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Preface

The aim of this textbook is to give an introduction to Linear Algebra, and at the

same time to provide insight into concepts that are useful in various applications.

Since the intended reader is considered to be at undergraduate level, most pos-

sibly with little or no experience with abstract algebra, we try to build an approach

that is self contained and straightforward. We achieve this by including simple yet

detailed proofs of almost all results. In addition, fully solved problems and exam-

ples accompany the presentation of new concepts and results along with a section

containing proposed problems at the end of each chapter.

The structure as such is based on seven chapters, starting with the recollection

of the nuts and bolts of matrices (Chapter 1) before entering the core of the book

(Chapters 2, 3 and 4) which covers: Vector paces, Linear maps between vector spaces

and Eigenvalue problems. Two further chapters deal with the case of vector spaces

that are endowed with more geometric structure, namely we present Inner product

spaces (Chapter 5) and Operators on inner product spaces (Chapter 6). The final

chapter is a briefing to the analytic geometry of quadratic curves and surfaces.

Last but not least, the authors gratefully acknowledge the support of Prof. Ioan

Raşa and Prof. Dorian Popa who have carefully read the manuscript at different

4



Preface 5

stages suggesting valuable improvements.



1
Matrices

1.1 Basic definitions, operations and properties.

Definition 1.1. A matrix of dimension m × n with elements in a field F, (where

usually F = R, or F = C), is a function A : {1, . . . , m} × {1, . . . , n} → F,

A(i, j) = aij ∈ F, ∀i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}.

Usually an m× n matrix is represented as a table with m lines and n columns:

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

⎞⎟⎟⎟⎟⎟⎟⎠ .

Hence, the elements of a matrix A are denoted by aij , where aij stands for the

number that appears in the ith row and the jth column of A (this is called the (i, j)

entry of A) and the matrix is represented as A = (aij)i=1,m
j=1,n

.

We will denote the set of all m × n matrices with entries in F by Mm,n(F)

respectively, when m = n by Mn(F). It is worth mentioning that the elements of

6



Basic definitions, operations and properties. 7

Mn(F) are called square matrices. In what follows, we provide some examples.

Example 1.2. Consider the matrices

A =

⎛⎜⎜⎜⎝
1 2 3

4 5 6

7 8 9

⎞⎟⎟⎟⎠ , respectively B =

⎛⎝ i 2 + i 0

−3
√
2 −1 + 3i

⎞⎠ ,

where i is the imaginary unit. Then A ∈ M3(R), or in other words, A is a real

valued square matrix, meanwhile B ∈ M2,3(C), or in other words, B is a complex

valued matrix with two rows and three columns.

In what follows we present some special matrices.

Example 1.3. Consider the matrix In = (aij)i,j=1,n ∈ Mn(F), aij = 1, if i =

j and aij = 0 otherwise. Here 1 ∈ F, respectively 0 ∈ F are the multiplicative

identity respectively the zero element of the field F.

Then

In =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 . . . 0

0 1 . . . 0
...

... . . .
...

0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠
and is called the identity matrix (or unit matrix ) of order n.

Remark 1.4. Sometimes we denote the identity matrix simply by I.

Example 1.5. Consider the matrices O = (aij)i=1,m
j=1,n

∈ Mm,n(F) having all entries

the zero element of the field F. Then

O =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠
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and is called the null matrix of order m× n.

Example 1.6. Consider the matrices A = (aij)i,j=1,m ∈ Mn(F) given by aij = 0

whenever i > j, respectively aij = 0 whenever i < j. Then

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1n

0 a22 . . . a2n
...

... . . .
...

0 0 . . . ann

⎞⎟⎟⎟⎟⎟⎟⎠ , respectively A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 0 . . . 0

a21 a22 . . . 0
...

... . . .
...

an1 an2 . . . ann

⎞⎟⎟⎟⎟⎟⎟⎠
is called upper triangular, respectively lower triangular matrix.

If all entries outside the main diagonal are zero, A is called a diagonal matrix.

In this case we have

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 0 . . . 0

0 a22 . . . 0
...

... . . .
...

0 0 . . . ann

⎞⎟⎟⎟⎟⎟⎟⎠ .

Addition of Matrices.

If A and B are m× n matrices, the sum of A and B is defined to be the m× n

matrix A +B obtained by adding corresponding entries. Hence, the addition

operation is a function

+ : Mm,n(F)×Mm,n(F) → Mm,n(F),

(aij)i=1,m
j=1,n

+ (bij)i=1,m
j=1,n

= (aij + bij)i=1,m
j=1,n

, ∀ (aij)i=1,m
j=1,n

, (bij)i=1,m
j=1,n

∈ Mm,n(F).

In other words, for A,B ∈ Mm,n(F) their sum is defined as

C = A+B = (cij)i=1,m
j=1,n

where cij = aij + bij for all i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}.
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Properties of Matrix Addition.

Let O ∈ Mm,n(F) the null matrix of size m× n. For a given matrix

X = (xij)i=1,m
j=1,n

∈ Mm,n(F) we denote by −X its additive inverse (opposite), that is,

−X = (−xij)i=1,m
j=1,n

∈ Mm,n(F). For every A,B,C ∈ Mm,n(F) the following

properties hold:

1. A +B is again an m× n matrix (closure property).

2. (A+B) + C = A+ (B + C) (associative property).

3. A +B = B + A (commutative property).

4. A +O = O + A = A (additive identity).

5. A + (−A) = (−A) + A = O (the additive inverse).

It turns out that (Mm,n(F),+) is an Abelian group.

Scalar Multiplication.

For A ∈ Mm,n(F) and α ∈ F define αA = (αaij)i=1,m
j=1,n

. Hence, the scalar

multiplication operation is a function

· : F×Mm,n(F) → Mm,n(F),

α · (aij)i=1,m
j=1,n

= (α · aij)i=1,m
j=1,n

, ∀α ∈ F, (aij)i=1,m
j=1,n

,∈ Mm,n(F).

Properties of Scalar Multiplication.

Obviously, for every A,B ∈ Mm,n(F) and α, β ∈ F the following properties hold:

1. αA is again an m× n matrix ( closure property).

2. (αβ)A = α(βA) (associative property).
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3. α(A+B) = αA+ αB (distributive property).

4. (α + β)A = αA+ βA (distributive property).

5. 1A = A, where 1 is the multiplicative identity of F (identity property).

Of course that we listed here only the left multiplication of matrices by scalars. By

defining αA = Aα we obtain the right multiplication of matrices by scalars.

Example 1.7. If A =

⎛⎜⎜⎜⎝
1 −1 1

0 2 −1

−2 2 0

⎞⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎝
−1 0 2

1 −1 1

0 −1 2

⎞⎟⎟⎟⎠ , then

2A− B =

⎛⎜⎜⎜⎝
3 −2 0

−1 5 −3

−4 5 −2

⎞⎟⎟⎟⎠ and 2A+B =

⎛⎜⎜⎜⎝
1 −2 4

1 3 −1

−4 3 2

⎞⎟⎟⎟⎠ .

Transpose.

The transpose of a matrix A ∈ Mm,n(F) is defined to be a matrix A� ∈ Mn,m(F)

obtained by interchanging rows and columns of A. Locally, if A = (aij)i=1,m
j=1,n

, then

A� = (aji)j=1,n
i=1,m

.

It is clear that (A�)� = A. A matrix, that has many columns, but only one row, is

called a row matrix. Thus, a row matrix A with n columns is an 1× n matrix, i.e.

A = (a1 a2 a3 . . . an).

A matrix, that has many rows, but only one column, is called a column matrix.

Thus, a column matrix A with m rows is an m× 1 matrix, i.e.

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a1

a2
...

am

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Obviously, the transpose of a row matrix is a column matrix and viceversa, hence,

in inline text a column matrix A is represented as

A = (a1 a2 . . . am)
�.

Conjugate Transpose.

Let A ∈ Mm,n(C). Define the conjugate transpose of A = (aij)i=1,m
j=1,n

∈ Mm,n(C) by

A� = (aji)j=1,n
i=1,m

, where z denotes the complex conjugate of the number z ∈ C. We

have that (A�)� = A and A� = A� whenever A contains only real entries.

Properties of the Transpose.

For every A,B ∈ Mm,n(F) and α ∈ K hold:

1. (A+B)� = A� +B�.

2. (A+B)� = A� +B�.

3. (αA)� = αA� and (αA)� = αA�.

Symmetries.

Let A = (aij)i=1,n
j=1,n

∈ Mn(F) be a square matrix. We recall that

• A is said to be a symmetric matrix whenever A = A� (locally aij = aji for all

i, j ∈ {1, 2, . . . n}).

• A is said to be a skew-symmetric matrix whenever A = −A� (locally

aij = −aji for all i, j ∈ {1, 2, . . . n}).

• A is said to be a hermitian matrix whenever A = A� (locally aij = aji for all

i, j ∈ {1, 2, . . . n}).
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• A is said to be a skew-hermitian matrix whenever A = −A� (locally

aij = −aji for all i, j ∈ {1, 2, . . . n}).

It can be easily observed that every symmetric real matrix is hermitian,

respectively, every skew-symmetric real matrix is skew-hermitian.

Example 1.8. The matrix A =

⎛⎜⎜⎜⎝
1 −2 4

−2 0 3

4 3 2

⎞⎟⎟⎟⎠ is a symmetric matrix,

meanwhile the matrix B =

⎛⎜⎜⎜⎝
0 1 −3

−1 0 3

3 −3 0

⎞⎟⎟⎟⎠ is a skew-symmetric matrix.

The matrix C =

⎛⎜⎜⎜⎝
1 1 + i i

1− i 3 3− 2i

−i 3 + 2i 2

⎞⎟⎟⎟⎠ is a hermitian matrix, meanwhile the

matrix D =

⎛⎜⎜⎜⎝
−i 2− i −3i

−2− i i 2 + 3i

−3i −2 + 3i 0

⎞⎟⎟⎟⎠ is a skew-hermitian matrix.

Matrix multiplication.

For a matrix X = (xij)i=1,m
j=1,n

∈ Mm,n(F) we denote by Xi∗ its ith row, i.e. the row

matrix

Xi� = (xi1 xi2 . . . xin).

Similarly, the jth column of X is the column matrix

X�j = (x1j x2j . . . xmj)
�.

It is obvious that

(X�)i� = (X�i)
�,
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respectively

(X�)�j = (Xj�)
�.

We say that the matrices A and B are conformable for multiplication in the order

AB, whenever A has exactly as many columns as B has rows, that is A ∈ Mm,p(F)

and B ∈ Mp,n(F).

For conformable matrices A = (aij)i=1,m
j=1,p

and B = (bjk)j=1,p
k=1,n

the matrix product AB

is defined to be the m× n matrix C = (cik)i=1,m
k=1,n

with

cik = Ai�B�k =

p∑
j=1

aijbjk.

In the case that A and B failed to be conformable, the product AB is not defined.

Remark 1.9. Note, the product is not commutative, that is, in general,

AB �= BA even if both products exists and have the same shape.

Example 1.10. Let A =

⎛⎝ 1 0 −1

−1 1 0

⎞⎠ and B =

⎛⎜⎜⎜⎝
1 −1

0 1

−1 1

⎞⎟⎟⎟⎠ .

Then AB =

⎛⎝ 2 0

−1 2

⎞⎠ and BA =

⎛⎜⎜⎜⎝
2 −1 −1

−1 1 0

0 1 1

⎞⎟⎟⎟⎠ .

Rows and columns of a product.

Suppose that A = (aij)i=1,m
j=1,p

∈ Mm,p(F) and B = (bij) i=1,p
j=1,n

∈ Mp,n(F).

There are various ways to express the individual rows and columns of a matrix

product. For example the ith row of AB is
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Ci� = [AB]i� = [Ai�B�1 Ai�B�2 . . . Ai�B�n] = Ai�B

=
(
ai1 ai2 . . . aip

)
⎛⎜⎜⎜⎜⎜⎜⎝
B1�

B2�

...

Bp�

⎞⎟⎟⎟⎟⎟⎟⎠
There are some similar representations for individual columns, i.e. the jth column

is

C�j = [AB]�j = [A1�B�j A2�B�j . . . Am�B�j ]
� = AB�j

=
(
A�1 A�2 . . . A�p

)
⎛⎜⎜⎜⎜⎜⎜⎝
b1j

b2j
...

bpj

⎞⎟⎟⎟⎟⎟⎟⎠
Consequently, we have:

1. [AB]i� = Ai�B (ith row of AB).

2. [AB]�j = AB�j (jth column of AB).

3. [AB]i� = ai1B1� + ai2B2� + · · ·+ aipBp� =
∑p

k=1 aikBk�.

4. [AB]�j = A�1b1j + A�2b2j + · · ·+ A�pbpj =
∑p

k=1A�kbkj .

The last two equations have both theoretical and practical importance. They show

that the rows of AB are combinations of rows of B, while the columns of AB are

combinations of columns of A. So it is waisted time to compute the entire product

when only one row or column is needed.



Basic definitions, operations and properties. 15

Properties of matrix multiplication.

Distributive and associative laws.

For conformable matrices one has:

1. A(B + C) = AB + AC (left-hand distributive law).

2. (B + C)A = BA+ CA (right-hand distributive law).

3. A(BC) = (AB)C (associative law).

For a matrix A ∈ Mn(F), one has

AIn = A and InA = A ,

where In ∈ Mn(F) is the identity matrix of order n.

Proposition 1.11. For conformable matrices A ∈ Mm,p(F) and B ∈ Mp,n(F), on

has

(AB)� = B�A� .

The case of conjugate transposition is similar:

(AB)� = B�A� .

Proof. Let C = (cij) i=1,n
j=1,m

= (AB)�. Then for every

i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m} one has cij = [AB]ji = Aj�B�i. Let us consider

now the (i, j) entry of B�A�.

[B�A�]ij = (B�)i�(A�)�j = (B�i)
�(Aj�)

� =

p∑
k=1

[B�]ik[A�]kj

=

p∑
k=1

bkiajk =

p∑
k=1

ajkbki

= Aj�B�i
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Exercise. Prove that for every matrix A = (aij)i=1,m
j=1,n

∈ Mm,n(F) the matrices

AA� and A�A are symmetric matrices.

For a matrix A ∈ Mn(F), one can introduce its mth power by

A0 = In, A
1 = A, Am = Am−1A.

Example 1.12. If A =

⎛⎝ 0 1

−1 0

⎞⎠ then A2 =

⎛⎝ −1 0

0 −1

⎞⎠ , A3 =

⎛⎝ 0 −1

1 0

⎞⎠
and A4 =

⎛⎝ 1 0

0 1

⎞⎠ = I2. Hence Am = Am( mod )4.

Trace of a product. Let A be a square matrix of order n. The trace of A is the

sum of the elements of the main diagonal, that is

traceA =

n∑
i=1

aii .

Proposition 1.13. For A ∈ Mm,n(C) and B ∈ Mn,m(C) one has

traceAB = traceBA.

Proof. We have

traceAB =
m∑
i=1

[AB]ii =
m∑
i=1

(A)i�(B)�i =
m∑
i=1

n∑
k=1

aikbki =

m∑
i=1

n∑
k=1

bkiaik =

n∑
k=1

m∑
i=1

bkiaik =

n∑
k=1

[BA]kk = traceBA.

Block Matrix Multiplication.

Suppose that A and B are partitioned into submatrices-referred to as blocks- as

indicated below:
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A =

⎛⎜⎜⎜⎜⎜⎜⎝
A11 A12 . . . A1r

A21 A22 . . . A2r

...
... . . .

...

As1 As2 . . . Asr

⎞⎟⎟⎟⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎜⎜⎝
B11 B12 . . . B1t

B21 B22 . . . B2r

...
... . . .

...

Br1 Br2 . . . Brt

⎞⎟⎟⎟⎟⎟⎟⎠
We say that the partitioned matrices are conformable partitioned if the pairs

(Aik, Bkj) are conformable matrices, for every indices i, j, k. In this case the

product AB is formed by combining blocks exactly the same way as the scalars are

combined in ordinary matrix multiplication. That is, the (i, j) block in the

product AB is

Ai1B1j + Ai2B2j + . . . AirBrj .

Matrix Inversion.

For a square matrix A ∈ Mn(F), the matrix B ∈ Mn(F) that satisfies

AB = In and BA = In

(if exists) is called the inverse of A and is denoted by B = A−1. Not all square

matrices admits an inverse (are invertible). An invertible square matrix is called

nonsingular and a square matrix with no inverse is called singular matrix.

Although not all matrices are invertible, when an inverse exists, it is unique.

Indeed, suppose that X1 and X2 are both inverses for a nonsingular matrix A.

Then

X1 = X1In = X1(AX2) = (X1A)X2 = InX2 = X2

which implies that only one inverse is possible.

Properties of Matrix Inversion. For nonsingular matrices A,B ∈ Mn(F), the

following statements hold.
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1. (A−1)−1 = A

2. The product AB is nonsingular.

3. (AB)−1 = B−1A−1.

4. (A−1)� = (A�)−1 and (A−1)� = (A�)−1.

One can easily prove the following statements.

Products of nonsingular matrices are nonsingular.

If A ∈ Mn(F) is nonsingular, then there is a unique solution X ∈ Mn,p(F) for the

equation

AX = B, where B ∈ Mn,p(F),

and the solution is X = A−1B.

A system of n linear equations in n unknowns can be written in the form Ax = b,

with x, b ∈ Mn,1(F), so it follows when A is nonsingular, that the system has a

unique solution x = A−1b.

1.2 Determinants and systems of linear

equations

Determinants.

For every square matrix A = (aij)i=1,n
j=1,n

∈ Mn(F) one can assign a scalar denoted

det(A) called the determinant of A. In extended form we write

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
.
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In order to define the determinant of a square matrix, we need the following

notations and notions. Recall that by a permutation of the integers {1, 2, ..., n} we

mean an arrangement of these integers in some definite order. In other words, a

permutation is a bijection σ : {1, 2, . . . , n} → {1, 2, . . . , n}. It can easily be

observed that the number of permutations of the integers {1, 2, ..., n} equals

n! = 1 · 2 · . . . · n. Let us denote by Sn the set of all permutations of the integers

{1, 2, ..., n}. A pair (i, j) is called an inversion of a permutation σ ∈ Sn is i < j and

σ(i) > σ(j). A permutation σ ∈ Sn is called even or odd according to whether the

number of inversions of σ is even or odd respectively. The sign of a permutation

σ ∈ Sn, denoted by sgn (σ), is +1 if the permutation is even and −1 if the

permutation is odd.

Definition 1.14. Let A ∈ Mn(F). The determinant of A is the scalar defined by

the equation

det(A) =
∑
σ∈Sn

sgn (σ) a1σ(1) · a2σ(2) · . . . · anσ(n).

It can easily be computed, that for A = (aij)i=1,2
j=1,2

∈ M2(F), one has

det(A) = a11a22 − a12a21.

Similarly, if A = (aij)i=1,3
j=1,3

∈ M3(F), then its determinant can be calculated by the

rule

det(A) =

a11a22a33 + a13a21a32 + a12a23a31 − a13a22a31 − a11a23a32 − a12a21a33.

Example 1.15. If A =

⎛⎜⎜⎜⎝
1 2 3

4 5 6

7 8 9

⎞⎟⎟⎟⎠ then

det(A) = 1 · 5 · 9 + 3 · 4 · 8 + 2 · 6 · 7− 3 · 5 · 7− 1 · 6 · 8− 2 · 4 · 9 = 0.
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Laplace’s theorem.

Let A ∈ Mn(F) and let k be an integer, 1 ≤ k ≤ n. Consider the rows i1 . . . ik and

the columns j1 . . . jk of A. By deleting the other rows and columns we obtain a

submatrix of A of order k, whose determinant is called a minor of A and is

denoted by M j1...jk
i1...ik

. Now let us delete the rows i1 . . . ik and the columns j1 . . . jk of

A.. We obtain a submatrix of A of order n− k. Its determinant is called the

complementary minor of M j1...jk
i1...ik

and it is denoted by M̃ j1...jk
i1,...ik

. Finally let us denote

(the so called cofactor)

Aj1...jk
i1...ik

= (−1)i1+···+ik+j1+···+jkM̃ j1...jk
i1...ik

.

The adjugate of A is the matrix adj(A) =

(
(Aj

i )i=1,n
j=1,n

)�

, that is

adj(A) =

⎛⎜⎜⎜⎜⎜⎜⎝
A1

1 A1
2 · · · A1

n

A2
1 A2

2 · · · A2
n

...
... · · · ...

An
1 An

2 · · · An
n

⎞⎟⎟⎟⎟⎟⎟⎠
The next result provides a computation method of the inverse of a nonsingular

matrix.

Theorem 1.16. A square matrix A ∈ Mn(F) is invertible if and only if

det(A) �= 0. In this case its inverse can be obtained by the formula

A−1 =
1

det(A)
adj(A).

Corollary 1.17. A linear system Ax = 0 with n equations in n unknowns has a

non-trivial solution if and only if det(A) = 0.

We state, without proof, the Laplace expansion theorem:
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Theorem 1.18.

det(A) =
∑

M j1...jk
i1...ik

Aj1...jk
i1...ik

,where

• The indices i1 . . . ik are fixed

• The indices j1 . . . jk runs over all the possible values, such that

1 ≤ j1 < · · · < jk ≤ n.

As immediate consequences we obtain the following methods of calculating

determinants, called row expansion and column expansion.

Corollary 1.19. Let A ∈ Mn(F). Then

(i) det(A) =
∑n

k=1 aikA
k
i , (expansion by row i)

(ii) det(A) =
∑n

k=1 akjA
j
k, (expansion by column j).

Properties of the determinant.

Let A,B ∈ Mn(F) and let a ∈ F. Then

(1) det(A�) = det(A).

(2) A permutation of the rows, (respectively columns) of A multiplies the

determinant by the sign of the permutation.

(3) A determinant with two equal rows (or two equal columns) is zero.

(4) The determinant of A is not changed if a multiple of one row (or column) is

added to another row (or column).

(5) det(A−1) = 1
det(A)

.

(6) det(AB) = det(A) det(B).
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(7) det(aA) = an det(A).

(8) If A is a triangular matrix, i.e. aij = 0 whenever i > j (aij = 0 whenever

i < j), then its determinant equals the product of the diagonal entries, that

is det(A) = a11 · a22 · . . . · ann =
∏n

i=1 aii.

Rank. Elementary transformations.

A natural number r is called the rank of the matrix A ∈ Mm,n(F) if

1. There exists a square submatrix M ∈ Mr(F) of A which is nonsingular (that

is det(M) �= 0).

2. If p > r, for every submatrix N ∈ Mp(F) of A one has det(N) = 0.

We denote rank (A) = r.

It can be proved that for A ∈ Mm,n(F) and B ∈ Mn,p(F), then

rank (A) + rank (B)−m ≤ rank (AB) ≤ min{rank (A), rank (B)} .

Theorem 1.20. Let A,B ∈ Mn(F) with det(A) �= 0. Then rank (AB) = rank (B).

Proof. Since det(A) �= 0, we have rank (A) = n. By using the above notation with

m = p = n we obtain rank (B) ≤ rank (AB) ≤ rank (B). Hence

rank (AB) = rank (B).

Definition 1.21. The following operations are called elementary row

transformations on the matrix A ∈ Mm,n(F):

1. Interchanging of any two rows.

2. Multiplication of a row by any non-zero number.

3. The addition of one row to another.
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Similarly one can define the elementary column transformations.

Consider an arbitrary determinant. If it is nonzero it will be nonzero after

performing elementary transformations. If it is zero it will remain zero. One can

conclude that the rank of a matrix does not change if we perform any elementary

transformation on the matrix. So we can use elementary transformation in order

to compute the rank.

Namely, given a matrix A ∈ Mm,n(F) we transform it by an appropriate succession

of elementary transformations- into a matrix B such that

• the diagonal entries of B are either 0 or 1, all the 1’s preceding all the 0’s on

the diagonal.

• all the other entries of B are 0.

Since the rank is invariant under elementary transformations, we have

rank (A) = rank (B), but it is clear that the rank of B is equal to the number of 1’s

on the diagonal.

The next theorem offers a procedure to compute the inverse of a matrix:

Theorem 1.22. If a square matrix is reduced to the identity matrix by a sequence

of elementary row operations, the same sequence of elementary row transformations

performed on the identity matrix produces the inverse of the given matrix.

Example 1.23. Compute the inverse of the matrix A =

⎛⎜⎜⎜⎝
1 2 0

0 2 1

0 0 3

⎞⎟⎟⎟⎠ by using

elementary row operations.

We write

⎛⎜⎜⎜⎝
1 2 0

0 2 1

0 0 3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠ (− 1
3
A3�+A2�)�
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⎛⎜⎜⎜⎝
1 2 0

0 2 0

0 0 3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0

0 1 −1
3

0 0 1

⎞⎟⎟⎟⎠ (−A2�+A1�)�

⎛⎜⎜⎜⎝
1 0 0

0 2 0

0 0 3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 −1 1
3

0 1 −1
3

0 0 1

⎞⎟⎟⎟⎠ ( 1
2
A2�,

1
3
A3�)�

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 −1 1
3

0 1
2

−1
6

0 0 1
3

⎞⎟⎟⎟⎠ .

Hence A−1 =

⎛⎜⎜⎜⎝
1 −1 1

3

0 1
2

−1
6

0 0 1
3

⎞⎟⎟⎟⎠ .

Recall that a matrix is in row echelon form if

(1) All nonzero rows are above any rows of all zeroes.

(2) The first nonzero element (leading coefficient) of a nonzero row is always

strictly to the right of the first nonzero element of the row above it.

If supplementary the condition

(3) Every leading coefficient is 1 and is the only nonzero entry in its column,

is also satisfied, we say that the matrix is in reduced row echelon form.

An arbitrary matrix can be put in reduced row echelon form by applying a finite

sequence of elementary row operations. This procedure is called the Gauss-Jordan

elimination procedure.

Existence of an inverse. For a square matrix A ∈ Mn(F) the following

statements are equivalent.

1. A−1 exists (A is nonsingular).

2. rank (A) = n.

3. A is transformed by Gauss-Jordan in In.
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4. Ax = 0 implies that x = 0.

Systems of linear equations.

Recall that a system of m linear equations in n unknowns can be written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · a1nxn = b1

a21x1 + a22x2 + · · · a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · · amnxn = bm.

Here x1, x2, . . . , xn are the unknowns, a11, a12, . . . , amn are the coefficients of the

system, and b1, b2, . . . , bm are the constant terms. Observe that a systems of linear

equations may be written as Ax = b, with A = (aij)i=1,m
j=1,n

∈ Mm,n(F), x ∈ Mn,1(F)

and b ∈ Mm,1(F). The matrix A is called the coefficient matrix, while the matrix

[A|b] ∈ Mm,n+1(F),

[A|b]ij =
⎧⎨⎩ aij if j �= n + 1

bi if j = n + 1

is called the augmented matrix of the system.

We say that x1, x2, ..., xn is a solution of a linear system if x1, x2, ..., xn satisfy each

equations of the system. A linear system is consistent if it has a solution, and

inconsistent otherwise. According to the Rouché-Capelli theorem, a system of

linear equations is inconsistent if the rank of the augmented matrix is greater than

the rank of the coefficient matrix. If, on the other hand, the ranks of these two

matrices are equal, the system must have at least one solution. The solution is

unique if and only if the rank equals the number of variables. Otherwise the

general solution has k free parameters where k is the difference between the

number of variables and the rank. Two linear systems are equivalent if and only if

they have the same solution set.
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In row reduction, the linear system is represented as an augmented matrix [A|b].
This matrix is then modified using elementary row operations until it reaches

reduced row echelon form. Because these operations are reversible, the augmented

matrix produced always represents a linear system that is equivalent to the

original. In this way one can easily read the solutions.

Example 1.24. By using Gauss-Jordan elimination procedure solve the following

systems of linear equations.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 − x2 + 2x4 = −2

2x1 + x2 − x3 = 4

x1 − x2 − 2x3 + x4 = 1

x2 + x3 + x4 = −1.

We have [A|b] =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1 0 2

2 1 −1 0

1 −1 −2 1

0 1 1 1

−2

4

1

−1

⎞⎟⎟⎟⎟⎟⎟⎠
(−2A1�+A2�,−A1�+A3�)�

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1 0 2

0 3 −1 −4

0 0 −2 −1

0 1 1 1

−2

8

3

−1

⎞⎟⎟⎟⎟⎟⎟⎠
(A2�↔A4�)�

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1 0 2

0 1 1 1

0 0 −2 −1

0 3 −1 −4

−2

−1

3

8

⎞⎟⎟⎟⎟⎟⎟⎠
(A2�+A1�,−3A2�+A4�)�
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⎛⎜⎜⎜⎜⎜⎜⎝
1 0 1 3

0 1 1 1

0 0 −2 −1

0 0 −4 −7

−3

−1

3

11

⎞⎟⎟⎟⎟⎟⎟⎠
( 1
2
A3�+A1�,

1
2
A3�+A.21�,−2A3�+A4�)�

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 5

2

0 1 0 1
2

0 0 −2 −1

0 0 0 −5

−3
2

1
2

3

5

⎞⎟⎟⎟⎟⎟⎟⎠
( 1
2
A4�+A1�,

1
10

A4�+A2�,− 1
5
A4�+A3�)�

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 −5

1

1

2

5

⎞⎟⎟⎟⎟⎟⎟⎠
(− 1

2
A3�,− 1

5
A4�)�

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

1

−1

−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

One can easily read the solution x1 = 1, x2 = 1, x3 = −1, x4 = −1.

Recall that a system of linear equations is called homogeneous if b = (0 0 · · · 0)�

that is ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · a1nxn = 0

a21x1 + a22x2 + · · · a2nxn = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · · amnxn = 0.

A homogeneous system is equivalent to a matrix equation of the form

Ax = O.

Obviously a homogeneous system is consistent, having the trivial solution

x1 = x2 = · · · = xn = 0.

It can be easily realized that a homogeneous linear system has a non-trivial

solution if and only if the number of leading coefficients in echelon form is less

than the number of unknowns, in other words, the coefficient matrix is singular.
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1.3 Problems

Problem 1.3.1. By using Laplace’s theorem compute the following determinants.

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5

2 1 2 3 4

0 2 1 2 3

0 0 2 1 2

0 0 0 2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, D2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 0 0 0

1 2 1 0 0 0

0 1 2 1 0 0

0 0 1 2 1 0

0 0 0 1 2 1

0 0 0 0 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Problem 1.3.2. Compute the following determinants.

a)

∣∣∣∣∣∣∣∣∣∣∣∣

1 ω ω2 ω3

ω ω2 ω3 1

ω2 ω3 1 ω

ω3 1 ω ω2

∣∣∣∣∣∣∣∣∣∣∣∣
, where ω ∈ C such that the relation ω2+ω+1 = 0 holds.

b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

1 ε ε2 . . . εn−1

1 ε2 ε4 . . . ε2(n−1)

...
...

...
...

...

1 εn−1 ε2(n−1) . . . ε(n−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, where ε = cos 2π

n
+ i sin 2π

n
.

Problem 1.3.3. Let A = (aij)i=1,n
j=1,n

∈ Mn(C) and let us denote

A = (aij)i=1,n
j=1,n

∈ Mn(C). Show that

a) det(A) = det(A).

b) If aij = aji, i, j ∈ {1, 2, . . . , n} then det(A) ∈ R.

Problem 1.3.4. Let a1, a2, . . . an ∈ C. Compute the following determinants.
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a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

a1 a2 a3 . . . an

a21 a22 a23 . . . a2n
...

...
...

...
...

an−1
1 an−1

2 an−1
3 . . . an−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

b)

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 . . . an

an a1 a2 . . . an−1

...
...

...
...

...

a2 a3 a4 . . . a1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Problem 1.3.5. Compute An, n ≥ 1 for the following matrices.

a) A =

⎛⎝ 7 4

−9 −5

⎞⎠ , A =

⎛⎝a b

b a

⎞⎠ , a, b ∈ R.

b) A =

⎛⎜⎜⎜⎝
1 3 5

0 1 3

0 0 1

⎞⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎝
a b b

b a b

b b a

⎞⎟⎟⎟⎠ , a, b ∈ R.

Problem 1.3.6. Compute the rank of the following matrices by using the

Gauss-Jordan elimination method.

a)

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 −2 −3 −5

6 −1 1 2 3

−2 4 3 2 1

−3 0 2 1 2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
1 2 −2 3 −2

3 −1 1 −3 4

−2 1 0 1 −1

2 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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b)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 3 5 −3 6

0 1 2 3 4 7

2 1 3 3 −2 5

5 0 9 11 −7 16

2 4 9 12 10 26

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Problem 1.3.7. Find the inverses of the following matrices by using the

Gauss-Jordan elimination method.

a) A =

⎛⎝1 1

1 3

⎞⎠ , B =

⎛⎜⎜⎜⎝
2 −1 1

1 2 3

3 1 −1

⎞⎟⎟⎟⎠ .

b) A = (aij)i=1,n
j=1,n

∈ Mn(R), where aij =

⎧⎨⎩ 1 if i �= j

0 otherwise.

Problem 1.3.8. Prove that if A and B are square matrices of the same size, both

invertible, then:

a) A(I + A)−1 = (I + A−1)−1,

b) (A+BB�)−1B = A−1B(I +B�A−1B)−1,

c) (A−1 +B−1)−1 = A(A+B)−1B,

d) A−A(A+B)−1A = B − B(A+B)−1B,

e) A−1 +B−1 = A−1(A+B)B−1

f) (I + AB)−1 = I − A(I +BA)−1B,

g) (I + AB)−1A = A(I +BA)−1.
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Problem 1.3.9. For every matrix A ∈ Mm,n(C) prove that the products A�A and

AA� are hermitian matrices.

Problem 1.3.10. For a quadratic matrix A of order n explain why the equation

AX −XA = I

has no solution.

Problem 1.3.11. Solve the following systems of linear equations by using

Gauss-Jordan elimination procedure.

a) ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2x1 − 3x2 + x3 + 4x4 = 13

3x1 + x2 − x3 + 8x4 = 2

5x1 + 3x2 − 4x3 + 2x4 = −12

x1 + 4x2 − 2x3 + 2x4 = −12.

b) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 − x2 + x3 − x4 + x5 − x6 = 1

x1 + x2 + x3 + x4 + x5 + x6 = 1

2x1 + x3 − x5 = 1

x2 − 3x3 + 4x4 = −4

−x1 + 3x2 + 5x3 − x6 = −1

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 = 2

Problem 1.3.12. Find m,n, p ∈ R such that the following systems be consistent,

and then solve the systems.
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a) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x− y − z = 0

x+ 2y − 3z = 0

2x+ 3y +mz = 0

nx+ y + z = 0

x+ py + 6z = 0

2ex = y + z + 2.

b) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x− y + z = 0

−x+ 2y + z = 0

mx− y + 2z = 0

x+ ny − 2z = 0

3x+ y + pz = 0

x2 + y2 + x2 = 3.



2
Vector Spaces

2.1 Definition and basic properties of a Vector

Space

Definition 2.1. A vector space V over a field F (or F vector space) is a set V

with an addition + (internal composition law) such that (V,+) is an abelian group

and a scalar multiplication · : F× V → V, (α, v) → α · v = αv, satisfying the

following properties:

1. α(v + w) = αv + αw, ∀α ∈ F, ∀v, w ∈ F

2. (α + β)v = αv + βv, ∀α, β ∈ F, ∀v ∈ V

3. α(βv) = (αβ)v

4. 1 · v = v, ∀v ∈ V

The elements of V are called vectors and the elements of F are called scalars. The

scalar multiplication depends upon F. For this reason when we need to be exact

33
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we will say that V is a vector space over F, instead of simply saying that V is a

vector space. Usually a vector space over R is called a real vector space and a

vector space over C is called a complex vector space.

Remark. From the definition of a vector space V over F the following rules for

calculus are easily deduced:

• α · 0V = 0

• 0F · v = 0V

• α · v = 0V ⇒ α = 0F or v = 0V .

Examples. We will list a number of simple examples, which appear frequently in

practice.

• V = Cn has a structure of R vector space, but it also has a structure of C

vector space.

• V = F[X], the set of all polynomials with coefficients in F with the usual

addition and scalar multiplication is ann F vector space.

• Mm,n(F) with the usual addition and scalar multiplication is a F vector space.

• C[a,b], the set of all continuous real valued functions defined on the interval

[a, b], with the usual addition and scalar multiplication is an R vector space.

2.2 Subspaces of a vector space

It is natural to ask about subsets of a vector space V which are conveniently closed

with respect to the operations in the vector space. For this reason we give the

following:
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Definition 2.2. Let V be a vector space over F. A subset U ⊂ V is called subspace

of V over F if it is stable with respect to the composition laws, that is,

v + u ∈ U, ∀v, u ∈ U, and αv ∈ U∀α ∈ F, v ∈ U , and the induced operations verify

the properties from the definition of a vector space over F.

It is easy to prove the following propositions:

Proposition 2.3. Let V be a F vector space and U ⊂ V a nonempty subset. U is

a vector subspace of V over F iff the following conditions are met:

• v − u ∈ U, ∀v, u ∈ U

• αv ∈ U, ∀α ∈ F, ∀v ∈ U

Proof. Obviously, the properties of multiplication with scalars, respectively the

associativity and commutativity of addition operation are inherited from V . Hence,

it remains to prove that 0 ∈ U and for all u ∈ U one has −u ∈ U. Since αu ∈ U for

every u ∈ U and α ∈ F it follows that 0u = 0 ∈ U and 0− u = −u ∈ U.

Proposition 2.4. Let V be a F vector space and U ⊂ V a nonempty subset. U is

a vector subspace of V over F iff

αv + βu ∈ U, ∀α, β ∈ F, ∀v, u ∈ V.

Proof. Let u, v ∈ U. For α = 1, β = −1 we have v − u ∈ U. For β = 0 and α ∈ F

we obtain αv ∈ U. The conclusion follows from the previous proposition.

Example 2.5. Let S = {(x, y, z) ∈ R3|x+ y + z = 0}. Show that S is a subspace

of R3.

To see that S is a subspace we check that for all α, β ∈ R and all

v1 = (x1, y1, z1) , v2 = (x2, y2, z2) ∈ S

αv1 + βv2 ∈ S.
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Indeed, since v1, v2 ∈ S we have

x1 + y1 + z1 = 0

x2 + y2 + z2 = 0,

and by multiplying the equations with α and β respectively, and adding the

resulting equations we obtain

(αx1 + βx2) + (αy1 + βy2) + (αz1 + βz2) = 0.

But this is nothing else than the fact that

αv1 + βv2 = (αx1 + βx2, αy1 + βy2, αz1 + βz2) satisfies the equation that defines S.

The next propositions show how one can operate with vector subspaces (to obtain

a new vector subspace) and how one can obtain a subspace from a family of

vectors.

Proposition 2.6. Let V be a vector space and U,W ⊂ V two vector subspaces.

The sets

U ∩W and U +W = {u+ w|u ∈ U,w ∈ W}

are subspaces of V .

Proof. We prove the statements by making use of the Proposition 2.4. Let α, β ∈ F

and let u, v ∈ U ∩W. Then u, v ∈ U and u, v ∈ W. Since U and W are vector spaces

it follows that αv + βu ∈ U , respectively αv + βu ∈ W. Hence αv + βu ∈ U ∩W.

Now consider α, β ∈ F and let x, y ∈ U +W. Then x = u1 + w1, y = u2 + w2 for

some vectors u1, u2 ∈ U , w1, w2 ∈ W. But then

αx+ βy = (αu1 + βu2) + (αw1 + βw2) ∈ U +W.
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The subspace U ∩W is called the intersection vector subspace, while the subspace

U +W is called the sum vector subspace. Of course that these definitions can be

also given for finite intersections (respectively finite sums) of subspaces.

Proposition 2.7. Let V be a vector space over F and S ⊂ V nonempty. The set

〈S〉 = {∑n
i=1 αivi : αi ∈ F and vi ∈ S, for all i = 1, n, n ∈ N

}
is a vector

subspace over F of V .

Proof. The proof is straightforward in virtue of Proposition 2.4.

The above vector space is called the vector space generated by S, or the linear hull

of the set S and is often denoted by span(S). It is the smallest subspace of V

which contains S, in the sense that for every U subspace of V with S ⊂ U it

follows that 〈S〉 ⊂ U .

Now we specialize the notion of sum of subspaces, to direct sum of subspaces.

Definition 2.8. Let V be a vector space and Ui ⊂ V subspaces, i = 1, n. The sum

U1 + · · ·+ Un is called direct sum if for every v ∈ U1 + · · ·+ Un, from

v = u1 + · · ·+ un = w1 + · · ·+ wn with ui, wi ∈ Ui, i = 1, n it follows that

ui = wi, for every i = 1, n.

The direct sum of the subspaces Ui, i = 1, n will be denoted by U1 ⊕ · · · ⊕ Un. The

previous definition can be reformulated as follows. Every u ∈ U1 + · · ·+ Un can be

written uniquely as u = u1 + u2 + . . .+ un where ui ∈ Ui, i = 1, n.

The next proposition characterizes the direct sum of two subspaces.

Proposition 2.9. Let V be a vector space and U,W ⊂ V be subspaces. The sum

U +W is a direct sum iff U ∩W = {0V }.

Proof. Assume that U +W is a direct sum and there exists s ∈ U ∩W, s �= 0V .

But then every x ∈ U +W, x = u+ w can be written as
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x = (u− s) + (w + s) ∈ U +W. From the definition of the direct sum we have

u = u− s, w = w + s hence s = 0V , contradiction.

Conversely, assume that U ∩W = {0V } and U +W is not a direct sum. Hence,

there exists x ∈ U +W such that x = u1 + w1 = u2 + w2 ∈ U +W and u1 �= u2 or

w1 �= w2. But then u1 − u2 = w1 − w2, hence u1 − u2, w1 − w2 ∈ U ∩W. It follows

that u1 = u2 and w1 = w2, contradiction.

Let V be a vector space over F and U be a subspace. On V one can define the

following binary relation RU : let u, v ∈ V , uRU v iff u− v ∈ U .

It can easily be verified that the relation RU is an equivalence relation, that is

(r) vRU v, for all v ∈ V . (reflexivity)

(t) uRU v and vRU w =⇒ uRU w, for all u, v, w ∈ V. (transitivity)

(s) uRU v =⇒ vRU u, for all u, v ∈ V. (symmetry)

The equivalence class of a vector v ∈ V is defined as

RU [v] = {u ∈ V : vRU u} = v + U.

The quotient set (or factor set) V/RU is denoted by V/U and consists of the set of

all equivalence classes, that is

V/U = {RU [v] : v ∈ V }.

Theorem 2.10. On the factor set V/U there is a natural structure of a vector

space over F.

Proof. Indeed, let us define the sum of two equivalence class RU [v] and RU [w] by

RU [v] +RU [v] = RU [v + w]
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and the multiplication with scalars by

αRU [v] = RU [αv].

Then, is an easy verification that with these operations V/U becomes an F

space.

The vector space from the previous theorem is called the factor vector space, or

the quotient vector space.

2.3 Basis. Dimension.

Up to now we have tried to explain some properties of vector spaces ”in the large”.

Namely we have talked about vector spaces, subspaces, direct sums, factor space.

The Proposition 2.7 naturally raises some questions related to the structure of a

vector space V . Is there a set S which generates V (that is 〈S〉 = V )? If the

answer is yes, how big should it be? Namely how big should a ”minimal” one

(minimal in the sense of cardinal numbers) be? Is there a finite set which generates

V ? We will shed some light on these questions in the next part of this chapter.

Why are the answers to such questions important? The reason is quite simple. If

we control (in some way) a minimal system of generators, we control the whole

space.

Definition 2.11. Let V be an F vector space. A nonempty set S ⊂ V is called

system of generators for V if for every v ∈ V there exists a finite subset

{v1, . . . , vn} ⊂ V and the scalars α1, . . . , αn ∈ F such that v = α1v1 + · · ·+ αnvn (it

is also said that V is a linear combination of v1, . . . , vn with scalars in F). V is

called dimensionally finite, or finitely generated, if it has a finite system of

generators.
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A nonempty set L ⊂ V is called a linearly independent system of vectors if for

every finite subset {v1, . . . , vn} ⊂ L of it α1v1 + . . . αnvn = 0 implies that ai = 0 for

all i = 1, n.

A nonempty set of vectors which is not linearly independent is called linearly

dependent.

A subset B ⊂ V is called basis of V if it is both a system of generators and linearly

independent. In this case every vector v ∈ V can be uniquely written as a linear

combination of vectors from B.

Example 2.12. Check whether the vectors (0, 1, 2) , (1, 2, 0) , (2, 0, 1) are linearly

independent in R3.

By definition, the three vectors are linearly independent if the implication

α1 (0, 1, 2) + α2 (1, 2, 0) + α3 (2, 0, 1) = 0R3 ⇒ α1 = α2 = α3 = 0

holds.

Checking the above implication actually amounts (after computing the right hand

side) to investigating whether the linear system⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2 + 2α2 = 0

α1 + 2α2 = 0

2α1 + α2 = 0

has only the trivial solution (α1, α2, α3) = (0, 0, 0) or not. But we can easily

compute the rank of the matrix, which is 3 due to∣∣∣∣∣∣∣∣∣
0 1 2

1 2 0

2 0 1

∣∣∣∣∣∣∣∣∣ = −9 �= 0,
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to see that, indeed, the system has only the trivial solution, and hence the three

vectors are linearly independent.

We have the following theorem.

Theorem 2.13. (Existence of basis) Every vector space V �= 0 has a basis.

We will not prove this general theorem here, instead we will restrict to finite

dimensional vector spaces.

Theorem 2.14. Let V �= {0} be a finitely generated vector space over F. From

every finite system of generators one can extract a basis.

Proof. Let S = {v1, . . . , vr} be a finite generators system. It is clear that there are

nonzero vectors in S (otherwise V = {0}). Let 0 �= v1 ∈ S. The set {v1} is linearly

independent (because αv1 = 0 ⇒ α = 0 from v1 �= 0). That means that S contains

linearly independent subsets. Now P (S) is finite (S being finite), and in a finite

number of steps we can extract a maximal linearly independent system, let say

B = {v1, . . . , vn}, 1 ≤ n ≤ r in the following way:

v2 ∈ S \ 〈v1〉,

v3 ∈ S \ 〈{v1, v2}〉
...

vn ∈ S \ 〈{v1, v2, . . . , vn−1}〉.

We prove that B is a basis for V . It is enough to show that B generates V ,

because B is linearly independent by the choice of it. Let v ∈ V . S being a system

of generators it follows that it is enough to show that every vk ∈ S, n ≤ k ≤ r is a

linear combination of vectors from B. Suppose, by contrary, that vk is not a linear

combination of vectors from B. It follows that the set B ∪ {vk} is linearly

independent, contradiction with the maximality of B.
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Corollary 2.15. Let V be an F vector space and S a system of generators for V .

Every linearly independent set L ⊂ S can be completed to a basis of V .

Proof. Let L ⊂ S be a linearly independent set in S. If L is maximal by the

previous Theorem it follows that L is a basis. If L is not maximal, there exists a

linearly independent set L1 with L ⊂ L1 ⊂ S. If L1 is maximal it follows that L1 is

a basis. If it is not maximal, we repeat the previous step. Because S is a finite set,

after a finite number of steps we obtain a system of linearly independent vectors B

which is maximal, L ⊂ B ⊂ S, so B is a basis for V , again by the previous

Theorem.

Theorem 2.16. Let V be a finitely generated vector space over F. Every linearly

independent system of vectors L can be completed to a basis of V .

Proof. Let S be a finite system of generators. The intersection L ∩ S is again a

system of generators and L ⊂ L ∩ S. We apply the previous corollary and we

obtain that L can be completed to a basis of V .

Theorem 2.17. (The cardinal of a basis). Let V be a finitely generated F vector

space. Every basis of V is finite and has the same number of elements.

Proof. Let B = {e1, . . . .en} be a basis of V , and let B′{e′1, . . . , e′m} a system of

vectors with m > n. We show that B′ can not be a basis for V .

Because B is a basis the vectors e′i can be uniquely written as e′i =
∑n

j=1 aijej ,

1 ≤ i ≤ m. If B′ is linearly independent, then it follows that
∑m

i=1 λie
′
i = 0 implies

λi = 0, i = 1, m, or, in other words, the system
∑m

i=1 aijλi = 0, j = 1, n has only

the trivial solution, impossible.

Definition 2.18. Let V �= {0} be an F vector space finitely generated. The number

of elements in a basis of V is called the dimension of V (it does not depend on the
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choice of the basis, and it is denoted by dim FV ). The vector space V is said to be

of finite dimension. For V = {0} , dim FV = 0.

Remark 2.19. According to the proof of Theorem 2.17, if dim FV = n then any

set of m > n vectors is linear dependent.

Corollary 2.20. Let V be a vector space over F of finite dimension, dim FV = n.

1. Any linearly independent system of n vectors is a basis. Any system of m

vectors, m > n is linearly dependent.

2. Any system of generators of V which consists of n vectors is a basis. Any

system of m vectors, m < n is not a system of generators

Proof. a) Consider L = {v1, . . . , vn} a linearly independent system of n vectors.

From the completion theorem (Theorem 2.16) it follows that L can be completed

to a basis of V . It follows from the cardinal basis theorem (Theorem 2.17) that

there is no need to complete L, so L is a basis.

Let L′ be a system of m vectors, m > n. If L′ is linearly independent it follows that

L′ can be completed to a basis (Theorem 2.16), so dim FV ≥ m > n, contradiction.

b) Let S = {v1, . . . , vn} be a system of generators which consists of n vectors.

From the Theorem 2.14 it follows that a basis can be extracted from its n vectors.

Again from the basis Theorem 2.17 it follows that there is no need to extract any

vector, so S is a basis.

Let S ′ be a generators system which consists of m vectors, m < n. From the

Theorem 2.14 it follows that from S ′ one can extract a basis, so dim FV ≤ m < n,

contradiction.

Remark 2.21. The dimension of a finite dimensional vector space is equal to any

of the following:
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• The number of the vectors in a basis.

• The minimal number of vectors in a system of generators.

• The maximal number of vectors in a linearly independent system.

Example 2.22. Let S = {(x, y, z) ∈ R3|x+ y + z = 0}. Give an example of a

basis of S.

In example 2.5 we have shown that S is a subspace of R3. One can see that, from a

geometric point of view, S is a plane passing through the origin, so dimS = 2.

This follows also from rewriting S as follows

S =
{
(x, y, z) ∈ R4|x+ y + z = 0

}
= {(x, y,−x− y) |x, y ∈ R}
= {x (1, 0,−1) + y (0, 1,−1) |x, y ∈ R}
= span {(1, 0,−1) , (0, 1,−1)} .

The vectors (1, 0,−1) and (0, 1,−1) are linearly independent so they form a basis

of S.

Theorem 2.23. Every linearly independent list of vectors in a finite dimensional

vector space can be extended to a basis of the vector space.

Proof. Suppose that V is finite dimensional and {v1, . . . , vm} is linearly

independent. We want to extend this set to a basis of V . V being finite

dimensional, there exists a finite set {w1, . . . , wn}, a list of vectors which spans V .

• If w1 is in the span of {v1, . . . , vm}, let B = {v1, . . . , vm}. If not, let
B = {v1, . . . , vm, w1}.
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• If wj is in the span of B, let B unchanged. If wj is not in the span of B,

extend B by jointing wj to it.

After each step B is still linearly independent. After n steps at most, the span of

B includes all the w’s. Thus B also spans V , and being linearly independent, it

follows that it is a basis.

As an application we show that every subspace of a finite dimensional vector space

can be paired with another subspace to form a direct sum which is the whole space.

Theorem 2.24. Let V be a finite dimensional vector space and U a subspace of V .

There exists a subspace W of V such that V = U ⊕W .

Proof. Because V is finite dimensional, so is U . Choose {u1, . . . , um} a basis of U .

This basis of U a linearly independent list of vectors, so it can be extended to a

basis {u1, . . . , um, w1, . . . , wn} of V . Let W = 〈w1, . . . , wn〉.
We prove that V = U ⊕W . For this we will show that

V = U +W, and U ∩W = {0}

Let v ∈ V , there exists (a1, . . . , am, b1, . . . , bn) such that

v = a1u1 + · · ·+ amum + b1w1 + · · ·+ bnwm,

because {u1, . . . , um, w1, . . . , wn} generates V . By denoting

a1u1 + · · ·+ amum = u ∈ U and b1w1 + · · ·+ bnwm = w ∈ W we have just proven

that V = U +W .

Suppose now that U ∩W �= {0}, so let 0 �= v ∈ U ∩W . Then there exist scalars

a1, . . . , am ∈ F and b1, . . . , bn ∈ F not all zero, with

v = a1u1 + · · ·+ amum = b1w1 + · · ·+ bnwm,
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so

a1u1 + · · ·+ amum − b1w1 − · · · − bnwm = 0.

But this is a contradiction with the fact that {u1, . . . , um, w1, . . . , wn} is a basis of

V , so we obtain the contradiction, i.e. U ∩W = {0}.

The next theorem relates the dimension of the sum and the intersection of two

subspaces with the dimension of the given subspaces:

Theorem 2.25. If U and W are two subspaces of a finite dimensional vector

space V , then

dim (U +W ) = dimU + dimW − dim (U ∩W ) .

Proof. Let {u1, . . . , um} be a basis of U ∩W , so dimU ∩W = m. This is a linearly

independent set of vectors in U and W respectively, so it can be extended to a

basis {u1, . . . , um, v1 . . . vi} of U and a basis {u1, . . . , um, w1, . . . wj} of W , so

dimU = m+ i and dimW = m+ j. The proof will be complete if we show that

{u1, . . . , um, v1 . . . , vi, w1, . . . , wj} is a basis for U +W , because in this case

dim (U +W ) = m+ i+ j

= (m+ i) + (m+ j)−m

= dimU + dimW − dim(U ∩W )

The set span{u1, . . . , um, v1 . . . , vi, w1, . . . , wj} contains U and W , so it contains

U +W . That means that to show that it is a basis for U +W it is only needed to

show that it is linearly independent. Suppose that

a1u1 + · · ·+ amum + b1v1 + · · ·+ bivi + c1w1 + · · ·+ cjwj = 0 .

We have

c1w1 + · · ·+ cjwj = −a1u1 − · · · − amum − b1v1 − · · · − bivi
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which shows that w = c1w1 + · · ·+ cjwj ∈ U . But this is also in W , so it lies in

U ∩W . Because u1, . . . , um is a basis in U ∩W it follows that there exist the

scalars d1, . . . , dm ∈ F, not all zero, such that

c1w1 + · · ·+ cjwj = −(d1u1 + · · ·+ dmum) .

But {u1, . . . , um, w1, . . . , wj} is a basis in W , so it is linearly independent, that is

all ci’s are zero.

The relation involving a’s, b’s and c’s becomes

a1u1 + · · ·+ amum + b1v1 + · · ·+ bivi = 0 ,

so a’s and b’s are zero because the vectors {u1, . . . , um, v1 . . . , vi} form a basis in U .

So all the a’s, b’s and c’s are zero, that means that

{u1, . . . , um, v1, . . . , vi, w1, . . . , wj} are linearly independent, and because that

generates U +W , they form a basis of U +W .

The previous theorem shows that the dimension fits well with the direct sum of

spaces. That is, if U ∩W = {0}, the sum is the direct sum and we have

dim (U ⊕W ) = dimU + dimW .

This is true for the direct sum of any finite number of spaces as it is shown in the

next theorem:

Theorem 2.26. Let V be a finite dimensional space, Ui subspaces of V , i = 1, n,

such that

V = U1 + · · ·+ Un ,

and

dimV = dimU1 + · · ·+ dimUn .
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Then

V = U1 ⊕ · · · ⊕ Un .

Proof. One can choose a basis for each Ui. By putting all these bases in one list,

we obtain a list of vectors which spans V (by the first property in the theorem),

and it is also a basis, because by the second property, the number of vectors in this

list is dimV .

Suppose that we have ui ∈ Ui, i = 1, n, such that

0 = u1 + · · ·+ un .

Every ui is represented as the sum of the vectors of basis of Ui, and because all

these bases form a basis of V , it follows that we have a linear combination of the

vectors of a base of V which is zero. So all the scalars are zero, that is all ui are

zero, so the sum is direct.

We end the section with two important observations. Let V be a vector space over

F (not necessary finite dimensional). Consider a basis B = (ei)i∈I of V .

We have the first representation theorem:

Theorem 2.27. Let V be a vector space over F (not necessary finite dimensional).

Let us consider a basis B = (ei)i∈I . For every v ∈ V, v �= 0 there exist a unique

subset B′ ⊆ B, B′ = {ei1 , . . . , eik} and the nonzero scalars ai1 , . . . , aik ∈ F∗, such

that

v =

k∑
j=1

aijeij = ai1ei1 + · · ·+ aikeik .

Proof. Obviously, by the definition of basis v is a finite linear combination of the

elements of the basis. We must show the uniqueness. Assume the contrary, that

v =
n∑

i=1

αjieji =
m∑
i=1

αkieki , αji �= 0, i = 1, n, αki �= 0, i = 1, m.



Local computations 49

Assume that there exists eks �∈ {ej1, . . . , ejn}. Then, since∑n
i=1 αjieji −

∑m
i=1 αkieki = 0 we obtain that αks = 0, contradiction. Similarly,

ejs ∈ {ek1 , . . . , em}, for all s = 1, n. Hence, m = n and one may assume that

v =

n∑
i=1

αjieji =

n∑
i=1

αkieki, αji �= 0, i = 1, n, αki �= 0, i = 1, n.

Using the relation
∑n

i=1 αjieji −
∑n

i=1 αkieki = 0 again we obtain that

αji = αki, i ∈ {1, . . . , n}, contradiction.

Example 2.28. Show that B = {(1, 1) , (1,−1)} is a basis of R2, and find the

representation of the vector v = (3,−1) with respect to B of the vector v = (3,−1).

Our aim is to find the representation of v = (3,−1) with respect to B, that is, to

find two scalars x, y ∈ R such that

v = x (1, 1) + y (1,−1) .

Expressing the above equality component wise gives a system with two unknowns,

x and y ⎧⎨⎩ x + y = 3

x − y = −1.

Its unique solution, and the answer to our problem, is x = 1, y = 2.

2.4 Local computations

In this section we deal with some computations related to finite dimensional vector

spaces.

Let V be an F finite dimensional vector space, with a basis B = {e1, . . . , en}. Any
vector v ∈ V can be uniquely represented as

v =
n∑

i=1

aiei = a1e1 + · · ·+ anen.
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The scalars (a1, . . . , an) are called the coordinates of the vector v in the basis B. It

is obvious that if we have another basis B
′
, the coordinates of the same vector in

the new basis change. How we can measure this change? Let us start with a

situation that is a bit more general.

Theorem 2.29. Let V be a finite dimensional vector space over F with a basis

B = {e1, . . . , en}. Consider the vectors S = {e′
1, . . . , e

′
m} ⊆ V :

e
′
1 = a11e1 + · · ·+ a1nen

. . .

e
′
m = am1e1 + · · ·+ amnen

Denote by A = (aij)i=1,m
j=1,n

the matrix formed by the coefficients in the above

equations. The dimension of the subspace 〈S〉 is equal to the rank of the matrix A,

i.e. dim〈S〉 = rankA.

Proof. Let us denote by Xi = (ai1, . . . , ain) ∈ Fn, i = 1, m the coordinates of

e
′
i, i = 1, m in B. Then, the linear combination

∑m
i=1 λie

′
i has its coordinates∑m

i=1 λiXi in B. Hence the set of all coordinate vectors of elements of 〈S〉 equals
the subspace of Fn generated by {X1, ..., Xm}. Moreover e

′
1, . . . , e

′
m will be linearly

independent if and only if X1, . . . , Xm are. Obviously, the dimension of the

subspace 〈X1, ..., Xm〉 of Fn is equal to the rank of the matrix⎛⎜⎜⎜⎝
X1

...

Xm

⎞⎟⎟⎟⎠ = A.
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Consider now the case of m = n in the above discussion. The set S = {e′
1, . . . , e

′
n}

is a basis iff rankA = n. We have now

e
′
1 = a11e1 + · · ·+ a1nen

e
′
2 = a21e1 + · · ·+ a2nen

. . .

e
′
n = an1e1 + · · ·+ annen,

representing the relations that change from the basis B to the new basis B
′
= S.

The matrix A� is denoted by

P (e,e
′
) =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a21 . . . an1

a12 a22 . . . an2

. . . . . . . . . . . .

a1n a2n . . . ann

⎞⎟⎟⎟⎟⎟⎟⎠ .

The columns of this matrix are given by the coordinates of the vectors

of the new basis e
′
with respect to the old basis e!

Remarks

• In the matrix notations we have⎛⎜⎜⎜⎜⎜⎜⎝
e
′
1

e
′
2

. . .

e
′
n

⎞⎟⎟⎟⎟⎟⎟⎠ = A

⎛⎜⎜⎜⎜⎜⎜⎝
e1

e2

. . .

en

⎞⎟⎟⎟⎟⎟⎟⎠ or (e
′
)1,n = (P (e,e

′
))�(e)1,n

• Consider the change of the basis from B to B
′
with the matrix P (e,e

′
) and

the change of the basis from B
′
to B

′′
with the matrix P (e

′
,e

′′
). We can think



Local computations 52

at the ”composition” of these two changes, i.e. the change of the basis from

B to B
′′
with the matrix P (e,e

′′
). It is easy to see that one has

P (e,e
′
)P (e

′
,e

′′
) = P (e,e

′′
).

• If in the above discussion we consider B
′′
= B one has

P (e,e
′
)P (e

′
,e) = In ,

that is

(P (e
′
,e))−1 = P (e,e

′
).

At this step we try to answer the next question, which is important in

applications. If we have two bases, a vector can be represented in both of them.

What is the relation between the coordinates in the two bases?

Let us fix the setting first. Consider the vector space V , with two bases

B = {e1, . . . , en} and B
′
= {e′

1, . . . , e
′
n} and P (e,e

′
) the matrix of the change of

basis.

Let v ∈ V . We have

v = a1e1 + · · ·+ anen = b1e
′
1 + · · ·+ bne

′
n,

where (a1, . . . an) and (b1, . . . bn) are the coordinates of the same vector in the two

bases. We can write

(v) =
(

a1 a2 . . . an

)
·

⎛⎜⎜⎜⎜⎜⎜⎝
e1

e2

. . .

en

⎞⎟⎟⎟⎟⎟⎟⎠ =
(

b1 b2 . . . bn

)
·

⎛⎜⎜⎜⎜⎜⎜⎝
e
′
1

e
′
2

. . .

e
′
n

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Denote

(v)e =

⎛⎜⎜⎜⎜⎜⎜⎝
a1

a2

. . .

an

⎞⎟⎟⎟⎟⎟⎟⎠
and

(v)e′ =

⎛⎜⎜⎜⎜⎜⎜⎝
b1

b2

. . .

bn

⎞⎟⎟⎟⎟⎟⎟⎠
the matrices of the coordinates of v in the two bases.

Denote further the basis columns

(e)1n =

⎛⎜⎜⎜⎜⎜⎜⎝
e1

e2

. . .

en

⎞⎟⎟⎟⎟⎟⎟⎠
the column matrix of the basis B and

(e
′
)1n =

⎛⎜⎜⎜⎜⎜⎜⎝
e
′
1

e
′
2

. . .

e
′
n

⎞⎟⎟⎟⎟⎟⎟⎠
the matrix column of the basis B

′
, we have

v = (v)�e (e)1n = (v)�
e′ (e

′
)1n = (v)�

e′ (P
(e,e

′
))�(e)1n

Because v is uniquely represented in a basis it follows

(v)�
e′ (P

(e,e
′
))� = (v)�e ,
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or

(v)e′ = (P (e,e
′
))−1(v)e = P (e

′
,e)(v)e .

Hence,

(v)e = (P (e,e
′
))(v)e′ .

2.5 Problems

Problem 2.5.1. Show that for span(v1, . . . , vn) = V one has

span(v1 − v2, v2 − v3, . . . , vn−1 − vn, vn) = V .

Problem 2.5.2. Find a basis for the subspace generated by the given vectors in

M3(R). ⎛⎜⎜⎜⎝
1 2 3

2 4 1

3 1 −1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 −1 2

2 1 −1

0 1 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 1 2

−2 2 −1

−1 2 1

⎞⎟⎟⎟⎠ .

Problem 2.5.3. Let V be a finite dimensional vector space dimV = n. Show that

there exist one dimensional subspaces U1, . . . , Un, such that

V = U1 ⊕ · · · ⊕ Un.

Problem 2.5.4. Find three distinct subspaces U, V,W of R2 such that

R2 = U ⊕ V = V ⊕W = W ⊕ U.

Problem 2.5.5. Let U,W be subspaces of R8, with dimU = 3, dimW = 5 and

dimU +W = 8. Show that U ∩W = {0}.

Problem 2.5.6. Let U,W be subspaces of R9 with dimU = dimW = 5. Show

that U ∩W �= {0}.
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Problem 2.5.7. Let U and W be subspaces of a vector space V and suppose that

each vector v ∈ V has a unique expression of the form v = u+ w where u belongs

to U and w to W. Prove that

V = U ⊕W.

Problem 2.5.8. In C[a, b] find the dimension of the subspaces generated by the

following sets of vectors:

a) {1, cos 2x, cos2 x},

b) {ea1x, . . . , eanx}, where ai �= aj for i �= j

Problem 2.5.9. Find the dimension and a basis in the intersection and sum of

the following subspaces:

• U = span{(2, 3,−1), (1, 2, 2, ), (1, 1,−3)},
V = span{(1, 2, 1), (1, 1,−1), (1, 3, 3)}.

• U = span{(1, 1, 2,−1), (0,−1,−1, 2), (−1, 2, 1,−3},
V = span{(2, 1, 0, 1), (−2,−1,−1,−1), (3, 0, 2, 3)}.

Problem 2.5.10. Let U, V,W be subspaces of some vector space and suppose that

U ⊆ W. Prove that

(U + V ) ∩W = U + (V ∩W ).

Problem 2.5.11. In R4 we consider the following subspace

V = span{(2, 1, 0, 1), (−2,−1,−1,−1), (3, 0, 2, 3)}. Find a subspace W of R4 such

that R4 = V ⊕W .

Problem 2.5.12. Let V,W be two vector spaces over the same field F. Find the

dimension and a basis of V ×W.
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Problem 2.5.13. Find a basis in the space of symmetric, respectively

skew-symmetric matrices of dimension n.

Problem 2.5.14. Let

V = {(x1, . . . , xn) ∈ Rn|, x1 + x2 + . . .+ xn = 0, x1 + xn = 0}. Find a basis in V .

Problem 2.5.15. Let Mn(R) be the set of the real square matrices of order n,

and An, respectively Sn the set of symmetric, respectively skew-symmetric

matrices of order n. Show that Mn(R) = An ⊕ Sn.

Problem 2.5.16. Let us denote by Rn[X] the set of all polynomials having degree

at most n with real coefficients. Obviously Rn[X] is a subspace of R[X] with the

induced operations. Find the dimension of the quotient space Rn[X]/U where U is

the subspace of all real constant polynomials.

Problem 2.5.17. Let V be a finite-dimensional vector space and let U and W be

two subspaces of V. Prove that

dim ((U +W )/W ) = dim (U/(U ∩W )).

Problem 2.5.18. Let us consider the matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 5 −3 6

1 2 3 4 7

1 3 3 −2 5

0 9 11 −7 16

4 9 12 10 26

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let U and W be the subspaces of R5 generated by rows 1, 2 and 5 of M , and by

rows 3 and 4 of M respectively. Find the dimensions of U +W and U ∩W.
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Problem 2.5.19. Find bases for the sum and intersection of the subspaces U and

W of R4[X] generated by the respective sets of polynomials

{1 + 2x+ x3, 1− x− x2} and {x+ x2 − 3x3, 2 + 2x− 2x3}.



3
Linear maps between vector spaces

Up to now we met with vector spaces. It is natural to ask about maps between

them, which are compatible with the linear structure of a vector space. These are

called linear maps, special maps which also transport the linear structure. They

are also called morphisms of vector spaces or linear transformations.

Definition 3.1. Let V and W be two vector spaces over the same field F. A linear

map from V to W is a map f : V → W which has the property that

f(αv + βu) = αf(v) + βf(u) for all v, u ∈ V and α, β ∈ F.

The class of linear maps between V and W will be denoted by LF(V,W ) or

HomF(V,W ).

From the definition it follows that f(0V ) = 0W and

f(
n∑

i=1

αivi) =
n∑

i=1

αif(vi), ∀ αi ∈ F, ∀vi ∈ V, i = 1, n.

We shall define now two important notions related to a linear map, the kernel and

the image.

Consider the sets:

ker f = f−1(0W ) = {v ∈ V |f(v) = 0w}, and

58
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imf = f(V ) = {w ∈ W |∃ v ∈ V, f(v) = w}.

Definition 3.2. The sets ker f and f(V ) are called the kernel (or the null space),

respectively the image of f .

An easy exercise will prove the following:

Proposition 3.3. The kernel and the image of a linear map f : V → W are

subspaces of V and W respectively.

Example 3.4. Let T : R2 → R2 be given by (x, y) �→ (x+ y, x+ y). Find ker T

and T (R2).

By definition

ker T =
{
(x, y) ∈ R2|T (x, y) = (0, 0)

}
=

{
(x, y) ∈ R2| (x+ y, x+ y) = (0, 0)

}
=

{
(x, y) ∈ R2|x+ y = 0

}
.

Geometrically, this is the straight line with equation y = −x. Clearly

ker T = span {(1,−1)} and dim ker T = 1.

From the way T is defined we see that all vectors in the image T (R2) of T , have

both components equal to each other, so

T
(
R2

)
= {(α, α) |α ∈ R}
= span {(1, 1)} .

For the finite dimensional case the dimension of ker and im of a linear map

between vector spaces are related by the following:

Theorem 3.5. Let f : V → W be a linear map between vector spaces V and W

over the field F, V being finite dimensional.

dimV = dim ker f + dim imf.
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Proof. Let n and m be the dimensions of V and ker f , m ≤ n. Consider a basis

{e1, . . . , em} for ker f . The independent system of vectors e1, . . . , em can be

completed to a basis {e1, . . . , em, em+1, . . . , en} of V .

Our aim is to prove that the vectors f(em+1), . . . , f(en) form a basis for f(V ). It is

sufficient to prove that the elements f(em+1), . . . , f(en) are linearly independent

since they generate f(V ).

Suppose the contrary, that f(em+1), . . . , f(en) are not linearly independent. There

exist αm+1, . . . , αn ∈ F such that

n∑
k=m+1

αkf(ek) = 0W ,

and by the linearity of f ,

f(
n∑

k=m+1

αkek) = 0W .

Hence

v′ =
n∑

k=m+1

αkek ∈ ker f

and v′ can be written in terms of e1, . . . , em. This is only compatible with the fact

that e1, . . . , en form a basis of V if αm+1 = · · · = αn = 0, which implies the linear

independence of the vectors f(em+1), . . . , f(en).

Theorem 3.6. Let f : V → W be a linear mapping between vector spaces V and

W , and dimV = dimW < ∞. Then, f(V ) = W iff ker f = {0V }. In particular f

is onto iff f is one to one.

Proof. Suppose that ker f = {0V }. Since f(V ) is a subspace of W it follows that

dim V = dim f(V ) ≤ dimW , which forces dim f(V ) = dimW , and this implies

that f(V ) = W .
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The fact that f(V ) = W implies that ker f = {0V } follows by reversing the

arguments.

Proposition 3.7. Let f : V → W be a linear map between vector spaces V,W over

F. If f is a bijection, it follows that its inverse f−1 : W → V is a linear map.

Proof. Because f is a bijection ∀w1, w2 ∈ W , ∃! v1, v2 ∈ V , such that

f(vi) = wi, i = 1, 2. Because f is linear, it follows that

α1w1 + α2w2 = α1f(v1) + α2f(v2) = f(α1v1 + α2v2).

It follows that α1v1 + α2v2 = f−1(α1w1 + α2w2), so

f−1(α1w1 + α2w2) = α1f
−1(w1+) + α2f

−1(w2).

Definition 3.8. A linear bijective map f : V → W between vector spaces V,W

over F is called an isomorphism of the vector space V over W , or isomorphism

between the vector spaces V and W .

A vector space V is called isomorphic to a vector space W if there exists an

isomorphism f : V → W . The fact that the vector spaces V and W are isomorphic

will be denoted by V � W .

Example 3.9. Let V be an F vector space and V1, V2 two supplementary spaces,

that is V = V1 ⊕ V2. It follows that ∀v ∈ V we have the unique decomposition

v = v1 + v2, with v1 ∈ V1 and v2 ∈ V2. The map

p : V → V1, p(v) = v1, ∀v ∈ V

is called the projection of V on V1, parallel to V2.
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The map s : V → V, s(v) = v1 − v2, ∀v ∈ V is called the symmetry of V with

respect to V1, parallel with V2.

It is easy to see that for v ∈ V1, v2 = 0, so p(v) = v and s(v) = v, and for v ∈ V2,

v1 = 0, so p(v) = 0 and s(v) = −v.

3.1 Properties of L(V,W )

In this section we will prove some properties of linear maps and of L(V,W ).

Proposition 3.10. Let f : V → W be a linear map between the linear spaces V,W

over F.

1. If V1 ⊆ V is a subspace of V , then f(V1) is a subspace of W .

2. If W1 ⊆ W is a subspace of W , then f−1(W1) is a subspace of V .

Proof. 1. Let w1, w2 be in f(V1). It follows that there exist v1, v2 ∈ V1 such that

f(vi) = wi, i = 1, 2. Then, for every α, β ∈ F we have

αw1 + βw2 = αf(v1) + βf(v2) = f(αv1 + βv2) ∈ f(V1).

2. For v1, v2 ∈ f−1(W1) we have that f(v1), f(v2) ∈ W1, so

∀ α, β ∈ F, αf(v1) + βf(v2) ∈ W1. Because f is linear

αf(v1) + βf(v2) = f(αv1 + βv2) ⇒ αv1 + βv2 ∈ f−1(W1).

The next proposition shows that the kernel and the image of a linear map

characterize the injectivity and surjectivity properties of the map.

Proposition 3.11. Let f : V → W be a linear map between the linear spaces V,W .
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1. f is one to one (injective) ⇐⇒ ker f = {0}.

2. f is onto (surjective) ⇐⇒ f(V ) = W .

3. f is bijective ⇐⇒ ker f = {0} and f(V ) = W .

Proof. 1 Suppose that f is one to one. Because f(0V ) = 0W it follows that

ker f = {0V } ⊂ V . For the converse, suppose that ker f = {0V }. Let v1, v2 ∈ V

with f(v1) = f(v2). It follows that f(v1 − v2) = 0 and because ker f = {0} we have

that v1 = v2. The claims 2. and 3. can be proved in the same manner.

Next we shall study how special maps act on special systems of vectors.

Proposition 3.12. Let f : V → W be a linear map between the linear spaces V,W

and S = {vi|i ∈ I} a system of vectors in V .

1. If f is one to one and S is linearly independent, then f(S) is linearly

independent.

2. If f is onto and S is a system of generators, then f(S) is s system of

generators.

3. If f is bijective and S is a basis for V , then f(S) is a basis for W .

Proof. 1. Let {w1, . . . , wn} be a finite subsystem from f(S), and αi ∈ F with∑n
i=1 αiwi = 0. There exist the vectors vi ∈ V such that f(vi) = wi, for all

i ∈ {1, . . . , n}. Then ∑n
i=1 αiwi =

∑n
i=1 αif(vi) = f(

∑n
i=1 αivi) = 0, so∑n

i=1 αivi = 0. Because S is linearly independent it follows that αi = 0 for all

i = 1, n, so f(S) is linearly independent.

2. Let w ∈ W . There exists v ∈ V with f(v) = w. Because S is a system of

generators, there exists a finite family of vectors in S, vi, and the scalars
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αi ∈ F, i = 1, n such that
∑n

i=1 αivi = v. It follows that

w = f(v) = f(

n∑
i=1

αivi) =

n∑
i=1

αif(vi).

3. Because f is bijective and S is a basis for V , it follows that both 1. and 2. hold,

that is, f(S) is a basis for W .

Definition 3.13. Let f, g : V → W be linear maps between the linear spaces V

and W over F, and α ∈ F. We define

1. f + g : V → W by (f + g)(v) = f(v) + g(v), ∀ v ∈ V , the sum of the linear

maps, and

2. αf : V → W by (αf)(v) = αf(v), ∀ v ∈ V, ∀ α ∈ F, the scalar multiplication

of a linear map.

Proposition 3.14. With the operations defined above L(V,W ) becomes a vector

space over F.

The proof of this statement is an easy verification.

In the next part we specialize in the study of the linear maps, namely we consider

the case V = W .

Definition 3.15. The set of endomorphisms of a linear space V is:

End(L) = {f : V → V | f linear }.

By the results from the previous section, End(V ) is an F linear space.

Let W,U be two other linear spaces over the same field F, f ∈ L(V,W ) and

g ∈ L(W,U). We define the product (composition) of f and g by

h = g ◦ f : V → U ,

h(v) = g(f(v)), ∀ v ∈ V.
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Proposition 3.16. The product of two linear maps is a linear map.

Moreover, if f and g as above are isomorphisms, then the product h = g ◦ f is an

isomorphism.

Proof. We check that for all v1, v2 ∈ V and all α, β ∈ F

h(αv1 + βv2) = g(f(αv1 + βv2))

= g(αf(v1) + βf(v2))

= g(αf(v1)) + g(βf(v2))

= αh(v1) + βh(v2).

The last statement follows from the fact that h is a linear bijection.

It can be shown that the composition is distributive with respect to the sum of

linear maps, so End(V ) becomes an unitary ring.

It can easily be realized that:

Proposition 3.17. The isomorphism between two linear spaces is an equivalence

relation.

Definition 3.18. Let V be an F linear space. The set

Aut(V ) = {f ∈ End(V )| f isomorphism }

is called the set of automorphisms of the vector space V .

Proposition 3.19. Aut(V ) is a group with respect to the composition of linear

maps.

Proof. It is only needed to list the properties.

1. the identity map IV is the unit element.
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2. g ◦ f is an automorphism for f and g automorphisms.

3. the inverse of an automorphism is an automorphism.

The group of automorphisms of a linear space is called the general linear group

and is denoted by GL(V ).

Example 3.20. • Projectors endomorphisms. An endomorphism

p : V → V is called projector of the linear space V iff

p2 = p,

where p2 = p ◦ p. If p is a projector, then:

1. ker p⊕ p(V ) = V

2. the endomorphism q = IV − p is again a projector.

Denote v1 = p(v) and v2 = v − v1, it follows that

p(v2) = p(v)− p(v1) = p(v)− p2(v) = 0V , so v2 ∈ ker f . Hence

v = v1 + v2, ∀ v ∈ V,

where v1, v2 ∈ f(V ) and, moreover, the decomposition is unique, so we have

the direct sum decomposition ker p⊕ p(V ) = V . For the last assertion simply

compute q2 = (IV − p) ◦ (IV − p) = IV − p− p+ p2 = IV − p = q, because p is

a projector. It can be seen that q(V ) = ker p and ker q = q(V ). Denote by

V1 = p(V ) and V2 = ker p. It follows that p is the projection of V on V1,

parallel with V2, and q is the projection of V on V2 parallel with V1.

• Involutive automorphisms. An operator s : V → V is called involutive iff

s2 = IV . From the definition and the previous example one has:
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1. an involutive operator is an automorphism

2. for every involutive automorphism, the linear operators:

ps : V → V, ps(v) =
1

2
(v + s(v))

qs : V → V, qs(v) =
1

2
(v − s(v))

are projectors and satisfy the relation ps + qs = 1V .

3. reciprocally, for a projector p : V → V , the operator sp : V → V , given

by sp(v) = 2p(v)− v is an involutive automorphism.

From the previous facts it follows that ps ◦ s = s ◦ ps = p, sp ◦ p = p ◦ sp = p. An

involutive automorphism s is a symmetry of V with respect to the subspace ps(V ),

parallel with the subspace ker ps.

Example 3.21. Let V be a vector space and f : V → V a linear map such that

ker f = imf . Determine the set imf 2, where f 2 denotes the composition of f with

itself, f 2 = f ◦ f .

We start by writing down explicitly

imf 2 = imf ◦ f
= f ◦ f (V )

= f (f (V )) .

But, f (V ) = imf = ker f is the set of all vectors which are mapped by f to zero, so

imf 2 = f(ker f)

= 0.
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3.2 Local form of a linear map

Let V and W be two vector spaces over the same filed F, dimV = m, dimW = n,

and e = {e1, . . . , em} and f = {f1, . . . , fn} be bases in V and W respectively. A

linear map T ∈ L(V,W ) is uniquely determined by the values ond the basis e.

We have

T (e1) = a11f1 + · · ·+ a1nfn,

T (e2) = a21f1 + · · ·+ a2nfn,

...

T (em) = am1f1 + · · ·+ amnfn,

or, in the matrix notation⎛⎜⎜⎜⎜⎜⎜⎝
T (e1)

T (e2)
...

T (em)

⎞⎟⎟⎟⎟⎟⎟⎠ = A

⎛⎜⎜⎜⎜⎜⎜⎝
f1

f2
...

fn

⎞⎟⎟⎟⎟⎟⎟⎠ where A = (aij)i=1,m
j=1,n

.

The transposed of A is denoted by M
(f,e)
T and is called the matrix of the linear

map T is the bases e and f .

From the definition of the matrix of a linear map it follows that:

Theorem 3.22. • For T1, T2 ∈ L(V,W ) and a1, a2 ∈ F

Ma1T1+a2T2 = a1MT1 + a2MT2

• The vector space L(V,W ) is isomporphic to Mm,n(F) by the map

T ∈ L(V,W ) �→ MT (F) ∈ Mm,n(F).

• Particularly End(V ) is isomorphic to Mn(F).
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Now we want to see how the image of a vector by a linear map can we expressed.

Let v ∈ V, v =
∑m

i=1 viei, or in the matrix notation (v)�e (e)1m, where, as usual

(v)e =

⎛⎜⎜⎜⎜⎜⎜⎝
v1

v2
...

vn

⎞⎟⎟⎟⎟⎟⎟⎠
and

(e)1m =

⎛⎜⎜⎜⎜⎜⎜⎝
e1

e2
...

em

⎞⎟⎟⎟⎟⎟⎟⎠ .

Now denote T (v) = w =
∑n

j=1wjej ∈ W , we have

T (v) = (w)�f (f)1n.

T being linear, we have T (v) =
∑m

i=1 viT (ei), or, again in matrix notation:

T (v) = (v)�e (T (e))1m.

From the definition of M
(f,e)
T it follows that

(T (e))1m = (M
(f,e)
T )�(f)1n.

So finally we have

(w)�f (f)1n = (v)�e (M
(f,e)
T )�(f)1n.

By the uniqueness of the coordinates of a vector in a basis it follows that

(w)�f = (v)�e (M
(f,e)
T )�.

Taking the transposed of the above relation we get

(w)f = (M
(f,e)
T )(v)e.
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Example 3.23. Let T : R3 → R3, T =

⎛⎜⎜⎜⎝
−3 0 2

1 1 0

−2 1 2

⎞⎟⎟⎟⎠. Find a basis in ker T and

find the dimension of T (R3) .

Observe that the kernel of T ,

ker T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(x, y, z) ∈ |T

⎛⎜⎜⎜⎝
x

y

z

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

is the set of solutions of the linear homogeneous system⎧⎪⎪⎪⎨⎪⎪⎪⎩
−3x + 2z = 0

x + y = 0

−2x + y + 2z = 0,

(3.1)

the matrix of the system being exactly T . To solve this system we need to

compute the rank of the matrix T . We get that∣∣∣∣∣∣∣∣∣
−3 0 2

1 1 0

−2 1 2

∣∣∣∣∣∣∣∣∣ = 0

and that rankA = 2. To solve the system we chose x = α as a parameter and

express y and z in terms of x from the first two equations to get

x = α, y = −x, z =
3

2
x.

The set of solutions is{(
α,−α,

3

2
α

)
|α ∈ R

}
= span

{(
1,−1,

3

2

)}
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and hence, a basis in kerT consists only of
(
1,−1, 3

2

)
, dim ker T = 1.

Based on the dimension formula

dim ker T + dimT
(
R3

)
= dimR3

we infer that dimT (R3) = 2.

Proposition 3.24. Let V,W, U be vector spaces over F, of dimensions m,n, p, and

T ∈ L(V,W ), S ∈ L(W,U), with matrices MT and MS , in some basis. Consider

the composition map S ◦ T : V → U with the matrix MS◦T . Then

MS◦T = MsMT .

Proof. Indeed, one can easily see that for v ∈ V we have (T (v)) = MT (v) where

(T (v)), respectively (v) stand for the coordinate of T (v), respectively v in the

appropriate bases. Similarly, for w ∈ W one has (S(w)) = MS(w).

Hence, (S ◦ T (v)) = (S(T (v))) = MS(T (v)) = MSMT (v), or, equivalently

MS◦T = MSMT .

Let V and W be vector spaces and T ∈ L(V,W ) be a linear map. In V and W we

consider the bases e = {e1, . . . , em} and f = {f1, . . . , fn}, with respect to these

bases the linear map has the matrix M
(f,e)
T . If we consider two other bases

e′ = {e′1, . . . , e′m} and f ′ = {f ′
1, . . . , f

′
n} the matrix of T with respect to these bases

will be M
(f ′,e′)
T . What relation do we have between the matrices of the same linear

map in these two bases?

Theorem 3.25. In the above conditions M
(f ′,e′)
T = P (f ′,f)M

(f,e)
T P (e,e′).
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Proof. Let us consider v ∈ V and let w = T (v). We have

(w)f ′ = M
(f ′,e′)
T (v)e′ = M

(f ′,e′)
T P (e′,e)(v)e.

On the other hand

(w)f ′ = P (f ′,f)(w)f = P (f ′,f)(T (v))f = P (f ′,f)M
(f,e)
T (v)e.

Taking into account that (P (e′,e))−1 = P (e,e′) we get

M
(f ′,e′)
T = P (f ′,f)M

(f,e)
T (P (e′,e))−1 = P (f ′,f)M

(f,e)
T P (e,e′).

Corollary 3.26. Let e and e′ be two bases of a finite-dimensional vector space V

and let T : V → V be a linear mapping. If T is represented by matrices A = M
(e,e)
T

and A′ = M
(e′,e′)
T with respect to e and e′ respectively, then A′ = PAP−1 where P is

the matrix representing the change of basis e to e′.

3.3 Problems

Problem 3.3.1. Consider the following mappings T : R3 → R3. Study which one

of them is a linear mapping.

a) T (x1, x2, x3) = (x2
1, x2, x

2
3).

b) T (x1, x2, x3) = (x3, x1, x2).

c) T (x1, x2, x3) = (x1 − 1, x2, x3).

d) T (x1, x2, x3) = (x1 + x2, x2 − x3, x1 + x2 + x3).

e) T (x1, x2, x3) = (x3, 0, 0).
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f) T (x1, x2, x3) = (x1, 2x2, 3x3).

Problem 3.3.2. Let T ∈ End(V ) and let {ei : i = 1, n} be a basis in V . Prove

that the following statements are equivalent.

1. The matrix of T , with respect to the basis {ei : i = 1, n} is upper triangular.

2. T (ek) ∈ span{e1, . . . , ek} for all k = 1, n.

3. T (span{e1, . . . , ek}) = span{e1, . . . , ek} for all k = 1, n.

Problem 3.3.3. Let T1, T2 : R3 → R3 having the matrices

MT1 =

⎛⎜⎜⎜⎝
3 1 0

0 2 1

1 2 3

⎞⎟⎟⎟⎠ ,

respectively

MT2 =

⎛⎜⎜⎜⎝
−1 4 2

0 4 1

0 0 5

⎞⎟⎟⎟⎠
in the canonical basis of R3.

a) Find the image of (0, 1,−1) through T1, T
−1
1 , T2, T

−1
2 .

b) Find the image of (1, 3,−2) through T1 + T2, (T1 + T2)
−1.

c) Find the image of (1, 2, 0) through T1 ◦ T2, T2 ◦ T1.

Problem 3.3.4. Let V be a complex vector space and let T ∈ End(V ). Show that

there exists a basis in V such that the matrix of T relative to this basis is upper

triangular.
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Problem 3.3.5. Let T : R4 → R3 be a linear mapping represented by the matrix

M =

⎛⎜⎜⎜⎝
1 0 1 2

−1 1 0 1

0 −1 −1 −3

⎞⎟⎟⎟⎠ .

Find a basis in ker T, imT and the dimension of the spaces V,W, ker T and imT .

Problem 3.3.6. Show that a linear transformation T : V → W is injective if and

only if it has the property of mapping linearly independent subsets of V to linearly

independent subsets of W.

Problem 3.3.7. Show that a linear transformation T : V → W is surjective if and

only if it has the property of mapping any set of generators of V to a set of

generators of W.

Problem 3.3.8. Let T : V → W be a linear mapping represented by the matrix

M =

⎛⎜⎜⎜⎝
1 1 1 2

−1 1 1 1

0 −2 −2 −3

⎞⎟⎟⎟⎠ .

Compute dimV, dimW and find a basis in imT and ker T .

Problem 3.3.9. Find all the linear mappings T : R → R with the property

imT = ker T .

Find all n ∈ N such that there exists a linear mapping T : Rn → Rn with the

property imT = ker T .

Problem 3.3.10. Let V , respectively Vi, i = 1, n be vector spaces over C. Show

that, if T : V1 × V2 × · · · × Vn → V is a linear mapping then there exist and they

are unique the linear mappings Ti : Vi → V , i = 1, n such that

T (v1, . . . , vn) = T1(v1) + T2(v2) + · · ·+ Tn(vn).
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Problem 3.3.11. (The first isomorphism theorem). If T : V → W is a linear

transformation between vector spaces V and W , then

V/ kerT � imT.

[Hint: show that the mapping S : V/ ker T → imT, S(v + ker T ) = T (v) is a

bijective linear mapping.]

Problem 3.3.12. (The second isomorphism theorem). If U and W are subspaces

of a vector space V, then

(U +W )/W � U/(U ∩W ).

[Hint: define the mapping T : U → (U +W )/W by the rule T (u) = u+W , show

that T is a linear mapping and use the previous problem.]

Problem 3.3.13. (The third isomorphism theorem). Let U and W be subspaces

of a vector space V such that W ⊆ U. Prove that U/W is a subspace of V/W and

that (V/W )/(U/W ) � V/U.

[Hint: define a mapping T : V/W → V/U by the rule T (v +W ) = v + U, show

that T is a linear mapping and use the firs isomorphism theorem.]

Problem 3.3.14. Show that every subspace U of a finite-dimensional vector space

V is the kernel and the image of suitable linear operators on V.

Problem 3.3.15. Let T : R4 → R4 having the matrix

MT =

⎛⎜⎜⎜⎜⎜⎜⎝
1 2 0 1

3 0 −1 2

2 5 3 1

1 2 1 3

⎞⎟⎟⎟⎟⎟⎟⎠
in the canonical basis {e1, e2, e3, e4} of R4.

Find the matrix of T with respect to the following basis.
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a) {e1, e3, e2, e4}.

b) {e1, e1 + e2, e1 + e2 + e3, e1 + e2 + e3 + e4}.

c) {e4 − e1, e3 + e4, e2 − e4, e4}.

Problem 3.3.16. A linear transformation T : R3 → R2 is defined by

T (x,x2, x3) = (x1 − x2 − x3,−x1 + x3). Let e = {(2, 0, 0), (−1, 2, 0), (1, 1, 1)} and

f = {(0,−1), (1, 2)} be bases in R3 and R2 respectively. Find the matrix that

represents T with respect to these bases.



4
Proper vectors and the Jordan canonical

form

4.1 Invariant subspaces. Proper vectors and

values

In this part we shall further develop the theory of linear maps. Namely we are

interested in the structure of an operator.

Let us begin with a short description of what we expect to obtain.

Suppose that we have a vector space V over a field F and a linear operator

T ∈ End(V ). Suppose further that we have the direct sum decomposition:

V =
m⊕
i=1

Ui,

where each Ui is a direct subspace of V. To understand the behavior of T it is only

needed to understand the behavior of each restriction T |Uj
. Studying T |Uj

should

be easier than dealing with T because Uj is a ”smaller” vector space than V .

77
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However we have a problem: if we want to apply tools which are commonly used in

the theory of linear maps (such as taking powers for example) the problem is that

generally T may not map Uj into itself, in other words T |Uj
may not be an

operator on Uj . For this reason it is natural to consider only that kind of

decomposition for which T maps every Uj into itself.

Definition 4.1. Let V be an operator on the vector space V over F and U a

subspace of V . The subspace U is called invariant under T if T (U) ⊂ U , in other

words T |U is an operator on U .

Of course that another natural question arises when dealing with invariant

subspaces. How does an operator behave on an invariant subspace of dimension

one? Every one dimensional subspace is of the form U = {λu|λ ∈ F}. If U is

invariant by T it follows that T (u) should be in U , and hence there should exist a

scalar λ ∈ F such that T (u) = λu. Conversely if a nonzero vector u exists in V

such that T (u) = λu, for some λ ∈ F, then the subspace U spanned by u is

invariant under T and for every vector v in U one has T (v) = λv. It seems

reasonable to give the following definition:

Definition 4.2. Let T ∈ End(V ) be an operator on a vector space over the field F.

A scalar λ ∈ F is called eigenvalue (or proper value) for T if there exists a nonzero

vector v ∈ V such that T (v) = λv. A corresponding vector satisfying the above

equality is called eigenvector (or proper vector) associated to the eigenvalue λ.

The set of eigenvectors of T corresponding to an eigenvalue λ forms a vector space,

denoted by E(λ), the proper subspace corresponding to the proper value λ. It is

clear that E(λ) = ker(T − λIV )

For the finite dimensional case let MT be the matrix of T in some basis. The

equality T (v) = λv is equivalent to MTv = λv, or (MT − λIn)v = 0, which is a
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linear system. Obviously this homogeneous system of linear equations has a

nontrivial solution if and only if

det(MT − λIn) = 0.

Observe that det(MT − λIn) is a polynomial of degree n in λ, where n = dim V.

This polynomial is called the characteristic polynomial of the operator T. Hence,

the eigenvalues of T are the roots of its characteristic polynomial.

Notice that the characteristic polynomial does not depend on the choice of the

basis B that is used when computing the matrix MT of the transformation T .

Indeed, let B′ be another basis and M ′
T the matrix of T with respect to this new

basis. Further, let P be transition matrix from B to B′. So M ′
T = P−1MTP and

det(P ) �= 0. We have

det(P−1MTP − λI) = det(P−1MTP − P−1(λI)P )

= det(P−1(MT − λI)P )

=
1

det(P )
det(MT − λI) det(P )

= det(MT − λI),

which proves our claim.

Theorem 4.3. Let T ∈ End(V ). Suppose that λi, i = 1, m are distinct eigenvalues

of T , and vi, i = 1, m are the corresponding proper vectors. The set {v1, . . . , vm} is

linearly independent.

Proof. Suppose, by contrary, that the set {v1, . . . , vm} is linearly dependent. It

follows that a smallest index k exists such that

vk ∈ span{v1, . . . , vk−1}.
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Thus the scalars a1, . . . ak−1 exist such that

vk = a1v1 + . . . ak−1vk−1.

Applying T to the above equality, we get

λkvk = a1λ1v1 + . . . ak−1λk−1vk−1.

It follows that

0 = a1(λk − λ1)v1 + · · ·+ ak−1(λk − λk−1)vk−1.

Because we choose k to be the smallest index such that vk = a1v1 + · · ·+ ak−1vk−1,

it follows that the set {v1, · · · vk−1} is linearly independent. It follows that all the

a’s are zero.

Corollary 4.4. An operator T on a finite dimensional vector space V has at most

dimV distinct eigenvalues.

Proof. This is an obvious consequence of the fact that in a finite dimensional

vector space we have at most dim V linearly independent vectors.

The linear maps which have exactly n = dimV linearly independent eigenvectors

have very nice and simple properties. This is the happiest case we can meet with

in the class of linear maps.

Definition 4.5. A linear map T : V → V is said to be diagonalizable if there

exists a basis of V consisting of n independent eigenvectors, n = dimV .

Recall that matrices A and B are similar if there is an invertible matrix P such

that B = PAP−1. Hence, a matrix A is diagonalizable if it is similar to a diagonal

matrix D.
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4.2 The minimal polynomial of an operator

The main reason for which there exists a richer theory of operators than for linear

maps is that operators can be raised to powers (we can consider the composition of

an operator with itself).

Let V be an n-dimensional vector space over a field F and T : V → V be a linear

operator.

Now, L(V, V ) = End(V ) is an n2 dimensional vector space. We can consider

T 2 = T ◦ T and of course we obtain T n = T n−1 ◦ T inductively. We define T 0 as

being the identity operator I = IV on V . If T is invertible (bijective), then there

exists T−1, so we define T−m = (T−1)m. Of course that

TmT n = Tm+n, for m,n ∈ Z.

For T ∈ End(V ) and p ∈ F[X] a polynomial given by

p(z) = a0 + a1z + . . . amz
m , z ∈ F

we define the operator p(T ) given by

p(T ) = a0I + a1T + . . . amT
m.

This is a new use of the same symbol p, because we are applying it to operators

not only to elements in F. If we fix the operator T we obtain a function defined on

F[X] with values in End(V ), given by p → p(T ) which is linear. For p, q ∈ F[X ] we

define the operator pq given by (pq)(T ) = p(T )q(T ).

Now we begin the study of the existence of eigenvalues and of their properties.

Theorem 4.6. Every operator over a finite dimensional, nonzero, complex vector

space has an eigenvalue.
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Proof. Suppose V is a finite dimensional complex vector space and T ∈ End(V ).

Choose v ∈ V , v �= 0. Consider the set

(v, T (v), T 2(v), . . . T n(v)).

This set is a linearly dependent system of vectors (they are n+ 1) vectors and

dim V = n. Then there exist complex numbers, a0, . . . an, not all 0, such that

0 = a0v + a1T (v) + · · ·+ anT
n(v) .

Let m be the largest index such that am �= 0. Then we have the decomposition

a0 + a1z + · · ·+ amz
m = a0(z − λ1) . . . (z − λm) .

It follows that

0 = a0v + a1T (v) + . . . anT
n(v)

= (a0I + a1T + . . . anT
n)(v)

= a0(T − λ1I) . . . (T − λmI)(v) .

which means that T − λjI is not injective for at least one j, or equivalently T has

an eigenvalue.

Remark 4.7. The analogous statement is not true for real vector spaces. But on

real vector spaces there are always invariant subspaces of dimension 1 or 2.

Example 4.8. Let T : F2 → F2 given by T (x, y) = (−y, x). It has no eigenvalues

and eigenvectors if F = R. Find them for F = C.

Obviously, T (x, y) = λ(x, y) leads to (−y, x) = λ(x, y), or equivalently⎧⎨⎩ λx+ y = 0

λy − x = 0.
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The previous system is equivalent to x = λy, (λ2 + 1)y = 0.

If λ ∈ R then the solution is x = y = 0, but note that (0, 0) is excluded from

eigenvectors by definition.

If λ ∈ C we obtain the eigenvalues λ1 = i, λ2 = −i and the corresponding

eigenvectors (i, 1) ∈ C2, respectively (−i, 1) ∈ C2.

Theorem 4.9. Every operator on an odd dimensional real vector space has an

eigenvalue.

Proof. Let T ∈ End(V ) and n = dimV odd. The eigenvalues of T are the roots of

the characteristic polynomial that is det(MT − λIn). This polynomial is a

polynomial of degree n in λ, hence, since n is odd, the equation det(MT − λIn) = 0

has at least one real solution.

A central goal of linear algebra is to show that a given operator T ∈ End(V ) has a

reasonably simple matrix in a given basis. It is natural to think that reasonably

simple means that the matrix has as many 0′s as possible.

Recall that for a basis {ek, k = 1, n},

T (ek) =

n∑
i=1

aikei ,

where MT = (aij)i=1,m
j=1,n

is the matrix of the operator.

Theorem 4.10. Suppose T ∈ End(V ) and {ei, i = 1, n} is a basis of V . Then the

following statements are equivalent:

1. The matrix of T with respect to the basis {ei, i = 1, n} is upper triangular.

2. T (ek) ∈ span{e1, . . . , ek} for k = 1, n.

3. span{e1, . . . , ek} is invariant under T for each k = 1, n.
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Proof. 1⇔2 obviously follows from a moment’s tought and the definition. Again

3⇒2. It remains only to prove that 2⇒3.

So, suppose 2 holds. Fix k ∈ {1, . . . , n}. From 2 we have

T (e1) ∈ span{e1} ⊆ span{e1, . . . , ek}
T (e2) ∈ span{e1, e2} ⊆ span{e1, . . . , ek}

...

T (ek) ∈ span{e1, . . . , ek} ⊆ span{e1, . . . , ek}.

So, for v a linear combination of {e1, . . . , ek} one has that

T (v) ∈ span{e1, . . . , ek},

consequently 3. holds.

Theorem 4.11. Suppose that V is a complex vector space and T ∈ End(V ). Then

there exists a basis of V such that T is an upper-triangular matrix with respect to

this basis.

Proof. Induction on the dimV . Clearly this holds for dim V = 1.

Suppose that dim V > 1 and the result holds for all complex vector spaces of

dimension smaller then the dimension of V . Let λ be an eigenvalue of T (it exists)

and

U = im(T − λI).

Because T − λI is not surjective, dimU < dimV . Furthermore U is invariant

under T , since for u ∈ U there exists v ∈ V such that u = T (v)− λv, hence

T (u) = T (T (v))− λT (v) = (T − λI)(w) ∈ U where w = T (v).
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So, T |U is an operator on U. By the induction hypothesis there is a basis

{u1, . . . , um} of U with respect to which T |U has an upper-triangular matrix. So,

for each j ∈ {1, . . . , m} we have

T (uj) = T |U(uj) ∈ span{u1, . . . , um}.

Extend the basis {u1, . . . , um} of U to a basis {u1, . . . um, v1, . . . vn} of V . For each

k = 1, n

T (vk) = (T − λI)(vk) + λvk.

By the definition of U , (T − λI)(vk) ∈ U = span{u1, . . . , um}. Thus the equation

above shows that

T (vk) ∈ span{u1, . . . , um, vk}.

From this, in virtue of the previous theorem, it follows that T has an

upper-triangular matrix with respect to this basis.

One of the good points of this theorem is that, if we have this kind of basis, we can

decide if the operator is invertible by analysing the matrix of the operator.

Theorem 4.12. Suppose T ∈ End(V ) has an upper triangular matrix with respect

to some basis of V . Then T is invertible if and only if all the entries on the

diagonal are non zero.

Proof. Let {e1, . . . , en} be a basis of V with respect to which T has the matrix

MT =

⎛⎜⎜⎜⎜⎜⎜⎝
λ1 . . . ∗
0 λ2 . . .

0 0 . . .

0 0 0 λn

⎞⎟⎟⎟⎟⎟⎟⎠
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We will prove that T is not invertible iff one of the λk’s equals zero. If λ1 = 0, then

T (v1) = 0, so T is not invertible, as desired.

Suppose λk = 0, 1 < k ≤ n. The operator T maps the vectors e1, . . . , ek−1 in

span{e1, . . . , ek−1} and, because λk = 0, T (ek) ∈ {e1, . . . , ek−1}. So, the vectors

T (e1), . . . , T (ek) are linearly dependent (they are k vectors in a k − 1 dimensional

vector space, span{e1, . . . , ek−1}. Consequently T is not injective, and not

invertible.

Suppose that T is not invertible. Then ker T �= {0}, so v ∈ V, v �= 0 exists such

that T (v) = 0. Let

v = a1e1 + · · ·+ anen

and let k be the largest integer with ak �= 0. Then

v = a1e1 + · · ·+ akek,

and

0 = T (v),

0 = T (a1e1 + · · ·+ akek),

0 = (a1T (e1) + · · ·+ ak−1T (ek−1)) + akT (ek).

The term (a1T (e1) + · · ·+ ak−1T (ek−1)) is in span{e1, . . . , ek−1}, because of the

form of MT . Finally T (ek) ∈ span{e1 . . . , ek−1}. Thus when T (ek) is written as a

linear combination of the basis {e1, . . . , en}, the coefficient of ek will be zero. In

other words, λk = 0.

Theorem 4.13. Suppose that T ∈ End(V ) has an upper triangular matrix with

respect to some basis of V . Then the eigenvalues of T are exactly of the entries on

the diagonal of the upper triangular matrix.

Proof. Suppose that we have a basis {e1, . . . , en} such that the matrix of T is

upper triangular in this basis. Let λ ∈ F, and consider the operator T − λI. It has
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the same matrix, except that on the diagonal the entries are λi − λ if those in the

matrix of T are λj . It follows that T − λI is not invertible iff λ is equal with some

λj . So λ is a proper value as desired.

4.3 Diagonal matrices

A diagonal matrix is a matrix which is zero except possibly the diagonal.

Proposition 4.14. If T ∈ End(V ) has dimV distinct eigenvalues, then T has a

diagonal matrix ⎛⎜⎜⎜⎜⎜⎜⎝
λ1 0

λ2

. . .

0 λn

⎞⎟⎟⎟⎟⎟⎟⎠
with respect to some basis.

Proof. Suppose that T has dimV distinct eigenvalues, λ1, . . . , λn, where

n = dimV . Choose corresponding eigenvectors e1, . . . , en. Because nonzero vectors

corresponding to distinct eigenvalues are linearly independent, we obtain a set of

vectors with the cardinal equal to dimV , that is a basis, and in this basis the

matrix of T is diagonal.

The next proposition imposes several conditions on an operator that are equivalent

to having a diagonal matrix.

Proposition 4.15. Suppose T ∈ End(V ). Denote λ1, . . . , λn the distinct

eigenvalues of T . The following conditions are equivalent.

1. T has a diagonal matrix with respect to some basis of V .
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2. V has a basis consisting of proper vectors.

3. There exists one dimensional subspaces U1, . . . , Um of V , each invariant

under T such that

V = U1 ⊕ · · · ⊕ Um.

4. V = ker(T − λ1I)⊕ · · · ⊕ ker(T − λnI).

5. dimV = dim ker(T − λ1I) + · · ·+ dim ker(T − λnI).

Proof. We saw that 1 ⇔ 2. Suppose 2 holds. Choose {e1, . . . , em} a basis

consisting of proper vectors, and Ui = span{ei}, for i = 1, m. Hence 2 ⇒ 3.

Suppose 3 holds. Choose a basis ej ∈ Uj , j = 1, m. It follows that ej , j = 1, m is a

proper vector, so they are linearly independent, and because they are m vectors,

they form a basis. Thus 3 implies 2.

Now we know that 1, 2, 3 are equivalent. Next we will prove the following chain of

implications

2 ⇒ 4 ⇒ 5 ⇒ 2

Suppose 2 holds, then V has a basis consisting of eigenvectors. Then every vector

in V is a linear combination of eigenvectors of T , that is

V = ker(T − λ1I) + · · ·+ ker(T − λnI).

We show that it is a direct sum. Suppose that

0 = u1 + · · ·+ un ,

with uj ∈ ker(T − λjI), j = 1, n. They are linearly independent, so all are 0.

Finally 4 ⇒ 5 is clear because in 4 we have a direct sum.

5 ⇒ 2. dimV = dim ker(T − λ1I) + · · ·+ dim ker(T − λnI). According to a

precedent result, distinct eigenvalues give rise to linear independent eigenvectors.
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Let {e11, . . . , e1i1}, . . . , {en1 , . . . , enin} bases in ker(T − λ1I), . . . , ker(T − λnI). Then

dim V = i1 + · · ·+ in, and {e11, . . . , e1i1 , . . . , en1 , . . . , enin} are linearly independent.

Hence V = span{e11, . . . , e1i1 , . . . , en1 , . . . , enin} which shows that 2 holds.

Example 4.16. Consider the matrix A =

⎛⎜⎜⎜⎝
2 −1 −1

−1 2 −1

−1 −1 0

⎞⎟⎟⎟⎠ . Show that A is

diagonalizable and find the diagonal matrix similar to A.

The characteristic polynomial of A is

det(A− λI) = −λ3 + 4λ2 − λ− 6 = −(λ+ 1)(λ− 2)(λ− 3).

Hence, the eigenvalues of A are λ1 = −1, λ2 = 2 and λ3 = 3. To find the

corresponding eigenvectors, we have to solve the three linear systems (A+ I)v = 0,

(A− 2I)v = 0 and (A− 3I)v = 0. On solving these systems, we find that the

solution spaces are

{(α, α, 2α) : α ∈ R},

{(α, α,−α) : α ∈ R},

respectively

{(α,−α, 0) : α ∈ R}.

Hence, the corresponding eigenvectors associated to λ1, λ2 and λ3 respectively, are

v1 = (1, 1, 2), v2 = (1, 1,−1) and v3 = (1,−1, 0) respectively. There exists 3 linear

independent eigenvectors, thus A is diagonalizable.

Our transition matrix is P = [v1|v2|v3] =

⎛⎜⎜⎜⎝
1 1 1

1 1 −1

2 −1 0

⎞⎟⎟⎟⎠ .
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We have P−1 = 1
6

⎛⎜⎜⎜⎝
1 1 2

2 2 −2

3 −3 0

⎞⎟⎟⎟⎠ .

Hence, the diagonal matrix similar to A is

D = P−1AP =

⎛⎜⎜⎜⎝
−1 0 0

0 2 0

0 0 3

⎞⎟⎟⎟⎠ .

Obviously one may directly compute D, by knowing that D is the diagonal matrix

having the eigenvalues of A on its main diagonal.

Proposition 4.17. If λ is a proper value for an operator (endomorphism) T , and

v �= 0, v ∈ V is a proper vector then one has:

1. ∀k ∈ N, λk is a proper value for T k = T ◦ · · · ◦ T (k times) and v is a proper

vector of T k.

2. If p ∈ F[X] is a polynomial with coefficients in F, then p(λ) is an eigenvalue

for p(T ) and v is a proper vector of p(T ).

3. For T automorphism (bijective endomorphism), λ−1 is a proper value for T−1

and v is an eigenvector for T−1.

Proof. 1. We have T (v) = λv, hence T ◦ T (v) = T (λv) = λT (v) = λ2v. Assume,

that T k−1(v) = λk−1v. Then T k(v) =

T ◦ T k−1(v) = T (T k−1(v)) = T (λk−1v) = λk−1T (v) = λk−1λv = λkv.

2. Let p = a0 + a1x+ · · ·+ anx
n ∈ F[X ]. Then p(T )(v) =

a0I(v) + a1T (v) + · · ·+ anT
n(v) = a0v + a1(λv) + · · ·+ an(λ

nv) = p(λ)v.
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3. T−1(v) = u such that T (u) = v. But v = λ−1T (v) = T (λ−1v), hence

T (u) = T (λ−1v). Since T is injective we have u = λ−1v, or equivalently

T−1(v) = λ−1v.

Example 4.18. Let T : V → V be a linear map. Prove that if −1 is an eigenvalue

of T 2 + T then 1 is an eigenvalue of T 3. Here I is the identity map and

T 2 = T ◦ T , etc.

From the fact that −1 is an eigenvalue of T 2 + T there exists v �= 0 such that

(
T 2 + T

)
v = −v,

or, equivalently (
T 2 + T + I

)
v = 0.

Now, we apply the linear map T − I (recall that the linear maps form a vector

space, so the sum or difference of two linear maps is still linear) to the above

relation to get

(T − I)
(
T 2 + T + I

)
v = 0.

Here we have used that, by linearity, (T − I) 0 = 0.

Finally, simple algebra yields (T − I) (T 2 + T + I) = T 3 − I, so the above equation

shows that

T 3v = v,

as desired.

4.4 The Jordan canonical form

In a previous section we have seen the endomorphisms which are diagonalizable.
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Let V be a vector space of finite dimension n over a field F. Let T : V → V and let

λ0 be an eigenvalue of T . Consider the matrix form of the endomorphism in a

given basis, T (v) = MT v. The eigenvalues are the roots of the characteristic

polynomial det(Mt − λIn) = 0. It can be proved that this polynomial does not

depend on the basis and of the matrix MT . So, it will be called the characteristic

polynomial of the endomorphism T , and it will be denoted by P (λ), and of course

deg P = n. Sometimes it is called the characteristic polynomial of the matrix, but

we understand that is the matrix associated to an operator.

Denote by m(λ0) the multiplicity of λ0 as a root of this polynomial. Associated to

the proper value λ0 we consider the proper subspace corresponding to λ0:

E(λ0) = {v ∈ V |T (v) = λ0v}.

Consider a basis of V and let MT be the matrix of T with respect to this basis. We

havev that:

Theorem 4.19. With the above notations, the following holds

dimE(λ0) = n− rank (MT − λ0I) ≤ m(λ0).

Proof. Obviously is enough to prove the claim in V = Rn. Let x1, x2, . . . , xr be

linearly independent eigenvectors associated to λ0, so that dimE(λ0) = r.

Complete this set with xr+1, . . . xn to a basis of Rn. Let P be the matrix whose

columns are xi, i = 1, n. We have MTP = [λ0x1| . . . |λ0xr| . . . ]. We get that the

first r columns of P−1MTP are diagonal with λ0 on the diagonal, but that the rest

of the columns are indeterminable. We prove next that P−1MTP has the same

characteristic polynomial as MT . Indeed

det(P−1MTP − λI) = det(P−1MTP − P−1(λI)P ) =
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det(P−1(MT − λI)P ) =
1

det(P )
det(MT − λI) det(P ) = det(MT − λI).

But since the first few columns of P−1MTP are diagonal with λ0 on the diagonal

we have that the characteristic polynomial of P−1MTP has a factor of at least

(λ0 − λ)r, so the algebraic multiplicity of λ0 is at least r.

The value dimE(λ0) is called the geometric multiplicity of the eigenvalue λ0.

Let T ∈ End(V ), and suppose that the roots of the characteristic polynomial are

in F. Let λ be a root of the characteristic polynomial, i.e. an eigenvalue of T .

Consider m the algebraic multiplicity of λ and q = dimE(λ), the geometric

multiplicity of λ.

It is possible to find q eigenvectors and m− q principal vectors (also called

generalized eigenvectors), all of them linearly independent, and an eigenvector v

and the corresponding principal vectors u1, . . . , ur satisfy

T (v) = λv, T (u1) = λu1 + v, . . . , T (ur) = λur + ur−1

The precedent definition can equivalently be stated as

A nonzero vector u is called a generalized eigenvector of rank r associated with the

eigenvalue λ if and only if (T − λI)r(u) = 0 and (T − λI)r−1(u) �= 0. We note that

a generalized eigenvector of rank 1 is an ordinary eigenvector. The previously

defined principal vectors u1, . . . , ur are generalized eigenvectors of rank 2, . . . , r+1.

It is known that if λ is an eigenvalue of algebraic multiplicity m, then there are m

linearly independent generalized eigenvectors associated with λ.

These eigenvectors and principal vectors associated to T by considering all the

eigenvalues of T form a basis of V , called the Jordan basis with respect to T . The
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matrix of T relative to a Jordan basis is called a Jordan matrix, and it has the form⎛⎜⎜⎜⎜⎜⎜⎝
J1

J2

. . .

Jp

⎞⎟⎟⎟⎟⎟⎟⎠
The J ’s are matrices, called Jordan cells. Each cell represents the contribution of

an eigenvector v, and the corresponding principal vectors, u1, . . . ur, and it has the

form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1

λ 1

λ 1
. . . 1

λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Mr+1(F)

It is easy to see that the Jordan matrix is a diagonal matrix iff there are no

principal vectors iff m(λ) = dimE(λ) for each eigenvalue λ.

Let MT be the matrix of T with respect to a given basis B, and J be the Jordan

matrix with respect to a Jordan basis B′. Late P be the transition matrix from B

to B′, hence it have columns consisting of either eigenvectors or generalized

eigenvectors. Then J = P−1MTP , hence MT = PJP−1.

Example 4.20. (algebraic multiplicity 3, geometric multiplicity 2) Consider the

operator with the matrix A =

⎛⎜⎜⎜⎝
0 1 0

−4 4 0

−2 1 2

⎞⎟⎟⎟⎠ . Find the Jordan matrix and the

transition matrix of A.



The Jordan canonical form 95

The characteristic polynomial of A is det(A− λI) = (2− λ)3, hence λ = 2 is an

eigenvalue with algebraic multiplicity 3. By solving the homogenous system

(A− 2I)v = 0 we obtain the solution space

E(2) = ker(A− 2I) = {(α, 2α, β) : α, β ∈ R}. Hence the dimension of E(2) is 2,

consequently the eigenvalue λ = 2 has geometric multiplicity 2. Therefore we can

take the linear independent eigenvectors v1 = (1, 2, 1) respectively v2 = (0, 0, 1).

Note that we need a generalized eigenvector, which can be obtained as a solution

of the system

(A− 2I)u = v1.

The solutions of this system lie in the set {(α, 2α+ 1, β) : α, β ∈ R}, hence a

generalized eigenvector, is u1 = (1, 3, 0).

Note that v1, u1, v2 are linear independent, hence we take the transition matrix

P = [v1|u1|v2] =

⎛⎜⎜⎜⎝
1 1 0

2 3 0

1 0 1

⎞⎟⎟⎟⎠ . Then P−1 =

⎛⎜⎜⎜⎝
3 −1 0

−2 1 0

−3 1 1

⎞⎟⎟⎟⎠ , hence

J = P−1AP =

⎛⎜⎜⎜⎝
2 1 0

0 2 0

0 0 2

⎞⎟⎟⎟⎠ .

Example 4.21. (algebraic multiplicity 3, geometric multiplicity 1) Consider the

operator with the matrix A =

⎛⎜⎜⎜⎝
−1 −18 −7

1 −13 −4

−1 25 8

⎞⎟⎟⎟⎠ . Find the Jordan matrix and the

transition matrix of A.

The characteristic polynomial of A is det(A− λI) = −(λ+ 2)3, hence λ = −2 is an

eigenvalue with algebraic multiplicity 3. By solving the homogenous system

(A + 2I)v = 0 we obtain the solution space
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E(2) = ker(A + 2I) = {(5α, 3α,−7α) : α ∈ R}. Hence the dimension of E(2) is 1,

consequently the eigenvalue λ = 2 has geometric multiplicity 1. Therefore we can

take the linear independent eigenvector v = (5, 3,−7). Note that we need two

generalized eigenvectors, which can be obtained as a solution of the system

(A+ 2I)u1 = v,

respectively

(A+ 2I)u2 = u1.

The solutions of the first system lie in the set {(−1+5α
7

,−2+3α
7

, α) : α ∈ R}, hence a

generalized eigenvector, for α = 4 is u1 = (−3,−2, 4).

The solutions of the system (A+ 2I)u2 = u1 with u1 = (−3,−2, 4) lie in the set

{(−3+5α
7

, 1−3α
7

, α) : α ∈ R}, hence a generalized eigenvector, for α = 5 is

u1 = (−4,−2, 5). Note that v, u1, u2 are linear independent, hence we take the

transition matrix P = [v1|u1|u2] =

⎛⎜⎜⎜⎝
5 −3 −4

3 −2 −2

−7 4 5

⎞⎟⎟⎟⎠ . Then

P−1 =

⎛⎜⎜⎜⎝
−2 −1 −2

−1 −3 −2

−2 1 −1

⎞⎟⎟⎟⎠ , hence

J = P−1AP =

⎛⎜⎜⎜⎝
−2 1 0

0 −2 1

0 0 −2

⎞⎟⎟⎟⎠ .

4.5 Problems

Problem 4.5.1. Find the eigenvalues and eigenvectors of the operator

T : C∞(1, b) → C∞(1, b), T (f)(x) = f ′(x)
xex2

.
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Problem 4.5.2. Find matrices which diagonalize the following: a)

⎛⎝1 5

3 3

⎞⎠ .

b)

⎛⎜⎜⎜⎝
1 2 −1

1 0 1

4 −4 5

⎞⎟⎟⎟⎠ .

Problem 4.5.3. Find the Jordan canonical form and the transition matrix for the

matrix ⎛⎜⎜⎜⎝
2 1 −1

3 −2 3

2 −2 3

⎞⎟⎟⎟⎠ .

Problem 4.5.4. Prove that a square matrix and its transpose have the same

eigenvalues.

Problem 4.5.5. Find the Jordan canonical form and the transition matrix for the

matrix ⎛⎜⎜⎜⎝
6 6 −15

1 5 −5

1 2 −2

⎞⎟⎟⎟⎠ .

Problem 4.5.6. Find the eigenvalues and eigenvectors of the operator

T : C[−π, π] → C[−π, π],

T (f)(x) =

∫ π

−π

(x cos y + sin x sin y)f(y)dy.

Problem 4.5.7. Find the Jordan canonical form and the transition matrix for the

matrix ⎛⎜⎜⎜⎝
4 1 1

−2 2 −2

1 1 4

⎞⎟⎟⎟⎠ .
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Problem 4.5.8. Find the eigenvalues and eigenvectors of the operator

T : C[−π, π] → C[−π, π],

T (f)(x) =

∫ π

−π

(cos3(x− y) + 1)f(y)dy.

Problem 4.5.9. Find the Jordan canonical form and the transition matrix for the

matrix ⎛⎜⎜⎜⎝
7 −12 6

10 −19 10

12 −24 13

⎞⎟⎟⎟⎠ .

Problem 4.5.10. Find the eigenvalues and eigenvectors of the operator

T : C∞(1, 2) → C∞(1, 2), T (f)(x) = f ′(x)
sin2 x

.

Problem 4.5.11. Triangularize the matrix A =

⎛⎝ 1 1

−1 3

⎞⎠ .

Problem 4.5.12. Find the Jordan canonical form and the transition matrix for

the matrix ⎛⎜⎜⎜⎝
4 −5 2

5 −7 3

6 −9 4

⎞⎟⎟⎟⎠ .

Problem 4.5.13. Find the eigenvalues and eigenvectors of the operator

T : C∞(1, b) → C∞(1, b), T (f)(x) = f ′(x)
tan2 x

.

Problem 4.5.14. Find the Jordan canonical form and the transition matrix for

the matrix ⎛⎜⎜⎜⎝
1 1 0

−4 −2 1

4 1 −2

⎞⎟⎟⎟⎠ .
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Problem 4.5.15. Prove that a complex 2× 2 matrix is not diagonalizable if and

only if it is similar to a matrix of the form

⎛⎝a b

0 a

⎞⎠ , where b �= 0.

Problem 4.5.16. Find the Jordan canonical form and the transition matrix for

the matrices ⎛⎜⎜⎜⎝
1 −3 3

−2 −6 13

−1 −4 8

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
4 6 −15

1 3 −5

1 2 −4

⎞⎟⎟⎟⎠ .

Problem 4.5.17. Prove that if A and B are n× n matrices, then AB and BA

have the same eigenvalues.

Problem 4.5.18. Find the Jordan canonical form and the transition matrix for

the matrix ⎛⎜⎜⎜⎝
2 6 −15

1 1 −5

1 2 −6

⎞⎟⎟⎟⎠ .



5
Inner product spaces

5.1 Basic definitions and results

Up to now we have studied vector spaces, linear maps, special linear maps.

We can measure if two vectors are equal, but we do not have something like

”length”, so we cannot compare two vectors. Moreover, we cannot say anything

about the position of two vectors.

In a vector space one can define the norm of a vector and the inner product of two

vectors. The notion of the norm permits us to measure the length of the vectors,

and compare two vectors. The inner product of two vectors, on one hand induces a

norm, so the length can be measured, and on the other hand (at least in the case

of real vector spaces), lets us measure the angle between two vectors, so a full

geometry can be constructed there. Nevertheless in the case of complex vector

spaces, the angle of two vectors is not clearly defined, but the orthogonality is.

Definition 5.1. An inner product on a vector space V over the field F is a

function (bilinear form) 〈·, ·〉 : V × V → R with the properties:

• (positivity and definiteness) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0.

100
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• (additivity in the first slot) 〈u+ v, w〉 = 〈u, w〉+ 〈v, w〉, for all u, v, w ∈ V.

• (homogeneity in the first slot) 〈αv, w〉 = α〈v, w〉 for all α ∈ F and v, w ∈ V.

• (conjugate symmetry) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

An inner product space is a pair (V, 〈·, ·〉), where V is vector space and 〈·, ·〉 is an

inner product on V .

The most important example of an inner product space is Fn. Let v = (v1, . . . , vn)

and w = (w1, . . . wn) and define the inner product by

〈v, w〉 = v1w1 + · · ·+ vnwn.

This is the typical example of an inner product, called the Euclidean inner

product, and when Fn is referred to as an inner product space, one should assume

that the inner product is the Euclidean one, unless explicitly stated otherwise.

Example 5.2. Let A ∈ M2(R), A =

⎛⎝ a b

b c

⎞⎠ be a positive definite matrix, that

is a > 0, det(A) > 0. Then for every u = (u1, u2), v = (v1, v2) ∈ R2 we define

〈u, v〉 = (v1 v2)A

⎛⎝ u1

u2

⎞⎠ .

It can easily be verified that 〈·, ·〉 is an inner product on the real linear space R2.

If A = I2 we obtain the usual inner product 〈u, v〉 = u1v1 + u2v2.

From the definition one can easily deduce the following properties of an inner

product:

〈v, 0〉 = 〈0, v〉 = 0,

〈u, v + w〉 = 〈u, v〉+ 〈u, w〉,
〈u, αv〉 = α〈u, v〉,
for all u, v, w ∈ V and α ∈ F
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Definition 5.3. Let V be a vector space over F. A function

‖ · ‖ : V → R

is called a norm on V if:

• (positivity) ‖v‖ ≥ 0, v ∈ V, ‖v‖ = 0 ⇔ v = 0 ;

• (homogeneity) ‖αv‖ = |α| · ‖v‖, ∀α ∈ F, ∀v ∈ V ;

• (triangle inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, ∀u, v ∈ V.

A normed space is a pair (V, ‖ · ‖), where V is a vector space and ‖ · ‖ is a norm on

V .

Example 5.4. On the real linear space Rn one can define a norm in several ways.

Indeed, for any x = (x1, x2, . . . , xn) ∈ Rn define its norm as

‖x‖ =
√
x2
1 + x2

2 + · · ·+ x2
n. One can easily verify that the axioms in the definition

of norm are satisfied. This norm is called the Euclidian norm.

More generally, for any p ∈ R, p ≥ 1 we can define

‖x‖ = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p , the so called p−norm on Rn.

Another way to define a norm on Rn is ‖x‖ = max{|x1|, |x2|, . . . , |xn|}. This is the
so called maximum norm.

Definition 5.5. Let X be a nonempty set. A function d : X ×X → R satisfying

the following properties:

• (positivity) d(x, y) ≥ 0, ∀x, y ∈ X and d(x, y) = 0 ⇔ x = y;

• (symmetry) d(x, y) = d(y, x), ∀x, y ∈ X;

• (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X;
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is called a metric or distance on X. A set X with a metric defined on it is called a

metric space.

Example 5.6. Let X be an arbitrary set. One can define a distance on X by

d(x, y) =

⎧⎨⎩ 0, if x = y

1, otherwise.

This metric is called the discrete metric on X. On Rn the Chebyshev distance is

defined as

d(x, y) = max
1≤i≤n

|xi − yi|, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn.

In this course we are mainly interested in the inner product spaces. But we should

point out that an inner product on V defines a norm, by ‖v‖ =
√〈v, v〉 for v ∈ V ,

and a norm on V defines a metric by d(v, w) = ‖w − v‖, for v, w ∈ V .

On the other hand, from their generality point of view the metrics are the most

general ones (can be defined on any set), followed by norms (which assumes the

linearity of the space where is defined) and on the last position is the inner

product. It should be pointed that every inner product generates a norm, but not

every norm comes from an inner product, as is the case for the max norm defined

above.

For an inner product space (V, 〈·, ·〉) the following identity is true:

〈
m∑
i=1

αivi,

n∑
j=1

βjwj

〉
=

m∑
i=1

n∑
j=1

αiβj〈vi, wj〉.

Definition 5.7. Two vectors u, v ∈ V are said to be orthogonal (u⊥v) if 〈u, v〉 = 0.

In a real inner product space we can define the angle of two vectors as

(̂v, w) = arccos
〈v, w〉

‖v‖ · ‖w‖
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We have

v⊥w ⇔ 〈v, w〉 = 0 ⇔ (̂v, w) =
π

2
.

Theorem 5.8. (Parallelogram law) Let V be an inner product space and

u, v ∈ V . Then

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Proof.

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉u, v〉+ 〈v, u〉+ 〈v, v〉
= 〈u, u〉+ 〈+〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉
= 2(‖u‖2 + ‖v‖2).

Theorem 5.9. (Pythagorean Theorem) Let V be an inner product space, and

u, v ∈ V orthogonal vectors. Then

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof.

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + ‖v‖2.

Now we are going to prove one of the most important inequalities in mathematics,

namely the Cauchy-Schwarz inequality. There are several methods of proof for

this, we will give one related to our aims.



Basic definitions and results 105

Consider u, v ∈ V . We want to write u as a sum between a vector collinear to v

and a vector orthogonal to v. Let α ∈ F and write u as u = αv + (u− αv).

Imposing now the condition that v is orthogonal to (u− αv), one obtains

0 = 〈u− αv, v〉 = 〈u, v〉 − α‖v‖2,

so one has to choose α = 〈u,v〉
‖v‖2 , and the decomposition is

u =
〈u, v〉
‖v‖2 v +

(
u− 〈u, v〉

‖v‖2 v
)
.

Theorem 5.10. Cauchy-Schwarz Inequality Let V be an inner product space

and u, v ∈ V . Then

|〈u, v〉| ≤ ‖u‖ · ‖v‖.

The equality holds iff one of u, v is a scalar multiple of the other (u and v are

collinear).

Proof. Let u, v ∈ V . If v = 0 both sides of the inequality are 0 and the desired

result holds. Suppose that v �= 0. Write u = 〈u,v〉
‖v‖2 v +

(
u− 〈u,v〉

‖v‖2 v
)
. Taking into

account that the vectors 〈u,v〉
‖v‖2 v and u− 〈u,v〉

‖v‖2 v are orthogonal, by the Pythagorean

theorem we obtain

‖u‖2 =

∥∥∥∥〈u, v〉‖v‖2 v
∥∥∥∥2 + ∥∥∥∥u− 〈u, v〉

‖v‖2 v
∥∥∥∥2

=
|〈u, v〉|2
‖v‖2 +

∥∥∥∥u− 〈u, v〉
‖v‖2 v

∥∥∥∥2
≥ |〈u, v〉|2

‖v‖2 ,

inequality equivalent with the one in the theorem.

We have equality iff u− 〈u,v〉
‖v‖2 v = 0, that is iff u is a scalar multiple of v.
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5.2 Orthonormal Bases

Definition 5.11. Let (V, 〈·, ·〉) be an inner product space and let I be an arbitrary

index set. A family of vectors A = {ei ∈ V |i ∈ I} is called an orthogonal family, if

〈ei, ej〉 = 0 for every i, j ∈ I, i �= j. The family A is called orthonormal if it is

orthogonal and ‖ei‖ = 1 for every i ∈ I.

One of the reason that one studies orthonormal families is that in such special

bases the computations are much more simple.

Proposition 5.12. If (e1, e2, . . . , em) is an orthonormal family of vectors in V ,

then

‖α1e1 + α2e2 + · · ·+ αmem‖2 = |α1|2 + |α2|2 + · · ·+ |αm|2

for all α1, α2, . . . , αm ∈ F.

Proof. Apply Pythagorean Theorem, that is

‖α1e1 + α2e2 + · · ·+ αmem‖2 = |α1|2‖e1‖2 + |α2|2‖e2‖2 + · · ·+ |αm|2‖en‖2.

The conclusion follows taking into account that ‖ei‖ = 1, i = 1, n.

Corollary 5.13. Every orthonormal list of vectors is linearly independent.

Proof. Let (e1, e2, . . . , em) be an orthonormal list of vectors in V and

α1, α2, . . . , αm ∈ F with

α1e1 + α2e2 + · · ·+ αmem = 0.

It follows that ‖α1e1 + α2e2 + · · ·+ αmem‖2 = |α1|2 + |α2|2 + · · ·+ |αm|2 = 0, that

is αj = 0, j = 1, m.
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An orthonornal basis of an inner product vector space V is a basis of V which is

also an orthonormal list of V . It is clear that every orthonormal list of vectors of

length dim V is an orthonormal basis (because it is linearly independent, being

orthonormal).

Theorem 5.14. Let (e1, e2, . . . , en) be an orthonormal basis of an inner product

space V . If v = α1e1 + α2e2 + · · ·+ αnen ∈ V , then

• αi = 〈v, ei〉, for all i ∈ {1, 2, . . . , n} and

• ‖v‖2 =
n∑

i=1

|〈v, ei〉|2

Proof. Since v = α1e1 + α2e2 + · · ·+ αnen, by taking the inner product in both

sides with ei we have

〈v, ei〉 = α1〈e1, ei〉+ α2〈e2, ei〉+ · · ·+ αi〈ei, ei〉+ · · ·+ αn〈en, ei〉 = αi.

The second assertion comes from applying the previous proposition. Indeed,

‖v‖2 = ‖α1e1 + · · ·+ αnen‖2 = |α1|2 + · · ·+ |αn|2 =
n∑

i=1

|〈v, ei〉|2.

Up to now we have an image about the usefulness of orthonormal basis. The

advantage is that in an orthonormal basis the computations are easy, as in the

Euclidean two or three dimensional spaces. But how does one go to find them?

The next result gives an answer to the question. The following result is a well

known algorithm in linear algebra, called the Gram-Schmidt procedure. The

procedure is pointed here, giving a method for turning a linearly independent list

into an orthonormal one, with the same span as the original one.

Theorem 5.15. Gram-Schmidt If (v1, v2, . . . , vm) is a linearly independent set

of vectors in V , then there exists an orthonormal set of vectors (e1, . . . em) in V,
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such that

span(v1, v2, . . . , vk) = span(e1, e2 . . . , ek)

for every k ∈ {1, 2, . . . , m}.

Proof. Let (v1, v2, . . . , vm) be a linearly independent set of vectors. The family of

orthonormal vectors (e1, e2 . . . , em) will be constructed inductively. Start with

e1 =
v1

‖v1‖ . Suppose now that j > 1 and an orthonormal family (e1, e2, . . . , ej−1) has

been constructed such that

span(v1, v2, . . . , vj−1) = span(e1, e2, . . . , ej−1)

Consider

ej =
vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖
Since the list (v1, v2, . . . , vm) is linearly independent, it follows that vj is not in

span(v1, v2, . . . , vj−1), and thus is not in span(e1, e2, . . . , ej−1). Hence ej is well

defined, and ‖ej‖ = 1. By direct computations it follows that for 1 < k < j one has

〈ej , ek〉 =

〈
vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖ , ek
〉

=
〈vj, ek〉 − 〈vj , ek〉

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖
= 0,

thus (e1, e2, . . . ek) is an orthonormal family. By the definition of ej one can see

that vj ∈ span(e1, e2, . . . , ej), which gives (together with our hypothesis of

induction), that

span(v1, v2, . . . , vj) ⊂ span(e1, e2, . . . , ej)
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Both lists being linearly independent (the first one by hypothesis and the second

one by orthonormality), it follows that the generated subspaces above have the

same dimension j, so they are equal.

Remark 5.16. If in the Gram-Schmidt process we do not normalize the vectors

we obtain an orthogonal basis instead of an orthonormal one.

Example 5.17. Orthonormalize the following list of vectors in R4 :

{v1 = (0, 1, 1, 0), v2 = (0, 4, 0, 1), v3 = (1,−1, 1, 0), v4 = (1, 3, 0, 1)}.

First we will orthogonalize by using the Gram-Schmidt procedure.

Let u1 = v1 = (0, 1, 1, 0).

u2 = v2 − 〈v2, u1〉
〈u1, u1〉u1 = (0, 4, 0, 1)− 4

2
(0, 1, 1, 0) = (0, 2,−2, 1).

u3 = v3 − 〈v3, u1〉
〈u1, u1〉u1 − 〈v3, u2〉

〈u2, u2〉u2 =

(
1,−1

9
,
1

9
,
4

9

)
.

u4 = v4 − 〈v4, u1〉
〈u1, u1〉u1 − 〈v4, u2〉

〈u2, u2〉u2 − 〈v4, u3〉
〈u3, u3〉u3 =

(
1

11
,
1

22
,− 1

22
,− 2

11

)
.

It can easily be verified that the list {u1, u2, u3, u4} is orthogonal. Take now

wi =
ui

‖ui‖ , i = 1, 4. We obtain

w1 =

(
0,

1√
2
,
1√
2
, 0

)
,

w2 =

(
0,

2

3
,−2

3
,
1

3

)
,

w3 =

(
3√
11

,− 1

3
√
11

,
1

3
√
11

,
4

3
√
11

)
,

w4 =

(√
22

11
,

√
22

22
,−

√
22

22
,−2

√
22

11

)
.

Obviously the list {w1, w2, w3, w4} is orthonormal.

Now we can state the main results in this section.
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Corollary 5.18. Every finitely dimensional inner product space has an

orhtonormal basis.

Proof. Choose a basis of V , apply the Gram-Schmidt procedure to it and obtain

an orthonormal list of length equal to dimV . It follows that the list is a basis,

being linearly independent.

The next proposition shows that any orthonormal list can be extended to an

orthonormal basis.

Proposition 5.19. Every orhtonormal family of vectors can be extended to an

orthonormal basis of V .

Proof. Suppose (e1, e2, . . . , em) is an orthonormal family of vectors.. Being linearly

independent, it can be extended to a basis, (e1, e2, . . . , em, vm+1, . . . , vn). Applying

now the Gram-Schmidt procedure to (e1, e2, . . . , em, vm+1, . . . , vn), we obtain the

list (e1, e2, . . . , em, fm+1, . . . , fn), (note that the Gram Schmidt procedure leaves

the first m entries unchanged, being already orthonormal). Hence we have an

extension to an orthonormal basis.

Corollary 5.20. Suppose that T ∈ End(V ). If T has an upper triangular form

with respect to some basis of V , then T has an upper triangular form with respect

to some orthonormal basis of V .

Corollary 5.21. Suppose that V is a complex vector space and T ∈ End(V ).

Then T has an upper triangular form with respect to some orthonormal basis of V .

5.3 Orthogonal complement

Let U ⊆ V be a subset of an inner product space V . The orthogonal complement

of U , denoted by U⊥ is the set of all vectors in V which are orthogonal to every
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vector in U i.e.:

U⊥ = {v ∈ V |〈v, u〉 = 0, ∀u ∈ U}.

It can easily be verified that U⊥ is a subspace of V , V ⊥ = {0} and {0}⊥ = V , as

well that U1 ⊆ U2 ⇒ U⊥
2 ⊆ U⊥

1 .

Theorem 5.22. If U is a subspace of V , then

V = U ⊕ U⊥

Proof. Suppose that U is a subspace of V . We will show that

V = U + U⊥

Let {e1, . . . , em} be an orthonormal basis of U and v ∈ V . We have

v = (〈v, e1〉e1 + · · ·+ 〈v, em〉em) + (v − 〈v, e1〉e1 − · · · − 〈v, em〉em)

Denote the first vector by u and the second by w. Clearly u ∈ U . For each

j ∈ {1, 2, . . . , m} one has

〈w, ej〉 = 〈v, ej〉 − 〈v, ej〉
= 0

Thus w is orthogonal to every vector in the basis of U , that is w ∈ U⊥,

consequently

V = U + U⊥.

We will show now that U ∩ U⊥ = {0}. Suppose that v ∈ U ∩ U⊥. Then v is

orthogonal to every vector in U , hence 〈v, v〉 = 0, that is v = 0. The relations

V = U + U⊥ and U ∩ U⊥ = {0} imply the conclusion of the theorem.

Proposition 5.23. If U1, U2 are subspaces of V then
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a) U1 = (U⊥
1 )

⊥.

b) (U1 + U2)
⊥ = U⊥

1 ∩ U⊥
2 .

c) (U1 ∩ U2)
⊥ = U⊥

1 + U⊥
2 .

Proof. a) We show first that U1 ⊆ (U⊥
1 )

⊥. Let u1 ∈ U1. Then for all v ∈ U⊥
1 one

has v⊥u1. In other words 〈u1, v〉 = 0 for all v ∈ U⊥
1 . Hence u1 ∈ (U⊥

1 )
⊥.

Assume now that (U⊥
1 )

⊥ �⊆ U1. Hence, there exists u2 ∈ (U⊥
1 )

⊥ \ U1. Since

V = U1 ⊕ U⊥
1 we obtain that there exists u1 ∈ U1 such that u2 − u1 ∈ U⊥

1 (∗).
On the other hand, according to the first part of proof u1 ∈ (U⊥

1 )
⊥ and (U⊥

1 )
⊥ is a

linear subspace, hence u2 − u1 ∈ (U⊥
1 )

⊥. Hence, for all v ∈ U⊥
1 we have

(u2 − u1)⊥v (∗∗).
(∗) and (∗∗) implies that (u2 − u1)⊥(u2 − u1) that is 〈u2 − u1, u2 − u1〉 = 0, which

leads to u1 = u2 contradiction.

b) For v ∈ (U1 + U2)
⊥ one has 〈v, u1 + u2〉 = 0 for all u1 + u2 ∈ U1 + U2. By taking

u2 = 0 we obtain that v ∈ U⊥
1 and by taking u1 = 0 we obtain that v ∈ U⊥

2 . Hence

(U1 + U2)
⊥ ⊆ U⊥

1 ∩ U⊥
2 .

Conversely, let v ∈ U⊥
1 ∩U⊥

2 . Then 〈v, u1〉 = 0 for all u1 ∈ U1 and 〈v, u2〉 = 0 for all

u2 ∈ U2. Hence 〈v, u1 + u2〉 = 0 for all u1 ∈ U1 and u2 ∈ U2, that is v ∈ (U1 + U2)
⊥.

c) According to a) ((U1 ∩ U2)
⊥)⊥ = U1 ∩ U2.

According to b) and a) (U⊥
1 + U⊥

2 )
⊥ = (U⊥

1 )
⊥ ∩ (U⊥

2 )
⊥ = U1 ∩ U2.

Hence, ((U1 ∩ U2)
⊥)⊥ = (U⊥

1 + U⊥
2 )

⊥ which leads to (U1 ∩ U2)
⊥ = U⊥

1 + U⊥
2 .

Example 5.24. Let U = {(x1, x2, x3, x4) ∈ R4|x1 − x2 + x3 − x4 = 0}. Knowing

that U is a subspace of R4, compute dimU and U⊥.



Linear manifolds 113

It is easy to see that

U =
{
(x1, x2, x3, x4) ∈ R4|x1 − x2 + x3 − x4 = 0

}
= {(x1, x2, x3, x1 − x2 + x3) |x1, x2, x3 ∈ R}
= {x1 (1, 0, 0, 1) + x2 (0, 1, 0,−1) + x3 (0, 0, 1, 1) |x1, x2, x3 ∈ R}
= span {(1, 0, 0, 1) , (0, 1, 0,−1) , (0, 0, 1, 1)} .

The three vectors (1, 0, 0, 1) , (0, 1, 0,−1) , (0, 0, 1, 1) are linearly independent (the

rank of the matrix they form is 3), so they form a basis of U and dimU = 3.

The dimension formula

dimU + dimU⊥ = dimR4

tells us that dimU⊥ = 1, so U⊥ is generated by a single vector. A vector that

generates U⊥ is (1,−1, 1,−1), the vector formed by the coefficients that appear in

the linear equation that defines U . This is true because the right hand side of the

equation is exactly the scalar product between u⊥ = (1,−1, 1,−1) and a vector

v = (x1, x2, x3, x4) ∈ U .

5.4 Linear manifolds

Let V be a vector space over the field F.

Definition 5.25. A set L = v0 + VL = {v0 + v|v ∈ VL} , where v0 ∈ V is a vector

and VL ⊂ V is a subspace of V is called a linear manifold (or linear variety). The

subspace VL is called the director subspace of the linear variety.

Remark 5.26. One can easily verify the following.

• A linear manifold is a translated subspace, that is L = f(VL) where

f : V → V , f(v) = v0 + v.
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• if v0 ∈ VL then L = VL.

• v0 ∈ L because v0 = v0 + 0 ∈ v0 + VL.

• for v1, v2 ∈ L we have v1 − v2 ∈ VL.

• for every v1 ∈ L we have L = v1 + VL.

• L1 = L2, where L1 = v0 + VL1 and L2 = v′0 + VL2 iff VL1 = VL2 and

v0 − v′0 ∈ VL1 .

Definition 5.27. We would like to emphasize that:

1. The dimension of a linear manifold is the dimension of its director subspace.

2. Two linear manifolds L1 and L2 are called orthogonal if VL1⊥VL2 .

3. Two linear manifolds L1 and L2 are called parallel if VL1 ⊂ VL2 or VL2 ⊂ VL1.

Let L = v0 + VL be a linear manifold in a finitely dimensional vector space V . For

dimL = k ≤ n = dimV one can choose in the director subspace VL a basis of finite

dimension {v1, . . . , vk}. We have

L = {v = v0 + α1v1 + · · ·+ αkvk|αi ∈ F, i = 1, k}

We can consider an arbitrary basis (fixed) in V , let’s say E = {e1, . . . , en} and if

we use the column vectors for the coordinates in this basis, i.e.

v[E] = (x1, . . . , xn)
�, v0[E]

= (x0
1, . . . , x

0
n)

�, vj[E]
= (x1j , . . . , xnj)

�, j = 1, k, one has

the parametric equations of the linear manifold
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x1 = x0

1 + α1x11 + · · ·+ αkx1k

...

xn = x0
n + α1xn1 + · · ·+ αkxnk

The rank of the matrix (xij)i=1,n
j=1,k

is k because the vectors v1, . . . , vk are linearly

independent.

It is worthwhile to mention that:

1. a linear manifold of dimension one is called line.

2. a linear manifold of dimension two is called plane.

3. a linear manifold of dimension k is called k plane.

4. a linear manifold of dimension n− 1 in an n dimensional vector space is

called hyperplane.

Theorem 5.28. Let us consider V an n-dimensional vector space over the field F.

Then any subspace of V is the kernel of a surjective linear map.

Proof. Suppose VL is a subspace of V of dimension k. Choose a basis {e1, . . . , ek}
in VL and complete it to a basis {e1, . . . , ek, ek+1, . . . , en} of V . Consider

U = span{ek+1, . . . , en}. Let T : V → U given by

T (e1) = 0, . . . T (ek) = 0, T (ek+1) = ek+1, . . . , T (en) = en.

Obviously, T (α1e1 + · · ·+αnen) = α1T (e1) + · · ·+αnT (en) = αk+1ek+1+ · · ·+αnen

defines a linear map. It is also clear that ker T = VL as well that T is surjective,

i.e. imT = U .
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Remark 5.29. In fact the map constructed in the previous theorem is nothing

but the projection on U parallel to the space span{e1, . . . , ek}.

Theorem 5.30. Let V, U two linear spaces over the same field F. If T : V → U is

a surjective linear map, then for every u0 ∈ U , the set L = {v ∈ V |T (v) = u0} is a

linear manifold.

Proof. T being surjective, there exists v0 ∈ V with T (v0) = u0. We will show that

{v − v0|v ∈ L} = ker T .

Let v ∈ L. We have T (v − v0) = T (v)− T (v0) = 0, so {v − v0|v ∈ L} ⊆ ker T .

Let v1 ∈ ker T , i.e. T (v1) = 0. Write v1 = (v1 + v0)− v0. T (v1 + v0) = u0, so

(v1+ v0) ∈ L. Hence, v1 ∈ {v− v0|v ∈ L} or, in other words ker T ⊆ {v− v0|v ∈ L}.
Consequently L = v0 + ker T, which shows that L is a linear manifold.

The previous theorems give rise to the next:

Theorem 5.31. Let V a linear space of dimension n. Then, for every linear

manifold L ⊂ V of dimension dimL = k < n, there exists an n− k-dimensional

vector space U , a surjective linear map T : V → U and a vector u ∈ U such that

L = {v ∈ V |T (v) = u}.

Proof. Indeed, consider L = v0 + VL, where the dimension of the director subspace

VL = k. Choose a basis {e1, . . . , ek} in VL and complete it to a basis

{e1, . . . , ek, ek+1, . . . , en} of V . Consider U = span{ek+1, . . . , en}. Obviously

dimU = n− k. According to a previous theorem the linear map

T : V → U, T (α1e1 + · · ·+ αkek + αk+1ek+1 + · · ·+ αnen) = αk+1ek+1 + · · ·+ αnen

is surjective and ker T = VL. Let T (v0) = u. Then, according to the proof of the

previous theorem L = {v ∈ V |T (v) = u}.
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Remark 5.32. If we choose in V and U two bases and we write the linear map by

matrix notation MTv = u we have the implicit equations of the linear manifold L,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a11v1 + a12v2 + · · ·+ a1nvn = u1

...

ap1v1 + ap2v2 + · · ·+ apnvn = up

where p = n− k = dimU = rank (aij) i=1,p
j=1,n

.

A hyperplane has only one equation

a1v1 + · · ·+ anvn = u0

The director subspace can be seen as

VL = {v = v1e1 + · · ·+ vnen|f(v) = 0} = ker f,

where f is the linear map (linear functional) f : V → R with

f(e1) = a1, . . . , f(en) = an.

If we think of the hyperplane as a linear manifold in the Euclidean space Rn, the

equation can be written as

〈v, a〉 = u0,where a = a1e1 + · · ·+ anen, u0 ∈ R.

The vector a is called the normal vector to the hyperplane.

Generally in a Euclidean space the equations of a linear manifold are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈v, v1〉 = u1

...

〈v, vp〉 = up
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where the vectors v1, . . . vp are linearly independent. The director subspace is given

by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈v, v1〉 = 0

...

〈v, vp〉 = 0

so, the vectors v1, . . . , vp are orthogonal to the director subspace VL.

5.5 The Gram determinant. Distances.

In this section we will explain how we can measure the distance between some

”linear sets”, which are linear manifolds.

Let (V, 〈·, ·〉) be an inner product space and consider the vectors vi ∈ V , i = 1, k.

The determinant

G(v1, . . . , vk) =

∣∣∣∣∣∣∣∣∣∣∣∣

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vk〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vk〉
. . . . . . . . . . . .

〈vk, v1〉 〈vk, v2〉 . . . 〈vk, vk〉

∣∣∣∣∣∣∣∣∣∣∣∣
is called the Gram determinant of the vectors v1 . . . vk.

Proposition 5.33. In an inner product space the vectors v1, . . . , vk are linearly

independent iff G(v1, . . . , vk) �= 0.

Proof. Let us consider the homogenous system

G ·

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

...

xk

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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This system can be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈v1, v〉 = 0

... where v = x1v1 + . . . xkvk.

〈vk, v〉 = 0

The following statements are equivalent.

The vectors v1, . . . , vk are linearly dependent. ⇐⇒ There exist x1, . . . , xk ∈ F, not

all zero such that v = 0. ⇐⇒ The homogenous system has a nontrivial solution.

⇐⇒ detG = 0.

Proposition 5.34. If {e1, . . . , en} are linearly independent vectors and

{f1, . . . , fn} are vectors obtained by Gram Schmidt orthogonalization process, one

has:

G(e1, . . . , en) = G(f1, . . . , fn) = ‖f1‖2 · . . . · ‖fn‖2

Proof. In G(f1, . . . , fn) replace fn by en − a1f1 − · · · − an−1fn−1 and we obtain

G(f1, . . . , fn) = G(f1, . . . , fn−1, en).

By an inductive process the relation in the theorem follows. Obviously

G(f1, . . . , fn) = ‖f1‖2 · . . . · ‖fn‖2 because in the determinant we have only on the

diagonal 〈f1, f1〉, . . . , 〈fn, fn〉.

Remark 5.35. Observe that:

• ‖fk‖ =

√
G(e1, . . . ek)

G(e1, . . . , ek−1)

• fk = ek − a1f1 − . . . ak−1fk−1 = ek − vk one obtains ek = fk + vk,

vk ∈ span{e1, . . . , ek−1} and fk ∈ span{e1, . . . , ek−1}⊥, so fk is the orthogonal

complement of ek with respect to the space generated by {e1 . . . , ek−1}.
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The distance between a vector and a subspace

Let U be a subspace of the inner product space V . The distance between a vector

v and the subspace U is

d(v, U) = inf
w∈U

d(v, w) = inf
w∈U

‖v − w‖.

Remark 5.36. The linear structure implies a very simple but useful fact:

d(v, U) = d(v + w,w + U)

for every v, w ∈ V and U ⊆ V , that is the linear structure implies that the

distance is invariant by translations.

We are interested in the special case when U is a subspace.

Proposition 5.37. The distance between a vector v ∈ V and a subspace U is

given by

d(v, U) = ‖v⊥‖ =

√
G(e1, . . . , ek, v)

G(e1, . . . , ek)
,

where v = v1 + v⊥, v1 ∈ U, v⊥ ∈ U⊥ and e1, . . . , ek is a basis in U .

Proof. First we prove that ‖v⊥‖ = ‖v − v1‖ ≤ ‖v − u‖, ∀u ∈ U . We have

‖v⊥‖ ≤ ‖v − u‖ ⇔
〈v⊥, v⊥〉 ≤ 〈v⊥ + v1 − u, v⊥ + v1 − u〉 ⇔
〈v⊥, v⊥〉 ≤ 〈v⊥, v⊥〉+ 〈v1 − u, v1 − u〉.

The second part of the equality, i.e. ‖v⊥‖ =
√

G(e1,...,ek,v)
G(e1,...,ek)

, follows from the previous

remark.

Definition 5.38. If e1, . . . , ek are vectors in V the volume of the k- parallelepiped

constructed on the vectors e1, . . . , ek is defined by Vk(e1, . . . , ek) =
√

G(e1, . . . , ek).
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We have the following inductive relation

Vk+1(e1, . . . , ek, ek+1) = Vk(e1, . . . , ek)d(ek+1, span{e1, . . . , ek}).

The distance between a vector and a linear manifold

Let L = v0 + VL be a linear manifold, and let v be a vector in a finitely

dimensional inner product space V . The distance induced by the norm is invariant

by translations, that is, for all v1, v2 ∈ V one has

d(v1, v2) = d(v1 + v0, v1 + v0) ⇔ ‖v1 − v2‖ = ‖v1 + v0 − (v2 + v0)‖

That means that we have

d(v, L) = inf
w∈L

d(v, w) = inf
vL∈VL

d(v, v0 + vL)

= inf
vL∈VL

d(v − v0, vL)

= d(v − v0, VL).

Finally,

d(v, L) = d(v − v0, VL) =

√
G(e1, . . . , ek, v − v0)

G(e1, . . . , ek)
,

where e1, . . . , ek is a basis in VL.

Example 5.39. Consider the linear manifolds

L = {(x, y, z, t) ∈ R4|x+ y + t = 2, x− 2y + z + t = 3},
K = {(x, y, z, t) ∈ R4|x+ y + z − t = 1, x+ y + z + t = 3}. Find the director

subspaces VL, VK and a basis in VL ∩ VK . Find the distance of v = (1, 0, 2, 2) from

L, respectively K, and show that the distance between L and K is 0.

Since L = v0 + VL and K = u0 + VK it follows that VL = L− v0 and VK = K − u0

for some v0 ∈ L, u0 ∈ K. By taking x = y = 0 in the equations that describe L we
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obtain t = 2, z = 1, hence v0 = (0, 0, 1, 2) ∈ L. Analogously u0 = (0, 0, 2, 1) ∈ K.

Hence the director subspaces are

VL = {(x, y, z − 1, t− 2) ∈ R4|x+ y + t = 2, x− 2y + z + t = 3} =

{(x, y, z, t) ∈ R4|x+ y + t = 0, x− 2y + z + t = 0},

respectively

VK = {(x, y, z − 2, t− 1) ∈ R4|x+ y + z − t = 1, x+ y + z + t = 3} =

{(x, y, z, t) ∈ R4|x+ y + z − t = 0, x+ y + z + t = 0}.

By solving the homogenous systems

⎧⎨⎩ x+ y + t = 0

x− 2y + z + t = 0
, respectively⎧⎨⎩ x+ y + z − t = 0

x+ y + z + t = 0
we obtain that

VL = span{e1 = (−1, 1, 3, 0), e2 = (−1, 0, 0, 1)},

respectively

VK = span{e3 = (−1, 1, 0, 0), e4 = (−1, 0, 1, 0)}.

Since det[e1|e2|e3|e4] = 3 �= 0 the vectors e1, e2, e3, e4 are linearly independent,

hence VL ∩ VK = {0}. The distance of v from L is

d(v, L) = d(v − v0, VL) =

√
G(e1, e2, v − v0)

G(e1, e2)
=

√
19

21
,

meanwhile

d(v,K) = d(v − v0, VK) =

√
G(e3, e4, v − v0)

G(e3, e4)
=

√
4

3
.
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It is obvious that K ∩ L �= ∅, since the system

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x+ y + t = 2

x− 2y + z + t = 3

x+ y + z − t = 1

x+ y + z + t = 3

is consistent,

having solution (1, 0, 1, 1), hence we must have

d(L,K) = 0.

Let us consider now the hyperplane H of equation

〈v − v0, n〉 = 0 .

The director subspace is VH = 〈v, n〉 = 0 and the distance

d(v,H) = d(v − v0, VH).

One can decompose v − v0 = αn + vH , where vH is the orthogonal projection of

v − v0 on VH and αn is the normal component of v − v0 with respect to VH . It

means that

d(v,H) = ‖αn‖

Let us compute a little now, taking into account the previous observations about

the tangential and normal part:

〈v − v0, n〉 = 〈αn+ vH , n〉
= α〈n, n〉+ 〈vH , n〉
= α‖n‖2 + 0

So, we obtained
|〈v − v0, n〉|

‖n‖ = |α|‖n‖ = ‖αn‖
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that is

d(v,H) =
|〈v − v0, n〉|

‖n‖
In the case that we have an orthonormal basis at hand, the equation of the

hyperplane H is

a1x1 + · · ·+ akxk + b = 0 ,

so the relation is now

d(v,H) =
|a1v1 + · · ·+ akvk + b|√

a21 + · · ·+ a2k
.

The distance between two linear manifolds

For A and B sets in a metric space, the distance between them is defined as

d(A,B) = inf{d(a, b)|a ∈ A , b ∈ B}.

For two linear manifolds L1 = v1 + V1 and L2 = v2 + V2 it easily follows:

d(L1, L2) = d(v1 + V1, v2 + V2) = d(v1 − v2, V1 − V2) (5.1)

= d(v1 − v2, V1 + V2). (5.2)

This gives us the next proposition.

Proposition 5.40. The distance between the linear manifolds L1 = v1 + V1 and

L2 = v2 + V2 is equal to the distance between the vector v1 − v2 and the sum space

V1 + V2.

If we choose a basis in V1 + V2, let’s say e1, . . . , ek, then this formula follows:

d(L1, L2) =

√
G(e1, . . . , ek, v1 − v2)

G(e1, . . . , ek)
.

Some analytic geometry
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In this section we are going to apply distance problems in Euclidean spaces.

Consider the vector space Rn with the canonical inner product, that is: for

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn the inner product is given by

〈x, y〉 =
n∑

i=1

xkyk.

Consider D1 , D2 two lines (one dimensional linear manifolds), M a point (zero

dimensional linear manifold, we assimilate with the vector xM = 0M), P a two

dimensional linear manifold (a plane), and H an n− 1 dimensional linear manifold

(hyperplane). The equations of these linear manifolds are:

D1 : x = x1 + sd1,

D2 : x = x2 + td2,

M : x = xM ,

P : x = xP + αv1 + βv2,

respectively

H : 〈x, n〉+ b = 0,

where s, t, α, β, b ∈ R. Recall that two linear manifolds are parallel if the director

space of one of them is included in the director space of the other.

Now we can write down several formulas for distances between linear manifolds.
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d(M,D1) =

√
G(xM − x1, d1)

G(d1)
;

d(M,P ) =

√
G(xM − xP , v1, v2)

G(v1, v2)
;

d(D1, D2) =

√
G(x1 − x2, d1, d2)

G(d1, d2)
if D1 ∦ D2

d(D1, D2) =

√
G(x1 − x2, d1)

G(d1, )
if D1 ‖ D2

d(M,H) =
|〈xM , n〉+ b|

‖n‖

d(D1, P ) =

√
G(x1 − xP , d1, v1, v2)

G(d1, v1, v2)
if D1 ∦ P

Example 5.41. Find the distance between the hyperplane

H = {(x, y, z, t) ∈ R4 : x+ y + z + t = 1} and the line

D = {(x, y, z, t) ∈ R4 : x+ y+ z + t = 3, x− y− 3z− t = −1, 2x− 2y+3z + t = 1}.

Since v0 = (0, 0, 0, 1) ∈ H its director subspace is VH = {(x, y, z, t) ∈ R4 :

x+ y + z + t = 0} = spam{e1 = (1, 0, 0,−1), e2 = (0, 1, 0,−1), e3 = (0, 0, 1,−1)}.
Since u0 = (1, 1, 0, 1) ∈ D its director subspace is

VD = {(x, y, z, t) ∈ R4 : x+ y + z + t = 0, x− y − 3z − t = 0, 2x− 2y + 3z + t =

0} = spam{e4 = (1, 1, 1,−3)}.
We have e4 = e1 + e2 + e3 hence VD ⊂ VH that is D and H are parallel. Obviously

one can compute their distance by the formula

d(D,H) =

√
G(e1, e2, e3, v0 − u0)

G(e1, e2, e3)
.

But, observe that the distance between these manifolds is actually the distance

between a point M ∈ D and H , hence is more simple to compute from the formula
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d(M,H) = |〈xM ,n〉+b|
‖n‖ , with xM = u0. Indeed the equation of H is x+ y + z + t = 1,

thus n = (1, 1, 1, 1) and b = −1, hence

d(D,H) =
|〈(1, 1, 0, 1), (1, 1, 1, 1)〉− 1|

‖(1, 1, 1, 1)‖ =
2

2
= 1.

5.6 Problems

Problem 5.6.1. Prove that for the nonzero vectors x, y ∈ R2, it holds

〈x, y〉 = ‖x‖‖y‖ cos θ,

where θ is the angle between x and y.

Problem 5.6.2. Find the angle between the vectors (−2, 4, 3) and (1,−2, 3).

Problem 5.6.3. Find the two unit vectors which are orthogonal to both of the

vectors (−2, 3,−1) and (1, 1, 1).

Problem 5.6.4. Let u, v ∈ V , V an inner product space. Show that

‖u‖ ≤ ‖u+ av‖, ∀a ∈ F ⇔ 〈u, v〉 = 0.

Problem 5.6.5. Prove that

(
n∑

i=1

aibi)
2 ≤ (

n∑
i=1

ia2i )(
n∑

i=1

1

i
b2i ),

for all ai, bi ∈ R , , i = 1, n.

Problem 5.6.6. Let S be the subspace of the inner product space R3[X], the

space of polynomials of degree at most 3, generated by the polynomials 1− x2 and

2− x+ x2, where 〈f, g〉 = ∫ 1

0
f(x)g(x)dx. Find a basis for the orthogonal

complement of S.
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Problem 5.6.7. Let u, v ∈ V , V an inner product space. If

‖u‖ = 3 , ‖u+ v‖ = 4 , ‖u− v‖ = 6,

find ‖v‖.

Problem 5.6.8. Prove or infirm the following statement: There exists an inner

product on R2 such that the norm induced by this scalar product satisfies

‖(x1, x2)‖ = |x1|+ |x2|,

for all (x1, x2) ∈ R2.

Problem 5.6.9. Show that the planes P : x− 3y + 4z = 12 and

P2 : 2x− 6y + 8z = 6 are parallel and then find the distance between them.

Problem 5.6.10. Let V be an inner product space. Then it holds:

〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2
4

, ∀u, v ∈ V.

Problem 5.6.11. If V is a complex vector space with an inner product on it,

show that

〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2
4

, ∀ u, v ∈ V.

Problem 5.6.12. Prove that the following set{
1√
2π

,
sin x√

π
, . . . ,

sin nx√
π

,
cosx√

π
, . . . ,

cosnx√
π

}
is orthonormal in C[−π, π], endowed with the scalar product

〈f, g〉 =
∫ π

−π

f(x)g(x)dx.
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Problem 5.6.13. Show that the set of all vectors in Rn which are orthogonal to a

given vector v ∈ Rn is a subspace of Rn. What will its dimension be?

Problem 5.6.14. If S is a subspace of a finite dimensional real inner product

space V, prove that S⊥ � V/S.

Problem 5.6.15. Let V be an inner product space and let {v1, . . . , vm} a list of

linearly independent vectors from V. How many orthonormal families {e1, . . . , em})
can be constructed by using the Gram-Schmidt procedure, such that

span{v1, . . . , vi} = span{e1, . . . , ei}, ∀ i = 1, m.

Problem 5.6.16. Orthonormalize the following list of vectors in R4

{(1, 11, 0, 1), (1,−2, 1, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

Problem 5.6.17. Let V be an inner product space and let U ⊆ V subspace. Show

that

dimU⊥ = dimV − dimU.

Problem 5.6.18. Let {e1, . . . , em} be an orthonormal list in the inner product

space V . Show that

‖v‖2 = |〈v, e1〉|2 + · · ·+ |〈v, em〉|2

if and only if v ∈ span{e1, . . . , em}.

Problem 5.6.19. Let V be a finite-dimensional real inner product space with a

basis {e1, . . . , en}. Show that for any u, w ∈ V it holds

〈u, w〉 = [u]�G(e1, . . . , en)[w] where [u] is the coordinate vector (represented as a

column matrix) of u with respect to the given basis and G(e1, . . . , en) is the matrix

having the same entries as the Gram determinant of {e1, . . . , en}..

Problem 5.6.20. Find the distance between the following linear manifolds.
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a) L = {(x, y, z, t) ∈ R4|x+ y + t = 1, x− 2y + z = −1}, K = {(x, y, z, t) ∈
R4|y + 2z − t = 1, x+ y + z + t = 2, x− y − 2z = −4}.

b) L = {(x, y, z, t) ∈ R4|x+ y + t = 2, x− 2y + z = 3}, K = {(x, y, z, t) ∈
R4|y + z − t = 1, 2x− y + z + t = 3}.

c) L = {(x, y, z, t) ∈ R4|x+ z + t = 1, x+ y + z = 2}, K = {(x, y, z, t) ∈
R4|y + t = 3, x+ t = 4}.

d) L = {(x, y, z, t) ∈ R4|x+ z + t = 1, x+ y + z = 2, x− y + t = 2}, K =

{(x, y, z, t) ∈ R4|2x+ y + 2z + t = 4}.

Problem 5.6.21. Let V be an inner product space, let U ⊆ V be an arbitrary

subset and let U1, U2 ⊆ V be subspaces. Show that U⊥ is a subspace of V , and

V ⊥ = 0,respectively 0⊥ = V . Further the following implication holds:

U1 ⊆ U2 ⇒ U⊥
1 ⊇ U⊥

2 .



6
Operators on inner product spaces.

6.1 Linear functionals and adjoints

A linear functional on a vector space V over the field F is a linear map f : V → F.

Example 6.1. f : F3 → F given by f(v1, v2, v3) = 3v1 + 4v2 − 5v3 is a linear

functional on F3.

Assume now that V is an inner product space. For fixed v ∈ V , the map

f : V → F given by f(u) = 〈u, v〉 is a linear functional. The next fundamental

theorem shows that in case when V is a Hilbert space, then every linear continuous

functional on V is of this form.

Recall that an inner product space is a Hilbert space if is complete, that is, every

Cauchy sequence is convergent, i.e.,

∀ε > 0 ∃nε ∈ N s.t. ∀n,m > nε =⇒ ‖xn − xm‖V < ε

implies that (xn) is convergent.

Theorem 6.2. Suppose f is a linear continuous functional on the Hilbert space V .

131
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Then there is a unique vector v ∈ V such that

f(u) = 〈u, v〉 .

Proof. We will present the proof only in the finite dimensional case. We show first

that there is a vector v ∈ V such that f(u) = 〈u, v〉. Let {e1, . . . , en} be an

orthonormal basis of V . One has

f(u) = f(〈u, e1〉e1 + · · ·+ 〈u, en〉en) = 〈u, e1〉f(e1) + . . . 〈u, en〉f(en)
= 〈u, f(e1)e1 + · · ·+ f(en)en〉 ,

for every u ∈ V . It follows that the vector

v = f(e1)e1 + · · ·+ f(en)en

satisfies f(u) = 〈u, v〉 for every u ∈ V .

It remains to prove the uniqueness of v. Suppose that there are v1, v2 ∈ V such

that

f(u) = 〈u, v1〉 = 〈u, v2〉,

for every u ∈ V . It follows that

0 = 〈u, v1〉 − 〈u, v2〉 = 〈u, v1 − v2〉 ∀ u ∈ V

Taking u = v1 − v2 it follows that v1 = v2, so v is unique.

Remark 6.3. Note that every linear functional on a finite dimensional Hilbert

space is continuous. Even more, on every finite dimensional inner product space,

the inner product defines a norm (metric) such that with the topology induced by

this metric the inner product space is complete.
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Let us consider another vector space W over F, and an inner product on it, such

that (W, 〈·, ·〉) is a Hilbert space.

Let T ∈ L(V,W ) be a continuous operator in the topologies induced by the norms

‖v‖V =
√〈v, v〉V , respectively ‖w‖W =

√〈w,w〉W , (as a continuous function in

analysis). Now, we define the adjoint of T , as follows.

Fix w ∈ W and consider the linear functional on V which maps v in 〈T (v), w〉W . It

follows that there exists a unique vector T ∗(w) ∈ V such that

〈v, T ∗(w)〉V = 〈T (v), w〉W ∀v ∈ V.

The operator T � : W → V constructed above is called the adjoint of T .

Example 6.4. Let T : R3 → R2 given by T (x, y, z) = (y + 3z, 2x).

Its adjoint operator is T ∗ : R2 → R3. Fix (u, v) ∈ R2. It follows

〈(x, y, z), T ∗(u, v)〉 = 〈T (x, y, z), (u, v)〉
= 〈(y + 3z, 2x), (u, v)〉
= yu+ 3zu + 2xv

= 〈(x, y, z), (2v, u, 3u)〉

for all (x, y, z) ∈ R3. This shows that

T ∗(u, v) = (2v, u, 3u).

Note that in the example above T ∗ is not only a map from R2 to R3, but also a

linear map.

We shall prove this in general. Let T ∈ L(V,W ), so we want to prove that

T ∗ ∈ L(W,V ).

Let w1, w1 ∈ W . By definition one has:



Linear functionals and adjoints 134

〈T (v), w1 + w2〉 = 〈T (v), w1〉+ 〈Tv, w2〉
= 〈v, T ∗(w1)〉+ 〈v, T ∗(w2)〉
= 〈v, T ∗(w1) + T ∗(w2)〉,

which shows that T ∗(w1) + T ∗(w2) plays the role of T ∗(w1 + w2).

By the uniqueness proved before, we have that

T ∗(w1) + T ∗(w2) = T ∗(w1 + w2) .

It remains to check the homogeneity of T ∗. For a ∈ F one has

〈T (v), aw〉 = a〈T (v), w〉
= a〈v, T ∗(w)〉
= 〈v, aT ∗(w)〉 .

This shows that aT ∗(w) plays the role of T ∗(aw), and again by the uniqueness of

the adjoint we have that

aT ∗(w) = T ∗(aw) .

Thus T ∗ is a linear map, as claimed.

One can easily verify the following properties:

a) additivity (S + T )∗ = S∗ + T ∗ for all S, T ∈ L(V,W ).

b) conjugate homogeneity (aT )∗ = aT ∗ for all a ∈ F and T ∈ L(V,W ).

c) adjoint of adjoint (T ∗)∗ = T for all T ∈ L(V,W ).

d) identity I∗ = I, if I = IV , V = W .
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e) products (ST )∗ = T ∗S∗ for all T ∈ L(V,W ) and S ∈ L(W,U).

For the sake of completeness we prove the above statements. Let v ∈ V and

w ∈ W.

a) Let S, T ∈ L(U,W ). Then, 〈(S + T )(v), w〉 = 〈v, (S + T )∗(w)〉. On the other

hand

〈(S+T )(v), w〉 = 〈S(v), w〉+〈T (v), w〉 = 〈v, S∗(w)〉+〈v, T ∗(w)〉 = 〈v, (S∗+T ∗)(w)〉.
Hence, (S + T )∗ = S∗ + T ∗.

b) Let a ∈ F and T ∈ L(U,W ). We have 〈(aT )(v), w〉 = 〈v, (aT )∗(w)〉. But
〈(aT )(v), w〉 = a〈T (v), w〉 = a〈v, T ∗(w) = 〈v, aT ∗(w)〉.
Hence, (aT )∗ = aT ∗(w).

c) Let T ∈ L(U,W ). Then

〈w, T (v)〉 = 〈T (v), w〉 = 〈v, T ∗(w)〉 = 〈T ∗(w), v〉 = 〈w, (T ∗)∗(v)〉.
Hence, (T ∗)∗ = T.

d) Let V = W. We have 〈v, I(w)〉 = 〈v, w〉 = 〈I(v), w〉 = 〈v, I∗(w)〉.
Hence I = I∗.

e) Let T ∈ L(V,W ) and S ∈ L(W,U). Then for all u ∈ U and v ∈ V it holds:

〈T ∗S∗(u), v〉 = 〈S∗(u), ((T )∗)∗(v) = 〈S∗(u), T (v)〉 = 〈u, (S∗)∗T (v)〉 = 〈u, ST (v)〉 =
〈ST (v), u〉 = 〈v, (ST )∗(u)〉 = 〈(ST )∗(u), v〉.
Hence, T ∗S∗ = (ST )∗.

Proposition 6.5. Suppose that T ∈ L(V,W ) is continuous. Then

1. ker T ∗ = (imT )⊥.

2. imT ∗ = (ker T )⊥.

3. ker T = (imT ∗)⊥.

4. imT = (ker T ∗)⊥.
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Proof. 1. Let w ∈ W . Then

w ∈ ker T ∗ ⇔ T ∗(w) = 0

⇔ 〈v, T ∗(w)〉 = 0 ∀ v ∈ V

⇔ 〈T (v), w〉 = 0 ∀v ∈ V

⇔ w ∈ (imT )⊥ ,

that is kerT ∗ = (imT )⊥. If we take the orthogonal complement in both sides we

get 4. Replacing T by T ∗ in 1 and 4 gives 3 and 2.

The conjugate transpose of a type (m,n)- matrix is an (n,m) matrix obtained by

interchanging the rows and columns and taking the complex conjugate of each

entry. The adjoint of a matrix (which is a linear transform between two finite

dimensional spaces in the appropriate bases) is the conjugate transpose of that

matrix as the next result shows.

Proposition 6.6. Suppose that T ∈ L(V,W ). If {e1, . . . , en}, and {f1, . . . , fm} are

orthonormal bases for V and W respectively, and we denote by MT and MT ∗ the

matrices of T and T ∗ in these bases, then MT ∗ is the conjugate transpose of MT .

Proof. The kth column of MT is obtained by writing T (ek) as linear combination

of fj ’s, the scalars used became the kth column of MT . Being the basis with fj ’s

orthonormal, it follows that

T (ek) = 〈T (ek), f1〉f1 + · · ·+ 〈T (ek), fm〉fm.

So on the position (k, j) of MT we have 〈T (ek), fj〉. Replacing T with T ∗ and

interchanging the roles played by e’s andf ’s, we see that the entry on the position

(j, k) of MT ∗ the entry is 〈T ∗(fk), ej〉, which equals to 〈fk, T (ej)〉, which equals to

〈T (ej), fk〉. In others words, MT ∗ equals to the complex conjugate of MT .
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6.2 Normal operators

An operator on a Hilbert space is called normal if it commutes with its adjoint,

that is

TT ∗ = T ∗T .

Remark 6.7. We will call a complex square matrix normal if it commutes with its

conjugate transpose, that is A ∈ Mn(C) is normal iff

AA∗ = A∗A.

Here A∗ = A
�
is the conjugate transpose of A.

It can be easily be observed that the matrix of a normal operator is a normal

matrix.

Example 6.8. On F2 consider the operator which in the canonical basis has the

matrix

A =

⎛⎝ 2 −3

3 2

⎞⎠ .

This is a normal operator.

Indeed let T : F2 → F2 be the operator whose matrix is A. Then

T (x, y) = (2x− 3y, 3x+ 2y), thus 〈T (x, y), (u, v)〉 = (2x− 3y)u+ (3x+ 2y)v =

(2v − 3u)y + (3v + 2u)x = 〈(x, y), (3v + 2u, 2v − 3u)〉. Hence, the adjoint of T is

T ∗(u, v) = (2u+ 3v,−3u+ 2v). It can easily be computed that

TT ∗(u, v) = T ∗T (u, v) = (13u, 13v), hence TT ∗ = T ∗T.

Proposition 6.9. An operator T ∈ L(V ) is normal operator iff

‖T (v)‖ = ‖T ∗(v)‖ for all v ∈ V.
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Proof. Let T ∈ L(V ).

T is normal ⇐⇒ T ∗T − TT ∗ = 0

⇐⇒ 〈(T ∗T − TT ∗)(v), v〉 = 0 for all v ∈ V

⇐⇒ 〈T ∗T (v), v〉 = 〈TT ∗(v), v〉 for all v ∈ V

⇐⇒ ‖T (v)‖2 = ‖T ∗(v)‖2 for all v ∈ V.

Theorem 6.10. Let T be a normal operator on V and λ0 be an eigenvalue of T .

1. The proper subspace E(λ0) is T ∗ invariant.

2. If v0 is an eigenvector of T corresponding to the eigenvalue λ0, then v0 is an

eigenvector of T ∗ corresponding to the eigenvalue λ0.

3. Let v, w be two eigenvectors corresponding to distinct eigenvalues λ, β. Then

v, w are orthogonal.

Proof. Let v ∈ E(λ0). We have to prove that T ∗(v) ∈ E(λ0).

Since T (v) = λ0v, we have

T (T ∗(v)) = (TT ∗)(v) = (T ∗T )(v) = T ∗(T (v)) = T ∗(λ0v) = λ0T
∗(v).

which show that T ∗(v) ∈ E(λ0).

For the second statement in the theorem we have that T (v0) = λ0v0. Let

w ∈ E(λ0). Then

〈T ∗(v0), w〉 = 〈v0, T (w)〉
= 〈v0, λ0w〉 = λ0〈v0, w〉
= 〈λ0v0, w〉.
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This means that

〈T ∗(v0)− λ0v0, w〉 = 0 ,

for all w ∈ E(λ0). The first term in the inner product lives in E(λ0) by the

previous statement. Take w = T ∗(v0)− λ0v0 and it follows that T ∗(v0) = λ0v0, i.e.,

the second assertion of the theorem holds true.

Now, we deal with the last statement. One has T (v) = λv and T (β) = βw. By the

previous point T ∗(w) = βw, so

〈T (v), w〉 = 〈v, T ∗(w)

(def. of adjoint), which implies λ〈v, w〉 = β〈v, w〉. Since λ �= β, it follows that

〈v, w〉 = 0.

Proposition 6.11. If U is a T invariant subspace of V then U⊥ is a T ∗ invariant

subspace of V .

Proof. We have

w ∈ U⊥ , v ∈ V =⇒ w ∈ U⊥ , T (v) ∈ U =⇒ 〈v, T ∗(w)〉 = 〈T (v), w〉.

That is T ∗(w) ∈ U⊥.

A unitary space is an inner product space over C.

Theorem 6.12. Suppose that V is a finite dimensional unitary space, and

T ∈ L(V ) is an operator. Then T is normal iff there exists an orthonormal basis B

of V relative to which the matrix of T is diagonal.

Proof. First suppose that T has a diagonal matrix. The matrix of T ∗ is the

complex transpose, so it is again diagonal. Any two diagonal matrices commutes,

that means that T is normal.
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To prove the other direction suppose that T is normal. Then, there is a basis

{e1, . . . , en} of V with respect to which the matrix of T is upper triangular, that is

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a1,1 a1,2 . . . an,n

0 a2,2 . . . a2,n
...

... · · · ...

0 0 . . . an,n

⎞⎟⎟⎟⎟⎟⎟⎠ .

We will show that the matrix A is actually a diagonal one.

We have

‖T (e1)‖ =
√

|a1,1|2

and

‖T ∗(e1)‖ =
√

|a1,1|2 + · · ·+ |a1,n|2.

Because T is normal the norms are equal, so a1,2 = · · · = a1,n = 0.

‖T (e2)‖ =
√

|a1,2|2 + |a2,2|2 =
√

|a2,2|2

and

‖T ∗(e2)‖ =
√

|a2,2|2 + · · ·+ |a2,n|2.

Because T is normal the norms are equal, so a2,3 = · · · = a2,n = 0.

By continuing the procedure we obtain that for every k ∈ {1, . . . , n− 1} we have

ak,k+1 = · · · = ak,n = 0, hence A is diagonal.

Theorem 6.13. (Complex spectral theorem) Suppose that V is a unitary

space. Then T has an orthonormal basis consisting of eigenvectors iff T is normal.

Proof. Induction on n = dim V . The statement is obvious for n = 1. Suppose that

this is true for all dimensions less than n. Let T ∈ L(V ). Then T has at least one
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eigenvalue λ. If dimE(λ) = n it is enough to construct an orthonormal basis of

E(λ). For dimE(λ) < n, choose E⊥(λ), and we have 0 < dimE⊥(λ) < n.

Now E(λ) is T ∗ invariant, so E⊥(λ) is T invariant. By the induction hypothesis,

E⊥(λ) has an orthonormal basis consisting of eigenvectors of T . Add this to the

orthonormal basis of E(λ). The result is an orthonormal basis of V consisting of

eigenvectors.

6.3 Isometries

An operator T ∈ L(V ) is called an isometry if

‖T (v)‖ = ‖v‖ , for all v ∈ V.

Example 6.14. Let I be the identity map of V (V complex vector space), and

λ ∈ C with |λ| = 1. The map λI is an isometry, since

‖λI(v)‖ = ‖λv‖ = |λ|‖v‖ = ‖v‖.
If T is an isometry it easily follows that T is injective.

Indeed, assume the contrary, that is, there exists u, v ∈ V, u �= v such that

T (u) = T (v). Hence, 0 = ‖T (u)− T (v)‖ = ‖T (u− v)‖ = ‖u− v‖, contradiction
with u �= v.

Theorem 6.15. Suppose T ∈ L(V ). The following are equivalent:

1. T is an isometry.

2. 〈T (u), T (v)〉 = 〈u, v〉 for every u, v ∈ V .

3. T ∗T = I.

4. {T (e1), . . . , T (em)} is an orthonormal list for every orthonormal list

{e1, . . . , em}.
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5. There exists an orthonormal basis {e1, . . . , en} of V such that

(T{e1), . . . , T (en)} is an orthonormal basis.

6. T ∗ is an isometry.

7. 〈T ∗(u), T ∗(v)〉 = 〈u, v〉 for all u, v ∈ V .

8. TT ∗ = I

9. {T ∗(e1), . . . , T ∗(em)} is an orthonormal list for every orthonormal list

(e1, . . . , em) .

10. There exists an orthonormal basis {e1, . . . , en} of V such that

{T ∗(e1), . . . , T ∗(en)} is an orthonormal basis.

Proof. Suppose that 1 holds. Let u, v ∈ V. Then

‖u− v‖2 = ‖T (u− v)‖2

= 〈T (u)− T (v), T (u)− T (v)〉
= ‖T (u)‖2 + ‖T (v)‖2 − 2〈T (u), T (v)〉
= ‖u‖2 + ‖v‖2 − 2〈T (u), T (v)〉.

On the other hand ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2〈u, v〉.
Suppose now that 2 holds. Then

〈(T ∗T − I)(u), v〉 = 〈T (u), T (v)〉 − 〈u, v〉 = 0 .

for every u, v ∈ V . Take v = (T ∗T − I)(u) and it follows that T ∗T − I = 0, i.e. 3.

Suppose 3 holds. Let (e1 . . . em) be an orthonormal list of vectors in V . Then

〈T (ej), T (ek)〉 = 〈T ∗T (ej), ek〉 = 〈ej , ek〉,

i.e. 4 holds. Obviously 4 implies 5.
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Suppose 5 holds. Let {e1, . . . , en} be an orthonormal basis of V such that

{T (e1), . . . , T (en)} is orthonormal basis. For v ∈ V

‖T (v)‖2 = ‖T (〈v, e1〉e1 + · · ·+ 〈v, en〉en)‖2

= ‖〈v, e1〉T (e1) + · · ·+ 〈v, en〉T (en)‖2

= |〈v, e1〉|2 + · · ·+ |〈v, en〉|2

= ‖v‖2 .

Taking square roots we see that T is an isometry. We have now

1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 5 =⇒ 1. Replacing T by T ∗ we see that 6 through 10 are

equivalent. We need only to prove the equivalence of one assertion in the first

group with one in the second group.

3 ⇔ 8 which is easy to see since TT ∗ = I ⇒
TT ∗(u) = u, ∀u ∈ V ⇒ (TT ∗)(T (u)) = T (u), ∀u ∈ V, or equivalently

T ((T ∗T )(u)) = T (u), ∀u ∈ V , T is injective, hence T ∗T = I.

Conversely, T ∗T = I ⇒ T ∗T (u) = u, ∀u ∈ V ⇒ (T ∗T )(T ∗(u)) = T ∗(u), ∀u ∈ V, or

equivalently T ∗((TT ∗)(u)) = T ∗(u), ∀u ∈ V , T ∗ is injective, hence TT ∗ = I.

Remark 6.16. Recall that a real square matrix A is called orthogonal iff

AA� = A�A = I. A complex square matrix B is called unitary if BB∗ = B∗B = I,

where B∗ is the conjugate transpose of B, that is B∗ = B
�
. It can easily be

observed that the matrix of an isometry on a real (complex) finite dimensional

inner product space is an orthogonal (unitary) matrix.

The last theorem shows that every isometry is a normal operator. So, the

characterizations of normal operators can be used to give a complete description of

isometries.

Theorem 6.17. Suppose that V is a complex inner product space and T ∈ L(V ).
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Then T is an isometry iff there is an orthonormal basis of T consisting of

eigenvectors of T which correspond to eigenvalues having modulus 1.

Proof. Suppose that there is an othonormal basis {e1, . . . , en} consisting of

eigenvectors whose corresponding eigenvalues {λ1, . . . , λn} have absolute value 1.

It follows that for every v ∈ V

T (v) = 〈v, e1〉T (e1) + · · ·+ 〈v, en〉T (en)
= λ1〈v, e1〉e1 + · · ·+ λn〈v, en〉en.

Thus ‖T (v)‖2 = |〈v, e1〉|2 + · · ·+ |〈v, en〉|2 = ‖v‖2 that is

‖T (v)‖ = ‖v‖.

Now we are going to prove the other direction. Suppose T is an isometry. By the

complex spectral theorem there is an orthonormal basis of V consisting of

eigenvectors {e1, . . . , en}.. Let ej , j ∈ {1, . . . , n} be such a vector, associated to an

eigenvalue λj . It follows that

|λj|‖ej‖ = ‖λjej‖ = ‖T (ej)‖ = ‖ej‖,
hence |λj| = 1, for all j ∈ {1, . . . , n}.

Finally we state the following important theorem concerning on the form of the

matrix of an isometry.

Theorem 6.18. Suppose that V is a real inner product space and T ∈ L(V ). Then

T is an isometry iff there exist an orthonormal basis of V with respect to which T

has a block diagonal matrix where each block on the diagonal matrix is a (1, 1)

matrix containing 1 or −1, or a (2, 2) matrix of the form⎛⎝ cos θ − sin θ

sin θ cos θ

⎞⎠
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with θ ∈ (0, π).

Proof. The eigenvalues of T have modulus 1, hence are the form 1, −1 or

cos θ ± sin θ. On the other hand, the matrix of T is similar to a diagonal matrix

whose diagonal entries are the eigenvalues.

6.4 Self adjoint operators

An operator T ∈ L(V ) is called self-adjoint if T = T ∗ that is 〈T (v), w〉 = 〈v, T (w)〉
for all v, w ∈ V .

Remark 6.19. Obviously a self adjoint operator T ∈ L(V ) is normal since in this

case holds

TT ∗ = T ∗T ∗ = T ∗T.

Example 6.20. Let T be an operator on F2 whose matrix with respect to the

standard basis is ⎛⎝ 2 b

3 5

⎞⎠ .

Then T is self-adjoint iff b = 3.

Indeed, for (x, y) ∈ F2 one has T (x, y) = (2x+ by, 3x+ 5y), hence for (u, v) ∈ F2 it

holds

〈T (x, y), (u, v)〉 = (2x+ by)u+ (3x+ 5y)v = 〈(x, y), (2u+ 3v, bu+ 5v)〉.

Thus T ∗(x, y) = (2x+ 3y, bx+ 5y).

In conclusion T is self adjoint, i.e. T = T ∗ if b = 3.

It can easily be verified that the sum of two self adjoint operators and the product

of an self adjoint operator by a real scalar is an self-adjoint operator.
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Indeed, let S, T ∈ L(V ) be two self adjoint operators. Then

(S + T )∗ = S∗ + T ∗ = S + T, hence S + T is self adjoint. On the other hand for

their product we have (ST )∗ = T ∗S∗ = TS. Hence TS is self adjoint iff ST = TS.

Let now a ∈ R. Then (aT )∗ = aT ∗ = aT, hence aT is self adjoint.

Remark 6.21. When F = C the adjoint on L(V ) plays a similar role to complex

conjugation on C. A complex number is real iff z = z. Thus for a self adjoint

operator T the sum T + T ∗ is analogous to a real number. The analogy is reflected

in some important properties of a self-adjoint operator, beginning with its

eigenvalues.

Remark 6.22. Recall that a complex square matrix A is called hermitian iff

A = A∗, where A∗ is the conjugate transpose of A, that is A∗ = A
�
. If A is a

square matrix with real entries, then A is called symmetric iff A = A�. It can

easily be observed that matrix of a self adjoint operator on a complex (real) inner

product space is hermitian (symmetric).

Proposition 6.23. The following statements hold.

• Every eigenvalue of a self-adjoint operator is real.

• Let v, w eigenvectors corresponding to distinct eigenvalues. Then 〈v, w〉 = 0.

Proof. Suppose that T is a self-adjoint operator on V . Let λ be an eigenvalue of T ,

and v be an eigenvector, that is T (v) = λv. Then

λ‖v‖2 = 〈λv, v〉
= 〈T (v), v〉
= 〈v, T (v)〉 (because T is self-adjoint)

= 〈v, λv〉
= λ‖v‖2.
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Thus λ = λ, i.e., λ is real.

The next assertion cames from the fact that a self-adjoint operator is normal.

Theorem 6.24. Let T ∈ L(V ), where V is an inner product space. The following

statements are equivalent.

1. T is self-adjoint.

2. There exists an orthonormal basis of V relative to which the matrix of T is

diagonal with real entries.

Proof. Assume that T is self adjoint. Since T is normal there exists exists an

orthonormal basis of V relative to which the matrix of MT of the operator is upper

triangular. But the matrix of T ∗ in this basis is MT ∗ = MT
∗, and from T = T ∗ one

has MT = M∗
T , hence MT is diagonal, and also the diagonal are formed by real

entries.

Conversely, let MT a diagonal matrix of T , with real entries in some orthonormal

basis. Then MT = M�
T , hence MT = MT ∗ or equivalently T = T ∗.

6.5 Problems

Problem 6.5.1. Suppose that A is a complex matrix with real eigenvalues which

can be diagonalized by a unitary matrix. Prove that A must be hermitian.

Problem 6.5.2. Prove or give a counter example: the product of two self adjoint

operators on a finite dimensional inner product space is self adjoint.

Problem 6.5.3. Show that an upper triangular matrix is normal if and only if it

is diagonal.
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Problem 6.5.4. Suppose p ∈ L(V ) is such that p2 = p. Prove that p is an

orthogonal projection if and only if p is self adjoint.

Problem 6.5.5. Show that if V is a real inner product space, then the set of self

adjoint operators on V is a subspace of L(V ). Show that if V is a complex inner

product space, then the set of self-adjoint operators on V is not a subspace of

L(V ).

Problem 6.5.6. Show that if dimV ≥ 2 then the set of normal operators on V is

not a subspace of L(V ).

Problem 6.5.7. Let A be a normal matrix. Prove that A is unitary if and only if

all its eigenvalues λ satisfy |λ| = 1.

Problem 6.5.8. Let X ∈ Mn(C) be any complex matrix and put A = In − 2XX∗.

Prove that A is both hermitian and unitary. Deduce that A = A−1.

Problem 6.5.9. Suppose V is a complex inner product space and T ∈ L(V ) is a

normal operator such that T 9 = T 8. Prove that T is self adjoint and T 2 = T.

Problem 6.5.10. Let A be a normal matrix. Show that A is hermitian if and

only if all its eigenvalues are real.

Problem 6.5.11. Prove that if T ∈ L(V ) is normal, then

imT = imT ∗.

and

ker T k = ker T

imT k = imT

for every positive integer k.
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Problem 6.5.12. A complex matrix A is called skew-hermitian if A∗ = −A. Prove

the following statements.

a) A skew-hermitian matrix is normal.

b) The eigenvalues of a skew-hermitian matrix are purely imaginary, that is,

have the real part 0.

c) A normal matrix is skew-hermitian if all its eigenvalues are purely imaginary.

Problem 6.5.13. Suppose V is a complex inner product space. An operator

S ∈ L(V ) is called a square root of T ∈ L(V ) if S2 = T. We denote S =
√
T . Prove

that every normal operator on V has a square root.

Problem 6.5.14. Prove or disprove: e identity operator on F2 has infinitely many

self adjoint square roots.

Problem 6.5.15. Let T, S ∈ L(V ) be isometries and R ∈ L(V ) a positive

operator, (that is 〈R(v), v〉 ≥ 0 for all v ∈ V ), such that T = SR. Prove that

R =
√
T ∗T .

Problem 6.5.16. Let R2[X] be the inner product space of polynomials with

degree at most 2, with the scalar product

〈p, q〉 =
∫ 1

0

p(t)q(t)dt.

Let T ∈ L(R2[X]), T (ax2 + bx+ c) = bx.

a) Show that the matrix of T with respect to the given basis is hermitian.

b) Show that T is not self-adjoint.

(Note that there is no contradiction between these statements because the basis in

the first statement is not orthonormal.)
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Problem 6.5.17. Prove that a normal operator on a complex inner-product space

is self-adjoint if and only if all its eigenvalues are real.



7
Elements of geometry

7.1 Quadratic forms

Consider the n-dimensional space Rn and denote by x = (x1, . . . , xn) the

coordinates of a vector x ∈ Rn with respect to the canonical basis

E = {e1, . . . , en} . A quadratic form is a map Q : Rn → R

Q(x) = a11x
2
1 + . . . annx

2
n + 2a12x1x2 + · · ·+ 2aijxixj + . . . 2an−1,nxn−1xn,

where the coefficients aij are all real.

Thus, quadratic forms are homogenous polynomials of degree two in a number of

variables.

Using matrix multiplication, we can write Q in a compact form as

Q(x) = X�AX,

where

151
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X =

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

...

xn

⎞⎟⎟⎟⎟⎟⎟⎠ and A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1n

a12 a22 . . . a2n
...

...
...

a1n a2n . . . ann

⎞⎟⎟⎟⎟⎟⎟⎠ .

The symmetric matrix A (notice that aij = aji) is be called the matrix of the

quadratic form. Being symmetric (and real), A it is the matrix of a self-adjoint

operator with respect to the basis E. This operator, that we call T , is

diagonalizable and there exists a basis B = {b1, . . . , bn} formed by eigenvectors

with respect to which T has a diagonal matrix consisting of eigenvalues (also

denoted by T )

T = diag{λ1. . . . , λn}.

Let C be the transition matrix from E to B and

X ′ =

⎛⎜⎜⎜⎜⎜⎜⎝
x′
1

x′
2

...

x′
n

⎞⎟⎟⎟⎟⎟⎟⎠
the coordinates of the initial vector written in B. We have that

X = CX ′

Knowing that T = C−1AC, and that C−1 = C� we can compute that

Q(x) = X�AX

= (CX ′)� A (CX ′)

= X ′�C�ACX ′

= X ′�TX ′

= λ1x
′2
1 + · · ·+ λnx

′2
n,
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and we say that we have reduced Q to its canonical form

Q(x) = λ1x
′2
1 + · · ·+ λnx

′2
n.

This is called the geometric method.

The quadratic form is called

• positive definite if Q(x) > 0 for every x ∈ Rn \ {0}

• negative definite if Q(x) < 0 for every x ∈ Rn \ {0}.

We can characterize the positive definiteness of a quadratic form in terms of the

diagonal minors of its matrix

D1 = a11, D2 =

∣∣∣∣∣∣ a11 a12

a12 a22

∣∣∣∣∣∣ , . . . , Dn = detA.

We have the following criteria:

• Q is positive definite iff Di > 0 for every i = 1, n

• Q is negative definite iff (−1)iDi > 0 for every i = 1, n.

7.2 Quadrics

The general equation of a quadric is

a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a13xz + 2a23yz

2a14x+ 2a24y + 2a34z + a44 = 0.

From a geometric point of view, quadrics, which are also called quadric surfaces,

are two-dimensional surfaces defined as the locus of zeros of a second degree
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polynomial in x, y and z. Maybe the most prominent example of a quadric is the

sphere (the spherical surface).

The type is determined by the quadratic form that contains all terms of degree two

Q = a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a13xz + 2a23yz.

We distinguish, based on the sign of the eigenvalues of the matrix of Q, between:

ellipsoids, elliptic or hyperbolic paraboloids, hyperboloids with one or two sheets,

cones and cylinders.

We study how to reduce the general equations of a quadric to a canonical form.

We reduce Q to a canonical form using the geometric method.

Consider the matrix A associated to Q. Being symmetric, A has real eigenvalues

λ1, λ2, λ3. If they are distinct, the corresponding eigenvectors are orthogonal (if

not we apply the Gram-Schmidt algorithm). Thus, we obtain three orthogonal

unit vectors {b1, b2, b3}, a basis in R3.

Let R be the transition matrix from {i, j, k} to the new basis {b1, b2, b3}. We recall

from previous chapters that R has the three vectors b1, b2, b3 as its columns

R = [b1|b2|b3] .

Now, we compute detR and check whether

detR = 1.

If necessary, i.e., if .detR = −1, we must change one of the vectors by its opposite

(for example take R = [−b1|b2|b3]). This assures that the matrix R defines a

rotation, the new basis being obtained from the original one by this rotation. Let

(x, y, z) and (x′, y′, z′) be the coordinates of the same point in the original basis
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and in the new one, we have ⎛⎜⎜⎜⎝
x

y

z

⎞⎟⎟⎟⎠ = R

⎛⎜⎜⎜⎝
x′

y′

z′

⎞⎟⎟⎟⎠ .

We know that with respect to the new coordinates

Q = λ1x
′2 + λ1y

′2 + λnz
′2,

and thus, the equation of the quadric reduces to the simpler form

λ1x
′2 + λ1y

′2 + λnz
′2 + 2a′14x′ + 2a′24y′ + 2a′34z′ + a44 = 0.

To obtain the canonical form of the quadric we still have to perform another

transformation, namely a translation. To complete this step we investigate three

cases: (A) when A has three nonzero eigenvalues, (B) when one eigenvalue is zero

and (C) when two eigenvalues are equal to zero.

(A) For λi �= 0 we obtain

λ1(x
′ − x0)

2 + λ2(y
′ − y0)

2 + λ3(z
′ − z0)

2 + a′44 = 0

Consider the translation defined by

x′′ = x′ − x0,

y′′ = y′ − y0,

z′′ = z′ − z0.

In the new coordinates the equation of the quadric reduces to the canonical form

λ1x
′′2 + λ2y

′′2 + λ3z
′′2 + a′44 = 0.
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The cases (B) and (C) can be treated similarly.

We end this section by showing plots of the different quadric surfaces, starting

with the degenrate cases, namely the cone and the cylinder.

x y

z

Figure 7.1: Cone x2

a2
+ y2

b2
− z2

c2
= 0

x y

z

Figure 7.2: Cylinder x2

a2
+ y2

b2
= 1

The nondegenerate quadic surfaces are shown on the next page.
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x y

z

Figure 7.3: Ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1

x y

z

Figure 7.4: Sphere x2 + y2 + z2 = 1

x y

z

Figure 7.5: Elliptic paraboloid

x2

a2
+ y2

b2
− z = 0

x y

z

Figure 7.6: Hyperboic paraboloid

x2

a2
− y2

b2
− z = 0
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x y

z

Figure 7.7: Hyperboloid of one sheet

x2

a2
+ y2

b2
− z2

c2
= 1

x y

z

Figure 7.8: Hyperboloid of two sheets

x2

a2
+ y2

b2
− z2

c2
= −1

7.3 Conics

Studied since the time of ancient greek geometers, conic sections (or just conics)

are obtained, as their name shows, by intersecting a cone with a sectioning plane.

They have played a crucial role in the development of modern science, especially in

astronomy. Also, we point out the fact that the circle is a conic section, a special

case of ellipse.

The general equation of a conic is

a11x
2 + 2a12xy + a22y

2 + 2a13x+ 2a23y + a33 = 0.
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The following two determinants obtained from the coefficients of the conic play a

crucial role in the classification of conics

∆ =

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a12 a22 a23

a13 a23 a33

∣∣∣∣∣∣∣∣∣
and D2 =

∣∣∣∣∣∣ a11 a12

a12 a22

∣∣∣∣∣∣ .
Notice that the second determinant corresponds to the quadratic form defined by

the first three terms.

Conical sections can be classified as follows:

Degenerate conics, for which ∆ = 0. These include:two intersecting lines (when

D2 < 0), two parallel lines or one line (when D2 = 0) and one point (when D2 > 0).

Nondegenerate conics, for which ∆ = 0. Depending on D2 we distinguish

between the

Ellipse (D2 > 0) whose canonical equation is
x2

a2
+

y2

b2
= 1,

Parabola (D2 = 0) whose canonical equation is y2 − 2ax = 0,

Hyperbola (D2 < 0) whose canonical equation is
x2

a2
− y2

b2
= 1.

A graphical representation of each of these curves is given below.
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Figure 7.9: Ellipse x2

a2
+ y2

b2
= 1

Figure 7.10: Hyperbola x2

a2
− y2

b2
= 1
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Figure 7.11: Parabola y2 − 2px = 0

The reduction of a conic section to its canonical form is very similar with the

procedure that we have presented in the last section when dealing with quadrics.

Again, we must perform a rotation and a translation. We show how the reduction

can be performed by means of an example.

Example 7.1. Find the canonical form of 5x2 + 4xy + 8y2 − 32x− 56y + 80 = 0.

The matrix of the quadratic form of this conic is⎛⎝ 5 2

2 8

⎞⎠
and its eigenvalues are the roots of λ2 − 13λ+ 36 = 0. So λ1 = 9 and λ2 = 4, while

two normed eigenvectors are v1 =
1√
5
(1, 2) and v2 =

1√
5
(−2, 1) respectively. The

rotation matrix is thus

R =

⎛⎝ 1√
5

− 2√
5

2√
5

1√
5

⎞⎠ ,

and we can check that detR = 1.

Now, the relation between the old and the new coordinates is given by⎛⎝ x

y

⎞⎠ = R

⎛⎝ x′

y′

⎞⎠
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that is

x =
1√
5
(x′ − 2y′)

y =
1√
5
(2x′ + y′) .

By substituting these expressions in the initial equation we get

9x′2 + 4y′2 − 144
√
5

5
x′ +

8
√
5

5
y′ + 80 = 0.

To see the translation that we need to perform we rewrite the above equation as

follows

9

⎛⎝x′2 − 2
8
√
5

5
x′ +

(
8
√
5

5

)2
⎞⎠ + 4

⎛⎝y′2 + 2

√
5

5
y′ +

(√
5

5

)2
⎞⎠

−9

(
8
√
5

5

)2

− 4

(√
5

5

)2

+ 80 = 0.

Finally, we obtain

9

(
x′ − 8

√
5

5

)2

+ 4

(
y′ +

√
5

5

)2

− 30 = 0.

Thus, the translation x′′ = x′ − 8
√
5

5
, y′′ = y′ +

√
5
5

reduces the conic to the canonical

form
3

10
x′′2 +

2

15
y′′2 = 1.

7.4 Problems

Problem 7.4.1. Find the canonical form of the following quadric surfaces:

a) 2y2 + 4xy − 8xz − 6x+ 8y + 8 = 0,

b) 3x2 + y2 + z2 − 2x− 4z − 4 = 0,

c) xz = y,

d) x2 + y2 + 5z2 − 6xy + 2xz − 2yz − 4x+ 8y − 12z + 14 = 0
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Problem 7.4.2. Find the canonical form of the following conics:

a) x2 − 6xy + 9y2 + 20 = 0,

b) 3y2 − 4xy − 2y + 4x− 3 = 0,

c) 5x2 + 6xy + 2y2 + 2y − 1 = 0,

d) xy = 1.

Problem 7.4.3. Given the ellipsoid

(E) :
x2

4
+

y2

3
+ z2 − 1 = 0,

find the value of the parameter p for which the straight line⎧⎨⎩ x = z + p

y = z + 2

is tangent to (E).

Problem 7.4.4. Find the equation of the plane that is tangent to the sphere

x2 + y2 + z2 = 1

at the point M
(

1
2
, 1
2
,
√
2
2

)
.

Problem 7.4.5. Find the equations of the planes that contain the line⎧⎨⎩ x = 1

y = 0

and are tangent to the sphere

(x− 1)2 + y2 + z2 = 1.

Problem 7.4.6. Consider the hyperboloid of one sheet

x2

16
+

y2

9
− z2

4
= 1.

Determine the straight lines that belong to this surface and pass through the point

P (4, 3,−2).
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Problem 7.4.7. Find the equation of the circle whose center is located in C (1, 2)

and whose radius is R = 2.

Problem 7.4.8. Determine the center and the radius of the circle of equation

x2 + y2 + 2x− 4y − 4 = 0.

Problem 7.4.9. Write the equation of the circle that passes through the points

A (1, 1) , B (1, 5) , C (4, 1).
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