expression can
be .TRUE. or .FALSE. (just one of the two logical
values).

Jump statements

The variants of jump statements (using the keywords GO TO or as GOTO) have the following syntax:

GOTO label
GO TO label

28

The unconditional jump, label is where to jump to when this
statement is executed. The label must mark an executable statement

(it must be written in front of the statement to be jumped to during
execution).

GOTO (label_list) [, lexpression The computed jump. Evaluating the expression will give the position

GO TO (label_list) [,]lexpression of the label in the label_list that will be used to perform the jump.
Obviously, the resulting value of the expression must be a strictly
positive integer value. If this value is negative, zero or greater than
the number of elements in the label_list, the jump will not be
performed.

Loop statements

The statements for making loops are structured in Fortran 95 (those where the end of the structure is
marked instead of the label with END_name being introduced with Fortran 90). Being structured
statements (structures), they can contain other structures (for example, loop within loop, or structured
decision within loop, or loop within decision structure, etc.), but they cannot be intersected. Structured
statements must begin and end within the same (statement-marked) block in the syntaxes below. Variants
marked with a label at the end are inherited from previous versions of Fortran.

DO label [[,]loop_control] It would correspond to a post-conditional loop, with the caveat that if
statements loop_control was specified, it would be evaluated first (as noted
label last_executable_statement below). With this structured statement, if other loops are included in

the loop having the same body, it is allowed to use a single label to
mark the end of the structures (no intersection is considered).

If the last specification in the loop body is not an executable
statement (like an ENDIF, or something similar), the neutral
CONTINUE statement (shown below) can be used.

DO [loop_control] The difference from the previous variant consists in the end marking
statements ENDDO (many variants of Fortran also accept END DO).
ENDDO

The syntax for loop_control is as follows:

loop_counter=initial_value, end_value[, increment_step]
Interpreting this is done by assigning initial_value to the loop counter and checking if it is below end _value
(if it is not, the loop will be ignored without executing any statement from the body of the loop). After a
first step through the statements in the loop body, the loop counter is changed by the value specified at
increment_step. If increment_step is not specified, it will be taken as +1 by default. It checks that the value
in the loop_counter has not exceeded the end_value, in order to resume the execution of the statements in
the body of the loop again. The exit from the loop will be made when the loop_counter will get a value
above the end_value. Explicit modification (by statements) in the loop body of any loop_control component
is not allowed.
If loop_control is not specified, the exit can be done with the EXIT statement or an "infinite" loop can be
made (it can be stopped by pressing the <Ctr/> and <C> keys simultaneously, causing the program to stop
by forced interruption).

DO label [,] WHILE (logical_expression) It would correspond to a preconditioned loop. The statements

statements in the loop body will be executed only if logical_expression

label last_executable_statement evaluates to .TRUE. (and the loop will only run as long as this
value exists). When logical_expression becomes .FALSE., the
loop will be exited. If the last specification in the loop body is
not an executable statement (like an ENDIF tag, or something
similar), the neutral CONTINUE statement (shown in an
example) can be used.

29

DO WHILE (logical_expression)
statements
ENDDO

The difference from the previous variant consists in the end
marking ENDDO (some variants of Fortran also accept END DO).

In addition to these statements, there are also some control statements that can be used to repeat or exit

the above described loops.

CYCLE

EXIT

[label] CONTINUE

Causes execution of previous statements in a loop to resume,
without going through all the statements in the loop body.

Allows leaving the body of a loop (loop exit).

It is an executable statement with no effect. The meaning of
use is only to wear the label.

Examples: Explanations:
DO i=1,10 Cycle for displaying the loop_counter value (i), in the
WRITE (*,*)1 version with ENDDO,
ENDDO

WRITE (*,*) 1
! Equivalent to:
DO 8 i=1,10
8 WRITE(*,*)1
WRITE (*,*)1

or,

using label 8 to mark the end of the loop body.

DO i=1,n
DO j=i+l,n
REZ (1,73)=1.0/(i+7)
ENDDO
ENDDO
! Equivalent to:
DO 20 i=1,n
DO 20 j=i+1l,n
20 REZ(1,3)=1.0/(i+73)
! Equivalent to:
DO 11 i=1,n
DO 20 j=i+1l,n
20 REZ(1,3)=1.0/(i+73)
11 CONTINUE

Loop inside a loop, in the variant with ENDDO (the first
ENDDO is for the loop with counter j, considered
internal) and in the variant of using a label (20) to mark
the end of the loop body. It can be observed that in the
second variant only one label was used (it is not
considered a structure intersection in such situations).
It can also be observed that using the value of the
loop_counters is allowed, but it is forbidden to explicitly
change their value.

Of course, the CONTINUE statement (mentioned
above) can also be used in such situations. The inner
loop will be the one with label 20 (the last open
structure must be the first closed one).

DO A loop variant without control will exit the cycle due to
READ *,N the EXIT statement (if a null value has been entered
IF (N==0) EXIT for N).

ENDDO

DO i=1,4 The following will be displayed on the screen:

PRINT *, 1 1
IF(i > 2) CYCLE 1
PRINT *, 1 2
ENDDO 2
PRINT *,’ finished...’ 3
4

finished. ..

The CYCLE statement will cause the loop to resume
(without executing the statements that follow it) from
the moment the value of i exceeds 2.

CHARACTER*132 LINE
READ ('A’"),LINE
i=1

A character string (named LINE) is defined with 132
positions (the old Fortran 77 syntax was used) and the
characters are read in a single statement (using the
descriptor for alphanumeric values).

30

DO WHILE (LINE(i:i)==" ") As long as spaces (blank characters) are encountered
i=i+1 starting from the beginning of the string, the value i will
ENDDO be incremented, which is also used to specify the
position of the characters in the string (see substrings).
Finally, i will contain the position of the first non-blank
character in the LINE string (total number of blanks +1).

For input/output operations, implicit loops can be used (similar to the examples for the DATA
specification), as shown below:

Examples: Explanations:

DIMENSION A (10,10) Declaration of an array with 10x10=100
READ *,”no. of lines in matrix A: ”,nl positions

READ *,” no. of columns in matrix A: ”,nc

DO i=1,nl

PRINT *,”elements on line ”,nl,” :”
READ *, (A(i,73),J=1,nc)
ENDDO

Using an implicit loop inside an explicit
loop to read elements from a row of an
array.

Interpretation: read A(i,j) while the
position index j starts from the value 1 and
reaches (incremented at each step by +1)
the value of NC.

PRINT *,”matrix A:”
PRINT *, ((A(i,3),”, ”,J=1,nc),i=1,nl) Display the elements of array A, one by
one, followed by the ”,” character.

The loop with counter j is inside the loop
with counter i. In this example the display
of the values will be in line.

Statements to stop execution

STOP [stop_code] Terminates execution, stopping the program from running. If stop_code is
specified, then it will be displayed (stop _code can be an integer, or a quoted
string, it is used in case of more than one stop possibility, to identify the
branch being run).

PAUSE [pause_code] It can be used up to Fortran 90, being removed from the Fortran 95 standard
(it can be replaced by an empty read statement), but is supported by G95.
Stops the execution of the program temporarily and displays (if specified) the
pause_code (can be an integer, or a quoted string). The <Enter> key must be
pressed to resume execution. In all cases, it will cause the display of the
message:

PAUSE statement executed. Hit Return to continue.

If a pause_code has also been specified, it will be displayed between the
words "PAUSE" and "statement" in the above message.

Using logical units (peripherals and files)

The internal or external parts of a computing system used for input (reads) and output (writes) operations,
respectively for data storage, are considered physical units. These are accessible in the Fortran language as
logical units (default or explicit) corresponding to those physical units. Input (reads) and output (writes)
statements are performed through logical units. The default logical unit (marked with the value * in
statements that require specification) is the console, i.e. the assembly consisting of the keyboard and
display (monitor screen) — for inputs the keyboard is considered, and for outputs the display. The logical
units that must be explicitly specified are files, respectively peripherals (printer, magnetic tape drive, etc.),

31

with an integer value assigned to them. The indication of the logical unit to which an input / output
statement refers is done by this numerical value. Some values also have predefined logical units in older
Fortran, such as 1, 2, 3 and 4 for files named FOR00n . DAT (where the corresponding digit from 1 to 4 will
appear instead of the character n in the file name), or 5 for input devices (card reader, keyboard, etc.) and 6
for output devices (printer, display, etc.). Allocating these references (numbers) to logical units can be done
explicitly by the OPEN statement. The syntax of this executable statement is as follows:
OPEN (parameter[, parameter]...)

where parameter can be a keyword, or of the form keyword=value (each parameter may be specified only
once within the list in parentheses).

Table with the parameters of the OPEN statement in alphabetical order:

keyword value Explanations Default value
ACCESS= "SEQUENTIAL” Setting how to access the "SEQUENTIAL”
”DIRECT” logical unit: (row by row).
”APPEND” - sequential,
”"STREAM” - direct,
- adding records at the end,
- stream access (access by
position).
ACTION= "READ” How to use the logical unit: "READWRITE"”
"WRITE” - only to read from it, (read and write)
“"READWRITE” - only to write in it,
- reading and writing.
BLANK= "NULL"” Interpretation of blanks: "NULL” (no
" ZERO” - spaces (no conversion), conversion).
- 0 (conversion to digits for
numbers).
CONVERT= "NATIVE” Allows specifying a numeric "NATIVE” (no
" SWAP” format (for conversion / conversion).
"LITTLE_ENDIAN" | interpretation) for
“BIG_ENDIAN" unformatted data:
- native (no conversion),
- switch (between
LITTLE ENDIAN and
BIG_ENDIAN),
- the last two explicitly
specify the encodings.
DECIMAL= ”COMMA” Decimal separator character | "POINT”.
"POINT”
DELIM= "NONE” Specifying the delimiter “NONE” (no
“"APOSTROPHE” character (for CHARACTER | delimiter).
“QUOTE” type constants) for I/0
operations:
- without delimiter,
- the apostrophe character,
- the quotation mark
character.

ERR= label Statement label to jump to Not implicit, no
in case of error when jump by default.
opening the logical unit.

FILE= string Specify the file to be used as | It depends on the
the logical unit. The file logical unit and the

32

specifier is considered a
string, so it is delimited by
apostrophe or quotation
marks if quoted, and if
contained by a CHARACTER,
entity, the name of that
entity should be specified.

operating system.

FORM= "FORMATTED"” Format of the logical unit Depends on the
"UNFORMATTED” (file) accessed: value of the

- with format, ACCESS keyword.

- without format. Ifitis ”DIRECT”
then
”"FORMATTED” will
be considered,
otherwise
"UNFORMATTED"”
will be considered.

IOSTAT= variable Returns a scalar INTEGER No default value.
value in the variable,
indicating the success (or
failure) of accessing the
logical drive. If the logical
unit is opened successfully,
the value of the variable is 0.

PAD= "YES"” Specifies whether arecordis | “YES” (blanks are

“NO” filled with spaces (blank used when
characters) when the format | necessary).
requires more positions than
the value entered, or not
filled.

POSITION= "ASIS” Specifies the positioningina | “ASIS” (current

"REWIND” file: position).

"APPEND” -asis,

- back to the beginning,
- add at the end.

RECL= number Record length in bytes for Depends on the
the logical unit in case of value specified for
direct access, or maximum the ACCESS
length in the case of keyword.
sequential access (number
should be a positive integer
value).

SHARE= ”COMPAT"” Controls how other ”DENYNONE” (no

“"DENYNONE” processes can access the restrictions).

“DENYWR” logical unit simultaneously:

“DENYRD"” - compatible (not shared),

"DENYRW”

- without restrictions,

- no writing from other
program,

- no reading from other
program,

- exclusive, no access from
other program.

33

STATUS= ”OLD"” State of the logical unit (of "UNKNOWN"

"NEW” the file) when opened: (opened if exists,
"REPLACE” - existing (if it does not exist, | created if does not).
"SCRATCH”

an error is obtained),

- new (if already exists,
generate error),

- overwriting a file,

- temporary (deleted after
closing), cannot be used with
FILE=,

- unknown (opened if exists,
created if does not).

"UNKNOWN"

UNIT= number The logical unit number No default value.
(associated with the desired
file or device) being accessed
(number is a positive
integer). The logical unit
number can be specified
without the UNIT= keyword
if it is the first parameter in
the parentheses.

Disconnection of the logical unit (in the case of files it means closing them) can be specified by the CLOSE
executable statement, the syntax of which is as follows:

CLOSE (parameter[, parameter]...)
where parameter is of the form keyword=value (each parameter can be specified only once within the list
in parentheses).
The CLOSE statement will also cause the <EOF> (end-of-file) to be recorded (written) when the unit is
disconnected (file is closed).

Table of parameters in the CLOSE statement (in alphabetical order):

keyword value Explanation Default value
ERR= label The label of the statement to Not implicit, no default
jump to in case of an error jump.

when disconnecting the logical
unit (label is a positive
integer).

IOSTAT= variable Returns a scalar INTEGER No default value.
value in the variable, which
indicates the success (or
failure) of closing the logical
unit. If the logical unit was
successfully closed, the value
of the variable is 0.

STATUS= "KEEP” Option to keep (save) or "KEEP” (save the file)
"DELETE” delete the file. if STATUS= was not
”SCRATCH"”.
UNIT= number The logical unit number No default value.

(associated with the desired
file or device) to disconnect
(number is a positive integer).
The logical unit number can be

34

specified without the UNIT=
keyword if it is the first
parameter in the parentheses.

Caution: A file opened with the STATUS=”SCRATCH” specification cannot be saved or printed
(displayed), such an attempt will generate an error at runtime, and if ACTION="READ” was specified
when opening, the file cannot be deleted on disconnection (close). A read-only file does not necessarily
need to be closed, but a file whose contents have been changed (written to) must be closed using the
CLOSE statement, otherwise it may be stuck with inaccessible contents when the program finishes.
Writing through a buffer, if it has not been explicitly emptied (by the effect of the CLOSE statement), then
it is not certain that all records have been transferred, and at the end of the program run there will be no
one to manage the contents of the buffer (resulting in the computer's memory being filled with

unnecessary data).

Example:

Explanations:

OPEN (3, FILE="TEST.DAT”, STATUS="0LD")
READ (3, *)n,m
CLOSE (3)

Open the existing TEST.DAT file associated with
logical unit number 3, then read the values of
variables N and M from this file and disconnect
the logical unit (close the file).

DIMENSION A (10,10)
CHARACTER (12) name

PRINT *,”data file name: ”

3 READ(*,” (A)”)name
OPEN (1, FILE=name, STATUS="0OLD”, ERR=9)

! get the number of rows for A
READ(1,*) nl

! get the number of columns for A
READ (1, *) nc

! read the elements,
DO i=1,nl
READ(1,*) (A(i,3),J=1,nc)
ENDDO

OPEN (2, FILE="R.DAT"”, STATUS="UNKNOWN")

one row at a time

I Write a title to the R.DAT file
WRITE (2, *)”Array A:”
! Wwrite the elements, line by line:
DO i=1,nl
WRITE (2,*) (A(i,3),”,”,3=1,nc)
ENDDO
CLOSE (2)

STOP

9 PRINT *,”file not found!”
GOTO 3

Declare an array of 10x10=100 positions and the
NAME entity with 12 positions (characters). Note
CHARACTER, the letter C in the first column
marks comment!

Read the file name into the NAME variable.
Open the (existing) file associated with logical
unit 1, from which the data will be read (see the
comments in the adjacent column marked with
an exclamation mark). If the file does not exist, it
jumps to the statement labelled 9.

Use an implicit loop (J=1,NC) inside an explicit
loop (I=1,NL) to read elements from an array.

Opening the R.DAT file associated with logical
unit 2 (if the file does not exist, it is created, and
if it exists, it is opened and its contents are
overwritten).

Write the elements of the array A, line by line,
with a comma after each element.

Close the R.DAT file (disconnect logical unit
number 2). Logical unit number 1 has not been
modified and will be automatically disconnected
when the program ends.

If the data file is not found, after displaying the
specified message, an attempt will be made to
read its name again (jumping to the statement
labelled 3).

35

There are other additional statements for handling files, such as:

Syntax: Explanations:
BACKSPACE ([UNIT=]u[, ERR=label][, IOSTAT=var]) | Repositions the file on the previous record in
or case of sequential access.
BACKSPACE u
ENDFILE ([UNIT=]u[, ERR=label][, IOSTAT=var]) Write the end of file marker in the current
or position to the file associated with logical unit
ENDFILE u number u (accessed via a previous OPEN
statement, the rest of the file being truncated).
REWIND([UNIT=]u[, ERR=/abel]) Repositioning to the beginning of the file
or associated (previously by the OPEN statement)
REWIND u with logical unit number u.

Program units

All programs written in the Fortran language can be organized into program units. A program unit is
considered a sequence of specifications and statements that can be written to a separate source file and
compiled. Of course, several program units can also be written to a source file, and the order in which they
are written is not important, except for modules (modules must be compiled before the program units that
use them, so they must appear before them in the source file, so that by the time the unit that uses the
module is compiled, the module is already compiled).
Usually each program unit starts with a definition and ends with the END mark followed by the specification
of the corresponding program unit type. Program unit names must be unique and must comply with the
criteria for symbolic names (cannot contain spaces or non-permitted characters, must start with a letter
and cannot be longer than 32 characters, and for older versions of Fortran it is recommended to limit it to 6
characters).
Not all program units can contain executable statements, there are program units that can only contain
specifications relating to entities used by other program units. There are 4 types of program units in
Fortran:

- Main program (required in any application and may contain executable statements),

- External procedures (subroutines, functions — may contain executable statements),

- Modules (may not contain executable statements, only possibly in embedded module procedures)

- Data blocks (cannot contain executable statements, only specifications).
Each application (Fortran program) must contain a single main program (this will be launched at the start of
the run). External procedures are subroutines and functions that are defined separately. There are several
types of procedures, but only external ones are considered program units. Modules are pre-compiled units
(must be compiled before the program units that use them), usually containing only entity specifications.
Data blocks contain specifications about entities and may also contain data initializations. The difference
between data blocks and data files is the content of the specifications that require compilation (data files
contain only values, no specifications in Fortran, so do not require compilation). The main program and
procedures can contain executable statements, but data blocks and modules can only contain entity
specifications (with the exception that modules can also contain executable statements if these statements
are part of module procedures).

Main program

Cannot be missing from any application and no application can contain more than 1 main program. This is
the only program unit where specifying the type of program unit is optional. A main program cannot self-
reference (directly or indirectly). The syntax of a main program is as follows (with comments):

[PROGRAM name] If the keyword PROGRAM is used, then the name must also be specified
(which must be unique and will be considered global - meaning it will be

36

[specifications]

[executable statements]
[CONTAINS
internal procedures]

END [PROGRAM [name]]

"seen" from all program units). Without the keyword PROGRAM no name
can be specified, in such cases the default MAIN name for the program
will be considered. Any program unit that starts with specifications or
comments (or compilation directives via the OPTIONS keyword) will be
considered main program.

The keywords INTENT, OPTIONAL, PUBLIC and PRIVATE may not
be used in specifications. The entity specifications in all program units
must precede the executable statements.

ENTRY and RETURN keywords may not be used.

Several internal procedures (subroutines and functions) may be defined
successively.

The final marking must be at least the END keyword. It may also be
followed by the keyword PROGRAM, but the name may only be specified
if explicitly defined at the beginning of the program unit.

Example:

Explanations:

END

An empty main program unit with default name MAIN.

PRINT *,”Hello!”
END PROGRAM

Main program that will only display the text He11o! on the
monitor.

PROGRAM test
INTEGER C, D

CALL subl

CONTAINS
SUBROUTINE subl
PRINT *, func(X,Y)

END SUBROUTINE subl
FUNCTION func(X,Y)

END FUNCTION func
END PROGRAM test

Main program named TEST, which will call the subroutine SUB1
(included as an internal procedure along with the FUNC function).

Calling the subroutine named SUB1.

Marking the contained procedures.
Defining subroutine SUB1 as an internal procedure.

Printing the result of the FUNC function for the current values of
arguments X and Y.

End mark for the internal procedure SUB1.

Defining the FUNC function as an internal procedure.

Marking the end of the internal procedure FUNC.
The end mark for the main program TEST (with the name specified,
although an END would have sufficed).

Procedures

These may be subroutines or functions, but only those defined as external procedures are program units.
Procedures can be self-referencing (directly or indirectly) and have implicit interfaces (but interfaces can
also be explicitly specified, via interface blocks). The types of procedures existing in Fortran are as follows:

- External procedures (subroutines and functions that are not part of another program unit);

- Internal procedures (subroutines and functions that are part of a main program or another

procedure);

- Module procedures (procedures defined within modules);
- Intrinsic procedures (subroutines and functions predefined in the Fortran language);
- Dummy procedures (usually a dummy argument specified as a procedure, or listed as a procedure

reference);

- Statement function (a computational procedure defined by a single statement, which may be
referred to by its symbolic name).

37

All procedures have an interface, which is usually defined by default. A procedure interface refers to the
properties of a procedure with which it interacts, or to the calling program unit. The interface may also be
explicitly defined, through interface blocks. With the exception of data blocks, all program units may
contain interface blocks.

External procedures may contain internal procedures, but internal and module procedures cannot contain
internal procedures. Internal procedures are in the section preceded by the CONTAINS keyword and have
access to all entities in the containing program unit (HOST). Their name cannot be used as an argument to
another procedure (there are variants of Fortran that allow this, e.g. Intel Visual Fortran) and they cannot
contain separate entry points (via the ENTRY specification).

Subroutines are invoked by the CALL statement or by a defined assigned statement. Subroutines do not
return a value directly, but values may be transferred by known arguments or variables between the calling
program unit and the subroutine. The return from a subroutine to the calling program unit is done by the
RETURN statement, whose syntax is as follows:

RETURN [number] The RETURN keyword may be followed by a number or numeric expression
whose value must be of type INTEGER (signifying the reserved position in the
list of arguments by which the calling program unit will be returned).

Functions are invoked by name or by a defined operator. Normally they return a single result value
(through the function name) after evaluation. The return from a function will default to the program unit in
which the function reference was used, but the RETURN statement (shown above) can also be used to
specify different return points from the function endpoint.

Entering a procedure (by CALL statement in case of subroutines, or by name in case of a function) can also
be done at a position other than the start of the procedure, using the ENTRY specification, whose syntax is:

ENTRY name [(arguments)] The statement may be specified in the content of external procedures (it
cannot be used in internal procedures), being part of the body of the
procedure, and the name is the name of the entry point in the procedure
(different from the name of the procedure) by which that part of the
procedure will be invoked. In such cases the statements preceding the
ENTRY specification in the procedure definition will be ignored when
the procedure is activated (execution of the statements in the procedure
will start from the first statement following the specified entry point).

It is generally recommended to avoid the use of entry points in procedures, for clarity of source files.
Arguments that are specified when defining a procedure (or an entry point in an external procedure) are
considered notional, in the sense that at the time of procedure definition their values are not known, only
their type. Arguments that are specified when invoking a procedure are considered effective, because in
addition to knowing their type, their actual values are usually known. The order and type of the actual
arguments (used at the call) must coincide with the order and type of the notional arguments (used when
defining the procedure), but the name of the notional arguments may differ from the name of the effective
arguments.

When defining procedures, in front of the keyword specifying the type of procedure, some characteristics
can also be specified, such as:

ELEMENTAL When it is desired to apply the procedure to only one element in an array at a time.

PURE To avoid possible side effects (on the value of the entities used). In the case of functions
that are declared PURE, the INTENT options should not be used for arguments and
function names (there is no such restriction in subroutines). In addition, a procedure which
is declared as PURE will only be able to use other PURE procedures.

RECURSIVE As mentioned, direct or indirect recursion (self-reference) is allowed for functions and
subroutines. If this feature is specified, when defining the procedure, the line declaring the
type of the procedure (after the list of dummy arguments) may be completed with

38

RESULT (name_r) to specify a different name (name_r) from the original name of the
procedure, this different name being used for recursion.
MODULE To specify a module procedure (can only be used within modules).

Subroutines
In addition to the intrinsic subroutines existing in the Fortran language, other subroutines may be defined
as needed. The syntax for defining a subroutine is as follows:

SUBROUTINE name [(arguments)] Before the SUBROUTINE keyword, a procedure characteristic
(ELEMENTAL, PURE, RECURSIVE) can be specified and the
arguments are optional (they are only specified if value transfer
between the calling program unit and the subprogram is desired).
Arguments are considered notional in the sense that at the time of
subprogram definition their values are not known, only their type.
Reserved placeholders can also be used as arguments (see
RETURN examples).

[specifications] In all program units, entity specifications must precede executable
statements.
[executable statements] They may contain ENTRY specifications (for defining entry points)

and RETURN statements (for returning to the program unit from
which the subroutine was called).

[CONTAINS

Internal_procedures] Several internal procedures (subroutines and functions) can be
defined in succession, but only in the case of a subroutine defined
as an external procedure.

For internal procedures this section cannot appear.

END [SUBROUTINE [namel]] The final marking must be at least the END keyword for
subroutines defined as an external procedure. It may also be
followed by the keyword SUBROUTINE, possibly also by name.

In the case of internal procedures the end marker must contain at
least both keywords END SUBROUTINE.

Calling a subroutine is done by the CALL statement, whose syntax is as follows:

CALL name [(arguments)] Arguments are specified if they exist in the subroutine definition.
On call these arguments are considered effective, in the sense that
at the time the subroutine is called, along with their type and their
values, they are usually known. The order of the effective
arguments (from the subprogram call) must match the order of
the notional arguments (from the subroutine definition) as type,
but different names may be used.

Examples: Explanations:
! main program Main program that will only call the HI subroutine
CALL hi defined as an external procedure, and the subroutine
END PROGRAM will only display the text Hel1lo! on the screen.

In the example below the run will stop in the
! subroutine subprogram.

SUBROUTINE hi
PRINT *,”Hello!”
END SUBROUTINE hi

It can also be seen that at the end of the main
program mark (END PROGRAM) it was not possible to
specify the name of the main program as it was not

defined.
! main program The previous example modified by inserting the
CALL hi RETURN statement in the definition of the subroutine
END HI. In this case, after calling the subroutine and

39

! subroutine
SUBROUTINE hi
PRINT *,”Hello!”
RETURN

END

displaying the text He11o! on the screen, it will
return to the main program and the run will stop at
the end of the main program.

It can also be seen that the END marking for the
subroutine defined as an external procedure is
sufficient.

! subroutine with
SUBROUTINE sign
PRINT *,”positive
RETURN

ENTRY negative
PRINT *,”strictly
RETURN

END

entry point

or null value”

”

negative value

! calling program unit
IF(N < 0) THEN
CALL negative
ELSE
CALL sign
ENDIF

END

Example with an entry point named NEGATIVE in the
subprogram named SIGN.

If the value of scalar N is negative, then NEGATIVE is
called, which is not a subroutine, but an entry point in
the subroutine SIGN. As an effect, the executable
statements preceding the specification of the
NEGATIVE entry point in the SIGN subroutine shall be
ignored and the message strictly negative
value shall be printed on the display, after which it
shall return to the calling program unit. If the value of
scalar N is not negative, then the SEMN subroutine is
called and the statements are executed until the first
RETURN is encountered (the message positive
value is displayed and then the control returns to
the calling program unit). Of course, the specification
of an entry point only conditions the start from which
the statements are executed, not the end (if RETURN
had not been specified before the NEGATIVE entry
point, when calling the SIGN subroutine after the
positive value message was displayed, the
strictly negative wvalue message would
also be displayed).

! calling program unit

CALL verif (A,B,*10,*20,C)
PRINT *,”negative value”
GOTO 30

10 PRINT *,”null value”
GOTO 30

20 PRINT *,”positive value”

30 CONTINUE

END
! subroutine as external procedure
SUBROUTINE verif (X,Y,*,*,Z)

IF (X*Y-%) 50,54,55
50 RETURN
54 RETURN 1
55 RETURN 2

END

In the program unit from which the VERIF subroutine
is called, in the list of effective arguments appear the
scalar entities of type REAL (due to the implicit rule)
A, B, then the reserved positions (by the * mark) with
labels 10 and 20, respectively the scalar entity C (also
of type REAL due to the implicit rule). These
arguments correspond in order (and type) to the
notional arguments that were specified when defining
the subroutine: X and Y (of type REAL by default),
then 2 reserved positions (each marked by *) and Z
(of type REAL by default).

When the VERIF subroutine is called, the value from A
will be transferred to X, the value from B to Y, and the
value from C to Z in the subroutine. When the
subroutine comes to test the value resulting from the
arithmetic expression, the appropriate label is chosen
from the list (in the case of a strictly negative result it
jumps to label 50, in the case of a null result to label
54, and in the case of a strictly positive result to label
55). If jumping to the statement with label 50, the
return to the calling unit will be made to the actual
arguments of the CALL statement (the value in A will
be updated from the value of X, B from Y, and C from
Z) and the first statement that follows will be
executed (displaying the negative value text)

40

and then jumping to the statement with label 30. So
the value transfer will also be from the subroutine to
the calling program unit (no other options being
specified by INTENT) and RETURN means “normal”
return.

If the arithmetic condition in the subroutine results in
jumping to the statement with label 54, the return to
the calling unit will be done by activating the first
reserved position in the list of notional arguments,
which in the list of actual arguments corresponds to
*10, consequently the first statement executed after
the return will be the one with label 10 (the text
null wvalue will be displayed after which it will
jump to the statement with label 30). So RETURN 1
means turning back through the first reserved
position.

If the arithmetic condition in the subroutine results in
jumping to the statement with label 55, the return to
the calling unit will be done by activating the second
reserved position (due to the value 2 specified in
RETURN) in the list of notional arguments, which in
the list of actual arguments corresponds to *20,
consequently the first statement executed after the
return will be the one with label 20 (the text
positive value will be displayed after which the
statement with label 30 will continue). So RETURN 2
means turning back through the second reserved
position.

User defined functions

In addition to the intrinsic functions existing in the Fortran language, it is possible to define different
functions. There are several categories of functions: defined as external procedures (program units),
defined as internal or module procedures (contained by other program units), defined as a statement (in a
single specification expression). The use of functions is done by specifying the name and arguments (if a
function has no arguments, then the name will be followed by empty brackets) within statements. You can
pass values to functions via arguments (as with subroutines, except that unlike subroutines, with functions
the parentheses enclosing the arguments are mandatory, even if they are not arguments), but functions
will return a result via their name, not their arguments! With this in mind, an expression calculating the
result of the function must be mandatory in the definition of a function.

When defining a function, in addition to keywords specifying characteristics (ELEMENTAL, PURE,
RECURSIVE, MODULE), the type of the function can also be specified (in the case of those defined as
external procedures, only intrinsic types can be used). The syntax for defining a function as a procedure is
as follows:

[type] FUNCTION name ([arguments]) Before the FUNCTION keyword, a function characteristic
(ELEMENTAL, PURE, RECURSIVE) and a type (INTEGER,
REAL, COMPLEX, LOGICAL, CHARACTER, BYTE) can be
specified, and the arguments are optional (they are specified
only if value transfer between the calling program unit and the
function is desired), but the argument delimiting parentheses are
mandatory. Arguments are considered notional in the sense that
at the time of function definition their actual values are not
known, only their type.
In the case of self-reference (RECURSIVE), the definition must

41

[specifications]

[executable statements]

[CONTAINS
Internal procedures)

END [FUNCTION [namel]]

be completed at the end of this line with RESULT (name_r),
where name_r is the entity through which the result will be used
in the function.

In all program wunits, entity specifications must precede
executable statements.

They may contain ENTRY specifications (for defining entry
points) and RETURN statements (for returning to the program
unit from which the function was called).

Attention: it must also contain an expression that results in the
value of the function!

Several internal procedures (subroutines and functions) can be
defined in succession, but only in the case of a function defined
as an external procedure.

For internal procedures this section cannot appear.

The final marking must be at least the END keyword for functions
defined as an external procedure. It may also be followed by the
keyword FUNCTION, possibly also by name.

In the case of internal procedures the end marker must contain
at least both keywords END FUNCTION.

The syntax for defining a function statement is as follows:

[type] name([arguments])=expression

Before the FUNCTION keyword, a type (intrinsic or derived) can
also be specified, and specifying the arguments is optional (they
are specified only if value transfer is desired between the calling
program unit and the function), but the parentheses in which the
arguments would be are mandatory. The arguments are
considered notional, in the sense that at the time of function
definition, their actual values are not known, only their type.

Calling a function is done by its name and specifying the effective arguments (if any) within a statement, in

the form:

... hame ([arguments))

Arguments are specified if they exist in the function definition (if
they do not, then the parentheses will be empty). On call these
arguments are considered effective, in the sense that at the time
the function is invoked, along with their type and values, they are
usually known. The order of the effective arguments (at function
invoking) must match the order of the notional arguments (from
function definition) as type, but different names may be used.

Examples:

Explanations:

! main program
INTEGER on2
10 PRINT *,”number: ”
READ *,i
IF (i==0) STOP
PRINT *,on2 (1)
GOTO 10
END
! on2 function definition
INTEGER FUNCTION on2 (nr)
on2=nr/2
END

Main program that will invoke the ON2 function
defined as an external procedure, and display the
result of this function for the value of the effective
argument i (on the monitor). The program will stop
only if the value read for i is null.

When the function is invoked (to print the result) it
will transfer the value of i to NR (from the function
definition), and the returned result will be obtained
by the name of the ON2 function.

It can also be seen that the END marking for the
function defined as an external procedure is
sufficient.

42

! main program
INTEGER on2
10 PRINT *,”number: ”

READ *,i

IF(i == 0) STOP

PRINT *,on2 (i)

GOTO 10
CONTAINS

! on2 function definition
FUNCTION on?2 (nr)

INTEGER on?2

on2=nr/2

END FUNCTION on?2

END

Previous example modified by making the function
definition an internal procedure. Although it was
possible to define the function by specifying the type
INTEGER as in the previous case, it was chosen to
specify the type separately.

In this case the function end marking must also
contain the keyword FUNCTION (next to END), the
mention of the function name being optional there.

! main program
INTEGER on2,nr
! on2 function definition
on2 (nr)=nr/2
! executable statements
10 PRINT *,”number: ”
READ *, i
IF(i==0) STOP
PRINT *,on2 (i)
GOTO 10
END PROGRAM

The previous example modified by transforming the
function definition into a statement. It can be seen
that in this variant the function name is followed by
the notional argument in the definition line. The
statement function definition is not an executable
statement, so it must appear in the specification area.

PROGRAM factorial

INTEGER £, 1

PRINT *,”i: ”

READ *, i

PRINT *,”factorial of ”,1i,”:”,f (1)
END

! recursive function definition
RECURSIVE FUNCTION f (i) RESULT (fa)
INTEGER f, fa

IF(i==1) THEN
fa=1
ELSE
fa=i*f (i-1)
ENDIF
END

A "classic” example of a function defined as a self-
referring (recursive) procedure for calculating the
factorial value of a number.

Note that in this case, since RECURSIVE is specified,
the specification RESULT (name_r) is also
mandatory, name_r being the name of the function
used for self-referencing (recursion) in the
description. Although the function is named F, the
name FA (the one specified for RESULT) is used for
the calculation of the result of the function in its
definition.

PROGRAM array function

PRINT *, 'a,b,c: '

READ *,a,b,c

PRINT *, func(a,b,c)

CONTAINS

! internal procedure
FUNCTION func(x1l,x2,x3)
DIMENSION func (3)
func (1) =x1
func (2)=x2
func (3) =x3
END FUNCTION

END

A quick example of a function defined as an internal
procedure and as an array. Although a function
normally returns a single result (a single scalar value),
in the case of defining it as an internal procedure, you
can also create an array function (which will return a
result as an array).

When the function is called, the arguments are
passed in the specified order (X1 corresponds to the
value in A, X2 corresponds to B, X3 corresponds to C)
and the result is obtained by the name of the function
(in this case, 3 different values). For each position in
the function FUNC - array with 3 positions: FUNC(1),
FUNC(2) AND FUNC(3) - the results are calculated. The
first item in the FUNC array will take the value from
X1, the second will take the value from X2 and the
third will take the value from X3. Thus, when the

43

result of FUNC(A,B,C) is printed, 3 consecutive
different values will be displayed on the monitor.

Modules

These are program units that usually contain specifications and definitions that can be made accessible to
other program units. They may also contain explicit interfaces (via interface blocks) to an external
procedure or DUMMY procedure. The syntax of a module definition is as follows:

MODULE name It is obligatory to give a name, it is global and it is unique!!

[specifications] Cannot contain: AUTOMATIC, ENTRY, FORMAT, INTENT, OPTIONAL
and no defined or intrinsic functions.

[CONTAINS Executable statements can only occur within module (internal)

Module procedures] procedures.

END [MODULE [namel]] It is sufficient to specify only the END keyword (if the module has not been

named, there is no name to specify).

A module can only be used after compilation, by specifying its use in the target program unit with the:

USE name (where name is the name by which the module was defined).
Examples: Explanations:
MODULE prim A module defined as PRIM that contains only a few data
INTEGER, PARAMETER :: A,B speciﬁcations.
REAL E22(5,5)

END
! using it in program units

If it is written in the same source file as the program unit
SUBROUTINE P21

that will use it (e.g. subroutine P21 and function FU33),

USE prim the module must be placed before the program unit, so
ENB that when the contents of the source file are compiled, by
FUNCTION FU33 (A, X) the time USE PRIM is reached, the module has already

USE prim been compiled!

END
MODULE cal M A module called CAL_M, in which a derived type called
TYPE element ELEMENT (default PUBLIC, so visible from all program

PRIVATE units) has been defined, with the C and D components

INTEGER C,D declared PRIVATE (visible only from the module).
END TYPE
INTERFACE After specifying the derived type, there follows an

FUNCTION calculate (R) interface block for the CALCULATE function, where the

REAL :: calculate argument R is a vector used only for input (passing values

REAL, INTENT (IN) :: R(:) to the CALCULATE function), both the CALCULATE function

END FUCTION
END INTERFACE
END MODULE cal M

(the value resulting from the expression specified
elsewhere in the function definition) and R being of type
REAL.

An older and more complex example (adapted after https://www.star.le.ac.uk/~cgp/f90course/f90.html
#tth sEc6) with a module that could be used to simulate the operation of a console window (VT100 or X-
TERM window) controlled by ESC (ASCll) sequences, similar to ANSL.SYS in DOS, also containing module
procedures:

MODULE vt mod
IMPLICIT NONE

44

https://www.star.le.ac.uk/~cgp/f90course/f90.html#tth_sEc6
https://www.star.le.ac.uk/~cgp/f90course/f90.html#tth_sEc6

! specifying the code for <ESC> as a constant value named ESC
CHARACTER (1) , PARAMETER :: esc=ACHAR(27)
I initializing variables for 80 columns and 24 rows on the screen

INTEGER, SAVE :: nr c=80,nr r=24

CONTAINS

! clear the display and move the cursor to the top left

SUBROUTINE clear disp

CALL write str(esc//”[H”//esc//"[2J")

END SUBROUTINE clear disp

! set the new width to 80 or 132 columns

SUBROUTINE set_width(col)
INTEGER, INTENT (IN) :: col
IF (col>80) THEN
! switch to 132 columns

CALL write str(esc//”[?3h")

nr c=132
ELSE
! switch to 80 columns

CALL write str(esc//”[?31")

nr c=80
ENDIF
END SUBROUTINE set width
! get the actual width
SUBROUTINE get width(col)
INTEGER, INTENT (OUT) :: col
col=nr c
END SUBROUTINE get_width
! for internal use only
SUBROUTINE write str(string)

CHARACTER, INTENT (IN) :: string

WRITE (*,” (1X,A)”, ADVANCE="NO") string

END SUBROUTINE write str
END MODULE vt mod

This module can be used with the following specification variants (examples):

USE vt mod

USE vt mod,ONLY:clear disp

USE vt mod, columns=>get width

Block Data units

Use the entire contents of the module.

Use only the module procedure CLEAR_DISP from
procedures.

Use the whole module, but temporarily replacing the
name of the module procedure GET_WIDTH with the
new name COLUMNS.

These program units are intended to provide the possibility of initialising entities in common blocks (shared
memory areas), but are considered obsolete because the COMMON specification has been removed since
the Fortran 90 standard (but the G95 compiler supports it and in the absence of this specification will issue
a warning message). Blocks contain entity specifications, possibly with initialization of some data (not in the
case of POINTER and TARGET), but cannot contain executable statements. The syntax of a data block

definition is as follows:

BLOCK DATA [name] Giving a name is optional, mostly for the clarity of the source files. If
more than one block is defined, only one can be unnamed.

[specifications] May contain: COMMON (depending on the compiler), INTRINSIC,
STATIC, (only for named constants), DATA (for data

45

initialisations), PARAMETER (for constants), TARGET and POINTER
(but no initialisations), DIMENSION (for arrays), type (keywords for
intrinsic data types), TYPE (with user-defined type names and
definitions), RECORD and STRUCTURE (for records), EQUIVALENCE,
IMPLICIT, SAVE.

END [BLOCK DATA [namel]] It is enough to use only the END keyword (if the data block has not been
named then there is no name to specify).

Example: Explanations:

! main program The COMMON specification is used to designate by
CHARACTER (6) Actor name and composition a common memory area,
COMMON /zonel/a,b,c,d,Actor addressable from any program unit (by specifying
INTEGER :: sl=2

the common block name). The syntax for specifying
a common block is:
COMMON /name/components_list[[,]...]

PRINT *,"sl:",sl
PRINT *, a,b,c,d
PRINT 2,Actor

2 format ("Actor: ",A)

END

! data block for initialisation Definition of a data block by specifying and

BLOCK DATA initialising some data. Due to the COMMON
DIMENSION x (4) specification, the entities X (4-digit vector) and
COMMON /zonel/x,name NAME, which are part of the common block called
DATA x/3*1.,5/ ZONEZ1, will occupy the same memory area as A, B,

EEI;ARACTER (6) :: name="Adrian" C, D and ACTOR (containing the string Adrian),

provided that the storage size of the corresponding
entities is identical.

46

Exercises

Transcribing some logical schemes (flowcharts) into Fortran

1. The highest value from a, band ¢

! 1st variant, elementary translated

/" ”putin3values” '\ PRINT *,”Put in 3 values:”
|
\ a,b,c / READ *,a,b,c
|
x:=a x=a
T max<b \F IF (x<b) THEN
I x=b
x:=b ENDIF
L
T X<C F IF (x<c) THEN
: X=C
X:=C ENDIF
|
I
.) . PRINT *,”the highest is: ”,x
// the highest is: *,x \\ ! marking the end of the program unit

____________ END

! 2nd variant, structured
PRINT *,”Put in 3 values:”
READ *,a,b,c
X=a
IF (x<b) x=b
IF (x<c) x=cC
PRINT *,”the highest is: ”,x

END
2. The ascending ordering of values
a) Pivot method
START ! 1st variant using static allocation and jumps
DIMENSION v (30)
~ ~ ! the instructions from the logic scheme
/ Number of values: \ PRINT *,”Number of values:”

]
\ n / READ *,n

/ "The ”,n,”values:” \ PRINT *,”The ”,n,”values:”
T
ir=1 i=1
—)l
v(i) 2 READ *,v (i)
i:=i+1 i=1i+1
T i<n IF (i<=n) GOTO 2

F
! continued on the next page

! continued from the previous page

|
1
i=ip+1 21 i=ip+1
T ~v(ip)>v(i) \F 22 IF (v (ip)>v(i)) THEN
|
t:=v(ip) t=v (ip)
|
v(ip):= v(i) v (ip)=v (i)
I
v(i):=t v(i)=t
I ENDIF
|
ir=i+1 i=i+1
//////k\\\\\ IF (i<=n) GOTO 22
T i<n F
—
ip:=ip+1 ip=ip+l
L ip<n-1 F IF (ip<=n-1) GOTO 21
//”aamn&ngommn"\\ PRINT *,”ascending order:”
|
i=1

i:=1

23 PRINT *,v (i)

}*

v(i)
I

. i=i+1
i:=i+l
IF (i<=n) GOTO 23
T i<n F ! marking the end of the program unit
END
STOP !'2nd variant, with dynamic allocation and loops
ALLOCATABLE v (:)

PRINT *,”Number of values:”
READ *,n
ALLOCATE (v (n))
PRINT *,”The ”,n,”values:”
READ *, (v(i),1i=1,n)
DO ip=1,n-1
DO i=ip+l,n
IF (v (ip)>v(i)) THEN
t=v (ip)
v (ip)=v (1)
v(i)=t
ENDIF
ENDDO
ENDDO
PRINT *,”ascending order:”
PRINT *, (v (i),i=1,n)
DEALLOCATE (v)
END

START

/”Number of values:” \

/ "The ”,n,”values:” \

!

!

- variant with a modul transcribed as procedure

3rd variant, with internal procedure
DIMENSION v (30)

the statements from the logic scheme
PRINT *,”Number of values:”

READ *,n

PRINT *,”The ”,n,”values:”

i:=1
—)|
v(i) READ *, (v(i),i=1,n)
=i+l i=i+l
T i<n F
— 1
ip:=1 DO ip=1,n-1
|
1
ir=ip+1 DO i=ip,n
T~ v(ip)>v(i) \F IF (v (ip)>v(i)) THEN
CALL change (v (ip),v(i))
| ENDIF
i:=i+1
1////;:\\\\\f ENDDO
ip:=ip+1
T ip<n-1 F ENDDO

|

/ “ascending order: ” \

PRINT *,”ascending order:

PRINT *, (v(i),i=1,n)

CONTAINS
i:=i+l ! the internal procedure -> asb
SUBROUTINE change (a,b)

T i<n F t=a t:=a
a=b b

a:=

STOP b=t |
RETURN b:=a

END SUBROUTINE

END

49

50

a) Marking method

START

! the
/”Number of values:” PRINT

/ "The ”,n,”values:” \

I

i:=1

—l
v(i) 2
ir=i+1
T i<n F

[

m:=0 23
|

=1

T A~ v(i)>v(i+1) \F 22

t:=v(i)

v(i):= v(i+1)

v(i+1):=t

m:=1

|
ir=i+1

N

i<n-1 F
T~ m=z0 :F

/ "ascending order: “ \

! 1st variant using static allocation and jumps

DIMENSION v (30)
statements from the logic scheme
*,”Number of values:”

READ *,n
PRINT *,”The ”,n,”values:”

i=1

READ *,v (i)
i=i+1

IF (i<=n) GOTO 2

m=1
ENDIF

i=i+1l

IF (i<=n-1) GOTO 22

IF (m/=n) GOTO 23

PRINT *,”ascending order:”

i=1
PRINT *,v (i)
i=1i+1

IF (i<=n) GOTO 23

STOP ! marking the end of the program unit
END

' 2nd variant using dynamic allocation and loops

23

Source file examples

ALLOCATABLE v (:)

PRINT *,”Number of values:”

READ *,n

ALLOCATE (v (n))

PRINT *,”The ”,n,”values:”
READ *, (v(i),1i=1,n)

m=0
DO i=1,n-1
IF(v(i)>v(i+1l)) THEN
t=v (i)
v(i)=v(i+1)
v(i+l)=t
ENDIF
ENDDO
IF(m/=0) GOTO 23

PRINT *,”ascending order:”
PRINT *, (v(i),i=1,n)
DEALLOCATE (v)

END

1. Multiplying the terms of a matrix by a scalar value

REAL matrix(10,10)

PRINT 1,”Number of lines and columns of the matrix

READ *,nl,nc

PRINT 1,”Put in the terms of the matrix:”
READ *, ((matrix(i,j),Jj=1,nc),i=1,nl)
PRINT 1,”The scalar value:”

READ *,s
matrix=matrix*s
DO i=1,nl

PRINT *, (matrix(i,Jj),” ”,j=1,nc)

ENDDO
1 FORMAT (A, $)
END

Variant reading the matrix from the A.TXT file:

REAL matrix(10,10)
OPEN (
(

READ (1, *)nl, nc

1,FILE="A.TXT”,STATUS="0LD”,ERR=9)

READ(1,*) ((matrix (i, j),j=1,nc),i=1,nl)
PRINT ” (A,S$)”,”The scalar value:”

READ *,s
matrix=matrix*s
DO i=1,nl

PRINT *, (matrix(i,Jj),” ”,Jj=1,nc)

ENDDO

9 PRINT *,”file A.TXT not found!”

END

The structure of the A.TXT file:

(max.10x10) :”

number_of lines, number_of columns

terms_of _the_matrix

51

52

1 1 1
For example, for the [2 2 2| matrix the A.TXT file can be created with the following content:
3 3 3

T =,

3,3
511111121212131313

2. The sum of the terms in a chosen column of a matrix

REAL matrix(10,10)
CHARACTER r
PRINT *,”Number of lines and columns of the matrix (max.10x10):”
READ *,nl,nc
PRINT *,”Put in the terms of the matrix:”
READ *, ((matrix(i,j),Jj=1,nc),i=1,nl)
PRINT *,”Column number:”
READ *,ncol
sum=0.
DO i=1,nl
sum=sum+matrix (i, ncol)
ENDDO
PRINT *,”The sum is: ”,sum
PRINT *,”Choose another column? (Y/N):”

READ *,r
IF (r=="Y".0R.r=="y"”) GOTO 1
END

Variant with dynamic memory allocation and reading the matrix from the A.TXT file:

REAL, ALLOCATABLE :: matrix(:,:)
CHARACTER r
OPEN (1, FILE="A.TXT”,STATUS="0LD”,ERR=9)
READ (1, *)nl,nc
ALLOCATE (matrix (nl,nc))
READ (1, *) ((matrix (i, J),j=1,nc),i=1,nl)
PRINT *,”Column number:”
READ *,ncol
sum=0.
DO i=1,nl
sum=sum+matrix (i, ncol)
ENDDO
PRINT *,”The sum is: ”,sum
PRINT *,”Choose another column? (Y/N):”
READ *,r
IF (r=="Y” .OR.r=="y”) GOTO 1
DEALLOCATE (matrix)
PRINT *,”file A.TXT not found!”
END

Note: the structure of the A.TXT file is like in the previous example.

3. Transpose of a matrix

REAL,ALLOCATABLE :: matrix(:,:),mtransposed(:, :)
CHARACTER r
PRINT *,”Number of lines:”
READ *,nl
PRINT *,”Number of columns:”
READ *,nc
ALLOCATE (matrix (nl,nc),mtransposed(nc,nl))
DO i=1,nl
PRINT *,”Terms on line ”,1i,”:”
READ *, (matrix(i,j),J=1,nc)
ENDDO
DO i=1,nl
DO j=1,nc
mtransposed (j,1i)=matrix (i, Jj)
ENDDO
ENDDO
PRINT *,”transposed matrix:”
DO i=1,nc
PRINT *, (mtransposed(i,3j),” ”,Jj=1,nl)
ENDDO
DEALLOCATE (matrix, mtransposed)
PRINT *,”restart? (Y/N):”

READ *,r
IF (r=="Y".0OR.r=="y"”) GOTO 1
END

4. Multiplying two square matrices, using data files

REAL, ALLOCATABLE :: matl(:,:),mat2(:,:),matres(:,:)
CHARACTER r, filename in(12),filename out (12)
PRINT *,”Data input file:”
READ *,filename in
OPEN (1,FILE=filename in, STATUS='OLD’,ERR=9)
READ (1, *)n
ALLOCATE (matl (n,n),mat2 (n,n) ,matres (n,n))
READ(1,*) ((matl(i,3J),J=1,n),1i=1,n)
READ (1, *) ((mat2(i,3J),J=1,n),1i=1,n)
matres=0.
DO i=1,n

DO j=1,n

DO k=1,n
matres (i, j)=matres (i, j)+matl (i, k) *mat2 (k,)
ENDDO

ENDDO
ENDDO
PRINT *,”Output file:”
READ *,filename out
OPEN(2,FILE=filename_out,STATUS=’UNKNOWN’,POSITION=’APPEND’)
DO i=1,n

WRITE (2,*) (matres(i,3),” ”,3J=1,n)
ENDDO
CLOSE (2)
DEALLOCATE (matl, mat2,matres)
STOP
PRINT *,”Non-existent file name! Retry? (Y/N):”
READ *,r ;IF(r=="Y".0OR.r=="y”) GOTO 1
END

54

The structure of the data file: n

terms_of matl (nxn pieces)
terms_of _matl (nxn pieces)
1 1 1 1 0 0
For example, forthe [2 2 2[and [0 2 0
following content: 3 3 3 0 0 3
3 or: R

Solving a quadratic equation of the form: a-x2+b-x+c =0

CHARACTER r
INTEGER a,b,c
PRINT *,”solving the equation a.x2+b.x+c=0"
PRINT *,”put in the coefficients a, b, c: ”
READ *,a,b,c
SELECT CASE (a)
CASE (0)
IF (b==0) THEN
IF (c==0) THEN
PRINT *,”x can have any value”
ELSE
PRINT *,”mistake, c¢ cannot be different from 0”
ENDIF
ELSE
IF (c==0) THEN
PRINT *,”non-quadratic equation, the solution is
ELSE
PRINT *,”non-quadratic equation, the solution is
ENDIF
ENDIF
CASE DEFAULT
delta=b**2-4*a*c
IF (delta<0) THEN
PRINT *,”complex roots”
PRINT *,”x1=",-b/2/a,”+1(”,SQRT (-delta)/2/a,”)”
PRINT *,”x2=",-b/2/a,”-i(”,SQRT (-delta)/2/a,”)”

ELSEIF (delta==0.) THEN
PRINT *,”identical roots, xl=x2=",-b/2/a
ELSE

PRINT *,”x1=", (-b+SQRT (delta))/2/a
PRINT *,”x2=", (-b-SQRT (delta))/2/a
ENDIF

END SELECT

PRINT *,”Restart? (Y/N):”

READ *,r

IF (r=="Y"”.0OR.r=="y"”) GOTO 1

END

(number of lines= number of columns)

matrices the data file can be created with the

x=",0.

x=",-c/b

6. Solving a linear system of 2 equations with 2 unknowns (x and y): {a x+bey B y
dx+ey=f

CHARACTER r
PRINT 2,’Coefficients a, b and ¢ from equation "axtby=c”:
READ *,a,b,c
PRINT 2,’Coefficients d, e and f from equation ”"dxtey=f":
READ *,d, e, f
delta=a*e-b*d

IF (delta==0) THEN

IF (b*f==c*e) THEN

PRINT *,”indeterminate compatible system”
ELSE
PRINT *,”incompatible system”

ENDIF
ELSE

PRINT *,”x=", (c*e-b*f)/delta,”y=", (-c*d+a*f) /delta
ENDIF
FORMAT (A, \)

PRINT 2,”Retry? (Y/N):”
READ *,r

IF (r=="Y"”.0OR.r=="y”) GOTO 1
END

7. Simulating a lotto draw with pseudorandom numbers

CHARACTER r
ALLOCATABLE nr(:)
PRINT 2,” How many numbers are drawn:
READ *,n
PRINT 2,” from how many: ”
READ *, nmax
ALLOCATE (nr (nmax))
DO i=1,nmax
nr (i)=1i
ENDDO
man=RAND (TIME ())
DO i=1,n
1d=INT (RAND (0) * (nmax—-i+1)) +1i
man=nr (i)
nr (i)=nr (id)
nr (id) =man
ENDDO
DO i=1,n
DO j=i,n
IF(nr(i)>nr(3j)) THEN
man=nr (i)
nr (1)=nr (3)
nr (j)=man
ENDIF
ENDDO
ENDDO
PRINT *, (nr(i),i=1,n)
DEALLOCATE (nr)
FORMAT (A, $)
PRINT 2,”Retry? (Y/N):”
READ *,r
IF (r=="Y".0R.r=="y"”) GOTO 1
END

”

8. Simulating the simultaneous throwing of a pair of dice

CHARACTER r
DIMENSION n (2)
! initializing the pseudorandom number generator
man=RAND (TIME ())
1 PRINT 2,” the dice rolled:”
DO i=1,2
n(i)=INT (6*RAND(0))+1
WRITE (*,” (1X,I1)”,ADVANCE="NO")n (i)
ENDDO
! advance to a new row
PRINT *
2 FORMAT (A, $)
PRINT 2,”Retry? (Y/N):”
READ *,r
IF (r=="Y".0OR.r=="y"”) GOTO 1
END

9. Reading strings from the keyboard and displaying them using pointers

! defining a node type entity (with self-reference)

TYPE node
CHARACTER (60) row
TYPE (node) , POINTER :: next
END TYPE
! defining the pointers that will be used
TYPE (node) , POINTER :: front,back,position

CHARACTER (60)buffer
CHARACTER r
1 NULLIFY (front, back)
PRINT *,”press <Enter> to finish”
! recording typed strings
DO
WRITE (*,” (A,S$)”)”type anything: ”
READ (*,” (A) ”)buffer
I exiting the cycle when only the <Enter> key 1is pressed
IF (buffer=="") EXIT
IF(.NOT.ASSOCIATED (front)) THEN
ALLOCATE (front)
back=>front
ELSE
ALLOCATE (back%next)
back=>back%next
ENDIF
back%row=buffer
NULLIFY (back%next)
ENDDO
! displaying the typed strings
position=>front
DO WHILE (ASSOCIATED (position))
WRITE (*, *)position%row
position=>position%next

ENDDO

PRINT *,”Restart? (Y/N):”
READ *,r

IF (r=="Y"”.0OR.r=="y"”) GOTO 1
STOP

END

56

10. Calculating the area and perimeter of a rectangle, right triangle or semicircle after selecting an
option (using Hollerith constants, subroutines, entry points, and label returns)

CHARACTER op
PRINT *,40HArea and perimeter calculation
PRINT *,40Hchoose one of the options:
PRINT *,40H D - for rectangle
PRINT *,40H T - for right triangle
PRINT *,40H S - for semicircle
PRINT *,40H X - to exit the program
PRINT 3,9H option:
FORMAT (A, \)
READ *,op
SELECT CASE (op)
CASE (”D”,”d”) ; CALL d(*2)
CASE (”T”,”t”) ; CALL t(*2)
CASE (”S”,”s”) ; CALL s (*2)
CASE ("X"”,”"x")
STOP
CASE DEFAULT
PRINT *,”invalid option”
GOTO 2
END SELECT
GOTO 2
END

SUBROUTINE d(*)
PARAMETER (pi=3.14159)
FORMAT (A, \)
PRINT 3,”the lengths of the two sides: ”
READ *,a,b
CALL test(a,b, *4)
PRINT *,”Area=",a*b,”Perimeter=", (atb) *2
RETURN
ENTRY t
PRINT 3,”the lengths of the two perpendicular sides:
READ *,a,b
CALL test(a,b, *4)
PRINT *,”Area=",a*b/2,”Perimeter=",a+b+SQRT (a**2+b**2)
RETURN
ENTRY s
PRINT 3,”base length (diameter): ”
READ *,a
CALL test(a,l.,*4)
PRINT *,”Area=",pi*(a/4)**2,”Perimeter=",pi*a/2

”

RETURN
RETURN 1
CONTAINS
SUBROUTINE test (a,b, *)
IF (a==0.0r.b==0) THEN
PRINT *,”Cannot calculate with null value”
RETURN 1

ELSEIF (a<0.0r.b<0) THEN
PRINT *,”negative value?!”
ENDIF
RETURN
END SUBROUTINE test
END

N

58

Variant using 2 functions with entry points instead of the 3 subroutines:

CHARACTER op
PRINT *,40HArea and perimeter calculation
PRINT *,40Hchoose one of the options:
PRINT *,40H D - for rectangle
PRINT *,40H T - for right triangle
PRINT *,40H S - for semicircle
PRINT *,40H X - to exit the program
PRINT 3,9H option:
FORMAT (A, \)
READ *,op
SELECT CASE (op)
CASE (”D”,”d”) ; PRINT 3,”the lengths of the two sides: ”
READ *,a,b ; CALL test(a,b, *2)
PRINT *,”Area=",da(a,b),”Perimeter=",dp(a,b)
CASE (”T"”,”t")
PRINT 3,”the lengths of the two perpendicular sides:
READ *,a,b ; CALL test(a,b,*2)
PRINT *,”Area=",ta(a,b),”Perimeter =",tp(a,b)
CASE(”S”,”s”) ; PRINT 3,”base length (diameter): ”
READ *,a ; CALL test(a,l.,*2)
PRINT *,”Area=",sa(a),”Perimeter =",sp(a)
CASE ("X, "x")
STOP
CASE DEFAULT
PRINT *,”invalid option”
GOTO 2
END SELECT
GOTO 2
CONTAINS
SUBROUTINE test (a,b,*)
IF (a==0.0r.b==0) THEN
PRINT *,”Cannot calculate with null value”
RETURN 1
ELSEIF (a<0.0r.b<0) THEN
PRINT *,”negative value?!”
ENDIF
RETURN
END SUBROUTINE test
END

”

FUNCTION da(a,b)
da=a*b ; RETURN

ENTRY dp(a,b)
dp=(atb) *2 ; RETURN
ENTRY ta(a,b)

ta=a*b/2 ; RETURN
ENTRY tp(a,b)
tp=a+b+SQRT (a**2+b**2)
END

FUNCTION sa (a)
PARAMETER (pi=3.14159)
sa=pi* (a/4)**2 ; RETURN
ENTRY sp(a)

sp=pi*a/2

END

11. Determining the reactions of a simply supported beam subjected to a point load, and calculation of
the forces in a cross-section on the beam axis:

A A v, A A
Sketches with notations: Va | %a Vs i A /I_IW Vg |
----- > e >
Ha pas pal Ha X A pal
x | Lx — x | Lx —
1 L 4l L
Formulas used: V4 = P-sin(a) - (L;x) ; Hy = P - cos(a) ; V, = %;HA =0;Vg = _%

Vg = P -sin(a) i—c

INCLUDE ”"f.txt”

PRINT *,”Calculation of the reactions at the ends of a simply”, &
"supported beam, loaded with a force or moment”

PRINT *

PRINT *,”for a force load, press P”

PRINT *,”for a moment load, press M”

PRINT 2,”load type (P/M): ”

READ *,t

PRINT 2,”the length ””L”"” of the beam [m]: ”
READ *,1

PRINT 2, ”distance ””x”"” [m]: ”

READ *,x

IF(x<0.0R.x>1) THEN
PRINT *,”the load is not on the beam!”
GOTO 5
ENDIF
SELECT CASE (t)
CASE ("P”,"p")
PRINT 2,”force intensity ””P”” [kN]: ”
READ *,p
PRINT 2,”angle ”“"”a”” to the beam axis [degrees]:
READ *,a
va=p*SIN(a*pi/180)* (1-x)/1
ha=p*COS (a*pi/180)
vb=p*SIN (a*pi/180) *x/1
ra=SQRT (va**2+ha**2)
CASE (”"M”,”"m")
PRINT 2,”moment intensity ””M”” [kN.m]: ”
READ *,m
va=m/1l ; ha=0. ; vb=-m/1
CASE DEFAULT
PRINT *,” invalid option! ”
GOTO 3
END SELECT
PRINT 4,”VA= ”,va,”kN; HA= ”,ha,”kN; VB= ”,vb,”kN”
IF(.NOT. (a==0.0R.a==90)) PRINT 4,”RA= "”,ra,”kN at”, &
ATAN (va/ha) *180/pi, "degrees”
CALL FINT(l,x,t,va,ha,p,m,vb,a)
PRINT 2,” Restart? (Y/N): ”

”

READ *,r
IF (r=="Y".OR.r=="y"”) GOTO 1
END

59

The FINT subroutine for the calculation of the internal forces in a chosen cross-section:

. D) 3 N; M;
lllustration: g (L g 4_6

X; L-x; —
Ao #

-

SUBROUTINE FINT(1,x,t,va,ha,p,m,vb,a)
INCLUDE ”"f.txt”
PRINT 2,’”xi” for the cross-section:’
READ *,xi
SELECT CASE (t)
CASE (”P”,"p")
IF (xi<x) THEN
fn=ha
fv=va
fm=va*xi
ELSE
fn=0.
fv=va-p*SIN(a*pi/180)
fm=va*xi-p*SIN(a*pi/180) * (xi-x)
ENDIF
CASE (”"M”,"m")
IF (xi<x) THEN
fn=ha
fv=va
fm=va*xi
ELSE
fn=0.
fv=va
fm=va*xi-m
ENDIF
END SELECT
PRINT 4,”Ni= ”,fn,”kN; Vi= ”,fv,”kN; Mi= ”,fm,”kN.m”
RETURN
END

The contents of the F.TXT file included in the program (this file must be in the same folder as the
source files):

CHARACTER r, t

REAL 1,m

DATA pi/3.14159/
FORMAT (1X, A, S)
FORMAT (1X, 3 (A,F8.2),A)

Resources

The Home of Fortran Standards (JTC1/SC22/WG5): https://wg5-fortran.org/

The Fortran programming language: https://fortran-lang.org/

Fortran Wiki: https://fortranwiki.org/

Fortranplus | Fortran Information. https://www.fortranplus.co.uk/fortran-information/

The G95 Project / Running G95 (options, error codes): https://g95.sourceforge.net/docs.html

Some online available books and tutorials

Metcalf M., Reid J. K.: Fortran 90/95 Explained, Oxford University Press, 1996. https://archive.org/details/
fortran9095expla0000metc

Sandu A.: Lecture Notes. Introduction to Fortran 95 and Numerical Computing. A Jump-Start for Scientists
and Engineers. Michigan Technological University, 2001. https://www-eio.upc.edu/Iceio/manuals/Fortran
95-manual.pdf

van Mourik T.: Fortran 90/95 Programming Manual. University College London, 2005. https://www-
eio.upc.edu/Iceio/manuals/Fortran95-manual.pdf

Nicholson J. A.: Introduction to Programming using FORTRAN 95, 2011. https://www.fortrantutorial.com/
documents/IntroductionToFTN95.pdf

Learn — Fortran Programming Language. https://fortran-lang.org/en/learn/

Fortran Tutorial — Free Guide to Programming Fortran 90/95. https://www.fortrantutorial.com/

TutorialsPoint - Fortran Tutorial: https://www.tutorialspoint.com/fortran/index.htm

The Irish Centre for High-End Computing (ICHEC): Fortran Tutorial. https://www.ichec.ie/academic/
national-hpc/documentation/fortran-tutorial

61

https://wg5-fortran.org/
https://fortran-lang.org/
https://fortranwiki.org/
https://www.fortranplus.co.uk/fortran-information/
https://g95.sourceforge.net/docs.html
https://archive.org/details/fortran9095expla0000metc
https://archive.org/details/fortran9095expla0000metc
https://www-eio.upc.edu/lceio/manuals/Fortran95-manual.pdf
https://www-eio.upc.edu/lceio/manuals/Fortran95-manual.pdf
https://www-eio.upc.edu/lceio/manuals/Fortran95-manual.pdf
https://www-eio.upc.edu/lceio/manuals/Fortran95-manual.pdf
https://www.fortrantutorial.com/documents/IntroductionToFTN95.pdf
https://www.fortrantutorial.com/documents/IntroductionToFTN95.pdf
https://fortran-lang.org/en/learn/
https://www.fortrantutorial.com/
https://www.tutorialspoint.com/fortran/index.htm
https://www.ichec.ie/academic/national-hpc/documentation/fortran-tutorial
https://www.ichec.ie/academic/national-hpc/documentation/fortran-tutorial

F WRVIEShAE U - e o e

— -—

“EVOEB0L 001 002 pBRODC0CRRL o000 CasaRORBNsDRRR0GIDEDT0T0

IiIEQTIimH“a-irl!“ﬁ*ﬂﬂ*i#‘!#ﬂnﬂuwnntjﬂhﬂnuru-ﬂﬂﬁw
SEFEEREERHEEEELERE i“ll?!l!"!l?lIl!TTlII!I!II!I?I.!

i :
?!22%!222%2!22?2??2&2?2?‘2 222222?2!2??22%2?‘? 222

| 1
;33333333 313 _ 333333133=3313313333333333133v3333=13

l
EERE 44:&4:4:;444::44:i4444444&::¢4:44444:|4:f:¢:¢44

%552 555&5__555 5*5555*55,,435555555“5555&5555555&55

Jﬁuiﬂi BEHBESEEE&&&SﬁGSEtii!&SB&&uSEbBiEISiESBG&GEBE

?rr?ﬁrwrrrzr-rrr??rrr171311*1177*1*7*171?111??717111

|
E 2SN IREY B 8 lysllﬁlliﬁiﬁﬂﬂB!ﬁlliﬂi,illﬁllsmﬁllllaﬂ

R B B o R ¥ P PR N e T NN I o B T e P R

-3!!5*&9*_ﬂaﬁisqn: 99185999/839581980501485§3395983549499

£ & rRMR oI5y T

‘1§0ﬂllnﬂ?; 18000000800 000008008300/40030006020/00300100

IR I s el RNt I?Ii'\ei‘l'n"lﬂ‘.lrﬂd;llﬂluu s FUARLRE I q;uq-n..-lnu
IIIHttll ll!III%IiP?illliti1!t=Ilﬂllaiillqlhll?rﬂ1

‘!2???22?ﬂ2?1!?22?33?32*22’?”’?1!2221?2222?20?2!2?2

- | [

gD 3333;3 333?3]3&33333&33!33313333333 333ﬂ3333333
| |

1!4%4434 :J‘11114:a4111414l¢#ut4444444¢44444ﬂ444444
55555555555& 5__5555§‘55u‘5:a5ﬁ555*55$555*5:5555"~‘

':Eiqi__iﬁﬁﬁiﬁﬁﬁﬁﬁsﬁﬁiuﬁﬁiﬁu==5555 sﬁasasraﬁssaassss
‘?T!????IT???I?]?I?Ilx????;?"?a7’11?11131; BOERTE
fsaa{tnanq:n B8 anumaalnsssa:thtlasaistaasuaasaualms

1Tr3a8ls rann BUAD CF AAN T) I MENI SN 2P0 R R 0w ol sy e Lok RE

?3!*&!$!v9!!9 m3999555199!§9!&“99“5“3%“5“95“39399"59

	Programming in Fortran G95 for beginners
	Foreword
	Structured flowcharts
	Briefly about Fortran
	Creating programs

	Source file structure
	Fixed form
	Free form
	Tabular form

	Entity types
	Expressions
	Arithmetic expressions
	String (character) expressions
	Logical expressions
	Specification and initialisation expressions
	Constants used in expressions
	Intrinsic functions (for expressions)

	Input and output (I/O) statements
	Format specification and descriptors

	Arrays
	Static allocated memory
	String sections

	Dynamic allocated memory
	Allocatable arrays
	Pointer/Target arrays
	Automatically allocated arrays

	Flow control statements
	Conditional statements
	Jump statements
	Loop statements
	Statements to stop execution

	Using logical units (peripherals and files)
	Program units
	Main program
	Procedures
	Subroutines
	User defined functions

	Modules
	Block Data units

	Exercises
	Transcribing some logical schemes (flowcharts) into Fortran
	Source file examples

	Resources
	Some online available books and tutorials

